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1. INTRODUCTION

In this article I will formulate conjectures relating representation
theory to geometry and prove them in some cases. [ am trying to
extend work of Adams-Barbasch-Vogan [ABV92]| and some joint work
of myself with Beilinson and Ginzburg [BGS96]. All this should be

regarded as a contribution to (the local case of) Langlands’ philosophy.
1
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The localization of Beilinson-Bernstein also establishes a relation
between representation theory and geometry. This is however very
different from the relation to be investigated in this article: Whereas
localization leads to geometry on the group itself (or its flag manifold),
the results in [ABV92] to be extended in this article lead to geometry
on the Langlands dual group.

1.1. The basic conjecture. Let G be (only for a short moment) a
real reductive Zariski-connected algebraic group. We want to study
admissible representations of the associated Lie group G(R) of real
points of G. More precisely, we want to study the category M(G(R)) of
smooth admissible representations of G(R). Remark that by a theorem
of Casselman-Wallach this is nothing else but the category of Harish-
Chandra modules for G(R), modulo the choice of a maximal compact
subgroup K C G(R). Let g be the complexification of the Lie algebra
of G(R), U —mod — U = U — mod — U(g) the enveloping algebra of
gand Z C U — mod — U the center of U — mod — U. Then M(G(R))
decomposes according to infinitesimal character into

M(G(R)) = P M(GR)),

where Yy runs over the set MaxZ of maximal ideals of Z.

There are several classifications of the simple objects in M(G(R)).
The most popular ones are by Langlands [Lan73], Vogan-Zuckerman
[Vog81], and Beilinson-Bernstein [BB81]. In this article I will exploit a
version of the first classification scheme, due to Langlands and Shelstad,
and more precisely the form given to it by Adams-Barbasch-Vogan
[ABV92].

Let me roughly explain its structure. First of all, we have to forget
about the real algebraic group GG and just remember the inner class of
real forms for G xg C given by . In other words and other notations,
we start out with a complex connected reductive algebraic group G
endowed with an inner class of real forms. To simplify the exposition
let us furthermore choose a finite central subgroup F' of G. To these
data one associates in a more or less unique way (and to detail this
“more or less” takes most of the time):

1. a finite family Sg of antiholomorphic involutions ¢ : G — G, all
from the fixed inner class.

2. a finite connected algebraic covering GY. of the dual group GV (i.e.
of the complex connected reductive algebraic group GV whose root
system is dual to the root system of G).

3. a collection {X (x)}yemaxz of complex algebraic G¥ —varieties.
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I will give details in section 1.3. For every antiholomorphic involution
§: G — G let G(R,0) denote the fixed point set of the induced map
6 : G(C) — G(C), and for any x € MaxZ let G(R,d); denote the
set of (isomorphism classes of) simple objects in M(G(R,0)),. Then
Adams-Barbasch-Vogan [ABV92] establish a bijection (depending on
additional choices) between

(a): the set U5€S G(R,§)2 and
F X
(b): the set of (isomorphism classes of ) pairs (Y, 7), where Y isa G-

orbit on X (x) and 7 an irreducible G}.-equivariant local system
onY.

Strictly speaking this classifies the representations of a whole collec-
tion of real forms simultaneously rather then representations of a single
group at a time. To explain which geometric parameters (Y, 7) belong
to which real form § € Sr wouldn’t make good reading for this intro-
duction (compare [Vog93|, 4.16). Let me mention however that any
real form in the given inner class is equivalent to G(R,J) with § € Sg
if we choose F' big enough, hence the above classification captures all
real forms.

One point of setting up the above classification scheme is the very
beautiful and miraculous fact that the KL.-data on the representation
theoretic side are mirrored by the IC-data on the geometric side. This
is the essence of Vogan’s character duality [Vog82]. I conjecture that
this duality lifts to the level of categories. To give more details, I have
to introduce more notation.

Let H be a complex algebraic group and X a complex algebraic H-
variety. Suppose H decomposes X into finitely many orbits. Then
we can form a graded C-algebra Exty(X) as follows: Take the equi-
variant derived category Dy (X) as defined in [BL92]. This is a tri-
angulated C-category containing the category Py (X) of equivariant
perverse sheaves as a full abelian subcategory. For F,G € Dy (X) let
us denote by Homy (F, G) the space of homomorphisms in Dy (X) and
put Hom%, (F,G) = Hompy(F,G[n]). Since H was supposed to act with
finitely many orbits, there are (up to isomorphism) only finitely many
simple objects in Py (X). Let £ € Py(X) denote the direct sum of
“all” simple objects (i.e. take one from each isomorphism class). Then
put

There is our graded C-algebra. We will refer to it as the “geometric
extension algebra”.

For any ring R let R— Mod be the category of all left R-modules. For
a graded C-algebra A = ®,,>¢0A" define the full subcategory A — Nil C
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A — Mod by
A—Nil={M € A— Mod | dimcM < oo, A"M = 0 for n > 0}.

So objects in A — Nil are not assumed to be graded, but only “conti-
nous along the graduation”. Recall now the classification scheme from
[ABV92]. The main objective of this article is to formulate, motivate
and discuss the following

Basic conjecture 1. There exists an equivalence of categories

P M(G(R,5)), = Extay (X (x)) — Nil.

0ESE

Remarks:

1. Take again our algebraic group H acting on our variety X with
finitely many orbits. Then the simple objects of Exty(X) — Nil
are in an obvious bijection with the simple objects of Py (X), and
these in turn are parametrized by pairs (Y, 7) with Y an H-orbit
on X and 7 an irreducible H-equivariant local system on Y, c.f.
[BL92]. Thus we see that the simple objects on the left and on
the right of our conjectured equivalence are parametrized by the
same set. Certainly our equivalence should identify simple objects
which have he same parameter.

2. In this article I will check the conjecture in the following cases:
(1) if G is a torus, (2) for arbitrary G and “almost all” central
characters, under the additional assumption F' = 1, (3) for G =
SL,, (4) for complex groups, more precisely when G = G.x G, for
a semisimple simply connected complex algebraic group G, and
F =1 and the inner class of real forms is such that S consists just
of one ¢ and G(R,§) = G.(C), under the additional assumption
that the central character x is integral regular.

3. T will explain in the last section 4 how I expect this conjecture to
be related to Vogan’s character duality formulas [Vog82, ABV92].

4. Tt seems reasonable to make analogous conjectures for nonar-
chimedean fields as well. In these cases X () should be replaced
by spaces of quasiadmissible morphisms of the Weil-Deligne group
to the Langlands dual group. I expect that one may identify in
special situations the geometric extension algebras with Lusztig’s
graded affine Hecke algebras.

1.2. The easiest example. To give the reader a more concrete idea
of what is going on, let me treat the easiest example. Let us take
G = C* endowed with the inner class of real forms consisting of the
split form 0 so that G(R,J) = R*, and choose F' = 1.
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Then Sr will consist of the single element 0, the covering G} — GV
will be the identity C* — C*, and X () will consist just of two points,
for every y € MaxZ. We find that

Extgy (X (x)) = Extex (two points)

= Extex (point) X Extex (point)

= H*(BC*;C) x H*(BC*;C)

= H*(P*C;C) x H*(P>*C;C)

= CJt] x C[t]
where BC* = P*C is the classifying space of C* and deg(t) = 2.
On the other hand, M(R*) is just the category of continuous finite
dimensional representations of R*. I leave it to the reader to check for
every x € MaxZ the equivalence

M(R*), = (C[t] x C[t]) — Nil.
This proves our conjecture in this special case.

1.3. The geometry of Adams-Barbasch-Vogan. I promised at the
beginning that given a complex connected reductive algebraic group G,
endowed with an inner class of real forms and a finite central subgroup
F, T would construct (1) a multiset Sg of real forms, (2) a finite con-
nected covering Gy, of the dual group and (3) a collection { X (x) }yemaxz
of GY-varieties.

