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Abstract. We study a category of representations over a semisim-
ple Lie algebra, which contains category O as well as the so-called
Whittaker modules, and prove a generalization of the Kazhdan-
Lusztig conjectures in this context.

1. Introduction

Let g ⊃ b ⊃ n be a semisimple complex Lie algebra, a Borel sub-
algebra, and its nilradical. Let U(g) = U ⊃ Z be the enveloping
algebra of g and its center. Let χ ⊂ Z be a maximal ideal and
f ∈ (n/[n, n])∗ =: chn a character of n, giving rise to a one-dimensional
n-module Cf . By [McD85] the g-module

Y (χ, f) = U/χU ⊗U(n) Cf

is of finite length. For any ring A let MaxA denote its set of maximal
ideals. We are interested in the following

Problem 1.1. Compute the composition factors of Y (χ, f) with their
multiplicities, for all χ ∈ MaxZ and f ∈ chn.

We will solve this problem completely for integral χ and partially for
other χ as well. Let us first consider the two extreme cases. Let h ⊂ b

be a Cartan subalgebra and h∗ ⊃ R ⊃ R+ ⊃ ∆ its dual, the roots, the
roots of b and the simple roots. So g = ⊕α∈R gα ⊕ h. Call f ∈ chn

regular if and only if f |gα
6= 0 for all α ∈ ∆. For regular f our problem

is solved completely by the following theorem of Kostant [Kos78], (see
also [MS95] for a geometric proof).

Theorem 1.2. If f ∈ chn is regular, then Y (χ, f) is irreducible for all
χ ∈ MaxZ.

These irreducible Y (χ, f) are the so-called Whittaker modules. In
the other extreme, i.e. for f = 0, we have (see 2.5)
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Proposition 1.3. If χ ∈ MaxZ is regular, then Y (χ, 0) is the direct
sum of all Verma modules for g ⊃ b with central character χ. For χ
singular Y (χ, 0) still has a Verma flag such that each Verma module
with central character χ appears with the same multiplicity and the
length of the flag is the cardinality of the Weyl group.

Thus for f = 0 our problem is solved by the Kazhdan-Lusztig con-
jectures, which describe the composition series of Verma modules. The
general case will be a mixture of these two. We will partially solve it
by reducing to the Kazhdan-Lusztig conjectures. To explain how this
is done, let us put our problem in a different perspective.

Consider the full subcategoryN = N (g, b) ⊂ g-mod of all g-modules
M which are (1) finitely generated over g, (2) locally finite over n and
(3) locally finite over Z. By [McD85] all objects of N have finite
length. From a geometric perspective [MS95] this is evident, they just
correspond to holonomic D-modules. The action of Z decomposes N
into a direct sumN = ⊕χN (χ) where χ runs over MaxZ. The action of
n also decomposes N into a direct sum N = ⊕fN (f) over all f ∈ chn,
where

N (f) = {M ∈ N | X − f(X) acts locally nilpotently on M, ∀X ∈ n}.

In total, we have N = ⊕χ,fN (χ, f) with N (χ, f) = N (χ) ∩ N (f) and
all these categories are stable under subquotients and extensions in g-
mod. Certainly Y (χ, f) ∈ N (χ, f). To solve our problem, we have to
study the categories N (χ, f).

Again the two extreme cases are more or less well understood. For
regular f there is an equivalence of categories

N (f) ∼= {M ∈ Z-mod | dimCM <∞}

as was shown by Kostant [Kos78]. For f = 0 our N (f) = N (0) consists
just of all finite length g-modules with only highest weight modules as
composition factors. For general f , the situation was investigated by
McDowell [McD85]. In fact, McDowell’s results as well as Kostant’s
results cited above admit very natural geometric proofs if one uses
localization. We worked this out in our joint paper [MS95].

Let (W,S) be the Coxeter system of g ⊂ b. There is a bijection
∆

∼
→ S, α 7→ sα. Put ρ = 1

2

∑
α∈R+ α as usual and set w · λ = w(λ +

ρ)− ρ for all w ∈ W, λ ∈ h∗. Let the Harish-Chandra homomorphism
ξ♯ : Z → S = S(h) be normalized by the condition ξ♯(z)− z ∈ Un. For
the corresponding ξ : h∗ → MaxZ we have ξ(λ) = ξ(µ)⇔W·λ =W·µ.
For f ∈ chn put ∆f = {α ∈ ∆ | f |gα

6= 0}, Sf = {sα | α ∈ ∆f} and
Wf = 〈Sf〉 ⊂ W.



INDUCING WHITTAKER MODULES 3

Now for any λ ∈ h∗, f ∈ chn one constructs a “standard module”
M(λ, f) ∈ N (ξ(λ), f). It has a unique simple quotient L(λ, f) and
M(λ, f) = M(µ, f) if and only if Wf · λ = Wf · µ. Finally any simple
object L ∈ N (f) has the form L ∼= L(λ, f) for a unique λ ∈ h∗/(Wf ·).
All this is due to McDowell. The definitions are set up in such a way
that M(λ, 0) is just the usual Verma module M(λ) = U ⊗U(b) Cλ.
For simplicity we state the analog of our first Proposition 1.3 only for
regular χ. The general case is contained in Corollary 2.5.

Proposition 1.4. Suppose χ ∈ MaxZ is regular. Then Y (χ, f) ∼=⊕
λM(λ, f) where λ runs over ξ−1(χ)/(Wf ·).

In this way our original problem of computing the composition series
of the Y (χ, f) reduces to the following

Problem 1.5. Compute the multiplicities [M(λ, f) : L(µ, f)] for all
λ, µ ∈ h∗.

