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connected, reductive linear algebraic group G operates with finitely many
orbiis. Assume that G is defined over an algebraically closed field F of
characteristic # 2 and let § be an automorphism of G of order 2. We assume
that B and T (as above) are O-stable and let K denote the fixed point
subgroup of 6. One knows that K is a (not necessarily connected) reductive
group. We denote by X the quotient variety G/K and call it the symmetric
variety defined by (G, 8). Then B, acting by left translations, has finitely many
orbits in X. We study here the ordered set ¥ of orbits. We call the order on ¥
defined above the Bruhat order on V. The example above of B-orbits on G/B is
a special case (see Section 10).

Rather than working with B-orbits on G/K, it is sometimes more
convenient to work with either K-orbits on G/B, or with double cosets BxK,
which are orbits for the obvious action of B x K on G. It is clear that there
are canonical closure-preserving bijections between these three kinds of
orbits. We shall usually work with the (B x K)-orbits.

If the base field is €, we can view G as the complexification of a reductive
real Lie group G such that 4 is the complexification of a Cartan involution of
G (so that G is non-compact). Now G/K 15 the complexification of the
symmetric space defined by G and the Cartan involution. For the finiteness of
V in this situation see Matsuki [12]. The K-action on G/B here appears in
connection with the {(infinite-dimensional) representation theory of the Lie
group G. In fact, the classification of Harish-Chandra modules for G is
intimately related to the geometry of K-orbits on G/B (as one can see from
L9l

We now sketch the contents of this paper. Our discussion of the set ¥ of
orbits is based on another description of V' which was given in [15]. This
description (also recalled 1n Section 1) goes as follows: Let the notation be as
above and let ¥ = {xe G{x#{x) e N}. Then T {(resp. K) acts on ¥ by left
(resp. right) translations and we can identify ¥ with the orbit set T\ ¥ /K
(which is finite).

The map ¥~ — W which sends x €% to the image in W of x{x)™* induces a
map ¢: V — W whose image lies in the set 4 = {we W|8w)=w"!} of
twisted involutions of W. This map ¢ plays an important role in our analysis
of the Bruhat order. In [15]} some properties of twisted involutions were
developed. Section 3 of this paper gives some further properties.

If xe¥’, then T}, = x™ ! Tx is a f-stable maximal torus of G and any such
torus 1s of this form. The K-conjugacy class of T, is uniquely determined by
the image of x in V¥, so that we obtain a map of V onto the set £ of K-~
conjugacy classes of f-stable maximal torl

It is clear that N acts on ¥” by left multiplication, whence an action of Won
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V. This action is discussed in some detail in Section 2, where it is also shown
that the set W\ V of W-orbits on V is in bijective correspondence with the set
5. We discuss the classification of K-classes of §-stable maximal tori in
Section 9. ' _

If xe¥ and if veV denotes the image of x, we let O, denote. the
corresponding (B » K)-orbit BxK. To study the orbit closures, we use a
familiar argument involving minimal parabolic subgroups. IfseS, let F, be
the corresponding (minimal) parabolic subgroup of semisimple rank 1
containing B. In Section 4 we consider the product map P, x®,—G and
describe the set of orbits ¢, in its image. Arguments of this sort are quite
familiar. For example, they play an essential role in Tits’ theory of (B, N } pairs
and in the study of the usual Bruhat order in [2]. To study the image of the
product map above, we have to distinguish several cases, according to the
‘position of s relative to v”. In analogy with the case of real semisimple groups,
we can speak of 5 as being real, complex, compact imaginary, or non-compact
imaginary with respect to v. These matters were discussed in [15] and the
relevant facts are recalled in Section 1. The discussion of Section 4 is really a
collection of results already given in [11]. For the convenience of the reader,
we have given complete proofs.

In order to formulate the properties of the Bruhat order on ¥, we have
found it convenient to use the monoid M = M(W) generated by elements m{s)
(se8) with defining relations m(s)* = m(s) and the ‘braid relations’
m(sym(t)m(s)... = m{pym{s)mit)...(s,t€ 8,5 #1) as in (W, 5). It is introduced in
Section 3. If se § and ve V, we define m(s) - ve V by P, cl(00,) = c0y5.0), where
‘o]’ denotes Zariski closure. This determines an action of M on ¥. Our set V
has a length function [ defined by i(p)=dim 0, — d, where d is the common
dimension of the closed (B x K)-orbits. The action of M on V has the
following properties: (i) v < m(s)- v; (ii) if v’ < v, then mis) v’ < m(s) v; (iii) | is
strictly monotonic for the Bruhat order; and (iv) if v#ms) v then
I(m(s)-v) = Kv) + 1. In Sections 5 and 6, we consider partially ordered sets X
with an M-action and a length function such that (i}-(iv) above hold. We have
the notion of a reduced decomposition of an element of X; this is a
generalization of a reduced decomposition of an element of W. We show the
equivalence of a number of properties of such an M-set; these properties are
gencralizations of familiar properties of the Bruhat order on W, such as the
exchange property and the property Z{s, w,w’) of [6}. As a consequence, we
obtain a combinatorial characterization of the Bruhat order on V. It is the
weakest partial order on V which satisfics conditions {i)—{iv) above. We give
several explicit combinatorial descriptions of this weakest order.

In Section 3, devoted to twisted involutions, we also introduce a length
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function and an action of M(W) on the set # of twisted involutions. The

weakest partial order on .# which has properties (i}-(iv) above is the Bruhat
order on .#. (This is usually not the order on .# induced by the Bruhat order
on W) We discuss the Bruhat order on .# in some detail in Section 8. The map
@: ¥V — ¥ defined above is compatible with the respective Bruhat orders, If 8

acts trivially on T, then .# is just the set of involutions in the Weyl group W, In
this case, we obtain a combinatorial Bruhat order on the set of involutions in
W, which perhaps merits some further study (for example, in particular cases
suchas W = §,). Let 8, = — w6, where w, is the longest element of W and let
#, be the set of twisted involutions for #;. Then the map a —aw, is a
bijection of .# onto .# | which reverses the Bruhat orders. Thus we have a sort
of ‘duality’ for twisted involutions.

Another problem involving .# is that of the description of the image of the
map ¢: ¥ — #. This problem is relevant for the description of K-conjugacy
classes of 8-stable maximal tori (and for the description of conjugacy classes
of Cartan subalgebras in a real semisimple Lie algebra). We give {wo
descriptions of image (¢). The first description, given in Theorem 7.13, uses
the ‘weak order’ on V, which is the order generated by the order relations
v< mis)-v{ve ¥, seS). It states that acimage(y) if and only if a is dominated
in the weak order by a,,, = ¢(v,.,), Where v, is the maximal element of
V{an, can be read off from the Satake diagram of (G, ). The other
description, given in Proposition 7.16, is in terms of eigenspaces associated to
a and a,, and is more in the spirit of results about the classification of Cartan
subalgebras of a real semisimple Lie algebra (see [107]).

In Section 10, we have worked out some-concrete examples of the Bruhat
order on ¥. We mention in particular the following example. Let G = GL(F)
and define the involution 6 by 6(g) =='g~!. Then the map @:V —. is a
bijection which preserves the Bruhat order. Using the duality for twisted
involutions mentioned above, we obtain an order-reversing bijection of ¥V
onto the set ¢, of involutions in the symmetric group S, {here #, is given the
Bruhat order for involutions discussed above).

Let G and B be as above. A G-variety X is spherical if B has finitely many
orbits on X. Some of our results (see, for example, 4.2) carry over to general
spherical varieties, but we have not made a systematic study of the order
relation on B-orbits in the general case. We hope to come back to this
question. ‘

The ideas from this paper can be used to give a completely geometric
construction of the Hecke algebra representations introduced in [117 (in loc.
cit. results from representation theory are used). This will be dealt with in a
paper by one of us (T.A8.).

[ U S
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1. PRELIMINARIES

All algebraic groups and algebraic varieties are taken over an alge:lbraica]ly
closed base field F of characteristic # 2. Throughout the paper G‘ will denote
a connected reductive algebraic group and 6 is an auto.morphism of G (?f
order 2. The fixed point subgroup K of 8 is a reductive ‘group. Ho is
semisimple and simply connected, then K is connecied, but in general K is
not necessarily connected.

1.1, Let T be a f-stable maximal torus of G with normalizer N(T). We let
W = W(T)= N(T)/T be the Weyl group of (G, T) and @ = ®T} the
corresponding root system. The involution & acts on W and . .

For ac®, let x, denote a one-parameter subgroup of & assocsatc.d to o
This is an isomorphism of the additive group F onto a closed unipotent
subgroup U, of G, which is normalized by 7, such that

(07 = x(t)e) (te T GeF).

The subgroup G, of G generated by U, and U _, is semisimple of rank 1; it is
isomorphic to either SL,(F) or PGL,(F).

We choose the isomorphisms x, such that, for every "‘f&"@’ =
x, ()% { ~ 1)x,(1) Hes in N(T). Then s, = n,T is the reflection In “::
defined by a. Moreover n} = ¢"(—1)=t, and n., = t,A, = N, where a
denotes the coroot (or multiplicative one-parameter subgroup) defined by a.
There exists c,& F* such that 8(x,({)) = XpafCoE) (£ € F). There are several
cases.

(a) 8(x) # + o Then a is complex (relative to 6). We may then assume that
f.‘,x - Cﬂ(z} = E and 9(”0,) ‘m ﬂg{a], B(Rma) el nmg(a). d

(b) Ba) = —a. Then « is real. We may assume that ¢, = ¢.,=1 an
B(n,) =n.,

If 8(o) = a, then « is imaginary. There are two subcases:

{c) ¢, = 1. Then « is compact imaginary. Now Hn,) = n,
(d) ¢, = — 1. Then « is non-compact imaginary. We have 8(n,) = n_,.

We refer to [15,2.4] for more details,
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If « is cither real or imaginary, then G, is O-stable. If a is compact

imaginary, then G, is contained in K. If a is real or non-compact imaginary, !
then (G, n K)°, the identity component of G, r K, is a maximal torus of G,.

1.2, We now assume that the O-stable maximal torus T is contained in a 6- ]

stable Borel subgroup B, so that (B, T) is a standard pair in the sense of
[15,‘2!:3]. We let W= W(T). The Borel subgroup B defines a system of
positive roots @ in @ and a basis A of ®, both stabilized by 0. Let

§ = {s,|aeA}, so that (W, S} is a Coxeter group. The corresponding length |

function is denoted by I Let U denote the unipotent radical of B. The group
U is generated by {U,|ae®™}. It is a 6-stable subgroup.

We define a morphism 1: G — G by 1(x) = x6(x " ¥) {(x€ G). Then 1(G) is a
closed subvariety of G and t(x) = 1(y} #f and only if k= x"'yeK. The
morphism © induces an isomorphism of the coset space G/K onto 1G)
{15,2.2]. We note that #(z(x)} = t(x)"* for xeG.

We set ¥ = {xeG|t(x)e N(T)}. Note that o(¥") < {ne N(T)| 6(n) = n™'}.
The group T x K acts on ¥ by {t, k) x = txk~*, Let V = V{(G) be the set of
{T x K)-orbits on ¥". If ve ¥, we et x(v)e ¥~ be a representative of the orbit v
in 7. We also have an action of the group B x K on G given by
(b, k) x = bxk™! and the orbits are the {B,K) double cosets BxK. The
inclusion map #" — G maps (T x Kj-orbits into (B x K)-orbits. The follow-
ing result is proved in [15, §471:

1(-?‘3 T.HEOREM. () V is finite. (i) The inclusion map ¥ — G induces a
bijection of the set V of (T x K)-orbits on ¥ onto the set of (B x K)-orbits on
G. Thus G is the disjoint union of the double cosets Bx(v)K (ve V).

L4 REMARKS. (a) Define a (left) action of G on (the set) G by:
g*x = gxt{g)” (9, x € G). We call this the twisted action of G on G. For xeG,
let Gox = {g*x|geG} denote the twisted orbit of x, Thus (g} = g* 1 and
(G} = G+ 1, the twisted orbit of 1 € G. It is clear that 1(¥") = (G~ N(T). Itis
immediate that 7{G) v N(T) is stable under the twisted action of N{(T) and
that the restriction iy ¥ — ©(G) ~ N(TYmaps the set V of (T x K)-orbits on
¥ bijectively onto the sct of twisted T-orbits on ©(G} n N(T). In working with
explicit examples, this is usually the easiest model to use in order to get an
explicit description of the set V.

{b} Let & denote the variety of Borel subgroups of G and let & be the set of
all pairs (B, T;) where B, e # and T, < B, is a f-stable maximal torus. Then
K acts on # and & by conjugation, Define p: F > # by p(B,, T,) = B,. It is
an easy consequence of 1.3 (see [15, Cor. 4.4]) that p induces a bijection
FLIK — B/K of the sets of K-orbits. In particular, if B, e & and T, and T, are
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0.stable maximal tori contained in B,, then there exists ke B; n K such that
lek" ! - Tz.

1.5 THE BRUHAT ORDER. H veV, we denote by ¢, the double coset
Bx{v)K which corresponds to v. Clearly each double coset O, is a smooth
subvariety of G and the closure cl(¢,) is a union of double cosets. The Bruhat
order on V is the (partial) order on ¥V defined by the closure relations on the
double cosets @, = Bx(v)K. Thus v' < vif and only if €, < cl{@,}). In Section
10 we show that the Bruhat order on the Weyl group W is a special case of the
Bruhat order on ¥, In [15] some properties of the Bruhat order on V' were
established. In this paper, we shall make a more detailed study of this order.

Let p: G —+ G/K and n: G — G/B denote the canonical projections. Then p
(resp. ) determines a bijection of the set {¢,|ve ¥} of (B x K}-orbits on G
onto the set of B-orbits on G/K (resp. K-orbits on G/B). For veV, we let
#, = pl0,) and #, = n(0,). Then G/K is the disjoint union of the orbits X",
(ve V) and G/B is the disjoint union of the orbits #, (ve V). It is clear that the
following conditions on v, v’ € ¥ are equivalent: (i) v’ < v; (i) O, = cl(@,); (iii)
A, < cl(A,); and (iv) B, < cl(@8,). I K is not connected, then the orbits 0,
and #, are not necessarily irreducible varieties. The orbits %', are always
irreducible varieties.

1.6. If ve ¥, then T, = x(v)”*Tx(v) is a H-stable maximal torus and it is easily
seen that any f-stable maximal torus is conjugate to one of this form. Fix
ve ¥ let x = x{v) and let T, = x~ ' Tx, Then the inner automorphism Int(x™*)
defines an isomorphism £, of @ onto the root system ®, = ®(T;). fae P and
if x, is as in 1.1, then Int{x "!)° x, is a one-parameter subgroup associated to
the root o, = f,(a) of ®,. We say that « is complex, real, ... forvifa; = f()is
complex, real,... in the sense of 1.1 for Ty, If a is complex, real, ... for v, then
we also say that the reflection s, & W is complex, real,... for v.

