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1. Introduction.

In his paper [K], Kashiwara introduced the notion of characteristic cycle for
complexes of constructible sheaves on manifolds: let X be a real analytic mani-
fold, and F a complex of sheaves of C-vector spaces on X , whose cohomology is
constructible with respect to a subanalytic stratification; the characteristic cycle
CC(F) is a subanalytic, Lagrangian cycle (with infinite support, and with values in
the orientation sheaf of X) in the cotangent bundle T ∗X . The definition of CC(F)
is Morse-theoretic. Heuristically, CC(F) encodes the infinitesimal change of the
Euler characteristic of the stalks of F along the various directions in X . It tends
to be difficult in practice to calculate CC(F) explicitly for all but the simplest
complexes F ; on the other hand, the characteristic cycle construction has good
functorial properties.

The behavior of CC(F) with respect to the operations of proper direct image,
Verdier duality, and non-characteristic inverse image of F is well understood [KS].
In this paper, we describe the effect of the operation of direct image by an open
embedding. Combining our result with those that were previously known, we obtain
descriptions of CC(Rf∗F) and CC(f∗F) – analogous to those in [KS] – for arbitrary
morphisms f : X → Y in the semi-algebraic category, and complexes F with
semi-algebraically constructible cohomology. In effect, this provides an axiomatic
characterization of the functor CC, at least in the semi-algebraic context. Our
arguments do apply more generally in the subanalytic case, but because statements
become quite convoluted, we shall not strive for the greatest degree of generality.

As a concrete application, we consider the case of the flag manifold X of a com-
plex semisimple Lie algebra g. Here the Weyl group W of g operates, via intertwin-
ing functors [BB1,BB2], on the K-group of the bounded derived category Db(X)
of semi-algebraically constructible sheaves. Since the characteristic cycle construc-
tion descends to the level of the K-group, W operates also on CC(Db(X)); we

remark parenthetically that CC(Db(X)) coincides with the group of R+-invariant,
semi-algebraic Lagrangian cycles on T ∗X [KS]. There is also a natural, geomet-
rically defined action of W on the group of all semi-algebraic Lagrangian cycles
on T ∗X , due to Rossmann [R], who extends an earlier construction of Kazhdan-
Lusztig [KL]. We use our results on characteristic cycles to show that these two

Weyl group actions coincide on CC(Db(X)). For Lagrangian cycles supported on
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the union of the conormal bundles of Schubert cells, this statement was first proved
by Kashiwara-Tanisaki [KT].

We shall take up further applications – both of our main technical result and of
the result on Weyl group actions – in future papers: an analogue of the Kirillov
character formula in the semisimple case, and an affirmative answer to a conjecture
of Barbasch and Vogan. These future applications have been announced already
[SV1,SV2], as have been the contents of this paper [SV1].

Kashiwara and Kashiwara-Schapira [K,KS] define characteristic cycles for suban-
alytically constructible sheaves. For their purposes and ours, it is not so much the
analyticity that matters – rather, subanalytic sets enjoy finiteness and hereditary
properties crucial for various arguments. Recent work in model theory [DMM,W]
has produced geometric categories larger than the subanalytic one, with many of
the same finiteness and hereditary properties [DM]. We explain, at the end of our
paper, how the characteristic cycle construction and most results about them carry
over to these more general geometric settings. That is important for us: our proof
of the Barbasch-Vogan conjecture forces us to go outside the subanalytic category.

Several of our arguments involve delicate questions of sign. Our point of view,
and also our intended applications, force us to make the signs explicit, and not to
work up to certain universally determined choices of signs, as is often done. The
elaboration of signs accounts, in part, for the length of this paper.

As for the organization of our paper, we recall the characteristic cycle construc-
tion and its basic properties in section 2, in a form convenient for our purposes.
Families of cycles and limits of such families are the subject matter of section 3. We
have kept the discussion quite general – we consider arbitrary Whitney stratifiable
cycles, not only semi-algebraic or subanalytic cycles – and this additional degree
of generality makes the section considerably longer than it would otherwise be.
Sections 4 and 5 contain the formal statement and the proof of our main technical
result, the open embedding theorem. Our statement formally resembles a result of
Ginsburg [G2] in the complex algebraic category; the precise relationship between
his result and ours will be described in section 4. Section 6 contains our axiomatic
characterization of the functor CC in the semi-algebraic context and geometric for-
mulas for the effect, on characteristic cycles, of the pushforward and the inverse
image under arbitrary morphisms. In the end, this gives geometric descriptions
of the effect of all the standard operations in the derived category. To simplify
the discussion, we shall assume throughout that the base manifold is oriented; we
briefly comment on the more general, non-orientable case in section 6. Our result
on Weyl group actions occupies sections 7, 8, and 9: the two actions are reviewed
in sections 7 and 8, respectively, and the fact that they coincide is established in
section 9. Section 10, finally, discusses generalizations of the results in sections 1-6
to the geometric categories described in [DM].

We are indebted to several colleagues. M. Goresky, R. MacPherson, and D.
Trotman gave us advice on certain questions about stratified sets; Bierstone, Mil-
man, and Pawlucki answered a question on subanalytic sets; Gabrielov alerted us
to the geometric content of the model theoretic papers [DMM,W]; van den Dries
and Miller kindly supplied us with a detailed translation from the model theory in
these papers to geometry [DM].
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2. The characteristic cycle construction.

As in the introduction, we let X denote a real analytic manifold of dimension n,
though in later chapters we shall assume more specifically that X is semi-algebraic.
For convenience we also suppose that X is oriented. This will have the effect of
making the characteristic cycles into oriented cycles, with infinite supports. Our
orientation assumption gives meaning, in particular, to the fundamental cycle [X ],
as an oriented Lagrangian cycle, with infinite support, in the symplectic manifold
T ∗X .

Initially we fix a subanalytic Whitney stratification S of X , and we consider
a bounded complex F · whose cohomology is constructible with respect to S – in
other words, the cohomology sheaves Hp(F ·), restricted to any one of the strata,
are locally constant of finite rank. The characteristic cycle CC(F ·) will turn out
to be a Lagrangian cycle in T ∗X , whose support is contained in

(2.1) T ∗
SX = ∪

S∈S
T ∗
SX ;

here T ∗
SX stands for the conormal bundle of the submanifold S ⊂ X . We note that

∪
S∈S

(T ∗
SX − ∪

R6=S
T ∗
RX)

is open, smooth, and dense in T ∗
SX , with subanalytic complement (T ∗

RX = closure
of T ∗

RX in T ∗X ). We express this set as the union of its connected components

(2.2)
∪
S∈S

(T ∗
SX − ∪

R6=S
T ∗
RX) = ∪

α∈I
Λα (disjoint union),

with Λα connected and Λα ⊂ T
∗
Sα
X for some Sα ∈ S .

To describe a Lagrangian chain, with infinite support, carried by T ∗
SX , is equivalent

to assigning an orientation and an integer to each component Λα; such a chain is a
cycle if the appropriate linear combinations of the integer coefficients vanish. We
shall describe CC(F ·) in terms of such data. The fact that our data satisfy the
cycle condition, and that the cycle thus defined coincides with the characteristic
cycle in the sense of Kashiwara [K] will then follow from known results [K,KS]; cf.
(4.22) and the discussion below it.

First we specify the orientation of the various components Λα by orienting the
T ∗
SX . Around any point p ∈ S, we choose local coordinates (x1, . . . , xn) on X ,

such that S is locally given by the equations xk+1 = · · · = xn = 0, and such that
dx1 ∧ · · · ∧ dxn is a positive covector, with respect to the given orientation on X .
Let (ξ1, . . . , ξn) be the fibre coordinates on T ∗X dual to the frame dx1, . . . , dxn.
Then, near points in the fibre T ∗

pX over p, T ∗
SX is characterized by the equations

xk+1 = · · · = xn = ξ1 = · · · = ξk = 0. Thus

(2.3) (−1)n−kdx1 ∧ · · · ∧ dxk ∧ dξk+1 ∧ · · · ∧ dξn

is a nonzero covector of top degree. One checks that the sign of this covector
does not depend of any of the choices we have made – whether or not S itself is
orientable. In effect, then, the covector (2.3) puts a definite orientation on T ∗

SX .



4 WILFRIED SCHMID AND KARI VILONEN

Next, we assign an integer mα to each Λα. We fix a point (p, ξ) ∈ Λα; here p is
a point in the stratum Sα whose conormal bundle contains Λα, and ξ a conormal
vector to Sα at p. It is then possible to choose a C∞ function φ on some open
neighborhood of p in X , with the following properties:

(2.4)

a) φ(p) = 0 and dφp = ξ ;

b) dφ is transverse to Λα at (p, ξ) ;

c) the Hessian of φ|Sα is positive definite at p .

The existence of such a function – even one that is required to be real analytic – can
be verified either geometrically or by explicit calculation in local coordinates. In
terms of our choices, we define the multiplicity mα as the Euler characteristic of the
stalk, at p, of the local cohomology sheaf of F · along the set {x ∈ X | φ(x) ≥ 0} ,

(2.5) mα = χ(RΓ{φ≥0}(F
·)p ) .

We now appeal to theorem 9.5.6 and formulas (9.4.10), (9.5.18) in [KS], to conclude:
the integers mα describe the characteristic cycle CC(F ·) in the sense of Kashiwara;
in particular, mα does not depend on the choices of (p, ξ) and φ, and the chain
defined by the mα satisfies the cycle condition. In effect, the formula (2.5) becomes
a theorem in the functorial approach of [KS]. For us, it is convenient to take (2.5)
as the definition of CC because of its more directly geometric flavor.

What we shall actually use to compute CC(F ·) in particular situations is a
Morse-theoretic version of (2.5). We retain our choices of (p, ξ) and of the function
φ. By lemma 3.5.1 in [GM], if we fix a C∞ Riemannian metric on X near p, then
for every sufficiently small open ball B centered at p and every stratum S ∈ S,

(2.6)

a) the boundary ∂B is transverse to S ;

b) the restriction of φ to B ∩ S has no critical points with critical

value 0, except for S = Sα and the value 0 at p ;

c) the restriction of φ to ∂B ∩ S has no critical points with

critical value 0 .

As is pointed out in [GM, p. 82], the verification of (2.6) can be simplified consi-
derably when φ and the metric are real analytic, as we may assume without loss of
generality. We apply Goresky-MacPherson’s stratified Morse theory to the pair

(B ∩ φ−1(−ǫ, ǫ) , B ∩ φ−1(−ǫ, 0) ) ,

with B “sufficiently small” in the sense of (2.6) and ǫ positive and sufficiently small
in relation to B. Then, in the exact cohomology sequence

· · · → Hq

{φ≥0}(B ∩ φ
−1(−ǫ, ǫ),F ·)→ Hq(B ∩ φ−1(−ǫ, ǫ),F ·)→

→ Hq(B ∩ φ−1(−ǫ, 0),F ·)→ Hq+1
{φ≥0}(B ∩ φ

−1(−ǫ, ǫ),F ·)→ . . . ,



CHARACTERISTIC CYCLES OF CONSTRUCTIBLE SHEAVES 5

the terms Hq(B ∩ φ−1(−ǫ, ǫ),F ·) and Hq(B ∩ φ−1(−ǫ, 0),F ·) remain stable when
the radius of B, and correspondingly ǫ, tend towards 0 – see Proposition 3.5.3 in
[GM]. Consequently,

(2.7)
mα = χ(H∗

{φ≥0}(B ∩ φ
−1(−ǫ, ǫ) , F ·) )

= χ(H∗(B ∩ φ−1(−ǫ, ǫ), B ∩ φ−1(−ǫ, 0) ; F ·) ) ,

again for B as in (2.6) and ǫ > 0 small. The second equality in (2.7), we note,
really amounts to the definition of relative cohomology.

We started out assuming that the cohomology sheaves of the complex F · are
constructible with respect to a particular subanalytic Whitney stratification S.
Any two such stratifications have a common Whitney refinement, and passing from
the original stratification S to a Whitney refinement does not alter CC(F ·). This
is implicit in the approach taken by [KS], but also follows from the geometric
description (2.7): the Euler characteristics mα vanish for any newly introduced
stratum Sα because even the relative cohomology groups in (2.7) vanish. Also, every
subanalytic stratification has a subanalytic Whitney refinement. In effect, then, we
have made sense of CC(F ·) whenever the cohomology of F · is constructible with
respect to some arbitrary subanalytic stratification. The integers remain unchanged
when F · is replaced by a quasi-isomorphic complex, so CC(F ·) depends only on the

class of F · in Db(X), the bounded derived category of subanalytically constructible
complexes. Since they were defined as Euler characteristics, the integers mα behave
additively in distinguished triangles. Consequently the definition of CC descends
even to the K-group of Db(X),

(2.8) CC : K(Db(X)) −→ L+(X) ;

here L+(X) denotes the group of integral, R+-invariant, subanalytic, Lagrangian
cycles (with infinite support) in T ∗X . In fact, (2.8) turns out to be an isomorphism
[KS], but this will not be important for our purposes.

Let us describe the behavior of the characteristic cycle construction with respect
to proper direct image and normally nonsingular pullback of sheaves. We consider
a real analytic map f : X → Y between oriented real analytic manifolds. The
induced map df between the cotangent spaces fits into the commutative diagram
of bundle maps,

(2.9)

T ∗X
df

←−−−− X ×Y T ∗Y
τ

−−−−→ T ∗Y

πX





y





y





y

πY

X X
f

−−−−→ Y .

We write n for the dimension of X , m for the dimension of Y . By assumption, the
space X has been oriented. This orientation induces an orientation on the fibres of
T ∗X . Locally near some p ∈ X , T ∗X can be identified with the product X×T ∗

pX ,
and the product decomposition induces an orientation on T ∗X . We note that this
orientation on T ∗X changes by the sign (−1)n when the order of the factors X ,
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T ∗
pX is reversed, but is independent of the chosen orientation of X . We use the

same conventions to orient T ∗Y and X ×Y T ∗Y , in the latter case by making the
local identification X ×Y T ∗Y ≃ X × T ∗

f(p)Y .

When f is proper, the diagram (2.9) induces a morphism

(2.10) f∗ : L+(X) −→ L+(Y )

as follows. Let C ∈ L+(X) be a particular Lagrangian cycle, and let Λ ⊂ T ∗X
denote the support of C. Then

(2.11) C ∈ Hinf
n (Λ,Z) ≃ Hn

Λ(T ∗X,Z) ;

here Hinf
∗ (. . . ) denotes homology with infinite support (Borel-Moore homology),

and H∗
Λ(. . . ) local cohomology along Λ. The isomorphism in (2.11) is given by

Poincaré duality

(2.12)
H∗

Λ(T ∗X,Z)
∼
−−→ Hinf

∗ (Λ,Z) ,

α 7−→ (−1)deg(α)α ∩ [T ∗X ] ,

i.e., (−1)deg(α) times the cap product with the fundamental class of T ∗X , which is
given meaning by the orientation of T ∗X . There are a number of sign conventions
in the definition of cap product; ours agrees with that of [Sp].

We digress briefly to make the sign in (2.11) completely explicit. We shall use the
language of differential forms, though one could equally well work with simplices.
Let M be an oriented manifold – in our situation, M = T ∗X – and S ⊂ M an
oriented submanifold. We pick local coordinates x1, . . . , xn−c on S compatibly with
the orientation on S, and normal coordinates y1, . . . , yc for S ⊂ M , such that the
coordinate system x1, . . . , xn−c, y1, . . . , yc is compatible with the orientation of X .
In terms of these local coordinates, classes in Hc

S(M,C) can be represented by
differential forms, with coefficients which are hyperfunctions on M supported on
S. We put a sign on the Poincaré duality map

(2.13a) Hc
S(M,C)→ Hinf

n−c(S,C)

as follows. If α ∈ Hc
S(M,C) is represented by ω = fdy1 ∧ · · · ∧ dyc , where f

is a locally constant function on S, we send (locally) α to the oriented cycle S,
multiplied by the constant f . The resulting sign for the map (2.13a) pins down the
sign for the integral map

(2.13b) Hc
S(M,Z)→ Hinf

n−c(S,Z) ,

and hence also in (2.11): since only the local orientation is at issue, no information
is lost by going to complex coefficients.

Analogously to (2.11) we define the Poincaré duality map

(2.14) Hn
df−1(Λ)(X ×Y T

∗X,Z)
∼
−−→ Hinf

m (df−1(Λ),Z) .
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The composition, right to left, of the inverse of Poincaré duality (2.12), pullback

Hn
Λ(T ∗X,Z)

df∗

−−−→ Hn
df−1(Λ)(X ×Y T

∗X,Z) ,

and Poincaré duality (2.14) defines the operation of “pullback of cycles”, i.e., the
Gysin map

(2.15) df∗ : Hinf
n (Λ,Z) −→ Hinf

m (df−1(Λ),Z) .

Our map (2.10) is the composition

(2.16) f∗ = τ∗ ◦ df
∗

of the Gysin map (2.15) and the proper pushforward

Hinf
m (df−1(Λ),Z)

τ∗−−→ Hinf
m (τ(df−1(Λ)),Z) .