Let us just explain how we solve this problem for regular integral
central character χ. Let µ ∈ h∗ be integral dominant (i.e. 〈µ+ρ, α∨〉 ∈
Z≥0 for all α ∈ R+) and such that Wf = {x ∈ W | x · µ = µ}. Let
λ ∈ h∗ be integral dominant such that χ = ξ(λ). At the end of Section
5 we establish an equivalence of categories

N (χ, f) ∼= N (ξ(µ), 0)

under which M(x · λ, f) corresponds to M(x−1 · µ). This reduces our
problem to the Kazhdan-Lusztig conjectures, which by now are a the-
orem.

2. Standard modules and simple modules

Remember f ∈ chn determines a subset ∆f = {α ∈ ∆ | f |gα
6= 0}

of simple roots. Let pf ⊂ g be the corresponding parabolic subalge-
bra containing b and pf = gf ⊕ nf its adh-stable Levi decomposition.
Remark that gf is not semisimple in general, but only reductive. For
example ∆0 = ∅, p0 = b, g0 = h and n0 = n. Let U(gf ) = Uf ⊃ Zf

be the enveloping algebra of gf and its center. Put bf = b ∩ gf and

let nf ⊂ bf be its nilradical, so that n = nf ⊕ nf . Let ξ♯
f : Zf → S be

the Harish-Chandra homomorphism of gf , normalized as before by the

condition ξ♯
f(z) − z ∈ Ufnf . It induces on the maximal ideals a map

ξf : h∗ → MaxZf . For any ideal I ⊂ Zf define the gf -module

Yf(I, f) = Uf/IUf ⊗U(nf ) Cf .
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If I is a maximal ideal, then this is an irreducible gf -module, since the
restriction of f to nf is nondegenerate by definition of nf . We define

M(λ, f) = U ⊗U(pf ) Yf(ξf(λ), f)

where we extend the gf -action on Yf to an action of pf letting nf act
by zero.

Proposition 2.1. 1. We have M(λ, f) ∼= M(µ, f) if and only if
Wf · λ =Wf · µ.

2. M(λ, f) has a unique simple quotient L(λ, f). We have L(λ, f) ∼=
L(µ, f) if and only if Wf · λ =Wf · µ.

3. AnnUM(λ, f) = ξ(λ)U.

Proof. All this is in fact contained in [McD85] and, from a geometric
point of view, in [MS95]. However for us it is not a great detour,
so we will give complete arguments. We start with 3. This is easily
reduced to the case of Verma modules by some general considerations:
Let a → b be a morphism of Lie algebras. For any b-module M let
resa

bM denote the a-module obtained by restriction. For any a-module
N let indb

aN denote the b-module indb
aN = U(b) ⊗U(a) N obtained by

induction. For any module M over a Lie algebra let AnnM denote its
annihilator in the enveloping algebra.

Lemma 2.2. 1. Let M,M ′ be b-modules. Then from the inclusion
AnnM ⊂ AnnM ′ follows the inclusion Ann(resa

bM) ⊂ Ann(resa
bM

′).
2. Let N,N ′ be a-modules. Then from the inclusion AnnN ⊂ AnnN ′

follows the inclusion Ann(indb
aN) ⊂ Ann(indb

aN
′).

Proof. Omitted.

From this we deduce part 3 of the proposition, as follows: Let Mf (λ)
denote the Verma module with highest weight λ for gf . Then

AnnUf
Yf(ξf(λ), f) = ξf(λ)Uf = AnnUf

Mf (λ)

by a theorem of Kostant [Kos78] and of Duflo [Dix74] respectively.
Now we apply part 1 of our lemma with the surjection pf ։ gf and
then part 2 with the inclusion pf →֒ g and deduce AnnUM(λ, f) =
AnnU(U ⊗U(pf ) Mf(λ)). But certainly U ⊗U(pf ) Mf (λ) = M(λ), hence
AnnUM(λ, f) = AnnUM(λ) = Uξ(λ) by the theorem of Duflo once
again, and 3 is proved.

Next we prove part 1 of the proposition. Let us decompose h =
hf ⊕ hf with hf = h ∩ [gf , gf ] and hf = ∩α∈∆f

kerα the centralizer of
f alias the center of gf . The action of Wf as well as the dot-action
of Wf on h∗ respect this decomposition, and they are trivial on (hf)∗.
Remark that a priori there are two dot-actions of Wf on h∗, fixing the
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halfsum of positive roots of g and of gf respectively, but one checks
that they coincide. Now it is clear thatWf ·λ =Wf ·µ implies ξf(λ) =
ξf(µ) and hence M(λ, f) = M(µ, f). To prove the reverse implication,
denote for any λ ∈ h∗ by λf ∈ (hf)∗ its restriction to hf . Clearly
hf acts via λf on Yf(ξf(λ), f). Hence M(λ, f) decomposes under hf

into weight spaces M(λ, f)µ with µ ∈ λf −
∑

α∈R+ Z≥0α
f . Clearly all

the M(λ, f)µ are gf -submodules, and M(λ, f)λf = Yf(ξf(λ), f). Thus
M(λ, f) ∼= M(µ, f) implies ξf(λ) = ξf(µ), hence Wf · λ = Wf · µ and
we proved 1.

Finally we go for 2. We have to show thatM(λ, f) has a unique max-
imal proper submodule. But any submodule N ⊂ M(λ, f) is the sum
of its hf -weight spaces N = ⊕Nµ, and these are gf -submodules of the
M(λ, f)µ. Since M(λ, f)λf is irreducible over gf and generates M(λ, f)
over g, any proper submodule has to be contained in ⊕µ6=λfM(λ, f)µ.
Hence the sum of all proper submodules is itself a proper submodule,
necessarily the biggest one. Thus M(λ, f) has a unique simple quotient
L(λ, f). Again L(λ, f) ∼= L(µ, f) implies λf = µf and L(λ, f)λf

∼=
L(µ, f)λf , hence ξf(λ) = ξf(µ) and finally Wf · λ =Wf · µ.

Next we establish Proposition 1.4 from the introduction. Let us define
the “relative Harish-Chandra homomorphism” θ♯ : Z → Zf by the

condition ξ♯
fθ

♯ = ξ♯ : Z → S.

