CHARACTERISTIC CYCLES AND WAVE FRONT CYCLES
OF REPRESENTATIONS OF REDUCTIVE LIE GROUPS

WILFRIED SCHMID AND KARI VILONEN

1. Introduction.

In the papers [V1] and [BV], Vogan and Barbasch-Vogan attach two similar
invariants to representations of a reductive Lie group, one by an algebraic process,
the other analytic. They conjectured that the two invariants determine each other
in a definite manner. Here we prove the conjecture. Our arguments involve two
finer invariants — the characteristic cycles of representations — which are interesting
in their own right.

To describe the invariants, we consider a linear, reductive Lie group Gr and
fix a maximal compact subgroup Kr C Gr. We denote their Lie algebras by gr
and g, and the complexified Lie algebras by g, €. An element (¢ of the dual space
g* is said to be nilpotent if it corresponds to a nilpotent element of [g, g] via the
isomorphism [g,g] = [g,9]* C g* induced by the Killing form. Via the adjoint
action, the complexification G of Gg acts with finitely many orbits on N'*, the cone
of all nilpotents in g*. Like all coadjoint orbits, each G-orbit O C N™* carries a
distinguished (complex algebraic) symplectic structure; the intersection of O with
igr = {C € 9" | (¢, gr) C iR} consists of finitely many Ggr-orbits, each of which is
Lagrangian in O. The choice of maximal compact subgroup determines a Cartan
decomposition g = € @ p, and dually g* = € @ p*. The complexification K of the
group Ky operates on N™* N p* with finitely many orbits, and each of these orbits
is Lagrangian in the G-orbit which contains it [KR].

Now let 7 be an irreducible, admissible representation of Gg — for example an
irreducible unitary representation. To such a representation, one can associate its
Harish-Chandra module V', which is simultaneously and compatibly a module for
the Lie algebra g and a locally finite module for the algebraic group K. Then
V admits K-invariant “good filtrations”, as module over the universal enveloping
algebra U(g), relative to its canonical filtered structure. Vogan [V1] shows that the
annihilator of the graded module defines an equidimensional, K-invariant algebraic
cycle, independently of the choice of good filtration, whose support is contained in
N*Np*. Since K acts on N* Np* with finitely many orbits, this “associated cycle”
becomes a linear combination

(1.1) Ass(m) = > a;[0p;] (a5 €Zx)
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of fundamental cycles of K-orbits O, ; in N* N p*, all of the same dimension.
This is the first of the two invariants which we relate. The other is constructed
in [BV], from the (Harish-Chandra) character ©,. When O, is pulled back to ggr
via the exponential map and the argument is scaled by a multiplicative parameter
t € Ry, the resulting family of distributions has an asymptotic expansion as ¢t — 0.
The Fourier transform of the leading term can be thought of as a complex linear
combination of fundamental cycles of Gg-orbits in iNf = N* Nigh,

(1.2) WE(m) = Y b;[0g.;] (b €C),

in the following sense: up to the multiplication by i, each Oy, ; is a coadjoint orbit,
hence carries a canonical measure, whose Fourier transform defines a distribution
on gr. We shall call WF () the “wave front cycle” of w. Its support coincides
with the wave front set of the distribution ©, at the identity, as was proved by
Rossmann [R3,R4].

The similar nature of the two invariants (1.1-2) led Barbasch and Vogan to
suggest the existence of a natural bijection between the K-orbits in A* N p* and
the Gg-orbits in iNj. This conjectured correspondence

(1.3) K\ (V" Np*) —— Gg\iNg

was established by Sekiguchi [Se] and Kostant (unpublished). We shall show:

1.4 Theorem. The associated cycle Ass(m) coincides with the wave front cycle
WF (7) via the correspondence (1.3).

This result settles a conjecture of Barbasch-Vogan [V2]. In particular, it implies
that the coefficients b; of the wave front cycle are non-negative integers.

The so-called orbit method suggests that certain irreducible unitary representa-
tions of the reductive group G should be attached to nilpotent orbits. Ideally one
would like to realize these “unipotent representations” geometrically, as spaces of
sections, or perhaps cohomology groups, of line bundles on the nilpotent orbits in
question. Such direct geometric constructions have been carried out only in iso-
lated cases. On the other hand, the associated cycle and the wave front cycle attach
nilpotent orbits to representations, and these nilpotent invariants can be used in
the process of labeling some representations as unipotent. The affirmative answer
to the Barbasch-Vogan conjecture thus settles a natural question: the two types
of nilpotent invariants, arising from the associated cycle and the wave front cycle
respectively, give absolutely equivalent information. Vogan’s paper [V3] contains a
broad survey of the notion of unipotent representation and various related matters.
It is also a convenient reference for a good part of the material used by us.

Theorem 1.4 fits into a general pattern. There are several other invariants and
constructions — such as n-homology, induction, geometric realizations — that can be
carried out alternatively for Harish-Chandra modules or Gg-representations; the
former emphasizes the role of the K-action, and the latter, the role of Gg. It
sometimes happens that a calculation is doable on one side, but has implications
on the other side. In this spirit, J.-T. Chang [C2] has used theorem 1.4 to give a
simple, conceptual proof of a theorem of Vogan [V1].
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Our proof of the theorem relates the associated cycle to the wave front cycle
via two geometric invariants. On the side of Harish-Chandra modules, the Beilin-
son-Bernstein construction attaches representations to K-equivariant D-modules
on the flag variety X, and these in turn correspond to K-equivariant sheaves on X
via the Riemann-Hilbert correspondence. The passage from Harish-Chandra mod-
ules to K-equivariant sheaves has an analogue on the side of Ggr-representations.
This gives three sides of a square, with vertices “Harish-Chandra modules”, “Gg-
representations”, “K-equivariant sheaves”, and “Gg-equivariant sheaves”. The
fourth side, the “Matsuki correspondence for sheaves”, makes the square commute;
this is the commutative square (2.9) below. Kashiwara’s characteristic cycle con-
struction applies, in particular, to the K-equivariant and Gg-equivariant sheaves
arising from representations, producing Lagrangian cycles in the cotangent bundle
T*X. The main point of our proof is a microlocalization of the Matsuki corre-
spondence — an explicit, geometric passage from the characteristic cycle on the
K-equivariant side to that of the corresponding Gr-equivariant sheaf.

The moment map of the G-action on the cotangent bundle sends 7% X to the
nilpotent cone N*. It turns out that the associated cycle is the image, in an ap-
propriate sense, of the characteristic cycle of the K-equivariant sheaf under the
moment map. Similarly, the characteristic cycle of the Gr-equivariant sheaf de-
termines the wave front cycle. In both cases the characteristic cycles carry more
information than Ass(7) and WF (7). The characteristic cycles merit further study,
we think; they may turn out to be more interesting invariants than the associated
cycle and the wave front cycle.

The two types of characteristic cycles, i.e., the associated cycle and the wave front
cycle, take values in four abelian groups which form the vertices of a commutative
square. We already mentioned three of the arrows: the microlocalization of the
Matsuki correspondence and the cycle maps induced by the moment map. The
fourth arrow, the “push-down” of the microlocalized Matsuki correspondence, is
an explicit geometric passage from K-orbits in A™* N p*, viewed as cycles in N*,
to Gr-orbits in N* N g, again viewed as cycles. This, we prove, coincides with
the Sekiguchi correspondence (1.3). The final ingredient of the argument identifies
the push-downs of the characteristic cycles with the associated cycle and the wave
front cycle, respectively.

