THE COMPOSITION SERIES OF MODULES INDUCED
FROM WHITTAKER MODULES

DRAGAN MILICIC AND WOLFGANG SOERGEL

ABSTRACT. We study a category of representations over a semisim-
ple Lie algebra, which contains category O as well as the so-called
Whittaker modules, and prove a generalization of the Kazhdan-
Lusztig conjectures in this context.

1. INTRODUCTION

Let g D b D n be a semisimple complex Lie algebra, a Borel sub-
algebra, and its nilradical. Let U(g) = U D Z be the enveloping
algebra of g and its center. Let x C Z be a maximal ideal and
f € (n/[n,n])* =: chn a character of n, giving rise to a one-dimensional
n-module Cy. By [McD85] the g-module

Y(x, f) =U/xU ®@uw Cy

is of finite length. For any ring A let MaxA denote its set of maximal
ideals. We are interested in the following

Problem 1.1. Compute the composition factors of Y (x, f) with their
multiplicities, for all x € MaxZ and f € chn.

We will solve this problem completely for integral x and partially for
other y as well. Let us first consider the two extreme cases. Let h C b
be a Cartan subalgebra and h* D R D Rt D A its dual, the roots, the
roots of b and the simple roots. So g = @acr 9o ® h. Call f € chn
regular if and only if f|,, # 0 for all @ € A. For regular f our problem
is solved completely by the following theorem of Kostant [Kos78], (see
also [MS95] for a geometric proof).

Theorem 1.2. If f € chn is reqular, then Y (x, f) is irreducible for all
X € MaxZ.

These irreducible Y (y, f) are the so-called Whittaker modules. In
the other extreme, i.e. for f = 0, we have (see 2.5)
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Proposition 1.3. If x € MaxZ is regular, then Y (x,0) is the direct
sum of all Verma modules for g O b with central character x. For x
singular Y (x,0) still has a Verma flag such that each Verma module
with central character x appears with the same multiplicity and the
length of the flag is the cardinality of the Weyl group.

Thus for f = 0 our problem is solved by the Kazhdan-Lusztig con-
jectures, which describe the composition series of Verma modules. The
general case will be a mixture of these two. We will partially solve it
by reducing to the Kazhdan-Lusztig conjectures. To explain how this
is done, let us put our problem in a different perspective.

Consider the full subcategory N = N (g, b) C g-mod of all g-modules
M which are (1) finitely generated over g, (2) locally finite over n and
(3) locally finite over Z. By [McD85] all objects of N have finite
length. From a geometric perspective [MS95] this is evident, they just
correspond to holonomic D-modules. The action of Z decomposes N
into a direct sum A" = @&, N (x) where x runs over MaxZ. The action of
n also decomposes N into a direct sum N = &N (f) over all f € chn,
where

N(f)={M € N'| X — f(X) acts locally nilpotently on M,VX € n}.
In total, we have N' = &, ¢N (x, f) with M (x, f) = N(x) NN (f) and

all these categories are stable under subquotients and extensions in g-
mod. Certainly Y (x, f) € N(x, f). To solve our problem, we have to
study the categories N (x, f).

Again the two extreme cases are more or less well understood. For
regular f there is an equivalence of categories

N(f) =2 {M € Z-mod | dimcM < oo}

as was shown by Kostant [Kos78]. For f = 0 our N(f) = N (0) consists
just of all finite length g-modules with only highest weight modules as
composition factors. For general f, the situation was investigated by
McDowell [McD85]. In fact, McDowell’s results as well as Kostant’s
results cited above admit very natural geometric proofs if one uses
localization. We worked this out in our joint paper [MS95].

Let (W,S) be the Coxeter system of g C b. There is a bijection
A S S o s, Put p=13 pi o asusual and set w- A = w(A +
p) — p for all w € W, X € h*. Let the Harish-Chandra homomorphism
& : 7 — S = S(h) be normalized by the condition £*(z) — z € Un. For
the corresponding £ : h* — MaxZ we have {(\) = &(u) & WA = W-p.
For f € chn put Ay = {a € A | flg. # 0}, S = {sa | @ € Ay} and
Wy = <Sf> cC W.
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Now for any A € b*, f € chn one constructs a “standard module”
M(X f) € N(E(N), f). Tt has a unique simple quotient L(A, f) and
M\, f) = M(p, f) if and only if Wy - A = Wy - u. Finally any simple
object L € N(f) has the form L = L(), f) for a unique A € h*/(W;-).
All this is due to McDowell. The definitions are set up in such a way
that M(A,0) is just the usual Verma module M(\) = U @y Ca.
For simplicity we state the analog of our first Proposition 1.3 only for
regular x. The general case is contained in Corollary 2.5.

Proposition 1.4. Suppose x € MaxZ is reqular. Then Y (x, f) =
@, M(N, f) where X runs over E*(x)/(W;-).

In this way our original problem of computing the composition series
of the Y (x, f) reduces to the following

Problem 1.5. Compute the multiplicities [M (X, f) : L(p, f)] for all
A b € b*.

