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Abstract. On the space of homomorphisms from a Verma module to an
indecomposable tilting module of the BGG-category O we define a natural
filtration following Andersen [A] and establish a formula expressing the di-
mensions of the filtration steps in terms of coefficients of Kazhdan–Lusztig
polynomials.

1 Introduction

Indecomposable tilting modules in category O were classified by Colling-
wood and Irving [CI] well before this terminology existed under the name
of selfdual Verma flag modules. More precisely, they proved that applying
the indecomposable projective functors of Bernstein–Gelfand to simple in-
stead of projective Verma modules, you get precisely the indecomposable
selfdual Verma flag modules instead of the indecomposable projectives, and
that these indecomposable selfdual Verma flag modules, nowadays called
tilting modules, are classified by their highest weight. Now we can define a
filtration on the space of homomorphisms from a Verma module to a tilt-
ing module by analogy with what Andersen [A] did in the algebraic group
case. The main result of this article is a description of the dimensions of the
subquotients of this filtration in terms of Kazhdan–Lusztig polynomials.

To be more precise, let me introduce some notation. Let g ⊃ b ⊃ h be
a semisimple complex Lie algebra, a Borel and a Cartan. Let ρ ∈ h∗ be the
halfsum of roots from b and let C[Cρ] = T denote the regular functions on
the line Cρ ⊂ h∗. This is a quotient of Sh∗ = C[h], and every linear form
v : Cρ → C defines an isomorphism with a polynomial ring C[v] ∼→ T. For
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a weight λ ∈ h∗ we form the Verma module ∆(λ) = U(g)⊗U(b) Cλ ∈ g -mod
and the deformed Verma module

∆T (λ) = U(g) ⊗U(b) (Cλ ⊗ T ) ∈ g -mod-T .

Here and henceforth tensor products without any specification are to be
understood over C. The T -action is meant to only move the last tensor
factor, however the b-action on Cλ ⊗ T comes via the obvious surjection
b � h from the h-action given by the tensor product action H(a ⊗ f) =
λ(H)a⊗f +a⊗Hf for a ∈ Cλ = C and f ∈ T . Starting with the deformed
Verma and taking the T -dual “weight space by weight space” and twisting
the g-action on the result with a Chevalley automorphism we also get a
deformed dual Verma module ∇T (λ) ∈ g -mod-T. The universal properties
of Verma modules will then lead to a canonical embedding

can : ∆T (λ) ↪→ ∇T (λ) ,

which gives an isomorphism between the (analogues of the) highest weight
spaces and is in fact a basis of the T -module Homg−T (∆T (λ),∇T (λ)). The
Jantzen filtration can be understood as the filtration of our Verma ∆(λ)
by the images of the can−1(∇T (λ)vi) for i = 0, 1, 2, . . . under the natural
projection ∆T (λ) � ∆(λ). Next let ν ∈ h∗ be such that the Verma module
∆(ν) is simple and let E ∈ g -mod be finite dimensional. Then E ⊗ ∆(ν)
is tilting and we may consider the composition pairing

Hom
(
∆T (λ), E ⊗ ∆T (ν)

) × Hom
(
E ⊗ ∆T (ν),∇T (λ)

)

→ Hom
(
∆T (λ),∇T (λ)

)
,

where homomorphisms are understood in the category of g-T -bimodules.
As we remarked already, the pairing essentially lands in T . Furthermore
we will prove that the paired spaces actually are free of finite rank over T ,
thus our pairing can be rewritten as a map, actually an embedding

Hom
(
∆T (λ), E ⊗ ∆T (ν)

)
↪→ Hom

(
E ⊗ ∆T (ν),∇T (λ)

)∗
,

with the ∗ meaning a T -dual. Andersen’s filtration is defined by taking
on the right side of this embedding the filtration obtained by multiplying
with the vi from the right, then taking the preimage of this filtration under
our embedding, and finally the image of this preimage under the projection
onto Homg(∆(λ), E ⊗ ∆(ν)) specializing v to 0 alias applying ⊗T C.

In this paper we explain how to calculate the dimensions of the sub-
quotients F̄ i of this Andersen filtration on Homg(∆(λ), E ⊗ ∆(ν)). More
precisely, we identify the dimensions of the subquotients of the induced
filtration on Homg(∆(λ),K) for K ⊂ E ⊗ ∆(ν) an indecomposable direct
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summand with coefficients of Kazhdan–Lusztig polynomials Py,x(q) as they
are introduced in [KL1]. And to be completely explicit, the general formula
we prove as Theorem 4.4 means in the principal block for arbitrary x, y in
the Weyl group the formula

∑

i≥0

dimC F̄ i Homg

(
∆(−yρ − ρ),K

)
q(l(x)−l(y)−i)/2 = Py,x(q) ,

in case K has highest weight (−xρ − ρ) and thus is the indecomposable
tilting module K = K(−xρ − ρ) with this highest weight.

The proof given in the last section proceeds roughly speaking by trans-
lation to the Koszul-dual geometric side, where we run into the hard Lef-
schetz. More precisely, the embedding giving rise to Andersen’s filtration
is identified with the embedding of a costalk of the equivariant intersec-
tion cohomology complex of a Schubert variety into its stalk at the same
point, both understood in the equivariant derived category of a point. This
identification in turn passes through identifying both sides with the same
construction in bimodules over polynomial rings, i.e. passing through a
“coherent picture”. More precisely, in sections 2–5 we explain the trans-
lation from category O to the coherent picture, culminating in 5.12. The
translation from geometry to the coherent picture is discussed thereafter.

The arguments given even show that the Andersen filtration coincides
with the filtration on our spaces of homomorphisms coming from the Z-
graded structure introduced in [BGS], although we do not make this ex-
plicit. This statement is very similar to the semisimplicity of the subquo-
tients of the Jantzen filtration proved in [BB], but the method to obtain it
is quite different. I would like to know how to directly relate both results,
as this would give an alternative proof of the semisimplicity mentioned.

2 Deformation of Category O
2.1 In this and the next section we repeat results of [GJ] in a language
adapted to our goals, which is also very close to the language introduced
in [F]. Let S = Sh = C[h∗] be the symmetric algebra of h. We con-
sider the category KringS of all commutative unitary rings T with a distin-
guished morphism ϕ : S → T . Given T ∈ KringS we consider the category
g -ModC- T of all g - T -bimodules on which the right and left actions of C

coincide.

Definition 2.2. For T = (T,ϕ) ∈ KringS we define in any bimodule
M ∈ g -ModC-T for any λ ∈ h∗ the deformed weight space Mλ by the



[Review Copy Only]

Vol. 17, 2007 ANDERSEN FILTRATION AND HARD LEFSCHETZ 2069

formula

Mλ = Mλ
T =

{
m ∈ M | (H − λ(H))m = mϕ(H) ∀H ∈ h

}
.