Lemma 2.3. For all z ∈ Z we have θ♯(z)− z ∈ Unf .

Proof. Consider Uf as a pf -module with nf acting by zero and form the
induced module U ⊗U(pf ) Uf . Then AnnU(1⊗ 1) = Unf and 1⊗ Uf ⊂

U ⊗U(pf )Uf is just the space of invariants of hf . This means that there

is a map θ̃ : Z → Uf such that z(1⊗1) = 1⊗ θ̃(z) for all z ∈ Z, and we

see easily that this defines an algebra homomorphism θ̃ : Z → Zf and

that furthermore θ̃(z)−z ∈ Unf for all z ∈ Z. From there we find that

ξ♯
f θ̃ : Z → S is an algebra homomorphism such that ξ♯

f θ̃(z) − z ∈ Un,

thus θ♯
f θ̃ = ξ♯, thus θ♯ = θ̃ and the Lemma is proved.

Proposition 2.4. Let I ⊂ Z be an ideal. We have an isomorphism

Y (I, f) ∼= U ⊗U(pf ) Yf(θ
♯(I)Zf , f).

Proof. Recall that we defined Y (I, f) = U/IU ⊗U(n) Cf . Certainly this
object represents the functor

U/IU-mod → C-mod
M 7→ Homn(Cf ,M).

Since θ♯(z) − z ∈ Unf , the right hand side of our future isomorphism
is annihilated by I also. It follows furthermore that for any M ∈
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U/IU-mod we have θ♯(I)Mnf

= 0. Thus for any M ∈ U/IU-mod we
have

Homn(Cf ,M) = Homnf
(Cf ,M

nf

)

= Homgf
(Yf(θ

♯(I)Zf , f), Mnf

)
= Hompf

(Yf(θ
♯(I)Zf , f), M)

= Homg(U ⊗U(pf ) Yf(θ
♯(I)Zf , f),M).

Our isomorphism follows now from the fact that both sides share a
universal property, i.e. represent the same functor.

Corollary 2.5. 1. For all λ ∈ h∗ the module Y (ξ(λ), f) admits a
filtration with subquotients M(x ·λ, f), where x runs overWf \W.

2. If λ is regular, then we have even a decomposition into a direct
sum Y (ξ(λ), f) ∼=

⊕
xM(x · λ, f) with x running our Wf \W.

Proof. We start with some generalities. For any commutative ring A
let A-modfl be the category of finite length A-modules and [A-modfl]
its Grothendieck group. Any finite flat ring extension j : A → B
gives a homomorphism [j] : [A-modfl]→ [B-modfl], [M ] 7→ [B ⊗A M ].
Remark that in case M = A/I we have B ⊗A M ∼= B/BI. We remark
further that [A-modfl] can be identified with the free abelian group
ZMaxA over MaxA via m 7→ [A/m], so we can view [j] as a morphism
[j] : ZMaxA→ ZMaxB. Now all our ring extensions Z ⊂ Zf ⊂ S given

by ϑ♯, ξ♯
f and ξ♯ are finite and flat. Let us identify as usual h∗ ∼

→ MaxS
via λ 7→ 〈λ〉. Now we know from invariant theory, say, that for every
λ ∈ h∗ we have in ZMaxS the equalities

[ξ♯]ξ(λ) =
∑

x∈W

〈x · λ〉

and

[ξ♯
f ]ξf(λ) =

∑

x∈Wf

〈x · λ〉.

Since [ξ♯] = [ξ♯
f ]◦ [ϑ

♯] we deduce [ϑ♯]ξ(λ) =
∑

x∈Wf\W
ξf(x ·λ). In other

words, Zf/ϑ
♯(ξ(λ))Zf admits a filtration with subquotients Zf/ξf(x·λ)

where x runs over Wf \ W. Certainly this is in fact a direct sum de-
composition when the ξf(x ·λ) are pairwise different, e.g. for λ regular.
Now Uf is a free Zf -module, and we deduce that Uf/ϑ

♯(ξ(λ))Uf ad-
mits a filtration with subquotients Uf/ξf(x · λ)Uf , x ∈ Wf \W, which
splits for regular λ to give a direct sum decomposition. But Uf is
known to be even a free right module over Z⊗U(nf ), thus we find that
Yf(ϑ

♯(ξ(λ))Zf , f) admits a filtration with subquotients Yf(ξf(x ·λ), f),
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x ∈ Wf \ W, which splits for regular λ to give a direct sum decom-
position. We now apply U⊗U(pf ) and the Corollary follows from the
Proposition.

We now reprove McDowell’s results.

Theorem 2.6. 1. Any M ∈ N is of finite length.
2. The L(λ, f) with λ ∈ h∗/(Wf ·) represent the isomorphism classes

of simple objects in N (f).

Proof. We start with 1. Put I = AnnZM . By definition of N this is an
ideal of finite codimension in Z. Without restriction of generality we
can assume I ∈ MaxZ. Using the definition of N once more we find
a finite dimensional n-stable subspace E ⊂ M that generates M as a
g-module. Thus M is a quotient of U/UI ⊗U(n) E and we may restrict
our attention to such M . We can filter E by n-submodules with one-
dimensional subquotients. This way we reduce our problem to showing
that the Y (I, f) are of finite length. Using Corollary 2.5 we further
reduce to showing that all M(λ, f) are of finite length. By [Kos78] we
know that for any finite dimensional gf -module E and η ∈ MaxZf the
gf -module E⊗Yf(η, f) is of finite length and has its composition factors
among the Yf(η

′, f) with η′ ∈ MaxZf . Let n̄f ⊂ g be the adh-stable
complement of pf . Certainly

M(λ, f) ∼= U(n̄f )⊗C Yf(ξf(λ), f)

as gf -modules, and we deduce that all M(λ, f)µ with µ ∈ (hf)∗ are
finite length modules over gf with their composition factors among the
Yf(η

′, f).
Now any simple subquotient L of M(λ, f) has to have a “highest”

weight µ ∈ (hf)∗ such that Lµ 6= 0 and nfLµ = 0. We then find an η ∈
MaxZf such that Homgf

(Yf(η, f), Lµ) 6= 0, thus Homg(M(ν, f), L) 6= 0
if ν ∈ h∗ is such that ξf(ν) = η, thus L ∼= L(ν, f) since L is simple.
Modulo the things we saw already this proves 2.