Let us just explain how we solve this problem for regular integral
central character x. Let u € h* be integral dominant (i.e. (u+p,a") €
Zsg for all @« € RY) and such that Wy = {x € W | v - u = p}. Let
A € b* be integral dominant such that y = (). At the end of Section
5 we establish an equivalence of categories

N(x, f) =2 N(E(w),0)

under which M(x - A, f) corresponds to M (z~! - u). This reduces our
problem to the Kazhdan-Lusztig conjectures, which by now are a the-
orem.

2. STANDARD MODULES AND SIMPLE MODULES

Remember f € chn determines a subset Ay = {a € A | f|,, # 0}
of simple roots. Let py C g be the corresponding parabolic subalge-
bra containing b and p; = gy @ n/ its adh-stable Levi decomposition.
Remark that g; is not semisimple in general, but only reductive. For
example Ag = 0, po = b, go = h and n® = n. Let U(gy) = Uy D Z;
be the enveloping algebra of g; and its center. Put by = b N gy and
let ny C by be its nilradical, so that n = ny & nf. Let 5& : Zy — S be
the Harish-Chandra homomorphism of g;, normalized as before by the
condition £§(z) — z € Upny. It induces on the maximal ideals a map
&1 b — MaxZ;. For any ideal I C Zf define the gy-module

Yi(IL, f) = Us /1U; ®uny) Cy.
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If I is a maximal ideal, then this is an irreducible gs-module, since the
restriction of f to ny is nondegenerate by definition of ny. We define

M, f) = U v Y55 (M) f)

where we extend the gs-action on Y} to an action of p; letting n/ act
by zero.

Proposition 2.1. 1. We have M(\, f) = M(u, f) if and only if
Wf A= Wf iy
2. M(\, f) has a unique simple quotient L(\, f). We have L(\, f) =
L(p, f) if and only if Wy - A=W - p.
3. Anng M (N, f) = ¢(N)U.

Proof. All this is in fact contained in [McD85] and, from a geometric
point of view, in [MS95]. However for us it is not a great detour,
so we will give complete arguments. We start with 3. This is easily
reduced to the case of Verma modules by some general considerations:
Let a — b be a morphism of Lie algebras. For any b-module M let
resp M denote the a-module obtained by restriction. For any a-module
N let ind?N denote the b-module indN = U(b) ®p () N obtained by
induction. For any module M over a Lie algebra let AnnM denote its
annihilator in the enveloping algebra.

Lemma 2.2. 1. Let M, M’ be b-modules. Then from the inclusion
AnnM C AnnM’ follows the inclusion Ann(resgM) C Ann(resgM’).
2. Let N, N’ be a-modules. Then from the inclusion AnnN C AnnN’
follows the inclusion Ann(ind?N) C Ann(ind®N').

Proof. Omitted. O

From this we deduce part 3 of the proposition, as follows: Let Mf(\)
denote the Verma module with highest weight X\ for g¢. Then
Anng, Yi (€5 (A), f) = (MU = Anny, My (A)

by a theorem of Kostant [Kos78] and of Duflo [Dix74] respectively.
Now we apply part 1 of our lemma with the surjection p; — gy and
then part 2 with the inclusion p; < g and deduce AnnyM (A, f) =
Anng (U Qup,y My(N)). But certainly U ®p,,y) My(A) = M(A), hence
AnngM (A, f) = AnngM(X) = UE(A) by the theorem of Duflo once
again, and 3 is proved.

Next we prove part 1 of the proposition. Let us decompose §h =
b & by with by = b N [gy, g7 and b7 = Naea kerar the centralizer of
f alias the center of gy. The action of W; as well as the dot-action
of W} on h* respect this decomposition, and they are trivial on (h/)*.
Remark that a priori there are two dot-actions of Wy on h*, fixing the
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halfsum of positive roots of g and of g; respectively, but one checks
that they coincide. Now it is clear that Wy - A = Wy - implies &()) =
&r(p) and hence M (A, f) = M(u, f). To prove the reverse implication,
denote for any A € h* by M € (h/)* its restriction to 7. Clearly
b/ acts via A on Y;(;(N), f). Hence M (X, f) decomposes under b’
into weight spaces M (X, f), with p € M — > _p. Z>oaf. Clearly all
the M (A, f), are gg-submodules, and M (X, f)ar = Yr(r(N), f). Thus
M(X, f) = M(p, f) implies £¢(X) = E4(p), hence Wy - A = Wy - 1 and
we proved 1.

Finally we go for 2. We have to show that M (), f) has a unique max-
imal proper submodule. But any submodule N C M (), f) is the sum
of its h/-weight spaces N = @N,, and these are gs-submodules of the
M(X, f),. Since M (A, f)ar is irreducible over gy and generates M (A, f)
over g, any proper submodule has to be contained in ®,s M (X, f),.
Hence the sum of all proper submodules is itself a proper submodule,
necessarily the biggest one. Thus M (), f) has a unique simple quotient
LA, f). Again L()\, f) = L(u, f) implies A/ = p/ and L(\, f),s =
L(fs, f)ar, hence £4(X) = &¢(p) and finally Wy - A = Wy - p. O
Next we establish Proposition 1.4 from the introduction. Let us define
the “relative Harish-Chandra homomorphism” ¢ : 7 — Z ¢ by the
condition 5&9‘1 =78,

Lemma 2.3. For all z € Z we have 6*(z) — z € Un/.