Implicit in this description of f∗ is the assertion that τ(df−1(Λ)) is Lagrangian in
T ∗Y – this follows from the fact that the proper map f can be stratified, as in [GM,
§§I.1.6-7]. Alternatively, one can argue as in [KS, Proposition 8.3.11].

The preceding description of f∗ amounts to a concrete reformulation of a con-
struction of Kashiwara-Schapira [KS], who then prove the following statement: for

any proper real analytic map f : X → Y and any F ∈ Db(X),

(2.17) CC(Rf∗F) = f∗(CC(F))

[KS, Proposition 9.4.2].
Now the case of normally nonsingular pullback. We fix a real analytic map

f : X → Y as before, and an object G ∈ Db(Y ). We shall call f normally non-
singular with respect to G if there exists a Whitney stratification S of Y , such
that

(2.18)
a) G is constructible with respect to S ;

b) f is transverse to all the strata of S .

Explicitly, b) means that, for each stratum S ∈ S, each point s ∈ S, and each
x ∈ f−1(s) , f∗(TxX)+TsS = TsY . We fix a particular stratification S with these

properties. Then, for C ∈ Hinf
m (T ∗

SY,Z), we can define f∗(C) ∈ Hinf
n (T ∗

f−1(S)X,Z)

by the equation

(2.19) f∗(C) = df∗(τ
∗C) ;

here τ∗ denotes the Gysin map corresponding to τ . Under the hypotheses just
mentioned,

(2.20) CC(f∗G) = f∗(CC(G)) .

In effect, this is [KS, Proposition 9.4.3], except for our requirement of normal non-
singularity, which is not quite as general as Kashiwara-Schapira’s non-characteristic
assumption. We should point out that (2.20) follows directly from the definition of
the characteristic cycle given here.

The definitions of both f∗, as in (2.16), and f∗, as in (2.19), involve Gysin maps.
Our hypothesis of normal nonsingularity ensures that the Gysin map τ∗ in (2.19)
is literally the pullback of cycles. On the other hand, the effect of the Gysin map
df∗ in (2.16) on a particular cycle C is less transparent: typically df will not be
transverse to C, so to compute df∗(C) in geometric terms it is necessary – loosely
speaking – to deform C slightly. We shall make this precise in the next section.
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3. Families of cycles.

Our objective in this section is to make sense of the limit of a one parameter
family of cycles. As in the previous section, the cycles we work with are true
geometric cycles – not cycles up to some notion of equivalence, as in the definition
of homology. We fix a connected, oriented, smooth manifold M of dimension d
and a particular Whitney stratification T , for example the stratification induced
by a triangulation of M . We do not require the stratification to be smooth, but the
strata must be at least C1, of course, to give meaning to the Whitney conditions. In
the setting of section 2, T ∗X will play the role of M and the Λα will be the highest
dimensional non-open strata for T . In assuming only that M is a smooth manifold,
we are departing temporarily from the real analytic context: in future applications
we need to consider families of cycles which are not necessarily subanalytic.

Let us define the notion of a k-cycle, with infinite support, subordinate to the
stratification T . Refining T if necessary, we shall assume that all strata are ori-
entable. We enumerate the connected components of the k-dimensional strata as
Λk,α, with α ranging over the index set Ak, and we write Λk(T ) for the union of the
closures of the Λk,α; in other words, Λk(T ) denotes the “k-skeleton of T ”, i.e, the
union of the strata of dimension ≤ k. To simplify the discussion, we put a definite
orientation on each of the Λk,α. Then every integral linear combination

(3.1)
∑

α∈A

mα Λk,α , mα ∈ Z

defines a k-chain, with infinite support, carried by Λk(T ). The boundary of such
a chain is a well defined (k − 1)-chain (the Λk,α constitute a locally finite family!).
This gives us the notion of k-cycle subordinate to T . As a matter of notation, we

write Cinfk (M, T ) for the group of k-chains,

(3.2) ∂ : Cinfk (M, T ) −→ Cinfk−1(M, T )

for the boundary operator, and

(3.3) Zinfk (M, T ) = Ker{ ∂ : Cinfk (M, T ) −→ Cinfk−1(M, T ) }

for the group of k-cycles subordinate to T . The subspace Λk(T ) ⊂ M contains no
strata of dimension > k, so

(3.4) Zinfk (M, T ) = Hinf
k (Λk(T ),Z) .

On the other hand,

(3.5) Hinf
k (Λk(T ),Z) ∼= Hd−k(M,M − Λk(T ); Z) ∼= Hd−k

Λk(T )(M,Z)

by Poincaré duality and the definition of local cohomology; for the explicit choice
of sign, see (2.13). This gives us yet another description of the group of k-cycles,

(3.6) Zinfk (M, T ) ∼= Hd−k
Λk(T )(M,Z) ,
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as a local cohomology group.
Whenever a second Whitney stratification T ′ refines the original stratification,

one obtains an inclusion

Cinf∗ (M, T ) →֒ Cinf∗ (M, T ′)

which commutes with the operation of taking boundary, hence

(3.7) Zinfk (M, T ) →֒ Zinfk (M, T ′) .

If M were a real analytic manifold, and if we were dealing only with cycles subordi-
nate to subanalytic stratifications, we could use (3.7) to give meaning to the notion
of a cycle without reference to a particular stratification: a subanalytic k-cycle

would then be an element of the direct limit of Zinfk (M, T ), as T runs through all
possible subanalytic Whitney stratifications of M . Since we have departed, tem-
porarily, from the real analytic context, we can no longer assume that any two
Whitney stratifications have a common refinement. Thus, instead of (3.7), we need
to appeal to (3.6) to free our definition of a cycle from the dependence on the
stratification T . For any particular

(3.8) C ∈ Zinfk (M, T ) ∼= Hd−k
Λk(T )(M,Z) ,

we may replace the closed subset Λk(T ) ⊂ M by the support |C| of C. Then

C ∈ Hd−k
|C| (M,Z) has meaning independently of the choice of T .

Let us adopt this as our working definition of a k-cycle: a pair (|C|, C), con-
sisting of a Whitney stratifiable, closed subset |C| ⊂ M of dimension ≤ k, and

a cohomology class C ∈ Hd−k
|C| (M,Z) whose support is all of |C|. To avoid con-

voluted notation, we shall use the symbol C not only for the cohomology class in
Hd−k

|C| (M,Z) that defines it, but also as shorthand for the pair (|C|, C). Though

we allow the support |C| to have dimension < k for formal reasons, this possibility

arises only if |C| = ∅ and C = 0, since Hd−k
|C| (M,Z) = 0 if dim |C| < k. The k-cycles

in our present sense constitute an abelian group Zinfk (M). As was remarked earlier,
for each Whitney stratification T of M , there is a natural homomorphism

(3.9) Zinfk (M, T ) −→ Zinfk (M) .

Any particular k-cycle C lies in the image of this homomorphism, provided only
that |C| ⊂M is a Whitney stratified subspace with respect to T .

Now we turn to the notion of a family of k-cycles in M , parametrized by an open
interval I ⊂ R. By definition, such a family consists of a (k+1)-cycle CI in I ×M ,
such that

(3.10)
|CI | ∩ ({s} ×M) is a Whitney stratifiable subset

of {s} ×M of dimension ≤ k, for each s ∈ I .

Via the restriction map

Hd−k
|CI |

(I ×M,Z) −→ Hd−k
|CI |∩({s}×M)({s} ×M,Z),
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CI maps to a local cohomology class on {s} ×M in degree d− k, which is greater
than or equal to the codimension of |CI |∩({s}×M) in {s}×M . The interpretation
of this cohomology class as a k-cycle allows us to replace |CI | ∩ ({s} ×M) by the
support of the cohomology class. Let us denote this support, transferred to M via
the identification {s} ×M ∼= M , by |Cs|, and the corresponding local cohomology
class by Cs. Thus, for each s ∈ I, the passage

(3.11) CI 7−→ Cs ∈ Hd−k
|Cs|

(M,Z)

associates to CI the specialization Cs ∈ Zinfk (M) at s. Our identification of cycles
with local cohomology classes involves a choice of orientation for the ambient space.
For I×M , we choose the product orientation, in the given order, with I ⊂ R oriented
positively.

To define the notion of limit of a family of cycles as the parameter s tends to a
limit, say s→ 0+, we specialize the choice of the open interval I to

(3.12a) I = (0, b) ,

for some constant b > 0, and set

(3.12b) J = [0, b) .

We consider a family of k-cycles CI , subject to the following condition: the closure
|CI | ⊂ J ×M admits a Whitney stratification such that

(3.13a) |CI | ∩ ({0} ×M) is a stratified subset of |CI | .

To give meaning to the notion of Whitney stratification of a subset of the manifold
with boundary J × M , we embed the latter in R ×M . Our hypothesis (3.13a)
implies that

(3.13b) |CI | ∩ ({0} ×M) has dimension ≤ k .

Indeed, any stratum in |CI | ∩ ({0}×M) of dimension > k would have to lie in the
boundary of a stratum in |CI | of dimension > (k+1), but there are no such strata.

We shall argue presently that the inclusion (I×M, |CI |) →֒ (J×M, |CI |) induces
an isomorphism

(3.14) H∗
|CI |

(J ×M,Z)
∼
−−→ H∗

|CI |(I ×M,Z) .

Via this isomorphism and specialization at 0 – i.e., restriction from J × M to
{0} × M , cutting down the support of the local cohomology class, if necessary,
and making the identification {0} ×M ∼= M – the local cohomology class CI ∈
Hd−k

|CI |
(I ×M,Z) determines a class

(3.15) C0 ∈ Hd−k
|C0|

(M,Z),
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in other words, a k-cycle C0 ∈ Zinfk (M). Except for the use of the isomorphism
(3.14), this process of specializing at 0 is entirely analogous to specialization at any
non-zero s. By definition, C0 is the limit of the family CI :

(3.16) C0 = lim
s→0+

Cs .

We should remark that this is a very weak notion of limit, reflecting the weak hy-
pothesis (3.10) in the definition of a family of cycles. In due course, we shall impose
stronger hypotheses, and that will result in a correspondingly stronger notion of
limit.

We still need to verify (3.14). Applying base change to the Cartesian square

|CI |
j̃

−−−−→ |CI |

ĩ





y





y
i

I ×M −−−−→
j

J ×M ,

we get Rj̃∗ĩ
!ZI×M

∼= i!Rj∗ZI×M . Since Rj∗ZI×M
∼= ZJ×M , the previous isomor-

phism reduces to Rj̃∗ĩ
!ZI×M

∼= i!ZJ×M . Taking global cohomology on both sides,
we obtain (3.14).

Our assumption (3.13) implies, in particular, the triangulability of the pair

(|CI | , |CI | ∩ ({0} ×M)). Thus we may view CI not only as a (k + 1)-cycle in
I×M , but also as a (k+1)-chain in J×M . As such, it has a boundary ∂CI , which
is necessarily supported in {0}×M ∼= M . We shall tacitly regard ∂CI as a k-cycle
in M .

3.17 Proposition. lims→0+ Cs = − ∂CI .

Proof. Intuitively, this is a fairly simple matter. A proof making precise one’s
geometric intuition would be straightforward if we could argue in the subanalytic
context. Our weaker hypotheses, and our need to pin down signs precisely, makes
the argument considerably more involved.

We fix a Whitney stratification T of |CI | as in (3.13), and let T0 denote the
induced stratification on {0} ×M ∼= M . By construction, both C0 and ∂CI are
k-cycles in {0} ×M ∼= M , subordinate to T0. For each k-dimensional stratum S0

of T0 we need to equate the multiplicities with which S0 occurs in C0 and −∂CI . If
a particular (k+ 1)-dimensional stratum S for T contains S0 in its boundary, then
near each point of S0, it is finite union of branches – submanifolds of I ×M , whose
closures in J ×M are manifolds with boundary, each containing S0 and contained
in S ∪ S0. That, in effect, is the essence of a Whitney stratification.

To equate the multiplicities with which S0 occurs in C0 and −∂CI , we express
the (k+1)-cycle CI , locally near a point p ∈ S0, as a linear combination of branches
of (k+ 1)-dimensional strata S as above. We shall equate multiplicities one branch
at a time. To simplify the notation, we now let S denote a particular local branch,
and S̄ the closure of the local branch, i.e., S̄ = S ∪S0. We also replace the ambient
manifold J × M by its intersection with a small ball around p , and we replace
{0} ×M by its intersection with the same ball. We denote these intersections by
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M̃ and M0 , respectively; then (M̃,M0) is a manifold with boundary. Restricting
our situation to an even smaller ball around p, we can arrange that S̄ is closed
in M̃ , that (S̄, S0) is still a manifold with boundary, and that both S̄ and S0

are connected. One justifies these assertions – in the topological category, but
not necessarily differentiably – by triangulating J ×M compatibly with T̃ . One
additional piece of notation: M̃+ = M̃ ∩ (I ×M). We recall that M̃ , M0 , S̄ , and
S0 have dimension d + 1 , d , k + 1 , and k , respectively. In terms of our previous
notation, we had used the given orientation of M to orient R×M , so that I ×M
“lies on the positive side” of {0}×M , i.e., ∂(I ×M) = −({0}×M) , thought of as

geometric chains. Translated into our present notation, this means ∂M̃+ = −M0 .
The assertion to be proved involves the manifold with boundary (S̄, S0) lying as

a closed subspace in the manifold with boundary (M̃,M0). Our hypotheses do not
seem to imply that the former is a submanifold with boundary of the latter. From
the technical point of view, that is what makes our argument complicated.

Our choices of orientations for M̃ and M0 amount to explicit identifications
between the dualizing sheaves and constant sheaves

(3.18) ZM0
[d] ∼= DM0

, ZM̃ [d+ 1] ∼= DM̃ .

The various inclusions among the spaces S0 , S , S̄ , M0 , M̃+ , M̃ , fit into two
Cartesian squares

(3.19)

M̃+ j̃
−−−−→ M̃

ĩ
←−−−− M0

i

x





x



ī

x





i0

S
j

−−−−→ S̄
k

←−−−− S0 .

By base change and (3.18),

(3.20)
a) ī!ZM̃

∼= Rj∗i
!
ZM̃+

∼= Rj∗DS [−(d+ 1)] ,

b) ī!ZM̃ −→ ī!ĩ∗ĩ
∗
ZM̃
∼= k∗i

!
0ZM0

∼= k∗DS0
[−d] .

There is a distinguished triangle

(3.21) k∗DS0
−→ DS̄ −→ Rj∗DS

associated to the bottom row of (3.19). The definition of cohomology and the
connecting homomorphism of the above triangle give the two top horizontal arrows
in the diagram

(3.22)

H−(k+1)(S , DS)
∼

−−−−→ H−(k+1)(S̄ , Rj∗DS)
δ

−−−−→ H−k(S0 , DS0
)

∼=





y

∼=





y

∼=





y

Hd−k
S (M̃+ , ZM̃+)

∼
−−−−→ Hd−k

S̄
(M̃ , ZM̃ ) −−−−→ Hd−k

S0
(M0 , ZM0

) .

The definition of local cohomology and (3.20a) determine the three vertical isomor-
phisms. The first horizontal arrow is the canonical isomorphism (3.14), rewritten
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in terms of our present notation, and the left square commutes by definition – cf.
the proof of (3.14). The second arrow in the bottom row is restriction of local coho-
mology. By (3.20b) and the definition of triangle (3.21), the right square commutes
also. The composition of the two bottom arrows is precisely specialization of cycles,
i.e., the map which associates the limit at 0 to a family of cycles, rewritten in our
present notation.

Let us reinterpret the top row in (3.22). We extend M̃ across its boundary M0;
This gives us a manifold U , containing M0 as a closed submanifold, which separates
U into two components – the one “on the positive side” is M̃+. We now argue as
in the case of the diagram (3.22), but with U taking the place of the ambient space

M̃ ; technically this is simpler than the previous case, since U is a manifold, not a
manifold with boundary. We conclude the commutativity of the top two squares in
the following diagram:

(3.23)

H−(k+1)(S , DS)
δ

−−−−→ H−k(S0 , DS0
) H−k(S0 , DS0

)




y

∼=





y

∼=





y

∼=

Hd−k
S (U , ZU )

δ
−−−−→ Hd+1−k

S0
(U , ZU ) −−−−→ Hd−k

S0
(M0 , ZM0

)

∼=





y

∼=





y

∼=





y

Hinf
k+1(S , Z)

∂
−−−−→ Hinf

k (S0 , Z) Hinf
k (S0 , Z) .

Also, the coboundary map in the top row coincides, by construction, with the
coboundary map in (3.22) composed with the canonical isomorphism – in short, the
top rows in the two diagrams, composed left to right, coincide. The three vertical
arrows in the bottom squares are given by Poincaré duality, as in (2.13). The
bottom left square commutes, and the second bottom square anticommutes, i.e.,
commutes when one negative sign is introduced. These are simple local calculations;
the signs can be pinned down by using the explicit description in (2.13).

The assertion of the proposition follows: as was remarked before, the bottom
row in (3.22) expresses the passage from a family of cycles to the limit at 0, the
bottom row of (3.23) expresses the process of taking the boundary, the top rows
in the two diagrams coincide, and the anticommutativity in the second diagram
accounts for the factor of -1.