All simple subquotients of M(λ, f) have the same central character,
hence are among the L(x ·λ, f), x ∈ W by Proposition 2.1. We deduce
that the length of M(λ, f) is bounded by the sum of the lengths of the
gf -modules M(λ, f)(x·λ)f , x ∈ W.

3. Equivalences between categories of Harish-Chandra

bimodules and of representations

In this section we recall results of [BG80] in a form suitable for our
purposes. Let for the moment g be any complex Lie algebra and U =
U(g) its enveloping algebra. On any U -bimodule X ∈ U -mod-U we
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can define a third g-action ad : g→ EndCX by the formula (adA)x =
Ax− xA for any A ∈ g, x ∈ X. This is called the adjoint action on a
bimodule. We get a functor U -mod-U → g-mod, M 7→ Mad considering
any U -bimodule as a representation of g for the adjoint action. For
M,N ∈ g-mod we make HomC(M,N) into a U -bimodule in the obvious
way and consider on M ⊗ N the standard g-module structure. For
M ∈ g-mod, X ∈ U -mod-U we define M ⊗ X ∈ U -mod-U by the
prescriptions A(m⊗x) = (Am)⊗x+m⊗ (Ax), (m⊗x)A = m⊗ (xA)
for all A ∈ g, m ∈M, x ∈ X. With these definitions we find that

1. For any N,M,E ∈ g-mod the canonical isomorphism

HomC(E,HomC(M,N))
∼
→ HomC(E ⊗M,N)

induces an isomorphism

Homg(E,HomC(M,N)ad)
∼
→ Homg(E ⊗M,N).

2. Consider U as an object of U -mod-U . For any E ∈ g-mod and
X ∈ U -mod-U we obtain a canonical isomorphism

HomU−U(E ⊗ U,X)→ Homg(E,X
ad)

by composing a morphism E ⊗ U → X with the obvious map
E → E ⊗ U, e 7→ e⊗ 1.

For any X ∈ U -mod-U let Xadf ⊂ X denote the subspace of adg-
finite vectors, Xadf = {x ∈ X | There exists a finite dimensional adg-
stable subspace of X containing x}. For M ∈ g-mod the subspace
(EndCM)adf ⊂ EndCM is actually a subring.

If g is finite dimensional, Xadf ⊂ X is a sub-U -bimodule. Let us
define the category

H = {X ∈ U -mod-U | X = Xadf and X is finitely generated}.

It is of no importance here whether X is supposed to be finitely gen-
erated as left module, right module, or bimodule: For bimodules con-
sisting of adg-finite vectors all these properties are equivalent.

Let us return now to our semisimple Lie algebra g. Let us denote by
F(g) = F the category of all finite dimensional representations of g.
To M ∈ g-mod we associate two full subcategories of g-mod:

1. The category 〈F ⊗M〉 consisting of all subquotients of objects of
the form E ⊗M with E ∈ F .

2. The category coker(F⊗M) consisting of allN ∈ g-mod that admit
a two-step resolution E ⊗M → F ⊗M ։ N with E,F ∈ F .

On the other hand define for any ideal I ⊂ Z the category

H(I) = {X ∈ H | XI = 0}.
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We are now ready to state the result of [BG80] in the form in which
we need it.

Theorem 3.1. Let I ⊂ Z be an ideal and M ∈ g-mod a representation
with IM = 0. Suppose that

1. The multiplication U → EndCM induces an isomorphism U/IU
∼
→

(EndCM)adf and
2. M is a projective object in 〈F ⊗M〉.

Then the functor ⊗UM : U -mod-U → g-mod induces an equivalence of
categories

H(I)
∼
→ coker(F ⊗M).

Proof. From the preceding considerations it is clear that for all E ∈
F , X ∈ H(I) we have

HomU−U(E ⊗ U/IU,X) ∼= Homg(E,X
ad).

Whence the E⊗U/IU with E ∈ F are projective in H(I) and generate
H(I). Since ⊗UM is right exact, we see that it induces indeed a functor
from H(I) to coker(F ⊗M).

Next we claim that for all E,F ∈ F the functor ⊗UM induces a
bijection

HomU−U(E ⊗ U/IU, F ⊗ U/IU)→ Homg(E ⊗M,F ⊗M).

To see this, remark first that for any three vectorspaces V,W, F with
dimF < ∞ there is a canonical isomorphism HomC(V, F ⊗ W ) ∼=
HomC(F ∗⊗ V,W ). This is compatible with all our actions, so we need
only prove our displayed bijection in case F = C. But now we iden-
tified the left hand side with Homg(E, (U/IU)ad) and the right hand
side with Homg(E, (EndCM)ad) and the claim follows from assumption
1.

Remark next that from assumption 2 actually follows that all E⊗M
with E ∈ F are projectives in 〈F ⊗M〉. Indeed, Homg(E ⊗M,N) =
Homg(M,E∗ ⊗N) is an exact functor in N ∈ 〈F ⊗M〉. So we proved
that our functor goes from H(I) to 〈F ⊗ M〉, is fully faithful on a
system of projective generators of H(I) and maps those to projective
objects in 〈F ⊗M〉. The theorem now follows by standard arguments,
see for example [BG80], 5.10.