To fullfill this promise I have to make some choices. In [ABV92] the
authors investigate in detail how these choices affect the final outcome.

1. Let us choose an antiholomorphic involution v : G — G in the
given inner class that stabilizes a Borel subgroup. Then form
the (real) Lie group "G = GxI'(= G(C)xT if we wouldn’t abuse
notation), where I' = Gal(C/R) = {1,~} acts on G via this an-
tiholomorphic involution v. For any § € "G — G with §* € Z(Q)
the conjugation int(d) : G — G is an antiholomorphic involution,
inner to 7. Let Sy C "G — G be a system of representatives for
the G-conjugacy classes of § € 'G — G with §% € F. As explained
we may consider SF as a multiset of antiholomorphic involutions
of G. For example S; = H'(T'; G).

I warn the reader that for a complex algebraic group I quite
often write just G for the complex points of G, to be denoted G(C)
in more careful notation. I hope this does not lead to confusion.

2. Let us choose in addition 7" C B C G a y-stable maximal torus
and Borel subgroup of G. This gives rise to a based root system
(X,R,A; XV, RY, AY) with an involution s : X — X stabilizing R
and A. In more detail, X = X(7') = {homomorphisms of complex
algebraic groups A : T'— C*} and s : X — X is characterized
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by the formula (ys(A))(t) = A(v(t)) ¥Vt € T. (The notation 7ys is
explained in more detail in 3.1). Then choose a triple (GY, TV, ¢")
consisting of a connected reductive complex algebraic group GV,
a maximal torus 7V C GV and an isomorphism ¢¥ : X¥ — X(T")
that identifies the root system of GV with the dual of the root
system of G.

Now the finite central subgroups F' of G are in one-to-one
correspondence with finite quotients of X/ZR, via F — X(F).
But the finite connected coverings 7 : H — GV of GV are also
in one-to-one correspondence with finite quotients of X/ZR, via
H — X/XY(x1(T")). In this way any finite central subgroup F
of G gives rise to a finite connected covering G of GV.

. This is the most subtle part. We start introducing some notations.

Let H be any complex connected reductive algebraic group,
h = LieH its Lie algebra and A € h a semisimple element. Put

b(Nn = {p€b|[\p]=npu}
n(A) = @no12,..6(\)n
e(\) = exp(2mi)) € H.

The “canonical flat through A” is the affine subspace F()\) =
A+ n()) C h. One proves (see [ABV92]) that the canonical flats
partition the set b, of semisimple elements of ) and even partition
each conjugacy class of semisimples. Furthermore the function e
is constant on each canonical flat. Let F(h) denote the space of
all canonical flats (through semisimple elements of ) and for a
semisimple orbit O C h put F(O) = {A € F(h) | A C O}. Then
e is a function e : F(h) — H.

Now recall G and put g¥ = LieGY. We may and will identify
LieC* = C in such a way that the exponential map of Lie groups
corresponds to the usual exponential map. This determines an
embedding X = Hom(7T,C*) — Hom(LieT, LieC*) = (LieT)*,
hence an isomorphism X®;C = (LieT')*. On the other hand ¢ de-
termines an embedding X = Hom(C*,T") — Hom(LieC*, LieT")
LieTV, hence an isomorphism X ®7 C = LieT".

Let W be the Weyl group. We have bijections

MaxZ = (LieT)* /W = (X @5 C)/W = (LieT")/W = g\ /G"

induced respectively by the Harish-Chandra homomorphism, our
above isomorphisms and the embedding LieT" C g;. Denote by
X — O(x) their composition.

Now choose a collection {Z,v}aca of isomorphisms z,v : C —
Ugv(avy of the additive group C onto the simple root subgroups of
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GY. The involution vs : X — X has an adjoint (ys)¥ : XV — XV.
We will abreviate (ys)¥ =+ : X¥ — XY. This gives rise to an
involutive automorphism v : GV — GV of the complex algebraic
group GV characterized by v(TY) =TV, ¢"y = v¢¥ : XY — X(T")
and 7y o xov = Zyv)Va € A. Thus we may form the semidirect
product 'GY = GV T, the so-called L-group.

Now for any y € Max”Z we define

X(x)={(y,\) |y e"GY —GY,A € F(O(x)) such that y*> = e(A)}.

This is in a natural way a complex algebraic variety on which GV
acts via conjugation. For more details see [ABV92]. This fullfills
my promise.

It is useful to remark, that by [ABV92], (12.11)(e) the component
groups of isotropy groups of G}, acting on X () are all commutative.
Hence all local systems 7 appearing in our geometric parameters are of
rank one.

1.4. Thanks. Ithank David Vogan, Victor Ginsburg, and Valery Lunts
for very helpful discussions. I thank the DFG, MPI, and CNRS for fi-
nancial support, and the latter two for providing a stimulating research
atmosphere.

2. NOTATIONS AND CONVENTIONS

2.1. Groups and varieties. Let G, H be complex algebraic groups.
A holomorphic (resp. antiholomorphic) morphism from G to H is a
morphism of group schemes ¢ : G — H such that the diagram

¢ % H
! !
SpecC —  SpecC

with the lower horizontal the identity (resp. the complex conjugation)
commutes.

Let G be a complex algebraic group. Two antiholomorphic involu-
tions 9,0" of G are said to belong to the same inner class if and only
if §¢’ is an inner automorphism of G, i.e. § = d¢"int(x) with x € G.
Two antiholomorphic involutions 4, ¢’ of G are said to be equivalent
if and only if they are conjugate by an inner automorphism of G, i.e.
§ = int(z')d"int(x) with z € G. Any two equivalent antiholomorphic
involutions belong to the same inner class.

Let A, B be groups and o : B — AutA a group homomorphism. Let
us write (0(b))(a) = a® Va € A,b € B. We define a new group Ax,B =



8 SOERGEL

AxB as follows: As a set AXB = A x B and the multiplication is given
by (a,b)(a1,b1) = (a(al), bb1).

Let G be a complex algebraic group. Then we denote by LieG its
Lie algebra. This is a Lie algebra over C. Let H be a Lie group. Then
we denote by Lieg H the Lie algebra of H. This is a Lie algebra over R.
We denote its complexification by LiecH = C ®g Lieg H. Let G be a
complex algebraic group. Then LieG = Liegx(G(C)) canonically. This
is an isomorphism of Lie algebras over R, where on the left we quietly
restrict scalars from C to R. Let 6 be an antiholomorphic involution on
G. Then LieG = Liec(G(R;0)) canonically.

Let X be a complex algebraic variety. We often abuse notation and
write X instead of X (C). Sometimes we also abuse notation in the
other direction and write for example C*, C instead of Gy, ¢, G, c.

2.2. Grothendieck groups. Let A be an abelian (resp. triangulated)
category. Then we let [A] be the Grothendieck group of A, generated
by the objects with the usual relations for all short exact sequences
(resp. distinguished triangles). Any object A € A gives an element
[A] € [A].

Let A be an additive category. Then we let (A) be the split Gro-
thendieck group of A, generated by the objects with the usual relations
for all split short exact sequences. Any object A € A gives an element

(A) € (A).

2.3. Equivariant derived categories. My basic reference for what
follows is [BL92]. Let G be a complex algebraic group and X a com-
plex algebraic G-variety. To X we may associate a triangulated C-
category Dg(X), the bounded constructible G-equivariant derived cat-
egory, called Dy, .(X) in [BL92], 4.1. We note Homg the morphisms
in Dg(X), put Homg, = @,Homyg, and use analogous notation Endg,
Endg, for endomorphisms. If G = 1 we come back to our usual trian-
gulated categories D;(X) = D%(X) = D(X) and since Hom,; looks so
stupid, we write Homp in this case.