2.3 For M ∈ g -ModC- T the canonical map from the direct sum of its
deformed weight spaces to M is always an injection

⊕
λ Mλ ↪→ M. For

T = C[h∗] this is evident, since the weight spaces Mλ considered as T ⊗ T -
modules have support in the graphs of (λ+) : h∗ → h∗, and these graphs are
pairwise disjoint. In general our weight spaces have support in the preimage
of our graphs under the map Spec(C[h∗]⊗T ) → Spec(C[h∗]⊗C[h∗]) induced
by id⊗ϕ, and thus are disjoint as well.

Definition 2.4. For every T ∈ KringS we define in our category of bi-
modules a full subcategory, the deformed category

O(T ) ⊂ g -ModC- T

as the category of all bimodules M which are locally finite for n = [b, b] and
decompose as the direct sum M =

⊕
Mλ of their deformed weight spaces.

2.5 Prominent objects of this category are the deformed Verma modules

∆T (λ) = prodg
b(Cλ ⊗ T ) = U(g) ⊗U(b) (Cλ ⊗ T ) ,

for λ ∈ h∗, where it is understood that the right action of T acts only on
the last tensor factor, whereas the left action comes from the left action of
U(b) on Cλ ⊗ T which we get via the canonical surjection b � h from the
tensor action of h, where H ∈ h acts on Cλ via the scalar λ(H) and on T
by multiplication with ϕ(H).

2.6 The category O(T ) is stable under tensoring from the left with
finite-dimensional representations of g, where as left action of g on such a
tensor product we understand the tensor action and as right action of T its
right action on the second tensor factor. Along with a bimodule O(T ) also
contains all its subquotients. In case T = C and ϕ the evaluation at the zero
of h∗, the category O(T ) specializes up to some missing finiteness conditions
to the usual category O of Bernstein–Gelfand–Gelfand, and ∆C(λ) = ∆(λ)
is the Verma module with highest weight λ.

Definition 2.7. We now consider the opposed Borel of b with respect to
h to be denoted b̄ ⊂ g, and for λ ∈ h∗ consider the subbimodule

∇T (λ) ⊂ indg
b̄
(Cλ ⊗ T ) = HomU(b̄)

(
U(g), Cλ ⊗ T

)

defined as the sum of all deformed weight spaces of the Hom-space in ques-
tion. We call it the deformed Nabla-module of highest weight λ.
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2.8 Under the identification given by restriction of our Hom-spaces
with HomC(U(n), Cλ⊗T ) our ∇T (λ) corresponds to those homomorphisms,
which are different from zero on at most finitely many h-weight spaces of
U(n). The deformed nablas also belong to O(T ).

2.9 All weight spaces of ∇T (λ) and ∆T (λ) are free over T and finitely
generated, and if T is not zero, the deformed weight spaces of weight (λ−ν)
in both modules have the rank dimC U(n)ν .

We have canonical morphisms T
∼→ ∆T (λ)λ ↪→ ∆T (λ) and ∇T (λ) �

∇T (λ)λ ∼→ T of T -modules and for any extension T → T ′ canonical iso-
morphisms ∆T (λ) ⊗T T ′ ∼→ ∆T ′(λ) and ∇T (λ) ⊗T T ′ ∼→ ∇T ′(λ).

2.10 We now choose, for our Lie algebra, an involutive automorphism
τ : g → g with τ |h = − id and define a contravariant functor

d = dτ : g -ModC-T → g -ModC-T

by letting dM ⊂ Hom−T (M,T )τ be the sum of all deformed weight spaces
in the space of homomorphisms of right T -modules from M to T with its
contragredient g-action twisted by τ . If M ∈ g -ModC- T is the sum of its
deformed weight spaces, we have a canonical morphism M → ddM, and if
in addition all deformed weight spaces of M are free and finitely generated
over T, this canonical morphism is an isomorphism.

2.11 The restriction onto the highest deformed weight space defines to-
gether with the universal property of the induced representation a canonical
homomorphism

Hom−T

(
prodg

b̄
(C−λ ⊗ T ), T

) → indg
b̄
Hom−T (Cλ ⊗ T, T ) ,

and considering the deformed weight spaces we see that it induces an iso-
morphism of bimodules

d∆T (λ) ∼→ ∇T (λ) .

With our preceding remarks we also get d∇T (λ) ∼= ∆T (λ). By the tensor
identity, i.e. since tensoring with a representation of a Lie algebra com-
mutes with tensor-inducing a representation from a subalgebra, further-
more E ⊗ ∆T (λ) admits a filtration with subquotients ∆T (λ + ν), where ν
runs over the multiset P (E) of weights of E. Since E⊗? commutes up to
the choice of an isomorphism dE ∼= E with our duality d, we deduce an
analogous result for E ⊗∇T (λ).

Proposition 2.12. 1. For all λ the restriction to the deformed weight
space of λ together with the two canonical identifications ∆T (λ)λ ∼→ T and
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∇T (λ)λ ∼→ T induces an isomorphism

HomO(T )

(
∆T (λ),∇T (λ)

) ∼→ T .

2. For λ 
= µ in h∗ we have HomO(T )(∆T (λ),∇T (µ)) = 0.
3. For all λ, µ ∈ h∗ we have Ext1O(T )(∆T (λ),∇T (µ)) = 0.

Proof. We prove (3), the simpler case of spaces of homomorphisms is treated
in the same way. Let R+ ⊂ h∗ denote the roots of n and |R+〉 ⊂ h∗ the
submonoid generated by R+ and ≤ the partial order on h∗ with λ ≤ µ ⇔
µ ∈ λ + |R+〉. Every short exact sequence ∇T (µ) ↪→ M � ∆T (λ) with
M ∈ O(T ) and λ 
≤ µ splits, since any preimage in Mλ of the canonical
generator of ∆T (λ) is already annihilated by n and thus induces a splitting.
In case λ ≤ µ we use our duality d to pass to the dual situation. This proves
the triviality of the extension in question. �

Corollary 2.13. Let M,N ∈ O(T ). If M is a direct summand of an
object with finite ∆T -flag and N a direct summand of an object with finite
∇T -flag, then the space of homomorphism HomO(T )(M,N) is a finitely
generated projective T -module and for any ring extension T → T ′ the
obvious map defines an isomorphism

HomO(T )(M,N) ⊗T T ′ ∼→ HomO(T ′)(M ⊗T T ′, N ⊗T T ′) .

Proof. This follows directly from 2.12 by induction on the lengths of the
flags. �

2.14 If Q ∈ KringS is a field and if for all roots α the coroots α∨ are
not mapped to Z ⊂ Q under S → Q, then the category O(Q) is semisimple
(i.e. all surjections split) and its simple objects are the ∆Q(λ) = ∇Q(λ) for
λ ∈ h∗.

3 Deforming Indecomposable Tilting Modules

3.1 Let D = S(0) be the local ring at zero of h∗. For λ ∈ h∗ with ∆(λ)
simple the canonical map defines an isomorphism

∆D(λ) ∼→ ∇D(λ) .

