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1. Introduction.

In the papers [V1] and [BV], Vogan and Barbasch-Vogan attach two similar
invariants to representations of a reductive Lie group, one by an algebraic process,
the other analytic. They conjectured that the two invariants determine each other
in a definite manner. Here we prove the conjecture. Our arguments involve two
finer invariants – the characteristic cycles of representations – which are interesting
in their own right.

To describe the invariants, we consider a linear, reductive Lie group GR and
fix a maximal compact subgroup KR ⊂ GR. We denote their Lie algebras by gR

and kR, and the complexified Lie algebras by g, k. An element ζ of the dual space
g∗ is said to be nilpotent if it corresponds to a nilpotent element of [g, g] via the
isomorphism [g, g] ∼= [g, g]∗ ⊂ g∗ induced by the Killing form. Via the adjoint
action, the complexification G of GR acts with finitely many orbits on N ∗, the cone
of all nilpotents in g∗. Like all coadjoint orbits, each G-orbit O ⊂ N ∗ carries a
distinguished (complex algebraic) symplectic structure; the intersection of O with
ig∗

R
= { ζ ∈ g∗ | 〈ζ, gR〉 ⊂ iR } consists of finitely many GR-orbits, each of which is

Lagrangian in O. The choice of maximal compact subgroup determines a Cartan
decomposition g = k ⊕ p, and dually g∗ = k∗ ⊕ p∗. The complexification K of the
group KR operates on N ∗ ∩ p∗ with finitely many orbits, and each of these orbits
is Lagrangian in the G-orbit which contains it [KR].

Now let π be an irreducible, admissible representation of GR – for example an
irreducible unitary representation. To such a representation, one can associate its
Harish-Chandra module V , which is simultaneously and compatibly a module for
the Lie algebra g and a locally finite module for the algebraic group K. Then
V admits K-invariant “good filtrations”, as module over the universal enveloping
algebra U(g), relative to its canonical filtered structure. Vogan [V1] shows that the
annihilator of the graded module defines an equidimensional, K-invariant algebraic
cycle, independently of the choice of good filtration, whose support is contained in
N ∗ ∩p∗. Since K acts on N ∗ ∩p∗ with finitely many orbits, this “associated cycle”
becomes a linear combination

(1.1) Ass(π) =
∑

aj [Op,j ] ( aj ∈ Z≥0 )
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of fundamental cycles of K-orbits Op,j in N ∗ ∩ p∗, all of the same dimension.
This is the first of the two invariants which we relate. The other is constructed
in [BV], from the (Harish-Chandra) character Θπ. When Θπ is pulled back to gR

via the exponential map and the argument is scaled by a multiplicative parameter
t ∈ R>0, the resulting family of distributions has an asymptotic expansion as t→ 0.
The Fourier transform of the leading term can be thought of as a complex linear
combination of fundamental cycles of GR-orbits in iN ∗

R
= N ∗ ∩ ig∗

R
,

(1.2) WF(π) =
∑

bj [OgR,j ] ( bj ∈ C ) ,

in the following sense: up to the multiplication by i, each OgR,j is a coadjoint orbit,
hence carries a canonical measure, whose Fourier transform defines a distribution
on gR. We shall call WF(π) the “wave front cycle” of π. Its support coincides
with the wave front set of the distribution Θπ at the identity, as was proved by
Rossmann [R3,R4].

The similar nature of the two invariants (1.1-2) led Barbasch and Vogan to
suggest the existence of a natural bijection between the K-orbits in N ∗ ∩ p∗ and
the GR-orbits in iN ∗

R
. This conjectured correspondence

(1.3) K\ (N ∗ ∩ p∗) ←→ GR\iN
∗
R

was established by Sekiguchi [Se] and Kostant (unpublished). We shall show:

1.4 Theorem. The associated cycle Ass(π) coincides with the wave front cycle
WF(π) via the correspondence (1.3).

This result settles a conjecture of Barbasch-Vogan [V2]. In particular, it implies
that the coefficients bj of the wave front cycle are non-negative integers.

The so-called orbit method suggests that certain irreducible unitary representa-
tions of the reductive group GR should be attached to nilpotent orbits. Ideally one
would like to realize these “unipotent representations” geometrically, as spaces of
sections, or perhaps cohomology groups, of line bundles on the nilpotent orbits in
question. Such direct geometric constructions have been carried out only in iso-
lated cases. On the other hand, the associated cycle and the wave front cycle attach
nilpotent orbits to representations, and these nilpotent invariants can be used in
the process of labeling some representations as unipotent. The affirmative answer
to the Barbasch-Vogan conjecture thus settles a natural question: the two types
of nilpotent invariants, arising from the associated cycle and the wave front cycle
respectively, give absolutely equivalent information. Vogan’s paper [V3] contains a
broad survey of the notion of unipotent representation and various related matters.
It is also a convenient reference for a good part of the material used by us.

Theorem 1.4 fits into a general pattern. There are several other invariants and
constructions – such as n-homology, induction, geometric realizations – that can be
carried out alternatively for Harish-Chandra modules or GR-representations; the
former emphasizes the role of the K-action, and the latter, the role of GR. It
sometimes happens that a calculation is doable on one side, but has implications
on the other side. In this spirit, J.-T. Chang [C2] has used theorem 1.4 to give a
simple, conceptual proof of a theorem of Vogan [V1].
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Our proof of the theorem relates the associated cycle to the wave front cycle
via two geometric invariants. On the side of Harish-Chandra modules, the Beilin-
son-Bernstein construction attaches representations to K-equivariant D-modules
on the flag variety X , and these in turn correspond to K-equivariant sheaves on X
via the Riemann-Hilbert correspondence. The passage from Harish-Chandra mod-
ules to K-equivariant sheaves has an analogue on the side of GR-representations.
This gives three sides of a square, with vertices “Harish-Chandra modules”, “GR-
representations”, “K-equivariant sheaves”, and “GR-equivariant sheaves”. The
fourth side, the “Matsuki correspondence for sheaves”, makes the square commute;
this is the commutative square (2.9) below. Kashiwara’s characteristic cycle con-
struction applies, in particular, to the K-equivariant and GR-equivariant sheaves
arising from representations, producing Lagrangian cycles in the cotangent bundle
T ∗X . The main point of our proof is a microlocalization of the Matsuki corre-
spondence – an explicit, geometric passage from the characteristic cycle on the
K-equivariant side to that of the corresponding GR-equivariant sheaf.

The moment map of the G-action on the cotangent bundle sends T ∗X to the
nilpotent cone N ∗. It turns out that the associated cycle is the image, in an ap-
propriate sense, of the characteristic cycle of the K-equivariant sheaf under the
moment map. Similarly, the characteristic cycle of the GR-equivariant sheaf de-
termines the wave front cycle. In both cases the characteristic cycles carry more
information than Ass(π) and WF(π). The characteristic cycles merit further study,
we think; they may turn out to be more interesting invariants than the associated
cycle and the wave front cycle.

The two types of characteristic cycles, i.e., the associated cycle and the wave front
cycle, take values in four abelian groups which form the vertices of a commutative
square. We already mentioned three of the arrows: the microlocalization of the
Matsuki correspondence and the cycle maps induced by the moment map. The
fourth arrow, the “push-down” of the microlocalized Matsuki correspondence, is
an explicit geometric passage from K-orbits in N ∗ ∩ p∗, viewed as cycles in N ∗,
to GR-orbits in N ∗ ∩ ig∗

R
, again viewed as cycles. This, we prove, coincides with

the Sekiguchi correspondence (1.3). The final ingredient of the argument identifies
the push-downs of the characteristic cycles with the associated cycle and the wave
front cycle, respectively.

A two-column commutative diagram, (7.1) in section 7, encapsulates the entire
argument. Here we give it in heuristic form:

(1.5)

{H-C-modules} −−−−→ {GR-representations}

LK





y





y

LGR

{K-equivariant sheaves}
γ

−−−−→ {GR-equivariant sheaves}

CC





y





y
CC

{characteristic cycles}
Φ

−−−−→ {characteristic cycles}

µ∗





y





y

µ∗

{K-orbits in N ∗ ∩ p∗}
φ

−−−−→ {GR-orbits in N ∗ ∩ ig∗
R
} .
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The top arrow represents some right inverse of Harish-Chandra’s passage from
representations to Harish-Chandra modules, such as the maximal globalization
functor [S]. Beilinson-Bernstein’s localization functor [B,BB1,BB2], followed by the
Riemann-Hilbert correspondence [K1,Me], is LK . It has a GR-analogue LGR

, whose
inverse is constructed in [KSd]. Kashiwara [K3] conjectured the Matsuki correspon-
dence for sheaves γ, an elaboration of Matsuki’s correspondence between K-orbits
and GR-orbits in the flag variety [Ma]; the paper [MUV] establishes Kashiwara’s
conjectured description of γ. The arrows CC refer to Kashiwara’s characteristic
cycle construction [K2,KSa]. Theorem 3.7 below describes Φ, the microlocalization
of the Matsuki correspondence. Its proof, in section 4, depends heavily on the
“open embedding theorem” [SV3], which describes the effect on characteristic cy-
cles of push-forward under an open embedding. Our construction of the functor Φ
leads us outside the customary real analytic context – i.e., outside the subanalytic
setting; instead, we need to work inside one of the “analytic-geometric categories”
of van den Dries-Miller [DM]. On the GR-side, the push-down map µ∗ is based on
ideas of Rossmann [R2], and the K-version first appears in [C1]. Both of these
maps are discussed in §5, where we also deduce a description of φ from that of Φ.
Theorem 6.3 below identifies φ with the Sekiguchi correspondence. Our proof of
this theorem again uses analytic-geometric categories; it also depends on certain
geometric properties of nilpotent orbits which are established in [SV5]. We com-
plete the proof of our main theorem 1.4 in section 7, by identifying the composition
of three vertical arrows LK , CC, µ∗ with the associated cycle construction, and
the composition of LGR

, CC, µ∗ with the construction of the wave front cycle. The
former amounts to a rephrasing of a result of J.-T. Chang [C1]. On the GR-side,
we crucially use our integral formula for characters [SV4], which is based on ideas
of Rossmann [R1].

Our proof of the Barbasch-Vogan conjecture was announced and sketched in
[SV2]. Earlier, Chang [C1] had deduced the conjecture, in the case of complex
groups, from results of Rossmann [R2].

2. Geometric parametrization of representations.

Our hypotheses and notation are those established in [SV4]. We recall some of
the results – not due to us – collected in §2 of that paper, which will serve as general
reference. In particular, we suppose that GR is a real form of a connected, complex,
linear, reductive group G. We choose a maximal compact subgroup KR ⊂ GR; its
complexification K is a subgroup of G. We write gR, g, kR, k for the Lie algebras
of GR, G, KR, K.

The group G acts transitively and algebraically on the flag variety X of g. The
two subgroups K, GR act with finitely many orbits. According to Matsuki [Ma],
the two types of orbits are in one-to-one correspondence

(2.1) K\X ←→ GR\X ,

with a K-orbit SK matched to a GR-orbit SGR
if and only if the two orbits intersect

along exactly one KR-orbit. As in [SV4,§2], we consider the “universal Cartan
algebra” h for g. Its dual space h∗ contains the universal root system Φ and the
universal system of positive roots Φ+, as well as the universal weight lattice Λ. We
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fix a “localization parameter” λ ∈ h∗ and introduce DGR
(X)λ , the GR-equivariant

derived category with twist (λ− ρ) [SV4,§2], and totally analogously DK(X)λ, the
K-equivariant derived category with the same twist. We recall that the objects of
these derived categories are represented by complexes of equivariant monodromic
sheaves on the enhanced flag variety. Here ρ denotes the half-sum of the positive
roots; thus DGR

(X)ρ , DK(X)ρ reduce to the usual (untwisted) equivariant derived
categories.

To each F ∈ DGR
(X)λ , one can associate a family of admissible representations

of GR, as follows. We let Ohol
X (λ) denote the twisted sheaf of holomorphic functions

on X with shift (λ− ρ), i.e., the same twist as in the definition of DGR
(X)λ . Thus

one can introduce the groups Extp(F ,Ohol
X (λ)) by deriving the functor Hom on the

category of twisted sheaves with twist (λ − ρ). These Ext groups carry a natural
action of GR and, less obviously, a natural Fréchet topology. The resulting repre-
sentations are continuous, admissible, of finite length, with infinitesimal character
χλ, in Harish-Chandra’s notation [HC]. The groups Extp(F ,Ohol

X (λ)) depend con-
travariantly on F . For technical reasons, we want to make the dependence covari-
ant, by composing it with the Verdier duality operator D : DGR

(X)−λ → DGR
(X)λ ,

as in [SV4]. Taking the alternating sum with respect to p, we obtain a map

(2.2)
β : DGR

(X)−λ −→ {virtual GR-representations}λ ,

β(F) =
∑

p (−1)p Extp(DF ,Ohol
X (λ)) .

Here “virtual representations” is shorthand for “integral linear combination of irre-
ducible, admissible representations”, which we take up to infinitesimal equivalence.
The subscript λ refers to the infinitesimal character of the summands, namely χλ .

The differential operators acting on the twisted sheaf Oalg
X (λ) constitute a sheaf

of “twisted differential operators” DX,λ , a sheaf (untwisted!) relative to the Zariski
topology on X. We let DK(Modcoh(DX,λ)) denote the bounded K-equivariant de-
rived category of coherent sheaves of DX,λ-modules [BL,KSd]. Objects in this
category are regular holonomic because K acts on X with finitely many orbits;
see [Ma], for example. According to Beilinson-Bernstein [BB2], the cohomology
groups Hp(X, M) of any M ∈ DK(Modcoh(DX,λ)) are Harish-Chandra modules
with infinitesimal character χλ. Thus we can take the alternating sum over p,

(2.3)
∑

(−1)p Hp(X, M) ∈ {virtual Harish-Chandra modules }λ .

Here, as before, the subscript λ refers to the infinitesimal character. The covariant
deRham functor

(2.4)
DR : DK(Modcoh(DX,λ)) −→ DK(X)−λ ,

DR(M) = RHomDhol
X,λ

(Ohol
X (λ) , Dhol

X,λ ⊗DX,λ
M )

can be defined in the K-equivariant setting just as in the absolute case. Since the
twisted sheaf Ohol

X (λ) “lives” on the enhanced flag variety, the operation RHom
must be performed there, and produces a twisted sheaf with the opposite twist since
RHom is contravariant in the first variable. The deRham functor implements the
Riemann-Hilbert correspondence, which is an equivalence of categories [K1,Me],
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also in the equivariant case [BL]. Thus we can take its inverse and compose it with
the operation (2.3), to produce a map

(2.5) α : DK(X)−λ −→ {virtual Harish-Chandra modules}λ ,

in complete analogy to (2.2). Results of Beilinson-Bernstein [BB1,BB2] imply that
α is surjective. We shall recall the relevant statements in more precise form later,
in section 7.