We recall from [15,§3] that an element ae W is a twisted involution if
0{a) = a~'. Let # = (W, 0) be the set of twisted involutions in W. Ifve V,
then @(v) = t(x(t))Te W is a twisted involution. (The element @(vje F is
independent of the choice of representative x(v)e ¥ for v.) Thus we have
defined a map @: V — . This map ¢ plays an important role in our study of
the Bruhat order on ¥ '

We let # = {s,]ae®} denote the set of reflections in W.

Letve V and let a = @(v). Then ae ® is complex (for v) if af{a) # + o, real if
ab(a) = —a, and imaginary if af(a) = a. We let C(v) be the set of reflections
s = §, in # which are complex for v and let S(v) (resp. S(v)") denote the set of
s& 8§ M C(v) such that [(sab(s)) = la) — 2 (vesp. l(sabtls)) = Ha) + 2). We let R(v)
(resp. Hv),, I(v),) be the set of se A such that s is real (resp. non-compact
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imaginary, compact) for v. We set I(v)=I(v), U {v).. We set S(v), = S R{v),
S(v), = S 1(v),, S(v).=585nlv). and S(v),= SN HKv). (These notations are
slightly different from those in [15,4.7])

L7 LEMMA. Let u, veV be such that o(u)= ¢(v). Then we have: (i}
S(u) = S(v); (i) S(u)" = S(v)"; (iii) R(u} = R(v); and (iv) I(u) = I(v).

This follows immediately from the remarks above. If &, v are as in Lemma
L7, it is not necessarily the case that I{u), = I(), or that I(u), = I{v),.

L8 REMARK. The definition of the map ¢: V — .# depends on a number of
choices. We shall show that ¢ is essentially independent of these choices. Let
W be the canonical Weyl group of G (see [4]). The underlying set of #” is the
set of G-orbitson # x #. Let 0. B x & — # denote the canonical map. We
define a map ¢: @ — # by ¢(B') = o(B, 6(B')). The map ¢ is constant on K
orbits and hence induces a map ¢': #/K — # of the set of orbits #BiK.
Associated to the pair (B, T), there is a canonical isomorphism N o= Ny g
W(T) — # defined as follows: if we W(T), then niw} = o(B,"B). Hve V and if
m{0,} is the corresponding K-orbit on 4, then a straightforward argument

shows that ¢'(=(0,)) = n{@(v)). This shows that the map ¢ .W .7 is
canonical.

1.9 REDUCTIONS. Let V° = V°(G) denote the set of (T x K%-orbits on
¥ It follows from 1.3 that ¥° is a finite set which parametrizes the double
cosets BxK®. The finite group K/K° acts on V° in the obvious way. It is
known that K/K° is an elementary abelian 2-group. See, e.g, [20, Prop. 7].
(The result in loc. cit. is stated for characteristic zero, but exactly the same
proof goes through in arbitrary characteristic %2.)

1.10 LEMMA. (i) ¥ is the set of K/K® orbits on V°. (i) Let G' be the derived
group of G. The inclusion G' — G induces a bijection VO(G')— V(G). {iii) If 1:
G - G is a central isogeny of algebraic groups with involution, then 1 induces a
bijection V(G - V(G).

We omit the proofs, which are straightforward.

L11. Nowlet Gbeasbeforeandlet1: G -» G'bea simply connected covering
of its derived group. The automorphism of G’ induced by § can be lifted to an
involution of G [17,9.16]. Moreover, since G is semisimple and simply
connected, the fixed point subgroup of the lifting of § to G is connected, by a
theorem of Steinberg [17, 8.2], so that V¥G) = V(G). We conclude that V(G)
can be canonically identified with the set of orbits of the elementary abelian 2-
group K/K® acting on V(G).

.The preceding remarks give a reduction, in a sense, of the study of the

Ly
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2. THE W-acTioN ON V

We fix a standard pair (B, T) and continue with the notation of Section 1. In
particular, the map ¢: W — # is defined as in 1.4. It will be convenient to
define a {left) action of W on {the set) W, the twisted action, as follows: if w,
w; € W, then wew, = ww,8(w)" " If w, e W, then Wew, = {wew |weW}is
the twisted W-orbit of w,. An easy argument shows that the set # of twisted
involutions is stable under the twisted action, so that we get a twisted action
of Won 4

Let veV and let x = x{v). If ne N(T), then nxe¥" and its image in V
depends only on the image of n in W. We thus obtain a (left) action of Won ¥,
denoted by (w,p) »w v (weW, ve V).

2.1 LEMMA. Let we W and ve V. Then @(w:v) = w* @{v).
The proof is trivial.

Thus we see that ¢ is equivariant with respect to the action of Won V and
the twisted action of W on .#. In particular the image of ¢ is a union of ‘
twisted orbits.

We recall that a torus Ty in G is 8-split if 8t} = ¢ forevery te T, U Ty is a
g-split torus, it is clear that (T} = T,. The following resuit is proved in
[13,5.17: :

2.2 PROPOSITION. Let t be a semisimple element of G} Then t is
contained in a 8-split torus.

We shall establish a connection between W-orbits in ¥ and K-conjugacy
classes of #-stable maximal tori using Proposition 2.3 below,

2.3 PROPOSITION. Let T' be a 0-stable maximal torus of G and let x& G he
such that (x)e T'. Then there exists ye N{T") such that ©(x) = t{y).

For the proof, we need the following lemma. Let Z denote the center of G.

2.4 LEMMA. Assume that there exists '€ T" such that ¢ o(T) < Z. Then T" is
contained in a 6-stable Borel subgrpup.

Proof. By passing to the quotient group G/Z, we may assume for the proof
that Z is trivial. The assumption then implies that € is trivial on 7", so that T
is a maximal torus of K ; hence rank K = rank G. Itis known that KN Tisa
masximal torus of K°[13,5.1);so that T = K° n T Hence T'and T = K°n T
are conjugate in K° Thus there exists ke K® such that kTk™" = T". Thus
kBk™" is a 0-stable Borel subgroup containing 7.

Proof of Proposition 2.3. First we treat the case in which T is contained in
a f-stahle Rorel suberoun B'. Let U’ = R.(B). Write the element x of the
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proposition in the form x = uyy’, with u, &' in U’ and y in N(T"), according to
Bruhat's lemma. Put 7(x) = 1. Then

x = uyd’ = t8(x) = ()t~ Y0 NOW).

The uniqueness part of Bruhat's lemma implies that y = 18(y), whence
ty) =t = z(x).

Next assume that T" is not contained in a f-stable Borel subgroup. Put
©(x) = t€ T". By the previous lemma, there exists ¢, € T” such that t1{t,) is non-
central. Replacing x by t7 'x (which is permissibie), we may assume that ¢ is
non~c§ntral. Let H be the connected centralizer of t; H is a proper, connected
reductive subgroup of G. Since 6(t) = ¢t 7, we see that H is f-stable and it is
clffar that T' < H. By 2.2, tet(H). It now follows by induction that there
exists ye N(T"y H with o(y) = t = 1{x}.

We now return to the action of Won V.

2.5 PROPOSITION. Let v, v'e V. If (v) = ('), then v and v’ lie in the same
W-orbit.

'Proof. Let x = x(v) and x" = x(v'). Then 1(x'} = tr{x) for some teT Put
T =x"'Tx. This is a 6-stable maximal torus. If y=x"'x, then
©(y) = x"'txe T". Applying 2.3, we conclude that there exists ne N(T) such
that 7(y) = t(x " 'nx), which is equivalent to t(x’) = 7(nx). But this implies that
there exists ke K such that x'k = nx. 1f we put w = nT, this implies that
¢ = w+p, which proves the proposition.

?.6. Let f/“ be the variety of maximal tori of G. This is an affine varigty
isomorphic to G/N(T), on which 6 acts. Let 7 be the fixed point set of 6, ic’
the ‘se:t of g-stable maximal tori. It is an affine variety on which K act; by
con;ugaiion. fve V¥, then x(v) ™ ! Tx(v)e 7°. This determines a map of V to the
orbit set "/I.( ; it is easy to check that this map is independent of the choice
of rf_:prescntatwc x{v} for v and is constant on W-orbits. Thus we get a map of
orbit sets y: V/W — 7 /K. Since ¢: V — .# is W-equivariant (with respect to
the twisted action of W on #), we also get a map ¢: V /W — #/W,

27 PBOI.’.(.)SITION. @) y: V/W — T %K is bijective. (ii) ¢: V /W — F/W is
injective. (it} There is a bijection of image(¢p)}/W onto TY/K.

Prodf. (1') follows easily from the definitions and (ii) is a consequence of 2.5.
The assertion of (iii) is a consequence of (i) and (ii).

If T is a O-stable maximal torus, we let Wi(T") denote the image of
Ny(T) = N(TYn K in W(T"). Let veV, let x = x{v} and let T' = x"'Tx;
clearly T” is f-stable. Let f,: W(T) - W(T") be the automorphism determined
by Int(x ') We set Wy(v) = f,” (Wi(T")).
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28 PROPOSITION. Let ve V. (i) The stabilizer W, = {weW{w-v =0} is
equal to Wy(v). (i) Let we W, let a = @(v) and let W, = {(weW|wxa = a}.
Then ofw-v) = @(v) if and only if we W, '
Proof. (i) 1t is clear that Wi(v) = W,. Let B = x{v) 'Bx(v) and let
T* = x(v)” ' Tx(v). In order to show that W, < Wy (v), it suffices to show that if
ne N(T') and if nB'n™ ' is K-conjugate to B, then nT" € Wi{T'). This can be
shown using 1.4(b). We omit the details. (i) The proof follows from 2.1.

The following result has been observed by several mathematicians:
2.9 COROLLARY. The number of elements in V is given by
Card(V) = 3 Card (W(T')/W(T'),

where the sum is taken over a set of representatives T' for 7 4K,

210 REMARKS. See [9] or Section 9 for the classification of K-conjugacy
classes of f-stable maximal tori. The classification is essentially the same as
the classification of conjugacy classes of Cartan subalgebras of a real
semisimple Lie algebra given by Kostant [10]. If T'e 7%, it scems to be hard
to give a nice description of Wy(T") in terms of combinatorial data involving
only @, 6, and the (Satake) diagram associated to {G, 8). (See [16] or
[8,p. 532] for these diagrams. The diagrams in {16] contain slightly more
information than the usual Satake diagrams.)

2.11. In order to tie up the results of this section with those of the next
section, we need to introduce some more notation. Let X*{T) (resp. X (T} be
the free Z-module of characters (resp. multiplicative one-parameter sub-
groups) of T and let E = E(T) = X (T) ®z R. Then W and 8§ act on the real
vector space E. We give E a positive definite inner product invariant under W
and 0. We identify the root system @ with a subset of E by means of the inner
product and the duality between X *(Tyand X (7). Thus @ is a reduced root
system in the real Euclidean space E.

3. MORE ON TWISTED INVOLUTIONS

A number of properties of twisted involutions were developed in [15,§3]. In
this section, we develop further properties which will be used in the sequel.
Many of the results of this section follow directly from the definitions and
from results of loc. cit., so we shall often state results without giving proofs.

3.1, We follow the set-up of Section 3 of loc. cit. Thus @ is a reduced root
system in a real Euclidean space E, W = W(®)is the Weyl group, bt is aset
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of positive roots for © and A is the corresponding basis of ®. (We do not !
assume that @ spans E.) We et 6 be an orthogonal linear transformation of E -
such that 6%=1d; and such that ®, ®* and A are O-stable. We let .
# = {s,|x& P} be the set of reflections in W and let § = {s,|xe A} be the set
of simple reflections. Let # be the set of twisted involutions in W and let
F = {weW|w? = 1} be the set of involutions in W, The group W acts on (the
set) W by twisted conjugation: w  x = wxfi{w) ™ '(w, x € W). It is clear that # is |

stable under this Waction.

Ifre #, we define a map n(r): # — & as follows: Let ae .. If rva = a, we
set n(ria) = ra; if rva+#a, we set y(r)a) = rva. Clearly the composi- |
tion #(r) o n(r} is the identity map of .#. Thus n(r) is a bijection of .# of period 2 |

and, if r # 1, then #{r) does not have any fixed points. We shall often denote

n{r){a} by r = a (thus r < a does not denote the product of r and @ as elements of

W) I ry,...,r are elements of ¢ and ae.#, then we frequently write
rier,e.opag for ry o(rzo(... o{rkoa)”.))_
We carry over to twisted involutions the notations and terminology of

Section | regarding real, complex and imaginary roots and reflections. Thus,
for example, if ae.#, then

Cla) = {s,e #|ab(x) # ta}
and

Stay = {s&Cla) ~ S| sab(s)) = Ka) + 2}.
We define the sets I{a), R(a), S(a),, Sla),, and S{a)' in a similar fashion.

32 LEMMA. Let re® and let ae.#. (i) If reRiaywla), thenroa=ra If
reCla), then rea = rwa. (i) Let seS. If sa < a (resp. sa > a), then sca < g
(resp. sca>a). If sca=sa, then Ksoa)= la) £ 1. If sca=s%a, then
Ksoa) = Ka) + 2.

Proof. The last statement of (i) follows from [ 15, 3.2]. The other proofs are
casy.

H s=(sy,...,5) is a sequence in S, we define by induction a sequence
a(s) = (ag, ay,...,a,) in # as follows: @y = land ifie[1,k], then g, = 5,°q,_,.
We set w(s) = a,. We say that k is the length of the sequence and we write
I(s) = k.

3.3 DEFINITION. Let 5= (5y,...,5) be a sequence in § and let
a(s}=(ay,...,a). We say that the sequence is an admissible sequence if

0= lag) < Ka,) < -+ < {a,). If s is an admissible sequence and a = w(s), we
say that s is an admissible sequence for a.

We let wg denote the longest element of W, Since 8(@*) = ®*, we see that
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we is a twisted involution. If J < A, let W, denote the subgroup of W
generated by {s,}aeJ } and let w; be the longest element of W, We let @, be
the root subsystem of ® spanned by J.