Proof. Consider U; as a p-module with n/ acting by zero and form the
induced module U @y p,) Us. Then Anny(1® 1) = Un/ and 1® Uy C
U ®u(p;) Uy s just the space of invariants of h7. This means that there
is amap 0 : Z — Uy such that 2(1®1) = 1®60(z) for all z € Z, and we
see easily that this defines an algebra homomorphism 6:7— 27 ¢ and
that furthermore A(z) —z € Un/ for all z € Z. From there we find that
5&9 : Z — S is an algebra homomorphism such that 5&9(2) —z € Un,
thus 9&5 = ¢F thus 0% = 6 and the Lemma is proved. O

Proposition 2.4. Let I C Z be an ideal. We have an isomorphism
Y(I, f) 2 U @ue,) Y (0 (1) Zy, )
Proof. Recall that we defined Y(I, f) = U/IU ®yn) Cy. Certainly this
object represents the functor
U/IU-mod — C-mod
M —  Hom,(Cy, M).

Since #*(2) — z € Un/, the right hand side of our future isomorphism
is annihilated by [ also. It follows furthermore that for any M €
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U/IU-mod we have 6*(I)M™ = 0. Thus for any M € U/IU-mod we
have

Hom,(Cy, M) = Homnf(Cf,M“f)
Homyg, (Y;(6%(1)Zy, f), M™)
= Hom,, (Y;(6*(1)Zy, f), M)
= Homy(U ®u(y,) Y(0°(1)Zy, f), M).
Our isomorphism follows now from the fact that both sides share a
universal property, i.e. represent the same functor. O

Corollary 2.5. 1. For all A € b* the module Y (&£(N), f) admits a

filtration with subquotients M (x- A, f), where x runs over Wy \W.

2. If X is regular, then we have even a decomposition into a direct
sum Y (E(N), f) =2 @, M(x - X\, f) with x running our Wy \ W.

Proof. We start with some generalities. For any commutative ring A
let A-mod”’’ be the category of finite length A-modules and [A-mod”']
its Grothendieck group. Any finite flat ring extension j : A — B
gives a homomorphism [j] : [A-mod’'] — [B-mod/!], [M] — [B @4 M].
Remark that in case M = A/l we have B®4 M = B/BI. We remark
further that [A-mod/!] can be identified with the free abelian group
ZMaxA over MaxA via m — [A/m]|, so we can view [j] as a morphism
j] : ZMaxA — ZMaxB. Now all our ring extensions Z C Zy C S given
by 9%, 550 and & are finite and flat. Let us identify as usual b* = MaxS
via A — (\). Now we know from invariant theory, say, that for every
A € b* we have in ZMaxS the equalities

e =) (- A)

zeW

and

1N = ) (- ).

SL‘EWf

Since [¢F] = [Sfc] o [9#] we deduce [9*]¢(N\) = > wewpw §r(2 - A). In other
words, Z;/9*(£()\))Z; admits a filtration with subquotients Z; /& (- \)
where x runs over Wy \ W. Certainly this is in fact a direct sum de-
composition when the £;(z - \) are pairwise different, e.g. for A regular.
Now Uy is a free Z;-module, and we deduce that Ug/9*(£(N\))U; ad-
mits a filtration with subquotients Uy/&s(z - \)Uy, x € Wy \ W, which
splits for regular A to give a direct sum decomposition. But Uy is

known to be even a free right module over Z® U (ny), thus we find that
Yi(9*(€(N)Z;, ) admits a filtration with subquotients Y;(E¢(z- ), f),
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x € Wy \ W, which splits for regular A to give a direct sum decom-
position. We now apply U®y,,) and the Corollary follows from the
Proposition. O

We now reprove McDowell’s results.

Theorem 2.6. 1. Any M € N is of finite length.
2. The L(\, f) with A € b*/(W;-) represent the isomorphism classes
of simple objects in N'(f).

Proof. We start with 1. Put I = AnnzM. By definition of N this is an
ideal of finite codimension in Z. Without restriction of generality we
can assume I € MaxZ. Using the definition of N once more we find
a finite dimensional n-stable subspace F C M that generates M as a
g-module. Thus M is a quotient of U/UI @y E and we may restrict
our attention to such M. We can filter E' by n-submodules with one-
dimensional subquotients. This way we reduce our problem to showing
that the Y(I, f) are of finite length. Using Corollary 2.5 we further
reduce to showing that all M (A, f) are of finite length. By [Kos78] we
know that for any finite dimensional g;-module £ and n € MaxZ; the
gr-module E®QY}(n, f) is of finite length and has its composition factors
among the Y;(n/, f) with € MaxZ;. Let i/ C g be the adh-stable
complement of py. Certainly

M\, f) = UMW) @c Y (), f)

as gp-modules, and we deduce that all M (A, f), with g € (h/)* are
finite length modules over gy with their composition factors among the
Yi(n', f)-

Now any simple subquotient L of M(A, f) has to have a “highest”
weight 1 € (h7)* such that L, # 0 and n/ L, = 0. We then find an n €
MaxZ such that Homg, (Y (7, f), L,) # 0, thus Homy(M (v, f), L) # 0
if v € b* is such that {(v) = n, thus L = L(v, f) since L is simple.
Modulo the things we saw already this proves 2.