I cannot repeat the details of the definition of Dg(X). To give the
reader an idea of what D¢ (X)) is like, let me just remark that it embeds
as a full triangulated subcategory in the bounded derived category
DY(Sh(EG xg X)) of sheaves of C-vectorspaces on EG xg X, where
EG is a contractible space with a free right G-action, e.g. the total
space of the universal bundle on the classifying space BG of G.

The usual formalism of the six operations of Grothendieck extends
to this equivariant situation: For F,G € Dg(X) we may form F ®
G, RHom(F,G) € Dg(X) and any equivariant morphism f : X — Y
of G-varieties gives rise to adjoint pairs of triangulated functors (f*, f.)
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and (fi, f') relating Dg(X) and Dg(Y). The categories Dg(X) also
come equipped with a (perverse) t-structure, and we let Pg(X) be its
core, i.e. the G-equivariant perverse sheaves for the middle perversity,
and H® : Dg(X) — Pg(X) the perverse cohomology functors. Let
pt € Pa(pt) be the constant object C, and put X = p*pt € Dg(X) for
any X, where p : X — pt is the constant map. -

The irreducible objects of Pg(X) are parametrized by pairs (Y, 1)
with Y a G-stable locally closed subset of X and 7 an irreducible G-
equivariant local system on Y. Namely to such a pair one associates the
intersection cohomology complex with twisted coefficients ZC(Y, 1) €
Pa(X).

Let ¢ : H — G be a morphism of algebraic groups. Then we may
define the restriction functors Res : Dg(X) — Dy (X). They are trian-
gulated and compatible with all our “internal” operations. If ¢ is either
(1) a finite covering or (2) the inclusion of a reductive Levi factor, then
Res induces isomorphisms Homg(F, G) — Hompy (ResF, ResG) for all
F,G € Dg (X) .

2.4. Geometric extension algebras. Assume now again that X is
a H-variety decomposing into finitely many orbits. Remember we de-
fined the graded C-algebra Extpy(X) = @,>oHom?% (L, L) where £ =
®yv,nZC(Y, ) is the sum over all simple objects of Py (X), so that ¥’
runs over all H-orbits in X and 7 over all irreducible H-equivariant
local systems on Y.

Suppose H C G is a closed subgroup. Then the “induction equiva-
lence” gives an isomorphism Exty(X) = Extg(G x g X).

Suppose H is connected. Then Exty(pt) = H*(BH; C) is just the co-
homology ring of the classifying space of H. If in particular 7" is a torus,
then Extr(pt) = S((LieT)*) is just the ring of regular functions on its
Lie algebra, graded in such a way that deg(LieT)* = 2. More generally,
if H is any connected algebraic group, then Exty(pt) = H*(BH;C) =
S((LieT)*)" consists of the invariants of the Weyl group in the regular
functions on the Lie algebra of a maximal torus 7' C G.

Let N be a complex algebraic group, H C N its identity component
and W = N/H the quotient. Then N acts on H by conjugation,
hence it acts on H*(BH;C) and since H is connected this N-action
factorizes to give an action of W on H*(BH;C). Let us denote this
action by o : W — Autc(H*(BH; C)).

Now whenever we are given a C-algebra A together with an action
o : W — AutcA of a group W on A by algebra automorphisms, we may
form the “twisted group ring” A7[W] = A®¢ C[W)] with multiplication
(a®w)(b®v) =a(c(w)(b)) ® wv. In the above notations, we prove:
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Theorem 2.4.1. Let N be a complex algebraic group, H C N its iden-
tity component and W = N/H the quotient. If VW is commutative, then

Exty(pt) = H*(BH;C)’ [W).
If not these two rings are still Morita-equivalent.

In fact we will prove even a more general theorem to prepare for the
calculations concerning SLy. Namely let H < N — W be as above, let
X be an N-variety and £ € Dy(X) an object in the equivariant derived
category. We have the restriction functor Res : Dy(X) — Dy (X). Its
right and left adjoints coincide in our situation, so we denote them just
by Ind : Dg(X) — Dy (X). See [BLI2], 3.7 for the definitions of Ind,,
Ind,. Let me first give the statement I want, before I explain and prove
it.

Theorem 2.4.2. End} (Ind ResC) = Endy; (ResL)?[W].

Ezplanation: 1 ought to explain the action o of W on End} (ResL).
Let E = EN denote the universal bundle over the classifying space of
N.Let m: Exy X — E Xy X be the projection. We have the following
two commutative squares

Dy(X) < DH(Sh(E xy X))

Res iT Ind T iT Tx
Dyu(X) < DH(Sh(E xy X))

where 7*, 7, stand for the functors usually denoted Lz !, Rm,. The
horizontal arrows are fully faithful embeddings. In fact there is a right
We-action on on E xpg X given by [w]: Exg X — E xg X, (e,z) —
(en,n~'z) for any n € N representing w € W. Our 7 : E xg X —
E xn X is just the quotient by this right W-action.

Let the image of £ by the upper horizontal in the above diagram be
denoted £. Thus End$;(ResL) = End®(7*£L). But any w € W gives

o(w) : End®*(7*£) — End*([w]*7*L) — End*(7*L)
where the first map is induced by [w]*, the second by mo[w] = 7. There

is our W-action on End®(7*L).
Proof: We procede in four steps.

1. Define a morphism Endj}, (ResC) — End} (Ind ResL).

2. Define a morphism C)W| — EndY (Ind ResL).

3. Prove that they are “o-compatible”, i.e. fit together to define a
morphism

End}; (ResL)? W] — End} (Ind ResL).

4. Prove that this morphism is an isomorphism.
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So let’s go to work!

(1) The first step is clear by functoriality of Ind. Translating into a
different picture, the morphism is 7, : End®*(7*£) — End® (7, 7*L).

(2) Translating via our diagram we see that we need a morphism
CW] — End*(r,7*L). Indeed any w € W defines a morphism (w) :
m. L — "L as the composition 7,7 L — w*[w]*[w]*w*f — T L
where the first map comes from the adjointness transformation in —
[w],[w]* and the second from 7o [w] = m. One may check that (w)(v) =
(wv). Thus we defined a morphism C)W] — End(m,7*L).

(3) Let f € End®*(7*£) and w € W. We have to establish in End® (7, 7*£)
the equation (w)(m,f) = (m.(o(w)f)){(w). For this we consider the com-
mutative diagram

L — mwl |l — mwrrl —  matL
mf me[wlw]*f | mfw]*f | mo(w)f |

T L — mwl|w] Tl — m[w]'r* L —  matL

which gives us the required equation.
(4) We have to prove that the product

End®(7*£) ®c C[W] — End*(m,7*L), f® w — 7, oid o (w)
is an isomorphism or, equivalently, that the product
Hom®(7*L, 7* L) ®RcCIW] — Hom® (n*m, 7L, 7*L), f@®w — moadjor™ (w)

is an isomorphism where adj is the map corresponding to the identity
id via the adjointness (7*, 7). But m*m,m*L = @pewn*L and under
this isomorphism the W-action on the left by the 7*(w) corresponds to
the “regular action” on the right. So indeed we get an isomorphism.
qg.e.d.

Proof of the first theorem: Apply the second theorem to X = pt, £ = pt.
q-e.d.

3. EXAMPLES

3.1. Tori. To establish the conjecture for G a torus 7' is not to hard.
We begin with some definitions. As is well known there is a contravari-
ant equivalence of abelian categories

diagonalizable x finitely generated
complex algebraic - commutative
groups Diag groups

For morphisms v of the left (resp. right) category we will often write
just v instead of X(7) (resp. Diag(7y)). The reason that this does not
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lead us into a catastrophe is that we only have to work with pairwise
commuting involutions.