In the definition of the group of virtual GR-representations with infinitesimal
character χλ, we have taken representations up to infinitesimal equivalence, so
formally each representation is completely determined by its Harish-Chandra mod-
ule. Conversely, each irreducible Harish-Chandra module can be lifted to a GR-
representation, hence

(2.6) {virtual Harish-Chandra modules}λ ←→ {virtual GR-representations }λ

is a natural bijection. Kashiwara conjectured the existence of an equivalence of
categories

(2.7) γ : DK(X)−λ
∼
−−→ DGR

(X)−λ ,

the “Matsuki correspondence for sheaves”, which was established in [MUV]. Define
maps

(2.8) X
a
←−− GR ×X

q
−−→ GR/KR ×X

p
−−→ X

by a(g, x) = g−1x, q(g, x) = (gKR, x), p(gKR, x) = x. They become GR × KR-
equivariant with respect to the following actions on the four spaces in (2.8), going
from left to right: (g, k)·x = k ·x , (g, k)·(g′, x) = (gg′k−1, g ·x) , (g, k)·(g′KR, x) =
(gg′KR, g · x) , (g, k) · x = g · x . Then any F ∈ DK(X)−λ can be regarded as an
object in DGR×KR

(X)−λ. Thus, by equivariance, a!(F) ∈ DGR×KR
(GR×X)−λ. Now

KR acts freely on GR×X , so there exists a distinguished F̃ ∈ DGR
(GR/KR×X)−λ

such that a!F ∼= q!F̃ . Then Rp!F̃ is an object in DGR
(X)−λ – in the last two steps,

we have dropped the subscript KR since KR acts trivially. By definition, F 7→ Rp!F̃
is the map (2.7). The four morphisms (2.2), (2.5-7) fit into a diagram

(2.9)

{virtual H-C-modules}λ
∼

−−−−→ {virtual GR-representations}λ

α

x





x





β

DK(X)−λ
γ

−−−−→ DGR
(X)−λ ,

whose commutativity is implicit in Kashiwara’s conjectures [K3]. In the remainder
of this section, we deduce this commutativity from known facts.

The paper [KSd], which constructs the representations Extp(F ,Ohol
X (λ)), also

relates them to the Beilinson-Bernstein modules Hp(X, M). Let M = DR(M) be
the image of M ∈ DK(Modcoh(DX,λ)) in DK(X)−λ under the deRham functor.
Then, for all p, and with n = dimC X ,

(2.10)
Hp(X, M) is the dual, in the category of Harish-Chandra modules,

of the Harish-Chandra module of Extn−p(γ(M),Ohol
X (−λ))
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[KSd, 1.1f]. We should remark that the functor γ of [MUV] and its analogue in
[KSd] – where it is denoted by Φ – are defined differently on the surface. To see that
the two functors are actually the same, we note that the operations of restricting
from G to GR and from S = G/K to SR = GR/KR in [KSd,(5.8)] amount to
replacing the induction from K to G by induction from KR to GR. In the language
of [KSd], this means identifying

DKR
(X)−λ

∼= DGR×KR
(X ×GR)−λ and DGR×KR

(X ×GR)−λ
∼= DGR

(X × SR)−λ .

The first of these operations is a∗ in our previous notation, and the second coincides
with q∗. The definition of γ above involves a! and q!, which accounts for a shift
in degree by the complex dimension of S, since a and q are smooth morphisms.
The restriction from S to SR in [KSd] involves i! rather than i∗, which accounts for
another shift in degree; the combination of these two shifts agrees, finally, with the
shift in the definition of the functor Φ in [KSd].

At this point, to deduce the commutativity of (2.9) from the statement (2.10),
we need to know:

2.11 Proposition. The virtual representation
∑

(−1)p Extp(DF ,Ohol
X (λ)) is (up

to infinitesimal equivalence) the dual of
∑

(−1)n+p Extp(F ,Ohol
X (−λ)), for every

F ∈ DGR
(X)−λ .

A more precise statement, which puts individual summands into duality with
each other, was conjectured by Kashiwara [K3]. Although the conjecture is surely
accessible with present techniques, no proof has appeared in the literature. Here
we shall deduce the weaker statement (2.11) from our proof [SV4] of Kashiwara’s
conjecture on characters and fixed point formulas [K4]. We should remark that
the proposition is more than a purely formal assertion; in particular, the analogous
statement about the association (2.5) is incorrect. As far as we know, there does
not exist an explicit interpretation of the duality of Harish-Chandra modules in
terms of K-equivariant sheaves.

Proof of (2.11). Let G̃ denote the set of pairs (g, x) ∈ G × X such that gx = x

and G̃R the inverse image of GR in G̃, as in our paper [SV4]. Following Kashiwara,

we assign a cycle c(F) ∈ Hinf
d (G̃R, C−λ) to each F ∈ DGR

(X)−λ; here d is the
real dimension of GR and C−λ a certain local system on the universal Cartan,

pulled back to G̃R in a natural way. We write Θ(F) for the character of the virtual
representation

∑

(−1)p Extp(DF ,Ohol
X (λ)). Then

(2.12)

∫

GR

Θ(F)φdg =

∫

c(F)

(q∗φ) ω̃ ( φ ∈ C∞
c (GR) )

[SV4, theorem 5.12]. In this formula, q : G̃R → GR refers to the projection and ω̃

denotes a differential form on G̃ derived from the Haar measure dg and a choice
of orientation of GR. The same choice of orientation is used to produce the cycle
c(F): reversing the orientation of GR affects both c(F) and ω̃ by the factor (−1)d.

The anti-involution g 7→ g−1 induces an anti-involution u : G̃R → G̃R. Examin-
ing the fixed point formalism which produces c(F) from F , one finds

(2.13) c(DF) = e−2ρ u∗c(F) ,
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as was already observed in [SV1, proposition 5.3]. Several remarks are in order.
First, the twisted derived category DGR

(X)−λ involves the twist (−λ−ρ), so Verdier
duality for twisted sheaves maps DGR

(X)−λ to DGR
(X)λ+2ρ . On the other hand,

DGR
(X)λ+2ρ

∼= DGR
(X)λ because 2ρ is an integral weight. The factor e−2ρ in (2.13)

is forced by the identification DGR
(X)λ+2ρ

∼= DGR
(X)λ – recall that the cycle c(F)

can be viewed as a linear combination of d-dimensional simplices with coefficients
that are sections, over the simplices in question, of the local system generated by
eλ−ρ [SV4]. In our paper [SV1] we use a different convention: there DGR

(X)λ refers
to the derived category with twist λ; consequently the version of (2.13) stated in
[SV1] does not involve the factor e−2ρ. The formula (2.13) is ambiguous until we
specify the orientations on GR used to construct the two cycles. Since u is an
anti-involution, we take orientations related by u∗ on the two sides. With this
convention, there is no sign change in (2.13), as can be checked by tracing through
the construction of the cycle c(F) in [SV4].

The character Θπ of an irreducible admissible representation π is obtained by
summing the diagonal matrix coefficients of π in the sense of distributions. Thus,
for entirely formal reasons,

(2.14) Θπ(g) = Θπ∗(g−1) ( π∗ = dual of π ) .

Let Θ∗(F) denote the virtual character dual to Θ(F). Then, for any test function
φ ∈ C∞

c (GR),

(2.15)

∫

GR

Θ∗(F)φ(g) dg =

∫

GR

Θ(F)φ(g−1) dg =

∫

c(F)

(u∗q∗φ) ω̃ .

In the first step, we have used (2.14), and the second equality follows from (2.12).
The definition of ω̃ in [SV4] implies

(2.16) u∗ω̃ = (−1)d+ne−2ρω̃ .

We combine (2.13) with (2.16) and recall our choice of orientations of GR on the
two sides of (2.12), to conclude

(2.17)

∫

c(F)

u∗(q∗φ) ω̃ = (−1)d+n

∫

c(F)

e2ρ u∗(q∗φ ω̃)

= (−1)d+n

∫

c(F)

u∗(e−2ρ q∗φ ω̃) = (−1)n

∫

u∗c(F)

e−2ρ q∗φ ω̃

= (−1)n

∫

e−2ρu∗c(F)

q∗φ ω̃ = (−1)n

∫

c(DF)

q∗φ ω̃ .

At this point (2.15), (2.17), and another application of (2.12) give

(2.18)

∫

GR

Θ∗(F)φ(g) dg = (−1)n

∫

GR

Θ(DF)φ(g) dg ,

in other words, the assertion of the proposition.
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3. Microlocalization of the Matsuki correspondence.

In the previous section, we described γ, the Matsuki correspondence for sheaves,
as a composition of certain geometrically induced morphisms. Objects in the de-
rived categories DK(X)−λ and DGR

(X)−λ can be regarded as complexes of (semi-
algebraically) constructible sheaves. As such, they have characteristic cycles in the
sense of Kashiwara [K2,KSa]. We shall now determine the effect of γ on these
characteristic cycles.

It will be convenient for us to adopt the geometric view [SV3] of characteristic
cycles, which was written with the present application in mind. In particular, the
characteristic cycle CC(F) of a complex of sheavesF , constructible with respect to a
particular semi-algebraic (Whitney) stratification S, is a top dimensional cycle with
infinite support on T ∗

SX , the union of the conormal bundles of the strata S ∈ S.
In regarding CC(F) as a cycle in T ∗

SX ⊂ T ∗X , we treat X as a real algebraic
manifold. Thus it would be notationally consistent to work in T ∗(XR), the real
cotangent bundle of X , considered as a manifold without complex structure. On
the other hand, at various points we do use the complex structure of X , for example,
in putting canonical orientation on the complex manifold X . We therefore identify
the real cotangent bundle T ∗(XR) with the (holomorphic!) cotangent bundle of the
complex manifold X ,

(3.1a) T ∗(XR) ∼= T ∗X ,

using the convention of [KSa,(11.1.2)]. Concretely, in terms of local holomorphic
coordinates zj = xj + iyj , 1 ≤ j ≤ n,

(3.1b) dxj 7→
1

2
dzj , dyj 7→

−i

2
dzj .

This convention will remain in force throughout the paper. As the cotangent bundle
of the complex manifold X , T ∗X carries a canonical holomorphic, nondegenerate,
closed 2-form σ. It is related to the canonical 2-form σR on T ∗(XR) by the formula

(3.2) σR = 2 Re σ

via the identification (3.1) [KSa,(11.1.3)].
The actions of K and GR on X are, respectively, complex and real algebraic, and

both groups act with finitely many orbits. It follows that the orbit stratifications
are semi-algebraic and satisfy the Whitney condition. We let T ∗

KX and T ∗
GR

X
denote the unions of the conormal bundles of the orbits of the two groups. They
are complex or real algebraic, Lagrangian subvarieties of T ∗(XR) ∼= T ∗X – in the
case of K, Lagrangian even with respect to the complex algebraic symplectic form
on T ∗X . Thus both have real dimension 2n, with n = dimC X as before. Objects in
DK(X) and DGR

(X) are constructible with respect to the orbit stratifications, so the
characteristic cycle construction defines maps CC from these two derived categories
to top dimensional cycles on T ∗

KX and T ∗
GR

X , respectively. The characteristic cycle
construction is local with respect to the base X , so CC makes sense also in the
twisted case:

(3.3)
CC : DK(X)−λ −→ Hinf

2n (T ∗
KX, Z) ,

CC : DGR
(X)−λ −→ Hinf

2n (T ∗
GR

X, Z) .
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Alternatively but equivalently, we can represent objects in DK(X) and DGR
(X)

by complexes of constructible sheaves on the enhanced flag variety X̂, with mono-
dromic behavior along the fibers of X̂ → X ; as such they have characteristic cycles
on T ∗X̂ . Because of the monodromicity, the characteristic cycles in T ∗X̂ descend to
cycles in T ∗X , and this construction coincides with (3.1). This will be made explicit
later, below the proof of lemma 4.2. We should remark that Kashiwara defines the
characteristic cycle of a sheaf as a cycle with values in the orientation sheaf of the
base X without choosing an orientation of X first. We use the complex structure
to put a definite orientation on X , and thus may think of the characteristic cycles
as absolute cycles.

The action of G on X induces a Hamiltonian, complex algebraic action on the
cotangent bundle T ∗X . We let m : T ∗X → g∗ denote the moment map. It is G-
equivariant, complex algebraic. In our particular situation, m is easy to describe:
the fiber T ∗

x X at any x ∈ X is naturally isomorphic to (g/bx)∗ = b⊥
x ⊂ g∗; here

bx denotes the Borel subalgebra which fixes x. In terms of this identification, the
moment map m is the identity when we regard the fibers of T ∗X as subspaces of g∗.
We choose a non-degenerate, symmetric, G-invariant bilinear form B on g, which
is defined over R and agrees with the Killing form on [g, g]. Then B induces an
isomorphism g∗ ∼= g. We write

(3.4a) µ : T ∗X −→ g

for the composition of this identification with the moment map m. We shall refer
to µ as the moment map from now on. By construction, it is holomorphic and
G-invariant. Note that

(3.4b) µ(T ∗X) = N = nilpotent cone in g ,

since b⊥
x
∼= nx =def [bx, bx] via the isomorphism g∗ ∼= g. The moment map provides

a useful characterization of the subvarieties T ∗
KX , T ∗

GR
X of T ∗X :

(3.5) T ∗
KX = µ−1(p) , T ∗

GR
X = µ−1(igR) .

To see this, we observe that a cotangent vector (x, ξ) with ξ ∈ T ∗
xX ∼= nx is normal

to the GR-orbit through x precisely when Re B(ξ, gR) = 0, in other words, when
ξ ∈ nx ∩ igR. In the case of the first identity, we argue the same way.

In the following, Re µ : T ∗X → gR refers to the real part of the moment map
relative to the real form gR ⊂ g. We define a one parameter family of bianalytic
maps:

(3.6)
Fs : T ∗X → T ∗X, s ∈ R>0,

Fs(ξ) = ℓ(exp(−s−1Reµ(ξ)))∗ξ (ξ ∈ T ∗X),

where ℓ(g−1) : X → X , for g ∈ G, denotes translation by g−1, and ℓ(g−1)∗ the
induced map from T ∗

xX to T ∗
gxX . Since Fs preserves the symplectic structure on

T ∗X , (Fs)∗(C) is a Lagrangian cycle, for each C ∈ Hinf
2n (T ∗

KX, Z) and each s > 0.
We recall the notion of the limit of a family of cycles and the various equivalent
ways of defining it – for a detailed discussion of these matters, see [SV3, §3].
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3.7 Theorem. For C ∈ Hinf
2n (T ∗

KX, Z), the limit of cycles lims→0+(Fs)∗(C) exists
and is supported on T ∗

GR
X . The resulting homomorphism

Φ : Hinf
2n (T ∗

KX, Z) −→ Hinf
2n (T ∗

GR
X, Z) , Φ(C) = lim

s→0+
(Fs)∗(C) ,

coincides with the map on characteristic cycles induced by γ. In other words,

DK(X)−λ
γ

−−−−→ DGR
(X)−λ

CC





y





y
CC

Hinf
2n (T ∗

KX, Z)
Φ

−−−−→ Hinf
2n (T ∗

GR
X, Z)

is a commutative diagram.