Indeed, we only need to show that this map gives isomorphisms on all
deformed weight spaces, and these are free of finite rank over the local
ring D. By Nakayama’s lemma we thus only need to show that our map
becomes an isomorphism under ? ⊗D C, and this follows directly from the
simplicity assumption on ∆(λ).
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Definition 3.2. Given T ∈ KringS let K(T ) ⊂ O(T ) denote the smallest
subcategory, which

1. contains all ∆T (λ) for which the canonical map gives an isomorphism
∆T (λ) ∼→ ∇T (λ);

2. is stable under tensoring with finite-dimensional representations of g;
3. is stable under forming direct summands.

We call K(T ) the category of T -deformed tilting modules.

3.3 For C = C0 ∈ KringS the objects of K(C) are the tilting modules
of the usual BGG-category O.

Proposition 3.4. If T ∈ KringS is a complete local ring “under S” such
that the preimage in S of its maximal ideal is just the vanishing ideal of
the origin in h∗, then the specialization

? ⊗T C : K(T ) → K(C)

induces a bijection on isomorphism classes, and under this bijection inde-
composables correspond to indecomposables.

Proof. The tilting modules from O are precisely the direct summands of
tensor products of simple Vermas with finite-dimensional representations.
All such tensor products K ∈ K(C) lift by definition. If KT ∈ K(T )
is such a lift, we deduce from 2.13 that the canonical map leads to an
isomorphism C ⊗T EndKT

∼→ EndKC of finite-dimensional C-algebras.
General results [Be] or [CuR, I, (6.7)], concerning the lifting of idempotents
now show that any projection of KC to a direct summand can be lifted
to a projection of KT to a direct summand, which gives surjectivity on
isomorphism classes in our proposition. The same argument, now applied
to an arbitrary K ∈ K(C), shows that only indecomposable objects from
K(T ) can go to indecomposable objects from K(C). Similarily, any lifting
of an isomorphism has to be an isomorphism, since every lift of a unit in
an endomorphism ring has to be a unit, and this establishes the claimed
bijection on isomorphism classes. �

3.5 For λ ∈ h∗ we let KT (λ) ∈ K(T ) denote the T -deformation of the
indecomposable tilting module K(λ) ∈ O with highest weight λ.

4 The Andersen Filtration

4.1 Fix K ∈ g -ModC- T and λ ∈ h∗. To increase readability we use the
abbreviations ∆T (λ) = ∆, ∇T (λ) = ∇ and Homg−T = Hom and consider
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the T -bilinear pairing

Hom(∆,K) × Hom(K,∇) → Hom(∆,∇) = T

given by composition. If for any T -module H we denote by H∗ the T -
module HomT (M,T ), then our pairing induces a map

E = Eλ(K) : Hom(∆,K) → Hom(K,∇)∗,

If K is tilting, then by 2.13 our map E is a map between finitely generated
projective T -modules. If in addition T ∈ KringS is an integral domain
and Q = Quot T satisfies the assumptions of remark 2.14, thus O(Q) is
semisimple with simple objects ∆Q(λ) = ∇Q(λ), then our pairing is non-
degenerate over Q and our map Eλ(K) induces an isomorphism over Q and
in particular is an injection. Now if T = C[[v]] is the ring of formal power
series around the origin on a line Cδ ⊂ h∗, which isn’t contained in any
reflection hyperplane of the Weyl group, then Q = Quot C[[v]] satisfies our
assumptions of remark 2.14. If now K ∈ K(C[[v]]) is a deformed tilting
module, we can use the embedding

Eλ(K) : Hom(∆,K) ↪→ Hom(K,∇)∗

of free C[[v]]-modules of finite rank to restrict the obvious filtration of
the right-hand side by the vi Hom(K,∇)∗ and thus get a filtration on
Hom(∆,K) = Homg−C[[v]](∆C[[v]](λ),K).

Definition 4.2. Given KC ∈ K(C) a tilting module of O and K ∈
K(C[[v]]) a C[[v]]-deformation of KC in the sense of 3.4 with S → C[[v]]
the restriction to a formal neighbourhood of the origin in the line Cρ with
ρ as in 5.3, the image of the filtration defined above under specialization
? ⊗C[[v]] C will be called the Andersen-filtration on Homg(∆(λ),KC).

4.3 We leave it to the reader to show that this filtration is independent
of the choice of the deformation, which is only well defined up to isomor-
phism. The goal of this work is to determine the dimensions of the sub-
quotients of the Andersen filtration on Homg(∆(λ),K(µ)) for all λ, µ ∈ h∗

or more precisely their description as coefficients of Kazhdan–Lusztig poly-
nomials.

Theorem 4.4. The dimensions of the subquotients of the Andersen
filtrations satisfy the identities

∑

i

dimC F̄ i Homg

(
∆(λȳ),K(λx̄)

)
q(l(x)−l(y)−i)/2 = Py,x(q) .
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4.5 The proof will be given only in the last section, but let me explain
here what all this notation means. We start with a ρ-dominant weight
λ ∈ h∗dom in the sense of 5.3. It gives two subgroups Wλ̄ ⊃ Wλ of the Weyl
group as explained in 5.6, and x̄, ȳ denote cosets of Wλ̄/Wλ with x, y their
longest representatives. Finally λx̄ = wλ̄x̄ · λ is to be understood as in
10.2 with wλ̄ the longest element of Wλ̄, and Py,x is the Kazhdan–Lusztig
polynomial with respect to the Coxeter group Wλ̄ and its length function l.
In fact the arguments given in this article show that the Andersen filtration
coincides with the grading filtration induced from the graded version of O,
but I felt incapable of explaining this in the framework of this article.

4.6 The Jantzen filtration on a Verma module ∆(λ) certainly induces
a filtration on Homg(P (µ),∆(λ)) for P (µ) � ∆(µ) the indecomposable
projective cover of ∆(µ) in O. This filtration in turn comes in the same
way from the embedding ∆C[[v]](λ) → ∇C[[v]](λ) or more precisely the em-
beddings

Homg−C[[v]]

(
PC[[v]](µ),∆C[[v]](λ)

)
↪→ Homg−C[[v]]

(
PC[[v]](µ),∇C[[v]](λ)

)

induced by them, where PC[[v]](µ) � ∆C[[v]](µ) are the indecomposable
projective covers in O(C[[v]]). This shows the analogy of both filtrations.
In fact, the contravariant equivalence explained in [S3] from the category
of Verma flag modules to itself, mapping projectives to tilting modules,
induces a map on homomorphism spaces, and this map should identify
both filtrations. However I cannot prove this without using the Jantzen
conjecture.