A two-column commutative diagram, (7.1) in section 7, encapsulates the entire
argument. Here we give it in heuristic form:

{H-C-modules} ———  {Gg-representations}

e [te,

{K-equivariant sheaves} ———— {GRg-equivariant sheaves}

(1.5) CCJ lcc

{characteristic cycles} ——— {characteristic cycles}

Al [

{K-orbits in N* Np*} ———— {Gr-orbits in N* Nigp}.
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The top arrow represents some right inverse of Harish-Chandra’s passage from
representations to Harish-Chandra modules, such as the maximal globalization
functor [S]. Beilinson-Bernstein’s localization functor [B,BB1,BB2], followed by the
Riemann-Hilbert correspondence [K1,Me], is Lg. It has a Gg-analogue L¢,, whose
inverse is constructed in [KSd]. Kashiwara [K3] conjectured the Matsuki correspon-
dence for sheaves -, an elaboration of Matsuki’s correspondence between K-orbits
and Gg-orbits in the flag variety [Ma]; the paper [MUV] establishes Kashiwara’s
conjectured description of v. The arrows CC refer to Kashiwara’s characteristic
cycle construction [K2,KSa]. Theorem 3.7 below describes @, the microlocalization
of the Matsuki correspondence. Its proof, in section 4, depends heavily on the
“open embedding theorem” [SV3], which describes the effect on characteristic cy-
cles of push-forward under an open embedding. Our construction of the functor ®
leads us outside the customary real analytic context — i.e., outside the subanalytic
setting; instead, we need to work inside one of the “analytic-geometric categories”
of van den Dries-Miller [DM]. On the Gg-side, the push-down map p. is based on
ideas of Rossmann [R2], and the K-version first appears in [C1]. Both of these
maps are discussed in §5, where we also deduce a description of ¢ from that of ®.
Theorem 6.3 below identifies ¢ with the Sekiguchi correspondence. Our proof of
this theorem again uses analytic-geometric categories; it also depends on certain
geometric properties of nilpotent orbits which are established in [SV5]. We com-
plete the proof of our main theorem 1.4 in section 7, by identifying the composition
of three vertical arrows Ly, CC, u, with the associated cycle construction, and
the composition of Lg,, CC, p. with the construction of the wave front cycle. The
former amounts to a rephrasing of a result of J.-T. Chang [C1]. On the Gg-side,
we crucially use our integral formula for characters [SV4], which is based on ideas
of Rossmann [R1].

Our proof of the Barbasch-Vogan conjecture was announced and sketched in
[SV2]. Earlier, Chang [C1] had deduced the conjecture, in the case of complex
groups, from results of Rossmann [R2].

2. Geometric parametrization of representations.

Our hypotheses and notation are those established in [SV4]. We recall some of
the results — not due to us — collected in §2 of that paper, which will serve as general
reference. In particular, we suppose that Gg is a real form of a connected, complex,
linear, reductive group G. We choose a maximal compact subgroup Kr C Gg; its
complexification K is a subgroup of G. We write gg, g, g, € for the Lie algebras
of G]R, G, K]R, K.

The group G acts transitively and algebraically on the flag variety X of g. The
two subgroups K, Gg act with finitely many orbits. According to Matsuki [Ma],
the two types of orbits are in one-to-one correspondence

(2.1) K\X «— Gg\X,

with a K-orbit Sk matched to a Gg-orbit S, if and only if the two orbits intersect
along exactly one Kg-orbit. As in [SV4,§2], we consider the “universal Cartan
algebra” h for g. Its dual space h* contains the universal root system ® and the
universal system of positive roots ®*, as well as the universal weight lattice A. We
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fix a “localization parameter” A € h* and introduce D¢, (X)x, the Gr-equivariant
derived category with twist (A — p) [SV4,82], and totally analogously Dx (X)y, the
K-equivariant derived category with the same twist. We recall that the objects of
these derived categories are represented by complexes of equivariant monodromic
sheaves on the enhanced flag variety. Here p denotes the half-sum of the positive
roots; thus D¢, (X), , D (X), reduce to the usual (untwisted) equivariant derived
categories.

To each F € Dg,(X)x, one can associate a family of admissible representations
of Gk, as follows. We let O%°!()\) denote the twisted sheaf of holomorphic functions
on X with shift (A — p), i.e., the same twist as in the definition of D¢, (X ) . Thus
one can introduce the groups Ext?(F, O%!()\)) by deriving the functor Hom on the
category of twisted sheaves with twist (A — p). These Ext groups carry a natural
action of Gr and, less obviously, a natural Fréchet topology. The resulting repre-
sentations are continuous, admissible, of finite length, with infinitesimal character
X», in Harish-Chandra’s notation [HC]. The groups Ext?(F, O%!()\)) depend con-
travariantly on F. For technical reasons, we want to make the dependence covari-
ant, by composing it with the Verdier duality operator D : Dg, (X)_x — Dggp(X)a,
as in [SV4]. Taking the alternating sum with respect to p, we obtain a map

B : Dgu(X)-x — {virtual Gr-representations}y ,

22 BF) = X, (-1 Bxt*(DF, O%().
Here “virtual representations” is shorthand for “integral linear combination of irre-
ducible, admissible representations”, which we take up to infinitesimal equivalence.
The subscript A refers to the infinitesimal character of the summands, namely x» .
The differential operators acting on the twisted sheaf O:‘;(lg(/\) constitute a sheaf
of “twisted differential operators” Dx », a sheaf (untwisted!) relative to the Zariski
topology on X. We let D (Modeon(DPx,»)) denote the bounded K-equivariant de-
rived category of coherent sheaves of Dx y-modules [BL,KSd]. Objects in this
category are regular holonomic because K acts on X with finitely many orbits;
see [Ma], for example. According to Beilinson-Bernstein [BB2], the cohomology
groups HP (X, ) of any M € Dg(Modeon(Dx 1)) are Harish-Chandra modules
with infinitesimal character x. Thus we can take the alternating sum over p,

(2.3) Z (—1)? HP(X,9) € {virtual Harish-Chandra modules }j .

Here, as before, the subscript A refers to the infinitesimal character. The covariant
deRham functor

DR : Dg(Modeon(Px,n)) — Dg(X)-»,

(24) DR(M) = RHompre (O (A), DY\ @py, M)

can be defined in the K-equivariant setting just as in the absolute case. Since the
twisted sheaf O%°'(\) “lives” on the enhanced flag variety, the operation R Hom
must be performed there, and produces a twisted sheaf with the opposite twist since
R Hom is contravariant in the first variable. The deRham functor implements the
Riemann-Hilbert correspondence, which is an equivalence of categories [K1,Me],
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also in the equivariant case [BL]. Thus we can take its inverse and compose it with
the operation (2.3), to produce a map

(2.5) a @ Dg(X)_n — {virtual Harish-Chandra modules} , ,

in complete analogy to (2.2). Results of Beilinson-Bernstein [BB1,BB2] imply that
« is surjective. We shall recall the relevant statements in more precise form later,
in section 7.

In the definition of the group of virtual Gr-representations with infinitesimal
character y,, we have taken representations up to infinitesimal equivalence, so
formally each representation is completely determined by its Harish-Chandra mod-
ule. Conversely, each irreducible Harish-Chandra module can be lifted to a Gg-
representation, hence

(2.6) {virtual Harish-Chandra modules}y «— {virtual Ggr-representations }j

is a natural bijection. Kashiwara conjectured the existence of an equivalence of
categories

(2.7) 7:Dg(X)-x — Dg(X)-x,

the “Matsuki correspondence for sheaves”, which was established in [MUV]. Define
maps

(2.8) X & GpxX 5 Gp/KpxX 2 X

by a(g,z) = g ', q(g9,2) = (9Kg,7), p(9Kg,2) = . They become G x Kg-

equivariant with respect to the following actions on the four spaces in (2.8), going
from left to right: (¢,k)-z =k-z, (9,k)-(¢',z) = (9g'k™,g9-2), (9,k) (¢ Kr,z) =
(99'Kgr,g-2), (g9,k) - =g-x. Then any F € Di(X)_ can be regarded as an
object in D, x ki (X)—a. Thus, by equivariance, a'(F) € Dgy <k (Gr X X)_x. Now
Kr acts freely on G x X, so there exists a distinguished F € D¢, (Gr/Kgr x X)_»
such that a'F 22 ¢' F. Then Rp,F is an object in D¢, (X)_x —in the last two steps,
we have dropped the subscript K since Kp acts trivially. By definition, F — Rpg]:'
is the map (2.7). The four morphisms (2.2), (2.5-7) fit into a diagram

{virtual H-C-modules}, ——— {virtual Gg-representations}y

(2.9) o [E

Dr(X)-x R Dgo(X)-x,

whose commutativity is implicit in Kashiwara’s conjectures [K3]. In the remainder
of this section, we deduce this commutativity from known facts.