All simple subquotients of M (A, f) have the same central character,
hence are among the L(x- A, f),z € W by Proposition 2.1. We deduce
that the length of M (), f) is bounded by the sum of the lengths of the
gr-modules M(A, f)ays, v € W. O

3. EQUIVALENCES BETWEEN CATEGORIES OF HARISH-CHANDRA
BIMODULES AND OF REPRESENTATIONS

In this section we recall results of [BG80] in a form suitable for our
purposes. Let for the moment g be any complex Lie algebra and U =
U(g) its enveloping algebra. On any U-bimodule X € U-mod-U we
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can define a third g-action ad : g — End¢c X by the formula (adA)z =
Ax — zA for any A € g, v € X. This is called the adjoint action on a
bimodule. We get a functor U-mod-U — g-mod, M + M3 considering
any U-bimodule as a representation of g for the adjoint action. For
M, N € g-mod we make Hom¢ (M, N) into a U-bimodule in the obvious
way and consider on M ® N the standard g-module structure. For
M € g-mod, X € U-mod-U we define M ® X € U-mod-U by the
prescriptions A(m®z) = (Am)@x+m® (Az), (m@x)A =m® (zA)
forall A€ g, me M,z e X. With these definitions we find that

1. For any N, M, E € g-mod the canonical isomorphism
Home(E, Home (M, N)) = Home(E ® M, N)
induces an isomorphism
Homg(FE, Home (M, N)*) = Homy(E @ M, N).

2. Consider U as an object of U-mod-U. For any F € g-mod and
X € U-mod-U we obtain a canonical isomorphism

Homy_(E ® U, X) — Homgy(FE, X*)

by composing a morphism EF ® U — X with the obvious map
F—-FEUe—exl.

For any X € U-mod-U let X,qs C X denote the subspace of adg-
finite vectors, X,qr = { € X | There exists a finite dimensional adg-
stable subspace of X containing x}. For M € g-mod the subspace
(EndcM)aqr € EndcM is actually a subring.

If g is finite dimensional, X,q¢ C X is a sub-U-bimodule. Let us
define the category

H ={X € U-mod-U | X = X,qr and X is finitely generated}.

It is of no importance here whether X is supposed to be finitely gen-
erated as left module, right module, or bimodule: For bimodules con-
sisting of adg-finite vectors all these properties are equivalent.

Let us return now to our semisimple Lie algebra g. Let us denote by
F(g) = F the category of all finite dimensional representations of g.
To M € g-mod we associate two full subcategories of g-mod:

1. The category (F ® M) consisting of all subquotients of objects of
the form F ® M with F € F.

2. The category coker(F®M) consisting of all N € g-mod that admit
a two-step resolution F ® M — F ® M — N with E, F € F.

On the other hand define for any ideal I C Z the category
H(I)={X eH|XI=0}
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We are now ready to state the result of [BG80] in the form in which
we need it.

Theorem 3.1. Let [ C Z be an ideal and M € g-mod a representation
with IM = 0. Suppose that

1. The multiplication U — EndcM induces an isomorphism U/IU =
(End(cM)adf and
2. M 1is a projective object in (F @ M).
Then the functor @y M : U-mod-U — g-mod induces an equivalence of
categories

H(I) = coker(F @ M).

Proof. From the preceding considerations it is clear that for all £ €
F,X € H(I) we have

Homy_(E @ U/IU, X) = Homgy(E, X*).

Whence the EQU/IU with E € F are projective in H(I) and generate
H(I). Since @y M is right exact, we see that it induces indeed a functor
from H(I) to coker(F & M).
Next we claim that for all £, F € F the functor @y M induces a
bijection
Homy_y(E® U/IU,F @ U/IU) — Homyg(E ® M, F ® M).

To see this, remark first that for any three vectorspaces V, W, I’ with
dimF < oo there is a canonical isomorphism Hom¢(V, F @ W) =
Homg(F* ® V,W). This is compatible with all our actions, so we need
only prove our displayed bijection in case F' = C. But now we iden-
tified the left hand side with Homg(E, (U/IU)*) and the right hand
side with Homy(E, (EndcM)*!) and the claim follows from assumption
1.