Until now, we have required only that the sets |CI | ∩ ({s} ×M) be stratifiable,
but not necessarily in a way which is compatible with a stratification of |CI |. If we
impose the stronger condition

(3.24)
for each s ∈ I, there exists a Whitney stratification of |CI |,

such that |CI | ∩ ({s} ×M) is a Whitney stratified subset of |CI |,

the specializations Cs, s ∈ I, are naturally homologous to the limit C0, provided
the limit exists:
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3.25 Proposition. Suppose the family CI satisfies both (3.13) and (3.24). Then,
for s ∈ I,

Cs − C0 = ∂C(0,s) ,

where C(0,s) denotes the restriction of CI to (0, s)×M .

Proof. This comes down to a second application of (3.17), in the much simpler
situation when the family extends across the endpoint in the parametrizing interval.
Since s is now the right endpoint, the fiber over s must be counted with the opposite
sign.

Let us use the preceding discussion to describe, in geometric terms, the operation
(2.10) – i.e., taking the direct image f∗(C0) of a subanalytic Lagrangian cycle C0

under a proper real analytic map f : X → Y . As in section 2, n and m are
the dimensions of the real analytic manifolds X and Y , and L+(X) denotes the
group of integral, R+-invariant, subanalytic Lagrangian cycles in T ∗X . For any
particular C0 ∈ L+(X), there exists a subanalytic Whitney stratification S, such
that the support |C0| of C0 is contained in the Lagrangian subvariety T ∗

SX (recall
the definition (2.1)); for the existence of such a stratification, see [KS, 8.3.22].

To describe the cycle f∗(C0) geometrically, we start out by deforming C0, so
that the deformed cycle is in general position with respect to df . This will be
made precise in the lemma stated below. MacPherson has pointed out to us that
the lemma follows readily from standard techniques; unfortunately there does not
appear to be a statement in the literature that would imply it directly. In concrete
situations the existence of such a deformation will be fairly obvious. In particular,
in all our eventual applications, we shall work with explicitly given deformations,
and therefore need not appeal to the lemma. We omit the proof since it would take
us too far afield.

3.26 Lemma. There exists a subanalytic family CI of n−cycles, such that

a) C0 is the limit, as s tends to zero from above, of the family CI ;
b) the map df : X ×Y T ∗Y → T ∗X is transverse to |Cs| ⊂ T ∗X, for every

s ∈ I.

We remark that the family CI automatically satisfies (3.13) and (3.24), because
we have returned to the subanalytic context.

Because of the transversality condition, for each s ∈ I, the geometric inverse
image df−1(Cs) of Cs is well defined as an m-cycle in X×Y T ∗Y : the set theoretic
inverse image df−1(S) of any stratum S in the support of Cs is a submanifold
of X ×Y T ∗Y , and df identifies the normal spaces of S ⊂ T ∗X with those of
df−1(S) ⊂ X×Y T ∗Y ; in particular, an orientation of S determines an orientation1

of df−1(S). Thus df−1(Cs) is well defined at least as an m-chain. The fact that
it is an m-cycle, and not just a chain, follows from our interpretation of the map
Cs 7→ df−1(Cs) a s Gysin map; cf. (2.15). Since τ : X ×Y T ∗Y → T ∗Y is proper
and analytic, the geometric image τ∗(df

−1(Cs)) of of the subanalytic cycle df−1(Cs)
becomes a well defined m-cycle in T ∗Y .

1More precisely, a co-orientation of S determines a co-orientation of df−1(S). However, co-
oriented submanifolds of an oriented manifold are canonically oriented – see the discussion on signs
in section 2: symbolically, (orientation of the submanifold)∧(co-orientation of the submanifold) =
(ambient orientation).
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3.27 Proposition. Let CI be a subanalytic family of n-cycles which satisfies the
conditions a), b) in the statement of lemma 3.26. Then τ∗(df

−1(Cs)), s ∈ I,
constitutes a family of m-cycles in our sense, and the limit of this family, as s
tends to 0 from above, coincides with the direct image of C0 = lims→0+ Cs under
the morphism f∗ : L+(X)→ L+(Y ), i.e.,

lim
s→0+

τ∗(df
−1(Cs)) = f∗(C0) .

Proof. The operation f∗ in (2.16) was defined in terms of the top row of the com-
mutative diagram (2.9). This top row, combined with the inclusions I ⊂ J ⊃ {0},
results in the following diagram:

(3.28)

I × T ∗X
1I×df
←−−−− I ×X ×Y T

∗Y
1I×τ−−−−→ I × T ∗Y

j





y

j





y

j





y

J × T ∗X
1J×df
←−−−− J ×X ×Y T ∗Y

1J×τ
−−−−→ J × T ∗Y

i

x




i

x




i

x





T ∗X
df

←−−−− X ×Y T ∗Y
τ

−−−−→ T ∗Y .

We let CJ denote the image of CI ∈ Hn
|C|(I × T

∗X,Z) in Hn
|C̄|(J × T

∗X,Z) via

the isomorphism (3.14); its support is contained in |CI |, the closure of |CI |. By
assumption, the cycle C0 is the limit of the family CI – in other words, the negative
of the boundary of CJ . As discussed earlier, CJ can be regarded as an (n + 1)-
chain in J × T ∗X . To simplify the notation, we let |DI |, |DI |, and |D0| denote the
inverse images of |CI |, |CI |, and |C0| under, respectively, 1I × df , 1J × df , and df .
Analogously, |EI |, |EI |, and |E0| shall denote the images of |DI |, |DI |, and |D0|
under the proper analytic maps 1I × τ , 1J × τ , and τ . We claim: dim |EI | ≤ m+1 .
Indeed, the discussion following lemma 3.26 shows that each τ∗(df

−1(Cs)), s ∈ I,
is a subanalytic m-cycle; since the subanalytic set |EI | is contained in the union of
the carriers of these cycles, both |EI | and its closure have dimension at most m+1.
We shall argue that there is a natural commutative diagram

Hn
|CI |(I × T

∗X,Z)
(1I×df)∗

−−−−−−→ Hn
|DI |(I ×X ×Y T

∗Y,Z) −−−−→ Hm
|EI |(I × T

∗Y,Z)

j∗
x





≃ j∗
x





≃ j∗
x





≃

Hn
|CI |

(J × T ∗X,Z)
(1J×df)∗

−−−−−−→ Hn
|DI |

(J ×X ×Y T ∗Y,Z) −−−−→ Hm
|EI |

(J × T ∗Y,Z)

i∗





y i∗





y i∗





y

Hn
|C0|(T

∗X,Z)
df∗

−−−−→ Hn
|D0|(X ×Y T

∗Y,Z) −−−−→ Hm
|E0|(T

∗Y,Z)

in cohomology. To see this, note that the left two squares commute for purely
formal reasons. The three horizontal arrows on the right denote push-forwards of
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cycles – in the case of the top and bottom arrows – or chains, in the case of the
middle one. In each instance we reinterpret the domain and the target as groups
of cycles or chains via Poincaré duality. The two maps j∗ in the top right square
signify restriction to open subsets, either restriction of chains or restriction of local
cohomology classes, since the identification between chains and local cohomology is
local. We conclude that the top right square commutes: restriction to a full inverse
image of an open subset in the target commutes with push-forward of cycles. We
argue similarly in the case of the right bottom square. Here the two arrows i∗ can
be interpreted as the negatives of the boundary maps; cf. (3.17). This square, then,
is commutative because the operations of push-forward and taking the boundary
commute.

We complete the argument as follows. Let EI denote the image of CI in the
group Hm

|EI |(I × T ∗Y,Z); since |EI | is subanalytic, of dimension at most m + 1,
EI constitutes a family of m-cycles in our sense. The commutativity of the above
diagram implies lims→0+ Es = f∗(C0). It still remains to be shown that Es =
f∗(Cs) = τ∗(df

−1(Cs)) for s ∈ I. But this follows from the preceding equality,
since specialization of the family at any s ∈ I can be viewed as a particular case of
taking a limit.

4. Open embeddings.

In this section we describe the effect on characteristic cycles of the operation of
direct image under an open embedding. We shall work in the subanalytic category;
for a general discussion of this category, including a list of primary references see,
for example, [BM,GM,KS]. As a general convention, which differs from that of some
authors, we shall call a map subanalytic if it is continuous and has a subanalytic
graph. The properties of the subanalytic category that we use are all satisfied in
the semi-algebraic category also, and are usually easier to verify in the latter. Thus
all our statements apply equally in the semi-algebraic context.

We consider a real analytic manifold X and an embedding j : U →֒ X of an open
subanalytic subset U . Let f be a real valued, subanalytic, C1-function, defined on
a neighborhood W of ∂U , such that

(4.1)
a) the boundary ∂U is the zero set of f ;

b) f is positive on W ∩ U ;

the differential df is then necessarily subanalytic also. Bierstone, Milman, and
Pawlucki have shown that such a function f exists [BMP]. For the semi-algebraic
analogue of this statement, see [Sh, Proposition I.4.5]. In the applications we have
in mind, one usually works with a very concrete choice for f . The last ingredi-
ent of our result is a bounded complex of sheaves F on U , whose cohomology
is constructible with respect to a subanalytic Whitney stratification of the pair
(X, ∂U). These hypotheses imply that Rj∗F and Rj!F also have subanalytically
constructible cohomology. Thus we can speak of the characteristic cycles CC(F),
CC(Rj∗F), and CC(Rj!F).

4.2 Theorem. Under the hypotheses just stated,

CC(Rj∗F) = lim
s→0+

(CC(F) + s
df

f
) , CC(Rj!F) = lim

s→0+
(CC(F)− s

df

f
) .
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In the statement of the theorem, we regard CC(F) + sdf
f

and CC(F) − sdf
f

as

cycles on R+ × T ∗U . The theorem asserts, in effect, that these constitute families
of cycles in T ∗X , whose limits as s→ 0+ exist and equal CC(Rj∗F), CC(Rj!F).

The open mapping theorem 4.2 resembles theorem 3.2 of [G2], but there are two
important differences. First of all, Ginsburg’s statement and proof involve complex
algebraic, regular holonomic D-modules, whereas we must deal directly with real
constructible sheaves. Secondly, Ginsburg’s theorem applies to complements of
principal divisors, not arbitrary Zariski open subsets, since he works with a complex
algebraic defining function f for the complement. Indeed, his result for a particular
algebraic defining function f follows form our theorem using the defining function
|f |2.

Proof of 4.2. Let us argue first that CC(F) + sdf
f

and CC(F) − sdf
f

are families

of cycles. For simplicity we consider the former; the argument for the latter is
completely analogous. We set C = CC(F). By assumption the support |C| is a
subanalytic subset of T ∗X , which is contained in T ∗U . We claim:

(4.3) |CI | =def { |C|+ s
df

f
| s ∈ R

+} is a subanalytic subset of R× T ∗X .

Indeed, |CI | consists of all pairs (x, ξ) ∈ T ∗X such that |C| contains the cotangent
vector (x, f(x)ξ − sdfx), the map (x, ξ) 7→ (x, f(x)ξ − sdfx) is subanalytic, and
inverse images of subanalytic sets under subanalytic maps are subanalytic.

Topologically, the pair (R+× T ∗U , |CI |) is the product of R+ with (T ∗U , |C|).
Thus C ∈ Hn

|C|(T
∗U,Z), with n = dimX , determines a class

(4.4) CI ∈ Hn
|CI |(R

+ × T ∗U,Z)

via the Künneth isomorphism Hn
|C|(T

∗U,Z) ∼= Hn
|CI |(R

+×T ∗U,Z). The local coho-

mology class CI now gives meaning to CC(F) + sdf
f

as a family of cycles in T ∗X .

The conditions (3.10), (3.13) in the definition of family and limit follow from the
fact that subanalytic sets can be Whitney stratified.

Let us collect the information we have about the limit C0 of the family CI .
Since the function f is strictly positive at points in U , the restriction of C0 to T ∗U
coincides with the the original cycle C. We set

(4.5) C∂ = C0 − C ;

then the support |C∂ | of the n-chain C∂ is contained in the inverse image of ∂U in
T ∗X . As in the case of any n-chain, |C∂ | has dimension exactly n, or else is empty.
Rescaling the parameter s of the family CI has the same effect as scaling each of
its members Cs, so C0 is R+-invariant. We deduce

(4.6a) |C∂ | is R
+-invariant.

A simple calculation in local coordinates shows that T ∗
ZU+sdf

f
, for each fixed s ∈ R+

and each locally closed submanifold Z ⊂ U , is Lagrangian in T ∗U . It follows that
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the carriers |Cs| of the members Cs of the family CI are Lagrangian. By Whitney’s
condition A, the tangent space to |C∂ | at any regular point is contained in the limit
of a sequence of tangent spaces to the |Cs| at regular points, hence

(4.6b) |C∂ | is Lagrangian,

unless it is empty. Appealing to [KS, 8.3.10], for example, we can draw the following
conclusion from (4.6a,b):

(4.6c)
|C∂ | is contained in the union of the conormal bundles of a locally

finite family of smooth, locally closed, subanalytic subsets of ∂U.

We recall that the complex of sheaves F has cohomology constructible with respect
to a subanalytic Whitney stratification of the pair (X, ∂U). We refine this stratifi-
cation on ∂U subanalytically to a Whitney stratification – of X – so that the latter
constitutes also a refinement of the locally finite family in (4.6c). To summarize,
we have constructed a subanalytic Whitney stratification S of (X, ∂U) such that

(4.7) T ∗
SX carries CC(Rj∗F), C0, and C∂ .

At this point, to show that CC(Rj∗F) = C0, it suffices to equate the multiplicities
of C∂ and CC(Rj∗F) at generic points of T ∗

S∩∂UX .
We now construct a sequence of subanalytic stratifications in T ∗X as follows.

First we stratify |C∂ | as a subset of the closure of |CI |, as in (3.13a). Next, we
stratify T ∗

SX so that all strata project into strata of S of X . Finally, we choose
a common Whitney refinement of these two stratifications. We let T denote the
restriction of this Whitney stratification to T ∗

S∩∂UX . Then T has the following two
crucial properties: it is fine enough to carry the limit of our family of cycles, and
each open stratum lies in the conormal bundle of a stratum in ∂U . To complete
the proof of the theorem, we shall show that each top dimensional stratum of T
occurs with the same multiplicity in C∂ and CC(Rj∗F).

We fix a top dimensional stratum Λα of T and a point (p, ξ) ∈ Λα; here p is
a point in the stratum Sα ⊂ ∂U of S over which Λα lies, and ξ ∈ T ∗

pX . We
choose a locally defined Morse function φ on an open neighborhood of p in X , as in
(2.4). In addition to (2.4) we may and shall assume that φ is an algebraic function
in terms of a local real analytic coordinate system Σ around p. In the following,
when we talk of a ball centered at p, we shall mean a ball defined by the Euclidean
metric relative to the local coordinate system Σ. Arguing as in section 2, if B is
a sufficiently small open ball with center p, and with ǫ > 0 sufficiently small in
relation to B, we can infer (2.6) and (2.7) – the latter with Rj∗F in place of F . In
particular, the multiplicity mα of Λα in CC(Rj∗F) is

(4.8) mα = χ(H∗(B ∩ φ−1(−ǫ, ǫ), B ∩ φ−1(−ǫ, 0) ; Rj∗F ) .

It will be convenient to rephrase (4.8) slightly. Because of (2.6), φ has no critical
points (in the stratified sense) on B̄ ∩φ−1[−ǫ, ǫ], except at p. Thus, by [GM, I.3.2],

(4.9) φ defines a fibration of B̄ ∩ φ−1[−ǫ, ǫ], away from the fibre over 0 ;
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here “fibration” is to be taken in the stratified sense. Hence, by excision and local
triviality,

(4.10) mα = χ(H∗(B ∩ φ−1(−ǫ, ǫ′), B ∩ φ−1(−ǫ,−ǫ′) ; Rj∗F ) ,

for any ǫ′ between 0 and ǫ , and then

(4.11) mα = χ(H∗(B̄ ∩ U ∩ φ−1(−ǫ, ǫ′), B̄ ∩ U ∩ φ−1(−ǫ,−ǫ′) ; F ) ,

first by definition of the operation of direct image, and secondly, because ∂B is
transverse to the stratification S.

We now compute the right hand side of (4.11) by Morse theory on B ∩ U , with
φ − s logf as Morse function, with s > 0 small in relation to B and ǫ′. We shrink
B, if necessary, so that

(4.12) f < 1 on the closure of B,

and define

(4.13) B̄(α, β) = B̄ ∩ φ−1(α, β) .

By construction the strata of S are transverse to ∂B, so S induces a Whitney
C-stratification of B̄. In view of (4.9), this stratification is transverse to the level
sets φ−1 = ±ǫ, and therefore in turn induces a stratification Sǫ of the closure of
B(−ǫ, ǫ).