The paper [KSd], which constructs the representations Ext”(F, O%'())), also
relates them to the Beilinson-Bernstein modules H? (X, 91). Let M = DR(9M) be
the image of M € Dx(Modeon(Dx,»)) in Di(X)_x under the deRham functor.
Then, for all p, and with n = dim¢ X,

HP(X,9M) is the dual, in the category of Harish-Chandra modules,

(210) . n—p hol
of the Harish-Chandra module of Ext""?(y(M), 0% (=)))
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[KSd, 1.1f]. We should remark that the functor v of [MUV] and its analogue in
[KSd] — where it is denoted by ® — are defined differently on the surface. To see that
the two functors are actually the same, we note that the operations of restricting
from G to Ggr and from S = G/K to Sg = Gr/Kg in [KSd,(5.8)] amount to
replacing the induction from K to G by induction from Kr to Gg. In the language
of [KSd], this means identifying

Dy (X)_n = DGRXKR(X x Gr)_x and DGRXKR(X X Gr)_x = DGR(X X SR)—A-

The first of these operations is ¢* in our previous notation, and the second coincides
with ¢*. The definition of v above involves a' and ¢', which accounts for a shift
in degree by the complex dimension of S, since a and g are smooth morphisms.
The restriction from S to Sg in [KSd] involves i' rather than i*, which accounts for
another shift in degree; the combination of these two shifts agrees, finally, with the
shift in the definition of the functor ® in [KSd].

At this point, to deduce the commutativity of (2.9) from the statement (2.10),
we need to know:

2.11 Proposition. The virtual representation Y, (—1)P Ext?(DF, O%(\)) is (up
to infinitesimal equivalence) the dual of Y (—1)"*? Ext?(F, O%'(—\)), for every
F e DGR (X),)\ .

A more precise statement, which puts individual summands into duality with
each other, was conjectured by Kashiwara [K3]. Although the conjecture is surely
accessible with present techniques, no proof has appeared in the literature. Here
we shall deduce the weaker statement (2.11) from our proof [SV4] of Kashiwara’s
conjecture on characters and fixed point formulas [K4]. We should remark that
the proposition is more than a purely formal assertion; in particular, the analogous
statement about the association (2.5) is incorrect. As far as we know, there does
not exist an explicit interpretation of the duality of Harish-Chandra modules in
terms of K-equivariant sheaves.

Proof of (2.11). Let G denote the set of pairs (g,2) € G x X such that gz = x
and G the inverse image of Gg in G, as in our paper [SV4]. Following Kashiwara,
we assign a cycle ¢(F) € Hil"f(éR,(C_,\) to each F € D¢ (X)_x; here d is the
real dimension of Gr and C_, a certain local system on the universal Cartan,

pulled back to G in a natural way. We write ©(F) for the character of the virtual
representation > (—1)P Ext?(DF, O%'()\)). Then

(2.12) /G O(F) bdg = /m(q*as)w (6C>(Gr))

[SV4, theorem 5.12]. In this formula, ¢ : Gg — Gg refers to the projection and &
denotes a differential form on G derived from the Haar measure dg and a choice
of orientation of Gg. The same choice of orientation is used to produce the cycle
c(F): reversing the orientation of Gg affects both ¢(F) and & by the factor (—1).
The anti-involution g — ¢~! induces an anti-involution u : Gg — Gr. Examin-

ing the fixed point formalism which produces ¢(F) from F, one finds

(2.13) c(DF) = e *Pu.c(F),
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as was already observed in [SV1, proposition 5.3]. Several remarks are in order.
First, the twisted derived category Dgy, (X) - involves the twist (—A—p), so Verdier
duality for twisted sheaves maps D¢y (X)—x to Dg,(X)at2, . On the other hand,
D¢, (X)at2p = Dg, (X)) because 2p is an integral weight. The factor e/ in (2.13)
is forced by the identification Dgy (X)at2p = Da, (X)a — recall that the cycle ¢(F)
can be viewed as a linear combination of d-dimensional simplices with coefficients
that are sections, over the simplices in question, of the local system generated by
e~? [SV4]. In our paper [SV1] we use a different convention: there D¢, (X), refers
to the derived category with twist A; consequently the version of (2.13) stated in
[SV1] does not involve the factor e=2?. The formula (2.13) is ambiguous until we
specify the orientations on Ggr used to construct the two cycles. Since u is an
anti-involution, we take orientations related by u. on the two sides. With this
convention, there is no sign change in (2.13), as can be checked by tracing through
the construction of the cycle ¢(F) in [SV4].

The character ©, of an irreducible admissible representation 7 is obtained by
summing the diagonal matrix coefficients of 7 in the sense of distributions. Thus,
for entirely formal reasons,

(2.14) 0.(9) = O.(g7h) (7" =dual of 7).

Let ©*(F) denote the virtual character dual to ©(F). Then, for any test function
¢ € C2(Gr),

(2.15) O (F)olg)dg = | OF)dlg)dy = / rs
Gr Gr c(F)

In the first step, we have used (2.14), and the second equality follows from (2.12).
The definition of @ in [SV4] implies

(2.16) wo = (=1 e g,

We combine (2.13) with (2.16) and recall our choice of orientations of Gr on the
two sides of (2.12), to conclude

/ (g )s = (—1)n / P (g p )
c(F) c(F)

(2'17) — (_1)d+n/c(f) u*(e—2pq gi)(])) — (_1)n/u o e—2pq*¢u~}

- v | R I
e~ 2Pu,c(F) c¢(DF)

At this point (2.15), (2.17), and another application of (2.12) give

(2.18) /G 0" (F) dlg)dg = (~1)" /G O(DF) é(g) dg

in other words, the assertion of the proposition.
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3. Microlocalization of the Matsuki correspondence.

In the previous section, we described y, the Matsuki correspondence for sheaves,
as a composition of certain geometrically induced morphisms. Objects in the de-
rived categories D (X)_x and Dg,(X)_» can be regarded as complexes of (semi-
algebraically) constructible sheaves. As such, they have characteristic cycles in the
sense of Kashiwara [K2,KSa]. We shall now determine the effect of v on these
characteristic cycles.

It will be convenient for us to adopt the geometric view [SV3] of characteristic
cycles, which was written with the present application in mind. In particular, the
characteristic cycle CC(F) of a complex of sheaves F, constructible with respect to a
particular semi-algebraic (Whitney) stratification S, is a top dimensional cycle with
infinite support on T§X, the union of the conormal bundles of the strata S € S.
In regarding CC(F) as a cycle in TéX C T*X, we treat X as a real algebraic
manifold. Thus it would be notationally consistent to work in T*(X®), the real
cotangent bundle of X, considered as a manifold without complex structure. On
the other hand, at various points we do use the complex structure of X, for example,
in putting canonical orientation on the complex manifold X. We therefore identify
the real cotangent bundle T*(X®) with the (holomorphic!) cotangent bundle of the
complex manifold X,

(3.1a) T*(X®) = 17X,

using the convention of [KSa,(11.1.2)]. Concretely, in terms of local holomorphic
coordinates z; = z; +1y;, 1 < j <mn,

1 —i
(3.1b) dx; — 3 dzj , dy; — 5 dz; .
This convention will remain in force throughout the paper. As the cotangent bundle
of the complex manifold X, T*X carries a canonical holomorphic, nondegenerate,
closed 2-form o. It is related to the canonical 2-form o® on T*(X®) by the formula

(3.2) o® = 2Reo

via the identification (3.1) [KSa,(11.1.3)].