Remark next that from assumption 2 actually follows that all £ M
with E € F are projectives in (F ® M). Indeed, Homy(E @ M, N) =
Homy(M, E* ® N) is an exact functor in N € (F ® M). So we proved
that our functor goes from H(I) to (F ® M), is fully faithful on a
system of projective generators of H(/) and maps those to projective
objects in (F ® M). The theorem now follows by standard arguments,
see for example [BG80], 5.10. O

4. ACTION OF THE CENTER

Let g for this section be any reductive complex Lie algebra, h C g a
Cartan subalgebra. Let S = S(h) be the symmetric algebra over h and

S its completion at the maximal ideal generated by b. This is acted
upon by the Weyl group W and we consider the invariants S"V.
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Let M = M(g) be the category of all representations of g that are
locally finite over the center Z of U = U(g). If E € g-mod is finite
dimensional and M € M, then E®@ M € M. Let idyy : M — M
be the identity functor. In this section we are going to define a ring
homomorphism o : SV — End(id ). This gives rise, for every M € M,
to a ring homomorphism ¥, : W, EndgM and we will prove:

Theorem 4.1. Let E' € g-mod be semisimple and finite dimensional,
M € M arbitrary, s € SY. Then idg ® 9(s) = Vpen(s) as endo-
morphisms of Q@ M.

Remark 4.2. Since g was only supposed reductive, there may be finite
dimensional representations E that are not semisimple.

We first construct ¥ and then prove the theorem. Certainly M =
X yeMaxz/My where

M, ={M € g-mod | Vv € M 3n > 0 such that x"v = 0}.

The notation M = x, M, can be spelled out as follows: For any M €
M let M, C M be the maximal submodule contained in M,. Then
M = &, M, and furthermore Homy(M,M') = 0if M € M,, M’ €
M, and x # . Certainly the completion Z}' of Z at x acts on M.
Now we have our bijection h* — MaxS, A — (). We let S{ denote
the completion of S at (\), so that S = S). The Harish-Chandra
homomorphism & : Z — S induces an inclusion &F : ZSA(/\) — S{ for
every A € h*. Then translation by A\ induces an isomorphism T} :
Sy 5 S. Tt is clear that S lies in the image of the composition
Ty o &t ZEA(/\) — 3, thus we get an inclusion ¥, : SW ZSA(/\). It is
clear as well that this inclusion depends only on £()), not on A itself,
so for any y € MaxZ we defined an inclusion

Yy S’W(—>ZQ.

Now for any M € M, we define ¥, : W, EndgM by the prescription
that ¥y/(s) should be multiplication with ¥, (s), and then define ¥y,
for arbitrary M € M = x, M, in the obvious way. This completes the
construction of 9. Remark that for more convenience in other parts of
our paper we define the Harish-Chandra homomorphism & : Z — S in
such a way that it actually depends on the choice of a Borel subalgebra
of g containing fh. However it is clear that ¢ does not depend on this
choice.

Proof [Theorem. .] Any M € M is a quotient of a (possibly infinite)
direct sum of objects of the form U/x"U, x € MaxZ. Thus we only
need to prove the theorem for all M = U/x"U. Now put M'(\) =
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U Quey S/(AN)" and £'(A) = AnnzM'(X). The system of all £'(\) is
cofinal to the system of all (£(\))". Thus we only need to prove the
theorem for M = U/ (A\)U. In [Soe86] it is shown that U/E/(A\)U acts
faithfully on M*()\). Hence U/&'(A\)U injects into an (infinite) direct
product of copies of M*(\). Thus we only need to show the theorem
for M = M*(\).

Consider more generally any M € O = {M € g-mod | M is finitely
generated over g and locally finite over b}. (This category O coincides
with our N/(0), but we won’t use this fact.) The “nilpotent part of the
h-action” gives rise to an action of S on M to be denoted n = ny; :
S — EndgM. This is just the ¥ constructed above when we consider
M as a module over the reductive Lie algebra fh. More explicitely we
decompose M into generalized weight spaces under the action of b,
M = ®,cp-M,,, and define n(H)(m) = (H — p(H))m for any p € b,
m € M,, H € b. For all A, i the diagram

S 2 EndgMi()\)
l I
S 5 EndgMi()\)

commutes, as one sees by comparing the actions of n(s) and ¥(s) on
the highest weight space M'()\),, for s € SW. On the other hand it
is clear that for M € O , s € S we have idg @ np(s) = npeu(s) :
EFE® M — E® M, since F is semisimple over g or, equivalently, over
h. Now for generic A € h* we have an isomorphism

Eo M\~ @ M(\+v)
)

veP(E

where P(F) C b* is the multiset of weights of E. Indeed the tensor
identity gives us an isomorphism E ® M'(\) = U ®p) (E ® S/(\)")
and then a filtration of £ as a b-module with subquotients the weight
spaces E, induces a filtration of the g-module £ ® M*(\) with subquo-
tients the U Qup) (£, @ S/(\)") = E, ® M"(XA+v). Since X is generic,
these subquotients have pairwise distinct central character, whence the
filtration splits step by step to give the desired direct sum decomposi-
tion. Hence for generic A we have in Endy(E ® M*()\)) the equalities
(abbreviating M (\) = M)

idp ® Vp(s) =1ide @ na(s) = nepem(s) = Vpenm(s)

for all s € S"W. We extend this result by Zariski continuity to all
A. Namely we identify all S/(\)" by translation with S/(h)" and then
identify all M*(\) with the vector space U(n) ® S/(h)". So all the £ ®
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M () get identified canonically with the vector space EQU (7n)®S/(h)",
and for s € S”Y the endomorphisms idg ® 9J)/(s) and Vpegr(s) of E®
M*(\) get identified with certain endomorphisms

$(A),¥(A) of E® U(n) ® S/(h)"

But one sees that ¢(\), ¥(A) are algebraic in A € h*, and since they
coincide for generic A they have to coincide for all A. O

For later use we record the following fact from folklore.