4. Action of the center

Let g for this section be any reductive complex Lie algebra, h ⊂ g a
Cartan subalgebra. Let S = S(h) be the symmetric algebra over h and

Ŝ its completion at the maximal ideal generated by h. This is acted
upon by the Weyl group W and we consider the invariants ŜW .
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Let M =M(g) be the category of all representations of g that are
locally finite over the center Z of U = U(g). If E ∈ g-mod is finite
dimensional and M ∈ M, then E ⊗ M ∈ M. Let idM : M → M
be the identity functor. In this section we are going to define a ring
homomorphism ϑ : ŜW → End(idM). This gives rise, for everyM ∈M,

to a ring homomorphism ϑM : ŜW → EndgM and we will prove:

Theorem 4.1. Let E ∈ g-mod be semisimple and finite dimensional,
M ∈ M arbitrary, s ∈ ŜW . Then idE ⊗ ϑM (s) = ϑE⊗M(s) as endo-
morphisms of E ⊗M .

Remark 4.2. Since g was only supposed reductive, there may be finite
dimensional representations E that are not semisimple.

We first construct ϑ and then prove the theorem. Certainly M =
×χ∈MaxZMχ where

Mχ = {M ∈ g-mod | ∀v ∈M ∃n > 0 such that χnv = 0}.

The notationM = ×χMχ can be spelled out as follows: For any M ∈
M let Mχ ⊂ M be the maximal submodule contained in Mχ. Then
M = ⊕χMχ and furthermore Homg(M,M ′) = 0 if M ∈ Mχ,M

′ ∈
Mχ′ and χ 6= χ′. Certainly the completion Z∧

χ of Z at χ acts on Mχ.
Now we have our bijection h∗ → MaxS, λ 7→ 〈λ〉. We let S∧

λ denote

the completion of S at 〈λ〉, so that Ŝ = S∧
0 . The Harish-Chandra

homomorphism ξ♯ : Z → S induces an inclusion ξ♯ : Z∧
ξ(λ) →֒ S∧

λ for
every λ ∈ h∗. Then translation by λ induces an isomorphism Tλ :
S∧

λ

∼
→ Ŝ. It is clear that ŜW lies in the image of the composition

Tλ ◦ ξ♯ : Z∧
ξ(λ) →֒ Ŝ, thus we get an inclusion ϑλ : ŜW →֒ Z∧

ξ(λ). It is

clear as well that this inclusion depends only on ξ(λ), not on λ itself,
so for any χ ∈ MaxZ we defined an inclusion

ϑχ : ŜW →֒ Z∧
χ .

Now for anyM ∈Mχ we define ϑM : ŜW → EndgM by the prescription
that ϑM(s) should be multiplication with ϑχ(s), and then define ϑM

for arbitrary M ∈M = ×χMχ in the obvious way. This completes the
construction of ϑ. Remark that for more convenience in other parts of
our paper we define the Harish-Chandra homomorphism ξ♯ : Z → S in
such a way that it actually depends on the choice of a Borel subalgebra
of g containing h. However it is clear that ϑ does not depend on this
choice.

Proof [Theorem. .] Any M ∈ M is a quotient of a (possibly infinite)
direct sum of objects of the form U/χnU , χ ∈ MaxZ. Thus we only
need to prove the theorem for all M = U/χnU . Now put M i(λ) =
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U ⊗U(b) S/〈λ〉
i and ξi(λ) = AnnZM

i(λ). The system of all ξi(λ) is
cofinal to the system of all (ξ(λ))n. Thus we only need to prove the
theorem for M = U/ξi(λ)U . In [Soe86] it is shown that U/ξi(λ)U acts
faithfully on M i(λ). Hence U/ξi(λ)U injects into an (infinite) direct
product of copies of M i(λ). Thus we only need to show the theorem
for M = M i(λ).

Consider more generally any M ∈ Õ = {M ∈ g-mod |M is finitely
generated over g and locally finite over b}. (This category Õ coincides
with our N (0), but we won’t use this fact.) The “nilpotent part of the

h-action” gives rise to an action of Ŝ on M to be denoted n = nM :
Ŝ → EndgM . This is just the ϑ constructed above when we consider
M as a module over the reductive Lie algebra h. More explicitely we
decompose M into generalized weight spaces under the action of h,
M = ⊕µ∈h∗Mµ, and define n(H)(m) = (H − µ(H))m for any µ ∈ h∗,
m ∈Mµ, H ∈ h. For all λ, i the diagram

ŜW ϑ
→ EndgM

i(λ)
↓ ‖

Ŝ
n
→ EndgM

i(λ)

commutes, as one sees by comparing the actions of n(s) and ϑ(s) on

the highest weight space M i(λ)λ, for s ∈ ŜW . On the other hand it

is clear that for M ∈ Õ , s ∈ Ŝ we have idE ⊗ nM (s) = nE⊗M(s) :
E ⊗M → E ⊗M , since E is semisimple over g or, equivalently, over
h. Now for generic λ ∈ h∗ we have an isomorphism

E ⊗M i(λ) ∼=
⊕

ν∈P (E)

M i(λ+ ν)

where P (E) ⊂ h∗ is the multiset of weights of E. Indeed the tensor
identity gives us an isomorphism E ⊗M i(λ) ∼= U ⊗U(b) (E ⊗ S/〈λ〉i)
and then a filtration of E as a b-module with subquotients the weight
spaces Eν induces a filtration of the g-module E⊗M i(λ) with subquo-
tients the U ⊗U(b) (Eν ⊗ S/〈λ〉i) ∼= Eν ⊗M i(λ+ ν). Since λ is generic,
these subquotients have pairwise distinct central character, whence the
filtration splits step by step to give the desired direct sum decomposi-
tion. Hence for generic λ we have in Endg(E ⊗M i(λ)) the equalities
(abbreviating M i(λ) = M)

idE ⊗ ϑM (s) = idE ⊗ nM(s) = nE⊗M(s) = ϑE⊗M(s)

for all s ∈ ŜW . We extend this result by Zariski continuity to all
λ. Namely we identify all S/〈λ〉i by translation with S/(h)i and then
identify all M i(λ) with the vector space U(n̄)⊗ S/(h)i. So all the E ⊗
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M i(λ) get identified canonically with the vector space E⊗U(n̄)⊗S/(h)i,

and for s ∈ ŜW the endomorphisms idE ⊗ ϑM(s) and ϑE⊗M(s) of E ⊗
M i(λ) get identified with certain endomorphisms

φ(λ), ψ(λ) of E ⊗ U(n̄)⊗ S/(h)i.