Any diagonalizable complex algebraic group G admits a unique anti-
holomorphic involution s = s : G — G such that ¢(s(g)) = ¢(g) Vg €
G, ¢ € X(G). This antiholomorphic involution gives rise to what one
calls the split real form of G. For every (holomorphic or antiholomor-
phic) morphism of complex diagonalizable groups f : G — H we have
fosg=smof.

Both the holomorphic and antiholomorphic homomorphisms from
one complex diagonalizable group to another form an abelian group.
We write these groups additively. For example, if f : G — H is
holomorphic (or antiholomorphic), we have (—f)(g) = f(g)~" Vg € G.

Now let us get at our torus 7. It comes with an inner class of real
forms, i.e. with an antiholomorphic involution ~. This gives us an
involution vs = X(7s) on X = X(7T') and thus an involution v = (ys)¥
on the dual lattice XV. Let us describe the varieties X (x). They are
either empty or isomorphic to X (0), which we henceforth abreviate to
X. The isotropy group I is the same for all points of X and is in fact
the kernel of (id — ) : TV — TV. Applying our exact contravariant
functor X we get X(I) = XV/(id — v)X". Thus (Liel)* = X(I) ®z C =
(XY ®, C)7 and Extry X is just a cartesian product of say n, copies
of the symmetric algebra S = S((X" ®z C)?) over the dual of the Lie
algebra of the isotropy group.

On the other hand, T'(R, 7) admits a Cartan decomposition T'(R, v) =
K x A with K compact and A a vector group. In fact, A is just the one-
component of T(R,v) NT(R, s), and this intersection in turn consists
just of all fixed points for some antiholomorphic involution on the kernel
of (id—svy) : T — T. Thus LiecA = Lie(ker(id — s7y)) = (XV ®zC)". In
other words, the S from above is also the enveloping algebra of Liec A.
So for each x € MaxZ either

P MT®R ), = P S-Ni

0ESE nr copies

for some n,, or the left hand side vanishes. So to establish the con-
jecture we just have to show that X (x) # 0 & M(T(R,v)), # 0 and
that if both sides do not vanish, then n, = n,. But this is calculated
in detail in [ABV92] and essentially even in [Lan73] (for F' = 1).

3.2. Generic central character. For most y € MaxZ the situation
is very simple. Namely for y outside a countable union of proper closed
subvarieties of MaxZ only the split real form admits representations
with infinitesimal character y, and the irreducible ones are just the
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principal series induced from a Borel. I now test the conjecture on this
example.

Let (LieT):, = {\ € (LieT)* | (\,&) € Z Ya € R} be the set of all
“not at all integral” weights and (MaxZ2),;, C MaxZ its image under
the Harish-Chandra homomorphism.

Lemma 3.2.1. If G is endowed with the inner class of real forms con-
taining the split form and x € (MaxZ),;, then X(x) = G¥/TV x {t €
TV |t =1} as a GY-variety.

Proof: Since G is endowed with the split inner class, 'GY = GV x T,
For x € (MaxZ),,; each element of O(x) is its own canonical flat, hence
X(x) ={(y,\) | y € GY, X € O(x) such that y* = exp(2mi)\)}. Let us
determine for one Ay € O(x) all possible y. Assume to simplify A\, €
LieTV. Since x was supposed to be not at all integral, the centralizer
of exp(2mi)g) in GV is just TV and we find that necessarily y € T".
Thus a bijection {t € TV | t? =1} — {y € GY | y? = exp(2wiXy)},
t — t exp(miXg). But every x € (MaxZ),; is in particular regular, so
O(x) = GY/TY and we find indeed X () = GV/TV x {t e TV |t* =1}
with GV acting only on the first factor. ¢.e.d.

Let us now assume for simplicity that F' = 1.

Lemma 3.2.2. Suppose G is endowed with the inner class of real forms
containing the split form. Then only one of the § € Sy gives a split form
of G.

Proof: 1f we identify S; = H'(T;G), then § € S; gives the split
form if and only if it maps to the identity element in H'(['; G/Z(G)).
However consider the exact sequence

HY(T; Z(G)) — H'(I;G) — H'(T;G/Z(@))

of nonabelian cohomology. Since the first map factors over the coho-
mology of a split torus T C G and H'(T';T) = 1, the preimage of
the identity element in H'(I'; G/Z(G)) is just the identity element in
H\(T;G). q.e.d.

Let s € Sy represent the split form. For y € (MaxZ),; we know that
M(G(R,0)), =01if 6 € Si, § # s. So we have for x € (MaxZ),; just
to establish an equivalene of categories

M(G(R, s))y = Extev X (x) — Nil.

But both sides are just Nil-modules over a Cartesian product of 27¢"*¢
copies of the symmetric algebra S = S(LieT') of the Lie algebra of the
maximal torus. For the right hand side this follows from Extgv (GY/T")
Extrv(pt) = H*(BTV;C) = S(LieT) where the grading is determined
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by deg(LieT) = 2. For the left hand side it follows from the fact that
for any A € (LieT);, the functor

M(T (R, s))x = M(G(R, s))en

of extending trivially to a Borel and inducing (with the shift that en-
sures that unitary representations go to unitary ones) is an equivalence
of categories.

3.3. The case G = SL,. There is only one inner class of real forms.
Certainly G¥Y = PGL(2;C). Let us compute the X (). We distinguish
three cases.

X not integral.: Then X (y) = GY/T" x {two points} as we showed
already more generally.

x singular.: Then O(x) = {0} and X(x) = {y € GV | y* = 1}.
But any element of finite order is semisimple, hence contained in
a maximal torus and in a torus there are precisely two roots of one.
The stabilizers in GV of these two are G¥ and Ngv(T"), which we
will henceforth abreviate N. Thus X (x) = pt U (GY/N).

x regular integral.: Then exp(27mi)) = 1 for all A € O(x), hence
X (x) is just the Cartesian product of F(O(y)) with {y € GV |
y?> = 1}. But if x € MaxZ is regular integral, we have quite

generally F(O(x)) = G¥/B". Hence in our situation {F(\) | A €

O(x)} = GY/BY and

X(x)=GY/BY U GY/BY xGY/N
where GV acts diagonally on the second part.

3.3.1. The subcase F' == 1. Let us first check the conjecture for F' =
1. Then S} = H'(T;SL(2,C)) consists just of one element § with
G(R,d) = SL(2,R). For any x € MaxZ let us abreviate M(SL(2,R)), =
M,,. These categories break down according to K-types into M, =
M @ M;dd. Now we procede case by case.

x not integral. This has already been treated in general.

X singular. It is known that MS’ is isomorphic to the category of all
finite dimensional continuous modules over the completion ZQ of Z at
x. Via the Harish-Chandra homomorphism we find M} = SW — Nil,
with S = S(LieT) the symmetric algebra over LieT. But on the other
hand Extgv(pt) = H*(BGY;C) = H*(BT"; C)"Y = S™ so that indeed

M = Extoy (pt) — Nil,

The structure of M%* is more complicated. The irreducible objects of
this category are the two limits of principal series, and these extend
among each other. More precisely the picture is as follows: Choose
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in g a “standard” basis X, H,Y with [H,X]| = 2X, [H,Y] = -2Y,
[X,Y] = H and such that CH C g is the complexification of the Lie
algebra of the compact torus SO(2) C SL(2,R). For M € M, n € Z
put M,, ={v € M | Hv = nv}. Then

Y

M +— M,l M+1

X

is an equivalence of M;dd to finite dimensional representations of the
quiver

(2

¢

with relations ¢ nilpotent. This is not difficult, and follows for exam-
ple from the more general results in [KKho80]. I leave it to the reader to
identify the quiver algebra with the twisted group ring S?[W)|, where
o : W — AutcS is the obvious action. Putting things together, we get
M;’(dd =~ S7[W] — Nil.
But on the other hand
Extev(GY/N) = H*(BN;C) by ??
= H*(BTY;C)”W] by theorem 2.4.1 of section ??
= S7W].
So indeed M9 2 Extqv(GY/N) — Nil and with our previous result
we obtain finally M, = Extev X (x) — Nil for singular x.

x regular integral. By the translation principle we may and will
henceforth assume y = AnnzC is just the annihilator of the trivial
representation. Then M;’(dd can be identified with the category of all
finite dimensional continuous modules over the completion ZQ of Z at
X, and via the Harish-Chandra homomorphism we find M;dd = S—Nil.
But Extgv(GY/BY) = H*(BBY;pt) = S, so M = Extgv (GY/BY) —
Nil.