5 Deformed Translation

5.1 Let Z ⊂ U(g) be the center, so that Z ⊗ T acts on any bimodule
M ∈ g -ModC- T . We now consider the push-out diagram of C-algebras

Z ⊗ T
↗ ↘

Z ⊗ C[h∗] C[h∗] ⊗ T
↘ ↗

C[h∗] ⊗ C[h∗]
where for ξ : Z → C[h∗] we always take the variant of the Harish-Chandra
homomorphism with ξ(z) − z ∈ Un. It leads to a finite ring extension
and the same holds thus also for both downward arrows of our diagram.
The graph of the addition of λ ∈ h∗ is an irreducible closed subset of
Spec(C[h∗]⊗C[h∗]) and the same holds for its image in Spec(Z⊗C[h∗]). The
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preimage in Spec(Z ⊗ T ) of this image will be denoted Ξλ ⊂ Spec(Z ⊗ T ).
By definition ∆T (λ) and ∇T (λ) both have support in Ξλ as Z⊗T -modules.
Lemma 5.2. The support in Spec(Z ⊗ T ) of any element of an object
M ∈ O(T ) is contained in a finite union of sets of the form Ξλ with λ ∈ h∗.

Proof. Let v be our element. We may assume v ∈ Mλ for some λ ∈ h∗.
We may further assume the submodule generated by v to be contained in⊕

µ≤ν Mλ+µ for any integral dominant weight ν ∈ X+. The object

U(g) ⊗U(b) τ≤λ+ν

(
U(b) ⊗U(h) (Cλ ⊗ T )

)

with hopefully self-explanatory τ≤λ+ν has a finite ∆T -flag, and our v is
contained in the image of a homomorphism of said object to M . �

Definition 5.3. Let ρ = ρ(R+) be the halfsum of positive roots. We put

h∗dom =
{
λ ∈ h∗ | 〈λ + ρ, α∨〉 
∈ {−1,−2, . . .} ∀α ∈ R+

}
,

and call the elements of this set ρ-dominant weights. We use the usual
notation w · λ = w(λ + ρ) − ρ for the action of the Weyl group translated
to the fixed point −ρ.

Theorem 5.4 (Decomposition of deformed categories). Let T be an S(0)-
ring, i.e. the morphism S → T should factor through the local ring S(0) of
h∗ at the origin. Then we have a decomposition

O(T ) =
∏

λ∈h∗dom

Oλ(T )

where Oλ(T ) consists of all M ∈ O(T ) which satisfy M =
⊕

ν∈λ+ZR Mν

and suppZ⊗T M ⊂ ⋃
w∈W Ξw·λ.

Proof. From Ξλ ∩ Ξµ 
= ∅ we get for T = S(0) already W · λ = W · µ. The
rest of the argument can be copied from the case T = C, see [BerG]. �

5.5 As in the non-deformed case we have for λ, µ ∈ h∗dom with integral
difference λ − µ ∈ X translation functors

T µ
λ : Oλ(T ) → Oµ(T )

which are exact, satisfy adjunctions (T µ
λ , T λ

µ ) and have all the usual proper-
ties. We call them deformed translations. The category of deformed tilting
modules in one of our blocks will be denoted K(T ) ∩Oλ(T ) = Kλ(T ).

5.6 Let us put D = S(0). If T is a D-algebra, then for λ ∈ h∗dom

the deformed Verma module ∆T (λ) is projective in Oλ(T ). The isotropy
group of a weight λ ∈ h∗ under the dot-action of the Weyl group will be
denoted Wλ, the isotropy group of its coset λ̄ = λ + 〈R〉 under the root
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lattice will be denoted Wλ̄. The longest element of Wλ̄ will be denoted wλ̄,
the rings of invariants for the natural actions of Wλ ⊂ Wλ̄ on D will be
denoted Dλ ⊃ Dλ̄.
Theorem 5.7 (Deformation of projectives). The functor ?⊗D C : O(D) →
O(C) induces a bijection between isomorphism classes of finitely generated
projective objects in both categories.

Proof. [S1]. �

Definition 5.8. Given λ ∈ h∗, let PD(λ) ∈ O(D) denote the finitely
generated projective specalizing to P (λ) under ? ⊗D C. We call it the de-
formation of the projective P (λ). Given λ ∈ h∗dom, we use the abbreviation
PD(wλ̄ · λ) = AD(λ) = A(λ) for the deformed antidominant projective.

Theorem 5.9 (Endomorphisms of antidominant projectives). Given
λ ∈ h∗dom, the multiplication defines a surjection Z ⊗ D � EndO(D) A(λ).
If (+λ)� : S → S denotes the comorphism of (+λ) : h∗ → h∗, then the
composition

Z ⊗ D
ξ⊗id−→ S ⊗ D

(+λ)�⊗id−→ S ⊗ D → D ⊗Dλ̄ D

has image Dλ ⊗Dλ̄ D and the same kernel as the surjection considered
before, and we thus get an isomorphism

Dλ ⊗Dλ̄ D
∼→ EndO(D) A(λ) .

Proof. For λ integral the proof is given in [S2]. The proof in general is
essentially the same. �

5.10 For better transparency, we use hereafter frequently the notation
HomO(D) = Hom and EndO(D) = End. Any choice of a deformed anti-
dominant projective A(λ) for λ ∈ h∗dom gives us via the rule V = VD =
HomO(D)(A(λ), ) an exact functor

V : O(D) → Dλ -ModC-D

which is different from zero only on Oλ(D). If further µ ∈ h∗dom is given with
λ−µ ∈ X and Wµ ⊃ Wλ and if we choose an isomorphism T λ

µ A(µ) ∼→ A(λ),
we get a commutative diagram

Dµ ⊗Dµ̄ D
∼→ EndA(µ)

↓ ↓
Dλ ⊗Dµ̄ D

∼→ EndA(λ)

with the left vertical induced from the embedding Dµ ⊂ Dλ and the right
vertical given by T λ

µ and our isomorphism, see [S2]. If we fix such an
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isomorphism and in addition choose an adjunction (T λ
µ , T µ

λ ), then we get
isomorphisms

Hom
(
A(µ), T µ

λ M
) ∼→ Hom

(
T λ

µ A(µ),M
) ∼→ Hom

(
A(λ),M

)
,

which lead to an isomorphism of functors, up to which the diagram

Oλ(D) V→ Dλ -ModC-D

T µ
λ ↓ ↓ res

Oµ(D) V→ Dµ -ModC- D

commutes. Using the adjunctions, we also find an isomorphism of functors,
up to which the diagram

Oµ(D) V→ Dµ -ModC-D

T λ
µ ↓ ↓ Dλ⊗Dµ?

Oλ(D) V→ Dλ -ModC-D
commutes.

5.11 Given λ, µ ∈ h∗dom with integral difference, one may more gener-
ally consider the translations T µ

λ : Oλ(D) → Oµ(D) which can be written as
T µ

λ
∼= T µ

ν T ν
λ for one and any ν ∈ h∗dom with integral difference to λ and µ and

the property Wν = Wλ∩Wµ. This can be deduced from the known effects
on Verma modules using the classification of projective functors [BerG].
If we form Dµ

λ = DWλ∩Wµ ∈ Dµ -ModC-Dλ, then we may interpret both
diagrams as one diagram commuting up to natural isomorphism, namely
the diagram

Oλ(D) V ��

T µ
λ

��

Dλ -ModC-D

Dµ
λ⊗Dλ?