The existence of the limit is not entirely obvious. However, once it is known
to exist, it must have support in T ∗

GR
X for elementary reasons. Indeed, let (x, ξ)

be a cotangent vector in the boundary of ∪s>0Fs(T
∗
KX). Then there must exist

sequences {(xk, ξk)} and {sk}, such that µ(xk, ξk) ∈ p, sk → 0+, Fsk
(xk, ξk) →

(x, ξ). We regard the cotangent spaces of X as subspaces of g via µ. Thus we
consider ξ and the ξk as lying in g, and more specifically, in N ; further, µ(xk, ξk) =
ξk ∈ p by assumption. For g ∈ G, the induced map ℓ(g−1)∗ : T ∗

xX → T ∗
gxX reduces

to Ad(g) : nx → ngx when we identify the cotangent spaces with subspaces of g via
µ. The assumption Fsk

(xk, ξk)→ (x, ξ) implies

(3.8) Ad(exp(s−1
k Re ξk))(ξk) −→ ξ .

In particular, Re ξk → Re ξ ∈ pR. We choose a maximal abelian subspace aR in pR

so that Re ξ ∈ aR. Replacing the (xk, ξk) by appropriate KR-conjugates, we can
arrange Re ξk ∈ aR for all k without destroying any of our hypotheses. Let us write

(3.9) ξk = Re ξk + i
∑

α∈R (Im ξk)α ,

where R denotes the restricted root system of (g, a) and (Im ξk)α the component
of Im ξk in the α-root space. Then

(3.10)
Ad(exp(s−1

k Re ξk))(ξk) = Re ξk + i
∑

α∈R es
−1

k
〈α,Re ξk〉(Im ξk)α ,

and i es
−1

k
〈α,Re ξk〉(Im ξk)α ∈ igR for each α ∈ R .

The Cartan involution θ maps the α-root space to the −α-root space, and acts as
multiplication by −1 on p. It follows that θ(Im ξk)α = −(Im ξk)−α ; in particular,

(3.11) ‖(Im ξk)α‖ = ‖(Im ξk)−α‖ .

Since s−1
k → +∞, 〈α, Re ξ〉 > 0 would imply (Im ξk)α → 0, hence (Im ξk)−α → 0,

hence es
−1

k
〈−α,Re ξk〉(Im ξk)−α → 0 . Thus, for α ∈ R ,

(3.12) 〈α, Re ξ〉 > 0 =⇒ (Im ξ)−α = 0 .
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Let m denote the centralizer of Re ξ and u the linear span of the root spaces corre-
sponding to roots α with 〈α, Re ξ〉 > 0. Then m⊕ u is a parabolic subalgebra of g,
defined over R, with nilpotent radical u. Because of (3.12) and the definition of m,

(3.13) Re ξ ∈ m and Im ξ ∈ m⊕ u .

As the limit of nilpotents, ξ is nilpotent. Thus (3.13) forces the nilpotence also of
ξm , the m-component of ξ. But Re ξm = Re ξ is semisimple and commutes with
Im ξm . We conclude that Re ξ = 0, hence ξ ∈ igR and (x, ξ) ∈ T ∗

GR
X , as was

asserted.
The somewhat lengthy proof of the remaining (and deeper) parts of the theorem

occupies the next section.

4. Proof of theorem 3.7.

In section 2, we had described the functor γ in terms of the operations a!, q!, and
Rp! induced by the maps a, q, p in the diagram (2.8). We begin by identifying the
effect on characteristic cycles of the passage, via a and q, from X to GR/KR ×X .
We mentioned already that we regard characteristic cycles as geometric cycles –
not as cycles with values in an orientation sheaf as in [KSa] – by putting a definite
orientation on the ambient space. In the case of X , we use the complex structure,
and in the case of GR/KR, some as yet unspecified orientation; the particular choice
will not matter. We follow the conventions of [SV3] in all orientation questions. In
particular, we orient products of manifolds by choosing forms of top degree on the
two factors which are positive with respect to the orientations; we then orient the
product by the wedge product of the two forms, in the given order of the factors.
Also recall the rule [SV3,(2.3)] for orienting the conormal bundle of a submanifold
of an oriented manifold.

We consider a particular F ∈ DK(X)−λ and its characteristic cycle CC(F). As
a top dimensional cycle in T ∗

KX , we can express it as an integral linear combination
of conormal bundles of K-orbits in X ,

(4.1) CC(F) =
∑

ℓ cℓ [T ∗
K·xℓ

X ] ,

with xℓ running over a complete set of coset representatives. We had argued in §2
that there exists a canonical F̃ ∈ DGR

(GR/KR ×X)−λ such that q!F̃ = a!F .

4.2 Lemma. For each ℓ, Mℓ = {(gKR, gkxℓ) ∈ GR/KR ×X | g ∈ GR, k ∈ K} is a
real algebraic submanifold of GR/KR ×X , and

CC(F̃) =
∑

ℓ cℓ (−1)dim pR [T ∗
Mℓ

(GR/KR ×X)] .

Proof. We observe first of all that dim pR is the difference of the dimensions of
the fibers of the maps a and q, i.e., of the dimensions of GR and GR/KR. Both
a and q are smooth fibrations, hence q∗ agrees with q! except for a shift in degree
equal to the fiber dimension, and similarly in the case of a – see [KSa, 3.3.2], for
example. Note that the preceding statements use the explicit isomorphism DM =
orM [dimR M ] ∼= CM [dimR M ] given by the orientation of any smooth manifold M .
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Thus we can drop the sign factor in the statement of the lemma when we replace
a!, q! by a∗, q∗. The characteristic cycle of a sheaf is a local invariant, and locally
a, q are products. Since a−1(K · xℓ) = q−1(Mℓ) by definition, our assertion now
follows from these three facts:

(4.3a) CC(CS) = [T ∗
SM ]

when S is a closed submanifold of an oriented manifold M ;

(4.3b) CC(CM1
ˆ F) = [M1]× CC(F)

when M1, M2 are oriented manifolds and F a semi-algebraically constructible sheaf
on M2; and

(4.3c) T ∗
M1×S(M1 ×M2) = M1 × T ∗

SM2 , as oriented manifolds,

with M1, M2 as before and S ⊂M2 a submanifold. These three statements are con-
tained in the formalism and conventions of [KSa], but can also be deduced directly
from the geometric definition of characteristic cycles and the sign conventions in
[SV3], specifically (2.3-7) and the convention for orienting a product.

The question of sign is the only subtle matter in the proof of lemma 4.2. At first
glance, it might appear that the signs of characteristic cycles depends on Whether
we regard twisted sheaves on X as monodromic sheaves X̂ or – as we have chosen
to do – locally as sheaves on X . Not so: the fiber H of X̂ → X is complex, hence
even dimensional; when we treat this fibration locally as a product, it does not
matter where we place the factor H .

With F as in (4.1-2), we need to determine CC(Rp!F̃). We shall do so using

theorem 6.9 in [SV3]. This requires a compactification GR/KR of GR/KR , as well

as a function f : GR/KR → R which vanishes on ∂(GR/KR) and is strictly positive
on GR/KR. The statement of [SV3, (6.9)] requires the compactification and the

function f to be semi-algebraic. To make our computation of CC(Rp!F̃) manage-
able, we shall need to work with a certain specific function f which is not even
subanalytic. However, with the present application in mind, we showed in [SV3,
§10] how to extend the validity of theorem 6.9 and its generalization 6.10 beyond
the semi-algebraic and subanalytic contexts. Specifically, the two theorems apply
in the setting of any analytic-geometric category C as defined in [DM] – the sheaf

F̃ must be constructible with respect to a C-stratification of GR/KR ×X which is
extendable to a C-stratification of the compactification, and the function f must be
a C-function of class C1.

In the argument below, we shall use the analytic geometric category [DM] which
corresponds to Ran,exp , in the notation of [DMM]. As in §3, we choose a non-
degenerate, symmetric, G-invariant bilinear form B on g, which is defined over R

and agrees with the Killing form on [g, g]. We compactify GR/KR
∼= pR by adding

a single point,

(4.4) GR/KR
∼= pR = pR ∪ {∞} ,
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with the real analytic structure of the standard sphere containing the Euclidean
space pR as the complement of {∞}. The function

(4.5)
f : pR → R , defined by

f(∞) = 0 , f(ζ) = e−
1
2
B(ζ,ζ) for ζ ∈ pR ,

takes real values since B is defined over R. It is C∞ because B > 0 on pR, and
visibly a C-function: the map ζ 7→ ‖ζ‖−2ζ gives a coordinate system at infinity,

and the graph of ζ 7→ e−
1
2
‖ζ‖−2

is a C-set.
Let us argue that F̃ is indeed constructible with respect to a C-stratification of

pR×X which extends to a C-stratification of pR×X . Since F̃ is constructible with
respect to a semi-algebraic stratification of GR/KR ×X , it suffices to show

(4.6)
if S ⊂ pR ×X is semi-algebraic with respect to the real algebraic

structure coming from GR/KR ×X , then S is a C-set in pR ×X .

Let aR ⊂ pR be a maximal abelian subspace and AR
∼= (R>0)

r the connected
subgroup of GR generated by aR. Every KR-orbit in pR meets aR, hence

(4.7) KR ×AR −→ GR/KR , (k, a) 7→ kaKR ,

is a surjective algebraic map. It follows that S̃ ⊂ KR ×AR ×X , the inverse image
of the semi-algebraic subset S of GR/KR×X , is semi-algebraic. Note that S is the

image in pR×X of S̃ under the map KR×AR ×X → pR×X , which is induced by

(4.8) KR ×AR −→ pR , (k, exp ζ) 7→ Ad(k)ζ .

To conclude (4.6), it now suffices to extend the map (4.8) to a C-map from an
algebraic compactification of KR ×AR to pR. What matters here are the following
two general properties of C-maps and C-sets: a) the product of two C-maps is a
C-map, and b) the image of a C-set under a proper C-map is a C-set.

The map (4.8) is KR-equivariant with respect to the action by left translation
on itself, the trivial action on AR, and the adjoint action on pR; moreover, KR

acts algebraically on pR, relative to the algebraic structure coming from GR/KR.
The factor KR in (4.8) is therefore innocuous: it suffices to complete the map
AR → pR, exp ζ 7→ ζ to a C-map between their compactifications. We choose
coordinates y1, . . . , yr, yr+1, . . . , yq in the compactification of pR, centered at ∞,
so that (

∑

k y2
k)−1yj , 1 ≤ j ≤ r, are linear coordinates on aR, and yj = 0 on

aR for j > r. The linear coordinates on aR induce isomorphisms aR
∼= Rr and

AR
∼= (R>0)

r . We compactify AR algebraically by viewing xj and x−1
j as algebraic

coordinates on the j-th factor R>0 of AR
∼= (R>0)

r, near 0 and ∞, respectively.
With these choices of coordinates, the graph of the map AR → pR is given by the
equations

(4.9) yj = ǫj (
∑

k y2
k) log xj , 1 ≤ j ≤ r ; yj = 0 , r < j ≤ q ,

with ǫj = ±1 specifying a particular component in the boundary of AR
∼= (R>0)

r.
The equations (4.9) characterize the graph as a C-set. It is clear that the map ex-
tends at least continuously to the boundary. The graph of the continuous extension
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is the closure of the graph, hence a C-set. By definition, a C-map is a continuous
map whose graph is a C-set. Thus AR → pR can indeed be compactified as a C-
map. This completes the verification of (4.6). Note that the particular nature of
the compactification of pR plays no role in theorems 6.9 and 6.10 of [SV3] – all that
matters is the existence of some compactification with the right properties.

For the statement of our next lemma, we fix a particular K-orbit Q = K · xℓ in
X , and let M = Mℓ denote the corresponding submanifold of GR/KR ×X defined
in the statement of lemma 4.2. Recall the definition (3.6) of the family of bianalytic
maps Fs.

4.10 Lemma. For 0 < s < ∞, the submanifold T ∗
M (GR/KR × X) − s d log f of

T ∗(GR/KR × X) intersects the submanifold GR/KR × T ∗X transversely along a
submanifold Ns. The projection GR/KR × T ∗X → T ∗X maps Ns isomorphically
onto Fs(T

∗
QX).

The transversality statement in this lemma will allow us to apply the results
of [SV3] in the present context. Let F ∈ DK(X)−λ be given, and let F̃ ∈
DGR

(GR/KR × X)−λ be the distinguished sheaf such that q!F̃ = a!F . To cal-

culate the characteristic cycle of γ(F) = Rp!F̃ in terms of CC(F), we appeal to
theorem 6.9 of [SV3] – or more precisely, to its generalization for C-constructible
sheaves as described in [SV3,§10]. The first ingredient, namely the constructibility

of F̃ with respect to a C-stratification of GR/KR × X , has already been estab-

lished in (4.6). We have also produced a C-function f on GR/KR which vanishes
precisely on the boundary. The transversality hypothesis of theorem 6.9, finally,
follows from lemma 4.2 and the transversality statement in lemma 4.10. Theorem
6.9 is stated for Rp∗ rather than for Rp!. We need to apply the version for Rp!,
which is completely analogous to the other version, both in statement and in proof,
with one exception: one uses the open embedding theorem for Rj∗, which involves
addition of the term sd log f , and the other the open embedding theorem for Rj!,
which involves subtracting sd log f – see [SV3, theorem 4.2]. Alternatively, one can
deduce the version of theorem 6.9 for Rp! from the stated version by appealing
to the following two facts. The operation of Verdier duality relates Rp! to Rp∗,
Rp! = DRp∗D. Also, for any constructible sheaf G, CC(DG) = A∗(CC(G)), with A
denoting the antipodal map on the cotangent bundle, i.e., the bundle map which
acts as multiplication by −1 on the fibers.

Proof of 4.10. The one form d log f on pR defines a section of pR×pR
∼= T ∗pR → pR,

namely “minus the identity” on the fiber,

(4.11) d log f = { (ζ,−ζ) | ζ ∈ pR } ⊂ pR × pR
∼= T ∗pR ;

indeed, the function f was chosen to put d log f into this particularly simple form.
We want to lift this description of the one form d log f to GR/KR via the iden-
tification GR/KR

∼= pR induced by the exponential map. For this purpose, we
identify

(4.12) T ∗
eKR

(GR/KR) ∼= (gR/kR)∗ ∼= pR
∗ ∼= pR ;
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the last step refers to the isomorphism determined by the symmetric form B. We
claim:

(4.13) d log f = { ( exp ζ ·KR , −ℓ∗exp(−ζ)ζ ) | ζ ∈ pR } ⊂ T ∗(GR/KR) .

To deduce this from (4.11), recall the formula

(exp∗)|ζ = (ℓexp ζ)∗ ◦
1− e− ad ζ

ad ζ

(see, for example, [He,§II, theorem 1.7]). Dually,

(4.14a)

exp∗ : T ∗
exp ζ·KR

(GR/KR) −→ pR
∗ ∼= pR

coincides with

(

ead ζ − 1

ad ζ

)∗

◦ ℓ∗exp(−ζ) .

But ad ζ , for ζ ∈ pR , is self-adjoint with respect to B, so

(4.14b)

(

ead ζ − 1

ad ζ

)∗

(ζ) = ( 1 +
1

2
ad∗ ζ + . . . )(ζ) = ζ .