Lemma 4.3. Let E be a finite dimensional g-module, P(E) C b* its
weights, A € h*, M € Mg()\). Then E® M € GBVEP(E) Mg()_,_,,).

Proof. With obvious arguments we reduce to the case {(\)M = 0.
Then AnngM O AnnyM(A) by Duflo’s theorem, hence Anny(E ®
M) D Anny(E ® M()\)) and the lemma follows. O

5. THE MAIN RESULTS

Let now again g be our semisimple Lie algebra, H C U-mod-U its
category of Harish-Chandra bimodules. For y € MaxZ put

Hy ={X eH|Xx"=0forn>0}

On the other hand put N'(P, f) = &, N (n, f) where n runs over all
integral elements of MaxZ, i.e. over the image £(P) under £ of the
lattice of integral weights P C h*. We will establish an equivalence of
categories He(,y = N(P, f) for all dominant o € P such that Wy =
{weWlw-p=p}

We even want to prove a more general statement and have to intro-
duce a finer decomposition of our category N'(f). Namely remark that
N(f) € M(gy), hence any M € N(f) decomposes into (generalized)
eigenspaces under the action of Z¢, say M = &, M, with x running over
MaxZ;. For any coset A € h*/P put N(A, f) ={M e N(f) | M, # 0
only for x € £#(A)}. This category is stable under taking tensor prod-
ucts with finite dimensional g-modules, as follows from Lemma 4.3.
For pe p* put W, ={w e W |w-pu=pu}. Wecall p dominant if
and only if (u+ p, ") & {—1,—2,...} for all « € R*. For p € h* let
us define M™ (1, f) = U Qup,) Yr(§s(p)™, f). These form a projective
system in an obvious way. We will prove:

Theorem 5.1. Suppose p1 € b* is dominant with W,, = Wy. Then
the functor X +— lim, X ®y M™(u, f) determines an equivalence of
categories T : Hey = N (pn+ P, f).

Remark 5.2. The case f =0 is treated in [Soe86].
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To prove this theorem, we reduce it to a special case of the main
result from Section 3, stated below as Theorem 5.3. Certainly N C
M(gy), hence applying the results of the previous section to g = gy we
find for any M € N a canonical morphism

Y= SWr Endng.

Now g is a semisimple gs-module, and the equality Vg (s) = idg ®
Y (s) from Theorem 4.1 along with naturality tells us that in fact we
constructed a homomorphism

9 SWr Endg M.

Let m C 5™ be the maximal ideal and define N'(f)" = {M € N(f) |
Yd(m™)M = 0} and N (A, f)" = N(A, f) A N(f)™. Our first Theorem

5.1 will follow easily from

Theorem 5.3. Suppose i € h* is dominant with W,, = Wy. Then the
functor X — X @y M™(u, f) determines an equivalence of categories

HE()") =N+ P, )"
Remark 5.4. The case f =0,n =1 is treated in [BG80].

Proof. We will apply Theorem 3.1 with [ = &(u)", M = M™(u, f). For
this we need

Proposition 5.5. Suppose p € b* is dominant with W, = Wy. Then
1. M™(u, f) is a projective object in N'(f)™.
2. U/&(u)"U = (EndeM™ (1, f))aar-

Proof. Postponed. O

Now by Theorem 4.1 and Lemma 4.3 we know that N(u + P, f)" is
stable under tensoring with finite dimensional g-modules. Hence part
1 of the proposition implies that (F ® M"(u, f)) C N(u+ P, f)" and
that M"™(u, f) is projective in (F ® M™(u, f)). Using also part two of
the proposition we can now apply Theorem 3.1 and deduce that

QuM™ (p, f) - H(E(W)") = N(u+ P, f)"

is a fully faithful functor. It only remains to show that it is essentially
surjective. We will do this by counting indecomposable projectives.

In both our categories the indecomposable objects are precisely those
with a local endomorphism ring. Our functor being fully faithful, it
maps indecomposables to indecomposables and defines an injection of
isomorphism classes of objects. Since H(&(u)™) has enough projec-
tives, the (isomorphism classes of) indecomposable projectives and of
simple objects correspond bijectively. Recalling the classification of
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simple objects from [BG80], we see that all indecomposable projectivs
in H(&(u)™) are annihilated by a power of £()\) for some A € p+ P, and
the isomorphism classes of those are parametrized by the (W, )-orbits
in (W-A)N(p+ P).