The actions of K and Gg on X are, respectively, complex and real algebraic, and
both groups act with finitely many orbits. It follows that the orbit stratifications
are semi-algebraic and satisfy the Whitney condition. We let T% X and T¢ X
denote the unions of the conormal bundles of the orbits of the two groups. They
are complex or real algebraic, Lagrangian subvarieties of T*(X®) =2 T*X — in the
case of K, Lagrangian even with respect to the complex algebraic symplectic form
on T*X. Thus both have real dimension 2n, with n = dim¢ X as before. Objects in
D (X) and D¢, (X) are constructible with respect to the orbit stratifications, so the
characteristic cycle construction defines maps CC from these two derived categories
to top dimensional cycles on T X and T¢;, X, respectively. The characteristic cycle
construction is local with respect to the base X, so CC makes sense also in the
twisted case:

CC : Dg(X)_n — HYN(TEX,7),

n

CC : Dg(X)-» — HI: (TGRX,Z).
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Alternatively but equivalently, we can represent objects in Dy (X) and Dg,(X)
by complexes of constructible sheaves on the enhanced flag variety X, with mono-
dromic behavior along the fibers of X — X; as such they have characteristic cycles
on T* X . Because of the monodromicity, the characteristic cycles in T*X descend to
cycles in 7% X, and this construction coincides with (3.1). This will be made explicit
later, below the proof of lemma 4.2. We should remark that Kashiwara defines the
characteristic cycle of a sheaf as a cycle with values in the orientation sheaf of the
base X without choosing an orientation of X first. We use the complex structure
to put a definite orientation on X, and thus may think of the characteristic cycles
as absolute cycles.

The action of G on X induces a Hamiltonian, complex algebraic action on the
cotangent bundle T*X. We let m : T*X — g* denote the moment map. It is G-
equivariant, complex algebraic. In our particular situation, m is easy to describe:
the fiber T X at any x € X is naturally isomorphic to (g/b,)* = by C g*; here
b, denotes the Borel subalgebra which fixes . In terms of this identification, the
moment map m is the identity when we regard the fibers of T*X as subspaces of g*.
We choose a non-degenerate, symmetric, G-invariant bilinear form B on g, which
is defined over R and agrees with the Killing form on [g,g]. Then B induces an
isomorphism g* = g. We write

(3.4a) o T"°X — g

for the composition of this identification with the moment map m. We shall refer
to p as the moment map from now on. By construction, it is holomorphic and
G-invariant. Note that

(3.4b) w(T*X) = N = nilpotent cone in g,

since bi‘ > n, =qef [ba, b via the isomorphism g* 2 g. The moment map provides
a useful characterization of the subvarieties Tj X, T¢;, X of T* X :

(3.5) T:X = pp), TG, X = p'(ige) -

To see this, we observe that a cotangent vector (x, &) with £ € T X 2 n, is normal
to the Ggr-orbit through x precisely when Re B(€,gr) = 0, in other words, when
& € ny Nigr. In the case of the first identity, we argue the same way.

In the following, Repu : T*X — ggr refers to the real part of the moment map
relative to the real form gr C g. We define a one parameter family of bianalytic
maps:

Fo:T"X - T*X, s € Ry,
Fy(§) = (exp(—s~'Reu(§)))*¢ (£ €T*X),

where £(g7!) : X — X, for g € G, denotes translation by g~!, and ¢(g~!)* the
induced map from T; X to T, X. Since Fs preserves the symplectic structure on
T*X, (F,).(C) is a Lagrangian cycle, for each C' € Hi™ (T% X, Z) and each s > 0.
We recall the notion of the limit of a family of cycles and the various equivalent
ways of defining it — for a detailed discussion of these matters, see [SV3, §3].

(3.6)
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3.7 Theorem. For C € HY"/(T% X, 7Z), the limit of cycles lim,_ o+ (F).(C) exists
and is supported on T¢; X. The resulting homomorphism

& : HYN(T3X,2) — HY (T, X,2), ®(C) = lim (F,).(0),

s—0t

coincides with the map on characteristic cycles induced by ~. In other words,

Dr(X)-n  —— Dgu(X)-x

oo Joc

Hp! (T7:X,2) —— Hy,/(T5,X,2)
is a commutative diagram.

The existence of the limit is not entirely obvious. However, once it is known
to exist, it must have support in T¢; X for elementary reasons. Indeed, let (z,§)
be a cotangent vector in the boundary of UssoFs(T5%X). Then there must exist
sequences {(zx, &)} and {si}, such that u(zg,&k) € p, s — 07, Fs, (2, &) —
(z,€). We regard the cotangent spaces of X as subspaces of g via p. Thus we
consider ¢ and the & as lying in g, and more specifically, in N; further, u(zy, &) =
£, € p by assumption. For g € G, the induced map £(g~')* : Ty X — T, X reduces
to Ad(g) : ny — ny, when we identify the cotangent spaces with subspaces of g via
p. The assumption F, (vg, &) — (x,&) implies

(3.8) Ad(exp(s; ' Re &) (&) — €.

In particular, Re £, — Re & € pr. We choose a maximal abelian subspace ag in pr
so that Re £ € ag. Replacing the (zy, &) by appropriate Kg-conjugates, we can
arrange Re & € ag for all & without destroying any of our hypotheses. Let us write

(3.9) §e = Redp + i) cp (Im &),

where R denotes the restricted root system of (g,a) and (Im &)® the component
of Im &, in the a-root space. Then

Ad(exp(s; ' Re &))(¢k) = Re &k + iY.cn ek (@Re &) (T £,)* |

(3.10) .
and ie® (@Re&)(Im £)* cigg  for each o € R.

The Cartan involution § maps the a-root space to the —a-root space, and acts as

multiplication by —1 on p. It follows that 8(Im &)* = —(Im &)~ %; in particular,

(3.11) [[(T &) = [ (T &) =] -

Since s, ! — +00, (@, Re &) > 0 would imply (Im &,)® — 0, hence (Im &,)~* — 0,
hence e (~@Re €)(Im &,)~® — 0. Thus, for a € R,

(3.12) (a,Re&) >0 = (Im¢&™@ = 0.
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Let m denote the centralizer of Re & and u the linear span of the root spaces corre-
sponding to roots o with {(a, Re&) > 0. Then m @ u is a parabolic subalgebra of g,
defined over R, with nilpotent radical u. Because of (3.12) and the definition of m,

(3.13) Reéem and Imé{emdu.

As the limit of nilpotents, £ is nilpotent. Thus (3.13) forces the nilpotence also of
&m , the m-component of £&. But Re &, = Re £ is semisimple and commutes with
Im &y . We conclude that Re & = 0, hence § € igr and (z,§) € T4, X, as was
asserted.

The somewhat lengthy proof of the remaining (and deeper) parts of the theorem
occupies the next section.

4. Proof of theorem 3.7.

In section 2, we had described the functor v in terms of the operations a', ¢', and
Rpy induced by the maps a,q,p in the diagram (2.8). We begin by identifying the
effect on characteristic cycles of the passage, via a and ¢, from X to Gg/Kgr x X.
We mentioned already that we regard characteristic cycles as geometric cycles —
not as cycles with values in an orientation sheaf as in [KSa] — by putting a definite
orientation on the ambient space. In the case of X, we use the complex structure,
and in the case of Gr /KR, some as yet unspecified orientation; the particular choice
will not matter. We follow the conventions of [SV3] in all orientation questions. In
particular, we orient products of manifolds by choosing forms of top degree on the
two factors which are positive with respect to the orientations; we then orient the
product by the wedge product of the two forms, in the given order of the factors.
Also recall the rule [SV3,(2.3)] for orienting the conormal bundle of a submanifold
of an oriented manifold.