4.14 Proposition. Let N ⊂ B(−ǫ, ǫ) be a neighborhood of p, δ a positive constant,
and ǫ′ < ǫ a positive constant. Then there exists an η > 0, such that for all
0 < s < η the following two statements hold:
a) for any stratum S of Sǫ not on the boundary of B(−ǫ, ǫ), the critical points of
φ − s logf on S ∩ U are non-degenerate, lie in N , and have critical values in the
interval (−δ, δ); and
b) for any stratum S of Sǫ lying on the boundary of B(−ǫ, ǫ), the critical values of
φ− s logf on S ∩ U lie outside of the interval [−ǫ′, ǫ′].

This, in the technical sense, is the crux of our proof of theorem (4.2). We shall
complete the proof of the theorem assuming the proposition, and shall verify the
proposition in the next section. To simplify the notation we set φs = φ − s logf .
As one consequence of (4.14),

4.15 Lemma. H∗(B̄(−ǫ, ǫ) ∩ U ∩ {φs < ǫ′}, B̄(−ǫ, ǫ) ∩ U ∩ {φs < −ǫ
′};F) does

not depend on s, for δ < ǫ′ < ǫ and 0 < s < η, and is canonically isomorphic to
H∗(B̄ ∩ U ∩ φ−1(−ǫ, ǫ′), B̄ ∩ U ∩ φ−1(−ǫ,−ǫ′) ; F ).

Proof. By the five lemma it suffices to argue separately for the cohomology groups
of F on the sets B̄(−ǫ, ǫ) ∩ U ∩ {φs < ǫ′} and B̄(−ǫ, ǫ) ∩ U ∩ {φs < −ǫ′}. Each of
these families of sets are increasing as s tends to 0 from above. Moreover, according
to (4.14), the hypersurfaces {φs = ±ǫ′} are transverse to the stratification S on
B̄(−ǫ, ǫ)∩U . At this point we appeal to the non-characteristic deformation lemma

of Kashiwara-Schapira [KS, Proposition 2.7.2], with B(−ǫ, ǫ)∩U playing the role of
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the total space. This gives us the conclusion of the lemma when we replace B̄(−ǫ, ǫ)

by B(−ǫ, ǫ). But

(4.16)
H∗(B(−ǫ, ǫ) ∩ U ∩ {φs < ǫ′}, B(−ǫ, ǫ) ∩ U ∩ {φs < −ǫ

′};F) ∼=

H∗(B̄(−ǫ, ǫ) ∩ U ∩ {φs < ǫ′}, B̄(−ǫ, ǫ) ∩ U ∩ {φs < −ǫ
′};F) ,

because {φ = ±ǫ} is transverse to the stratification which S induces on B̄.

Before completing the formal proof of theorem (4.2), let us pause briefly and
summarize the main idea. We need to equate the multiplicity a top dimensional
stratum lying over the boundary of U in CC(Rj∗F) with its multiplicity in the limit
of CC(F) + s d logf . Formula (4.11) expresses the former multiplicity as an Eu-
ler characteristic. We shall reinterpret this Euler characteristic as the intersection
number, locally near the point in question, of CC(F) and the cycle dφ. Analo-
gously, the multiplicity of the stratum in the limit cycle is (locally) the intersection
number of CC(F) + s d logf with dφ – equivalently, the intersection number of
CC(F) with dφs. The latter intersection number can again be expressed as an Euler
characteristic. Lemma (4.15) equates the two Euler characteristics, and therefore
the two multiplicities.

The interpretation of the Euler characteristic (4.11) as an intersection number is
a particular instance of Kashiwara’s index formula [K,KS]. Let us recall the index
formula in the form most convenient for our purposes – indeed, in this form it is a
fairly direct consequence of the proper pushforward formula and our formalism of
families of cycles. We consider a real analytic manifold M , a real analytic function
ψ : M → R, and a bounded complex of sheaves G with subanalytically constructible
cohomology. Then, if G has compact support (when viewed as an object in the
derived category),

(4.17) χ(G) = (pt)∗dψ
∗(CC(G)) ;

here pt : M → {pt} denotes the collapsing map. In effect, the right hand side of
(4.17) is the intersection number between CC(G) and the Lagrangian cycle {dψ}
in T ∗M – which makes sense as a finite quantity because of the proper support
hypothesis. By scaling, this cycle can be deformed to the 0-section in T ∗M , so the
right hand side of (4.17) is equal also to the intersection number between CC(G)
and the 0-section. By the proper pushforward theorem, the latter intersection
number describes the “characteristic cycle” of (pt)∗G , in other words, the Euler
characteristic of G.

Still in the setting of (4.17), let us suppose now that ψ is a Morse function in the
stratified sense with respect to G. We now drop the hypothesis of compact support
on G, and require instead that

(4.18) ψ is proper on the support of G .

Then ψ can have only finitely many critical points, hence only finitely many critical
values. Let α, β be two regular values, with α < β. Since ψ is Morse, the cycle
dψ meets CC(G) only over the critical points, and the intersections are transverse.
Thus dψ∗(CC(G|ψ−1(α,β))) is well defined as a (finite) zero cycle. In effect, the
integer (pt)∗dψ

∗(CC(G|ψ−1(α,β))) is the intersection number between the cycles dψ
and CC(G) over {α < ψ < β}. The following statement can be extracted from [K]
or [KS].
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4.19 Lemma. Under the hypotheses just stated, χ(H∗({ψ < β}, {ψ < α};G)) =
(pt)∗dψ

∗(CC(G|ψ−1(α,β))) .

Proof. We use the open inclusions

ψ−1(α, β)
jβ
−−→ ψ−1(α, β]

jα
−−→ ψ−1[α, β]

to truncate the sheaf G. The truncated sheaf

(4.20) Gα,β = (jα)!(Rjβ)∗(G|ψ−1(α,β))

has compact support because of (4.18). Essentially by definition, the left hand side
of the identity to be proved coincides with the Euler characteristic of Gα,β . The
lemma will follow from (4.17), once we have shown that the cycles dψ and CC(Gα,β)
intersect only over the interior of ψ−1[α, β], where CC(Gα,β) agrees with CC(G).
To see this, we fix a point p in ψ−1(α) or ψ−1(β). Locally near p, M is a product
in the stratified sense, M ≃ R × N , with ψ = t ( = coordinate function on R).
Correspondingly and again locally, CC(Gα,β) splits into a product of CC(G|N ) with
the characteristic variety of Cα,β , the sheaf on R defined by the truncation process
(4.20) applied to the constant sheaf. This, finally, reduces the problem to the case
of M = R and ψ = t. The crux of the matter is that the characteristic variety of
Cα,β consists of the zero section over (α, β) and the negative half lines spanned by
dt over α and β, and thus does not meet the cycle dt.

We apply the lemma with M = U , with ψ = φs for s small, and G = Ri∗i
∗F ,

where i : B(−ǫ, ǫ) ∩ U →֒ U. Note that φs is indeed proper on the support of G –
φs tends to infinity on the boundary of U . We conclude

(pt)∗dφ
∗
s(CC(G|

φ
−1
s (−ǫ′,ǫ′))) =

χ(H∗(B(−ǫ, ǫ) ∩ U ∩ {φs < ǫ′}, B(−ǫ, ǫ) ∩ U ∩ {φs < −ǫ
′};F)) ,

if ǫ′ and s are chosen as in (4.14) and (4.15). In view of (4.11) and (4.15,16), this
gives us

mα = (pt)∗dφ
∗
s(CC(G|φ−1

s (−ǫ′,ǫ′))) .

In effect, the right hand side of this equality is the intersection number between the
cycles dφs and CC(G|φ−1

s (−ǫ′,ǫ′)); by (4.14), all intersections between these two cy-

cles – including all potential intersections over ∂B(−ǫ, ǫ), where F was truncated to
produce G – occur over points in N . This allows us to replace the sheaf G|φ−1

s (−ǫ′,ǫ′)

by F|N , provided we correspondingly restrict φs to N ∩ U :

mα = (pt)∗(dφs|N∩U )∗(CC(F|N )) .

Intersecting the cycles dφs and CC(F) is equivalent to intersecting dφ and CC(F)+
s dlogf , hence finally

(4.21) mα = (pt)∗(dφ|N )∗(CC(F) + s dlogf) ,
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for all sufficiently small s > 0.
Because of the original choice of the Morse function φ, the cycle dφ is a normal

slice to the stratum Λα at (p, ξ). According to (4.21), then, this normal slice
meets the cycle CC(F) + s dlogf locally near (p, ξ) with multiplicity mα – in other
words, with the same multiplicity with which Λα appears in CC(Rj∗F). The same
argument that led to (4.21) allows us to interpret this latter multiplicity with the
intersection number, locally near (p, ξ), between dφ and CC(Rj∗F):

(4.22) mα = (pt)∗(dφ|N )∗(CC(Rj∗F)) .

Indeed, it is this expression for mα which shows that our definition of the char-
acteristic cycle agrees with that in [KS]. Geometrically, the identity obtained by
combining (4.21) and (4.22),

(4.23) (pt)∗(dφ|N )∗(CC(Rj∗F)) = (pt)∗(dφ|N )∗(CC(F) + s dlogf) ,

asserts that the normal slice dφ to the top dimensional stratum Λα intersects, locally
near (p, ξ), the cycles CC(Rj∗F) and CC(F) + s dlogf with the same multiplicity.
This is true for all sufficiently small s > 0, for any top dimensional boundary
stratum Λα and any generic point (p, ξ) ∈ Λα ; The particular sign convention for
transverse intersections of cycles does not matter, since it affects both sides of (4.23)
in the same way. We conclude that CC(Rj∗F) is the limit of CC(F) + s dlogf as s
tends to 0, as asserted by theorem 4.2.

5. Proof of Proposition 4.14.

Let us recall the setting of the proposition. Shrinking the ambient manifold X
if necessary, we may assume that the boundary ∂U of the subanalytic open subset
U ⊂ X is the zero set of a globally defined C1-subanalytic function f : X → R;
moreover, 0 < f < 1 on U . We work with two subanalytic Whitney stratifications:
a stratification S of the pair (X, ∂U), and a stratification T of T ∗

S∩∂UX . The two
stratifications satisfy three crucial properties. First, S is sufficiently fine on ∂U :
symbolically,

(5.1a) lim
s→0+

(T ∗
SU + s

df

f
) ⊂ T ∗

SX .

To make this precise, we recall that the closure, in R×T ∗X , of the subanalytic set
{T ∗

SU + s dlogf | s > 0} is also subanalytic. This closure intersects the set {s = 0}
in a subset of T ∗

SX – that is the assertion (5.1a). Secondly,

(5.1b)
T is the restriction to T ∗

S∩∂UX of a Whitney stratification

of the closure of {T ∗
SU + s dlogf | s > 0} .

Lastly, S and T are compatible, i.e.,

(5.1c) each stratum of T lies over a stratum of S.

These three assertions summarize the discussion around (4.7).
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We work near a generic point (p, ξ) in T ∗
S∩∂UX . In other words, (p, ξ) lies on an

n-dimensional stratum Λα of T , where n = dimX as before. This stratum Λα is
contained in the conormal bundle of Sα, the stratum Sα ⊂ ∂U on which p lies. We
let φ be a real algebraic2 Morse function as in (2.4). By assumption, {dφ} meets
T ∗
SX transversly at (p, ξ), so every sufficiently small ball B centered at p satisfies

(2.6). We fix a particular ball B which is small in this sense, and shrink it further
if necessary, so that

(5.2) dφ(B̄) ∩ T ∗
SX = {(p, ξ)} .

The constant ǫ > 0 was chosen to ensure that

(5.3) φ has no critical points on B̄ ∩ φ−1[−ǫ, ǫ] except at p ;

here, as usual, “critical point” is to be taken in the stratified sense. We also fix the
neighborhood N of p, N ⊂ B(−ǫ, ǫ), and the constants δ > 0 and ǫ′, 0 < ǫ′ < ǫ .
The two parts of the proposition will be proved separately. We begin with an
auxiliary statement.

5.4 Lemma. For η > 0 sufficiently small, the two sets R×dφ(B̄) and {(s, ζ) | 0 <
s < η , ζ ∈ T ∗

SU+s dlogf } intersect transversly. Moreover, the intersection consists
of a finite number of smooth subanalytic curves γi(s), 1 ≤ i ≤ N , parametrized by
s, 0 < s < η, with lims→0+ γi(s) = (p, ξ) for all i.

Proof. Because of (5.1a) and (5.2), the intersection

(R× dφ(B̄)) ∩ {(s, ζ) | s > 0, ζ ∈ T ∗
SU + s dlogf }

meets {s = 0} only at (p, ξ), and there the intersection is transverse. By compact-
ness of dφ(B̄) and the Whitney property, for every sufficiently small η > 0, the
intersection is therefore transverse over {0 ≤ s ≤ η} – of dimension one, as can
be seen by counting. When this compact, one dimensional set is projected to the
s-axis, there can be only finitely many critical points. Thus, restricting η further if
necessary,

(R× dφ(B)) ∩ {(s, ζ) | 0 < s < η , ζ ∈ T ∗
SU + s dlogf }

consists of finitely many subanalytic curves parametrized by s. As s decreases to
0, some of these curves will tend to the point (p, ξ). Because of (5.2), all the other
curves must reach the boundary at some strictly positive value of the parameter s.
Shrinking η once more, we can eliminate all of these latter curves.

The critical points of φs = φ − s logf on a stratum S correspond precisely to
the points of intersection of {dφ} and {T ∗

SU + s dlogf }, and non-degeneracy of
the critical points corresponds to the transversality of the intersection. The curves
mentioned in the lemma, projected down to B, have p as limit as s → 0+, hence

2relative to a local coordinate system at p
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can be made to lie entirely in the neighborhood N of p, provided that η is made
sufficiently small. This implies part a) of proposition (4.14) once we know:

(5.5) φs → 0 as s→ 0+ along γi

for 1 ≤ i ≤ N . In this statement, we regard φs as a function on R × T ∗X in the
natural way. Subanalytic curves can be parametrized (locally) by a real analytic
parameter [L] – [BM] is a convenient reference. Let us then parametrize γi real
analytically by a parameter t, 0 ≤ t < τ , so that t = 0 corresponds to the point
(0, p, ξ) ∈ R×T ∗X . At this point, s and φ become real analytic functions of t, and
f is at least C1; moreover, all three of these functions tend to 0 as t goes to 0. The
criticality of φs along γi translates into the differential equation

(5.6)
dφ

dt
= s

d

dt
logf .

Thus logf has a real meromorphic t-derivative at t = 0,

d

dt
logf = a tk + . . . , with a 6= 0 , k ∈ Z .

On the other hand, s = btl + . . . , with b > 0 and l ≥ 1. Since φ is regular at t = 0,
(5.6) forces l + k ≥ 0. We conclude that s logf tends to 0 as t→ 0. Hence so does
φs, as asserted in (5.5).

We turn to the proof of part b). We are free, of course, to make a separate choice
of η. For s > 0 sufficiently small, then, we must show that

(5.7) φs : U ∩ ∂B(−ǫ, ǫ) ∩ φ−1
s [−ǫ′, ǫ′] → [−ǫ′, ǫ′] has no critical points.

Since 0 < f < 1, the set ∂B(−ǫ, ǫ) ∩ φ−1
s [−ǫ′, ǫ′] does not meet {φ = ǫ}, hence

(5.8) ∂B(−ǫ, ǫ) ∩ φ−1
s [−ǫ′, ǫ′] ⊂ (B̄ ∩ {φ = −ǫ}) ∪ (∂B ∩ {−ǫ < φ < ǫ}) .

First, let us exclude all potential critical points on U ∩ B̄ ∩ {φ = −ǫ}. Any such
critical point would have to correspond to a critical value −ǫ+ ǫ̃, with ǫ̃ ≥ ǫ−ǫ′ > 0.
On the set in question, φs = −ǫ− s logf . In effect, we must exclude critical points
of logf with critical values −ǫ̃

s
, with small s > 0. Since ǫ̃ is bounded away from 0,

this amounts to excluding critical points of f on B̄ ∩ {φ = −ǫ} with small positive
critical values. Here smallness of critical values is measured by the constant η which
bounds s from above. The set V of critical values of f on B̄∩{φ = −ǫ} is the image
of the subanalytic set {df = 0} under the proper map f , hence is subanalytic. If
V is discrete we are done. Otherwise, by the curve selection lemma (see [BM] for
example), there exists a curve in U∩{df = 0} along which f tends to 0. Impossible:
f is strictly positive on U !