The category M’ is much more interesting. Using the preceding
notations, we may describe it as follows: The functor

Y Y
M +— M,Q MU M+2

X X

establishes an equivalence of MZ’ to finite dimensional representations
of the quiver
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(C P
° ° ° (%)
Ul ¢F
with relations ¢~1~ = 1) ¢* and )" ¢ nilpotent. This is not difficult,

and follows for example from the more general results in [Kho80]. Now
let us attack the geometric extension algebra. Since

GY/BY x GY/N =GY xx (GY/BY)
we have (using the induction identity) just to understand Exty(GY/BY).
There are two N-orbits on (GY/BY) = P!C = X, namely Y = {0, 00}
and U = C*. Here Y supports just one irreducible N-equivariant lo-
cal system Y, but U supports two of them, with trivial and nontriv-
ial N-action, say U" and U~. The irreducibles in Py(X) are corre-
spondingly .Y, X*[1] and X~ [1] where i : ¥ — X is the inclu-
sion and X (resp. X7) denotes just the constant sheaf C on X
with trivial (resp. nontrivial) N-action. By definition, Exty X =
End% (i.Y @ X*[1] @ X [1]). But since we only need to know this
ring up to Morita equivalence, let us rather compute the equivariant
selfextensions of 7Y @ 4,Y @& X*[1] @ X [1]. This object has the ad-
vantage to be isomorphic to IndRes(i,Y @& X *[1]) where we consider
N as the semidirect product N = TV xW and use the notations of 77,
so we may apply theorem 2.4.2 of section ?? to £ =4,Y & X [1]. The
theorem tells us that we should first compute End} (ResL) with its
Wh-action. This is not to hard, so I just give the result.

Proposition 3.3.1. End}v(ResL) is the quiver algebra of the quiver

(Im) (mr)
: . : (%)
(ml) (rm)

with relations (rm)(ml) = 0 = (Im)(mr) where every arrow has de-
gree one. The reflection of the quiver along the vertical symmetry axis
induces the looked-for action o of W on the quiver algebra.

Proof: Left to the reader. Perhaps it would have been more sugges-
tive to call the extremal points 0 and oo instead of r and [.

The finite dimensional representations of ExtyX can be identified
by Morita equivalence with finite dimensional representations of

End} (Ind ResL) = End% (ResL)?[W],

and these in turn are just finite dimensional representations of the
quiver with relations from the proposition equipped with an “action
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of W on the representation compatible with the above action of ¥V on
the quiver”. Such an object consists of a diagram of finite dimensional
spaces

(Im) (mr)
W, Wi W,
(ml) (rm)

together with isomorphisms s : W,, - W, s : W,,, - W,,,, s : W, - W,
such that the relations s* = id, (Im)(mr) = 0 = (rm)(ml), s(mr) =
(ml)s, s(Im) = (rm)s are satisfied. We got to identify the category of
such objects with the category of finite dimensional representations of
the related quiver (k).

This can be done as follows: To a representation

V- W
M_2 MU M+2
¢~ ¢*
of the related quiver (%) we associate the representation
+ ot
(CANT (%)
MO M+2 @ M,Q MU
ety PN
(55) )
of the related quiver (xx) with WW-action given by

id 0

S:idZMU—>M0, S:<0 —id

> : M+2 D M,g — M+2 D M,g.
This can be seen to be an equivalence of categories and induces an
equivalence of categories M}’ = ExtyX — Nil. So putting things
together we indeed established the desired equivalence of categories
M, = Extgv X (x) — Nil for regular integral x.

3.3.2. The subcase F' = Z(G). Now take for F' the full center of SL(2,C),
i.e. F'={+1,—1}. Then Sr can be seen to consist of three elements,
giving rise to the three real forms SU(2,0), SU(1,1) and SU(0, 2). Cer-
tainly two of them are just the compact form SU(2) and the middle
one is the split form SL(2,R). So on the representation theoretic side
of our conjecture only for y regular integral there are some changes,
and we have to consider instead of M(SL(2,R), = M, the category

P MU +i,1—-1i)), = (C— Nil) ® M, & (C— Nil).

i=—1,0,1
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On the geometric side we get G}, = SL(2,C). By ?? homomor-
phisms between objects in our equivariant derived categories do not
change when we pass from G to GY.. However there might be more
simple objects in Pgy, X (x) than in Pgv X (x), and this happens pre-
cisely when the isotropy groups of points of X (x) with respect to Pay,
have more components than the isotropy groups with respect to Pgv.
In our situation, this happens only for x regular integral and for points
in the open orbit on G¥/BY x GY/N C X (x). To verify our conjecture
for F'= {41, —1} we just have to check that

Ext(;lv?(Gv/Bv x GY/N) = (Extev(GY/BY x GY/N)) x C x C.
Via the “induction identity” this can be reduced to showing
EXtNFX = (EXtNX) x CxC

where N = Ngy(TV). Let £ € PyX be the sum of all simple ob-
jects, L = .Y & XT[1] ® X [1]. In Py, X there are an additional
two simple objects. In more detail, the isotropy group in Ng of a
point in the open orbit U C X is just Z/4Z, thus there are four
simple objects Fy, F1, Fa, F3 in Py, X, corresponding to the four ir-
reducible characters on Z/4Z. Let j : U — X be the inclusion. Then
JwFo = XT[1], 5.Fs = X7[1] and our two new irreducible objects in
Pn.X are nF, = j5,.F1 and jF3 = 7. Fs. I leave it to the reader to
check that

Endy, (£ @ j.F1 @ 5. F3) = Endy (L) x C x C.
This gives the conjecture for G = SL(2,R), F = {+1,—1}.

3.4. Complex groups. Here comes one of the main motivations for
the conjecture. Namely we check that it correctly predicts the structure
of part of the representation theory of G.(C) for a semisimple connected
complex algebraic group, where we consider G.(C) as a real Lie group.
In fact we will only give details for G simply connected and assume
this from now on. To get in the set-up of the conjecture, choose a split
antiholomorphic involution s : G, — G, and put G = G, x G, with the
quasisplit antiholomorphic involution v : G — G, v(z,y) = (sy, sz).
Then G(R,7) = G.(C) and 1 = H'(T'; G) = S; = {v}. We prove under
the above assumptions:

Theorem 3.4.1. Suppose x is a reqular integral central character. Then
there is an equivalence of categories

M(GR, 7))y = Extev X (x) — Nil.

Proof[Theorem/: We begin by simplifying the right hand side. Abre-
viate GY = G and let B C G be a Borel subgroup.
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Lemma 3.4.2. Suppose x is reqular integral. Then X(x) = GY Xz
(G/B) for a suitable embedding B — G".