Thus (4.11) and (4.14) do imply (4.13).
We need to describe the conormal bundle of the submanifold M ⊂ (GR/KR)×X .

At the typical point x = k · xℓ in Q = K · xℓ, we identify

(4.15) T ∗
x X = (g/bx)∗ ∼= nx and (T ∗

QX)x
∼= p ∩ nx .

Note that M = {(exp ζ ·KR, exp ζ ·x) | ζ ∈ pR, x ∈ Q}. With convention (4.15), for
x ∈ Q and ζ ∈ pR , we have

(4.16)
(T ∗

M (GR/KR ×X))(exp ζ·KR,exp ζ·x) =

{ (−(ℓexp(−ζ))
∗ Re η , (Ad exp ζ)η ) | η ∈ p ∩ nx } .

Indeed, since M is a union of GR-orbits, it suffices to check this description for
ζ = 0. Recall the definition of the maps a and q. Both are submersions, and
a−1(Q) = q−1(M), hence

(4.17)
q∗(T ∗

M (GR/KR ×X)(eKR,x)) = (q∗T ∗
M (GR/KR ×X))(e,x)

= (a∗T ∗
QX)(e,x) = a∗((T ∗

QX)x) .

We identify the ambient space T ∗
(e,x)(GR ×X) ∼= gR

∗ ⊕ (g/bx)∗ with gR ⊕ nx via B

as usual. Then

(4.18) a∗((T ∗
QX)x) ∼= { (−Re(η), η)) | η ∈ p ∩ nx } ,

since (T ∗
QX)x

∼= p ∩ nx, and since a∗ : T ∗
xX → T ∗

(e,x)(GR × X) is dual to the

map gR ⊕ g/bx → g/bx which is the identity on the second summand and minus
the identity of the first summand, followed by the projection to g/bx. But q∗ is
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injective on each cotangent space, so (4.17-18) imply (4.16) at ζ = 0, and therefore
in general.

Combining (4.13) and (4.16), we see that the intersection Ns of GR/KR × T ∗X
with T ∗

M (GR/KR ×X)− sd log f is given by the equation sζ = Re η , which visibly
describes a transverse intersection. Explicitly,

(4.19) Ns = { (exp ζ ·KR, exp ζ ·x, 0, Ad exp(ζ)η) | x ∈ Q , η ∈ p∩nx , sζ = Re η } .

Note that the first variable can be recovered from the others, so the projection to
T ∗X maps Ns isomorphically to its image. To identify this image with Fs(T

∗
QX),

we only need to observe that

(4.20)
ℓ(exp(−ζ))∗ : T ∗

xX → T ∗
exp(ζ)xX

corresponds to Ad(exp ζ) : nx → nexp(ζ)x

via the natural isomorphisms T ∗
xX ∼= nx and T ∗

exp(ζ)xX ∼= nexp(ζ)x . This completes

the proof of lemma 4.10.

Let us summarize what needs to be done to complete the proof of theorem 3.7.
Using the notation established at the beginning of this section, we have γ(F) =

Rp!F̃ , hence

(4.21) CC(γ(F)) = CC(Rp!F̃) .

Following the statement of lemma 4.10, we had argued that we can apply theorem
6.9 of [SV3], in the context of C-maps and C-functions, and for Rp! instead of Rp∗.
We recall the relevant statement. The differential of the projection p induces

(4.22) dp : GR/KR × T ∗X →֒ T ∗(GR/KR ×X) ,

the inclusion of {zero section} × T ∗X into the cotangent bundle of the product.
Projecting to the first factor, we get

(4.23) τ : GR/KR × T ∗X −→ T ∗X .

With this notation, the Rp!-version of theorem 6.9 asserts

(4.24) CC(Rp!F̃) = lim
s→0+

τ∗ (dp)−1(CC(F̃)− sd log f) .

Thus it suffices to equate τ∗ (dp)−1(CC(F̃)− sd log f) with Fs(CC(F)), for s > 0.
Lemma 4.2 reduces the problem to the case of the conormal bundle of a single

K-orbit. Let Q = K · xℓ ⊂ X be a K-orbit and M = Mℓ the corresponding
submanifold of GR/KR×X . We let [T ∗

QX ] play the role of CC(F), and accordingly,

(−1)dim pR [T ∗
M (GR/KR ×X)] the role of CC(F̃). We shall argue that

(4.25) τ∗ (dp)−1((−1)dim pR [T ∗
M (GR/KR ×X)]− sd log f) = (Fs)∗([T

∗
QX ]) ,
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for s > 0. Because of (4.2), (4.21), and (4.24), the proof of theorem 3.7 will be
complete once we have established (4.25).

As an operation on cycles, (dp)−1 is simply intersection with GR/KR×T ∗X – in
our case, lemma 4.10 asserts that the intersection is transverse. The operation τ on
the intersected cycle is also particularly simple, since projection from GR/KR×T ∗X
to T ∗X induces an isomorphism on the carrier of the cycle. In short, lemma 4.10
implies (4.25) up to sign.

Let us recall the relevant sign conventions. We choose a specific orientation
of pR

∼= GR/KR; the particular choice will not matter. This orients the product
of GR/KR with the complex manifold X . Our convention for orienting conormal
bundles gives meaning to the cycle [T ∗

M (GR/KR ×X)]; the convention [SV3,(2.3)]
depends on a choice of orientation of the base manifold GR/KR×X , which we have
made. The operation of subtracting sd log f defines a diffeomorphism of the ambient
manifold T ∗(GR/KR × X). Via this diffeomorphism, T ∗

M (GR/KR × X) − sd log f
inherits an orientation from that of T ∗(GR/KR ×X), and

(4.26)
(−1)dim pR [T ∗

M (GR/KR ×X)]− sd log f

= (−1)dim pR [T ∗
M (GR/KR ×X)− sd log f ] .

The ambient manifold T ∗(GR/KR×X) is canonically oriented by the convention for
orienting cotangent bundles – space coordinates first, then the corresponding fiber
coordinates in the same order; see [SV3, p. 456]. Thus every oriented submanifold
becomes co-oriented by the rule

(4.27)
(orientation of the submanifold) ∧ (co-orientation of the submanifold)

= (orientation of the ambient manifold) ,

in symbolic notation. Since T ∗
M (GR/KR ×X) − sd log f intersects GR/KR × T ∗X

transversely along Ns, the normal bundle of Ns in GR/KR × T ∗X is canonically
isomorphic to the normal bundle of T ∗

M (GR/KR×X)−sd log f in T ∗(GR/KR×X)
along Ns. Thus Ns inherits a co-orientation and, by (4.27), an orientation. At this
point the orientation of GR/KR comes in for the second time. We had remarked
earlier that τ is a diffeomorphism on Ns, so τ(Ns) carries a definite orientation,
which gives meaning to the cycle [τ(Ns)]. Except for the factor (−1)dim pR , this is
the cycle on the left hand side of (4.25):

(4.28) τ∗ (dp)−1((−1)dim pR [T ∗
M (GR/KR ×X)]− sd log f) = (−1)dim pR [τ(Ns)] .

Indeed, the procedure (4.26-28) for choosing signs at each step precisely follows the
prescription in [SV3].

At this stage, we have two orientations on the connected manifold τ(Ns) =
Fs(T

∗
QX), which we must compare. We shall do so at points of the zero section of

T ∗
QX , which are fixed by Fs. For x ∈ Q,

(4.29)
Ns ∩ τ−1(x, 0) = (eKR, x, 0, 0) ∈ GR/KR ×X × T ∗

eKR
GR/KR × T ∗

xX

∼= GR/KR ×X × pR × nx .
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The tangent space of the ambient manifold at the point of intersection (4.29) is

(4.30)

T(eKR,x,0,0)(T
∗(GR/KR ×X))

= T(eKR,x)(GR/KR ×X)⊕ T ∗
(eKR,x)(GR/KR ×X)

∼= pR ⊕ g/bx ⊕ pR ⊕ nx .

It contains the tangent space of submanifold T ∗
M (GR/KR × X) − sd log f . From

(4.11) and (4.16), we see

(4.31)

T ∗
M (GR/KR ×X)− sd log f is the totality of points

(exp ζ ·KR, exp ζ · x,−Ad(exp ζ)(Re η − sζ), Ad(exp ζ)η) ,

with ζ ranging over pR, x over Q, and η over nx ∩ p .

Differentiating this parametrization, we get a description of the tangent space,

(4.32)
T(eKR,x,0,0)(T

∗
M (GR/KR ×X)− sd log f) =

{ (ζ , (ζ + κ) + bx , −Re η + sζ , η) | ζ ∈ pR , κ ∈ k , η ∈ nx ∩ p } ;

here (. . . )+ bx denotes the image of . . . in g/bx. We choose C-linear complements
vx of k/k ∩ bx in g/bx and qx of nx ∩ p in nx. Then, since s 6= 0,

(4.33)

pR ⊕ vx ⊕ 0⊕ qx is a linear complement of

T(eKR,x,0,0)(T
∗
M (GR/KR ×X)− sd log f) in

T(eKR,x,0,0)(T
∗(GR/KR ×X)) ∼= pR ⊕ g/bx ⊕ pR ⊕ nx ;

cf. (4.30).
An orientation of an orientable, connected manifold is described by orienting its

tangent space at one point. In the following, we shall think of an orientation for
a real vector space as an equivalence class of frames, i.e., of ordered bases. In the
case of a complex vector space V , the underlying real vector space V R gets oriented
by the complex structure: if {v1, . . . , vm} is a C-frame of V , the corresponding
R-frame {v1, iv1, . . . , vm, ivm} orients V R independently of the order of the vj . The
direct sum of two oriented vector spaces is oriented by combining positively oriented
frames of the summands in the given order, and the dual space V ∗ of an oriented
vector space V gets oriented by the frame dual to an oriented frame of V . The
underlying real vector space (V ∗)R of the dual V ∗ of a complex vector space is
canonically isomorphic to (V R)∗. It thus has two orientations, related by the rule

(4.34) dual orientation of (V R)∗ = (−1)dimC V complex orientation of (V ∗)R ;

reason: if {v∗1 , . . . , v∗m} is dual to a C-frame {v1, . . . , vm} of V , the real part of
〈iv∗j , ivj〉 equals -1. As a general rule, we orient the conormal bundle of a com-
plex submanifold as the conormal bundle of the underlying real manifold – see the
discussion at the beginning of §3. In the case of a submanifold N of an oriented
manifold M , the orientation of the conormal bundle T ∗

NM is given by identifying

T(n,0)(T
∗
NM) ∼= TnN ⊕ (T ∗

NM)n ⊂ TnM ⊕ T ∗
nM ∼= T(n,0)(T

∗M) ,
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and proceeding as follows: we choose an orientation of TnN , orient the quotient
TnM/TnN ∼= ((T ∗

NM)n)∗ consistently with the orientation of TnM ∼= TnN ⊕
((T ∗

NM)n)∗, we then put the dual orientation on (T ∗
NM)n; then

(4.35) orientation of (T ∗
NM)n = (−1)codimR(N,M) orientation of TnN ⊕ (T ∗

NM)n,

in accordance with the convention [SV3,(2.3)]. Note that (4.34) and (4.35) are
consistent when we identify V ∗ with the conormal bundle T ∗

0 V .
Our choice of orientation for GR/KR orients pR

∼= TeKR
(GR/KR). Recall the

choice of complements vx, qx in (4.33). We regard nx , g/bx , k/k∩bx , nx∩p , vx , qx

as real vector spaces, oriented by their complex structure. Then, via the isomor-
phism

(4.36) T(eKR,x,0,0)(T
∗
M (GR/KR ×X)− sd log f) ∼= pR ⊕ k/k ∩ bx ⊕ nx ∩ p ,

which is implicit in (4.32),

(4.37)
orientation of T(eKR,x,0,0)(T

∗
M (GR/KR ×X)− sd log f) =

(−1)codimC(Q,X) product orientation of pR ⊕ k/k ∩ bx ⊕ nx ∩ p .

What matters here is the discrepancy (4.34) between the two orientations of nx∩p ∼=
v∗

x; the sign in (4.35) does not show up because the real codimension of M is even.
The co-orientation of T ∗

M (GR/KR ×X) orients the linear complement (4.33), and

(4.38)
co-orientation on T(eKR,x,0,0)(T

∗
M (GR/KR ×X)− sd log f) =

(−1)dimR pR+dimC Q product orientation of pR ⊕ vx ⊕ 0⊕ qx .

The sign reflects the sign in (4.37), the sign in

(4.39)
(−1)ncomplex orientation of nx

∼= T ∗
x XR

= dual orientation of gx/bx
∼= TxXR ,

and one other sign. This third sign becomes transparent when we replace the space
(4.32) by 0⊕ k/k∩bx⊕pR⊕nx∩p, to which it is congruent modulo the complement
(4.33). Then

(4.40)
orientation of (0⊕ k/k ∩ bx ⊕ pR ⊕ nx ∩ p) ⊕ (pR ⊕ vx ⊕ 0⊕ qx)

= (−1)dimR pR orientation of pR ⊕ g/bx ⊕ pR ⊕ nx ;

in effect, we need to move the second copy of pR past the first copy – the other
necessary moves involve even dimensional spaces, and thus do not contribute a sign.

Since (T ∗
M (GR/KR ×X)− sd log f intersects GR/KR × T ∗X transversely along

Ns, and since the complement (4.33) lies in T(eKR,x,0)(GR/KR × T ∗X),

(4.41)
pR ⊕ vx ⊕ qx is a linear complement of T(eKR,x,0)Ns in

T(eKR,x,0)(GR/KR × T ∗X) ∼= pR ⊕ g/bx ⊕ nx .
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Because of (4.38),

(4.42)
co-orientation on T(eKR,x,0)Ns =

(−1)dimR pR+dimC Q product orientation of pR ⊕ vx ⊕ qx .

This co-orientation and the orientation of GR/KR × T ∗X induce an orientation on
the tangent space of Ns at (eKR, x, 0). We get a description of this tangent space
by differentiating (4.19), at η = 0 :

(4.43) T(eKR,x,0)Ns = { (s−1 Re η , (s−1 Re η + κ) + bx , η) | κ ∈ k , η ∈ nx ∩ p } .

Modulo the complement (4.41), we get the congruence

(4.44) T(eKR,x,0)Ns
∼= 0⊕ k/k ∩ bx ⊕ nx ∩ p ⊂ pR ⊕ g/bx ⊕ nx .

In view of (4.42), (4.39), and the even dimensionality of k/k ∩ bx and nx ∩ p, the
orientation of T(eKR,x,0)Ns and the product orientation of 0⊕ k/k ∩ bx ⊕ nx ∩ p are

related by the factor (−1)dimR pR+codimC(Q,X). The projection τ simply drops the
first factor, hence

(4.45)
orientation on T(x,0)τ(Ns) =

(−1)dimR pR+codimC(Q,X) product orientation of k/k ∩ bx ⊕ nx ∩ p .

The isomorphisms (4.15) induce

(4.46) T(x,0)(T
∗
QX) ∼= k/k ∩ bx ⊕ nx ∩ p ⊂ g/bx ⊕ nx

∼= T(x,0)(T
∗X) .