314 LEMMA. For every ae %, there exists an admissible sequence § Jor a.

Proof. The proofis by induction on rank(®) = |A}. If rank(®) = 0, the result
is clear. Assume that rank(®) > 0 and that the result holds for root systems of
smaller rank. Let ae.#. By [15,3.3], there exists J < A and a sequence
(S4,-..,5) in S such that: (i) J is -stable and w,Ha) = —a for every a¢J; and
(i) @ = s, % - w5, *w,; and Ka) = 2k + lw,). Let E; be the subsp.ace of E
spanned by J and let 8, denote the restriction of fto E;, S #£ARn fol!ows
from the inductive hypothesis, applied to (®,0,), that there exists &}n
admissibie sequénce (t1,-.., 1) for wy. Thus {,..., 15 $1,...,5) is an admis-
sible sequence for a. If J ='A, then we must have a = w,. In this case, let
§ = (,,...,5) be an admissible sequence in § of maximal length and let
b = wfs). If b # w,, then there exists s § such that sb > b. It then foliows
from 3.2 that (sy,...,5,5) is an admissible sequence, which gives a contra-
diction. Thus b = wy and we are done.

Now let s=(s,.. .,5) be an admissible sequence in 5 and let
a{s} = (ﬂo,ai,...,ak). Let Jl(s) = {iE{l,k]lSI‘)ai_l - sia!’_.x} and Jz(s) ==
{ie[L,k]ls;oa;,y = s;#a;}; set ay(s) = (J,(8)] and a,(8) = |J(8)l.

1.5 LEMMA. Let the not.::uion be as above and let a = a, = w(s). Then
Ka) = o,(8) + 20,(s).
i ccEndg(E) and AeR, we let E(c, ) = {xeE|c(x} = ix} denote the A-

eigenspace of c on E. If ae.# is a twisted involution, we set E _{a) = E{af, ~1)
and E (a) = E(af, +1}.

3.6 LEMMA. Let se#, let we W and let ae #. Then w- E_(a})= E .(wxa),
so that dmE_{a)=dimE_(wxa). If sella) (resp. seR(a)), then
dim E_(sa) = dim E_{a) + 1 (resp. dim E_(sa} = dim E @) — 1}

3.7 LEMMA. Let s be an admissible sequence in S and let a = w(s). Then
o(s) = dim E_{a) — dim E_(1).
Thus we see that o,(s) depends only on a = XS}

3.8 DEFINITION. If ae#, we define an integer Ai(a) by AMa)=
dim E _(a) — dim E _(1).

19 PROPOSITION. Let ac.# and set L{a) = 3{lla) + Ma)l. Then L{a) is an
integer. If s = (34,...,8;} is an admissible sequence with a = oXs), then k = L{a).
Proof. Let s be an admissible sequence such that a = o(s) and let k be the
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length of s. It follows from 3.5 and 3.7 that {(a) = 2k — {a), so that
k = {[Ha) + Aa}]. This proves 3.9.

We say that the integer L{a) defined in Proposition 3.9 is the length of a as a
twisted involution. 1t is clear that L{a) < a).

3.10 THE MONOID M{W). At this stage, it is convenient to introduce a
certain monoid M = M{W) which is canonically associated with the Coxeter
group W = (W, 5). The monoid M is generated by elements mi(s) (s € §) which
satisty the following relations:

(i) m(s)* = m(s) (s S);

{ii) (‘braid relations’) Let s, t& S, with s # f and let p be the order of st
(1) If p is even, p= 2k, then (m(s)m{t)}* = (m{r)m(s))".
(2) I pis odd, p =2k + 1, then (m{sym{t)}*m(s} = (m(tym(s)ym(t).

The monoid M is a well-known object {see [5, p. 87] and [3, Ch. 1V, §2, Ex.
23,p. 55D fwe Wand if s = (s,,...,5,) is a reduced decomposition of w, then
the clement m(w) = m(s,)m(s,)...m(s,) depends only on w and is independent
of choice of reduced decomposition s of w. Morcover, M = {m(w)iwe W} and
m{w) # m{w) if w ¥ w'. If s& § and we W, then m(sim{w) == misw) if sw > wand
misim(w) = m{w} if sw < w. For the moment, we shall let o: W — M denote the
bijection w — m(w). We define the left and right actions of M on W by
mow= o m'mw)) and wem' = o” Y m(wim') (m'e M, weW). We define
KM - M by x(m{w)) = m(t{w) ).

3.11 LEMMA. (i) & is an anti-automorphism of M (that is, an isomorphism of
M onto the opposite monoid M. (ii) Let #(M) = {m(a)|ae #}. Then (M) is
the fixed point set of x.

We define the twisted action of the monoid M on (the set) M as follows: If
m, m'e M, then msm’ = mm'x(m). It follows from the definitions that F(M),
the fixed point set of «, is M-stable; ie. if meM and m' e #(M), then
mim'eS(M). f m'eM, then we let Mam' = {m+m'|meM) denote the
twisted M-orbit of m'". We transfer the twisted action of M on M (o an action
of M on W by means of the bijection ¢: if weW and m'eM, then
mew =g~ {m' = mw)), so that we have m(m’ s w) = m’ » m(w). We call this
action the twisted action of M on W, By 3.11, the set .# of twisted involutions

is stable under the twisted action of M, so that we get an induced twisted
action of M on £,

3.12 LEMMA. LetseSand ac#. If sa < a, then m{s)xa = a. If sa > a, then
msi«a=soa
This follows from the definitions. from 3.2 and from '15.3.21.
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113 LEMMA. ¥ is equal to M =1, the twisted M-orbit of 1.

314 LEMMA. Let we W, let 8 = (5,...,5,) be a reduced decomposition of
w't and let a=mw)*1. Then Nw) = L{a). If Kw)= La), then s is an
admissible sequence and ols) = a.

1.15 DEFINITION. We define a subset I'=F(W# of W by I'=
{we W|lw)=L{m{w)x 1)}. For each aef, we set [{a)={wel{mw)*1
= a}.

Thus I" is the disjoint union of the sets ['(a) (ae.#).

3.16 LEMMA. (i) If ae.#, then T(a) is non-empty. (ii) Let wel and let
§ = (S1,...,8) be a reduced decomposition of w™ i Then s is an admissible
sequence. (ii) Let § = (5, ...,5,) be admissible and let w = 5. . 535, Thenwel'

and s is a reduced decomposition of w™".

3.17. The weak order on M. For later use, it will be convenient to introduce a
(partial) order, denoted by F, on the set .# of twisted involutions. (This order
on . is not intended to be an analogue of the Bruhat order on W)

Let a, be#. We write ar— b if a # b and if there exists se§ such that
b = m(s) * a; we also write s:.a b if we want to indicate the role of s. We note
that it is possible to have s: ar— b and ¢: a— b without having s = . We define
a relation b on .# as follows: Let a, be #; then at b if there exists a sequence
Gasr s i M F such that we have

a=dgrra b+ = b

It is clear that F is a (partial} order on .#, We say that F is the weak order on
5.

3.18 LEMMA. Let a, be #. (i) Assume that a— b. Then a < b (Bruhat order)
and L{b) = L{a) + 1. Either I{b) = Ka) + 1 or i{b) = l{a) + 2. {ii) Assume that
atb and as#b. Then a<b, Lla) < L{b) and la) < l(b). (iii} at wy. In
particular, if a # w, then Lig) < L{w,).

319 LEMMA. Let a, be #. (i) Let w,eT(a). Then at b if and only if there
exists wye W such that wyw,e'(b) and lw;wy) = l(w,) + l{w,). (i) Assume
alt b and let k = L{a),| = L(b). Then there exists a sequence s = (s,...,5) in 8
such that a = sge 05,0l and b = 5005 0 L.

320 LEMMA. (i) Let a, be #, with E_(a) < E_(b). Let ¢ = ba™*. Then c is
an involution and E _(b) = E_(a) ® Elc, — 1) (orthogonal direct sum). (i) Let
be.# and let c€ W be an involution such that E(c, —1) < E.(b). Thena = cb is
a twisted involution and E _{a) = E_(b).
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It is well known that if ce W is an involution, then there exists a family§
{B1,-... B} of pairwise orthogonal roots such that ¢ = s,, -5y, In fact, one
can assume that the family {8,,..., 5} consists of pairwise strongly or-

thogonal roots [3, Ch. VI, §1, Exer. 15].

321 LEMMA. Let a, be.# with E_(a) c E_(b). Then there exists a family
{B1.-.., B;} of pairwise orthogonal roots such that we have an orthogonal direct

sum decomposition E_(b) = E _(a) @ R, & - @ Rp,

We consider the following condition on an element ze #;

322 CONDITION. If be.# and if bz, then for every ce Wb, we have E

ckz

323 REMARK. We return fo the notation of Section 2. Let v,,meeyj

correspond to the dense (B x K)-orbit on G and let a,,, = ¢(v,,,). We shail
show in Section 7 that a,,,, satisfies Condition 3.22.

3.24 PROPOSITION. Let ze.# satisfy Condition 3.22. Then the Jollowing
two conditions on ae.# are equivalent: (i) at z; and (ii) there exists be W+ g

such that E_(by < E_{z),

Proof. (i) = (ii). The proof is by induction on L{z) — L{a). If L{z) — L{a) =0,
th.en z = g by 3.18. Assume that k = L(z) — L{a) > 0. Then there exists ce.#
with ar+c and ¢t z. Clearly L{z) ~ L{c) = k — 1, so by induction there exists

we W such that E_(w*c) c E_(z). Since ar ¢, there exists se(Sa)’ U S(a)) |

such that ¢ = soa. i se S(a)’, then a = s« ce W * ¢ and we are done. Assume

ti?at s€ S(a); and let s = 5,, with 2e(A n E, (a)). Then we have an orthogonal
direct sum decomposition E_(c) = E_(a) ® Ra, so that E_(a) < E_{c}. Thus |

E.wra)=w-E (g)cwE.(0)=E_(wec)c E_(z).

(i) = (i). The proof is by induction on d(z,a) = dimE_(z) - dim E_(a). If |
dz,a) = 0, then it follows from the hypothesis that there exists we W such

that £_(wa) = E_{z), which implies that w «a = z. By Condition 3.22, this
implies that a b z. Assume now that k = d(z, @) > 0. By hypothesis, there exists
be W a with E_(b} properly contained in E_(z). It follows from 3.21 that
there exists fe(® N E_(z) n E . (b)). By a standard property of root systems,
there exists we W such that @ = wx e A, Let 5 = 5, and let ¢ = w b, Then
acE(c)nE_(wez)and E_(c) < E_(w»2). Let d = soc. Since ae E (c), we
have c++d and

Ef)cE_(d)=E (¢)® Rec E_(w»z),

so that E_(w™ ' »¢) < E_(z). Since d(z,d) = k — 1, the inductive hypothesis
implies that dF z, Thus ¢+ d |z Since ae W xc, it follows from Condition
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4. PROPUCT OF A MINIMAL PARABOLIC AND A DOUBLE COSET

Let « be a simple root and let s = s, be the corresponding reflection in W, We
let P, = P, be the ‘standard’ parabolic subgroup of G associated to o«; P, is the
parabolic subgroup with Lie algebra L(P,) = L(U _,) ® L(B). Itis a minimal
parabolic subgroup. Let ve ¥ let x = x(v) and let @, = BxK be the corre-
sponding double coset. Clearly P00, = P.xK is a union of (B x K)-orbits. In
this section, we analyze the orbit structure of P, in some detail. It turns out
that P.¢, is the union of either one, two or three orbits. Most of our results
can be obtained from analyzing the action of K n F, on the coset space
x"'Px/x"1Bx, which is isomorphic as a variety to the projective line
P! = PYF}). All of the results of this section are clementary, but they are
complicated to state, since we have to consider a number of cases. Most of the
resuits here are sketched in [11] and {15, 6.7], but very little detail is given.

4.1 ORBITS OF A SUBGROUP OF Aut(P'). The group Aut(P'} of auto-
morphisms of P! is isomorphic to PGL,(F) (see [1,111, 10.8]). Let H be an
algebraic subgroup of Aut{P') and assume that H has a dense orbit on Pl
There are gour possible cases:

Case I. Either H® is unipotent or dim H = 2. In this case there are two
orbits, onc dense orbit and one fixed point.

Case I, H = Aut(P?). Clearly P! is the only orbit in this case.

Case I11. H is a torus. There are three orbits, one dense orbit and two fixed
poinis,

Case IV, H is a torus and H/H® is of order 2. There are two orbits. The
dense H°-orbit is H-stable and H permutes the two fixed points of H°.

42 ORBITS OQF Bx K ON PO, Let veV and let x = x(v). Thus
O, = BxK. Let B, = x"'Bx and P, = x"'P,x. Let # = #, denote the set of
{-conjugates of P, and let A: & — 2 be the canonical projection. To simplify
notation, we often denote # (resp. #) by X (resp. Y), when we consider #
{resp. #) as a projective variety with G-action. Let x (resp. y) denote B, (resp.
P,) considered as a point of the variety X (resp. Y). Define 1: G — % = X by
n{g) = ¢~ 'By, We note that 1 and n are locally trivial fiberings. It follows
from the definitions that 2~ YK x) = @, and that (Ao n)" {(K y) = P,0,. As
an easy consequence of these observations, we have:

421, Let v, veV. If 0, = PO,, then PO, = PO,
1t is ‘obvious that 27 !(y) = P, x and that ™ (K -y) is the K-orbit of P,-x.

Since P00, = " '(A" (K - y), we see that P00, is a smooth subvariety of G. By
1.5, K-orbits on A~ YK -y) = K-(P, %) correspond bijectively to (B x K}

cllin e BB K mbmr wr o~ D . and aociieas that v o b o come ko K
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Then an easy argument shows that ke K 1 P,. Now P, 'x is isomorphic as a
variety to P! and the action of P, on P, -x defines a morphism of algebraic
groups h: Py - Aut(P, -x) = Aut(P!). Let H = (K N P,).

It follows from the remarks above that there is a canonical bijective
correspondence between K-orbits on 17'(K -y} and H-orbits on P, - x. Since
K has only a finite number of orbits on X, we see that H has a dense orbit on

P, -x. Thus we can use the analysis of 4.1 to get information on (B x K)-
orbits on P00,

Case I. Either H® is unipotent or dim H = 2. Then P&, is the union of two
orbits, one dense and one of codimension 1.

Case II. H = Aut(P, -x). Then P.O, = 0,

Case 111. H is a torus. There are three orbits, one dense orbit and two
orbits of codimension 1.

Case IV. H® is a torus and H/H® is of order 2. There are two orbits, one
dense and one of codimension 1.

For each of Cases I, IIl, and IV above, there are two possibilities,
depending on whether @, is dense in PO, or of codimension 1. We now
analyze cases according to whether s is real, complex, . .. for v. Some of our
results depend on results from [15, in particular 5.1 and 6.7].