Proof: Left to the reader.
Next we simplify the right hand side. Let HCh denote the category of
“Harish-Chandra bimodules” for g. = LieG, investigated in [Soe92].
Let Z. C U —mod —U(g,.) be the center and Z = Anny,C the central
annihilator of the trivial representation of g.. Define H = {M € HCh |
(ZF)"M =0 = M(ZI)" for n > 0} the category of Harish-Chandra
bimodules with trivial central character from both sides.

Lemma 3.4.3. For x reqular integral there is an equivalence of cate-
gories

M(G(R, 7))y = M(Gc(C))x = H.

Proof: This is contained in the literature [BG80].

Modulo these two lemmas we see that we need to establish an equiv-
alence of categories H =2 Extg(G/B) — Nil. This was a conjecture in
[BG86]. It was essentially solved in [Soe92], however I did not write
down there the topological part. Merely I constructed in a combina-
torial way a graded C-algebra A and proved the equivalence of cat-
egories H = A — Nil. So we just have to establish an isomorphism
A = Extp(G/B) of graded C-algebras.

Let 7 C B be a maximal torus and W = Ng7 /T the Weyl group.
Then the irreducible objects of Pg(G/B) are just the intersection coho-
mology complexes ZC, of the closures of the Schubert varieties Bx—1B/B,
for x € W. Now by definition Extg(G/B) = Endj(®,ewZC,). We got
to understand this algebra better.

The B-equivariant cohomology ring of G/B is well known to be
Endy(G/B) = S®gw S where S = S((LieT)*) are the regular functions
on LieT, graded in such a way that (Lie7)* is the degree two part of
S. Now equivariant hypercohomology is a functor

Hg = Hom}(G/B, ) :Dg(G/B) = S ®sw S —mod

from the equivariant derived category to the category of graded mod-
ules over the equivariant cohomology ring.

Proposition 3.4.4. For all x,y € W, equivariant hypercohomology
induces an isomorphism

Hg : HOHI%(IC:E,IC?}) — HOIIIS®5(HBICx, HBICy)

Proof: Postponed to ?77.
In particular we deduce an isomorphism

Exts(G/B) = Endsgs(@rewHsICy).
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But the algebra A was defined as
A= End5®5(®m€WBI)

where the B, are certain graded S ® S-modules described in a combi-
natorial way in [Soe92]. So to prove our theorem we need just

Lemma 3.4.5. Forall x € W there is an isomorphism of graded S®.S -
modules HgZC, = B,.

Proof: The proof of this lemma is very similar to the proof of its
non-equivariant analogon in [Soe90], so I will rather give a sketch of
proof.

Let (W, S) be the Coxeter system associated to G D B and let H =
HOW,S) = ®pewZt,t7']T, be the corresponding Hecke algebra. For
s € 8 let P; D B be the associated parabolic. Let 75 : G/B — G/P;
be the projection. One may make (Dy(G/B)) into a H-module by the
prescription ¢(F) = (F[—1]) and (Ts+1)(F) = (nins.F) forall s € S.
If {C! } ;e is the selfdual basis of the Hecke algebra defined in [KL79],
then C/(ZC.) = (ZC,) for all x € W.

Now let us specify that we choose the identification Hj(G/B) =
S ®gw S such that the pullback via 7, : G/B — G/P, corresponds
to the inclusion S* ®w S — S @gw S on equivariant cohomology
rings. Furthermore, let us identify graded S ® S-modules with graded
S-bimodules in the obvious way. Let S —mof — S denote the category
of all graded S-bimodules which are finitely generated as left and as
right modules. Then we may interpret Hyz as a functor

Hg : Dg(g/B) — 5 — mof — S,

and use essentially the same arguments as in [S0e90] to prove Hg w7y, F =
S ®gs (HgF) for s € S, F € Dp(G/B).

Now recall from [Soe92] how we made (S—mof—S) into a H-module.
The above formula says then just that Hgz induces a morphism of H-
modules Hy : (Dp(G/B)) — (S — mof — S). Certainly Hz(ZC.) =
(S), thus Hs(ZC,) = HzC/(ZC.) = C.Hz(ZC.) = C.(S) = (B,) by
definition of B,. g.e.d./[Lemma and theorem]

We still have to prove proposition 3.4.4. Let us start with some
general considerations. Let X be a topological space filtered by closed
subspaces X = Xy D X; D ... D X, =0 and let F € D?(ShX) be an
object in the bounded derived category of sheaves on X. To calculate
its hypercohomology H*F we have to choose an injective resolution
I* of F and take cohomology of the complex of global sections I'(I*).
Certainly this is filtered by supports, 0 C I'x, (I*) C ... C I'x,(I*) =
['(I*). So its cohomology is the limit of a spectral sequence with Ej-
term EV? = Hpth_XpH (F) the local hypercohomology of F along X, —
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Xpt1. Let 7 1 Y < X be the embedding of a locally closed subset.
Then we can write the local hypercohomology as HY, (F) = H*v'F,
i.e. as the hypercohomology of the derived local cohomology sheaf
v'F € DY(ShY). Let j, : X, — X,41 < X denote the inclusion. We
may then write our Fi-term as E{? = HP 75 F.

Suppose next that X is a complex algebraic B-variety and that all X,
are closed B-stable subvarieties. Applying the above considerations to
EBxgX we find that for F € Dg(X) the equivariant hypercohomology
HY, F is the limit of a spectral sequence with Fi-term E}? = ]ngrqj;)]:.
In particular, if G € Dg(X) is another object the equivariant extensions
Homy(F,G) = HyRHom(F,G) are the limit of a spectral sequence
with Ei-term EP? = Hy iR Hom(F,G) = Hy "RHom(j: F, j\G).

~Suppose that X is a B-variety with a B-stable stratification X =
UwewXw into smooth irreducible subvarieties. Put |w| = dimX,, and
let C,, € Pg(X,) be the constant perverse sheaf C, = X, [|w|]. Let
IC, € Pp(X) denote the intersection cohomology complex of the clo-
sure of X, extended by zero to X. Let j,, : X,, = X be the inclusions
of the strata and suppose there exist isomorphisms

JoZCy = @Vnzl;,wcv 4 (*)

in Dp(X,), for all v,w € W, with suitable integers n; , defined by
these isomorphisms.

Proposition 3.4.6. Suppose we have in addition to the above assump-
tions parity vanishing, i.e. (1) Ny = 0 unless v has the same parity
as |v| + |w| and (2) Hi(X,) =0 for all w unless i is even. Then
i.) Hy induces an injection Homy(ZC,,ZC,) — Hom¢(HZZC,,, HRZC,).
i.) dimcHomy(ZC,, IC,) = Y nt nd  dimcHE(X,).

ati+j=v, zeW "z, "z,w
Proof: ii.) Consider the filtration on X given by X, = U,y p<dimx Xz-

If we calculate Homy(ZC,,ZC,) by the associated spectral sequence, we
find as F;-term

EP = M "RHom(jiIC,,j,IC,)
@|z|+p:dimX]}HZ’+qRH0m(j:ICm,jézcy) .
e9|z|—I—p:dimX]I']Fl;’Jrq’R_'I{Olrn(eainlz,x.cz. [Z]a eajni,ycz[_j])
69|z|-|'p=dimX @i,j nzz,:vn;,yHlI’;’-'_q_l_] (XZ)
By our parity assumptions this vanishes unless p + ¢ has the same
parity as |z| + |y|. In particular, our spectral sequence degenerates at
this Fi-term and ii.) follows.

i.) Also HLZC, is the limit of a spectral sequence with E;-term
EP? = H%J’qj;)ICx, and again by parity vanishing it degenerates at this
term. It is sufficient to show that any nonzero morphism f : ZC, —



22 SOERGEL

1C,[v] in Dp(X) induces for some p a nonzero morphism j, f : j,ZCo —
JyZCy[v]. Let iy : X, < X be the inclusion. We may decompose X,
into an open and a closed subset

Xpt1 = Xp & (Xp o Xp+1)-

Then we have a di'stinguished triz'mgle (43, id, u,:u*)z;) = (lxib gy, if,)', )
which says that i, ., f = 0 and j,f = 0 imply 4,f = 0. So if all j,f =0
then it f = f = 0. q.e.d.