Our rule for orienting conormal bundles implies

(4.47)
orientation of T(x,0)(T

∗
QX) =

(−1)codimC(Q,X) product orientation of k/k ∩ bx ⊕ nx ∩ p ;

to see this, we argue as in (4.37). The induced map (Fs)∗ reduces to the identity
along the zero section and T ∗

QX is connected, hence

(4.48) [τ(Ns)] = (−1)dimR pR(Fs)∗([T
∗
QX ])

by (4.45-47). This, in combination with (4.28), proves (4.25).

5. Descent to the nilpotent cone.

The nilpotent cone N ⊂ g is a finite union of G-orbits. Each orbit O ⊂ N carries
a G-invariant, non-degenerate, complex algebraic 2-form σO. This form becomes
canonical when we identify O with the corresponding coadjoint orbit via B : g ∼= g∗

as in §3. In particular, the G-orbits O ⊂ N have even complex dimension. We
stratify N by dimension, with

(5.1) Nk =
⋃

{O | dimCO = 2k } , Ñk =
⋃

ℓ≤kNℓ .
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Then Ñk is closed, and Nk is open in Ñk. For ζ ∈ N , the Springer fiber µ−1(ζ)
is complete, connected, equidimensional, of complex dimension n − 1

2 dimC(G · ζ)
[Spal]. The moment map is G-equivariant, so the preceding statement implies:

(5.2)

for each G-orbit Ok ⊂ Nk, µ : µ−1(Ok)→ Ok is a

G-equivariant fibration, whose typical fiber µ−1(ζ) is a connected,

complex projective, equidimensional variety of dimension n− k.

We shall use the stratification (5.1) to filter the spaces T ∗
KX and T ∗

GR
X .

In the case of T ∗
KX , the k-th filtrant is the closed complex algebraic subspace

T ∗
KX ∩ µ−1Ñk. Then

(5.3)

a) . . . ⊂ T ∗
KX ∩ µ−1Ñk ⊂ T ∗

KX ∩ µ−1Ñk+1 ⊂ . . . ;

b)
⋃

k T ∗
KX ∩ µ−1Ñk = T ∗

KX ;

c) T ∗
KX ∩ µ−1Nk is open in T ∗

KX ∩ µ−1Ñk ;

d) the boundary of T ∗
KX ∩ µ−1Nk is contained in T ∗

KX ∩ µ−1Ñk−1 ;

e) T ∗
KX ∩ µ−1Nk is equidimensional, of complex dimension n .

The first four statements follow formally from the corresponding statements about
the Ñk. To see e), note that, T ∗

KX ∩µ−1Nk fibers over Nk ∩p, in other words, over
the union of K-orbits in Nk ∩ p. Because of (3.5), the fiber at each point is the full
Springer fiber µ−1(x). Because of (5.2), this fiber is equidimensional of complex
dimension n − k. The same reasoning gives properties a)-e) for the filtration of

T ∗
GR

X by the T ∗
GR

X ∩ µ−1Ñk. In this case, of course, the T ∗
GR

X ∩ µ−1Ñk are real

algebraic subvarieties, and T ∗
GR

X ∩µ−1Nk is equidimensional of real dimension 2n.

Recall that the characteristic cycle maps (3.3) take values in Hinf
2n (T ∗

KX, Z) and

Hinf
2n (T ∗

GR
X, Z). The filtration (5.3) and its real analogue induce filtrations

(5.4)
Hinf

2n (T ∗
KX, Z)k = Im {Hinf

2n (T ∗
KX ∩ µ−1Ñk, Z)→ Hinf

2n (T ∗
KX, Z)},

Hinf
2n (T ∗

GR
X, Z)k = Im {Hinf

2n (T ∗
GR

X ∩ µ−1Ñk, Z)→ Hinf
2n (T ∗

GR
X, Z)} .

Because of (5.3c,d), we get a well defined restriction map

(5.5a) Hinf
2n (T ∗

KX, Z)k −→ grk Hinf
2n (T ∗

KX, Z) −→ Hinf
2n (T ∗

KX ∩ µ−1Nk, Z) ,

and analogously,

(5.5b) Hinf
2n (T ∗

GR
X, Z)k −→ grk Hinf

2n (T ∗
GR

X, Z) −→ Hinf
2n (T ∗

GR
X ∩ µ−1Nk, Z) .

Integration over the fibers of µ defines maps from the groups on the right in (5.5a,b)
to groups of cycles in Nk ∩ p and Nk ∩ igR, as we shall explain next.

The dual space h∗ of the universal Cartan contains the universal weight lattice Λ,
i.e., the lattice of differentials of algebraic characters of the universal Cartan group
H . For λ ∈ Λ, the character eλ : H → C∗ determines a G-equivariant algebraic line
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bundle Lλ → X whose fiber at x ∈ X is the complex line, on which Bx acts via eλ.
The map λ 7→ c1(Lλ) (= first Chern class of Lλ) defines a homomorphism from Λ
to H2(X, Z), and hence

(5.6) c1 : h∗ −→ H2(X, C) .

For simplicity, we write eλ for the cohomology class 1 + c1(λ) + c1(λ)2

2 + . . . , which
we view as a class on T ∗X . The usual cap product pairing applies also in the
setting of homology with infinite support. Thus we can take the cap product of

any class in Hinf
2n (T ∗

KX ∩µ−1Nk, Z) against the component of eλ in degree 2n−2k;
this produces a homology class in degree 2k, which can then be pushed forward to

a class in Hinf
2k (Nk ∩ p, C). This operation, and its GR-analogue, is our process of

integration over the fibers. In general, the definition of cap product involves certain
sign conventions. We do not need to spell them out, since integration over the fiber
can be described more concretely in our particular situation.

The moment map defines a fibration µ : T ∗
KX ∩ µ−1Nk → Nk ∩ p. As top

dimensional cycle, each C2n ∈ Hinf
2n (T ∗

KX ∩ µ−1Nk, Z) can be regarded, locally
with respect to the base of the fibration, as a product of a top dimensional cycle
C2n−2k(ζ) in the (compact) fiber with a top dimensional cycle in Nk ∩ p – here
we are using the complex structure of the µ−1(ζ) to orient the fiber component
of the cycle; the even dimensionality of the fiber makes the order of the product
irrelevant. We integrate the component of eλ in degree 2n − 2k over C2n−2k(ζ);
the resulting function m(ζ) is locally constant and independent of the particular
product decomposition. We multiply the base component of C2n by the multiplicity
m(ζ). This gives us a well defined class

(5.7)
∫

C2n
eλ ∈ Hinf

2k (Nk ∩ p, C) ,

the pushforward of the degree 2k component of the cap product1 eλ ∩C2n. Analo-

gously, we define integration over the fiber, as a map from Hinf
2n (T ∗

GR
X ∩µ−1Nk, Z)

to Hinf
2k (Nk ∩ igR, C). In general, integration and cap product agree only up to

sign. Specifically, if M is a compact oriented m-manifold, cap product ω∩ [M ] with
the fundamental class, for ω ∈ Hm(M, C) is (−1)m times the integral of a deRham
representative of ω over M . In our case, the sign is doubly irrelevant: not only
are the Springer fibers even dimensional, but if there were a change of sign – as
there may be in the more general situation of a semisimple symmetric space – it
will occur twice in the statement of theorem 5.10.

To each C ∈ Hinf
2n (T ∗

KX ∩ µ−1N , Z), we assign the degree k = k(C), the least

integer k such that C ∈ Hinf
2n (T ∗

KX∩µ−1Ñk, Z). We then restrict C to T ∗
KX∩µ−1Nk

and perform the operation (5.7). This gives us

(5.8a)
(grµ∗)λ : Hinf

2n (T ∗
KX ∩ µ−1N , Z) −→

⊕

k Hinf
2k (Nk ∩ p, C) ,

(grµ∗)λ(C) =
∫

C0 eλ , C0 = C|T∗

K
X∩µ−1Nk

, k = k(C) .

1To see that the geometric operation of integration over the fiber does agree with cap product,
followed by pushforward, one can use the formalism in [SV3], for example: when cycles are viewed
as local cohomology classes along their supports, cap product gets converted into cup product;
this makes available the full apparatus of cohomology.
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All of this makes sense equally on the GR-side:

(5.8b)
(grµ∗)λ : Hinf

2n (T ∗
GR

X ∩ µ−1N , Z) −→
⊕

k Hinf
2k (Nk ∩ igR, C) ,

(grµ∗)λ(C) =
∫

C0 eλ , C0 = C|T∗

GR
X∩µ−1Nk

, k = k(C) .

Note that the two maps (grµ∗)λ are not homomorphisms, since the definitions

involve going to the leading terms in the graded groups grHinf
2n (T ∗

KX ∩ µ−1N , Z)

and grHinf
2n (T ∗

GR
X ∩ µ−1N , Z).

The family Fs : T ∗X → T ∗X defined in (3.6) induces a family of bianalytic maps
fs on the nilpotent cone,

(5.9)
fs : N → N , s ∈ R>0 ,

fs(η) = Ad(exp(s−1 Re η))η , ( η ∈ N ) .

Because of (4.20), µ ◦ Fs = fs ◦ µ, so Fs does lie over fs.

5.10 Theorem. For c ∈ Hinf
2k (Nk ∩p, C), the limit of cycles lims→0+(fs)∗(c) exists

as cycle in Nk and has support in Nk ∩ igR. The resulting homomorphism

φ :
⊕

k Hinf
2k (Nk ∩ p, C) −→

⊕

k Hinf
2k (NK ∩ igR, C) ,

φ(c) = lims→0+(fs)∗(c) for c ∈ Hinf
2k (Nk ∩ p, C), makes the following diagram

commutative:

Hinf
2n (T ∗

KX, Z)
Φ

−−−−→ Hinf
2n (T ∗

GR
X, Z)

(gr µ∗)λ





y





y

(gr µ∗)λ

⊕

k Hinf
2k (Nk ∩ p, C)

φ
−−−−→

⊕

k Hinf
2k (Nk ∩ igR, C) .

Proof. Recall the definition of the analytic-geometric category C in §4. To see that
the limit of cycles exists, we shall argue that the family of cycles (fs)∗(c) is a
C-family – in other words, that the union of the supports fs(|c|) is a C-subset of
Nk ×R. We proceed as in the proof of theorem 3.7. For dimension reasons, |c| is a
union of K-orbits, hence algebraic in Nk. Thus

(5.11) { (Ad(g)η, gKR, s) | gKR ∈ GR/KR , η ∈ |c| , s ∈ R } ⊂ Nk ×GR/KR × R

is a real algebraic subset, and consequently a C-subset of Nk ×GR/KR × R. Since

pR
∼= GR/KR as C-sets,

(5.12) { (Ad(exp ζ)η, ζ, s) | ζ ∈ pR, η ∈ |c|, s ∈ R } ⊂ Nk × pR × R

is a C-subset, as is its intersection with { sζ = Re η }. This intersection is the sup-
port of the family of cycles {(fs)∗(c)}. In view of [SV3,§3], the limit lims→0+(fs)∗(c)
exists as cycle in Nk. More specifically,

(5.13) lim
s→0+

(fs)∗(c) ∈ Hinf
2k (NK ∩ igR, C) ,
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as follows from the argument below the statement of theorem 3.7.
We regard J = [0,∞] as a closed subinterval of the one point compactification

R∪{∞} of R. Let us consider a particular C ∈ Hinf
2n (T ∗

KX, Z). The cycles (Fs)∗(C)
constitute a family of 2n-cycles in T ∗X , parametrized by I = (0,∞), in the sense
of [SV3,§3]. In other words, there exists a (2n + 1)-chain CJ in J × T ∗X such that

(5.14)

a) |CJ | = closure of { (s, Fs(ζ)) | s ∈ I , ζ ∈ |C| } ;

b) CI = CJ |(I×µ−1(Ñk)) is a 2n-cycle in I × T ∗X ;

c) Cs = (Fs)∗(C) for 0 < s <∞ ;

d) ∂CJ = {∞} × C − {0} × lim
s→0+

Cs .

Here Cs denotes the specialization of the family CI at s, i.e.,

(5.15) {s} × Cs = ∂CI |(0,s]×T∗X (boundary in (0, s]× T ∗X) .

Let k = k(C) be the least integer k such that C ∈ Hinf
2n (T ∗

KX, Z)k – equivalently,

the least integer k such that C is supported in µ−1(Ñk). Since Nk is G-invariant,

this implies that all the cycles (Fs)∗(C) are supported in µ−1(Ñk). Thus we can

regard CJ as a family of cycles in µ−1(Ñk).
Recall the definition of Φ(C) as the limit of (Fs)∗(C) as s→ 0+. The preceding

remarks imply, in particular, that Φ(C) is supported in µ−1(Ñk), hence k(Φ(C)) ≤
k(C) . In fact,

(5.16) k(Φ(C)) = k(C) .

To see this, we observe that Φ is derived from the functor γ of (2.7), which has an
inverse, the functor Γ of [MUV] with an appropriate shift in degree. Concretely, Γ
is defined in terms of the diagram (2.8), but with K and K/KR taking the places
of GR and GR/KR and with stars instead of shrieks. Just as γ determines Φ, the
functor Γ determines

(5.17) Ψ : Hinf
2n (T ∗

GR
X, Z) −→ Hinf

2n (T ∗
KX, Z) .

Theorem (3.7) and its proof carry over to this situation word for word, with one
exception: in pinning down the sign in (3.7), it was convenient to use the com-
plex structure of the K-orbits. In any case, the same reasoning that gave us the
inequality k(Φ(C)) ≤ k(C) gives

(5.18) k(Ψ(C)) ≤ k(C) (C ∈ Hinf
2n (T ∗

GR
X, Z) ) .

Since Γ◦γ is equivalent to the identity on DK(X)−λ, up to sign, Ψ◦Φ is the identity
on the CC-image of DK(X)−λ, up to the same sign. We claim:

(5.19) CC(DK(X)−λ) = Hinf
2n (T ∗

KX, Z) ,

for integral λ ∈ h∗, and in particular for λ = ρ. Assuming this for the moment,
we see that Ψ ◦ Φ – which does not depend on the particular choice of λ – is the
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identity, up to sign, on all of Hinf
2n (T ∗

KX, Z). Thus (5.16) follows from (5.18) and
the earlier inequality k(Φ(C)) ≤ k(C) .

We need to establish (5.19). If λ = ρ, as we may assume, DK(X)−ρ = DK(X)
contains all the direct images Rj∗CS of constant sheaves CS on K-orbits S ⊂ X .
The characteristic cycle CC(Rj∗CS) differs from [T ∗

SX ] by a linear combination
of cycles [T ∗

S′X ] with S′ ⊂ ∂S. Thus, arguing by induction on the dimension of
S, we find [T ∗

SX ] ∈ CC(DK(X)) for all K-orbits S. These cycles [T ∗
SX ] span

Hinf
2n (T ∗

KX, Z), so (5.19) follows.
At this point, we have established the first assertion of theorem 5.10, and we have

shown that Φ preserves the integer k(C) which enters the definition of integration
over the fibers. This operation can be applied to the family CI . The family of
diffeomorphisms Fs can be used to trivialize CI ; in other words,

(5.20) (0,∞]× |C|
∼
−−→ |C(0,∞]| ,

so that C(0,∞] becomes the product of the interval (0,∞] with the cycle C. Contrary
to appearance,∞ is a generic point of the family, since Fs extends smoothly across
s = ∞ – recall (3.6). Integrating eλ over the µ-fibers of this family, we obtain a
family of 2k-cycles c(0,∞] in Nk. It, too, is a product family whose general member

is cs = (fs)∗(c), with c =
∫

C
eλ. As in (5.14), c(0,∞] is the restriction to (0,∞]×Nk

of a (2k + 1)-chain cJ in J ×Nk, such that

(5.21) ∂cJ = {∞} × c − {0} × lim
s→0+

cs .