The remaining task is to exclude critical points on ∂B ∩ {−ǫ < φ < ǫ}. Let us
argue that the containment (5.1a) implies

(5.9) lim
s→0+

(T ∗
S∩∂BU + s

df

f
) ⊂ T ∗

S∩∂BX .
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By construction, each stratum S ∈ S meets ∂B transversly. Thus, at any point
x ∈ S, the conormal space of S ∩ ∂B is the direct sum of the conormal space of S
and Lx, the conormal line to ∂B at x. We consider a convergent sequence

(5.10) (sn, xn, ln + ξn + sn
df

f
(xn)) ∈ T ∗

S∩∂BU + s
df

f
,

with sn → 0, xn ∈ S, ln ∈ Lxn
, and ξn conormal to S at xn. We may as well assume

that the ln have a limit at least in the projective sense. This limit is conormal to
∂B, and therefore linearly disjoint from the conormal space of the stratum on which
x = limxn lies. Thus ln has a limit l in the usual sense, so

(sn, xn, ξn + sn
df

f
(xn))

converges, necessarily to a point (x, ζ) ∈ T ∗
SX because of (5.1a). But then (x, l+ζ) ∈

T ∗
S∩∂BX , proving (5.9).
Our choice of φ and ǫ implies, in particular, that dφ does not meet T ∗

S∩∂BX
over the compact set ∂B ∩ {−ǫ ≤ φ ≤ ǫ}. Thus (5.9) makes it impossible for dφ

to intersect T ∗
S∩∂BU + sdf

f
over ∂B ∩ {−ǫ ≤ φ ≤ ǫ} for arbitrarily small values of

s. Equivalently, φs cannot have critical points on ∂B ∩ {−ǫ < φ < ǫ} for small s.
This completes the verification of (5.7), and hence of proposition 4.14.

6. Calculus of characteristic cycles.

In this section we describe how certain results of Kashiwara and Kashiwara-
Schapira, in conjunction with our theorem 4.2, provide a complete set of rules for
computing – in principle – the characteristic cycle of any constructible sheaf. The
analogy we have in mind is ordinary homology: typically one calculates the ho-
mology of a space not by going back to the technical definition, but rather using
axioms, such as exactness, normalization, excision. Characteristic cycles, it turns
out, are determined by their behavior under the operation of direct image of sheaves
by open embeddings of manifolds, behavior with respect to distinguished triangles,
a normalizing axiom, and the fact that the characteristic cycle is a local invariant.
The functorial operations of direct and inverse image, with or without proper sup-
port, on objects in the derived category have geometric counterparts on the level of
characteristic cycles. For proper direct images and non-characteristic pullbacks this
is done in [KS], as we explained earlier. Theorem 4.2 makes it possible to describe
these functorial operations on characteristic cycles in general. Everything we do
is predicated on knowing that the characteristic cycle construction is well-defined.
One may wonder if the rules and axiomatic properties can be used to give an a
priori definition of the characteristic cycle of a constructible sheaf; we do not know
the answer to this question.

To keep the discussion as concrete as possible, we restrict ourselves to the semi-
algebraic setting, and we also assume that the ambient manifold is oriented. The
advantage of the semi-algebraic context is the fact that the operations of direct im-
age and pullback preserve constructibility. When this is not the case, for subanaly-
tically constructible sheaves, constructibility has to be made part of the hypotheses
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in various statements. The orientability assumption on X is of little consequence,
and can be removed using known techniques – see for example [KS].

Unless stated otherwise, in this section “manifold” shall mean a real algebraic
manifold, and constructibility shall be taken in the semi-algebraic sense. We shall
work inside the bounded derived category Db(X) of constructible sheaves on an
oriented manifold X . Let us list the properties which determine the characteristic
cycle map CC : Db(X) → L+(X) – recall that L+(X) denotes the group of R+-
invariant, integral Lagrangian cycles, with infinite support, on T ∗X . First of all,
normalization:

(6.1a) CC(CX) = [X ] = zero section in T ∗X ,

oriented by the fixed orientation of X . Next there is additivity in distinguished
triangles:

(6.1b) CC descends to a map CC : K(Db(X)) −→ L+(X) .

The local nature of the characteristic cycle is embodied in the commutativity of the
square

(6.1c)

Db(X)
CC

−−−−−→ L+(X)




y





y

Db(U)
CC

−−−−−→ L+(U)

for any semi-algebraic open U ⊂ X – note that restriction to open subsets makes
sense for cycles with infinite support. The fourth characterizing property, extension
from open subsets as stated in theorem 4.2, asserts the commutativity of the square

(6.1d)

Db(U)
CC

−−−−−→ L+(U)

Rj∗





y





y

j∗

Db(X)
CC

−−−−−→ L+(X) ;

here j∗ : L+(U)→ L+(X) is the limit operation

j∗(C) = lim
s→0+

(C + s d logf) , C ∈ L+(U) ,

which was described in detail in section 4.
To see that the properties (6.1a-d) do determine the characteristic cycle con-

struction, we recall that the K-group K(Db(X)) is generated by objects of the form
Ri∗E , where i : M →֒ X is the inclusion of a locally closed, semi-algebraic submani-
fold, and E a local system on M . By (6.1b), then, it suffices to consider objects
of this particular type. The inclusion i : M →֒ X factors as the composition of
closed embedding M →֒ X − ∂M and the open embedding X − ∂M →֒ X . The
effect of the latter is described by (6.1d), so we may as well suppose that M is
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closed in X . Because of (6.1c), we can localize the situation, and make M simply
connected. This reduces the problem to the case of the constant sheaf E = CM on
the closed submanifold M . Let j denote the open embedding X −M →֒ X . In the
distinguished triangle

(6.2) i∗i
!
CX −→ CX −→ Rj∗j

∗
CX ,

i!CX = CM [codimMX ] , so CC(i∗CM ) is the difference of two known – by (6.1a)
and (6.1d) – characteristic cycles. Concretely, CC(i∗CM ) is the cycle [T ∗

MX ] with
the orientation prescribed by (2.3).

The same ideas can be used to describe the effect on characteristic cycles of
the four operations of direct and inverse image of sheaves, with or without proper
support. The cases of direct image under a proper map and of non-characteristic
pullback are done in [KS]; we have already discussed these cases in sections 2
and 3. The effect of Verdier duality on characteristic cycles follows fairly directly
from the definition, either Kashiwara’s formal definition, or its Morse theoretic
reinterpretation, as explained in chapter 2. Specifically,

(6.3) CC(DF) = a∗ CC(F) ,

with a : T ∗X → T ∗X denoting the antipodal map. In particular, formulas involving
proper direct or inverse images are concretely and immediately equivalent to their
counterparts for ordinary direct and inverse images.

To describe CC(F ∗G) for an arbitrary semi-algebraic map F : X → Y and

G ∈ Db(Y ), we use the usual device of factoring F into the composition of the closed
embedding i : X →֒ X ×Y , via the graph of F , and the projection p : X ×Y → Y .
The formula for CC(p∗G) is especially simple – it is the product of the zero section
in T ∗X with CC(G), properly oriented – since this is a product situation. The
case of the closed embedding i can be reduced to that of the open embedding of
the complement of the graph of F in X × Y , just as we did in the case of the
distinguished triangle (6.2). This process results in an explicit formula, in terms of
a limit of cycles. The point is that there are natural choices of a defining function
for the graph of F , for example the square of the distance between y and f(x),
relative to a real analytic, or even real algebraic, metric on Y .

The description of CC(RF∗F) is more delicate. We embed X as an open subset
in a compact, real algebraic manifold X̄, and we factor F into a product of three
mappings: the closed embedding i : X →֒ X × Y as before, the open inclusion
j : X × Y →֒ X̄ × Y , and the projection p̄ : X̄ × Y → Y . The open embedding is
dealt with by theorem 4.2, the closed embedding is a very simple case of a proper
direct image, and p̄ is proper. In principle, this provides a formula for CC(RF∗F).
The formula, we shall argue, can be expressed in terms of a limit, which makes it
as explicit as the geometric description (3.27) of CC(RF∗F) for a proper map F .

Using the same notation as in the last paragraph, we note that CC(i∗F) is just
the inverse image, properly oriented, of CC(F) under

di : T ∗(X × Y )|i(X) −→ T ∗X .

Let us separate this simple step, and describe CC(Rp∗E) for E ∈ Db(X × Y ) – in
particular for E = i∗F .
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6.4 Lemma. Let S be a semi-algebraic Whitney stratification of X × Y . There
exists a C1 semi-algebraic function f : X̄ → R, which takes strictly positive values
on X and vanishes on ∂X, such that T ∗

S(X × Y ) + s d log f is transverse, in the
stratified sense, to T ∗

XX × T
∗Y , for every sufficiently small s > 0.

We postpone the proof until the end of this section. Let us apply the lemma
with a stratification S with respect to which E becomes constructible. By theorem
4.2,

(6.5) CC(Rj∗E) = lim
s→0+

(

CC(E) + s
df

f

)

.

Here f can be any function satisfying the conditions stated in (6.4). These condi-
tions ensure that the family of cycles {CC(E)+ s d logf} satisfies the transversality
hypotheses of proposition 3.27. Hence

(6.6) p̄∗(CC(Rj∗E)) = lim
s→0+

τ̄∗

(

(dp̄)−1

(

CC(E) + s
df

f

))

,

where τ̄ : T ∗
X̄
X̄ × T ∗Y → T ∗Y is the projection. But p̄ ◦ j = p, so

(6.7) p̄∗(CC(Rj∗E)) = CC(Rp̄∗Rj∗E) = CC(Rp∗E)

by Kashiwara-Schapira’s proper push-forward theorem (2.17). Away from s = 0,
the family {CC(E) + s d logf} lies entirely in T ∗(X × Y ); this permits us to leave
off the bars on the right hand side of (6.6),

(6.8) τ̄∗

(

(dp̄)−1

(

CC(E) + s
df

f

))

= τ∗

(

(dp)−1

(

CC(E) + s
df

f

))

,

with τ : T ∗
XX×T

∗Y → T ∗Y denoting the projection. Combining (6.5-8), we obtain
the description of CC(Rp∗E) we want:

6.9 Theorem. CC(Rp∗E) = lims→0+ τ∗(dp)
−1(CC(E) + s d log f) .

The right hand side of this identity has a simple geometric interpretation. Since
dp : T ∗

XX × T
∗Y → T ∗(X × Y ) is just an embedding, (dp)−1(CC(E) + s d log f)

is simply the intersection – transverse because of the hypotheses on f – between
T ∗
XX×T

∗Y and CC(E)+s d log f ; the intersection is to be oriented as was discussed
in section 3.

As has been mentioned already, theorem 6.9 leads to a geometric description of
CC(RF∗F) for an arbitrary semi-algebraic map F : X → Y . Sometimes such a map
has a natural, explicit completion; in that case the completion can be used to give
a more direct description of CC(RF∗F), which does not involve factoring F . Let us
suppose then that X lies as an open subset in a real algebraic manifold X̄ , and that
F extends to a proper map F̄ : X̄ → Y . As before, we write dF : X×Y T ∗Y → T ∗X
for the map induced by F and τ : X ×Y T ∗Y → T ∗Y for the projection.
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6.10 Theorem. Let f : X̄ → R be a C1, semi-algebraic function, strictly positive
on X and vanishing on ∂X. Suppose that |CC(F)|+ s d log f is transverse to dF ,
for every sufficiently small s > 0. Then

CC(RF∗F) = lim
s→0+

τ∗(dF )−1(CC(F) + s d log f) .

The proof of this theorem proceeds along exactly the same lines as that of the-
orem 6.9.

Proof of lemma 6.4. We embed X̄ →֒ B ⊂ RN , where B is the open unit ball. We
choose a particular defining function f0 for X̄ −X , strictly positive on X as usual,
and consider the (N + 1)-parameter family of functions

(6.11) fa,b = (a1x1 + · · ·+ aNxN + b)f0 .

These will be again be defining equations with the same positivity property, pro-
vided the linear function a1x1 + · · ·+ aNxN + b is strictly positive on the unit ball.
We claim: the map

(6.12)
T ∗
S(X × Y )× R× R

N+1 → T ∗X × T ∗Y ,

(x, ξ, y, η, s, a, b) 7→ (x, ξ + s dx log fa,b, y, η, s, a, b) .

is transverse to T ∗
XX ×T

∗Y in the stratified sense; here dx signifies the differential
with respect to the X-variables only. This is clear, since dx(a1x1 + · · ·+ aNxN + b)
spans all of T ∗

xX at each point x ∈ X . We will be done as soon as we can argue that
transversality for the family – parametrized by (s, a, b) – implies transversality for
its generic member. As explained in [GM, pp.39-40], this follows from the stratified
version of the method of Abraham and Morse.

7. Intertwining operators and Lagrangian cycles.

As one application of theorem 6.9, we shall show that two seemingly different
Weyl group actions on Lagrangian cycles on the cotangent bundle of the flag man-
ifold coincide. This generalizes a result of Kashiwara-Tanisaki [KT], who prove
the equality of the two actions for characteristic cycles of Verma modules. In the
present section we recall the construction of one of the two actions, via intertwining
operators. We shall take up the second action in section 8, and prove that the two
actions coincide in section 9.

We consider a complex semisimple Lie algebra g, and letX denote its flag variety.
We write g̃→ X for the tautological bundle of Borels – the subbundle of the trivial
bundle g×X → X whose fibre at x ∈ X is bx , the Borel corresponding to x. The
various quotients bx/[bx, bx] , as x ranges over X , are canonically isomorphic, so
the quotient bundle g̃/ñ of g̃ by ñ =def [g̃, g̃] is canonically trivial:

(7.1) g̃/ñ ≃ h×X .

By definition, the fibre h of this trivial bundle is the universal Cartan. Its dual
h∗ contains the universal root system Φ of g. We adopt the convention that g/bx
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is the sum of the positive root spaces when h ≃ bx/[bx, bx] is identified with a
concrete Cartan in bx. That defines a universal positive root system Φ+ in Φ. The
Weyl group W of g has an incarnation as a reflection group acting on the universal
Cartan h; in particular, W acts on the universal root system Φ.

Let us recall what it means for a point y ∈ X to lie in position w relative to
a given x ∈ X . The intersection bx ∩ by contains a Cartan subalgebra c; via the
canonical isomorphisms bx/[bx, bx] ∼= c ∼= by/[by, by], the positive root system for
h ∼= by/[by, by] corresponds to a positive root system Φ+

y in Φ, which depends only

on x and y, not the particular choice of c. The unique w ∈ W which maps Φ+ to
Φ+
y specifies the relative position. The subvariety

(7.2) Yw = { (x, y) ∈ X ×X | y is in position w relative to x }

is an Aut(g)0-orbit in X×X , and every orbit is of this form for exactly one w ∈ W .

As in the previous section, Db(X) shall denote the bounded derived category of
semi-algebraically constructible sheaves on X . We fix w ∈ W for the moment, and
write p, q : Yw → X for the projections onto the first and second factor of X ×X .
Both p and q are fibrations with affine fibers, of dimension ℓ(w), the minimal length
of an expression of w as a product of simple reflections. One calls

(7.3a) Iw = Rq∗ p
∗[ℓ(w)] : Db(X)→ Db(X)

the intertwining functor corresponding to w. We shall also use the related functor

(7.3b) Jw = Rq! p
∗[ℓ(w)] : Db(X)→ Db(X) .

The construction of these functors – in the slightly different, but formally analogous
setting of D-modules – goes back to [BB1]. Their basic formal properties were
proved in an earlier, unpublished version of [BB2], and also in [HMSW].

7.4 Lemma. Iw is an equivalence of categories with inverse Jw−1 . If ℓ(w1) +
ℓ(w2) = ℓ(w1w2), the composition Iw1

◦ Iw2
is naturally equivalent to Iw1w2

.

Proof. The product formula Iw1
◦Iw2

∼= Iw1w2
follows formally by base change in the

diagram obtained by taking the fibre product of the two correspondences defined by
Yw1

and Yw2
. For details see, for example, [HMSW]. The same argument establishes

also the analogous product formula for the Jw. Thus, to prove Iw ◦ Jw−1
∼= Id ∼=

Jw−1 ◦ Iw , it suffices to consider the case of a simple reflection s. Both Is and Js
can be expressed as the sheaf analogues of integral operators with kernels, and their
composition can be computed by “composing the kernels”. Let us digress briefly
to explain this process – details can be found in [KS, §3.6], for example.

Let M1, M2 be two topological spaces, which we assume are manifolds, to sim-
plify matters. We write q1, q2 for the projections from M1×M2 to the two factors.
For each K ∈ Db(M1 × M2), the operation ΦK : F 7→ Rq2!(K ⊗ q

∗
1F) defines a

functor

(7.5) ΦK : Db(M1) −→ Db(M2) .
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If ΦL : Db(M2) → Db(M3), with L ∈ Db(M2 ×M3) is defined analogously, the

composition ΦL ◦ ΦK is naturally equivalent to ΦL◦K : Db(M1) → Db(M3), with

L ◦ K ∈ Db(M1 ×M3) given by the formula

(7.6) L ◦ K = Rq13!(q12
∗K ⊗ q23

∗ L) ;

here qij denotes the projection from M1 ×M2 ×M3 to Mi ×Mj.
We apply this principle with M1 = M2 = M3 = X . The intertwining functors

Is, Js can be represented as

(7.7) Is = ΦK[1] , Js = ΦL[1] .

To describe the kernels K, L, we let j denote the inclusion Y = Ys →֒ X ×X ; then

(7.8) K = j!CY , L = Rj∗CY .