Proof[Proposition 3.4.4]: Tt will be sufficient to (1) prove injectivity
of the map and (2) check that the Dimensions coincide on both sides,
where for a graded vector space V = ®V* we understand its Dimension
to be the polynomial DimV = Y #!dimcV*. First we check that the
preceding proposition applies in our situation, i.e. for the stratification

of X = G/B by the Bruhat cells X,, = Bw™'B/B. We need

Lemma 3.4.7. In Dp(X,) the jiZIC, decompose into the direct sum
of their perverse cohomology, i.e. j,;IC, = EB,,nZ,wCU[V] for suitable
integers n, .

Proof: In the nonequivariant situation this follows from pointwise
purity: Namely the j;ZC,, are “pure”, hence the sum of their perverse
cohomology groups.

We may reduce our equivariant situation to a nonequivariant situa-
tion as follows: First choose a finite interval I C Z such that ZC,, €
DL(X). Then we have to prove the lemma for the j:ZC, € Dg(X,).
Now choose a smooth n-acyclic free right B-space M, where n is bigger
then the length of I. Then by [BL92] we have a commutative diagram

DL(X) — DI(M x5 X)

is b Gdxjo)*

DL(X,) — DI(M x5 X,)
where the horizontal maps are fully faithful embeddings. But the na-
ture of the singularities is the same for M xz X, and X,,. Hence the
intersection cohomology complex of M xz X, is also pointwise pure
and the lemma follows. ¢.e.d.

Now we may in fact use proposition 3.4.6 to show that our map

Hg : HOHI%(IC:E,IC?}) — HOIIIS®5(HBICx, HBICy)
is an injection. So we just have to check that the Dimensions are equal.
But

DimHomy(ZC,,ZC,) = DimHom%(ZC,,ZIC,) ®c S
by proposition 3.4.6
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and

DimHOIﬂS®S(HBICI,HBZCy) == DimHomS®5(]Bm,]B%y) by

= DimHomggs(B,,B,) ®s C®c S by
DimHomg(B, ®s C,B, ®s C) ®c S by
= DimHomg(H*ZC,, H*IC,) ®c S.

But we know already from [Soe90] that
Hom%(ZC,,ZC,) = Homg(H ZC,, H*ZC,).

qg.e.d. [Proposition 3.4.4]

3.5. Compact groups. Suppose under the ABV-parametrization some
geometric parameter (Y, 7) corresponds to a representation of a com-
pact form of GG. Our basic conjecture would say that

Homjgy (ZC(Y, 1), ZC(Y',7')[n]) = 0

unless (Y, 7) = (Y, 7') and n = 0. The results of [ABV92] on the duality
between IC-data and KL-data tell us already that the above space of
homomorphisms vanishes unless (Y,7) = (Y',7'). We will verify in
addition that the isotropy group of points in Y is finite. This implies
that there are now higher selfextensions of ZC(Y, 7).

So let x € MaxZ be integral regular. Put I = {y € TGV - GV |
y*> = 1}. Clearly X(x) = I x GY/BY with the diagonal G"-action.
In [ABV92] it is shown that I decomposes into a finite number of
GV-orbits, that these orbits are all closed and that the corresponding
isotropy groups are just complexifications of maximal compact sub-
groups of real forms of GY. More precisely the real forms appearing
here are just all real forms of one inner class of real forms on GV, and
this inner class corresponds to the involution (—w,v) of our based root
system, where «y is the involution of our based root system coming from
the choosen inner class of real forms on G and w, is the longest element
of the Weyl group.

Hence if G is endowed with the inner class of real forms containing
the compact one, then v = —w, so that the corresponding inner class
of real forms on G contains the split form. In particular some com-
ponents of X (x) are isomorphic to GY/K x GY/BY where K is the
complexification of a maximal compact subgroup of a split form of GV.
Now the representations of compact forms of GG correspond just to open
G"-orbits on these G¥/K x GY/BY C X(x). And clearly the isotropy
groups of points in these open orbits are finite.
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3.6. Tempered representations. [ want to suggest a link of my basic
conjecture with the results of A. Guichardet [Gui92]. He considers an
L-packet of irreducible tempered representations and the category 7 of
all Harish-Chandra modules with composition factors only from this L-
packet. He then proves that this category 7 is equivalent to a category
S?[R] — Nil, for a suitable polynomial ring S with a suitable action
0 : R — AutcS of a suitable finite group R on it.

In the ABV-parametrization a tempered L-packet corresponds to a
collection of geometric parameters (Y, 7;) for a fixed open orbit Y C
X (x). If my basic conjecture is true, there should be an equivalence of
categories

T = Extqy X(x)/I — Nil
where the twosided ideal I is generated by all idempotents which belong
to parameters other than the (Y, 7;). Now restriction gives us a map

Extay X (x) — ExteyY

which annihilates I, and by 2.4 the ring ExtgyY has the form S7[R]. 1
didn’t check however that these S, o, R are indeed those of Guichardet.

3.7. The center and geometry. To each additive category A we
may associate a commutative ring Z(A), the center of A, as follows:
Z(A) consists just of all natural transformations of the identity functor
id : A — Atoitself, i.e. Z(A) = End(id). Let R be a commutative ring.
By an “action of R on A” we mean a ring homomorphism R — Z(A).

Now consider our basic conjecture. On the representation theoretic
side of the conjectured equivalence there acts certainly the completion
Z} at x of the center Z C U — mod — U. I want to explain what
this should correspond to on the geometric side. Remark that the
construction of X () gives us a GV-equivariant map X (x) — F(O(x)).
This leads to a morphism

v (F(O(x))) — Extay X (x)

of the equivariant cohomology ring of F(O(x)) to our geometric ex-
tension algebra, and this morphism has central image. It should cor-
respond to the action of ZQ on the representation theoretic side of
the conjectured equivalence via the morphism Hgy (F(O(x))) — Zy
defined as the composition

o (FOW) 2 B (0() @ 1 (BGY;©) 2 M W (spym & 7

which we will now explain step by step.

1. This is clear since O(x) — F(O(x)) is a fibration with affine
spaces as fibres.



LANGLANDS’ PHILOSOPHY AND KOSZUL DUALITY 25

2. We choose A € O(x) N LieT" and let G be the isotropy group of
A. Then this is the induction equivalence.

3. The Weyl group of GY is the stabilizer W) of A in W. We let
S = S(LieT) be the regular functions on the Lie algebra LieT"
of the maximal torus 7V C GY. For any linear complex algebraic
group the cohomology ring of its classifying space can be identified
with the regular functions on the Lie algebra of a maximal torus
which are invariant under the Weyl group.

4. We let Sy be the completion of S at the origin of LieT".

5. We will rather construct the inverse morphism. The Harish-
Chandra homomorphism & : Z — S, £(Z) = S certainly induces
a morphism between the respective completions ZQ — S If we
compose with the isomorphism S{ — S{* defined by translation,
we get a morphism Z7 — Sg'. By some invariant theory this fac-
torizes over an isomorphism Z} — (Sg')"». The inverse of this
isomorphism is the last map of our above composition.

4. FURTHER CONJECTURES

To provide additional motivation for my basic conjecture, I want to
explain how it should be related to character duality [Vog82, ABV92].
Let me cite from [ABV92]. “It is natural to look for a functorial rela-
tionship between a category of representations of strong real forms of
(G, and one of our geometric categories. We do not know what form
such a relationship should take, or how one may hope to establish it
directly.” I conjecture that the relationship in question should take the
form of Koszul duality. However I have no idea how to establish such
a relationship directly. I want now to give more details and start by
explaining some Koszul duality.