Now recall that the projective objects in any H (/) are just the direct
sums of objects of the form £ ® U/IU, E € F. By the proposition
M"™(u, f) is projective in N (u+ P, )", hence so are all the EQ M™(pu, f)
with £ € F, hence our functor maps projective objects to projective
objects. But now the simple objects in A(u + P, f)" annihilated by
£(\) are parametrized by the (Wy-)-orbits in (W-A)N(u+P). (Remark
this space is (W;-)-stable, since Wy = W,,). Just counting we see that
N (i + P, f)™ has enough projectives and they are all in the image of
our functor. Thus indeed our functor gives an equivalence of categories

H(E(W)™) = N(u+ P, )" O

We now prepare the proof of Proposition 5.5. We begin with some
lemmas on invariant theory. Recall 9, from Section 4. We now use it

for g = gy.

Lemma 5.6. Let pn € b* be gwen with Wy - u = . Then 9, : SWr
(Zf>é\f(ﬂ) is an isomorphism.

Proof. This is clear from the definitions. O

Lemma 5.7. Suppose stronger Wy =W,.. Consider Z as a subring of
Z; wvia the relative Harish-Chandra homomorphism 6%. Then &;(p)™ N

Z =¢&(p)".

Proof. We have to show that 6 : SpecZ; — SpecZ is étale at &p(p).
But this is clear from the condition on pu. O

Proposition 5.8. Let pn € h* be dominant and suppose Wy - u = pu.
Then M™(u, f) is projective in N'(f)".

Proof. We need just to show that it is projective in N'(&(u), f)". Choose
N € N(€(z), /)" Then

Homg(M"(y, f),N) = Homy, (Y (& ()", f), N)
= Hompf<Yf<£f(M>n7f)7Nuf)7
= Homgf<Yf<£f(M>n7f>7Nuf)7

the first equality by definition of M™(ju, f), the second since b/ acts via
p' on Y}, the third since p is dominant, thus the weight p/ is highest
possible for N € N (&(u), f), hence N,s is annihilated by n/.

Let us put Ny = N'(gy, by) and for n € MaxZ; define N¢(n), N3 (n, f)
as subcategories of gs-mod in the obvious way. Since p is dominant,
N,s lies in Ny (§¢(p), f). By 5.7 we see that N € N(f)" implies already



INDUCING WHITTAKER MODULES 15

£s(u)"N,s = 0. Now a theorem in [Kos78] tells us that for any n €
MaxZ; we have an equivalence of categories

{M € (Z;/n") —mod | dimcM < oo} — {H € Ny(n, f) | n"H = 0}

given by the functor M +— (Uy ®z, M) ®u,) Cs. Thus Yi(n", f) is a
projective object on the right hand side, and thus Homg(M™(y, f), N) =
Homg, (Y (6 ()", f), Npur) is an exact functor when restricted to N €
N(f)". Thus it only remains to be shown that M"(u, f) € N(f)"
But this is clear from Lemma 5.6. O

We now prove the second part of Proposition 5.5. We begin with

Lemma 5.9. Let I C Zy be an ideal, N € gy-mod a representation
such that Anny, N = Uyl. Then Anny (U @y, N) = U(I N Z) when
we view Z as a subring of Z; via 0*.

Remark 5.10. We extend here the gs-action on N to a py-action via
the surjection p; — g5 with kernel n’.

Proof. Using Lemma 2.2, we may just check on one N. Let us consider
Zy as a subring of § via 5?. By Duflo’s theorem (more precisely, its
generalization from [Soe86]) we may take N = Uy ®y(s;) (S/1S). Then
U®upy N = U®uy S/1S and by the generalized Duflo theorem again
we conclude Anny (U ®yp,) N) = U(Z N IS). But S is faithfully flat
over Zs, hence Z; N 1S =1, hence ZNIS=2ZN1I. O

We deduce

Lemma 5.11. Let o € b* be given with W, = Wy. Then we have
Anng M™ (1, f) = UE(u)".

Proof. Apply the previous lemma to N = Y;(£¢(p)", f) and use Lemma
5.7 to see that {p(p)" N Z = &(p)™ O

So we already have an injection U/&(pu)"U — (EndcM™ (1, f))aar- To
prove that it is a surjection we compare multiplicities under the adjoint
g-action on both sides. For this we study how our standard modules
behave under translation. For £ € F let P(E) C h* be the multiset of
weights of E' (counted with their multiplicities).

Lemma 5.12. E® M(X, f) has a filtration with subquotients M (X +
v, f),v e P(E).

Proof. If f is regular, thus M(\, f) = Y(£()), f), this was proved by
Kostant [Kos78]. In general write

E@ M\, f) =U Qup, (E@Yi(&(N), f))
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Now filter E|, ; in such a way that n/ annihilates the subquotients, and
then apply Kostant’s result to the Lie algebra g;. O

Finally we can prove what we were after.

Proposition 5.13. Let n € b* be dominant with W, = Wy. Then the
multiplication

U/&(p)"U — (Ende M™(p, f))aar
s an isomorphism.