We note that the sheaf L◦K on X×X is supported on the closure Ȳ of Y . Similarly,
q12

∗K ⊗ q23
∗ L is supported on the closure Z̄ of Z = (Y ×X)∩ (X×Y ). The map

q13 induces a P1-fibration π : Z̄ → Ȳ . At points y ∈ Y , Z ∩ π−1(y) ∼= C∗, and the
sheaf L ◦ K restricted to π−1(y) ∼= P1 can be identified with the constant sheaf C

on C∗, extended by zero over one of the two punctures, and by the derived lower ∗
extension over the other. This sheaf on P1 has no cohomology, hence the stalk of
L ◦K at points y ∈ Y reduces to zero. Thus L ◦K is supported on Ȳ − Y , in other
words, on the diagonal in X×X . At points y in the diagonal, Z ∩π−1(y) ∼= C, and
the sheaf L ◦K restricted to π−1(y) ∼= P1 can be identified with the constant sheaf
C on C, extended by zero over the puncture. This latter sheaf has cohomology in
degree two only, of dimension one. We conclude that L ◦ K is the constant sheaf
on the diagonal in degree two. Noting the shifts in (7.7), we now see that Js ◦ Is
corresponds to the “identity kernel”, i.e., the constant sheaf on the diagonal. Thus
Js ◦ Is is naturally equivalent to the identity functor. The case of the composition
Is ◦ Js is totally analogous.

On the level of theK-groupK(Db(X)), the natural equivalences Iw1
◦Iw2

∼= Iw1w2

asserted by the lemma become equalities. Also, if s is a simple reflection,

(7.9) Is = Js as operators on K(Db(X)) .

To see this, we consider the diagram

(7.10)

X
p̄

←−−−− Ȳs
q̄

−−−−→ X
∥

∥

∥

j

x





∥

∥

∥

X
p

←−−−− Ys
q

−−−−→ X

and the inclusion i : X ∼= ∆X →֒ Ȳs . Since i(X) is the complement of Ys in Ȳs , we
get distinguished triangles

(7.11) i∗i
!G −→ G −→ Rj∗j

∗G , j!j
∗G −→ G −→ i∗i

∗G
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corresponding to any G ∈ Db(Ȳs), in particular for G = p̄∗F , with F ∈ Db(X). In
this latter case, i∗i

!p̄∗F = i∗F [−2] (p has real fiber dimension 2 !), Rj∗j
∗p̄∗F =

Rj∗p
∗F , j!j

∗p̄∗F = j!p
∗F , and i∗i

∗p̄∗F = i∗F . The resulting distinguished
triangles translate into the following equalities in the K-group:

(7.12) p̄∗F = i∗F +Rj∗p
∗F = i∗F + j!p

∗F in K(Db(Ȳs)) ,

and hence Rj∗p
∗F = j!p

∗F . At this point, again in the K-group,

(7.13) IsF = Rq∗p
∗F [1] = Rq̄∗Rj∗p

∗F [1] = Rq̄∗j!p
∗F [1] = Rq!p

∗F [1] = JsF ,

as was claimed in (7.9). Combining this assertion with (7.4), we find:

7.14 Proposition. The intertwining functors Iw, w ∈W , induce an action of the
Weyl group W on K(Db(X)).

8. Rossmann’s construction.

Rossmann [R], following an earlier idea of Kazhdan-Lusztig [KL], constructs a
proper homotopy action of the Weyl group on the cotangent bundle of the flag
variety. This action, in turn, determines an action on the Borel-Moore homology of
certain subsets of T ∗X . In this section we shall show that Rossmann’s construction
produces, in particular, a Weyl group action on L+(X), the group of all semi-
algebraic, R+-invariant Lagrangian cycles on T ∗X .

Let us continue with the notation of the previous section. In particular, g̃→ X
stands for the tautological bundle of the Borels, and h for the universal Cartan. By
definition, h is canonically isomorphic to each of the quotients bx/[bx, bx], x ∈ X .
The tangent space of X at x can be naturally identified with g/bx. The resulting
exact sequences

(8.1) 0→ h→ g/[bx, bx]→ TxX → 0

fit together, into the exact sequence of vector bundles

(8.2) 0→ h×X → (g×X)/ñ→ TX → 0 .

Dually this gives

(8.3) 0→ T ∗X → (g×X/ñ)∗ → h∗ ×X → 0 .

We note that the exact sequences (8.2-3) are equivariant with respect to the group

(8.4) G = Aut(g)0

when G is made to act trivially on h.
Let q : (g × X/ñ)∗ → h∗ denote the second arrow in (8.3), composed with the

projection to the factor h∗ and p : (g ×X/ñ)∗ → g∗ the mapping induced by the
quotient maps g→ g/[bx, bx] . We claim: for each regular λ ∈ h∗,

(8.5) Ωλ = pq−1λ
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is a regular, semisimple, coadjoint orbit, i.e., an orbit in g∗ under the action of G;
moreover, the assignment λ → Ωλ establishes a bijection between the regular W -
orbits in h∗ and the regular, semisimple, coadjoint orbits. To see this, we observe
that q−1λ intersects (g/[bx, bx])

∗ – i.e., the fiber of (g × X/ñ)∗ at x – in the set
of all linear functions φ ∈ g∗ which vanish on [bx, bx] and coincide with λ on
h = bx/[bx, bx]. The isotropy subgroup Bx ⊂ G acts transitively on this set,
precisely because λ was assumed to be regular3. Consequently G acts transitively
on Ωλ. Also, if t ⊂ bx is a concrete Cartan, λ corresponds to some λt in t∗ via
the distinguished isomorphism t ∼= bx/[bx, bx] = h . Like any Cartan subalgebra,
t has a distinguished linear complement in g, so this λt can be thought of as an
element of g∗. Our earlier description of the fiber of q at x shows that λt ∈ Ωλ. In
particular, Ωλ is a regular, semisimple, coadjoint orbit, as we had claimed, and the
correspondence λ 7→ Ωλ agrees with the usual enumeration of such orbits in terms
of a concrete Cartan subalgebra.

We fix a compact real form UR ⊂ G. Then each x ∈ X is fixed by a unique max-
imal torus in UR ; the complexified Lie algebra of this maximal torus is a concrete
Cartan tx ⊂ bx, hence a distinguished linear complement to [bx, bx] in bx. The
choice of this complement, as x varies over X , splits the exact sequences (8.2-3)
UR-equivariantly and real algebraically. Thus

(8.6) (g×X/ñ)∗ ∼= (h∗ ×X)⊕ T ∗X ,

again UR-equivariantly and real algebraically. For any fixed λ ∈ h∗, the section
{λ} × X ⊂ h∗ × X now determines a map from T ∗X to (g × X/ñ)∗, which we
compose with the map p : (g × X/ñ)∗ → g∗. The result is a UR-equivariant, real
algebraic map

µλ : T ∗X → g∗,

which takes values in pq−1λ, whether or not λ is regular. When λ is regular,

(8.7) µλ : T ∗X
∼
−→ Ωλ ,

as follows from our earlier description of the fibers of q−1λ . This is Rossmann’s
twisted moment map. At the opposite extreme, for λ = 0, pq−1(0) = N ∗ is the
nilpotent cone in g∗, and

(8.8) µ =def µ0 : T ∗X → N ∗

is the usual moment map. In this case µ no longer depends on the choice of the
compact real form UR ⊂ G, and µ is, in fact, G-equivariant and complex algebraic.
The difference between the twisted moment map µλ and the usual moment map µ
can be described explicitly: for x ∈ X and ξ ∈ T ∗

xX ,

(8.9) µλ(x, ξ) = µ(x, ξ) + λx ;

here λx denotes the image of λ in t∗x ⊂ g∗ under the canonical isomorphism h =
bx/[bx, bx] ∼= tx between the universal Cartan and tx, the complexified Lie algebra

3One can see this, for example, by identifying g ∼= g∗ via the Killing form and using the
standard fact that the Bx-orbit through any regular semisimple ξ ∈ bx coincides with ξ +[bx, bx] .
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of the unique maximal torus in UR which fixes x. To verify (8.9), one can argue as
in the remarks below (8.5).

In the discussion that follows, S ⊂ N ∗ will be a closed, R+-invariant, semi-
algebraic subset. Rossmann’s construction produces a proper homotopy action of
W on the semi-algebraic set µ−1(S), and therefore a representation of W on the

Borel-Moore homology Hinf
∗ (S,Z) [R]. Since Rossmann’s argument is sketchy, we

shall describe the action in detail, in our setting – i.e., with the stated hypotheses
on S.

8.10 Lemma. There exists a neighborhood U of µ−1(S) in T ∗X such that
a) the inclusion µ−1(S) →֒ U is a proper homotopy equivalence;
b) U contains µ−1{ ξ ∈ N ∗ | dist(ξ, S) < ǫ } , for some ǫ > 0.

In b), dist(ξ, S) refers to the distance between ξ and S with respect to a Euclidean
metric on g∗. By a proper homotopy equivalence, we mean an isomorphism in the
proper homotopy category: the category of topological spaces and proper maps,
with any two maps identified if they are homotopic via a homotopy which itself is
a proper map.

Proof of 8.10. We put a UR-invariant – hence real algebraic – hermitian metric on
the vector bundle T ∗X and let B denote the bundle of closed unit balls in T ∗X .
Then the pair (µ−1(S) ∩ B, µ−1(S) ∩ ∂B) is compact and semi-algebraic, so the
triple (B, µ−1(S) ∩ B, µ−1(S) ∩ ∂B) can be finitely triangulated. Using standard
arguments, one can construct an open neighborhood U≤1 of µ−1(S)∩B and a strong
deformation retraction

(8.11) (r≤1, r1) : (U≤1,U1)→ (µ−1(S) ∩ B, µ−1(S) ∩ ∂B) ;

here U1 denotes the intersection U≤1 ∩ ∂B and r1 the restriction of r≤1 to the
unit sphere bundle ∂B. Since S was assumed to be R+-invariant, we can scale
out both r1 and U1; the result will be a strong deformation retraction r≥1 : U≥1 →
µ−1(S)∩(T ∗X− intB ) which agrees with r1 on U1. Thus we can glue along U1, and
produce a strong deformation retraction r : U → µ−1(S). Since r is R+-equivariant
outside a compact set, it is a proper homotopy inverse of the inclusion, and U
satisfies condition b) in the lemma.

From the definition of the twisted moment map, one sees that the Euclidean
distance between µλ(x, ξ) and ξ = µ(x, ξ) can be uniformly bounded in terms of
the size of λ. Thus, for w ∈ W and any sufficiently small regular λ ∈ h∗,

(8.12) aw,λ =def (µwλ)
−1 ◦ µλ

maps µ−1(S) into the neighborhood U constructed in lemma 8.10. The regular set
in h∗, intersected with any small ball around the origin, is connected. It follows
that the proper homotopy class of aw,λ ∈ Map (µ−1(S) , U ) depends only on w,
not on λ . The inclusion µ−1(S) →֒ U is an isomorphism in the proper homotopy
category, hence aw,λ determines a morphism, in the proper homotopy category,

(8.13) āw : µ−1(S)→ µ−1(S) .

The aw,λ satisfy the identity

(8.14) aw,vλ ◦ av,λ = awv,λ ,

hence āw ◦ āv = āwv. This is Rossmann’s proper homotopy action:
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8.15 Proposition. The āw define a proper homotopy action of W on µ−1(S).

Like Rossmann, we are not so much interested in the homotopy action itself,
but rather in the induced action on Borel-Moore homology; for that, of course, it
is crucial that the construction takes place in the proper homotopy category.

8.16 Corollary. The āw induce a representation of W on Hinf
∗ (µ−1(S) , Z ) .

We shall see presently – in lemma 8.29 below – that every R+-invariant La-
grangian cycle C in T ∗X has support contained in a semi-algebraic, isotropic sub-
variety of the form µ−1(S), with S ⊂ N ∗ closed, semialgebraic, R+-invariant. In
particular, then, C can be regarded as an element of the Borel-Moore homology
of µ−1(S) in degree equal to the real dimension of X ; conversely, every element
of that Borel-Moore homology group represents some C ∈ L+(X). Once 8.29 has
been proved, 8.16 gives the conclusion we want:

8.17 Theorem. The āw define an action of W on L+(X).

Let us turn to the last remaining ingredient of our construction. The statement
we need, lemma 8.29 below, depends on a geometric result which relates the sym-
plectic structure of a nilpotent coadjoint orbit to that of T ∗X . Let us state and
prove this result first. We recall that N ∗ is the union of finitely many G-orbits,
and that each of these orbits carries a canonical, G-invariant, complex algebraic
symplectic structure. Specifically, if O ⊂ N ∗ is a G-orbit and ξ a point in O,

(8.18) ωO|ξ (Z1 · ξ , Z2 · ξ) = ξ([Z1, Z2]) , for Z1 · ξ , Z2 · ξ ∈ g · ξ ∼= TξO ,

is a well-defined element of ∧2T ∗
ξO, and ξ 7→ ωO|ξ a well-defined, nondegenerate,

closed, algebraic two form.

8.19 Lemma. The canonical symplectic form ω on T ∗X and the symplectic form
ωO on a G-orbit O ⊂ N ∗ are compatible, in the sense that µ∗ωO = −ω|µ−1(O) at

the smooth points of µ−1(O).

Proof. By definition, the symplectic form ω is the exterior derivative dα of the
contact form α on T ∗X , which is given as follows. We write π : T ∗X → X for the
projection; then, for v ∈ T(x,ξ)T

∗X ,

(8.20) α(v) = ξ(π∗v).

The action of G on X induces an action on T ∗X . For Z ∈ g and any space on
which G acts – in particular, X , T ∗X , and N ∗ – we let ℓ(Z) denote the vector field
“infinitesimal translation by Z”. Since G acts transitively on X , Ker(π∗) and ℓ(g)
span the tangent space of T ∗X at any point (x, ξ). If (x, ξ) is a smooth point of
µ−1(O), with O the G-orbit through ξ = µ(x, ξ), T (µ−1(O)) contains all of ℓ(g),
so T (µ−1(O)) is spanned by ℓ(g) and Ker(π∗) ∩ T (µ−1(O)). Thus, to prove the
identity

(8.21) ωO(µ∗v1, µ∗v2) = −ω(v1, v2) , with v1, v2 ∈ T(x,ξ)(µ
−1(O)) ,

it suffices to consider three cases: both v1 and v2 lie in ℓ(g), both lie in Ker(π∗), or
v1 lies is one of the two spaces and v2 in the other.
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We begin with some preliminary remarks. In view of the definition, ℓ commutes
with equivariant maps, for example

(8.22a) µ∗ℓ(Z) = ℓ(Z) .

When we identify T ∗X with a subvariety of X ×N ∗, as usual, the moment map µ
is the projection to the second factor, hence

(8.22b) α(ℓ(Z)) = ξ(µ∗(ℓ(Z)) = ξ(Z) .

Since ℓ defines an action, it relates the Lie bracket on g to the Lie bracket of vector
fields:

(8.22c) ℓ([Z1, Z2]) = [ℓ(Z1), ℓ(Z2)] .

First we consider tangent vectors vi = ℓ(Zi) ∈ ℓ(g) ⊂ T(x,ξ)(µ
−1(O)). In this case

(8.23)

ω(ℓ(Z1), ℓ(Z2)) = dα(ℓ(Z1), ℓ(Z2)) =

ℓ(Z1)α(ℓ(Z2))− ℓ(Z2)α(ℓ(Z1))− α(ℓ([Z1, Z2])) =

ℓ(Z1)(ξ(Z2))− ℓ(Z2)(ξ(Z1)) − ξ([Z1, Z2]) =

(Z1 · ξ)(Z2)− (Z2 · ξ)(Z1)− ξ([Z1, Z2]) =

− ξ([Z1, Z2]) + ξ([Z1, Z2])− ξ([Z1, Z2]) =

− ξ([Z1, Z2]) = −ωO([Z1, Z2]).

Here we have used, in sequence, the definition of ω in terms of α, the formula for
the exterior derivative in terms of the Lie bracket and (8.22c), the formula (8.22b)
for α, the interpretation of the action ℓ on N ∗ as the restriction of the coadjoint
action, the explicit formula for the coadjoint action, and the definition (8.18).

Next we consider the case of tangent vectors vi ∈ T(x,ξ)(µ
−1(O)), with v1 ∈

Ker(π∗) and v2 = ℓ(Z2), Z2 ∈ g. The kernel of π∗ on T(x,ξ)T
∗X can be identified

with the tangent space of T ∗
xX , and hence with T ∗

xX . With this interpretation –
i.e., v1 ∈ T

∗
xX – and for any v2 ∈ T(x,ξ)T

∗X ,

(8.24) ω(v1, v2) = v1(π∗v2) ;

this is a general fact about the symplectic structure on T ∗X for any manifold X ,
and can be verified easily by a computation in local coordinates. Thus, in our
concrete situation,

(8.25a) ω(v1, v2) = v1(π∗ℓ(Z2)) = v1(ℓ(Z2)) = (µv1)(Z2) = (µ∗v1)(Z2) .

Here we have used (8.22a) and interpret the second instance of ℓ(Z2) as a vector
in TxX ∼= g/bx, namely as the image of Z2 in g/bx; also, µ is linear on T ∗

xX , and
thus µv1 = µ∗v1. Since v1 was assumed to lie in T(x,ξ)(µ

−1(O)), µ∗v1 is a tangent
vector to O at ξ, so

(8.25b) µ∗v1 = Z1 · ξ
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for some Z1 ∈ g. Combining (8.25b,c), and noticing that µ∗v2 = µ∗ℓ(Z2) = Z2 · ξ,
we find

(8.26)
ω(v1, v2) = (Z1 · ξ)(Z2) = −ξ[Z1, Z2] =

− ωO(Z1 · ξ, Z2 · ξ) = −ωO(µ∗v1, µ∗v2) .