The two families CJ , cJ cease to be product families at s = 0. To see that cs =
∫

Cse
λ even at s = 0, we appeal to the formalism of cap product, as follows.

Let ω ∈ H2n−2k(T ∗X, C) be the component in degree 2n− 2k of eλ, pulled back
from X to T ∗X . We shall take the cap product of a cochain representative of ω
with the chain CJ – or more precisely, with

(5.22) C′
J = restricition of CJ to J × µ−1(Nk) .

This can be carried out in several ways, but perhaps most transparently in the
simplicial setting. Thus we triangulate, compatibly, the spaces J×µ−1(Nk) , |C′

J | ,
{0} × µ−1(Nk) , and {∞} × µ−1(Nk); we can do so because |CJ | is a C-set. We
choose a cochain representative of ω and, for simplicity, denote it by the same letter.
We can then take the cap products ω ∩ C′

J , ω ∩ ∂C′
J . Since ω is closed, they are

related by the formula

(5.23) ∂(ω ∩ C′
J ) = ω ∩ ∂C′

J ;

for the sign conventions, we follow [Span]. Because of the triviality of the family
CI , µ∗(ω∩C′

I) is the family in Nk whose general member is obtained by integrating
ω over the µ-fiber – in other words, the general member is cs, hence

(5.24) µ∗(ω ∩ C′
I) = cI .
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All the top dimensional simplices of CJ lie in CI , so (5.24) remains valid with J in
place of I :

(5.25) µ∗(ω ∩C′
J ) = cJ .

Because of (5.14d), (5.23), and (5.25),

(5.26) µ∗(ω ∩ ({∞} × C′))− µ∗(ω ∩ ({0} × Φ(C)′)) = {∞} × c− {0} × φ(c) ,

where C′ and Φ(C)′ denote the restrictions of the two cycles to µ−1(Nk).
¿From our definition of integration over the fiber, we see that µ∗(ω ∩ ({0} ×

Φ(C)′)) equals {0} ×
∫

Φ(C)
eλ. Hence, because of (5.26),

(5.27) φ(c) =

∫

Φ(C)

eλ .

Taken together, (5.16) and (5.27) give the commutativity of the diagram in the
statement of theorem 5.10.

6. Nilpotent orbits.

Let Ok be a G-orbit in Nk. Then Ok∩p is a union of finitely many K-orbits, and
similarly, Ok ∩ igR is a union of finitely many GR-orbits. These intersections are
Lagrangian – in the case of p, with respect to the holomorphic symplectic structure
σOk

on Ok, and in the case of igR, with respect to ReσOk
[KR]; here, as in §5, we

identify g ∼= g∗ andN ∼= N ∗ by means of the bilinear form B. In particular, each K-
orbit in Nk∩p is a complex manifold of dimension k. We use the complex structure
to orient the orbits. This allows us to regard them as K-invariant, top dimensional

cycles in Nk ∩ p. In fact, these cycles constitute a basis of Hinf
2k (Nk ∩ p, C)K , the

K-invariant part of the top dimensional homology of Nk ∩ p :

(6.1a) Hinf
2k (Nk ∩ p, C)K = {

∑

aj [Op,j ] | aj ∈ C , dimCOp,j = k } ,

with Op,j enumerating the K-orbits inN∩p. To see this, we note that the connected

components of the K-orbits provide a basis of Hinf
2k (Nk ∩ p, C); the fundamental

cycle [Op,j ] of a K-orbitOp,j is the sum of the fundamental cycles of the components
of Op,j. Analogously,

(6.1b) Hinf
2k (Nk ∩ igR, C)GR = {

∑

bj [OgR,j] | bj ∈ C , dimROgR,j = 2k }

when we enumerate the GR-orbits in N∩igR as OgR,j. Each of them lies in a G-orbit
Ok, from which it inherits the symplectic form 1

2πi
σOk

– note that the restriction
of σOk

is purely imaginary on Ok ∩ igR. We use the symplectic structure to orient
the OgR,j , to give meaning to the cycles [OgR,j].

Sekiguchi [Se] and Kostant (unpublished) have described a bijective correspon-
dence between the K-orbits in N ∩ p on one hand, and the GR-orbits in N ∩ igR on
the other. Orbits that correspond to each other lie in the same G-orbit, and thus
have the same dimension. Recall the definition of

(6.2) φ :
⊕

k Hinf
2k (Nk ∩ p, C) −→

⊕

k Hinf
2k (Nk ∩ igR, C)

in the statement of theorem 5.10, which was defined in terms of the family of
diffeomorphisms fs : g→ g , fs(η) = Ad(exp(s−1 Re η))(η).
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6.3 Theorem. The map φ is an isomorphism. It sends K-invariant cycles to
GR-invariant cycles. On the invariant part of the homology, φ coincides with the
Kostant-Sekiguchi correspondence via the identifications (6.1). Concretely, if [Op] ∈

Hinf
2k (Nk ∩p, C)K is the fundamental class of a K-orbit Op, oriented by its complex

structure, then the family of cycles (fs)∗[Op] has a limit as s→ 0+, and this limit

is the fundamental class [OgR
] ∈ Hinf

2k (Nk ∩ igR, C)GR of the Sekiguchi image OgR

of Op, oriented by its symplectic form.

Sekiguchi describes the correspondence between the two types of orbits by re-
duction to the special case of GR = SL(2, R) , KR = SO(2, R). Let

(6.4) j : sl(2, C) −→ g

be a homomorphism, defined over R with respect to the real forms sl(2, R) and gR,
and equivariant with respect to the Cartan involutions – in the case of sl(2, C),
the Cartan involution corresponding to the maximal compact subgroup SO(2, R)
of SL(2, R). According to Kostant-Rallis [KR],

(6.5)
every ζ ∈ N ∩ p is K-conjugate to the j-image of

(

1 i
i −1

)

for some homomorphism j as in (6.4).

On the other hand, the Jacobson-Morozov theorem for the Lie algebra gR implies

(6.6)
every η ∈ N ∩ igR is GR-conjugate to the j-image of

(

0 i
0 0

)

for some homomorphism j as in (6.4);

see, for example, [Ko]. Sekiguchi shows that the K-orbit of ζ, and similarly the
GR-orbit of η, determines the homomorphism j up to KR-conjugacy [Se]. Thus

(6.7) K-orbit of j

(

1 i
i −1

)

←→ GR-orbit of j

(

0 i
0 0

)

,

for every homomorphism j as in (6.4), sets up a well-defined correspondence be-
tween K-orbits in N ∩ p and GR-orbits in N ∩ igR.

Every ζ ∈ N ∩ p is K-conjugate to its negative, but η ∈ N ∩ igR need not
be GR-conjugate to −η. It would be equally natural to let the K-orbit of ζ in
(6.5) correspond to the GR-orbit of −η in (6.6). From our point of view, the
microlocalization of the functor γ dictates the choice of η over −η : since

(6.8) exp

(

s−1 Re

(

1 i
i −1

)) (

1 i
i −1

)

=

(

1 ie2s−1

ie−2s−1

−1

)

,

the definition of φ forces

(6.9) K ·

(

1 i
i −1

)

←→ GR ·

(

0 i
0 0

)



CHARACTERISTIC CYCLES AND WAVE FRONT CYCLES 29

in the case of SL(2, R), and correspondingly (6.7) in general.
The proof of theorem 6.3 is lengthy. It uses methods completely different from

those in the rest of the paper. Here we shall reduce the assertion of the theorem to
certain technical statements about nilpotent orbits, which are proved in [SV5].

We begin with a simplification of the problem: it suffices to consider the case of
a connected semisimple group GR. Indeed, when GR is connected, then so are KR

and K. In that case all homology classes in Hinf
2k (Nk ∩ p, C) are K-invariant, and

similarly all classes in Hinf
2k (Nk ∩ igR, C) are GR-invariant. Now

(6.10) K/K0 ∼= KR/K0
R
∼= GR/G0

R ,

so the invariance conditions in (6.1) are equivalent to invariance under the compo-
nent group KR/K0

R
. But φ commutes with the action of KR. Thus we may as well

assume that GR is connected. All nilpotents lie in the derived algebra [g, g]. Hence,
without changing the problem, we can replace GR by its quotient by the connected
component of the center. For emphasis,

(6.11) GR = G0
R , g = [g, g] ,

as will be assumed from now on.
The support of the family of cycles (fs)∗[Op], s > 0, is contained in a single

G-orbit O – the G-orbit which contains the K-orbit Op. We suppose O 6= {0},
since otherwise there is nothing to prove. According to theorem 5.10, the limit of
the family exists as cycle in the union of G-orbits having the same dimension as O.
This union is disjoint, hence

(6.12) the limit lim
s→0+

(fs)∗[Op] exists as cycle supported on O ∩ igR .

Since Op has the same dimension as O ∩ igR, the limit is necessarily an integral
linear combination of fundamental classes of the finitely many GR-orbits in O∩ igR.
We enumerate these orbits as OgR,j; then

(6.13) lim
s→0+

(fs)∗[Op] =
∑

bj [OgR,j ] , bj ∈ Z .

Note that both Op and the OgR,j are connected because of (6.11). With this nota-
tion, theorem 6.3 amounts to a description of the bj,

(6.14) bj =

{

1 if OgR,j is the Sekiguchi image of Op ,

0 otherwise .

That is what we must prove.
The multiplicities bj can be expressed as intersection multiplicities of the cycles

(fs)∗[Op] with normal slices to the OgR,j . To do this, we fix a particular ν ∈ OgR,j

and choose a linear complement qR to the kernel of ad ν in gR. For a > 0 sufficiently
small,

(6.15) N(ν, a) = {Adexp(iη)(ν) | ν ∈ qR , ‖η‖ < a }
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is a real analytic submanifold of O which meets OgR,j only at ν, and the intersection
at ν is transverse – in other words, N(ν, a) is a “normal slice” to OgR,j, at ν, in O.
Then

(6.16)

for generic ν ∈ OgR,j , with a > 0 sufficiently small, and

s small in relation to a, the cycle (fs)∗[Op] intersects N(ν, a)

transversely, with total intersection multiplicity bj .

In this statement, “generic” means “on an open, dense C-set”, where C refers to
the analytic-geometric category introduced and used in §4; intersections are to
be counted with the same sign convention that makes OgR,j meet N(ν, a) with
multiplicity +1. We refer to [SV3,§3] for the notion of limit of a family of cycles,
as we have earlier.

It looks prohibitively difficult to compute the intersection multiplicities at a
generic point ν directly. Instead, we shall establish a slightly stronger statement at
certain (conceivably) non-generic points2, from which we then deduce the needed
information about generic points. In preparation for the argument, we introduce
the compact real form

(6.17a)
uR = kR ⊕ ipR = { ζ ∈ g | θζ̄ = ζ }

( ζ̄ = complex conjugate of ζ with respect to gR )

in g, and the maximal compact subgroup

(6.17b) UR = connected subgroup of G with Lie algebra uR

of G. Since G is connected,

(6.17c) GR ∩ UR = KR = K ∩ UR ;

cf. [He], for example. In previous sections we had chosen a particular Ad-invariant
bilinear form B on g. Now that g is semisimple by assumption, we let B denote
the Killing form, normalized as follows. By Jacobson-Morozov, any ζ ∈ O can be
embedded in an essentially unique sl2-triple. In other words, there exist τ , ζ− in g

such that

(6.18) [τ, ζ] = 2ζ , [τ, ζ−] = −2ζ− , [ζ, ζ−] = τ ,

τ is unique up to conjugacy by the centralizer Gζ of ζ, and ζ− becomes unique
once τ has been chosen. In particular, the orbit O determines τ up to G-conjugacy.
Since τ is non-zero (recall: we had assumed O 6= {0}), semisimple, with integral
eigenvalues, we can normalize B by requiring

(6.19) B(τ, τ) = 2 .

2Indeed, we believe that in our particular situation, every point is generic in the sense of (6.16).
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Thus B restricts to the linear span of ζ, ζ−, τ as the trace form of sl(2, C), to which
this linear span is isomorphic. In terms of B, we define

(6.20) (ζ1, ζ2) = −B(ζ1, θζ̄2) ζ1, ζ2 ∈ g .

This is a (positive definite) UR-invariant inner product on g.

We introduce a moment map for the action of G on O, following Ness [N]. From
an intrinsic point of view, we should think of the moment map as taking values in
iuR

∗. It will be more convenient, however, to identify iuR
∼= iuR

∗, and to define

(6.21a) m : O −→ iuR

implicitly, by the equation

(6.21b) 2 Re (m(ζ), η) =
1

‖ζ‖2

(

d

dt
‖Adexp(tη)ζ‖2

)

|t=0 .

As η runs over g in this equation, m(ζ) becomes determined as vector in g. But
the inner product is UR-invariant, hence m(ζ) does lie in iuR. The UR-invariance
also implies

(6.22) m(Ad(u)ζ) = Ad(u)(m(ζ)) (u ∈ UR ) ,

i.e., the map m is UR-equivariant. To get an explicit formula for m(ζ), we calculate:

(

d

dt
‖Adexp(tη)ζ‖2

)

|t=0 = 2 Re ([η, ζ], ζ)

= −2 Re B([η, ζ], θζ̄) = −2 Re B(η, [ζ, θζ̄ ]) = 2 Re B(η, θ[ζ, θζ̄ ])

= −2 Re (η, [ζ, θζ̄]) = −2 Re ([ζ, θζ̄ ], η) ,

for every test vector η ∈ g, hence

(6.23) m(ζ) = −
[ζ, θζ̄]

‖ζ‖2
.

The moment map descends to the image of the orbit O in the projectivized Lie
algebra P(g). Viewed as map from P(g) to iuR

∼= iuR
∗, m coincides with the moment

map, in the sense of symplectic geometry, relative to a UR-invariant symplectic
structure on P(g) [N].

Because of the equivariance (6.22), the square length ‖m(ζ)‖2 is invariant under
the UR-action. It is also invariant under scaling by any nonzero complex number.
Scaling by positive real numbers plays a special role, since it preserves GR-orbits.
We thus regard O as manifold with UR × R+-action, with R+, the multiplicative
group of positive real numbers, acting by scaling.
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6.24 Lemma. A point ζ ∈ O is a critical points of the function ζ 7→ ‖m(ζ)‖2 if
and only if [ζ, θζ̄] can be rescaled so that ζ, [ζ, θζ̄], θζ̄ becomes an sl2-triple – in
other words, if and only if there exists a ∈ R, a 6= 0, such that

[[ζ, θζ̄], ζ] = a ζ and [[ζ, θζ̄], θζ̄] = −a θζ̄ .