4.3 CASE ANALYSIS

4.3.1. Case A: s is complex for v. This corresponds to Case I above. We have
PO, = 0,0 0,,. 1f se S(v) (resp. se S(v)"), then &, {resp. 0,.,) is dense and U
{resp. @,) is of codimension 1.

4.3.2. Case B: s is compact imaginary for v. We are in Case II. We have
PO,= 0, and s-p = v,

4.3.3. Case C: s is real for v. We are in either Case 11 or Case 1V. In both
cases ¢, is dense in P, and there exists v'eV such that PO, =
0,00, 0,,.In Case IIf (resp. Case IV) we have s' v’ # ¢/ (resp. s+ v/ = v').
4.3.4. Case D: s is non-compact imaginary for v. We are in Case 111 or Case
1V. In both cases, there exists v’ € V such that PO, = ¢, u 0, U @, , with ¢,
dense and ¢, and @, of codimension 1. In Case 111 (resp. Case IV), s v s v
{resp. 5'v == v).

44 LEMMA, Let veV, let a = @{v) and let s€8 be such that sa < a. Then

_ there exists v’ € V such that: (i) PO, = P ,.; and (ii) ¢, is dense in P,0, and @,
is of codimension 1. Moreover (v} = sca < a. If s€ S(v), then v = 5 v and
@(v') = s+ a. If se S(v),, then o(v') = sa.
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Proof. Since sa < a, either s& S(v) or s S(v), so that we are in either Case
A or Case C. The result now follows from the analysis of cases above and
from [15,5.1].

4.5 LEMMA. IfveV and s€8, then P, cl{@,) is closed.
This follows from [18, p. 68, Lemma 2].

The following theorem plays an important role in our discussion of the
Bruhat order on ¥

4.6 THEOREM. Let ve V. Then there exists a closed orbit €, and a sequence
8 = (8;,...,8,) in § such that ¢ ) = P, ... P, 0, and dim €, = k + dim 0,
Let a=o(v). Then s is an admissible sequence for a and L{a)=k =
dim ¢, — dim &,,.

Proaf. The proof is by induction on L{a). If L{a} = O, thena =1 and €, 1s
closed [ 15, 6.6]. In this case, we may take v = vy and k = 0. If a # 1, choose
se8 such that sa < s By 4.3 and 44, there exists v'eV such that: (a)
c(@,) = P,cl{0,); (b) dimn(®,) = dim{(,,) + 1; and (c) @(t) = s°a < a, so that
Lip(r) = L{p{v)) — 1. The proof now foliows easily if we apply the inductive
hypothesis to v,

4.7 ACTION OF M(W) ON V. We use the above construction to define an
action of the monoid M = M(W) on V. Let ve V and se8. It follows easily
from the analysis of this section (or from the irreducibility of 2, —see 1.5)
that there is a unique dense (B x K)-orbit in P0,. We define m(s) v = v,
where ¢, is the unique dense orbit in P,0,. We note that if sts... = r5t...i5 a
braid relation, then P,P,P,... = P,P,P,.... This follows from standard results
on the multipcation of Bruhat cells (see [3, Ch. IV, §2]). Thus the above
definition defines an action of M on V.

5. PARTIAL ORDERS ON M-SETS

Most of the basic properties of the Bruhat order on V now follow from
clementary combinatorial arguments involving the action of the monoid
M{W)on V. In Sections 5 and 6, we will give these combinatorial arguments.
We shall work in a fairly general setting, since similar arguments apply in
related situations of interest, for example the ‘Bruhat order” on the set of
twisted involutions and the ‘Bruhat order’ on the set of B-orbits for a
homogeneous spherical variety. Surprisingly, the braid relations on M(W) are
never used in our arguments.
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In Sections 5 and 6, § is a finite set and M is a finite monoid. We assume
that we are given a mapping assigning to each se S an element m{s)e M. We

assume further that the set {m(s}|s€ S} generates M and that m{s)* = m(s) for |

s€8. We let X be a finite M-set. We let m- x denote the action of me M on
xeX and we let M -x={m x{meM} denote the M-orbit of x. If
§=(5,...,5) 8 a finite sequence in 5, we let k=I[s) and we let
m{s) == m{s,) ... m{s;) (note the reversal in order). Thus every me M is of the
form m(s} for some sequence s; the identity element e of M corresponds to the
empty sequence.

5.1 THE LENGTH FUNCTION AND THE WEAK ORDER. We say
that xe X is a minimal element of X if x¢ M -y for every ye X, y # x. We let
X, be the set of minimal elements. We assume from now on that we are given

a function [: X — N with the following properties: (1) {x) = 0 if and only if ;

xeXy and (2) if se8 and xeX are such that x # mis)-x, then
lm(s)- x) = Kx) + 1. We say that | is the length function on X. It is clear that if
a length function on X exists, then it is unique.

Let x, yeX. We write yr+x if x # y and there exists s&§ such that
x =m(s) y. We define a relation + by: yt x if there exists a sequence
(Xg,...,%;) such that y=x,ox,+s--r+x, =x. It follows from the
existence of the length function that Fis a partial order on X. We call this
order the weak order on X It is clear that y + x if and only if xe M - y and that
X, is the set of minimal elements of X with respect to the weak order.

5.2 THE STANDARD ORDER ON X. If y, xe X, we write y — x if there
exist ze X, t€ § and a sequence s in S such that the following conditions hold:
() y = mis) z and Ky) = l(z) + Ks); and
(i) x = m(s) - m(t)-z and Ix) = Hz) + I(s) + 1.
We define a relation < on X as follows: y < x if there exists a sequence
X = (%g,..., %) in X such that y = xg ~» x, = -« = x, = x. Itisclear that < is
a partial order on X. Note that y — x if and only if y < x and I(y) + 1 = Kx).

We say that < is the standard order on the M-set X, Clearly the standard
order on X has the following properties:

(iii) If xe X and se$, then x < m(s) x; and
(iv) Let y, xe X. If y = x and I(x) < ), then y = x,

We write y<xif y<x and y # x.

5.3 DEFINITION. A partial order < on X is compatible with the action of
. M on X if the following three conditions are satisfied for all y, xe X and se §:
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(i) x < m(s)-x; (i) if y < x, then m(s)-y < mis) x; and (i) if y<x and
I(x} < iy}, then y = x.

We observe that the standard order = on X is compatible with the M-
action if and only if condition 5.3(i1) holds for =.

5.4 EXAMPLE. Let the notation be as in 3.10. With a little work, one can
show that the Bruhat order on W is compatible with the left action of M(W)
on W,

We consider the following property of an M-set X with length function [ as
above: '

PROPERTY 5.5 (Weak Exchange Property). Let s,te S, let ze X and let s be
a sequence in §. Assume that:

(1) {mis)y -m(t)-2) = l(z) + s} + 1 and m{s) - m{s)-m(t)-z = m(s})- m{t)- z; and
(i) Kmis}-2) = Wz) + s} and Km(s) m(s} - z) = {z) + s} + 1.

Then m(8)  m{t} 2 = m{s) m(s)- z.

5.6 PROPOSITION. (i) Assume that there exists a partial order on X
compatible with the M-action. Then X has the weak exchange property. (ii)
Assume that X has the weak exchange property. Then the standard order on X
is compatible with the M-action. Furthermore the standard order on X is the
weakest partial order on X compatible with the M-action.

Proof. (i) Let < be a partial order on X compatible with the M-action. Let
5, t,s and z be as in 5.5 and assume that 5.5(i) and 5.5(ii) hold. Thenz € m{t)- z
and consequently

mis)-mis) z < mis)- mi(s) mit) z = m(s) - m{r) z.

Since l{m(s) - mis)-z}= Hz) + U{s) + 1 = l(m(s)-m(t)- z), it follows from 5.3(ii)
that m{s)-m(s)  z = m{s)- m{1}- z, so that the weak exchange property holds.

(i) Assume that the weak exchange property holds and let the notation be
as in 5.2, We need to show that if y =< x and if s §, then m(s)’ y =< m(s)- x. By
definition of the standard order, it will suffice to show that if y - x, then
mis)- y = mfs)- x. There are four cases to consider: -

Case 1. y = mis) y and x = m(s)- x.
Case 2. y = mis)'y and x> mis)" x.
Case 3. y—m(s)-y and x+— m(s}" x.
Case 4. yr>mis)-y and x = m(s)- x.

In Cases 1 and 2 the argument is trivial and in Case 3 we only need the
definitions. For Case 4, we must usé the weak exchange property. By the
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definition of y -+ x, there exist ze X, teS and a sequence s such that
y = m(s)-z, x = m(s) m(t)- z and (assuming Case 4} such that Conditions 5.5(i)
and 5.5(ii} are satisfied. It then follows from the weak exchange property that
¥ = x. Thus = is compatible with the M-action.

Now let < be a partial order on X compatible with the M-action. We need |

to show that if y = x, then y < x. It will suffice to show that if y — x, then

¥ £ x. Assume that y — x and let z, t and s be such that 5.2(i) and 5.2{ii) hold. |

By compatibility of < with the M-action, we have z <m(1)-z and con-
sequently y = m(s) -z < m(s) m(t)-z = x. This completes the proof of 5.6.

5.7 DEFINITION. Let xe X. A reduced decomposition of x is a pair (x,s),

where X = (x,,..., X} is a sequence in X and s = (s,,...,5,) is a sequence in S,
which satisfies the following conditions: (1) xo€ X ; and (2) for each ie[1, k],
we have x;_ > m{s;) x;., = x, We say that k is the length of the reduced |

decomposition {x, s).

Let (x,s) be as above. It is clear that xg > x> -+ x, and that I(x,) = i for

[0, k]. It is also clear that x, and s determine (x, s). It is not necessarily the |

case that x determines s.

5.8 DEFINITION. Let{x = (x5,...,%),8 = {5,,...,5)) be a reduced decom-
position of x € X. A sequence ¥ = (y,,..., y,} in X is a subexpression of (x, s} if
Xp = ¥ and, for each ie[1, k], one of the following three alternatives holds;
@ Y-y = yi; (B yiy = mls) yi g, v+ mis) - y,, and m(s,)- Yioy = mis} y; or
) Yo remis) y., =y, We say that y, is the final term of the subex-
pression y.

59 LEMMA. Let xe X and let k = l(x). Then there exists a reduced decom-
position of x and every reduced decomposition of x has length k.
The proof is trivial.

5.10 LEMMA. Let < be a partial order on X which is compatible with the M-
action. Let (x = (xq,..., %), 8 = (s,...,5,) be a reduced decomposition of X
and let y = (yo,..., ;) be a subexpression of (x,s). Then y, < x; for ie[0,k].

Proof. The proof is by induction on i. For i = 0, the result is clear. Assume
i > 0and that y; < x;for j < i. One of the alternatives (a), (), (y) of Definition
5.8 holds for y,. We treat the three cases separately,

@ yi=y-1 £x- <X

(f) We have y,_, < x;_;, so that m{s) y,., <ms) x;.; = x. Hence
yisms)y, =ms) vy, € x;

) yi=m{s) yio; Smis) X = x,

This proves 5.10.
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5.11 THE CHAIN CONDITION. Let < be a partial order on X. We say
that < satisfies the chain condition if the following conditions on y, xe X are
equivalent: (i) y < x; and (ii) there exists a sequence X = (Xq,..., X} in X such
that y = x4 << x; < -+ < ¥, = x and l{x;} = l{x;.,) + | for every ie[1Lk] It
is clear that the weak order on X and the standard order on X satisfy the
chain condition. : :

5.12 SOME PROPERTIES OF PARTIAL ORDERS ON X. Let < bea
partial order on X which is compatible with the M-action. We consider a
number of possible properties of the partial order <,

PROPERTY 5.12(a). (Sﬁbexpression Property.) Let {x,8} be a reduced
decomposition of xe X. Then y < x if and only if there exists a subexpression y
of (x,s) with final term y. .

Ifze X and s€8, we set éé’(s,z) = {xe X |{xr+mis) x = z}.
PROPERTY 5.12(b). Let y, xeX and seS be such that x+»>mis}x and
y < m(s): x. Then one of the following three conditions holds: (i) y < x; (ii)
y+m(s)- y and there exists y' € &(s, mis)- y) such that y' < x; or (iii) there exists
¥ < x such that y'—mis}-y" = y.

For each se S and xe X, we define a subset p(s, x) of X by:

pis, x) = {m(s): x} L &(s, m(s)" x).

We set X o(x) = {ye X |y< x}.

PROPERTY 5.12(c). {One-step Property.) Let s€8 and xe X be such that
x—+mfs) - x. Then X ((m(s}- x) = | ], <x Ps, y)-

Thus, the one-step property gives a description of the behaviour of X (x)
as we go up one step from x to m(s)- x. This property clearly amounts to an
inductive description of the partial order <. '

PROPERTY 5.12(d). (Property Z(s, x, y).) Let y, xe X and s€ S be such that
x —+m(s)- x and y—s mis) p. Then the following three properties are equivalent;
(i) either y<x or there exists Yed&(s,mis) y) such that y <x; (i)
mis)- y < mis) x; and (1) y < mis)- x.

PROPERTY 5.12{e). {(Exchange property) Let (X =(xg...,X), §8=
{S1,+..,%)) be a reduced decomposition of xe X. Let s& S and y& X be such that
yrrmis) -y = x. Then there exists ie[1,k] and a reduced decomposition
(¥ = Voo os Vb S) Of X stich that y, = y and 8 = (s4,...,§,..., 8, 5

5.13 REMARK. Except for Property 5.12(c), the Properties 5.12(a)-5.12(¢)
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are all analogues of standard properties of the Bruhat order on W (where

M= M(W) and M{W) acts on W by the left action). In particular, the |

exchange property is an analogue of the usual exchange property and the

property Z(s, x, y} is an analogue of the property Z(s, w, w') of [6]. Our use of !

subexpressions was suggested by the paper of Deodhar [7], although our
definition of subexpression is somewhat different from his,

6. PARTIAL ORDERS COMPATIBLE WITH THE M-ACTION

We continue with the notation of Section 5. We assume throughout Section 6
that < is a partial order of X compatible with the M-action, In this section,
we shall show that Properties 5.12a)-(c) are equivalent and that these
properties imply Property 5.12(d). With an additional assumption, they also
imply Property 5.12(c). Properties 5.12(a)—{(c) also imply that the partial order
< agrees with the standard order =<, This implies that < satisfies the chain
condition,

6.1 LEMMA. Assume that the partial order < has the subexpression pro-
perty. Then < is equal to the standard order <. In particular, < satisfies the
chain condition.

Proof. Tt follows from 5.6 that the standard order < is weaker than < and
that < is compatible with the M-action. Assume that y<xandlet(x,s)bea
reduced decomposition of x. By the subexpression property, there exists a

subexpression y of (x, s) with final term y. By 5.10, we have y < x. Hence the
partial orders < and < are equal.