We still need to consider the case of two tangent vectors vi ∈ Kerπ∗∩T(x,ξ)(µ
−1(O)).

In this case ω(v1, v2) = 0. As in the previous argument, we identify Kerπ∗ ∼= T ∗
xX ,

and further with (g/bx) = b⊥
x . It follows that µ∗(vi) ∈ O ∩ b⊥

x , and so the equality
(8.21), in this particular instance, reduces to:

(8.27) O ∩ b⊥
x is isotropic in O .

In fact, O∩b⊥
x is Lagrangian in O. This was proved by Joseph [J], and also follows

from a general result of Ginsburg on Hamiltonian actions of solvable algebraic
groups [Gi1, Theorem 4.1]. This completes the proof of lemma 8.19.

Lemma 8.19 makes an assertion about µ∗ωO only at the smooth points of µ−1(O),
but has implications at non-smooth points as well. To see this, we Whitney stratify
the proper, complex algebraic map µ : T ∗X → N ∗ compatibly with the orbit
stratification on N ∗. If O ⊂ N ∗ is a particular orbit and Σ a top dimensional
stratum in µ−1(O), lemma 8.19 implies that the restriction of the symplectic form
−ω to Σ agrees with (µ|Σ)∗ωO. On the other hand, if Σ ⊂ µ−1(O) is a lower
dimensional stratum and (x, ξ) a point on Σ, then any tangent vector at (x, ξ) can
be expressed as the limit of a sequence of tangent vectors to a top dimensional
stratum in µ−1(O), by Whitney’s condition A. Now, using the continuity of µ∗, we
conclude:

8.28 Corollary. For each G-orbit and each stratum Σ ⊂ µ−1(O), the restriction
of −ω to Σ coincides with (µ|Σ)∗ωO.

Our next lemma, whose proof depends critically on lemma 8.19, establishes the
last remaining ingredient of the proof of theorem 8.17.

8.29 Lemma. For each C ∈ L+(X), there exists a closed, R+-invariant, semi-
algebraic subset S ⊂ N ∗, such that µ−1(S) is isotropic in T ∗X and contains the
support of C.

8.30 Remark. The proof will show that the R+-invariance of the cycle C ∈ L+(X)
plays no role. Without the hypothesis of R+-invariance on C, we cannot expect S
to be R+-invariant, of course.

Proof. Since µ is proper, the µ-image S of the support |C| of C is a closed, semi-
algebraic, R+-invariant subset of N ∗. We stratify the proper semialgebraic map
µ : |C| → S compatibly with the stratification of µ : T ∗X → N ∗ which was used
in corollary 8.28. Let us consider a particular stratum T ⊂ |C|. We note that
the Lagrangian nature of C forces T to be an isotropic submanifold of T ∗X ; this
follows from the same kind of argument as the one preceding corollary 8.28. By
the definition of stratified map, µ : T → µ(T ) is a submersion. The µ-image of
the isotropic submanifold T is contained in some G-orbit O ⊂ N ∗. Hence, by



38 WILFRIED SCHMID AND KARI VILONEN

corollary 8.28, µ(T ) is an isotropic submanifold of O. Also, if T ′ ⊂ µ−1µ(T ) is any
stratum then corollary 8.28 shows that T ′ is isotropic in T ∗X . This proves that
µ−1(S) ⊂ T ∗X is isotropic. By definition, |C| ⊂ µ−1(S).

9. The equality of the two Weyl group actions.

In the previous two sections we described Weyl group actions on the K-group of
the derived category Db(X) and on the group of Lagrangian cycles L+(X). Recall
that the characteristic cycle construction maps the former group isomorphically
onto the latter [KS].

9.1 Theorem. The isomorphism CC : K(Db(X)) → L+(X) is equivariant with
respect to the two actions of W .

We begin the proof with a reinterpretation of the W -action on L+(X), using the
language of families of cycles. Let us fix a particular element w ∈ W , a particular
cycle C ∈ L+(X), and a real algebraic curve {λ(s) | s ∈ [0, η) } in h∗, such that

(9.2) λ(s) is regular if s 6= 0 , and λ(0) = 0 .

The maps aw,λ defined in (8.12), with λ = λ(s) and 0 < s < η, constitute a real
algebraic, one parameter family of isomorphisms of T ∗X . Thus

(9.3) Cs = aw,λ(s)(C) , 0 < s < η ,

is a family of cycles CI in the sense of section 3.

9.4 Lemma. The w-translate of the cycle C is equal to the limit of the family Cs
as s→ 0+.

Proof. Since the family CI is semi-algebraic, the closure of |CI | in [0, η) × T ∗X
is semialgebraic also; in particular, the family has a limit as s → 0+. We choose
S ⊂ N ∗ and U ⊂ T ∗X as in lemmas 8.29 and 8.10. Then, for all sufficiently small
s > 0, U contains Cs. Also,

(9.5) C ∈ Hinf
n (µ−1(S),Z) ∼= Hinf

n (U ,Z) ,

with n = dimR(X). As element of Hinf
n (U ,Z), the w-translate of C is equal to any

one of the Cs, with s > 0 sufficiently small. We now appeal to proposition 3.25:
the limit of the family is Borel-Moore homologous, in U , to Cs. On the other hand,
the support of the limit is contained in µ−1(S) because λ(0) = 0, so the conclusion
of the lemma follows.

Proof of theorem 9.1. Before going into the details of the argument, let us outline
the strategy. It suffices to show that CC commutes with the action of any simple
reflection sα. The intertwining operator

(9.6) I =def Isα
: Db(X)→ Db(X)

was constructed as the composition of a smooth pullback and a non-proper push-
forward, with a shift in degree. On the level of characteristic cycles, the latter
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operation is described in section 6; it involves the choice of an auxiliary function f .
When f is chosen appropriately, it turns out that the effect of I on a characteristic
cycle C is given by the same family of cycles as in lemma 9.4.

We recall the definition 7.2 of Y = Ysα
and the definition of the projections

p, q : Y → X . With this notation,

(9.7) I = Rq∗p
∗[1] .

The choice of the simple root α determines a generalized flag variety Xα and G-
equivariant fibrations

(9.8)
X → Xα with fiber P

1 ,

Y → Xα with fiber P
1 × P

1 −∆ ,

(∆ = diagonal in P1×P1). Thus Y has a natural smooth G-equivariant completion
Ȳ which fibers over Xα, obtained by inserting the diagonals,

(9.9) Ȳ → Xα with fiber P
1 × P

1 ,

and the projections p, q : Y → X extend smoothly to projections p̄, q̄ : Ȳ → X .
To choose a UR-invariant defining function f for the boundary of Y in Ȳ is

equivalent to choosing an SU(2)-invariant defining function for the diagonal in
P1 × P1, and that in turn is equivalent to choosing a function on P1 ∼= C ∪ {∞}
which vanishes precisely at the origin, and is invariant under the rotation group.
Our particular choice will be |z|2/(1 + |z|2), and we let f denote the resulting
UR-invariant defining function for ∂Y . We observe that f is real algebraic.

We shall apply theorem 6.10 to the map q and cycles in T ∗Y of the form p∗C,
where C is a Lagrangian cycle on T ∗X . The transversality hypothesis, we shall see,
is satisfied in a very strong sense. Not only is p∗(C) + s d log f transverse to

(9.10a) dq : Y ×X T ∗X → T ∗Y ,

but even p∗({ξ}) + s d log f is transverse, for any cotangent vector ξ ∈ T ∗X – as
ought to be expected, since we must deal with arbitrary Lagrangian cycles in T ∗X .
Since q is a fibration, the map dq is injective, with image

(9.10b) Im dq = { (y, η) | y ∈ Y, η ∈ T ∗
y Y, η ⊥ Ker q∗} .

The following lemma contains, in particular, the transversality assertion that was
just made. We fix a real number s, s > 0, a point x ∈ X , and a cotangent vector
ξ ∈ T ∗

xX . Note that Im dq ⊂ T ∗Y is a smooth algebraic hypersurface, hence a
submanifold of real codimension 2, whereas p∗({ξ}) + s d log f , the image of the
algebraic curve p∗({ξ}) under the diffeomorphism

(9.11) p∗({ξ}) ≃ p∗({ξ}) + s d log f , (y, η) 7→ (y, η + s d log f(y)),

is a real algebraic 2-manifold in T ∗Y .
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9.12 Lemma. The submanifolds Im dq , p∗({ξ}) + s d log f(y) intersect trans-
versely, in a single point (y, η), with y = y(x, ξ, s) ∈ p−1(x) and η = η(x, ξ, s) ∈
(Ker q∗)

⊥ ⊂ T ∗
y Y . Let ξ′ ∈ T ∗

q(y)X be the unique cotangent vector such that

q∗ξ′ = η. The assignment (x, ξ) 7→ (q(y), ξ′) defines a real algebraic automor-
phism of T ∗X, which coincides with asα,λ whenever λ ∈ h∗ is regular and takes the
value s on the co-root α̌ .

Before proving the lemma, let us argue that it implies theorem 9.1. The pro-
jection p : Y → X is a fibration, and the operation p∗ : L+(X) → L+(Y ) reduces
to the geometric pullback of Lagrangian cycles along the fibers of p ; cf. (2.19).
Lemma 9.12 guarantees that the family of cycles p∗(C) + s d log f(y), s ∈ R+,
satisfies the transversality hypothesis in theorem 6.10, for any C ∈ L+(X). Thus,
up to a fixed sign,

(9.13) C 7−→ lim
s→0+

τ∗(dq)
−1(p∗C + s d log f)

describes the effect of the intertwining operator I on characteristic cycles. Here
τ : Y ×X T ∗X → T ∗X is the natural projection, and the operation (dq)−1 can
be re-interpreted as “intersection with Im dq”, again up to a universal sign. Since
the tranversality condition holds in the very strong sense spelled out in (9.12), the
assignment (9.13) is induced by a real algebraic map – a real algebraic diffeomor-
phism in fact, since it coincides with asα,λ, which is known to be a diffeomorphism.
In particular, the operation (9.13) makes sense for any locally defined, oriented
submanifold S of T ∗X , not just for Lagrangian cycles, and maps any such S dif-
feomorphically to the oriented submanifold asα,λ(S), possibly with a reversal of
orientation. Whether or not the orientation gets reversed depends only on the di-
mension of S, for continuity reasons. We now parametrize λ = λ(s) linearly in s, so
that 〈λ(s), α̌〉 = s, and appeal to lemma 9.4, to conclude that the two Weyl group
actions coincide on any simple reflection sα, except possibly for a sign factor. To
pin down the sign, it suffices to check the effect of the reflection on any particular
non-zero cycle in L+(X) – for example the zero section T ∗

XX ≃ X , oriented by
the complex structure of X . This is the characteristic cycle of the constant sheaf
CX in degree zero, and the intertwining operator (9.7) reproduces this sheaf with
a shift in degree by one. On the other hand, the diffeomorphism asα,λ, for any
regular λ, maps the zero section X to itself, preserves the fibration X → Xα, acts
as the identity on Xα and as an anti-holomorphic involution on the fiber P1, and
thus reverses the orientation of the zero section; these properties of asα,λ can be
deduced from the description (8.9) of the twisted moment map. At this point, we
have determined the sign that was still in question: both actions, applied to the
simple reflection sα, reverse the sign of CC(CX) = [X ]. The proof of theorem 9.1
is now complete, except for the verification of lemma 9.12.

Proof of lemma 9.12. We shall first reduce the problem to the special case g =
sl(2,C), X = P1 ≃ C ∪ {∞}, and then establish the assertion in that special case
by an explicit computation.

Let us choose local coordinates (z, w, v) on Ȳ so that z and w extend to global
algebraic coordinates – with values in C ∪ {∞} – on the P1 fibers of the fibration
(9.9), and v = (vj) is obtained by pulling back a local algebraic coordinate system
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from Xα. Then (z, v) and (w, v) provide local coordinate systems on the two copies
of X whose product contains Ȳ . We can arrange further that

(9.14a) (z, v) 7→ (w, v) , w =
1

z
, corresponds to 1X ,

the identity map between the two factors. In terms of these coordinates,

(9.14b) p : (z, w, v) 7→ (z, v) , q : (z, w, v) 7→ (w, v) .

The divisor ∂Y ⊂ Ȳ is given by the equation p(y) = q(y). Because of (9.14b),

(9.14c) wz 6= 1 on Y .

Finally, we shall normalize the coordinates (z, v) so that they are centered at the
point x ∈ X in the statement of the lemma:

(9.14d) z(x) = 0 , vj(x) = 0 for all j .

Note that (z, w, v) are holomorphic coordinates, defined and finite on an open set
in Y which contains all of p−1{x} .

We extend the coordinate system on Y to a holomorphic coordinate system
(z, w, v, a, b, c) on T ∗Y by expressing a generic cotangent vector ζ as the linear
combination

(9.15) ζ = a dz + b dw +
∑

j

cj dvj .

The diffeomorphism (y, ζ) 7→ (y, ζ + s d log(y)) of T ∗Y then corresponds to the
assignment

(9.16)

(z, w, v, a, b, c) 7−→ (z, w, v, ã, b̃, c̃) , with

ã = a+ 2s
∂ log f

∂z
, b̃ = b+ 2s

∂ log f

∂w
, c̃j = cj + 2s

∂ log f

∂vj
.

Here we are using the R-linear isomorphism ζ 7→ Re ζ to identify the holomorphic
tangent bundle with the real tangent bundle, and that accounts for the factors
2s instead of s. Note that (z, v, a, c) and (w, v, b, c) can be viewed as systems of
coordinate functions on the cotangent bundles of the two factors in the ambient
manifold X ×X of Ȳ . With ξ ∈ T ∗

xX as in the statement of the lemma, p∗({ξ}) is
described by the complex equations

(9.17) z = 0 , v = 0 , a = a(ξ) , b = 0 , c = c(ξ) ,

and the algebraic hypersurface Im dq by the one equation

(9.18) a = 0 .
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Finding the intersection of p∗({ξ})+s d log f and Im dq thus comes down to solving

(9.19) a(ξ) + 2s
∂ log f

∂z
= 0

for w, with z = z(x) = 0 and v = v(x) = 0. The uniqueness of the solution and the
transversality of the intersection only depend on the values of f on {v = 0}, i.e.,
on the fiber P1×P1−∆ of the fibration Y → Xα which contains p−1{x} . In other
words, the assertions of uniqueness and tranversality in the lemma reduces to the
special case of g = sl(2,C), X = P1.

Let us suppose then that we do have a unique intersection. Once the points
y ∈ p−1(x) and q(y) ∈ X have been found – corresponding to the value for w which
solves (9.19) and v = 0 – the cotangent vector ξ′ ∈ T ∗

q(y)X is determined by the

equations

(9.20) b = 2s
∂ log f

∂w
(y) , cj = cj(ξ) + 2s

∂ log f

∂vj
(y) .

The first of these again depends only on the values of f on {v = 0}. That can be
paraphrased as follows. Let

(9.21) π : X −→ Xα

denote the natural fibration. As we just saw, the point q(y) is contained in π−1(x) ∼=
P1 and is determined by the sl(2,C)-analogue of (9.19). We call Tq(y)π

−1(q(y)) ⊂
Tq(y)X the “vertical subspace” of the tangent space to X at q(y); then, according
to the first equality in (9.20),

(9.22)
the restriction of ξ′ to the vertical subspace is completely

determined by the sl(2,C)-analogue of the equations (9.20).

The equations for the cj can also be restated in geometric terms. The maximal
torus in UR wich fixes q(y) operates on Tq(y)X ∼= g/bq(y) in a multiplicity-free
fashion, and hence the vertical subspace of Tq(y)X has a unique linear complement
invariant under the maximal torus. We call this the “horizontal subspace”. Note
that is the choice of the compact real form UR ⊂ G which determines the splitting.
Of course, no special property about the point q(y) has been used in the definition,
so analogous splittings exist at all points of X . Since x and q(y) lie in the same
fiber of π, the differential π∗ maps the horizontal subspaces at both of these points
isomorphically onto Tπ(x)Xα, and hence can be used to identify the two horizontal
subspaces. In effect, the cj(ξ) and the cj(ξ

′) specify the restrictions of ξ and ξ′ to
the two horizontal subspaces. Via the natural identification between the two,

(9.23)
the restriction of ξ to the horizontal subspace of T ∗

xX agrees

with the restriction of ξ′ to the horizontal subspace of T ∗
q(y)X ;

this follows from the transitivity of the UR-action on X and the UR-equivariance of
the function f .
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Let us argue that the action of asα,λ on T ∗X satisfies the statements analogous
to (9.22–23). We shall use the notation of section 8. In particular, tx denotes the
complexified Lie algebra of the maximal torus in UR which fixes x; we identify tx
with the universal Cartan via

(9.24) tx ∼= bx/[bx, bx] ∼= h .