��
Oµ(D) V �� Dµ -ModC- D

If we pass to the adjoints of the vertical functors, we get another diagram
commuting up to natural isomorphism, namely

Oµ(D) V ��

T λ
µ

��

Dµ -ModC-D

HomDµ(Dµ
λ ,?)

��
Oλ(D) V �� Dλ -ModC- D

Theorem 5.12 (Struktursatz for deformed tilting modules). The functors
V are fully faithful on deformed tilting modules. More precisely, we have,
for any λ ∈ h∗dom,
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1. Given K ∈ Kλ(D) and F ∈ Oλ(D) an object with ∆D-flag the functor
V induces an isomorphism

Homg−D(F,K) ∼→ HomDλ−D(VF, VK) ;

2. Given K ∈ Kλ(D) and F ∈ Oλ(D) an object with a ∇D-flag the functor
V induces an isomorphism

Homg−D(K,F ) ∼→ HomDλ−D(VK, VF ) .

5.13 In greater generality the first statement is proven as Theorem 10
in [F]: The functors V are even fully faithful on arbitrary objects with a
finite ∆D-flag.

5.14 In the non-deformed case T = C the functor V is fully faithful on
the category of tilting modules of a given block. Indeed for any maximal
ideal χ ⊂ Z and arbitrary projective functors F,G : U/χU -mod → U -mod
and an arbitrary Verma module ∆ with χ∆ = 0 applying our functors to
∆ defines a bijection

TransU/χU -mod→(F,G) ∼→ Homg(F∆, G∆),

where on the left-hand side we mean the set of transformations from the
functor F to the functor G and only specified the start category, since this is
the most subtle point in this business. For projective Vermas this is shown
in [BerG], and since by [BerGG] the enveloping algebra surjects onto the
ad-finite endomorphisms of every Verma, the proof given there works more
generally for every Verma. The embedding of a simple Verma ∆e into a
projective Verma ∆p thus gives bijections

Homg(F∆e, G∆e)
∼→ Homg(F∆p, G∆p) .

Since it also gives bijections VF∆e
∼→ VF∆p, the claim follows. In the

non-deformed case however the faithfulness on morphisms from tiltings to
dual Vermas or from Vermas to tiltings does not hold.

Proof. Given λ, µ ∈ h∗dom with integral difference, let Dλ
µ ∈ Dλ -ModC-Dµ

be the bimodule DWλ∩Wµ . The preceding considerations show that the
diagram

Homg−D(F, T µ
λ K) −→ Homg−D(T λ

µ F,K)







HomDµ−D(VF, VT µ
λ K) HomDλ−D(VT λ

µ F, VK)







HomDµ−D(VF,HomDλ(Dλ
µ, VK)) −→ HomDλ−D(Dλ

µ ⊗Dµ VF, VK)
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commutes, if we define both lower verticals by the isomorphisms just in-
troduced and the horizonals by the adjunctions. In this diagram, all mor-
phisms except both upper verticals are obviously isomorphisms. Thus if
the right upper vertical is an isomorphism, then the left upper vertical is as
well. If in other words our claim holds for K, then it also holds for T µ

λ K.
Thus it suffices to check it for K a deformed simple Verma. Working down
through a Verma flag, we may even assume F to be a direct sum of copies
of this simple Verma. In this case the first claim is obvious. The second
claim is shown in the same way. �

6 Geometrical Arguments

6.1 Let gMod-A denote the category of graded right modules over a
graded ring A. Let DerG(X), resp. Der+

G(X), denote the equivariant, resp.
bounded below equivariant, derived category corresponding to a complex
algebraic variety X with the action of a complex algebraic group G, and
let DerG(F ,G) denote the morphisms in these categories, as explained in
[BerL]. Here and in what follows we will always take cohomology with
complex coefficients.

6.2 Let X be a complex algebraic variety with the action of an algebraic
group B. Let X =

∐
a∈A Xa be a stratification into irreducible locally

closed smooth B-stable subvarieties such that the closure of each stratum
is a union of strata. Let |a| denote the dimension of Xa and Ca = Xa[|a|] the
“constant perverse sheaf” in DerB(Xa). Further, let ja : Xa ↪→ X denote
the inclusion. Now let F ,G ∈ DerB(X) be given with the property that,
for all a ∈ A, we have finite direct sum decompositions

j∗aF ∼=
⊕

ν
f ν

a Ca[ν]

j!
aG ∼=

⊕

ν
gν
aCa[ν]

in DerB(Xa) for suitable f ν
a , gν

a ∈ N. If under these assumptions we also
have f ν

a = 0 = gν
a for ν + |a| odd and Hν

B(Xa) = 0 for ν odd, then taking
the equivariant hypercohomology HB induces for all ∗ an injection

DerB

(F ,G[∗]) ↪→ Hom(HBF , HBG)

and the dimensions of the homogeneous components on the left are given
by the formula

dim DerB

(F ,G[n]
)

=
∑

ν−µ+k=n, a∈A

f ν
a gµ

a dim Hk
B(Xa) .
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The proof is completely analogous to the proof of Proposition 3 on page
404 of [S5] and we shall not repeat it here.

6.3 Let G ⊃ P = Pι ⊃ B ⊃ T be a semisimple complex algebraic
group, a parabolic, a Borel and a maximal torus. Let Wι ⊂ W be the
Weyl groups of P ⊂ G and L ⊃ T the Levi of P above T . We let B × P
act on G by the rule (b, p)g = bgp−1. From [BerL] we deduce that the
equivariant cohomology H∗

B×P (G) becomes, under restriction, a quotient
of H∗

B×P (pt) = H∗
T×L(pt) = R ⊗C Rι for R = C[Lie T ] the ring of regular

functions on Lie T , graded by the condition that linear forms should be
homogeneous of degree two, and Rι the invariants of Wι in R. Again using
[BerL] we get in this way a canonical isomorphism

c : R ⊗RW Rι ∼→ H∗
B×P (G) .

Thus the equivariant hypercohomology
H∗

B×P : Der+
B×P (G) → gMod- H∗

B×P (pt)

defines, under our identification of the equivariant cohomology ring and
the identification Der+

B×P (G) ∼= Der+
B(G/P ), a functor to Z-graded R-Rι-

bimodules
HB = H∗

B : Der+B(G/P ) → R -gMod- Rι.

Now we consider in Der+B(G/P ) for x ∈ W/Wι the intersection cohomology
complex ICx of the closure of BxP/P . Let Cy be the constant perverse
sheaf on ByB/P , which is concentrated in degree −l(y) as a complex of
ordinary sheaves, and let jy : ByB/P ↪→ G/P denote the embedding.
Theorem 6.4. The functor HB is fully faithful on morphisms ICx →
jy∗Cy[n] and jx!Cy → ICy[n] and ICx → ICy[n] in Der+B(G/P ).