6.2 PROPOSITION. The subexpression property implies Froperty Z{s, x, y).

Proof. Assume the subexpression property and let y, xe X and seS be
such that x+>m(s) x and yrsm(s)-y. We want to show that the three
conditions (i)-(iii) of 5.12(d) are equivalent. It follows from the compatibility
of < with the M-action that (ii) and (iii) are equivalent and that (i) implies (ii).
We need to show that (i} implies (i). Assume that m(s): y < mis): x. Since
x+—mis) x, there exists a reduced decomposition (X = (Xg,..., %1 1)h
8 = ($1,...,8+¢)) of m(s} x, such that x, = x and s, ., = 5. By the subex-
pression property, there is a subexpression ¥y = (yg,..., V1) of (x,8) with
Ve+i = m{s}- y. One of the alternatives (), (1), {y) of Definition 5.8 holds for
Vi+1- We treat the three cases separately.

(@) Y= Ya+1 Then y Smls) y = sy =y S x = x.
(#) Since y,,., = mis)y, condition (8) cannot occur,
(y) We have yr-rmis) y, =y =m(s)-y. It follows that {y,y}c
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6.3 PROPOSITION. The subexpression property implies Property 5.12(b).

Proof. Assume that xr~—m(s)-x and that y<m(s} x. Let (x=
(Xgs -2 X 1) 8 = (Sg5.- .58 +1)) be a reduced decomposition of m(s)- x with
x, = x and 5,4, = 5. Then there exists a subexpression (yg,..., ¥x+1) of (X, 8)
with y,., = y. One of the alternatives («), {8, (y) holds for y, . . If () holds,
then Condition (i) of 5.12(b) holds, if (8} holds, then 5.12(b)(ii) holds and if (y)
holds, then 5.12{bXiii) holds.

6.4 PROPOSITION. Property 5.12(b) implies the subexpression property.
Proof. Assume Property 5.12(b). We want to prove the following result:

(6.4.a) Let zeX and let (2,5) be a reduced decomposition of z. If y < z, then
there exists a subexpression y of (2,s) with final term y.

The proof of (6.4a) is by induction on I(z). The result is obvious for i{z) =
Assume the result holds for length <k and let z)=k+ 1. Let
Z=(Zgr.sZx+) and let s=(s;,...,85:) Set z; = x and 5., =5 Then
xrmis) - x =zand y £ z = m{s)-x. If y = z, we are done, so we may assume
that y < z. Thus we are in the sitnation of 5.12{b). If 5.12(b)i) holds, then
y < x =z, and the proof follows by induction. In case 5.12(b)ii), we have
yr=+mis)- y and there exists y' e &(s, m{s) ¥} with y’ < x. By induction, there
exists a subexpression Y = (yy, ...,y of (2" = (2, ..., 20, 8 = (sp..... 8)) with
¥ = ¥ Hence, y (Va» . - -» V1o V) 18 a subexpression of (z, s). In case 5.12(b){iii),
there exists y”" < x with y"'+—m(s)-y" = y. By induction, there exists 3
subexpression ¥” = (yg,..., yi) of (z,8) with y; = y". Hence {3, ..., Vi, V) is a
subexpression of (z,s). This proves 6.4.

6.5 PROPOSITION. Property 5.12(b) is equivalent to the one-step property,

Proof. (a) Property 5.12(b) => One-step property. Assume Property 5.12(b)
and let xe X and se § be such that x —»m(s)* x. Let X(s, x) = | J, <, P(s, v). We
want to prove that X ((mis)- x) = X(s, x). Clearly m{s)-xeX{s, x). Assume
y < m(s)- x. By 5.12(b) there are three cases to consider.

Case (i}. y < x. Then yepls, x) = X(s, x).

Case (i) There exists y <x such that yerm{s) y =mls}y and
yr+m(s)-y. Then yep(s, y) < X5, x).

Case (iif). There exists y" < x such that y"+>mis) y" =y. Then
yvepls, y') < X(s, x). Thus X o(m(s) x) < X{s5, x}.
Now let ye X(s, x}. Then there exists v < x with yep{s, v).

Case (1). mis) v =v. Then ytF o and v < x, s0 that p < x <mfs)'x

Case (2). v m{s)-v. Then y+m(s)-v € m{5) - x

Thus X (s, x) < X <(m(s)- x). Consequently X (5, x} = X Am(s) %)

(b} Onevstep propertyumperty 5 12(b) Assume y < m{s)-x and

s RN L
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Case (1). m{s}-v = v. Then yF ¢ < x and 5.12(b)(1) holds.
Case (2). vrmis)-v. Then ecither y = m(s)-¢ and 5.12(bYii} holds or
yre>m(s) y = mfs} v and 5.12{b)ii) holds. This proves (b).

We need an additional assumption to prove that the subexpression property
implies the exchange property. We consider the following property of the M-
set X.

PROPERTY 6.6. Letu,v,ze X and s § be such that {u, v} < &8s, z). Let (u,s)
be a reduced decomposition of u and let k = {u) = Kv). Then there exists a
sequence V= (vy,...,0,) in X such that (v,s) is a reduced decompaosition of v,

6.7 PROPOSITION. Assume that (M, X) has Property 6.6. Then the subex-
pression property implies the exchange property.

Proof. Let x, yeX and se€S be such that yr+m(s)-y=x Let
(% = (Xg;..., %), 8 = {s1,..., 5)} be a reduced decomposition of x. Then there
exists a subexpression y = (y,,..., y,) of (X, 8} with yp, == y. Since {y) + 1 =k,
an easy argument shows that there exists a unique ie[1, k] such that y, = x f
for j=1,...,i— 1 and either (&) y;= y,_; or {8} {y,x;_,} = &(s,x) In
either case, a straightforward argument using Property 6.6 shows that there
exists a sequence z =(zy,...,2), with z, |, = y and z, = x, such that {z,
(S15--285...,5, 5) is a reduced decomposition of x. Thus the exchange
property holds.

Summarizing our results, we have the following implications between the
properties discussed in 5.12:

Subexpression property <> Property 5.12(b) <> One-step property.

Subexpression property = Property Z(s,x, y) + ‘< is weakest partial
order compatible with M-action’ + *< agrees with =’ + chain condition.

Subexpression property + Property 6.6 = Exchange property.

7. THE BRUHAT ORDER ON V

We return to the notation of Section 4. In particular M denotes M(W). In this
section we shall use the combinatorial results of Sections 5 and 6 to derive
properties of the Bruhat order on V. First we need several lemmas.

7.1 LEMMA. All closed orbits €, have the same dimension d.
" Proof. Let @, be closed, let x = x(v) and let B = x"'Bx. Then
B'K = x"'BxK is closed and hence B’ is a f-stable Borel subgroup of G [15,
_proof of 66]. An easy argument shows that dim0,=dimB +

s

THE BRUHAT ORDER ON SYMMETRIC VARIETIES 415

dim K — dim B ~ K. But B'~ K is a Borel subgroup of K [13, 5.1 so that
the result follows,

If ve V, we define its length v} by i(v) = dim &, — d. Then [ is a strictly
monotonic function (with respect to the Bruhat order) from V to N.
Moreover I(v) = 0 if and only if ¢, is closed. Let | be the ‘weak order’ on the
M-set V defined as in Section 5. Let ¥, = {pe V|l{v) = 0}.

72 LEMMA. (1) If veV and seS are such that mis)-v#v, then
Km(s)-v) = Kv) + L. (i) ¥, is the set of minimal elements of V with respect to the
weak order. (iii) The Bruhat order on V is compatible with the M-action and the
length function L (iv) Let ve V and let a = @{v). Then i(v) = L{a).

Proof. The proof of (i} follows from the results of Section 4 and the proofs
of (i) and (iv) follow from Theorem 4.6. The proof of (iif) follows easily from
the definitions. The only tricky point to check is Condition 5.3(iii). This
follows from the fact that the orbits ", are irreducible varieties {see 1.5).

7.3 CASE ANALYSIS. In this subsection, we reformulate the case analysis of
43 in terms of the action of M on V. Let 5§, let ve V and let a = o{v)
Following Section 5, we set
&(s,v) = [V e V| —m(s) v = v}

7.3.1. Case A: s is complex for v. I s& S(v)", then v < m(s) v = s-v. Hse S(),
then s-p < m(s)-{s v} = v and &(s,v) = {s-v}.

7.3.2. Case B: s 8(v),. Then m(s}-v = v and £(s, v) is empty.

1.3.3. Case C: s&8(v),. Then m(s) v =10 and there exists v such that
&(s,v) = {v',5-v'}. Moreover s&8(v'), and ¢(v'} = ¢(s V) =s°a <4

7.3.4. Case D: seS(v),. Then v < m(s)-v and &(s, m(s) v) = {v, s v}.

In Case D (resp. Case C), one sometimes has s-v = v (tesp. s-¢' = v').

74 LEMMA. Let veV, let se8 and let a = @lv). ) If v <m(s)-v, then
@(m(s) v) = s a. (i) Assume that sa < a. Then there exists v eV such that
v o< sy v = v and p(v)y=sca

Proof. The proof of (i) follows from [15, 5.1] and from 7.3. The proof of (ii)
follows from 4.4 and from (i) above.

7.5 LEMMA. Let v, veV and s€S be such that v'—m(s) v =v. Then
HO,) = o Pl

Proof. By 4.5, P,ci(¢0,) is closed. Since m(s) v =, it folows that
P, cl(¢,) = ci0,). It is clear thatcl(€,) = Uuﬁu‘ 0,. The conclusion of 7.5 now
follows.

- . e et e I BEallaatina  Qantinn & wies . lat nle ) oo
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{m(s)-v} U &(s,m(s} v)}. Note that vep(s,v). For veV, let Ve () =
{VeVir <o}

7.6 LEMMA. Let seS and ve V. Then PO, = | Jyepsn@y-
The proof follows immediately from the definitions and from 4.2.1.

7.7 PROPOSITION. Let seS and veV be such that vrsm(s)-v. Then
VQ(M(S)‘ U) = Uusup(s: u)'
The proof follows immediately from 7.5 and 7.6.

We see from 7.7 that the Bruhat order on ¥ satisfies the one-step property
of 5.12. We now adapt the terminology of Section 5 for the M-set V. In
particular, reduced decompositions and subexpressions are defined as in

Section 5. It is immediate from 7.2(ii) that every element of V has a reduced
decomposition.

7.8 PROPOSITION. Let (v,8 = {s,...,5,)) be a reduced decomposition of
veV and let a = @(v). Then a = s 005,01,
The proof follows from 7.4 by induction on l(y).

79 PROPOSITION. LetveV and let a = o(v). (i) Let w e T'(a) (notation as in
Section 3) and let s = (s,,.. ., 5,) be a reduced decomposition of w™*. Then there
exists a reduced decomposition {v,§') of v with 8’ =s. (ii) Conversely, let
(v, 8 ={5y,..., %)) be a reduced decomposition of vaand let w=gs5,_,...5,.
Then weF(a) and s is a reduced decomposition of w ™',

Proof. (i) The proof is by induction on iz}, ¥ I(v) = 0, then the result is
obvious. Assume that k = l(v) > 0. We have g = s,o85,_,°.--¢1, so that
Sia < a. By 7.4(ii), there exists v, € V such that v, ., < mls) v, , = v and
b= )=5._,°5;°8 Llet w=5,_,5_,...5.. It is clear that
vy 1) =k — 1, that wel(b) and that (534,81} is a reduced decom-
position of w' ™!, By induction there exists a sequence ¥ = (vy,..., . ;) such
that (¥, (5y,...,8—,)) is a reduced decomposition of v. The proof of {i) now
follows easily. (i) Since (v,s) is a reduced decomposition of v, we have
a=s°--e85;01 and L{a) = k = lv). Thus (s,,...,5) is a reduced decom-
position of w™* and we (a).

7.10 COROLLARY. Let v, v' eV be such that ¢{v) = ofv') and let (v,s') be a
reduced decomposition of v. Then there exists a reduced decomposition (v',8") of
v such that §' = s,

- It follows from 7.10 that the Bruhat order on ¥ has Property 6.6, It now
follows from 7.7 and 7.10 and from the results of Section 6 that the Bruhat
order on V' has Properties 5.10(a)—(e} of Section 5. Summarizing these results,
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7.11 THEOREM. (Main Theorem.) The Bruhat order on V has the following
properties:

{1} The one-step property.
(ii) The subexpression property.
(iit) Property 5.10b.
{iv) Property Z(s, v/, v).
(v} The exchange property.
{(vi) It satisfies the chain condition,
{vii) It is the weakest partial order on V which is compatible with the M-

action.
Furthermore, the Bruhat order on Vagrees with the standard order on the M-set

V.

We let v, denote the unique maximal element of the poset V; thus v,
corresponds to the dense (B x K)-orbit on G. We let a,, = ¢{v,,.). We have
the following characterization of 4., (see [15,52]): Let

= {86 A|a,,00) = a}. Then a,,, = wpws. We note that I1 is the set of
simple roots which are marked by a black dot in the diagram of (G, 6).

712 LEMMA. Let ve ¥, let {v = (0g,...,00), 8 =(5p,...,5)) be a reduced
decomposition of v and let | = lv,,,.). Then there exists a reduced decomposition
(V= (Vg5 0 S = {S1,-. 5 1)) Of Vpuun With vy = v; for je[0,k] and s} = s; for
jel[1,k]. Thus every reduced decomposition of v can be extended to a reduced
decomposition of v,

This follows immediately from {15, 5.2] and from the case analysis of 7.3.

The following proposition characterizes the image of the mapfp V-4 in
terms of the weak order t on the M-set .#.

7.13 THEOREM. Let ac#. Then acimage(o) if and only if at a,,,.

Proof. Letk = I{a}andlet | = L{a,,,). Assume that a = @{v) for someve V.
Let (v = {vg,..., 00, 8 ={5,...,5)) be a reduced decomposition of v. Extend
(v',8') to a reduced decomposition (v = (vg,..., 1)), 8 = (5y,..., 5)) of 5. Then
Bpax = 8199801 0a and Lla,,,) = (I - k} + L{a). It follows from the de-
finition of the weak order that at a,,,,. Conversely, assume that at a_,. By
3.19, there exists a sequerice § = {S4,..., %) such that g =3, v+ o501 and
Aoy = ;20098 0 1 Lot w= 58,4 -+ 5;. Then weINa,,,,)} and s is a reduced
decomposition of (a,,,,) " *.. By 7.9, there exists a sequence v = (vg,..., ;) such
that {v,s) is a reduced decomposition of v,,,. Thus we have

v, = (m{sm(s,—,)...m(s5;)) vo and @ly) =50 0801 =aq,
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7.14 COROLLARY. image(o) = 4 if and only if 4, = Wo.
This follows from 3.18(ii).