Proof. This map is injective by Lemma 5.11. Let F be a finite dimen-
sional simple g-module and Ej its zero weight space. We only have to
check that E occurs with the same multiplicity on both sides, regarded
as g-modules via the adjoint action. We have
dimcHomy(E, (U/€(p)"U)™) = (dimeZ/€(1)™) - (dime Ey)
by Kostant’s theorem describing U*!. On the other hand
dimcHomgy(E, (Ende M™(u, f))*) =

= dimCHomg(Mn(/J’7 f)v E* ® Mn(/“”? f))

= [E" @ M"(u, f) : L(p, f)]
since M™(pu, f) is the projective cover of L(u, f) in N(f)". Now M"(u, f)
has a filtration with dime(Zy/&;(p)™) steps where all subquotients are

copies of M (p, f). Certainly dime(Z/Ep(p)") = dime(Z/€(p)™). Thus
we only have to check the equality

[E*® M(u, f) : L, f)] = dimcEp.
This however is clear from Lemma 5.12 since p is dominant and Wy C
Wy O
The proof of Theorem 5.3 is now complete. To deduce Theorem 5.1 we

just have to check

Lemma 5.14. Let p € b* be given with Wy = W,. For n > m the
canonical surjection M"™(u, f) — M™(u, f) has kernel E(pu)™M™(u, f).

Proof. Omitted. O

So we finally get for any dominant u € b* with W, = W; our equiva-
lence of categories

T Hey = N(u+ P, f).

We now investigate the effect of our equivalence on standard modules
and simple modules. Recall from [BGG76, Jan83| the description of
simple objects in H(,). For any A, € h* one forms the U-bimodule
LA p) = Home(M (), M(X))agr- It can be shown that L(A, p) is
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actually finitely generated, i.e. it is an object of H. It is nonzero if
and only if A + P = p+ P. Assume now that p is dominant. Then
LA, p) = LN, p)if and only if W,-A =W,,- X, the L(A, ) have unique
simple quotients £(\, ) for every A € u+ P, and the £(\, u) with X
running over the (W,-)-orbits in u+ P form a system of representatives
for the simple isomorphism classes in He(,)

Proposition 5.15. Let pp € h* be dominant with W, = Wy. For any
A€ p+ P we have TL(A, 1) =2 M(X\, f) and TL(\, u) = LA, f).

Proof. Let for any abelian category A denote [A] its Grothendieck
group. Any object M € A determines an element [M] € [A]. Any
exact functor T : A — B to another abelian category gives rise to a
group homomorphism 7" : [A] — [B]. In our situation we know already
that TL(u, p) = U/E(n)U @y M(u, f) = M(u, f). We know further-
more that our functor 7 commutes with all functors E® for (£ € F)
and with the (left) Z-action on our categories. Now E & L(u, i) has
a filtration with subquotients £(u + v, i), v running over the multiset
P(E) of weights of E. By 5.12 we know that F ® M(u, f) similarily
has a filtration with subquotients M (u + v, f), v € P(E). Since this
holds for all E, we deduce for all integral weights v € P the equality

T Ly +pp)] = D [M(wv+p, f)].

wew wew

If we split it up according to central character and use the isomor-
phisms L(v- A, p) = LA, p), M(v- A f) = M\, f) forveW, =Wy,
we deduce [W,| T [L(A, )] = [Wy| [M(A, f)] and thus T[L(\, p)] =
[M(X, f)] for all A € p+ P. Choose now representatives Aj, ..., \,
of the (W,-)-orbits in (W - X) N (u + P) such that \; € \; — RyoR*
implies ¢ > j. Then the multiplicity matrices [L(A\;, 1) : L(Nj, p)]
and [M(X;, f) : L(\;, f)] are upper triangular with ones on the diag-
onal, thus the equations T[L(\;, )] = [M (N, f)] imply T[L(\;, )] =
[L(A;, f)] and the effect of T" on simples is as asserted.

Next we determine the effect of T" on standard objects. We claim
that for any N € N (u + P, f) annihilated by some power of £()\) and
such that [N : L(\;, f)] # 0 and [N : L(\;, f)] = 0 for j < ¢ there
is a nonzero morphism M(\;, f) — N. Indeed the conditions on N
imply that its h/-weight space of weight )\Zf is not zero, annihilated by
n/ and isomorphic to Y;(&;(\i), f) as a gg-module. We apply this to
N =TL(\;, 1) and find a nonzero morphism ¢ : M(\;, 1) — TL(\;, ).
By construction this morphism ¢ has to induce a surjection onto the
unique simple quotient L(\;, f) of T'L(A\;, 1), thus ¢ is a surjection
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itself. Since we know already [M (N, f)] = [TL(A\i, p)], this surjection
¢ has even to be an isomorphism. O

Let us finally fill our promise from the introduction. Let us define for
X,n € MaxZ the category

Hy ={X eH|x"X =0, X" =0 for n>> 0}.
Remark that for an integral weight A € P actually
NEMX), f) CNA+ P, f).

So if A, i are dominant integral weights with \ regular and W,, = Wy,
then we find equivalences of categories

N(&(n),0)
N(EA), ),

and since the two categories of bimodules can be identified by inter-
changing the left and the right action via the Chevalley antiautomor-
phism of g, we finally find an equivalence

N(E(R),0) = N(E(A), f).

Using the proposition and [Jan83], 6.34 it can be checked that under
this equivalence M(x - \, f) corresponds to M (z~! - p).
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