Proof. In [Gi] the corresponding statement is proven for nonequivariant
cohomology and the case IC → IC, but in a more general setup. In [S5,
Prop. 2, p. 402], this is proven for homomorphisms ICx → ICy[n] and P =
B. I will now explain in which sense the proof, given there up to some
rather minor modifications, also proves this more general case. First we
restrict to the case P = B. By Lemma 6 on page 405 of [S5] in connection
with 6.1 the functor of the lemma is faithful and the dimensions of the
Hom spaces in question are known. By [S6], however, we also know the
dimensions of the Hom spaces in the image and thus we may finish the
argument with a comparision of dimensions. More precisely we get with
6.1 the formula

dimC DerB(ICx, jy∗Cy[n]) =
∑

k+i=n

ni
y,x dimC Hk

B(ByB/B) .
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Here the ni
y,x are the coefficients of the Kazhdan–Lusztig polynomials and

we have more precisely
∑

y,i

ni
y,xq

−i/2T̃y = C ′
x

in Lusztig’s notation alias
∑

y,i n
i
y,xv

iHy = Hx in the notation of [S4]. On
the other hand in [S5, Lem. 5, p. 402], it is shown for P = B, that the
HBICx are just the special bimodules

HBICx
∼= Bx

which I consider in [S2] and [S6]. Now we recall the graded bimodule Ry

from [S6], which is free of rank one from the left and the right with the same
generator 1y in degree zero and the property r1y = 1yr

y for ry = y−1(r),
and we recall its shifted versions ∆y = Ry[−l(y)] and ∇y = Ry[l(y)]. One
shows easily that HBjy∗Cy

∼= ∇y and HBjy!Cy
∼= ∆y. Thus we need to

establish the equality of dimenisons

dimC DerB

(ICx, jy∗Cy[n]
)

= dimC gModR−R

(
Bx,∇y[n]

)
.

But by [S6, Th. 5.15], the space ModR−R(Bx,∇y) is graded free as a right
R-module, and if we let hi

y,x be the number of generators needed in degree i,
then Theorem 5.3 of [S6] gives, in the Hecke algebra,

C ′
x =

∑

y∈W

hi
y,xq−1/2T̃y =

∑

y∈W

hi
y,xviHy

in the notation of Lusztig resp. of [S4]. In other words we get hi
y,x = ni

y,x,
and since H∗

B(ByB/B) ∼= R, we deduce the claimed equality of dimensions
in every degree. The second case follows dually and thus in case P = B
we have completely established the lemma. In general, full faithfulness of
our functor is deduced in the same way, but for the equality of dimensions
we need to work a little more. Here we only treat the cases IC → IC and
IC → C, the remaining case is dual. Let π : G/B � G/P denote the pro-
jection, so that we get HBπ∗G ∼= resR−Rι

R−R HBG and HBπ∗F ∼= HBF ⊗Rι R.
This leads to a commutative diagram

DerB

(F , π∗G[n]
) ∼−→ DerB

(
π∗F ,G[n]

)

 


gModR−Rι

(
HBF , HBπ∗G[n]

)
gModR−R

(
HBπ∗F , HBG[n]

)
∥∥ ∥∥

gModR−Rι

(
HBF , resR−Rι

R−R HBG[n]
) ∼−→ gModR−R

(
HBF ⊗Rι R, HBG[n]

)
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and with the right upper vertical the left upper vertical must be an iso-
morphism, too. Thus the cases IC → IC and IC → C follow for general P
from the case P = B. �

7 Singular Bimodules

7.1 Let W be a finite group of automorphisms of a finite-dimensional
affine space E over Q, which is generated by reflections, and let S ⊂ W be a
choice of simple reflections. Let R denote the regular functions on the space
of translations, graded by the rule that linear functions are homogeneous
of degree two. Then by [S6] there exist well-defined up to isomorphism
Z-graded R-bimodules Bx = Bx(W) = Bx(W,S, E) ∈ R -gMod- R such
that we have

1. The Bx are indecomposable;
2. For e the neutral element we have Be = R;
3. If s ∈ S is a simple reflection with xs > x, then there is a decompo-

sition
Bx ⊗Rs R[1] ∼= Bxs ⊕

⊕

l(y)≤l(x)

m(y)By

for suitable multiplicities m(y) ∈ N.

Following [S6] the rings of endomorphisms of degree zero of these bimodules
consist just of scalars, in particular our bimodules stay indecomposable
when we extend scalars. Now let Sι ⊂ S be a subset of the set of simple
reflections, Wι = 〈Sι〉 ⊂ W the subgroup generated by it, wι ∈ Wι its
longest element and Rι the subring of Wι-invariants. Then under the same
assumptions we claim

Lemma 7.2. For every coset x̄ ∈ W/Wι there exists one and only one Z-
graded R-Rι-bimodule Bι

x̄ = Bι
x̄(W,Wι) ∈ R -gMod- Rι with the property

that for x ∈ W the longest representative of the coset x̄ we have

resR−Rι

R−R Bx
∼=

⊕

z∈Wι

Bι
x̄

[
l(wι) − 2l(z)

]
.

Proof. Without restriction of generality we may assume that W admits only
one fixed point. Since by assumption it is a rational and thus a crystallo-
graphic reflection group, we then find G ⊃ B ⊃ T a complex semisimple
algebraic group G with Borel B and maximal torus T and Coxeter system
(W,S). If we identify in a W-equivariant way H2

T (pt; Q) and the homoge-
neous component R2 of R, then as we discussed already in the proof of 6.4
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there exists an isomorphism of Z-graded R-bimodules

Bx
∼= HBIC(BxB/B) .

If P = Pι is a parabolic with G ⊃ P ⊃ B, then the decomposition theorem
of [BerL], applied to the projection p : G/B � G/P , shows for x maximal
in its Wι-coset the existence of a decomposition

p∗IC(BxB/B) ∼=
⊕

z∈Wι

IC(BxP/P )
[
l(wι) − 2l(z)

]

in Der+B(G/P ). On the other hand, we have HB ◦ p∗ = resR−Rι

R−R ◦HB and
the HBIC(BxP/P ) are indecomposable as graded R-Rι-bimodules, since
by 6.4 the scalars are their only endomorphisms of degree ≤ 0. �

8 The Bimodules for Tilting Modules

8.1 Given y ∈ W let Ŝy denote the bimodule, which from the left is
free over Ŝ of rank one with basis say 1y, but from the right has the action
r1y = 1yr

y of Ŝ. Given a bimodule B for two commutative rings let B̃
denote the bimodule which we get by interchanging the right and the left
action.