7.15 COROLLARY. a,,, satisfies Condition 3.22.

Proof. It follows from 2.1 that image(¢p) is a union of twisted W-orbits. The

proof now follows from 7.13.

7.16 PROPOSITION. The following conditions on ae # are equivalent: (i)
acimage(p); and (i) there exists be W a such that E_(b} @ E_(dy.,)-
The proof follows from 3.24, 7.13 and 7.15.

7.17 COROLLARY. The following two conditions are egquivalent: (i)
O € W 1 and (1) (V) = W 1.

8. THE BRUHAT ORDER ON: TWISTED INVOLUTIONS

Let the notation be as in Section 3. In particular M = M(W). We define the
Bruhat order on the set .# of twisted involutions to be the standard order =<
on the M-set #, as defined in Section 5. We show that the Bruhat order on .#
is compatible with the (twisted) M-action, so that it is the weakest partial
order on # compatible with the M-action. We also show that the Bruhat
order on ¥ has properties analogous to all of the usual properties of the
Bruhat order on the Weyl group W, Our proofs are somewhat unsatisfactory,
since at one stage we have used the classification of involutions of semisimple
groups, properties of the Bruhat order on V and properties of the
map ¢: ¥V —+ %,

We let < denote the usual Bruhat order on W, It follows from Section 4
that the function L: .# — N is the length function on the M-set .#. Let the left
action, the right action, and the twisted action of M on W be defined as in
310and 3.1L Hw, w e Wand seS, then w < w' implies that m(s)- w < m(s) w'
and w-mis) £ w' - m{s).

8.1 LEMMA. The partial order on ¥ induced by the Bruhat order on W is
compatible with the twisted M-action on # (with respect to the length function
L on #).

Proof. Let a, be # and s€ 8. Then a < mi(s)-a < m(s)-a-m(0(s)) = m(s) +a.
i a < b, then m(s)-a € mi(s) b and hence

mis) * a = (m(s)" a) m(B(s)) < (m(s)- b} m(Bs)) = m(s) « b

Assume now that a < b and L{a) = L{b). By 3.18(iii), there exists a sequence
{$1,...,8) in § such that s,o--o8,°a= wy and L{a) + k = L{w,). This
implies that
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Thus we obtain
Wo = m{s) % -+ 6 misy) <@ < m(s) s - ¥ misy) b < wo,

s0 that wq = mis)*---ms,)*b, This gives L{wo ) S L)+ ks L{a) + k =
Liwg), which shows that L(b) + k = L{w,). An easy argument now shows that
5.0--e8, b= wy, so that we have s;o---o5,0a=g8-°--°s,°b. Since, for
se 8, the map (s} # — # given by n(3){c) = se¢ is a bijection, we see¢ that
a = b, This proves 8.1.

8.2 COROLLARY. The Bruhat order on .# is compatible with the M-action.
This follows from 5.6.

At this stage we shall need to use some results concerning the Bruhat order
on V. Let the notation be as in Section 2. We recall that a parabolic subgroup
P of G is #-split if P and 8(P) are opposite parabolic subgroups, i.e. il P 6(P)
is a Levi subgroup of both P and 6(P). We say that (G, 6} is quasi-split if there
exists a #-split Borel subgroup. It is known [ 16] that (G, 6) is quasi-split if and
only if IT = {ae Al a,,H(e) = a} is the empty set. Hence we have:

8.3 LEMMA. The following conditions on (G, 8) are equivalent: {i) (G, ) is
quasi-split; (i) a,,, = wp; and (iil) @ V — & is surjective,
The proof follows from 7.14.

We return now to the notation of Section 3. We let G denote the simply
connected algebraic group with root system @.

8.4 LEMMA. There exists an involution 8, of G such that (G, 8,) is quasi-split
and the action of 8; on © agrees with 8.

Proof. This follows from an inspection of the tables in [16]. In [loc. cit., no.
6] there is an a priori proof for the case of inner involutions. The general case
follows by taking the product with a ‘diagram automorphism’.

Denote the involution 8, of G given by 8.4 by 0. Let the notation for (G, §)
be as in earlier sections. Then we may identify W, .#, etc. in this section with
the corresponding W = W(T), #, etc. of earlier sections.

8.5 THEOREM. (Exchange Property.) Let be#, let s ={s,,...,5) be an
admissible sequence for b and let s& § be such that s° b b. Then there exists
ic[1,k]} such that se b = g0 -9§o.ca5,01,

Proof. Let veV be such that p(r) = b. By 7.9, there exists a reduced
decomposition (v, s) of s with s an admissible sequence for b. Since sobr- b, it
follows from 7.4 that there exists v'e ¥ such that v'+omis)-v' = v and
@(v') = s b. The conclusion of Theorem 8.5 now follows from the exchange
property (Property 5.12{e)) for (¥, M), applied to (¢, v).



420 R. W. RICHARDSON AND T. A. SPRINGER

on # has the subexpression property. The other properties of the Bruhat
order on .# will then follow from the results of Section 6. Our proofs will
make strong use of the fact that the maps n(s) .# —.# are bijective.
Arguments of this type are not possible for the Bruhat order on V.

86 LEMMA. Let a, be# with L{b) = L{a) + 1. Let (s,...,5,) be an admis-
sible sequence for b. Assume that there exists se€S and a sequence
(Seg1se-r8par) in S such that c=so8. 08,00 is equal to
Sear® 084 0b and Lic) = r + L(b). Then there exists ie[1,k] such that
ag=s5.0-080-05 0l

Proof. The proof is by induction on r. Let # = 0. Then a=s~b—b,
and by the exchange property there exists ie{l,k] such that
a=goe§o o501l Nowletr >0 Wehave secrscand (5,,...,5.,) 18
an admissible sequence for ¢ By the exchange property, there exists
" ie[1,k + r] such that

SerC O Sks 100 = 50C = Sy 00080 w050,
There are two cases to consider:
Case 1. { € k. Then
Sp4e® 084500 msk+r°"'csk+1°sk°"'°§i°"'°slal-
Since the maps n(s) are bijective, this implics that a = g,0.-0§0 o501,
Case 2. i > k. Then
EELEETEY WPLY, £ LRy °§f°"'°Sk+10b.
Cancelling, we get
5iO8- 10 08 2A =50 08 0h,

Since i — 1 € k + r — 1, we see by induction that there exists je[1,k] such
that a =< s, °---0§;°..-a5, 0 1. This proves 8.6.
We recall that a -» b if and only f a = b and l(a) + 1 = [(b).

8.7 THEOREM. (Strong Exchange Property.) dssume that a —b and let
(84, -..,5,) be an admissible sequence for b. Then there exists ie[1, k] such that

amsko.,.osiq...oslcl‘

Proof. By 3.18, there exists a sequence (f;,...,t;) in § such that
 Wo=tpe-rofyoa and Liwg) = p + L{a). The compatibility of the M-action
with =< implies that

wo = mit, )% - wmit ) e a S mit) - xmity)x b = W,
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so that wq = mit )+ --- #mt;} * b. Since L{b) + p = L{wg) + 1, there exists a
unique integer ref1, p] such that

d=mit) emit,_ ) smit)sb = m(t, )% *mit,)xb.

Thus we have c=mt)x--*xmt;)*xa=d Since L{c}=r+ Lla)=
r — 1 + L{b) = L{d), it follows from the compatibility of = with the M-action
that

tro...ul‘loaﬂcmd:tr_}o...ﬁflob_

The conclusion of Theorem 8.7 now follows from 8.6.
We are now in a position to apply the results of Section 6 to the case of
twisted involutions. First we make the following observation:

8.8 OBSERVATION. Let seS and let ac#. Then p(s,a) = {a,s°a}. If
sa < a, then &(s,a) = {sou} and if sa > a, then &(s, a} is empty.

89 REMARK. It follows from 8.8 that in the definition of a subexpression
for the M-set #, the alternative (§} of Definition 5.8 does not occur,

8.10 COROLLARY. The subexpression property holds for the Bruhat order
on f. .

Proof. Tt follows from the definition that the Bruhat order on .# satisfies
the chain condition, The subexpression property now follows easily from 8.7
by induction.

It follows from 8.10 and the results of Section 6 that the Bruhat order on .#
has the Propertics 5. 1()(a)—(e). The results 8.11-8.14 below are either
reformulations of these properties in the framework of twisted involutions or
else follow easily from such reformulations.

8.11 PROPOSITION. Let a, be.# and let weI(b). Then a=b if and only if
there exists w, < w such that a = m(w,) = 1. If a 5 b, then there exists w, € w
such that w, e {a).

For be #, let #<(b) = {acf|a=<b}.

8.12 PROPOSITION. (Gm»Step Property.) Let s S and be # be such that
bessob. Then #<(seb) = | J,<s{a,s°a}.
Note that Proposition 8.12 gives an easy inductive definition of the Bruhat

order on £,

8.13 PROPOSITION. (Property Z(s, a, b)) Let a, be # and s€ S be such that
arrsoa and brssob. Then the following three conditions are equivalent: (i)
a=<b; (i) sca=<seb; and {il)) a S s°b.
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B.14 PROPOSITION. Ler a, be# and seS be such that a<s°b and
b < sob. Then one of the following two conditions holds: (i) a < b; or (ii) there
exists ¢ = b such that crs0¢ = q,

8.15 DUALITY FOR TWISTED INVOLUTIONS. Let 1 = —w, denote
the opposition involution of the root system @, Set 6, =10 = —wyf =
~ Bwg. Then 0, is an involution of the root system ®. We will show that there
exists a natural duality between the twisied involutions for 8 and 8, which
reverses the respective Bruhat orders. First a few words about notation, We
carry over the notation of Sections 3 and 8 from the case (&, W, ) to the case
(@, W, 8,), always using a subscript ‘1" to denote that we are dealing with 8,
rather than 6. Thus, for example: (i) #, = {ce W|8(c) = ¢!} is the set of
twisted involutions for 8,; (ii) if s€ S, then m(s) *, ¢ denotes the twisted action
of m{s) on ce.#; (iii} if ce.#,, then I,{c) is the set of reflections which are
imaginary with respect to ¢ and #,; and (iv) =<, denotes the Bruhat order on
. '

8.16 LEMMA. Define 6: W — W by 8(w) = ww,. Then 6 maps F bijectively

onto £ ,.
We omit the proof,

Let ae.#. Then &a)f, = —af. Thus we see that I{a) = R,(8(a)), R(g) =

1,(8a)), $"(a) = §y(8(a)), and S§’'(a) = S7(8(a)). As a consequence of these
observations, we obtain:

8.17 LEMMA. Let seS and ac.#. Then d(sca) = s°, 6(a). Moreover we
have: (i) arrmls)xa<omis)x 8(a) = d(a), and (i) a=ms)ra<w
{a) - m(s) *, 5(a) = &(s - a).
8.18 LEMMA. If ae, then L,(8(a)) = L{w,} — L{a).

Proof. Let 8 = {s,,...,5,) be an admissible sequence for a. Then k = L(a)
and g = 5 °--c5.° 1, Using 8.17, we obtain w, = 6(1) = 5, 5, - 25, 9, 5(a)
and L{wg) = k -+ L,(d(a)).

We define a partial order <, on .#,. Let a, be .#. Then 8(b) <, 8(a) if and only
if @ < b. We wish to show that the partial orders <, and =<, are equal. The
main step is the following proposition:

8.19 PROPOSITION. The partial order =<, on ¥, is compatible with the M-
action. 4

Proof. Let a, bes and let se8 First we want to show that
3a) <, mis)», 8(a). Il a-smis)+a, then m(s)*,d(a)=05(x) and we are done.
Assume that a=m{s)«a. Then scar+a and consequently d(a) =, d(soa)=
m(s} #, 8(a). Next we want to show that if a < b, then

I 4% Y S N [ R PR ¢r on
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It will suffice to show that (i) holds when a — b. There are the usual four cases
to consider:

Case 1. a = m(s)*a and b = m{s)*b.
Case 2. a = mis)*a and brrm(s)*b.
Case 3. ar»>mis)y*a and be»m(s)*b.
Case 4. ar+m(s)»a and b = m(s)*b.

In Case 1, we have: (a) s° a= a; (b) s° b b; (¢) 8} mis) %, 8(a) = (s e a);
and (d) &(b)r m(s)*; 5(b) = (s b). Since a-+b, it follows from Property
5.10(b) that s°a — s b, so that m{s) =, 8(b) =, m(s) *, &(a).

In Case 4, we have ar+s°a = m(s)* a =< m(s)* b = b. Since L{s~a} = L{b),
we have soa = b, which implies that b = sva. Thus m(s) » 8(b) = (s« b) =
dla) = m{s) =, 5a).

The proofs in Cases 2-and 3 are similar (but easier) and will be left to the
reader. Thus (*) holds in all four cases.

Assume now that 8(b) <, 8(a) and L,(8(a)} < L,(5(»)). Then a < b and it
follows from %.18 that L{P} < L(a). This implies that a = b by the com-
patibility of < with the M-action. Thus é(b) = &(a). This proves 8.19.

820 THEOREM. Let a, be #. Then a =< b if and only if 8(b) =, é(a).

Proof. We need to show that the partial orders =, and =, on §, are
equal. It follows from 8.19 and 56 that =, is weaker than =<, Let
Qo = l(a.b)eF x Fla=<h}, let @ ={lc,d)eS, x I ]c =;:d} and let
0, ={c.d)e s x FleX,d}. Then |Qol =1Q,l and @, =@, so that
10,] < |Q0l. If we reverse the roles of 8 and @, we see that |Qo| < |Q, so that
100l = 1@} Thus |Q4] = {Q,|, which implics that Q, = Q.

821 REMARK. We note that elements of minimal length in twisted W-
orbits on .¥ correspond to elements of maximal length in twisted W-orbits on
# . Thus Propositions 3.3 and 3.5 of [15] are equivalent.

The following result is an interesting consequence of 8.3 and the classification
of involutions,

822 PROPOSITION. Let G be a simple group of adjoint type, let T" be a
maximal torus of G and let ce W(T') be an involution. Then there exists an
involution ne N(T') which represents ¢, .

Proof. By [16,No. 47 there exists an inner automorphism 0 = Int(a) of G
such that (G, 0) is quasi-split. Since G is adjoint, @®> = 1. Let (.B’ T) be a
standard pair for (G, 8).and let the notation be as usual. Then # is the set of
invalitions in W and o ¥ ~.# is surjective. An easy argument shows that
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ae T It suffices to prove 8.22 for T' = T. Let C{a) denote the conjugacy class
of a in G. Then G)= Cla)a™'. Thus .# = (V) = (N(T)1(G))mod T
= C{a) mod T Since C{a) consists of involutions, we are done.