The set of critical points is not empty and consists of a single UR × R+-orbit. The
function ‖m‖2 on O assumes its minimum values exactly on the critical set. Every
K-orbit in O∩ p and every GR-orbit in O∩ igR meets the critical set along exactly
one KR × R+-orbit.

This follows from a general property of the moment map [N, theorem 6.1]; for
details, see [SV5]. We shall be able to analyze the intersection of the family of cycles
(fs)∗[Op] with an appropriately chosen normal slice N(ν, a) for points ν ∈ OGR,j

which are critical of the function ‖m‖2. As a first step, we show:

6.25 Lemma. Let Op be a K-orbit in O∩p, and ζ ∈ Op a critical point for ‖m‖2.
Then fs(ζ) lies in the critical set for every s ∈ R>0. Moreover, the limit

lim
s→0+

fs(ζ)

‖fs(ζ)‖

exists and lies in the Sekiguchi image OgR
of Op.

Proof. For t > 0, fs(tζ) = tfst−1(ζ), so we are free to rescale ζ by a positive
real number. Also, ζ is KR-conjugate to −ζ, because [[ζ, θζ̄ ], ζ] is a non-zero real
multiple of ζ and exp(it[ζ, θζ̄]) ∈ KR for t ∈ R. Since fs is KR-equivariant, we
can now rescale ζ by any non-zero real number. In other words, we may assume
that a = −2, in the notation of the previous lemma. In that case, the linear map
j : sl(2, C)→ g, defined by

(6.26)

j

(

1 0
0 −1

)

= ζ − θζ̄ , j

(

0 1
0 0

)

=
1

2i
(ζ + θζ̄ + [ζ, θζ̄]) ,

j

(

0 0
1 0

)

=
1

2i
(ζ + θζ̄ − [ζ, θζ̄]) ,

satisfies the conditions on j in (6.4): it is a homomorphism, defined over R with
respect to the real form sl(2, R) ⊂ sl(2, C), and equivariant with respect to the
Cartan involution corresponding to the maximal compact subgroup SO(2, R) of
SL(2, R). In this way we can reduce the problem to a computation in sl2, which
we have already done – see (6.8).

For the moment, we keep fixed a particular ζ ∈ Op. Since m(fs(ζ)) ∈ iuR =
ikR ⊕ pR, we can write

(6.27)
m(fs(ζ)) = m1(s, ζ) + m2(s, ζ) + m3(s, ζ) , with

m1(s, ζ) ∈ R · Re ζ , m2(s, ζ) ∈ pR ∩ (Re ζ)⊥ , m3(s, ζ) ∈ ikR .

Experimental evidence suggests that ‖m(fs(ζ))‖2 is decreasing for s > 0. The
parametric curve fs(ζ) would then move away from the critical set of ‖m‖2 as s
approaches 0. We do not how to prove this; however, the following suffices for our
purposes.
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6.28 Lemma. For s > 0 , ‖m1(s, ζ)‖2 + ‖m3(s, ζ)‖2 ≥ ‖m(ζ)‖2 .

This lemma plays the crucial role in the proof of the next one; both are estab-
lished in [SV5].

6.29 Lemma. Let ν0 ∈ OgR,j be a critical point for ‖m‖2. Then there exists a
normal slice N(ν0, a) with the following properties. If OgR,j is the Sekiguchi image
of Op, then the submanifolds fs(Op) and N(ν0, a) of O meet exactly once, for all
sufficiently small values of s. The intersection is transverse and has multiplicity +1,
relative to the sign convention which makes OgR,j meet N(ν0, a) with multiplicity
+1 at ν0. On the other hand, fs(Op) ∩N(ν0, a) = ∅ if OgR,j is not the Sekiguchi
image of Op, again for all sufficiently small s.

We shall deduce theorem 6.3 from lemma 6.29. In effect, one can phrase the
criterion (6.16) less restrictively in the case of a subanalytic or C-family of cycles:
one may use even non-generic normal slices to calculate the intersection multiplicity,
provided they satisfy two conditions. First, the normal slice is normal not only to
the carrier of the limit cycle, but also normal to limit of the carriers; secondly, the
carrier of the family is transverse to the particular normal slice, except possibly at
s = 0. We shall not try to establish the more general statement in full generality,
but only in our particular situation.

We fix a point ν0 ∈ OgR,j which is critical for the function ‖m‖2. The normal slice
N(ν0, a) mentioned in the lemma corresponds to a choice of a linear complement
qR to Ker(ad ν0) in gR. The same qR will then be a linear complement also to
Ker(ad ν) for every ν ∈ OgR,j close to ν0. We choose a small open neighborhood V0

of ν0 and a sufficiently small constant a > 0 so that

(6.30)
B(a)× V0 −→ O (B(a) = { η ∈ qR | ‖η‖ < a } ) ,

(η, ν) 7→ Ad(exp η)ν

is a bianalytic map onto its image. We shrink a further, if necessary, so that the
normal slice N(ν0, a) satisfies the conclusion of lemma 6.29, and so that the map

(6.30) extends bianalytically to B(a) × V0, the partial closure of B(a) × V0 in the
qR-directions. We use this bianalytic map and B(a) ∼= N(ν0, a) to identify

(6.31a) N(ν0, a)× V0
∼= neighborhood of ν0 in O .

This identification is consistent with the tautological inclusions N(ν0, a) ⊂ O and
V0 ⊂ OgR,j ⊂ O. The projection

(6.31b) π : N(ν0, a)× V0 −→ V0

retracts the neighborhood (6.31a) of ν0 in O to the neighborhood V0 of ν0 in OgR,j .
The fibers of π are normal slices, i.e.,

(6.31c) π−1(ν) = N(ν, a) = normal slice to ν .

By construction, the product structure (6.31) extends to the closure in the fiber
directions.
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The carrier of the family of cycles {(fs)∗[Op]}s>0 is a closed real analytic sub-
manifold of R>0 ×O; it is also a C-set in R×O. Here, once again, C refers to the
analytic-geometric category used earlier. We denote the submanifold by M . The
natural bianalytic map

(6.32) R>0 ×Op

∼
−−→ M , (s, ζ) 7→ fs(ζ)

orients M . We observe that

(6.33)
M ∩ (R>0 ×N(ν0, a)× V0) is closed in R>0 ×N(ν0, a)× V0 , and

M ∩ (R>0 ×N(ν0, a)× V0) is closed in R>0 ×N(ν0, a)× V0 .

The projection M ∩ (R>0 ×N(ν0, a)× V0)→ V0 can be partially compactified to a
proper C-map

(6.34) M ∩ ({0 ≤ s ≤ ∞} ×N(ν0, a)× V0) −→ V0 .

We shall show:

(6.35)

there exists a dense open C-set V1 ⊂ V0 such that

the projection M ∩ (R>0 ×N(ν0, a)× V1) −→ V1

is of maximal rank everywhere in the domain.

Indeed, by [DM, statement D.13], the projection (6.34) can be stratified, so that on
each stratum in the domain the projection has constant rank. Note that dim M =
dimV0 + 1. Thus, by dimension count, each stratum in the domain either maps to
a lower dimensional stratum in V0, or the projection has maximal rank on it. Our
statement (6.35) follows; it may happen, of course, that R>0 ×N(ν0, a)× V1 does
not intersect M at all.

The generic triviality statement [DM, 4.11] for compactifiable C-maps allows us
to shrink V1 further, so that

(6.36)
V1 ⊂ V0 is open, ν0 ∈ V1 , and

M ∩ (R≥0 ×N(ν0, a)× V1) −→ V1 is a product

(product in the C-continuous sense). What can we say about the fiber Fν of this
product over a ν ∈ V1? To begin with,

(6.37a) Fν is a C-curve in R≥0 ×N(ν, a) , unless Fν is empty ,

for dimension reasons. Secondly,

(6.37b)
Fν ∩ ({0} ×N(ν, a)) ⊂ {(0, ν)} and

Fν ∩ (R>0 ×N(ν, a)) ⊂ R>0 × (N(ν, a)− {ν}) ;

here we use (5.13), which holds and is proved on the level of supports. Also, for
s 6= 0 and ζ ∈ Op, the real part of fs(ζ) equals the real part of ζ, hence is non-zero,
which prevents fs(ζ) from lying in igR. Lastly, because of (6.35),

(6.37c) Fν ∩ (R>0 ×N(ν, a)) is a closed submanifold of R>0 ×N(ν, a) .
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It is also a C-subset, hence has only a finite number of connected components.
We enumerate the finitely many connected components of Fν ∩ (R>0 ×N(ν, a))

as Fν,ℓ , 1 ≤ ℓ ≤ L; note that

(6.38) Fν ∩ (R>0 ×N(ν, a)) = Fν − {(0, ν)}

because of (6.37). A priori each of the Fν,ℓ can be compact, have zero, one, or two
endpoints at ν, with the remaining ends “at infinity”, i.e., tending to the boundary
of the normal slice. Note that an end at ν corresponds to s = 0, and an end in
∂N(ν, a) to a strictly positive value of s; cf. (6.37b). When we count the net
intersection multiplicity of (fs)∗[Op] with the normal slice N(ν, a), the component
Fν,ℓ contributes only if it has one end at ν and the other at infinity. After all, we
are computing the multiplicity at {0} × ν of the boundary of the chain [Fν ]. We
claim:

(6.39)

a) among the Fν,ℓ, either one or none run from zero to infinity,

depending on whether or not OgR,j is the Sekiguchi image of Op;

b) if Fν,ℓ does run from zero to infinity, this curve can be continued

across ν = ν0.

According to lemma 6.29, over ν = ν0 we see either one curve or none, again
depending on whether or not OgR,j is the Sekiguchi image of Op. In the former
situation, the curve runs from zero to the boundary of the normal slice and has
the same intersection multiplicity with (fs)∗[Op], 0 < s ≪ 1, as with [OgR

]. Thus
(6.39) does imply theorem 6.3.

The verification of (6.39) involves two processes: extending the curve over ν0 –
if there is one – to nearby points ν, and specializing to ν = ν0 those Fν,ℓ which run
from zero to infinity. For the former, we note that

(6.40)
the projection M ∩ (R>0 ×N(ν0, a)× V0) −→ V0 has maximal

rank along Fν0
− {(0, ν0)} = M ∩ (R>0 ×N(ν0, a)× {ν0});

this follows from the transversality assertion in lemma 6.29. We conclude that the
curve over ν0 – if it exists – can be continued smoothly to nearby points ν, at least
if we stay away from s = 0. These nearby curves over ν ∈ V1 must run from ν
to ∂N(ν, a), or from ν back to ν, or from one point on ∂N(ν, a) to another, or
be compact – these are the only possibilities for curves over points in V1, as was
mentioned earlier. All but the first possibility are ruled out by the local smoothness
(6.40) of the family across Fν0

, away from s = 0. To summarize, when there is a
curve Fν0

over ν0, it can be continued to a curve over nearby points ν ∈ V1 which
runs from ν to ∂N(ν, a). There is at most one such curve above nearby points
ν ∈ V1, since otherwise the local smoothness (6.40) would be contradicted.

The reverse process, of specializing from ν ∈ V1 to ν0, depends on a property of
our particular setting that we have not used so far. Let us consider a curve Fν,ℓ

over a point ν ∈ V1 that runs from ν to ∂N(ν, a). It was mentioned already that ν
corresponds to s = 0 and the boundary point to some strictly positive s∞ = s∞(ν).
We need to know:

(6.41) s∞(ν) is bounded away from 0 for ν ∈ V1 near ν0.



36 WILFRIED SCHMID AND KARI VILONEN

Assuming this for the moment, we can specialize Fν,ℓ to a curve Fν0
which runs

from ν0 to ∂N(ν0, a). Together with the conclusion of the preceding paragraph,
this establishes (6.39).

At this point, only (6.41) needs to be established. If the assertion were false,
there would exist sequences {sn} in R>0 and {ζn} in Op such that sn → 0 and
limn→∞ fsn

(ζn) ∈ ∂N(ν0, a). On the other hand, the existence of limn→∞ fsn
(ζn)

with sn → 0 forces limn→∞ fsn
(ζn) ∈ igR, as was argued at the end of §3. Finally,

we can decrease a further, if necessary, to ensure ∂N(ν0, a) ∩ igR = ∅.

7. Completion of the proof of theorem 1.4.

The commutative squares (2.9), (3.7), and (5.10) can be combined into a single
commutative diagram, as follows:

(7.1)

{virtual H-C-modules}λ
∼

−−−−→ {virtual GR-representations}λ

α

x





x





β

DK(X)−λ
γ

−−−−→ DGR
(X)−λ

CC





y





y
CC

Hinf
2n (T ∗

KX, Z)
Φ

−−−−→ Hinf
2n (T ∗

GR
X, Z)

(gr µ∗)λ





y





y

(gr µ∗)λ

⊕

k Hinf
2k (Nk ∩ p, C)

φ
−−−−→

⊕

k Hinf
2k (Nk ∩ igR, C) .

We saw, in §6, that φ induces the Kostant-Sekiguchi correspondence when we make
the identifications (6.1).

The parameter λ ∈ h∗ in (7.1) fixes the infinitesimal character of representations,
but not conversely: χλ = χµ when λ and µ are W -conjugate. The particular choice
of λ within its W -orbit has not mattered until now. At this point, however, it will
become convenient to suppose that λ is integrally dominant, in the sense that

(7.2) 2
(λ, α)

(α, α)
/∈ Z<0 for every α ∈ Φ+ ;

here, as before, Φ+ refers to the universal positive root system. This situation is
special for the Beilinson-Bernstein construction [BB1]. First of all, it implies

(7.3) Hp(X, M) = 0 if p 6= 0 ,

for every coherent Dλ-module M – in particular, for every K-equivariant, coherent
Dλ-module. When λ is not only integrally dominant, but also regular, the assign-
ment M 7→ H0(X, M) establishes an equivalence of categories between the category
of K-equivariant, coherent Dλ-modules on one hand, and the category of Harish-
Chandra modules with infinitesimal character χλ on the other. When λ is integrally
dominant but singular, there exist Dλ-modules without sections; however,

(7.4)

for each irreducible Harish-Chandra module M with

infinitesimal character χλ, there exists a unique irreducible

K-equivariant Dλ-module M such that H0(X, M) = M .
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Concretely, M is the unique irreducible K-equivariant quotient of the Beilinson-
Bernstein localization of M which does have non-zero sections.

We use the bilinear form B to identify g ∼= g∗, as in section 5. Correspondingly,
we identify K-orbits in N ∩ p with K-orbits in N ∗ ∩ p∗ and GR-orbits in N ∩ igR

with GR-orbits in N ∗ ∩ igR
∗. Thus we can think of the associated cycle Ass(π)

and the wave front cycle WF(π) as lying in the two groups of nilpotent cycles in
the bottom row of (7.1). Recall the definition (2.4) of the K-equivariant deRham
functor.