Theorem 8.2. Let λ ∈ h∗dom and let Wλ ⊂ Wλ̄ ⊂ W be as in 5.6. Given
x̄ ∈ Wλ̄/Wλ, we have for the deformation of the indecomposable tilting
module with highest weight wλ̄x̄ · λ the formula

VKŜ(wλ̄x̄ · λ) ∼= B̃λ
x̄ ⊗S Ŝwλ̄

.

Remark 8.3. Our bimodules Bι
x̄ are graded free of finite rank over R, thus

R̂ ⊗R Bι
x̄ is just the completion along the grading of our original bimodule

Bι
x̄ and in particular this completion admits a right action of R̂ι.

Proof. As is well known, and explained in Remark 7.2.2 of [S4], an inde-
composable tilting module stays indecomposable upon translation out of
the walls. More precisely for λ, µ ∈ h∗dom with λ + X = µ + X and Wµ = 1
and x ∈ Wλ̄ maximal in its coset xWλ we have

T µ
λ K(wλ̄x · λ) = K(wµ̄x · µ) .

Since T λ
µ T µ

λ is a sum of |Wλ| copies of the identity functor by [BerG], we
may for the proof restrict ourselves to the case λ regular. If x = st . . . r is
a reduced decomposition by simple reflections of Wλ̄, we may characterize
KŜ(wλ̄x · λ) inductively as the indecomposable summand of

ϑr . . . ϑtϑs∆Ŝ(wλ̄ · λ)
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not isomorphic to any KŜ(wλ̄y · λ) for y < x. Applying V we get from this
the indecomposable summand of

Ŝ ⊗Ŝr Ŝ . . . ⊗Ŝt Ŝ ⊗Ŝs Ŝwλ̄

which didn’t appear already before. But by definition of our special bimod-
ules this is precisely B̃x ⊗S Ŝwλ̄

. �

9 Restricting the Group Action

9.1 For G a complex connected algebraic group we let AG = H∗(BG)
be the cohomology ring of its classifying space. If X is a complex alge-
braic G-variety and F ,G ∈ Der+

G(X) are objects of the equivariant derived
category, we may form the graded AG-module

DerG

(F ,G[∗]) =
⊕

n

DerG

(F ,G[n]
)
.

Proposition 9.2. Let G ⊃ H be a connected complex algebraic group
and a connected closed subgroup. Let X be an algebraic G-variety and
let F ,G ∈ DerG(X) be constructible complexes. If DerG(F ,G[∗]) is graded
free over AG, then the obvious map induces a bijection

AH ⊗AG
DerG

(F ,G[∗]) ∼→ DerH

(F ,G[∗]) .

Proof. We consider the constant map k : X → pt and the fully faithful
functor γG : DercG(pt) → AG -dgDer from [BerL, 12.4.6], and recall

DerG

(F ,G[∗]) = H∗γGk∗ Hom(F ,G)

where we form Hom(F ,G) in Der+
G(X), and k∗ means the direct image land-

ing in Der+G(pt). If this now is a free AG-module, then γGk∗ Hom(F ,G) is al-
ready quasi-isomorphic to its cohomology and this cohomology is homotopy
projective in AG -dgMod. With the derived functor AH⊗L

AG
: AG -dgDer →

AH -dgDer, we have by [BerL, 12.7.1], furthermore canonically
(
AH ⊗L

AG

) ◦ γG = γH ◦ resHG ,

and for homotopy projective objects M ∈ AG -dgMod we have in addition

AH ⊗L
AG

M = AH ⊗AG
M .

Since k∗ and Hom commute with the restriction of the group action, this
shows the proposition. �



[Review Copy Only]

Vol. 17, 2007 ANDERSEN FILTRATION AND HARD LEFSCHETZ 2085

10 Proof of the Main Theorem 4.4

10.1 Given a ring R, a ring homomorphism R → C[[v]], three R-
modules H,H ′,H ′′ and an R-bilinear map

ϕ : H × H ′ → H
′′

we may introduce on C[[v]] ⊗R H a filtration by the rule

F i(C[[v]] ⊗R H) =
{

h

∣∣
∣
∣

ϕ(h, h′) ∈ viC[[v]] ⊗R H
′′

for all h′ ∈ C[[v]] ⊗R H ′

}
,

and also get an induced filtration on C⊗RH, whose subquotients we denote
F̄ i(C ⊗R H) .

10.2 If, for example, Ŝ is the completion of S = O(h∗) along the natural
grading and Ŝ � C[[v]] is the restriction to the line Cρ as in 4.2, then the
pairing given by composition

Homg−Ŝ

(
∆Ŝ(λ),KŜ(µ)

) × Homg−Ŝ

(
KŜ(µ),∇Ŝ(λ)

)

→ Homg−Ŝ

(
∆Ŝ(λ),∇Ŝ(λ)

)

leads to the Andersen filtration 4.2 on the spaces Homg(∆(λ),K(µ)), which
by 2.13 may be identified with Homg−Ŝ(∆Ŝ(λ),KŜ(µ)) ⊗Ŝ C . Certainly

there also exists p ∈ Ŝ such that V induces an isomorphism
Homg−Ŝ

(
∆Ŝ(λ),∇Ŝ(λ)

) ∼→ p HomŜ

(
V∆Ŝ(λ), V∇Ŝ(λ)

)
,

and with this p we may reformulate our pairing as in the pairing given by
the composition

HomŜλ−Ŝ

(
V∆Ŝ(λ), VKŜ(µ)

) × HomŜλ−Ŝ

(
VKŜ(µ), V∇Ŝ(λ)

)

→ p HomŜλ−Ŝ

(
V∆Ŝ(λ), V∇Ŝ(λ)

)
.

Here a possible p may be determined by the condition that our pairing in
case λ = µ must lead to a surjection. Now we change parameters, choose
λ ∈ h∗dom and put λx̄ = wλ̄x̄ · λ for x̄ ∈ Wλ̄/Wλ. To simplify, we further
introduce a variant Ṽ of V by putting

ṼM = Ŝwλ̄
⊗Ŝ ṼM

such that 8.2 becomes ṼKŜ(λx̄) ∼= B̂λ
x̄ , the hat meaning completion along

the grading. With less effort one may also check
Ṽ∆Ŝ(λȳ) ∼= Ṽ∇Ŝ(λȳ) ∼= Ŝλ

ȳ

in Ŝ -mod- Ŝλ, where again we mean the bimodule which is Ŝ from the left
but has the ȳ-twisted action r1y = 1yr

y of Ŝλ from the right. If we replace
V by Ṽ, we thus obtain up to a twist of the right Ŝ-action by wλ̄ the pairing

HomŜ−Ŝλ(Ŝλ
ȳ , B̂λ

x̄) × HomŜ−Ŝλ(B̂λ
x̄ , Ŝλ

ȳ ) → p1 HomŜ−Ŝλ(Ŝλ
ȳ , Ŝλ

ȳ )
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of Ŝ-modules and our filtration corresponds to the filtration we get here
when we change Ŝ � C[[v]] by twisting it with wλ̄. Here p1 denotes the
image of p under wλ̄. Since the choice of p1 is only sensible up to units
of Ŝ, we may choose p1 already before completion and the corresponding
pairing “before completion”

HomS−Sλ(Sλ
ȳ , Bλ

x̄) × HomS−Sλ(Bλ
x̄ , Sλ

ȳ ) → p1 HomS−Sλ(Sλ
ȳ , Sλ

ȳ )

leads to the same filtered C-space in the end. This pairing we now interpret
geometrically.