9. CLASSIFICATION OF #-STABLE MAXIMAL TORI

In Section 2 we showed that there is a bijective correspondence between the
set 7K of K-classes of f-stable maximal tori and the set image(p)/W of
twisted W-orbits in the image of . However, this correspondence is still not
very clear. In this section we shall clarify this correspondence. We obtain as a
consequence a classification of K-classes of #-stable maximal tori which is an
exact analogue of the classification of Kostant [10] of conjugacy classes of
Cartan subalgebras of a real semisimple Lie algebra. A similar classification
of @-stable maximal tori has been given by Helminck [9], although his
approach is different from ours. He also treats the much more difficult
problem of classifving classes of maximal k-rational, f-stable tori, where k is a
field of definition for (G, ). His results give an explanation of the similarity
between our results and those of Kostant.

9.1. If D is a subtorus of an algebraic torus C, then ED) = X (D) ® ;Risa
linear subspace of E(C) = X #C) @z R. Assume now that C is a f-stable
subtorus of G. We set C,. = (KN C)° and C.. = {ceC}fc) = ¢} We set
£ (C) = E(C,) and E_(C) = E(C_.). Clearly E (C) (resp. E_(C)) is the +1
eigenspace (resp. — 1 eigenspace) of 8 on E(C) and EC)=E (CY @ E_(O),
We let (B, T) be as in eartier sections and we let £ = E(T).

9.2 LEMMA. Let C and D be 8-stable maximal tori of G. Then C and D are
K-confugate if and only if C_ and D _ are K-conjugate.

Proof. 1t is clear that if C and D are K-conjugate, then C_. and D are K-
conjugate. Assume now that C_ and D_ are K-conjugate. After conjugating
by an element of K, we may assume that C_ =D _. Let H = Z4C_), the
centralizer of C_ in G, Then H is a 6-stable connected reductive group and
C, and D, are maximal tori of (K~ H)* = K,. Thus C, and D, are K-
conjugate, so that C and D are K-conjugate.

We continug with the notations of earlier sections. Let ye¥ be a
representative of the maximal element v, of V and let T, =y 'Ty. It is
known [16,§1] that A4 =(T;). is a maximal @-split torus of G. Let
{: E(T,) — E(T} = E be the linear isomorphism determined by Int(y). We pull
back the inner product on E to E(T,) by means of {; thus { is an isometry. The
isometry { determines an isomorphism, again denoted by {, of W(T) onto
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W = W(T). The involution ¢ acts on E(T,) and E by isometries. We have the
following result, whose proof will be omitied:

9.3 LEMMA. () If xeB(Ty, then [(0(x) = ana8(((x). @) { maps
E_(T,) = E(A) 0nt0 E _(Gpay)-

We set E_ = E_(apy). Let W(A) = Ng(A)/Z(A), let
W(To) = (we W(To)|w- 4 = 4}
and
Wy(Ty) = {we Wi(To) | wla) = alae A)}-
The following results are proved in [13, §4]:

9.4 PROPOSITION. (i} The canonical map N Ay Z K(f4) -+ 'W(A) is‘ an
isomorphism. (i) The canonical map W (To) WolTo) = W(A) is an isomorphism.

Let {: W(T;)— W be as above and let W = UWHT,), i=1, 2 Let
W, = W,/W,. i follows easily from the definitions that W, is the centralizer g?f
a0 in W, We consider W, as a group of isometries of E_; the group Wi is

the group of isometries of E. which are induced by the elements of W,.

9.5 REMARK. Let ®{4) < X*(4) denote the set of restrictions to 4 of the
elements of ®(T,). We may identify ®(4) with a subset of E(A) by m.eans of the
duality between X (4) and X*(4) and the inner product on E{4) (mfiuf:t:d by
the inner product on E{Ty). It is shown in [13, §4) that ®(A) is a (I.mt
necessarily reduced) root system in E(A4) and that W(A)is t'he corresponding
Weyl group. The group W(A}is the ‘little Weyl group’ assomafcd to (G, 0). Lc?t
&, denote the image {((4)) < E_. Then &, is a root system in E_ and Wy 18
the corresponding Weyl group. Let 'y = BT E(d)and let ¥ = PN E..
Then ¥ = {(¥,). We also have ¥ = {ae®|a,,l«) = —a}. We note that ¥
is a subset of both ® and ¥, however, in general, @, is not a subset of ®. In
particular, we can (and shall) consider ‘¥ as a root subsystem of ®g. An casy
argument shows that ‘¥ is W,-stable.

9.6 LEMMA. (i) Let C be @ B-stable maximal torus of G. Then C.is K-
conjugate to a subtorus of A. (i} Let 4, and( A )2 be subtoriof A. Then A, and A,
-conf i only if they are W{A)-conjugate.

arfl":fe ‘;‘;’3:? Zlfe(i!)fz?s,:: theyK{confi;ugacy of maximal @-split tori {207 and (ii)
follows from [13, 11.1].

9.7 DEFINITION. A subtorus 4, of 4 is admissible if there exisfs a 6-§ta_ble
n;aximal torus C of G with € = A,. A linear subspace E, f)f E . is admissible
if there exists an admissible subtorus 4, of A such that E, = {(E(4,)).
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We let «/(E ) denote the subset of admissible linear subspace of E_. The
action of W, on E. induces an action of W, on «/(F _).

9.8 CLASSIFICATIONS OF 6-STABLE MAXIMAL TORI-FIRST
STEP. Using 9.2 and 9.6, we can set up a natural bijection of the set FYK
onto the set «/(E )/ W, of W,-orbits on &/(E ). This goes as follows. Let € be
a ¢-stable maximal torus. Then C _ is K-conjugate to an admissible subtorus
A, of A, We let Qe w/(E_)/W, denote the Wy-orbit of the admissible
subspace {{£(4)). Then it follows from 9.2 and 9.6 that 4(C) is independent of
the choices made and the map p induces a bijection ol T UK - (K YW,
Next we need a better characterization of the admissible subspaces of E_,
This is given in Proposition 9.11 below. First we need two technical lemmas,

9.9 LEMMA. Assume that (G, ) is 0-split, so that A is a maximal torus of G,
Then the following two conditions are equivalent: () —1e W(A4); and (ii) ¢ is an
inner automorphism of G.

Proof. (i} => (i). Assume that ¢ = Int(h) for some he G. Then he N(A)and it
is clear that the image of h in W(4) is equal to — 1. (i) = (ii). Let ge N(4)
represent — 1 € W(A). Then 0 Int(g) acts trivially on the maximal torus A. It
then follows from a standard result [1,14.9] that 8 Int{g) is an inner
automorphism, so that § is an inner automorphism.

9.10 LEMMA. LetveV,let xe¥ bea represeniative of v, let a = (v) and let

T, =x""Ix. Then E_{a) is equal to the subspace E(Int(x)- E{(T}).) of
E(T)= E.

We omit the proof, which follows by a straightforward argument,

The following proposition characterizes admissible subspaces of £ in terms
of twisted involutions:

9.11 PROPOSITION. Let E, be a linear subspace of E_. Then the following
three conditions are equivalent:

() E, is an admissible subspace of E_;
(1) there exists ac # such that E, = E _(a); and
(ili} there exists an involution ¢ in W such that E_ is the orthogonal direct
sum of E, and E(c, —1).
Proof, (ii)<>(iii). This follows from 3.20.
(i) = (ii). Let 4, be an admissible subtorus of A with {{E(A,))) = E, and let
CeJ°besuch that €. = A,. An argument similar to the proof of 9.2 shows
.that there exists he Zg(4,) such that Int(hXC) = T,. Thus Int(yh)C) = T,
which implies that yhe ¥". Let v denote the image of yhin V and let g = @{v).
It follows from 9.10 that Int(yh): E(C) - E(T) maps E(A,) onto E_{a). But

NP
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since heZy(A,), we see that Int{yh)(E(4,)) is equal to Int(y)(F(4,)=
z;Ul(i(i/iq)lr)i (i).Eiiet d = Int(y~ ‘)c), where we consider Int(y~ Y as an isomorph-
ism of W(T) onto W(T,). Let @Ty) = {ae@(’l‘b)&d_(ac} = —q}. For each
ae®(Tp), let the root subgroup U, be defined as in 1.1, Let H be thf:
subgroup of G generated by the set of root subgroups {U, |xe®,}. Then H is
a f-stable connected semisimple subgroup of G. Let ¢ d&f,note Hi‘H and let
A, = (A n H)®. Then 4, is a maximal torus of H so that H is #-split. Clearly
the root system ®(H, A,) can be identified with @ (Tp). It follows from t,h'c
facts recalled after 3.20 that —1& W(4,) and it then follows from 9.9 tha't 8 is
an inner automorphism. Thus there exists a maximal torus €, o? H which is
contained in Hn K. Let 4, = {teAla(t) = ] (ae@d(Te))}o.'It is clear that
[(E(A,)) = E,. Moreover, C = (T)+4,C, is a 0-stable ma;flmai toru§ o'f G
and an easy argument shows that C_ = 4, so that 4, is an admissible
subtorus. Therefore E, is an admissible subspace.

912 CLASSIFICATION OF 6-STABLE MAXIMAL TORL If'we' combine
the results of 9.8 and 9.11, we can get a reasonably simpi-e descn;'mon of the
set T = 7K of K-conjugacy classes of f-stable maxlm-a}'ton of G. Let
¥ c @, be as in 9.5. For each a e @, let r, denote the restriction of s, to ‘E .
Let W(¥) denote the subgroup of W, generated by t%le set of reﬁectx(?ns
{r.lae¥}. Then ¥ is a root subsystem of ®, anfi W{¥)is the correspon&%mg
subgroup of W, (Warning: It is not necessarily the case that W{¥) is a
parabolic subgroup of the Weyl group W, of ®,.) Let #(¥) deno'te thc? set of
involutions in W(¥). It is clear that #(¥) is stable under conjugation by
clements of W,, so that ¥, acts on #(¥) by conjugation. Hee (W), let a{<:')
denote the subspace E . (¢, +1) (the + 1 eigenspace of con £ JYof E.. Thenit
follows from 9.11 that o{c) is an admissible subspace of E_ and that
o F(¥) - F(E . )is a bijection. Clearly g is Wo-equiygriant,_so tAhat we get an
induced bijection oo: F(¥)/ Wy — HE _}/W,. Combining this with the resuits
of 9.8, we obtain:

9.13 PROPOSITION. Let the notation be as above. Then there is a canonical
bijection from the set £ = 7 /K to the set F(¥)Y W, of Wg-ca.njugacy classes of
involutions in W(¥). This bijection is given by the composition

THK s gl () Wy~ J(B) Wo.

The following proposition will be useful in working out concrete examples of
the Bruhat order on V.

9.14 PROPOSITION. Assume that @: V -+ % is injective. Let image(yp) be

Frctors icBuadead
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given the order induced by the Bruhat order on #. Then the mapping of V onto
image{(p) given by @ is an isomorphism of ordered sets,
Proof. T v', ve ¥V, we write v’ = v if v' < v and i) + 1 = l(v), similarly for

. Since both V and . satisfy the chain condition, it will suffice to prove the
following statement;

(a) The following conditions on v', ve V are equivalent: () v = v; and (ii)

(V) -+ (v},

Proof of (a). (i) = (ii). Assume that v’ — 1. Since the Bruhat order on V is the
standard order on the M-set ¥, it follows that there exist ze V, teS and a

sequence s in § such that;

{1} v" = m(s) -z and Iv'} = Iz} + I(5); and

(2) v = mis)-mit) z and Kv) = Kz) + Ks) + 1.

it now follows from 7.4 and the definition of the standard order on % that
(v} - o(v).

{ii) = (i). Let a = p(v') and b = ¢(v) and assume that ¢ — b. Then there exist
cef, te§ and a sequence s in § such that:

(1) a = mis)*c and L{a) = L{c) + ¥s); and
(2) b = mis)emit)*c and L(b) = Lic) + I(s) + L.
su&nt;:? inductive argument using 7.4(ii) shows that there exist Zy, 2,68
(3) olz;) = ¢, v' = m(s)-z; and vy = lz,) + Us); and
) @lz2) = ¢, v = m(s) mt) z, and I(v) = iz,) + (s) + 1.

' Since g is injective, we see that z, = z,. It now follows from (3) and (4) that
v <. '

915 CORQLLARY. ¢ is injective if and only if there exists a unique closed
(B x Kj-orbit on G. This follows by using 7.10.

9.16 PROPOSITION. (a) The following four conditions are equivalent;
(i) ¥ = &;
(11) there is exactly one K-conjugacy class of 0-stable maximal tori;
(i) (V) =Ws1,
(V) ap e Wl

- .(b) Assume that the equivalent conditions (i)-(iv) above hold. Then ¢ is
tn!ective and induces an isomorphism of ordered sets from V to W1 (W= 1 is
given the partial order induced by the Bruhat order on %),
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Proof. (a) The equivalence of (i) and (ii) follows from 9.13, the equivalence
of (ii) and (iii) follows from 2.7 and the equivalence of (iii) and (iv) follows from
7.17.

(b) It follows from 7.11, 7:12 and 7.13 that @~ Yp(Omun) = Vmuxe BY 2.1 and
{a) above, ¢ is a W-equivariant map from V to W 1. Thus ¢~ Ye(v)) = v for
every v€ ¥, which shows that ¢ is injective. The final conclusion now follows
from 9.14.

9.17 REMARKS. (i) See [14] for the classification of involutions in a Weyl
group. The paper loc. cit. gives an easy algorithm which allows one to read off
the conjugacy classes of involutions from the Dynkin diagram.

(i) The classification given in 9.13 is an exact analogue of the classification
of conjugacy classes on Cartan subalgebras of a real semisimple Lic algebra
given by Kostant [10]. (See [21, 1L.3.1, pp. 88-96] for a nice exposition of
Kostant’s results.) To make the connection between 9.13 and [10], one needs
to use the facts mentioned after 3.20.

(iii) One can get a precise description of the root subsystem ¥ of & from
the tables in Helgason [8, pp. 532-534] (using the obvious correspondence
between the Satake diagrams in [8] and the diagrams in [16]). One needs to
use the fact that W is W,-stable and the fact that (in the notation of [8]) if
ie®,, then 1e ¥ if and only if m, is odd.