We consider a particular F € Dg (X )_» and its characteristic cycle CC(F). As
a top dimensional cycle in T X, we can express it as an integral linear combination
of conormal bundles of K-orbits in X,

(4.1) CC(F) = X e [T, X1,

with z, running over a complete set of coset representatives. We had argued in §2
that there exists a canonical F € D¢, (Gr/Kgr x X)_» such that ¢'F = a'F.

4.2 Lemma. For each {, My = {(gKr, gkx¢) € Gr/Kr X X | g € Gr,k € K} is a
real algebraic submanifold of Gg/Kr x X , and

CC(F) = yce(=1)W™P= [T}, (Gr/Kr x X)].

Proof. We observe first of all that dim pgr is the difference of the dimensions of
the fibers of the maps a and g, i.e., of the dimensions of Gg and Gr/Kg. Both
a and ¢ are smooth fibrations, hence ¢* agrees with ¢' except for a shift in degree
equal to the fiber dimension, and similarly in the case of a — see [KSa, 3.3.2], for
example. Note that the preceding statements use the explicit isomorphism Dj; =
orp[dimg M| 2 Cps[dimg M] given by the orientation of any smooth manifold M.
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Thus we can drop the sign factor in the statement of the lemma when we replace
a',q¢' by a*,¢*. The characteristic cycle of a sheaf is a local invariant, and locally
a,q are products. Since a (K - xy) = ¢ 1(M;) by definition, our assertion now
follows from these three facts:

(4.3a) CC(Cs) = [TEM]
when S is a closed submanifold of an oriented manifold M
(4.3b) CC(Cp, ®F) = [M;] x CC(F)

when M7, Ms are oriented manifolds and F a semi-algebraically constructible sheaf
on My; and

(4.3¢) Trp ws(My x My) = My x Tg M, as oriented manifolds,

with My, M as before and S C M a submanifold. These three statements are con-
tained in the formalism and conventions of [KSa], but can also be deduced directly
from the geometric definition of characteristic cycles and the sign conventions in
[SV3], specifically (2.3-7) and the convention for orienting a product.

The question of sign is the only subtle matter in the proof of lemma 4.2. At first
glance, it might appear that the signs of characteristic cycles depends on Whether
we regard twisted sheaves on X as monodromic sheaves X or — as we have chosen
to do — locally as sheaves on X. Not so: the fiber H of X > Xis complex, hence
even dimensional; when we treat this fibration locally as a product, it does not
matter where we place the factor H.

With F as in (4.1-2), we need to determine CC(RpF). We shall do so using
theorem 6.9 in [SV3]. This requires a compactification Gg/Kg of Gr/Kg, as well
as a function f : Gg/Kr — R which vanishes on (Gr/Kg) and is strictly positive
on Gr/Kg. The statement of [SV3, (6.9)] requires the compactification and the
function f to be semi-algebraic. To make our computation of CC(RpF) manage-
able, we shall need to work with a certain specific function f which is not even
subanalytic. However, with the present application in mind, we showed in [SV3,
§10] how to extend the validity of theorem 6.9 and its generalization 6.10 beyond
the semi-algebraic and subanalytic contexts. Specifically, the two theorems apply
in the setting of any analytic-geometric category C as defined in [DM] — the sheaf
F must be constructible with respect to a C-stratification of Gg/Kr x X which is
extendable to a C-stratification of the compactification, and the function f must be
a C-function of class C.

In the argument below, we shall use the analytic geometric category [DM] which
corresponds to Ranexp, in the notation of [DMM]. As in §3, we choose a non-
degenerate, symmetric, G-invariant bilinear form B on g, which is defined over R
and agrees with the Killing form on [g, g]. We compactify Gr/Kgr = pr by adding
a single point,

(4.4) Gr/Kr = pr = prU{c0},
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with the real analytic structure of the standard sphere containing the Euclidean
space pg as the complement of {oc}. The function

f:pr — R, defined by
flo0) =0, [(Q)=e 259 for ¢ € pp,

takes real values since B is defined over R. It is C'*° because B > 0 on pg, and
visibly a C-function: the map ¢ +— |[|¢||72¢ gives a coordinate system at infinity,

(4.5)

and the graph of { — e=21<177 is a C-set.

Let us argue that F is indeed constructible with respect to a C-stratification of
pr X X which extends to a C-stratification of pg X X. Since F is constructible with
respect to a semi-algebraic stratification of Gg/Kg x X , it suffices to show

if S C pr x X is semi-algebraic with respect to the real algebraic

4.6 _
(4.6) structure coming from Ggr/Kgr x X, then S is a C-set in pg x X .

~

Let ag C pr be a maximal abelian subspace and Ag = (Rs()" the connected
subgroup of Ggr generated by ag. Every Kg-orbit in pr meets ag, hence

(47) K]R X AR — GR/KR, (k,a) — kaKR,

is a surjective algebraic map. It follows that S C Kg x Ag x X , the inverse image
of the semi-algebraic subset S of Gg/Kgr x X , is semi-algebraic. Note that S is the
image in pr x X of S under the map Kgr x Agr x X — pr x X, which is induced by

(4.8) Kr X Ar — pr, (k,exp() — Ad(k)C.

To conclude (4.6), it now suffices to extend the map (4.8) to a C-map from an
algebraic compactification of Kg x Ag to pr. What matters here are the following
two general properties of C-maps and C-sets: a) the product of two C-maps is a
C-map, and b) the image of a C-set under a proper C-map is a C-set.

The map (4.8) is Kg-equivariant with respect to the action by left translation
on itself, the trivial action on Agr, and the adjoint action on pr; moreover, Kg
acts algebraically on pg, relative to the algebraic structure coming from Gg/Kg.
The factor Kg in (4.8) is therefore innocuous: it suffices to complete the map
Ar — pr, exp( — (¢ to a C-map between their compactifications. We choose
coordinates y1,...,Yr, Yr+1,-..,Yq in the compactification of pr, centered at oo,
so that (3, v7) 'yj, 1 < j < r, are linear coordinates on ag, and y; = 0 on
ag for 5 > r. The linear coordinates on ag induce isomorphisms ag = R” and
Ar = (Rs0)". We compactify Ag algebraically by viewing z; and x;l as algebraic
coordinates on the j-th factor Rso of Ag = (Rs()", near 0 and oo, respectively.
With these choices of coordinates, the graph of the map Agr — pg is given by the
equations

(4.9) y; = 6 (O Lyi)logzj, 1<j<r; y; =0, r<j<g,

with €; = £1 specifying a particular component in the boundary of Ag = (Rs)".
The equations (4.9) characterize the graph as a C-set. It is clear that the map ex-
tends at least continuously to the boundary. The graph of the continuous extension
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is the closure of the graph, hence a C-set. By definition, a C-map is a continuous
map whose graph is a C-set. Thus Agr — pr can indeed be compactified as a C-
map. This completes the verification of (4.6). Note that the particular nature of
the compactification of pgr plays no role in theorems 6.9 and 6.10 of [SV3] — all that
matters is the existence of some compactification with the right properties.

For the statement of our next lemma, we fix a particular K-orbit @ = K -z, in
X, and let M = M, denote the corresponding submanifold of Gg/Kg x X defined
in the statement of lemma 4.2. Recall the definition (3.6) of the family of bianalytic
maps Fj.

4.10 Lemma. For 0 < s < oo, the submanifold T};(Gr/Kr x X) — sdlog f of
T*(Gr/Kr x X) intersects the submanifold Ggr/Kgr x T*X transversely along a
submanifold Ng. The projection Gg/Kg x T*X — T*X maps Ny isomorphically
onto Fy(T5X).