10.3 If X ⊂ h∗ denotes the lattice of integral weights, we find a pair
G∨ ⊃ T∨ consisting of a reductive connected complex algebraic group with
a maximal torus such that X = X(T∨) is its group of one-parameter sub-
groups and that for the Weyl group we have W (G∨, T∨) = Wλ̄. In G∨ we
then choose a Borel B∨ for S ∩Wλ̄ and a parabolic P∨ ⊃ B∨ for Wλ. Now
if

ICx̄ = IC(B∨x̄P∨/P∨)

denotes the intersection homology complex of the corresponding Schubert
variety and Cȳ the constant perverse sheaf on B∨ȳP∨/P∨, we have Bλ

x̄
∼=

HB∨ICx̄ and our pairing “before completion” from the end of the previous
remark can be interpreted with the help of 6.4 as the pairing given by
composition

DerB∨
(
jȳ!Cȳ,ICx̄[∗]) × DerB∨

(ICx̄, jȳ∗Cȳ[∗]
) → DerB∨

(
jȳ!Cȳ, jȳ∗Cȳ[∗]

)
.

Here we do not need a p-factor on the right-hand side, since restriction
to the big cell shows that, for x̄ = ȳ, our pairing gives a surjection. The
question is thus, which filtered vector space this pairing of AB∨-modules
leads to under the homomorphism AB∨ � C[v] coming from the embedding
C× ↪→ T∨ with parameter wλ̄ρ. But by 9.2 this specialization leads us to
the composition pairing

Der
C

×
(
jȳ!Cȳ,ICx̄[∗]

) × Der
C

×
(ICx̄, jȳ∗Cȳ[∗]

) → Der
C

×
(
jȳ!Cȳ, jȳ∗Cȳ[∗]

)
.

Let now ȳ denote the point ȳP∨ of G∨/P∨. For a suitable product U
of root subgroups of G∨ the multiplication u �→ uȳ defines an embedding
U ↪→ G∨/P∨, whose image is a cell transversal to B∨ȳP∨/P∨ and is con-
tracted by C× to ȳ. If we put Z = Uȳ ∩B∨x̄P∨/P∨, then Z is contracted
by C× to ȳ, and if a : Z ↪→ G∨/P∨ denotes the embedding, the restriction
to Z will not change our pairing. If we now put d = dim B∨ȳP∨/P∨ and
let i : pt ↪→ Z be the embedding of ȳ and pt the constant sheaf on a point,
we get a∗jȳ!Cȳ

∼= i∗pt[d] ∼= a∗jȳ∗Cȳ and a∗ICx̄
∼= IC[d] will be the shifted

intersection cohomology complex IC = IC(Z) of Z and our pairing gets
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transformed to the composition pairing

Der
C

×
(
i∗pt,IC[∗]) × Der

C
×

(IC, i∗pt[∗]) → Der
C

×
(
i∗pt, i∗pt[∗]) .

Now we may identify the first of these paired modules with H
C

×(i!IC) and
the second with the dual of H

C×(i∗IC) and thus our pairing leads to the
same filtered space as the embedding of free C[v]-modules H

C×(i!IC) ↪→
H

C×(i∗IC). But in this situation the “fundamental example” of section 14
of [BerL] just means that the cokernel of this embedding may be identified
with the intersection cohomology of the projective variety Z = (Z\{y})/C×

shifted by one, with IC(Z)[1] viewed as a C[v]-module in such a way, that
v acts as Lefschetz operator, thus leading to a short exact sequence of
Z-graded C[v]-modules

H
C

×(i!IC) ↪→ H
C

×(i∗IC) � IC(Z)[1] .

More precisely, this goes as follows: One starts with the decomposition of
Z into the center of the contraction pt and its open complement Z0 and
denotes the inclusions by i and j, and writes the Gysin triangle in the
equivariant derived category pushed down by a map p to a point

p∗i!i!IC → p∗IC → p∗j∗j∗IC [1]→ .

This triangle in Der
C

×(pt) can by Theorem 14.2 in loc. cit. be identified with
a triangle in the derived category of dg-modules C[v] -dgDer over C[v] =
H∗

C
×(pt) written

(τ≥0M)[−1] → τ<0M → M
[1]→

in the notation of loc. cit. However, at the end of the proof of this the-
orem following loc. cit. Lemma 14.15, this is further rewritten as a short
exact sequence of graded C[v]-modules and M is identified with IC(Z)[1]
by a remark preceding loc. cit. 14.5 labeled 13.4, since in our case G is
trivial, whereas (τ≥0M)[−1] is identified with the costalk by loc. cit. The-
orem 14.2(i) and this costalk with its cohomology by loc. cit. 14.3(i). The
middle part of our Gysin sequence finally may also be interpreted as the
stalk at the center of the contraction, p∗IC ∼= i∗IC, as explained in [Sp, §3],
and again this stalk, when written as a dg-module, can be identified with
its cohomology by [BerL, 14.3(i’)]. In this way we see that [BerL] indeed
leads to the short exact sequence of C[v]-modules I claimed. The hard Lef-
schetz from [BBD, 6.2.10] now tells us, that as a graded module over C[v]
our intersection cohomology IC(Z) is a direct sum of truncated polynomial
rings graded in such a way they are selfdual, in formulas a direct sum of
graded modules of the form (C[v]/(vi+1))[i]. Furthermore we know from the
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description of our sequence by truncation, say, that its middle module is
freely generated in negative degrees and its first module is freely generated
in positive degrees. This means that on the level of graded C[v]-modules,
our sequence breaks up into a direct sum of copies of sequences of the type

(C[v])[−i]
vi·
↪→ (C[v])[i] �

(
C[v]/(vi)

)
[i]

with i > 0. From there, we easily see that the said filtration on C ⊗C[v]

H
C×(i!IC) = H(i!IC) coincides with the filtration given by its Z-grading,

and this by [KL2] is known to be given by Kazhdan–Lusztig polynomials.
More precisely we get

F̄ i
(
C ⊗C[v] i!IC) ∼= H−i(i!IC)

∼= Der
(Cȳ[i], i!ȳICx̄

)

∼= Der
(
iȳ!Cȳ[i],ICx̄

)

and this space has the dimension hi
y,x for y, x the longest representatives

of ȳ, x̄. Thus this is the dimension of the i-th subquotient of the Andersen
filtration on Homg(∆(λȳ),K(λx̄)).
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