4.1. Generalities on Koszul duality. Let A = @;>0A4; be a graded
C-algebra with Ag = @, Cl,,, where W is a suitable finite parameter
set. Let A-mod be the category of graded A-modules M = &;M;. We
define M (1) € A-mod by (M(1)); = M;_;. For M, N € A-mod we let
hom (M, N) (resp. Homj4 (M, N)) denote morphisms in A-mod (resp.
A-Mod). So hom4 (M, N) = {f € Homy(M, N) | f(M;) C N;}.

Let us form the bounded from above derived category D = D~ (A-mod).
It comes with three automorphisms [1] “shift of a complex”, (1) “shift
of the grading on all terms of a complex” and (1/2) = [-1](—1). The
strange notation comes from the fact that later (1/2) should correspond
to a “root of the Tate twist”. We will denote morphisms in D by homp.

We consider two t-structures on D. The “representation theoretic”
t-structure (D=%" D=%") is the obvious t-structure with heart A-mod.
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The “geometric” t-structure (D=%9, D=99) is its “Koszul dual”. More
precisely, D=%9 (resp. D="9) consists of all complexes which are quasi-
isomorphic to complexes ... — X¢ — Xt — .. of projective objects
X? of A-mod such that X* is generated by its parts of degree < —i
(resp. > —i).

The twists (1) (resp. (1/2)) respect the representation theoretic
(resp. geometric) t-structure. Up to twist the simple objects in the
hearts of the respective t-structures are the L, = Agl, (resp. the
L* = Al,). Let D, (resp. D,) be the full triangulated subcategories
of D generated by the L, (resp. L”) and their twists. The respective
t-structures on D induce t-structures (D;°, D;°) and (D;°, D;°) on D,
and D, respectively.

4.2. Application to our situation. Let us now go back to the situ-
ation of our basic conjecture. There we conjectured an equivalence of
categories

P M(G(R,9)), = Extey (X(x) — Nil.

5E€SE
Let us abreviate the left hand side category by HCh and put G} = G,
X(x) = X. Let {L,}zew and {L£"},ew represent the simple isomor-
phism classes in HCh and Pg(X) respectively, where the indices are
choosen in such a way that objects with the same index correspond to
each other under the ABV-parametrization (a) <> (b) from the begin-
ning. In particular WV is not at all the Weyl group. Finally put A =
ExtgX = Endg(®L”). This is a graded C-algebra and Ay = @;enCl,
in an obvious way. The basic conjecture predicts an equivalence of
categories HCh = A — Nil.

Now construct to A as explained before the triangulated category

D = D~ (A-mod) with its twists [1], (1), (1/2) and the two t-structures
giving rise to two full triangulated subcategories

D, — D <> D,.

Conjecture 4.2.1. There exists a t-eract functor v, : D, — D°(HCh)
together with canonical isomorphisms v, (M (1)) = v, M such that
i.) Homps(yeny (v, M, v, N) = @;homp (M, N(i)) for all M, N € D,.
ii.) v, Ly &2 L, Yr €W.

Conjecture 4.2.2. There exists a t-ezact functor v, : Dy — Dg(X)
together with canonical isomorphisms vy(M(1/2)) = vgM such that

i.) Homg (v, M, v,N) = @;homp (M, N(i/2)) for all M,N € D,.

i.) vy L* =2 LT Yz e W.

The conjectures mean that the categories D, and D, should be
“mixed” or “graded” versions of D’(HCh) and Dg(X) respectively, and
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the functors v,, v, just “forget the grading”. The next conjectures
stipulate the existence of graded versions for “standard objects”. Let
me explain what I mean. Certainly any ZC(Y,7) is the unique sim-
ple quotient of the zero’th perverse cohomology of M?* = i7[dimY],
where 7 : Y < X is the inclusion of a G-orbit and 7 an irreducible
G-equivariant local system on Y, hence 7 € Dg(Y'). On the other hand
any L, is the socle of a standard object N, € HCh induced from an
irreducible tempered representation.

Conjecture 4.2.3. For all x € W there emists M* € D, such that
v M* = MT and
homp(M?, L") # 0. This M® is unique up to isomorphism.

Conjecture 4.2.4. For all x € W there exists N, € D, such that
v, Ny =2 N, and
homp(N,, L*) # 0. This N, is unique up to isomorphism.

The essential ingredient we would need to get the character duality
of Vogan’s is the following

Conjecture 4.2.5. We have

homp (M*(i/2), Ny(n)) = { 0 else.y

Now comes character duality. We make the Grothendieck groups
[D,] and [D,] into Z[t,t '-modules by the prescription ¢[M] = [M(1)]
for M € D,, respectively ¢t[M]| = —[M(1/2)] = [M(—1)] for M € D,.
We obtain a Z[t,t™']-bilinear pairing [D,] x [D,] — Z[t,t™'] between
these two Grothendieck groups by the prescription

(M,N) = (M,N) = (—1)"dimchomp (M, N[v](—i))t"

%)

Certainly [D,] is a free Z[t, t™']-module with two bases {[L*]},eyv and
{[M*]}zew, which we call the simple and the standard basis. Also [D,]
is a free Z[t, t']-module with “simple” basis {[L;]},c)» and “standard”
basis {[ V] }zew- It is clear from the definitions that (L*, L,) = d,, and
if we believe conjecture 4.2.5 we find as well (M*, N,)) = d,,,.

Let now P, be the transition matrix from the simple basis {[L.]|} to
the standard basis {[N,]}. So P, is a W x W-matrix with coefficients
(P.)zy € Z]t,t7'] given by the equation

[Ny] = Z(Pr)x,y[Lm]-

T
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Similarily we define the geometric base change matrix P, by the equa-
tion

(M7= (Py)uslL']

T

in [D,]. Now our formulas give us

6zay = <Mz’ Ny>

= 2uo(Bo)us(Pr)ay (L, Lg)
= (Pg Pr)z,y

where the upper index T transposes the matrix. In other words, we
find the equation

Tp _
PIp, =1

of W x W-matrices with coefficients in Z[t, 7]

This equation is essentially Vogan’s character duality. To see this,
write (Pr)gy = > my(v,y;i)t" so that [N,] = 37 m.(2,y;0)[La(i)].
Applying v, to both sides, we see that if we set t = 1 in P, then P,(1)
is just the representation theoretic multiplicity matrix, (P.(1))s, =
m,(x,y) in the notation of [ABV92], (1.21). On the other hand, write
(Pl = 3 mylu, 2 )t so that [M7] = 3, my(u, 2 1)(—1)[L*(i/2)]
Applying v, to both sides, we see that if we set ¢ = —1 in P, then
P,(—1) is just the intersection cohomology matrix, (P,(—1))4,, = my(u, 2)
in the notation of [ABV92], (1.22)(d).

To finish, we have to assume some parity vanishing. More precisely,
for x € W let d(z) denote the dimension of the corresponding G-orbit
on X.

Conjecture 4.2.6. We have my(u,z;j) = 0 unless j has the same
parity as d(u) + d(z).

From this we can deduce (P,(1)),. = (=1){W+dE) (P, (-1)),, =
(—=1)4+d) (4, 2) and thus specializing our equation P/P. =1 to
t =1 gives precisely Vogan’s character duality

Z(—l)d(“)”(z)mg (u, 2)my(u, ) =8, 4

u

as formulated in [ABV92], Corollary 1.25. a).

4.3. Motivation. The first of these conjectures is almost our basic
conjecture. For the other conjectures there is very little hard evidence.
At least for tori everything works, and for complex groups one can find
results in the spirit of the above conjectures in [BGS96].
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