The transversality statement in this lemma will allow us to apply the results
of [SV3] in the present context. Let F € Dg(X)_) be given, and let F €
D¢, (Gr/Kr x X)_x be the distinguished sheaf such that ¢'F = a'F. To cal-
culate the characteristic cycle of v(F) = Rp.F in terms of CC(F), we appeal to
theorem 6.9 of [SV3] — or more precisely, to its generalization for C-constructible
sheaves as described in [SV3,§10]. The first ingredient, namely the constructibility
of F with respect to a C-stratification of Gr/Kgr x X, has already been estab-
lished in (4.6). We have also produced a C-function f on Gr/Kgr which vanishes
precisely on the boundary. The transversality hypothesis of theorem 6.9, finally,
follows from lemma 4.2 and the transversality statement in lemma 4.10. Theorem
6.9 is stated for Rp, rather than for Rp;. We need to apply the version for Rp,
which is completely analogous to the other version, both in statement and in proof,
with one exception: one uses the open embedding theorem for Rj,, which involves
addition of the term sdlog f, and the other the open embedding theorem for Rj,
which involves subtracting sdlog f — see [SV3, theorem 4.2]. Alternatively, one can
deduce the version of theorem 6.9 for Rp, from the stated version by appealing
to the following two facts. The operation of Verdier duality relates Rp; to Rpx,
Rpy = DRp.ID. Also, for any constructible sheaf G, CC(DG) = A,(CC(G)), with A
denoting the antipodal map on the cotangent bundle, i.e., the bundle map which
acts as multiplication by —1 on the fibers.

Proof of 4.10. The one form dlog f on pr defines a section of pr X pr = T pr — Pr,
namely “minus the identity” on the fiber,

(4.11) dlogf = {((,=¢Q) [¢epr} C prxpr = T pr;

indeed, the function f was chosen to put dlog f into this particularly simple form.
We want to lift this description of the one form dlog f to Gr/Kr via the iden-
tification Gr/Kgr = pr induced by the exponential map. For this purpose, we
identify

(4.12) Tk, (Gr/Kr) = (gr/tr)" = pr™ = pr;
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the last step refers to the isomorphism determined by the symmetric form B. We
claim:

(413) dlog f = {(expC - Kg, _E:xp(fg‘)c) | Ce pR} - T*(GR/KR)

To deduce this from (4.11), recall the formula

1_efadC
(eXP*)k = (chpg)* © TC

(see, for example, [He,§II, theorem 1.7]). Dually,

1%

exp* : c*pr-KR(GR/KR) - pR* PR

(4.14a)

erdd —1\"
coincides with (W) o g:xp(—g) .

But ad (, for ¢ € pr, is self-adjoint with respect to B, so

ead(_ *
(4.14D) (Tgl) ©) = (1+%ad*§+...)(§) - ¢

Thus (4.11) and (4.14) do imply (4.13).
We need to describe the conormal bundle of the submanifold M C (Gr/Kgr)x X.
At the typical point z = k- x4 in Q = K - x4, we identify

(4.15) T;X = (g/bs)" = ny and (THX). = pNing.

Note that M = {(exp (- Kgr,exp(-z) | € pr,z € Q}. With convention (4.15), for
x € @ and ¢ € pr, we have

(TJE(GR/KR X X))(expC-KR,expC»m) =

(4'16) { (—(fcxp(,o)* Ren, (Ad exp C)ﬁ) | nepnng } :

Indeed, since M is a union of Gg-orbits, it suffices to check this description for
¢ = 0. Recall the definition of the maps a and gq. Both are submersions, and
a~1(Q) = g~ (M), hence

" (Th(Gr/Kr X X)(ekye) = (T (Gr/Kr X X)) (e,0)

(417) — (@THX )y = @ (T5X))

We identify the ambient space 7, ) (Gr x X) = gr” ® (9/b2)" with gr ® 1, via B
as usual. Then

(4.18) a*(TgX)z) = {(=Re(n),n) [nepnn.},

since (T5X)s = p N g, and since a* : T;X — T, (Gr x X) is dual to the
map gr @ g/b, — g/b, which is the identity on the second summand and minus
the identity of the first summand, followed by the projection to g/b,. But ¢* is
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injective on each cotangent space, so (4.17-18) imply (4.16) at ¢ = 0, and therefore
in general.

Combining (4.13) and (4.16), we see that the intersection N, of Gr/Kg x T*X
with T3, (Gr/Kr x X) — sdlog f is given by the equation s¢ = Ren, which visibly
describes a transverse intersection. Explicitly,

(4.19) Ny = {(exp(-Kg,exp(-x,0,Adexp(Q)n) |z € Q, n € pmn,, s( =Ren}.

Note that the first variable can be recovered from the others, so the projection to
T X maps N; isomorphically to its image. To identify this image with Fi(7{X),
we only need to observe that

é(exp(_C))* : T;X - T: p(C);EX

X

4.20
( ) corresponds to  Ad(exp () : Ny — Nexp(c)a

via the natural isomorphisms 77 X = n, and T

cxp(C)xX = Nexp(¢)w - This completes
the proof of lemma 4.10.

Let us summarize what needs to be done to complete the proof of theorem 3.7.
Using the notation established at the beginning of this section, we have v(F) =
Rp\F, hence

(4.21) CC(y(F)) = CC(RpF).

Following the statement of lemma 4.10, we had argued that we can apply theorem
6.9 of [SV3], in the context of C-maps and C-functions, and for Rp; instead of Rp..
We recall the relevant statement. The differential of the projection p induces

(422) dp : GR/K]RXT*X — T*(GR/KRXX),

the inclusion of {zero section} x T*X into the cotangent bundle of the product.
Projecting to the first factor, we get

(4.23) T Gr/KrxT*X — T*X.
With this notation, the Rpi-version of theorem 6.9 asserts

(4.24) CC(RpF) = lim 7, (dp) "L (CC(F) — sdlog f) .

Thus it suffices to equate 7, (dp)~'(CC(F) — sdlog f) with F,(CC(F)), for s > 0.

Lemma 4.2 reduces the problem to the case of the conormal bundle of a single
K-orbit. Let Q@ = K -xy C X be a K-orbit and M = M, the corresponding
submanifold of Gr/Kg x X. We let [T{5X] play the role of CC(F), and accordingly,

(=1)dime= [T% (Gr/Kg x X)] the role of CC(F). We shall argue that

(4.25) 7 (dp) " (—1)"™P<[T3, (Gr/Kx x X)] - sdlog f) = (F).([T5X]),
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for s > 0. Because of (4.2), (4.21), and (4.24), the proof of theorem 3.7 will be
complete once we have established (4.25).

As an operation on cycles, (dp) ! is simply intersection with Gg/Kg x T*X — in
our case, lemma 4.10 asserts that the intersection is transverse. The operation 7 on
the intersected cycle is also particularly simple, since projection from Gg/Kr X T*X
to T*X induces an isomorphism on the carrier of the cycle. In short, lemma 4.10
implies (4.25) up to sign.

Let us recall the relevant sign conventions. We choose a specific orientation
of pr = GRr/Kpg; the particular choice will not matter. This orients the product
of Gr/Kg with the complex manifold X. Our convention for orienting conormal
bundles gives meaning to the cycle [T5(Gr/Kr x X)]; the convention [SV3,(2.3)]
depends on a choice of orientation of the base manifold Gr/Kg x X, which we have
made. The operation of subtracting sd log f defines a diffeomorphism of the ambient
manifold T*(Gr/Kr x X). Via this diffecomorphism, T5;(Gr/Kr x X) — sdlog f
inherits an orientation from that of 7*(Gr/Kg x X), and

(—1)HmP= [Ty (Gr/Kg x X)] — sdlog f

(4.26) .
= (1) P13 (Gr/Kr x X) — sdlog f].