7.5 Proposition. Let λ be integrally dominant, π an irreducible representation
with infinitesimal character χλ, and M the Harish-Chandra module of π. With M

as in (7.4), set F = DR(M). Then (grµ∗)λ(CC(F)) = Ass(π) via the identification
(6.1a).

This is essentially a reformulation of a result of J.-T. Chang [C1]. At the end
of this section, we shall reduce our statement to Chang’s result, and comment on
certain aspects of his proof.

7.6 Proposition. Let π be an irreducible representation with infinitesimal cha-
racter χλ, and F ∈ DGR

(X)−λ a sheaf such that β(F) = π up to infinitesimal
equivalence. Then either (grµ∗)λ(CC(F)) vanishes or (grµ∗)λ(CC(F)) = WF(π)
via the identification (6.1b).

We shall see, after the fact, that the first alternative, i.e., the vanishing of
(grµ∗)λ(CC(F)), cannot happen when F is chosen appropriately. We shall de-
duce the proposition from our integral formula for characters [SV4]. In the case of
complex groups and regular infinitesimal character, (7.6) is due to Rossmann [R2].
Our proof is a generalization of Rossmann’s argument.

Before turning to the proof of (7.6), let us argue that the two propositions,
together with theorem 6.3 and the commutativity of the diagram (7.1), do imply
theorem 1.4.

Proof of theorem 1.4. We consider a particular irreducible representation π, with
infinitesimal character χλ. From the construction of the associated cycle, it is
clear that Ass(π) 6= 0. With λ and F as in proposition 7.5, (gr µ∗)λ(CC(F)) =
Ass(π) 6= 0. The commutativity of (7.1) now ensures that (grµ∗)λ(CC(γ F)) 6= 0,
hence (grµ∗)λ(CC(γ F)) = WF(π) by proposition 7.6. We appeal once more to the
commutativity of (7.1) to conclude WF(π) = φ(Ass(π)). Because of theorem 6.3,
this gives the assertion of the theorem.

Proof of proposition 7.6. Let Θπ denote the character of π, and θπ the pullback of
Θπ to the Lie algebra gR ,

(7.7) θπ =
√

det(exp∗) exp∗ Θπ .

Our integral formula for characters3[SV4], transferred to g via g ∼= g∗, asserts

(7.8)

∫

gR

θπ φdx =
1

(2πi)nn!

∫

CC(F)

µ∗
λφ̂ (−σ + π∗τλ)n ,

3Our formula is the explicit version of a formula of Rossmann [R1,R2], who represents invariant
eigendistributions on gR, with regular infinitesimal character, as integrals over unspecified cycles.
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for every test function φ ∈ C∞
c (gR). Here µλ : T ∗X → g denotes Rossmann’s

twisted moment map, n the complex dimension of X , σ the canonical holomorphic
symplectic form on T ∗X , π : T ∗X → X the natural projection, and finally τλ a
particular differential form on X such that

(7.9)
τλ

2πi
represents the cohomology class c1(λ) ∈ H2(X, C) .

We define the Fourier transform φ̂ of φ as a holomorphic function on g by the
formula

(7.10) φ̂(ξ) =

∫

gR

eB(ξ,x) φ(x) dx .

Since we have omitted the customary factor of i in the exponent, φ̂ decays rapidly

along the imaginary directions. This decay property of φ̂ makes the second integral
in (7.8) converge.

The definition of the wave front cycle involves scaling the argument of θπ by a
scaling parameter t ∈ R>0. Let mt : g → g denote scaling by t, i.e., mt(ξ) = tξ.
Since

∫

gR

θπ(tx)φ(x) dx = t−d

∫

gR

θπ(x)φ(t−1x) dx ( d = dim gR ),

and since

ξ 7→ td φ̂(tξ) is the Fourier transform of x 7→ φ(t−1x) ,

the scaled family of invariant eigendistributions is given by the formula

(7.11)

∫

gR

θπ(tx)φ(x) dx =
1

(2πi)nn!

∫

CC(F)

µ∗
λm∗

t φ̂ (−σ + π∗τλ)n .

Scaling of cotangent vectors by t defines a map on T ∗X ; for convenience, we denote
this map also by the symbol mt. The definition of the twisted moment map implies

(7.12) mt ◦ µλ = µtλ ◦mt and limt→0 µtλ = µ .

In particular,

(7.13)
µ∗

λm∗
t φ̂ (−σ + π∗τλ)n = m∗

t µ
∗
tλφ̂ (−σ + π∗τλ)n =

m∗
t

(

µ∗
tλφ̂ m∗

t−1(−σ + π∗τλ)n
)

= m∗
t

(

µ∗
tλφ̂ (−t−2σ + π∗τλ)n

)

.

In the last step we have used the identities m∗
t−1π∗τλ = π∗τλ and m∗

t−1σ = t−2σ;
the former follows from π ◦mt−1 = π, the latter from the definition of σ. By (7.11)
and (7.13),

(7.14)

∫

gR

θπ(tx)φ(x) dx =
1

(2πi)nn!

∫

CC(F)

µ∗
tλφ̂ (−t−2σ + π∗τλ)n ,
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since (mt)∗ CC(F) = CC(F) – recall: the characteristic cycle is invariant under
scaling by a positive factor.

As in §5, we let k = k(CC(F)) denote the least integer such that µ−1(Ñk)
contains the support of CC(F). On T ∗

KX ∩ µ−1(Nℓ),

1

n!
(−t−2σ + π∗τλ)n =

t−2ℓ

ℓ!(n− ℓ)!
(−σ)ℓ ∧ (π∗τλ)n−ℓ .

Thus we can re-write the integral on the right in (7.14) as a sum,

(7.15)

∫

gR

θπ(tx)φ(x) dx =

∑

ℓ≤k

t−2ℓ

(2πi)nℓ!(n− ℓ)!

∫

CC(F)∩µ−1(Nℓ)

µ∗
tλφ̂ (−σ)ℓ ∧ (π∗τλ)n−ℓ .

To get the full asymptotic expansion of m∗
t θπ, one can expand µ∗

tλφ̂ as a Taylor
series in t. There are no convergence problems, even though we integrate over
cycles with infinite support: the remainder for the truncated Taylor series involves

various partial derivatives of φ̂, which satisfy the same kind of bound as φ̂ itself –

see [SV4,(3.15-16)], where the convergence is deduced from the rapid decay of φ̂.
In particular, since µtλ → µ ,

(7.16)

∫

gR

θπ(tx)φ(x) dx =

t−2k

(2πi)nk!(n− k)!

∫

CC(F)∩µ−1(Nk)

µ∗φ̂ (−σ)k ∧ (π∗τλ)n−k + O(t1−2k)

as t → 0. The integral on the right is therefore either zero or the leading term in
the asymptotic expansion of the left hand side.

To relate the integral on the right to the wave front cycle of π, we must express it

as linear combination of integrals of φ̂ over GR-orbits in igR∩Nk , in each case with
respect to the canonical measure of the orbit in question. We consider a particular
GR-orbit OR in igR∩Nk, and let O denote the G-orbit in which OR lies. According
to [SV3, lemma 8.19],

µ∗σO = −σ|µ−1(O) .

Hence, on µ−1(OR),

(7.17)

1

(2πi)kk!
µ∗φ̂ (−σ)k = µ∗(φ̂ dmOR

) ,

where dmOR
=

(σO)k

(2πi)kk!
is the canonical measure on OR .

Note that (2πi)−1σO is a real, non-degenerate 2-form on OR, whose top exterior
power orients OR; this orientation allows us to regard the top exterior power as
positive measure. The restriction of CC(F) to µ−1(OR) can be regarded, locally, as
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a product of OR, oriented as above, and a top dimensional cycle CC(F)(ζ) in the
Springer fiber µ−1(ζ) over any particular ζ ∈ OR; this fibration was used already
in the definition of the map (grµ∗)λ in section 5. We now appeal to (7.9) and the
definition of eλ as 1 + c1(λ) + . . . , and conclude

(7.18)
1

(2πi)n−k(n− k)!

∫

CC(F)(ζ)

µ∗φ̂ τn−k
λ = φ̂(ζ)

∫

CC(F)(ζ)

eλ .

The characteristic cycle CC(F) of the GR-invariant sheaf F is GR-invariant. It
follows that the integral of eλ over CC(F)(ζ) depends on the orbit OR, not the
particular choice of ζ ∈ OR. Let b(OR) denote the value of this integral. Combining
(7.17-18), we find

(7.19)

1

(2πi)nk!(n− k)!

∫

CC(F)∩µ−1(OR)

µ∗φ̂ (−σ)k ∧ (π∗τλ)n−k

= b(OR)

∫

OR

φ̂ dmOR
.

The assignment φ 7→
∫

OR
φ̂ dmOR

defines a distribution, the Fourier transform of

the orbit OR ⊂ igR – more precisely, of the canonical measure dmOR
on OR. Here

we normalize the Fourier transform as in (7.10), without a factor i in the exponent.
Let us summarize what we have established so far. Taking the sum of the

expressions (7.19) for all GR-orbits igR ∩ Nk, we find

(7.20)

φ 7→
1

(2πi)nk!(n− k)!

∫

CC(F)∩µ−1(Nk)

µ∗φ̂ (−σ)k ∧ (π∗τλ)n−k

is the Fourier transform of
∑

OR⊂igR∩Nk

b(OR) OR

with OR shorthand for the distribution on igR defined by the measure dmOR
. We

do not yet know that
∑

OR⊂igR∩Nk

b(OR) OR 6= 0 .

However, when this holds, (7.16) shows that the distribution (7.20) is the Fourier
transform of the leading term of m∗

t θπ as t→ 0. In other words,

(7.21)
∑

OR⊂igR∩Nk

b(OR) OR =

{

WF(π) or

0 .

The definition of the constants b(OR) tells us that
∑

b(OR) [OR] is the cycle in
Nk ∩ igR obtained from CC(F) by integrating eλ over the fibers of µ, as defined in
§5. Thus, in the notation of §5,

(7.22)
∑

OR⊂igR∩Nk

b(OR) [OR] = (grµ∗)λ(CC(F)) .
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Proposition (7.6) now follows from (7.21-22).

Remarks on proposition 7.5. The characteristic cycle of a holonomic D-module is
a local invariant – i.e., local with respect to the base manifold X . In particular,
the holonomic Dλ-module M has a well defined characteristic cycle CC(M). By
construction, it is a complex algebraic cycle of the same dimension as X . We regard

it as a geometric cycle, in other words, as cycle in Hinf
2n (T ∗

KX, Z), by orienting its
components via the complex structure. A result of Kashiwara [K2,§8.2] asserts that
CC(M) coincides with the characteristic cycle of F = DR(M):

(7.23) CC(M) = CC(DR(M)) .

We shall give a short proof, based on a result of Ginzburg and on [SV3, theorem
4.2], which we have used already.

The reason for (7.23) is simple: both notions of characteristic cycle obey the same
formalism. We shall establish the equality for every (algebraic) regular holonomic
D-module on a complex algebraic manifold X . Since the characteristic cycles are
local invariants, we may as well assume that X is affine. To begin with, we suppose
that M is the D-module direct image of a vector bundle ES , with a flat algebraic
connection, on a closed irreducible submanifold S ⊂ X . In that particular case,

(7.24) DR(M) is the sheaf of flat sections of ES in degree codimC(S, X) ,

as can be computed directly. Thus, by (4.3a),

(7.25) CC(DR(M)) = (−1)codimC(S,X) rkC(ES)[T ∗
SX ] ,

with T ∗
SX oriented according to our general convention, as in [SV3,(2.3)]. On the

other hand,

(7.26)
the D-module characteristic cycle CC(M) is the conormal bundle

T ∗
SX , oriented by its complex structure, with multiplicity rkC(ES) .

The two orientations of T ∗
SX – by our general convention for orienting conormal

bundles and via the complex structure – are related by (−1)codimC(S,X); see (4.34-
35). This implies (7.23) in the special case of a flat vector bundle on a closed
submanifold.

Next we suppose that M is the D-module direct image of a regular holonomic
D-module N on U , the complement of a divisor {f = 0} in X , and further, that N

satisfies (7.23) on U . Let j denote the embedding U →֒ X . Then

(7.27) DR(M) = Rj∗ DR(N) ;

see, for example, [Bo]. Thus our open embedding theorem [SV3,(4.2)] implies

(7.28) CC(DR(M)) = lim
s→0+

(

CC(DR(N)) + s d log |f |2
)

.
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Ginsburg’s theorem [Gi, theorem 3.2], which inspired our theorem, asserts

(7.29) CC(M) = lim
s→0

(

CC(N) + s
df

f

)

.

The equality (7.28) takes place in the real cotangent bundle of X , and (7.27) in the
holomorphic cotangent bundle. Our convention (3.1) for identifying the two bundles

identifies the two differentials d log |f |2 and df
f

. Since CC(N) = CC(DR(N)) by

assumption,

(7.30) CC(DR(N)) + s d log |f |2 ∼= CC(N) + s
df

f
( s ∈ R )

via T ∗(XR) ∼= T ∗X . The family of cycles whose limit we take in (7.28) is therefore
the restriction to R≥0 of the complex family appearing in (7.29). The two notions
for taking limits are consistent, hence (7.23) holds for the D-module direct image
M = j∗N if it does for N.

Beginning with flat vector bundles on closed submanifolds, one can generate
the K-group of holonomic D-modules on smooth affine varieties by a succession of
direct images under open affine embeddings. This now gives us the equality (7.23)
in general.

The identity we just established reduces the assertion (7.5) to the analogous one
about the D-module characteristic cycle CC(M) of the K-equivariant D-module
M. This cycle is K-invariant and thus can be expressed as an integral linear
combination of conormal bundles of K-orbits in X ,

(7.31) CC(M) =
∑

j mj [T ∗
Sj

X ]C .

Here [T ∗
Sj

X ]C is the fundamental cycle of T ∗
Sj

X oriented by its complex structure,

not by our general convention for orienting conormal bundles. The moment map
exhibits each of these conormal bundles as a fiber bundle over a K-orbit Op,j in
N ∩ p ,

(7.32) T ∗
Sj

Fj

−−−→ Op,j ,

with fiber Fj , which is a union of irreducible components of the Springer fiber µ−1ζ
over any particular ζ ∈ Op,j . Note that several conormal bundles may lie over the
same K-orbit in N ∩ p; in other words, as the index j enumerates K-orbits Sj in
X , there may be repetition among the Op,j. J.-T. Chang proves

(7.33) Ass(π) =
∑

j mj

∫

Fj
eλ [Op,j ]

[C1,(2.5.6)]. Chang’s actual statement relates two homogenous polynomials, one of
which expresses the multiplicity of a K-orbit in Ass(π) as π runs over the coherent
family generated by π. Chang expresses this polynomial in terms of the integral
of eλ over fibers Fj , regarded as a polynomial in the variable λ, which ranges over
h∗. The polynomial identity, evaluated at the localization parameter λ, reduces to
(7.33). Going back to our definition of integration over the Springer fiber, one finds

(7.34)
∑

j mj

∫

Fj
eλ [Op,j ] = (grµ∗)λ(CC(M)) .

Proposition 7.5 now follows from (7.23), Chang’s identity (7.33), and the re-inter-
pretation (7.34) of the right hand side of (7.33).
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