Correspondingly, the abstract root system gets identified with the concrete root
system of the pair (g, tx). Recall that the notion of positivity was specified so that
the weights of g/bx become the positive roots. Thus

(9.25) [bx, bx] = g−α ⊕ rα ,

with g−α = (−α)-root space of (g, tx), and rα equal to the span of all the other
negative root spaces. The decomposition (9.25) is dual, via the Killing form, to
the decomposition of TxX ∼= g/bx into the vertical and horizontal subspaces. Both
summands in (9.25) are normalized by tx, of course, but rα is normalized even by

(9.26) sα =def gα ⊕ g−α ⊕ [gα, g−α] ∼= sl(2,C) .

Let Sα ⊂ G denote the connected subgroup with Lie algebra sα. Then Sα acts
transitively on the fiber of X → Xα containing the point x.

In view of (8.9), the relation asα,λ(x, ξ) = (x̃, ξ̃), which expresses x̃ ∈ X and

ξ̃ ∈ T ∗
x̃X in terms of x and ξ , is equivalent to

(9.27) λx + µ(x, ξ) = (sαλ)x̃ + µ(x̃, ξ̃) .

It will simplify matters to think of the ordinary moment map µ and the twisted
moment map µλ as taking values in g rather than g∗, via the identification g∗ ∼= g

effected by the Killing form:

(9.28) µλ , µ : T ∗X −→ g .

With this convention, the moment map induces the canonical isomorphism

(9.29) µ : T ∗
xX

∼
−−→ [bx, bx]

dual to TxX ∼= g/bx – not just at our particular choice of x of course, but at all
points in X . We now regard ξ as a vector in [bx, bx], and λx as a regular element
in tx. We can write

(9.30)
ξ = ξ1 + ξ2 , with ξ1 ∈ g−α , ξ2 ∈ rα ,

λx = λ1 + λ2 , with λ1 ∈ [gα, g−α] , λ2 ∈ α
⊥ ,

using (9.25) and the decomposition tx = [gα, g−α] ⊕ α⊥ . Solving the analogue of

(9.27) for sl(2,C), we find uniquely determined ξ̃1 , λ̃1 ∈ sα , and some u ∈ Sα∩UR ,

such that ξ̃1 is nilpotent and normalized by λ̃1 , and

(9.31) λ1 + ξ1 = λ̃1 + ξ̃1 , λ̃1 = −(Adu)λ1 .
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The knowledge of ξ̃1 , λ̃1 , u allows us to solve the equation (9.27), with

(9.32) x̃ = u x , ξ̃ = ξ̃1 + ξ2 .

Indeed, Sα normalizes rα and α⊥ ⊂ tx centralizes sα ; these facts imply that (9.32)
does provide a solution.

The relationship between the solution (9.32) of (9.27) in the general case and the
sl(2,C) solution (9.31) has exactly the same form as the relationship between the
general solution and the sl(2,C) solution of (9.19–20). In particular, the relation-

ship between ξ1 and ξ̃1 is analogous to (9.22), and the equality of the rα-components

of ξ and ξ̃ is analogous to (9.23). We conclude that the proof of lemma 9.12 reduces
to the case of sl(2,C), as had been asserted.

Let us suppose, then, that g = sl(2,C), X = P1 ∼= C ∪ {∞} , G = Sl(2,C), and
UR = SU(2). Strictly speaking, we ought to work with the adjoint groups, to be
consistent with our earlier definition of G = Aut(g)0, but this distinction is of no
consequence. We use coordinates as in (9.14–15), except that now there are no vj
and no cj . In our present situation,

(9.33) f(z, w) =
|zw − 1|2

(1 + |z|2)(1 + |w|2)
,

since this function is SU(2)-invariant and reduces to |z|2/(1+|z|2) when w =∞ . At
z = 0, which corresponds to x, the equation (9.19) becomes 2sw = a. In particular,
this describes a transverse intersection at a single point. The first, non-vacuous
equation in (9.20) becomes b = −2sw̄/(1 + |w|2). Rewriting this information in
terms of the usual coordinate z = 1/w, we find:

(9.34) (0, a dz) 7−→

(

2s

a
,

a|a|2

|a|2 + 4s2
dz

)

describes the assignment (x, ξ) 7→ (q(y), ξ′) of lemma 9.12.
Still in the case of g = sl(2,C), we identify h∗ ∼= C so that the positive weights

correspond to the positive integers, and we normalize the Killing form so that it
agrees with the trace form of the standard representation. Then, with the conven-
tion (9.28), for z ∈ P1 ∼= C ,

(9.35) λz =
λ

1 + |z|2

(

1− |z|2 −2z
−2z̄ |z|2 − 1

)

.

To see this, note that the right hand side is purely imaginary with respect to the
compact real form SU(2) whenever λ is real, that it depends SU(2)-equivariantly on
z, and that for z = 0, it fixes 0 ∈ P1 under the infinitesimal action. The preceding
conditions determine λz up to a real scaling factor; that factor can be pinned down
as follows: the identity matrix corresponds to the weight 2 via the isomorphism
g ∼= g∗, and it acts – via infinitesimal translation – as multiplication by 2 on the
tangent space T0P1 ∼= g/b0

∼= gα; the positive root α, finally, corresponds to the
weight 2. We argue similarly to identify the ordinary moment map as

(9.36) µ(z, dz) =

(

z −z2

1 −z

)

.
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First of all, the formula has the right equivariance properties, namely equivariance
with respect to all of Sl(2,C), and secondly, it takes the value at z = 0 which
corresponds to dz under the isomorphism T ∗

0 P1 ∼= [b0, b0] dual to T0P1 ∼= g/b0 .
Combining (9.35–36), we find

(9.37) µλ(z, a dz) =
λ

1 + |z|2

(

1− |z|2 −2z
−2z̄ |z|2 − 1

)

+ a

(

z −z2

1 −z

)

.

The equation asα,λ(0, a dz) = (z, c dz) is equivalent to µλ(0, a dz) = µ−λ(z, c dz),
hence to the matrix equation

(9.38)

(

λ 0
a λ

)

=
−λ

1 + |z|2

(

1− |z|2 −2z
−2z̄ |z|2 − 1

)

+ c

(

z −z2

1 −z

)

.

Simple algebraic manipulations now give the identities za = 2λ and cz(1 + |z|2) =
2λ , and finally

(9.39) asα,λ(0, a dz) =

(

2λ

a
,

a|a|2

|a|2 + 4|λ|2
dz

)

.

This agrees with (9.34) if λ = s ∈ R+, completing the proof of the lemma.

10. Generalizations.

The characteristic cycle construction depends crucially on the constructibility of
the sheaves in question. As soon as a sheaf F is constructible with respect to some
Whitney stratification S, Kashiwara’s construction [K1,KS] gives meaning to the
characteristic cycle CC(F), at least as a local cohomology class. If CC(F) is to be
a true cycle in the geometric sense, the Whitney conditions on S are not enough.
This is the reason why Kashiwara, Kashiwara-Schapira – and also we in this paper
so far – require constructibility with respect to a stratification S which is at least
subanalytic. The point is that subanalytic stratifications have good hereditary
properties; in particular, the conormal bundle of each stratum is again subanalytic.
As a consequence, the union of the conormal bundles is also Whitney stratifiable.
This latter fact alone ensures that CC(F) is a geometric cycle.

Recent results of Wilkie [W] and van den Dries-Macintyre-Marker [DMM] can
be used to construct geometric categories which are larger than the subanalytic
category, but have similar hereditary properties. The characteristic cycle construc-
tion, and in particular the results of sections 2-6 work equally in this more general
setting. That is important for us: one of our representation theoretic applications
[SV2] forces us to go outside the subanalytic setting. Specifically we need a ver-
sion of theorem 6.10 in one of the larger geometric categories. The purpose of this
section is to describe various such extensions of our results on characteristic cycles.

The two papers [DMM,W] are model theoretic in character, and do not contain
the general geometric statements which they imply. The transition from the model
theoretic results to geometry is made by van den Dries-Miller [DM]. Their axiomatic
approach not only provides general statements, but is also remarkably efficient –
indeed, even when specialized to the subanalytic setting, this approach can be
helpful.
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Let us briefly recall the axioms of van den Dries-Miller and some of the important
consequences. An analytic-geometric category C in the sense of [DM] is specified
by the datum of a collection of subsets C(X) – the C-subsets of X – for each real
analytic manifold X , subject to the following axioms:

(10.1)

a) C(X) is a Boolean algebra of subsets of X ;

b) if S ∈ C(X), then R× S ∈ C(R×X) ;

c) if S ∈ C(X) and if F : X → Y is a proper real analytic map

between real analytic manifolds, then F (S) ∈ C(Y ) ;

d) the property of being a C-subset of an ambient manifold X is a

local property with respect to the ambient manifold;

e) the boundary of any bounded C-subset of R is finite .

The objects in the category C are precisely the pairs (S,X) with S ∈ C(X); the
morphisms from (S,X) to (T, Y ) are precisely the continuous maps F : S → T
whose graphs are C-subsets of X×Y . Like [DM], we shall usually omit reference to
the ambient manifold of a C-set. The axioms (10.1) imply that C, as defined above,
is indeed a category. All subanalytic subsets of X are automatically C-subsets.
Conversely, the subanalytic sets form an analytic-geometric category – the smallest
one.

Let us briefly mention another example – the analytic-geometric category which
will be important in future applications of our results. In the language of [DM], it
is the category C corresponding to the the o-minimal structure Ran,exp . Loosely
speaking, it contains sets definable by expressions in real analytic functions, ex-
ponentials and logarithms. Specifically, and more precisely, is contains at least
all sets of the following sort. Let P (X1, . . . , Xn) be a polynomial in the variables
X1, . . . , Xn, with coefficients which are real analytic functions on [0, 1]n. Then

(10.2) {(x1, . . . , xn) | 0 < xi ≤ 1, P (log x1, . . . , logxn) = 0}

is a C-subset of Rn (even at the origin!). It is precisely sets of this type which come
up in our representation theoretic applications.

As is argued in [DM], the axioms (10.1) have numerous consequences – some
fairly obviously, and some not so obviously. We shall list only those we need. To
begin with, the closure, interior, and boundary of any C-set are again C-sets. Also,
finite products of C-sets are C-sets, and any map

F = (F1, . . . , Fn) : S → T1 × · · · × Tn ,

where S and the Ti are C-sets, is a C-map if and only if all the Fi are C-maps. The
inverse image of a C-subset T of Y under a C-map F : S → Y is a C-set, provided
S is closed in its ambient manifold. One can take derivatives in the category C, in
the following sense:

(10.3) the derivative of a C-map, if it exists and is continous, is a C-map.
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Now let S ⊂ X be a C-set, and k a positive integer; then

(10.4) the points at which S is a Ck-submanifold of X constitute a C-set.

Let us mention, parenthetically, that this statement fails for k = ∞ . Conormal
bundles behave well with respect to the notion of C-set:

(10.5)
if S ⊂ X is both a C-subset and a (locally closed)

Ck-submanifold, then T ∗
SX is a C-subset of T ∗X .

Here again, k is an arbitrary finite, positive integer.
Most crucially for our purposes, Whitney stratifications exist in the setting of

analytic-geometric categories. We fix a closed C-subset S ⊂ X , a locally finite
subcollection A ⊂ C(X), and an integer k, 1 ≤ k <∞. Then

(10.6a)
there exists a Ck-Whitney stratification of S, compatible with A,

whose strata are C-subsets of S ;

here compatibility means that A ∩ S, for any A ∈ A, is a union of strata. With
S ⊂ X , A, and k as before, any proper C-map F : S → Y into a real analytic
manifold Y can be Ck-Whitney stratified compatibly with A and any given locally
finite subcollection B ⊂ C(Y ). More precisely,

(10.6b)
there exists a Ck-Whitney stratifications of S and Y , compatible

with A and B respectively, whose strata are C-subsets .

The axioms (10.1) and the consequences mentioned so far are enough to de-

fine the characteristic cycle CC(F) for any F ∈ Db(X) which is constructible
with respect to a C-stratification, as a Lagrangian cycle in T ∗X subordinate to
a C-stratification of T ∗X . Indeed, the definition in [KS] does not depend on any
particular properties of the subanalytic category beyond those mentioned so far in
this section. Our own discussion in section 2 also applies without change, even
though we now need to work with Ck-stratifications, with k as large as needed but
finite, not k = ∞ as in [GM]. Formally, the distinction between finite and infinite
k comes up only twice: in the construction of the Morse function φ in (2.4), and
the existence of the metric with properties (2.6). In the first instance,

(10.7) there exist C-functions φ satisfying the conditions (2.4) ,

even real analytic functions, as can be verified by a calculation in local coordinates.
As for (2.6), the existence proof in [GM] is phrased in terms of C∞ stratifications,
but uses only finitely many derivatives, and thus applies also in our situation.
Alternatively, the Euclidean metric with respect to any particular local coordinate
system will do, provided φ is a C-function: one can argue as in [GM, page 82], using
the category C instead of the subanalytic category, and appealing to the finiteness
axiom (10.1e).
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Most of section 3 – from the beginning through proposition 3.25 – involves general
Whitney stratifications. The subanalytic setting comes into play only in lemma 3.26
and proposition 3.27. It appears likely that lemma 3.26 has a counterpart in the
setting of an arbitrary analytic-geometric category C. In any case, in concrete
applications of proposition 3.27 the existence of a C-family with the properties
asserted in 3.26 is usually clear. Once such a family exists, one can argue precisely
as in section 3. Let then C0 ∈ L+(X) be a C-cycle, f : X → Y a real analytic map
and CI a C-family of cycles satisfying (3.26a,b). Then

(10.8) f∗(C0) = lim
s→0+

τ∗(df
−1(Cs)) ,

just as in the subanalytic context.
The open embedding theorem 4.2 also carries over. Let j : U →֒ X be an

embedding of an open C-subset into a real analytic manifold X , and f a C-function
of class C1 as in (4.1). Such a function always exists: the argument of Bierstone-

Milman-Pawlucki still applies [DM]. Next, suppose that F ∈ Db(U) is constructible
with respect to a C-stratification of the pair (X, ∂U). Then Rj∗F and Rj!F also
have C-constructible cohomology, so CC(F), CC(Rj∗F), and CC(Rj!F) are well-

defined Lagrangian C-cycles. In this situation, CC(F) + sdf
f

and CC(F) − sdf
f

are

C-families of cycles; we can argue exactly as in section 4, at each point replacing
properties of the subanalytic category by their C-analogues. We then get our C-
version of the open embedding theorem:

(10.9) CC(Rj∗F) = lim
s→0+

(CC(F) + s
df

f
) , CC(Rj!F) = lim

s→0+
(CC(F)− s

df

f
) .

There are only two instances in the proof of 4.2, including the proof of the auxiliary
proposition 4.14, where statements or arguments need to be modified beyond the
simple substitution of the C-counterparts for all subanalytic properties, assertions,
etc. The first is entirely superficial: in (4.6c), we should replace “smooth” by “Ck,
with k large”. The second instance occurs in the verification of (5.5), where we
must now argue differently, as we shall explain next.

Let us summarize what we need to show. Considerations preceding (5.5) produce
a closed, one dimensional C-set γ in an ambient manifold – specifically R× T ∗X ,
but that will not matter – and C-functions f, s, φ, defined in some neighborhood of
a point p ∈ γ such that

(10.10)

a) f, s, φ are at least C1;

b) f(p) = s(p) = φ(p) = 0 ;

c) 0 < f < 1 and s > 0 on γ − {p} ;

d) dφ = s d log f on the C1 points of γ − {p} .

Under these hypotheses, we must show

(10.11) (s log f)(q)→ 0, as q → p on γ .



CHARACTERISTIC CYCLES OF CONSTRUCTIBLE SHEAVES 49

We need to use the fact that one dimensional, closed C-sets are very special:

(10.12)
locally near p, γ is a finite union of branches,

each of which posses a Ck parametrization by C-functions .

We may as well replace γ by one of these branches, and choose a Ck, C-parameter
t with p and γ − {p} corresponding to, respectively, t = 0 and t > 0. Let us argue
by contradiction, and consider the following two alternatives:

(10.13)
a) s log f is bounded away from 0 ;

b) s log f is not bounded away from 0 .

In the situation a),

d

dt
(log(s log

1

f
)) =

1

s

ds

dt
+

1

s log f

dφ

dt

differs from 1
s
ds
dt

by a bounded term, which implies s log 1
f
∼ cs , which is incom-

patible with a). In the situation b), if (10.11) fails, there must exist a sequence
{tn} converging to 0, along which the derivative of s log f tends to +∞ . But

d

dt
(s log f) =

dφ

dt
+ log f

ds

dt

differs from the bounded term dφ
dt

by a negative quantity – cf. (10.10b,c). Contra-
diction!

This completes the verification of the open embedding theorem in our more gen-
eral setting. In section 6 we had limited ourselves to the real algebraic situation to
simplify the hypotheses of our statements; and had indicated that these statements,
with appropriate restrictions, remain valid also in the subanalytic case. Here, too,
we may just as well work in a general analytic-geometric category.
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