The ambient manifold 7*(Gr/Kr x X) is canonically oriented by the convention for

orienting cotangent bundles — space coordinates first, then the corresponding fiber

coordinates in the same order; see [SV3, p. 456]. Thus every oriented submanifold

becomes co-oriented by the rule

(orientation of the submanifold) A (co-orientation of the submanifold)

4.27
(427) = (orientation of the ambient manifold),

in symbolic notation. Since T;;(Gr/Kr x X) — sdlog f intersects Gr/Kr x T*X
transversely along N, the normal bundle of Ny in Gr/Kr x T*X is canonically
isomorphic to the normal bundle of T7;(Gr/Kr x X)—sdlog f in T*(Gr/Kr x X)
along N,. Thus N inherits a co-orientation and, by (4.27), an orientation. At this
point the orientation of Gg/Kg comes in for the second time. We had remarked
earlier that 7 is a diffeomorphism on N, so 7(Ny) carries a definite orientation,
which gives meaning to the cycle [7(Ny)]. Except for the factor (—1)™P= this is
the cycle on the left hand side of (4.25):

(4.28) 7 (dp)~H((=1) PR [Th; (Gr/Kr x X)] = sdlog f) = (=1)T™P[r(N,)].

Indeed, the procedure (4.26-28) for choosing signs at each step precisely follows the
prescription in [SV3].

At this stage, we have two orientations on the connected manifold 7(N;) =
F(TgX), which we must compare. We shall do so at points of the zero section of
T5X, which are fixed by Fs. For z € Q,

N.N77M@,0) = (eKr,2,0,0) € Gr/Kex X x Ty, Cr/Kp x T X

(4.29)
Gr/Kr X X X pr X n .

M
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The tangent space of the ambient manifold at the point of intersection (4.29) is

Tlekz .00 (T (Gr/Kr x X))
(4.30) = T(ekaa)(Gr/Kr x X) & T, .1 (Gr/Kr x X)
= pr@g/b, Dpr D1y

It contains the tangent space of submanifold T7;(Gr/Kr x X) — sdlog f. From
(4.11) and (4.16), we see

Ty(Gr/Kr x X) — sdlog f is the totality of points

(4.31) (exp (- Kr,exp( -z, — Ad(exp () (Ren — s¢), Ad(exp ()n) ,
with ¢ ranging over pg, x over ), and n over n, Np.

Differentiating this parametrization, we get a description of the tangent space,

T(ekp,2,0,0)(Th(Gr/Kr x X) — sdlog f) =

(4.32) ((C,(C+K)+by, —Ren+sC,n)|Cepr,het,nenNpl:

here (...)+ b, denotes the image of ... in g/b,. We choose C-linear complements
v, of €/€Nb, in g/b, and q, of n, Np in n,. Then, since s # 0,

PR DY, D0Dq, is a linear complement of
(4.33) Tekn,,0,0) (Th(Gr/Kr x X) — sdlog f) in
Tekn,0,0,0)(T"(Gr/Kr x X)) = pr @ g/bs & pr & 0y 5

cf. (4.30).

An orientation of an orientable, connected manifold is described by orienting its
tangent space at one point. In the following, we shall think of an orientation for
a real vector space as an equivalence class of frames, i.e., of ordered bases. In the
case of a complex vector space V, the underlying real vector space VF gets oriented
by the complex structure: if {vi,...,v,} is a C-frame of V, the corresponding
R-frame {v1,iv1, . .., U, iy, } orients VE independently of the order of the v;. The
direct sum of two oriented vector spaces is oriented by combining positively oriented
frames of the summands in the given order, and the dual space V* of an oriented
vector space V gets oriented by the frame dual to an oriented frame of V. The
underlying real vector space (V*)® of the dual V* of a complex vector space is
canonically isomorphic to (VE)*. Tt thus has two orientations, related by the rule

(4.34)  dual orientation of (V®)* = (=1)9™cV complex orientation of (V*)¥;

reason: if {v},...,v%} is dual to a C-frame {vy,...,v,} of V, the real part of
(iv},iv;) equals -1. As a general rule, we orient the conormal bundle of a com-
plex submanifold as the conormal bundle of the underlying real manifold — see the
discussion at the beginning of §3. In the case of a submanifold N of an oriented
manifold M, the orientation of the conormal bundle TR, M is given by identifying

T(mo)(T;\}M) =2 T,N® (Tj\F[M)n cCT,M® T;M = T(n)o)(T*M),
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and proceeding as follows: we choose an orientation of T}, N, orient the quotient
T,.M/T,N = ((T%M),)* consistently with the orientation of T,,M = T,N @
(T M)p)*, we then put the dual orientation on (T3 M), ; then

(4.35) orientation of (T3 M), = (—1)°4m=(NM) grientation of TN & (T3 M),

in accordance with the convention [SV3,(2.3)]. Note that (4.34) and (4.35) are
consistent when we identify V* with the conormal bundle TV

Our choice of orientation for Gr/Kg orients pr = Tex,(Gr/Kgr). Recall the
choice of complements v, q,, in (4.33). We regard n,,, g/b,, £/€Nb,, n,Np, v, , qs
as real vector spaces, oriented by their complex structure. Then, via the isomor-
phism

(4.36) Tekn,,0,0)(Th(Gr/Kr X X) —sdlog f) = pr@E/ENb, On, Np,
which is implicit in (4.32),

orientation of T{ck, 2,0,0)(Tar(Gr/Kr x X) — sdlog f) =

4.37 .
(4.37) (—1)c0dime(@X) broduct orientation of pg ©€/ENb, Gn, Np.

What matters here is the discrepancy (4.34) between the two orientations of n,Np =
v’; the sign in (4.35) does not show up because the real codimension of M is even.
The co-orientation of T';(Gr/Kr x X) orients the linear complement (4.33), and

co-orientation on T(ck, 2,0,0)(Ta;(Gr/Kr x X) — sdlog f) =
4.38 . .
( ) (—1)d‘mm prtdime @ hroduct orientation of PrRPUV, 0D q, .

The sign reflects the sign in (4.37), the sign in

(4.39) (—1)"complex orientation of n, = T*X®
' = dual orientation of g,/b, = T, X%,

and one other sign. This third sign becomes transparent when we replace the space
(4.32) by 0p t/eNb, ®pr ®n, NP, to which it is congruent modulo the complement
(4.33). Then

orientation of (0®E/ENb, Bpr B, NP) & (pr® 0, D0 q,)

4.40 .

( ) = (—1)4m=P= orientation of pr © g/b, © pr D Ny ;

in effect, we need to move the second copy of pgr past the first copy — the other

necessary moves involve even dimensional spaces, and thus do not contribute a sign.
Since (T5;(Gr/Kr x X) — sdlog f intersects Gr/Kr x T*X transversely along

Ny, and since the complement (4.33) lies in Tk, 4,0y (Gr/Kr x T*X),

pr © v ® g, is a linear complement of Tick; »0)NVs in

4.41
( ) T(eKR,m,O)(GR/KR X T*X) = pr® g/bz Dny .
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Because of (4.38),

co-orientation on Tiexy 2,00Vs =
(4'42) (_l)dimk pr+dimc Q d ; ; f
product orientation of pr D v, D q, .

This co-orientation and the orientation of Gg/Kg x T*X induce an orientation on
the tangent space of N, at (eKg,z,0). We get a description of this tangent space
by differentiating (4.19), at n =0:

(4.43) Tiexnz0)Ns ={(s"'Ren, (sT'Ren+r)+b,,n) k€L, nEN Np}.
Modulo the complement (4.41), we get the congruence
(4.44) Tiekpz,0Ns = 00 E/ENb, D, Np C pr D g/by D0y

In view of (4.42), (4.39), and the even dimensionality of €¢/¢N b, and n; N p, the
orientation of T{ck, +,0)/Vs and the product orientation of 0 €/€Nb, ©n, Np are
related by the factor (—1)dim= pr-teodime(Q.X) - The projection 7 simply drops the
first factor, hence

orientation on T{, 0\7(Ns) =

4.45 . .
(4.45) (—1)dimz prteodime(Q.X) 116 duct orientation of €/€Nb, 1, Np.