(iv) We can consider W(*F) as a subgroup of both W and of W,,. (However,
one cannot in general identify W, with a subgroup of W) By using the
classification of involutions of G, it is not too difficult to show that two
involutions in W(%¥) are conjugate in W, if and only if they are conjugate in W,

[Sketch of the argument: If 8 is an inner involution, then the result follows
from 2.7 and 7.16. If @ = 1 (= —wy), then the result is straightforward, Using
the classification, one only needs to directly check a few cases when G is of

type D,.]

10. EXAMPLES

In this section we study severa) concrete examples of the Bruhat order on
symmetric varieties. ‘

10.1 EXAMPLE. Let G = G, x G, where G, is a connected reductive
group and define the involutive automorphism 6: G — G by #(x, y) = (3, x).
Then K, the fixed point subgroup of 8, is the diagonal subgroup of G. Let B,
(resp. T,) be a Borel subgroup (resp. maximal torus of ;) with T, « B,.
If B=B, x B, and T =T, x T, then (B, T) is a standard pair for (G, 6.
We follow the notation of earlier sections. Let W;= W(T,). Then
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W =W(T)= W, x W,. The set .# of twisted involutions of W is equal to
{wi. wi ') w, e W, }. Let 8, be the set of simple reflections for W, determined
b‘y B, and let § = {(s;, )]s, e5,}w{(l,s;,)ls,€8,}. Then § is the set of
simple reflections for W determined by B. If s, € §, and w, & W,, then a simple
co.mputation shows that (s, 1)}*(wy, wi ') = (s;w,, wi *s,). It follows from
this that # = W (1, 1). It is clear that every @-stable maximal torus T° of G is
of the form 1" = T{ x Ty, where T is a maximal torus of G,. Thus, there is
'exacyly one K-conjugacy class of §-stable maximal tori in G. By 9,14, this
implies that ¢: ¥ — .# is an isomorphism of ordered sets. ’

10.1.1 LEMMA. Define p: W, —+ % b P

' W y pwi) = (wi,wit) Th '

isomorphism of ordered sets. 1 v mena
Proof. 1t is clear that p is a bijection and an easy argument shows that

i(w1)=L{p§w1)) for weW,. Let w;, w,eW, and let s = (8;,...,4) be a

sequence in S, which is a reduced® decomposition for wy. Then

S[(;;‘, 1), .*.l.,(sl, i?) is an admissible sequence for plwy). Assume that w, < w,
en there exists 1 <i; < - <i, <k such that w, = 5,

easily that -8, It follows

(10.1.2)  p(wy) = (wz, w3 ') = (s;,, 1) % --- (s, (1, ).

A straightforward argument using 8.11 shows that plws) = p(w,)

Assume now that p(w,) =< p(w,). It follows from the subexplrc;ssion ro-
perty for < that there exists a sequence 1 <i; < - < i, < k such Etahft
(10.1.2) holds. But this implies that w, = s, ...s, , 50 that w q<\w Th p
an isomorphism of ordered sets. o PR e

.WVe }jve shown there. exist canonical isomorphisms of ordered sets
qoar.de -:i and p: Wy — #. Hence ¢ ' op: W, ¥ is an isomorphism of
re sets. Consequently the Bruhat order on the Weyl group W, occurs as

a special case of the Bruhat order on the set of orbits on a symmetric variety

and also as a special case of the Bruhat order on the set of twisted involutions
of a Weyl group.

10.1.3 REMARK. The isomorphism of ordered sets ¢~ 1o pr W, =V is, of
f:ourse,‘ well known. It is essentially the same as the map of W] into the
canonical Weyl group’ #°, = %(G,) discussed in 1.8. (One works with K |-

orbits on #(G,) rather than (B, x K,)-orbits on G, in order to make the
correspondence.)

10.2 EXAMPLE. Let G = GL,(F) and define an involutive automorphism
6;:G—~G by 8,(g) ="g~", The fixed point subgroup K, of 8, is the
orthogonal group O(F). We will study the Bruhat order for Borel subgroup
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orbits on the symmetric variety G/K,. In order to make explicit matrix
computations, it will be convenient to replace 6, by another involutive
automorphism § which is conjugate to 6, by an inner automorphism. Let
d,eG be defined by dole) =€,e1-pp J = 1,...,n, where {e,,...,e,) is the
standard basis of F". Define an involutive automorphism 6 of G by
g = Int(d,) < 8, We note that doe K, s0 that Int{dg)° 8, = 6,  Intide).

Let B (resp. T) be the group of all upper triangular (resp. diagonal) matrices
in G. Then (B, T) is a standard pair for (G, 8). We adapt the notation of earlier
sections for (G, 8, B, T). Note that N = N(T) is the group of all monomial
matrices (matrices with exactly one non-zero entry in each row and each
column). Let r: N » W = W(T) be the canonical projection. We identify the
symmetric group §, with the group of all # x n permutation matrices; if 6 € §,,
then ole) = e, j = L.l Then §, < N and = maps §, isomorphically
onto W. For the present, we distinguish carefully between 5, N and
W = N/T Note that dy €S, and that n(do) is equal to wy, the longest element
of W The action of 8 on E = E(T) is given by #(x) = ~wq{x) = #x). Thus 8
acls on W by B(w) = woww, ' We let #, (resp. F) denote the set of all
involutions in S, (resp. in W). Note that & = Fw,.

We define a left action of G on (the set) G by g*x = gx8,(g)” '(this is the
twisted action of G on G corresponding to 0,). Define 7,: G- G by
7,(g) = g* 1. 1t is a classical result that 7,(G) is the set P of all symmetric
matrices in G. If g€ G, then ©(g) = gf(g)~* = (g do)do. Thus #(G) = (G* doMds.
Since d, is a symmetric matrix, we see that G*d, = G*1 = P, and hence
7(G)= Pd,. Thus Nnt{Gy=N ~ (Pdy). Since dyeN, we obtain N N T{(F) =
(N ~ Pydg. Now N n P is the set of all symmetric monomial matrices and an
elementary matrix calculation shows that S, P = F.. It follows easily that
(V) = (t{G) » Nymod T is equal to Fwy =7

By 1.4, v induces a bijection of V onlo the set of twisted T-orbits on
N A 1(G) = (N r P)do. We need to describe the twisted T-action on(N n Py,
Let xe N nP. Then

v (xdo} = txdo(dot (1)~ "do) = (1* x)do.

An easy calculation shows that the orbit T*x meets #, This implies that
F.do is a set of representatives for the twisted T-orbits on N m(G). This in
turn shows that @: V —.# is a bijection. We see from 9.14 that ¢ is an
ispmorphism of ordered sets, Define é: % — # by d(a) = aw,. Then, by 8.20,
Sor: ¥V — # is an order reversing bijection (more precisely, for v, veV, we
have v < v if and only if 3(p@) S de(t). Thus the ordered set V is
isomorphic to the ordered set ¢ of all involutions in W, with the opposite
order of the Bruhat order.
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10.2.1 LEMMA, There exists he G such that § = Int(h)« 8, Int(h) ™.

Since d, is a semisimple element of P, it follows from [13, 6.3] (and is easy
to prove by a direct argument) that there exists he G such that 9,(h) = !
and h? = d,. Thus 0,(doh) = dyh ' = h. Let ge G. Then

Olhgh ™) = 0,(dohgh™'dg ") = hb, (g)h ™",

Thus Int(h)e @, o Int(h) " = A,
Since 8 and 0, are conjugate by an element of Int{G), it follows that all of
the above results for (G, 8) carry over to (G, 8,).

10.3 EXAMPLE. Let G = SL,(F) and define the involutive automorphism
#,:G — G by #,{g) = "g~'. Then K, the fixed point subgroup on 0, is the
special orthogonal group SO(F). We wish to study the Bruhat order
corresponding to the symmetric variety G/K,. As in 10.2, it is convenient to
replace 6, by 6, where 6(g) = do0,(g)dy !, and d, as in 10.2. Let 1 be a square
rootof —1in F,lety = A"" ' and let d = yd,. Then de G and Int(d) = Int{d,),
so that & = Int(d)=6,. An argument similar to the proof of Lemma 10.2.1
shows that 0, and & are conjugate by an element of Int(G).

Let B (resp. T) be the group for all upper triangular (resp. diagonal)
matrices in G. Then (B, T) is a standard pair for (G, 6). Let the notation be as
usual for (G, 8, B, T). Then N = N(T)is the group of all monomial matrices in
G and W = N(T)/T is isomorphic to the symmetric group S,. We will identify
W with S, in the obvious manner and we identify §, with the groupofn x n
permutation matrices as in 10.2. The group S, of permutation matrices is not
contained in G. The automorphism @ acts on W by O(w) = wyww, ! and
S = Fwy, where # = ¢ is the set of involutions in W, Let P be the set of all
symmetric matrices in G. Then ©(G) = P and an argument similar to that
given in 10.2 shows that N " ¢(G) = (N n P)d~*. Since G is 6-split, o Vs
is surjective. As in 10.2, in order to describe the set V or orbits we need to
describe the set of twisted T-orbits on N n7(G) = (N n P)d~ %, The cal-
culations are straightforward matrix computations, but they are more
complicated than similar computations in 10.2 because of the restriction that
all matrices involved must be of determinant 1. We state the Tesults without
giving details of the computations.

1038 LEMMA. Let ac #. If a has a fixed point on [1,n], then
lo ™ Yawo)l = 1. If a has no fixed points on [1,n], then |~ awy)| = 2. Thus
V=270 + |91, where #, is the set of fixed point free involutions in W = §,,
and §, is the set of involutions in W which have a fixed point. If n is odd, then
Fo = & and V| = | F;in this case ¢p: V - # is an isomorphism of ordered sets.
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the canonical map. Let 8, G, — G, be defined by fo(g) ="y~ ! gnd let
' G" — G’ be the automorphism of G' induced by ;. Then p determmes an
isomorphism of ordered sets V(Gg, tho) - V(G 0). Thus we may ldent.lfy
V(G 8,) with V(G 0). Now G = SL(F) is the simply connected _covermg
group of G’ and the automorphism # is induced by the automo‘rphlsm , of
G. Thus we are in the situation of 1.10. Let K’ denote the fixed point subgr.o‘up
of @ on G'. Then I' = K'/K'® is of order 2 and V(G #) = .# can be idemlhed‘
with the quotient of ¥ = V(G, 8,) by . Clearly I" acts trivially on o "' #)). If
ae #,, then I permutes the two elements of ¢ Ya).

We picture the ordered set V as a graph, whose vertices are the elements of
V. If ¢ < vand v') + 1 = l(v) then the vertices v’ and v are joined by an edge.
Since < satisfies the chain condition, the graph completely describes the
Bruhat order. In Figure 1 we have the graphs in the cases n = 2,3,4. The .

n=2
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lengths of the elements of ¥ decrease from top to bottom. If o'+ p, then we
label the edge joining them by s; (resp. o) where 5,5 is such that
v mfs) v = v and (v} = 5, % p{t") (resp. v) = s(t). (Note: There may
be several such elements s;; however, we give each such edge only one label )
To determine the graphs, one starts from the bottom elements and works
upwards. The vertices are described by 10.3.1. For each involution in §,, one
determines an admissible sequence. Using this, one can determine for each

ve ¥ a reduced decomposition. The order relations can then be determined |

using the subexpression property. We leave the details to the reader.

104 EXAMPLE. Let G = SL,,(F) and let J&G be given by J(e) = —e,,; -

and J(e, ;) = e;,i = 1,..., n. Define an involutive automorphism 6: G —+ G by

fg) = J(g)™'J 7. Then the fixed point subgroup K is the symplectic group

Sp2{(F). Let (B, T) be as in 10.3. We identify W = W(T) with the symmetric
group 5, The involution 6 acts on W by 8(w) = wowwy !, The set £ of
twisted involutions is equal to #w, where # = ¢, is the set of all
involutions in §,,. Let ae # and let we W. Then w * (aw,) = (waw ™ Y)w,. Thus
the orbit W #(aw,) is equal to C(a)w,, where C(a) is the (ordinary) conjugacy
class of ain W.In particular, W | = C(wy)w,. The Satake diagram of (G, 0) is
*—0O0—@—O O—®. (See [8] or {16].) It follows from this that
Ay = CWo, Where ¢ = (1,2)(3,4)---(2n — 1, 2n) (here we use the usual repre-
sentation of an element of §,, as a product of disjoint cycles). We have
wo = (1,2n)(2,2n — 1) - (n, n + 1), It is clear that C(c) is equal to _#,, the set
of all fixed point free involutions in §,, and that C{w,) = C(c). Thus
le Wwa,,, Welet #,w, be given the order induced by the Bruhat order on
# and let #, be given the order induced by the Bruhat order on ¢.

104.1 PROPOSITION. The image of ¢ is Fow, and @: V — Fow, is an

isomorphism of ordered sets. If we define i: V — #, by (v) = @(v)w,, then yf is
an order-reversing bijection.
The proof follows from 9.16.

10.5 EXAMPLE. Finally, we briefly discuss the case where G = SL,(F) and
B(g) = zgz "', where z = diag(—{,¢,..., ), with{" = —1. The groups B, T are
as before,

Let veV and let x = x(v). Then y = xzx~?! lies in N and has n—1
eigenvalues { and one eigenvalue — . The image o(v) = yT is an element of
W =38, of order <2.

There are » elements v, i = 1,...,n, of ¥ with ¢(r) = 1, numbered such
that the corresponding element y is of the form diag((,..., —{,...,{), with —{
in the ith place. We have S(v:). = {s:}, S(v). = {s;_,, 8} for 1 <i < n, and
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S(v,), = {841}, where 8 = {s,,...,5,-,} is the usual set of simple reflections
for §,.

If @(v) # 1, then it is a transposition (i, j) in §,. For i, je[l,...,n}, i <j,
there is a unique v, e V with o(v,) = (i, j).

() We have (i, ) = s{i + 1, j)s; > (i + 1, ), which implies that s;: v, ; 3
vi; and @(ug) = 5% @v;, g ).

(b) Similarly we have s;: v+ 0,54 and (v, ;4 () = 5;% @(v;).

() We also have sy vje0 41, @Uy40) = 5;0(0) and 83 0,050,
o0 54 1) = $;0(0)4 1)

Finally, we note that {u;) = j — i

The relations above allow us to give a reduced decomposition for each
ve V. We can then show by the subexpression property that all order relations
of the form v < v with {¢') + 1 = {{v) are of one of the forms (a)-(c) above. So
the above relations completely determine the Bruhat order. Note that in this
case, the weak order is equal to the Bruhat order.

In Figure 2, we give the picture of the ordered set ¥ for n = 4, using the
conventions of 10.3. The vertices are marked by the indices of the correspond-
ing elements of V.
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10,
15
12
13,
14.
13.
16,

17.
18,

19,
20,

21
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