But one sees that φ(λ), ψ(λ) are algebraic in λ ∈ h∗, and since they
coincide for generic λ they have to coincide for all λ.

For later use we record the following fact from folklore.

Lemma 4.3. Let E be a finite dimensional g-module, P (E) ⊂ h∗ its
weights, λ ∈ h∗, M ∈Mξ(λ). Then E ⊗M ∈

⊕
ν∈P (E)Mξ(λ+ν).

Proof. With obvious arguments we reduce to the case ξ(λ)M = 0.
Then AnnUM ⊃ AnnUM(λ) by Duflo’s theorem, hence AnnU(E ⊗
M) ⊃ AnnU(E ⊗M(λ)) and the lemma follows.

5. The main results

Let now again g be our semisimple Lie algebra, H ⊂ U -mod-U its
category of Harish-Chandra bimodules. For χ ∈ MaxZ put

Hχ = {X ∈ H | Xχn = 0 for n≫ 0}.

On the other hand put N (P, f) =
⊕

ηN (η, f) where η runs over all

integral elements of MaxZ, i.e. over the image ξ(P ) under ξ of the
lattice of integral weights P ⊂ h∗. We will establish an equivalence of
categories Hξ(µ)

∼= N (P, f) for all dominant µ ∈ P such that Wf =
{w ∈ W | w · µ = µ}.

We even want to prove a more general statement and have to intro-
duce a finer decomposition of our category N (f). Namely remark that
N (f) ⊂ M(gf), hence any M ∈ N (f) decomposes into (generalized)
eigenspaces under the action of Zf , sayM = ⊕χMχ with χ running over
MaxZf . For any coset Λ ∈ h∗/P put N (Λ, f) = {M ∈ N (f) |Mχ 6= 0
only for χ ∈ ξf(Λ)}. This category is stable under taking tensor prod-
ucts with finite dimensional g-modules, as follows from Lemma 4.3.
For µ ∈ h∗ put Wµ = {w ∈ W | w · µ = µ}. We call µ dominant if
and only if 〈µ + ρ, α∨〉 6∈ {−1,−2, . . . } for all α ∈ R+. For µ ∈ h∗ let
us define Mn(µ, f) = U ⊗U(pf ) Yf(ξf(µ)n, f). These form a projective
system in an obvious way. We will prove:

Theorem 5.1. Suppose µ ∈ h∗ is dominant with Wµ = Wf . Then
the functor X 7→ lim←−nX ⊗U Mn(µ, f) determines an equivalence of
categories T : Hξ(µ)

∼= N (µ+ P, f).

Remark 5.2. The case f = 0 is treated in [Soe86].
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To prove this theorem, we reduce it to a special case of the main
result from Section 3, stated below as Theorem 5.3. Certainly N ⊂
M(gf), hence applying the results of the previous section to g = gf we
find for any M ∈ N a canonical morphism

ϑ = ϑM : ŜWf → Endgf
M.

Now g is a semisimple gf -module, and the equality ϑg⊗M(s) = idg ⊗
ϑM(s) from Theorem 4.1 along with naturality tells us that in fact we
constructed a homomorphism

ϑ : ŜWf → EndgM.

Let m ⊂ ŜWf be the maximal ideal and define N (f)n = {M ∈ N (f) |
ϑ(mn)M = 0} and N (Λ, f)n = N (Λ, f) ∩ N (f)n. Our first Theorem
5.1 will follow easily from

Theorem 5.3. Suppose µ ∈ h∗ is dominant with Wµ =Wf . Then the
functor X 7→ X ⊗U Mn(µ, f) determines an equivalence of categories
H(ξ(µ)n) ∼= N (µ+ P, f)n.

Remark 5.4. The case f = 0, n = 1 is treated in [BG80].

Proof. We will apply Theorem 3.1 with I = ξ(µ)n,M = Mn(µ, f). For
this we need

Proposition 5.5. Suppose µ ∈ h∗ is dominant with Wµ =Wf . Then

1. Mn(µ, f) is a projective object in N (f)n.

2. U/ξ(µ)nU
∼
→ (EndCM

n(µ, f))adf.

Proof. Postponed.

Now by Theorem 4.1 and Lemma 4.3 we know that N (µ + P, f)n is
stable under tensoring with finite dimensional g-modules. Hence part
1 of the proposition implies that 〈F ⊗Mn(µ, f)〉 ⊂ N (µ+ P, f)n and
that Mn(µ, f) is projective in 〈F ⊗Mn(µ, f)〉. Using also part two of
the proposition we can now apply Theorem 3.1 and deduce that

⊗UM
n(µ, f) : H(ξ(µ)n)→ N (µ+ P, f)n

is a fully faithful functor. It only remains to show that it is essentially
surjective. We will do this by counting indecomposable projectives.

In both our categories the indecomposable objects are precisely those
with a local endomorphism ring. Our functor being fully faithful, it
maps indecomposables to indecomposables and defines an injection of
isomorphism classes of objects. Since H(ξ(µ)n) has enough projec-
tives, the (isomorphism classes of) indecomposable projectives and of
simple objects correspond bijectively. Recalling the classification of
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simple objects from [BG80], we see that all indecomposable projectivs
in H(ξ(µ)n) are annihilated by a power of ξ(λ) for some λ ∈ µ+P , and
the isomorphism classes of those are parametrized by the (Wµ)-orbits
in (W · λ) ∩ (µ+ P ).

Now recall that the projective objects in any H(I) are just the direct
sums of objects of the form E ⊗ U/IU , E ∈ F . By the proposition
Mn(µ, f) is projective inN (µ+P, f)n, hence so are all the E⊗Mn(µ, f)
with E ∈ F , hence our functor maps projective objects to projective
objects. But now the simple objects in N (µ + P, f)n annihilated by
ξ(λ) are parametrized by the (Wf ·)-orbits in (W·λ)∩(µ+P ). (Remark
this space is (Wf ·)-stable, since Wf =Wµ). Just counting we see that
N (µ + P, f)n has enough projectives and they are all in the image of
our functor. Thus indeed our functor gives an equivalence of categories
H(ξ(µ)n)

∼
→ N (µ+ P, f)n.

We now prepare the proof of Proposition 5.5. We begin with some
lemmas on invariant theory. Recall ϑµ from Section 4. We now use it
for g = gf .

Lemma 5.6. Let µ ∈ h∗ be given with Wf · µ = µ. Then ϑµ : ŜWf →
(Zf)

∧
ξf (µ) is an isomorphism.

Proof. This is clear from the definitions.

Lemma 5.7. Suppose stronger Wf =Wµ. Consider Z as a subring of
Zf via the relative Harish-Chandra homomorphism θ♯. Then ξf(µ)n ∩
Z = ξ(µ)n.

Proof. We have to show that θ : SpecZf → SpecZ is étale at ξf(µ).
But this is clear from the condition on µ.

Proposition 5.8. Let µ ∈ h∗ be dominant and suppose Wf · µ = µ.
Then Mn(µ, f) is projective in N (f)n.

Proof. We need just to show that it is projective inN (ξ(µ), f)n. Choose
N ∈ N (ξ(µ), f)n. Then

Homg(M
n(µ, f), N) = Hompf

(Yf(ξf(µ)n, f), N)
= Hompf

(Yf(ξf(µ)n, f), Nµf ),
= Homgf

(Yf(ξf(µ)n, f), Nµf ),

the first equality by definition of Mn(µ, f), the second since hf acts via
µf on Yf , the third since µ is dominant, thus the weight µf is highest
possible for N ∈ N (ξ(µ), f), hence Nµf is annihilated by nf .

Let us putNf = N (gf , bf) and for η ∈ MaxZf defineNf(η),Nf(η, f)
as subcategories of gf -mod in the obvious way. Since µ is dominant,
Nµf lies in Nf(ξf(µ), f). By 5.7 we see that N ∈ N (f)n implies already
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ξf(µ)nNµf = 0. Now a theorem in [Kos78] tells us that for any η ∈
MaxZf we have an equivalence of categories

{M ∈ (Zf/η
n)−mod | dimCM <∞} → {H ∈ Nf(η, f) | ηnH = 0}

given by the functor M 7→ (Uf ⊗Zf
M) ⊗U(nf ) Cf . Thus Yf(η

n, f) is a
projective object on the right hand side, and thus Homg(M

n(µ, f), N) =
Homgf

(Yf(ξf(µ)n, f), Nµf ) is an exact functor when restricted to N ∈
N (f)n. Thus it only remains to be shown that Mn(µ, f) ∈ N (f)n.
But this is clear from Lemma 5.6.

We now prove the second part of Proposition 5.5. We begin with

Lemma 5.9. Let I ⊂ Zf be an ideal, N ∈ gf -mod a representation
such that AnnUf

N = UfI. Then AnnU(U ⊗U(pf ) N) = U(I ∩ Z) when

we view Z as a subring of Zf via θ♯.

Remark 5.10. We extend here the gf -action on N to a pf -action via
the surjection pf → gf with kernel nf .

Proof. Using Lemma 2.2, we may just check on one N . Let us consider
Zf as a subring of S via ξ♯

f . By Duflo’s theorem (more precisely, its
generalization from [Soe86]) we may take N = Uf ⊗U(bf ) (S/IS). Then
U⊗U(pf )N = U⊗U(b)S/IS and by the generalized Duflo theorem again
we conclude AnnU(U ⊗U(pf ) N) = U(Z ∩ IS). But S is faithfully flat
over Zf , hence Zf ∩ IS = I, hence Z ∩ IS = Z ∩ I.

We deduce

Lemma 5.11. Let µ ∈ h∗ be given with Wµ = Wf . Then we have
AnnUM

n(µ, f) = Uξ(µ)n.

Proof. Apply the previous lemma to N = Yf(ξf(µ)n, f) and use Lemma
5.7 to see that ξf(µ)n ∩ Z = ξ(µ)n.

So we already have an injection U/ξ(µ)nU →֒ (EndCM
n(µ, f))adf . To

prove that it is a surjection we compare multiplicities under the adjoint
g-action on both sides. For this we study how our standard modules
behave under translation. For E ∈ F let P (E) ⊂ h∗ be the multiset of
weights of E (counted with their multiplicities).

Lemma 5.12. E ⊗M(λ, f) has a filtration with subquotients M(λ +
ν, f), ν ∈ P (E).

Proof. If f is regular, thus M(λ, f) = Y (ξ(λ), f), this was proved by
Kostant [Kos78]. In general write

E ⊗M(λ, f) = U ⊗U(pf ) (E ⊗ Yf(ξf(λ), f)).
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Now filter E|pf
in such a way that nf annihilates the subquotients, and

then apply Kostant’s result to the Lie algebra gf .

Finally we can prove what we were after.

Proposition 5.13. Let µ ∈ h∗ be dominant with Wµ =Wf . Then the
multiplication

U/ξ(µ)nU → (EndCM
n(µ, f))adf

is an isomorphism.

Proof. This map is injective by Lemma 5.11. Let E be a finite dimen-
sional simple g-module and E0 its zero weight space. We only have to
check that E occurs with the same multiplicity on both sides, regarded
as g-modules via the adjoint action. We have

dimCHomg(E, (U/ξ(µ)nU)ad) = (dimCZ/ξ(µ)n) · (dimCE0)

by Kostant’s theorem describing Uad. On the other hand

dimCHomg(E, (EndCM
n(µ, f))ad) =

= dimCHomg(M
n(µ, f), E∗ ⊗Mn(µ, f))

= [E∗ ⊗Mn(µ, f) : L(µ, f)]

sinceMn(µ, f) is the projective cover of L(µ, f) inN (f)n. NowMn(µ, f)
has a filtration with dimC(Zf/ξf(µ)n) steps where all subquotients are
copies of M(µ, f). Certainly dimC(Zf/ξf(µ)n) = dimC(Z/ξ(µ)n). Thus
we only have to check the equality

[E∗ ⊗M(µ, f) : L(µ, f)] = dimCE0.

This however is clear from Lemma 5.12 since µ is dominant and Wf ⊂
Wµ.

The proof of Theorem 5.3 is now complete. To deduce Theorem 5.1 we
just have to check

Lemma 5.14. Let µ ∈ h∗ be given with Wf = Wµ. For n > m the
canonical surjection Mn(µ, f)→Mm(µ, f) has kernel ξ(µ)mMn(µ, f).

Proof. Omitted.

So we finally get for any dominant µ ∈ h∗ with Wµ = Wf our equiva-
lence of categories

T : Hξ(µ)
∼
→ N (µ+ P, f).

We now investigate the effect of our equivalence on standard modules
and simple modules. Recall from [BGG76, Jan83] the description of
simple objects in Hξ(µ). For any λ, µ ∈ h∗ one forms the U -bimodule
L(λ, µ) = HomC(M(µ),M(λ))adf . It can be shown that L(λ, µ) is
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actually finitely generated, i.e. it is an object of H. It is nonzero if
and only if λ + P = µ + P . Assume now that µ is dominant. Then
L(λ, µ) ∼= L(λ′, µ) if and only ifWµ·λ =Wµ·λ′, the L(λ, µ) have unique
simple quotients L̄(λ, µ) for every λ ∈ µ + P , and the L̄(λ, µ) with λ
running over the (Wµ·)-orbits in µ+P form a system of representatives
for the simple isomorphism classes in Hξ(µ).

Proposition 5.15. Let µ ∈ h∗ be dominant with Wµ = Wf . For any
λ ∈ µ+ P we have TL(λ, µ) ∼= M(λ, f) and T L̄(λ, µ) ∼= L(λ, f).

Proof. Let for any abelian category A denote [A] its Grothendieck
group. Any object M ∈ A determines an element [M ] ∈ [A]. Any
exact functor T : A → B to another abelian category gives rise to a
group homomorphism T : [A]→ [B]. In our situation we know already
that TL(µ, µ) ∼= U/ξ(µ)U ⊗U M(µ, f) ∼= M(µ, f). We know further-
more that our functor T commutes with all functors E⊗ for (E ∈ F)
and with the (left) Z-action on our categories. Now E ⊗ L(µ, µ) has
a filtration with subquotients L(µ+ ν, µ), ν running over the multiset
P (E) of weights of E. By 5.12 we know that E ⊗M(µ, f) similarily
has a filtration with subquotients M(µ + ν, f), ν ∈ P (E). Since this
holds for all E, we deduce for all integral weights ν ∈ P the equality

T
∑

w∈W

[L(wν + µ, µ)] =
∑

w∈W

[M(wν + µ, f)].

If we split it up according to central character and use the isomor-
phisms L(v · λ, µ) ∼= L(λ, µ), M(v · λ, f) ∼= M(λ, f) for v ∈ Wµ =Wf ,
we deduce |Wµ| T [L(λ, µ)] = |Wf | [M(λ, f)] and thus T [L(λ, µ)] =
[M(λ, f)] for all λ ∈ µ + P . Choose now representatives λ1, . . . , λn

of the (Wµ·)-orbits in (W · λ) ∩ (µ + P ) such that λi ∈ λj − R≥0R
+

implies i ≥ j. Then the multiplicity matrices [L(λi, µ) : L̄(λj, µ)]
and [M(λi, f) : L(λj, f)] are upper triangular with ones on the diag-
onal, thus the equations T [L(λi, µ)] = [M(λi, f)] imply T [L̄(λi, µ)] =
[L(λi, f)] and the effect of T on simples is as asserted.

Next we determine the effect of T on standard objects. We claim
that for any N ∈ N (µ + P, f) annihilated by some power of ξ(λ) and
such that [N : L(λi, f)] 6= 0 and [N : L(λj , f)] = 0 for j < i there
is a nonzero morphism M(λi, f) → N . Indeed the conditions on N

imply that its hf -weight space of weight λf
i is not zero, annihilated by

nf and isomorphic to Yf(ξf(λi), f) as a gf -module. We apply this to
N = TL(λi, µ) and find a nonzero morphism ϕ : M(λi, µ)→ TL(λi, µ).
By construction this morphism ϕ has to induce a surjection onto the
unique simple quotient L(λi, f) of TL(λi, µ), thus ϕ is a surjection
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itself. Since we know already [M(λi, f)] = [TL(λi, µ)], this surjection
ϕ has even to be an isomorphism.

Let us finally fill our promise from the introduction. Let us define for
χ, η ∈ MaxZ the category

χHη = {X ∈ H | χnX = 0, Xηn = 0 for n≫ 0}.

Remark that for an integral weight λ ∈ P actually

N (ξ(λ), f) ⊂ N (λ+ P, f).

So if λ, µ are dominant integral weights with λ regular and Wµ =Wf ,
then we find equivalences of categories

ξ(µ)Hξ(λ)
∼= N (ξ(µ), 0)

ξ(λ)Hξ(µ
∼= N (ξ(λ), f),

and since the two categories of bimodules can be identified by inter-
changing the left and the right action via the Chevalley antiautomor-
phism of g, we finally find an equivalence

N (ξ(µ), 0) ∼= N (ξ(λ), f).

Using the proposition and [Jan83], 6.34 it can be checked that under
this equivalence M(x · λ, f) corresponds to M(x−1 · µ).
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