The isomorphisms (4.15) induce
(4.46) T(myo)(TéX) ~ ¢/eNb, dn,Np C g/b, Bn, = T(zﬁo)(T*X) .
Our rule for orienting conormal bundles implies

orientation of T, 0)(THX) =
4.47 .
(4.47) (—1)cedime(@X) product orientation of €/€Nb, Gn, Np;

to see this, we argue as in (4.37). The induced map (F;). reduces to the identity
along the zero section and T, X is connected, hence

(4.48) [r(No)] = (=1)m=P= (). ([THX])
by (4.45-47). This, in combination with (4.28), proves (4.25).

5. Descent to the nilpotent cone.

The nilpotent cone N’ C g is a finite union of G-orbits. Each orbit @ C N carries
a G-invariant, non-degenerate, complex algebraic 2-form op. This form becomes
canonical when we identify O with the corresponding coadjoint orbit via B : g = g*
as in §3. In particular, the G-orbits @ C N have even complex dimension. We
stratify A/ by dimension, with

(5.1) Ne = U{0|dimcO=2k}, Ni = Uy Mo
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Then N, is closed, and N}, is open in N, For ¢ € N, the Springer fiber p=1(¢)
is complete, connected, equidimensional, of complex dimension n — %dimC(G Q)
[Spal]. The moment map is G-equivariant, so the preceding statement implies:

for each G-orbit Op C Ny, p:p (Or) — O isa
(5.2) G-equivariant fibration, whose typical fiber 1 ~*(¢) is a connected,

complex projective, equidimensional variety of dimension n — k.

We shall use the stratification (5.1) to filter the spaces Tx X and 75, X.
In the case of T X, the k-th filtrant is the closed complex algebraic subspace

T#X N p~ ' N Then

a) ...C T}}Xﬂufl./(/'k - T;Xﬂu71Nk+1 C ...
b) Uy TRX N Ni = TjX;
(5.3) ¢ TpXNp ‘N, isopenin TpX Np~N;
d) the boundary of TjX N p~'Nj is contained in TiX Np *Ny_1;

e) TrpXNu 'Ng is equidimensional, of complex dimension 7.

The first four statements follow formally from the corresponding statements about
the Ny To see ), note that, T3 X N~ N}, fibers over A Np, in other words, over
the union of K-orbits in N} Np. Because of (3.5), the fiber at each point is the full
Springer fiber p~1(x). Because of (5.2), this fiber is equidimensional of complex
dimension n — k. The same reasoning gives properties a)-e) for the filtration of
T, X by the T, X' N 1" Ng. In this case, of course, the TE. XN 1INy are real
algebraic subvarieties, and T¢; X' N 1t Ny is equidimensional of real dimension 2n.

Recall that the characteristic cycle maps (3.3) take values in H;’:f (THX,Z) and
H%f (T¢, X, Z). The filtration (5.3) and its real analogue induce filtrations

(5.4) Hy/ (T3 X, Z), = Im {Hy (T3 X 0 ' N5, Z) — Hy (T X, Z)},
' Hy(TE X, Z) = Tm {HY (T, X 0Ny, Z) — H5Y (T, X, 7)) .

Because of (5.3¢,d), we get a well defined restriction map

(5:50) Hy/(TEX.Z)e — gy Hy (T5X,Z) — Hy (T X np N, Z),
and analogously,

(5.5b) Hy (T4 X, Z)y — gr, Hy/ (T8, X, Z) — HYY (T X N "N, Z).

Integration over the fibers of y defines maps from the groups on the right in (5.5a,b)
to groups of cycles in M, N'p and N, Nigg, as we shall explain next.

The dual space h* of the universal Cartan contains the universal weight lattice A,
i.e., the lattice of differentials of algebraic characters of the universal Cartan group
H. For \ € A, the character e* : H — C* determines a G-equivariant algebraic line
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bundle £y — X whose fiber at € X is the complex line, on which B, acts via er.
The map A — ¢1(Ly) (= first Chern class of £y) defines a homomorphism from A
to H?(X,Z), and hence
(5.6) e bt — H*(X,C).
For simplicity, we write e* for the cohomology class 1+ ¢1(\) + # + ..., which
we view as a class on T*X. The usual cap product pairing applies also in the
setting of homology with infinite support. Thus we can take the cap product of
any class in Hé’;f(TI*(X N p~ Ny, Z) against the component of e* in degree 2n — 2k;
this produces a homology class in degree 2k, which can then be pushed forward to
a class in H;Zj (N N'p,C). This operation, and its Gg-analogue, is our process of
integration over the fibers. In general, the definition of cap product involves certain
sign conventions. We do not need to spell them out, since integration over the fiber
can be described more concretely in our particular situation.

The moment map defines a fibration p : THX N u Ny — Ny Np. As top
dimensional cycle, each Cy, € HYY(TEX N =N, Z) can be regarded, locally
with respect to the base of the fibration, as a product of a top dimensional cycle
Con—2k(¢) in the (compact) fiber with a top dimensional cycle in Ny Np — here
we are using the complex structure of the p~1(¢) to orient the fiber component
of the cycle; the even dimensionality of the fiber makes the order of the product
irrelevant. We integrate the component of e* in degree 2n — 2k over Ca,_ox(();
the resulting function m(¢) is locally constant and independent of the particular
product decomposition. We multiply the base component of Cs,, by the multiplicity
m(¢). This gives us a well defined class

(5.7) Je, € € Hy/ (Ninp,©),

the pushforward of the degree 2k component of the cap prod_uc}t1 e* N Cy,. Analo-
gously, we define integration over the fiber, as a map from H3"/ (Tg, X Np~ ' Ny, Z)

to H;’;f(J\/'k Nigr,C). In general, integration and cap product agree only up to
sign. Specifically, if M is a compact oriented m-manifold, cap product wN[M] with
the fundamental class, for w € H™(M,C) is (—1)™ times the integral of a deRham
representative of w over M. In our case, the sign is doubly irrelevant: not only
are the Springer fibers even dimensional, but if there were a change of sign — as
there may be in the more general situation of a semisimple symmetric space — it
will occur twice in the statement of theorem 5.10.

To each C' € HY™ (T5: X N = N, Z), we assign the degree k = k(C), the least
integer k such that C' € Hy™ (T X ='Wy, Z). We then restrict C to Tj XN~ "
and perform the operation (5.7). This gives us

(grp)x « Ho (TR X 0 p'N,Z) — @, Hy/ (N np, C),

5.8a
( ) (gI‘ILL*))\(C) = fco 6)\7 cl=C

T%Xﬂu*l./\/k 5 k= k(c) .

1To see that the geometric operation of integration over the fiber does agree with cap product,
followed by pushforward, one can use the formalism in [SV3], for example: when cycles are viewed
as local cohomology classes along their supports, cap product gets converted into cup product;
this makes available the full apparatus of cohomology.
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All of this makes sense equally on the Gg-side:

(grps)x : H/(TE, X nu N, 2) — @, Hy (Wi Nige, C),

(5:8b) (@ pA(C) = [, CO=C

T, X0~ N s k=k(C).

Note that the two maps (gru.)x are not homomorphisms, since the definitions
involve going to the leading terms in the graded groups gr H;’:f (TiX N u N, Z)
and gr H"/ (Tg, X Np~'N,Z).

The family Fy : T*X — T*X defined in (3.6) induces a family of bianalytic maps
fs on the nilpotent cone,

fSIN_’N, S€R>O7

(5.9) L) = Ad(esp(s'Rem)n,  (neA).

Because of (4.20), po Fs = fs o p, so Fs does lie over f.

5.10 Theorem. Forc € Hgfcf (N Np,C), the limit of cycles lim, o+ (fs)«(c) exists
as cycle in Ny, and has support in N, Niggr. The resulting homomorphism

¢« @ Hy Wienp,C) — @, Hy (Wi Nige, C),

d(c) = lim,_g+ (fs)«(c) for ¢ € HIF (N}, N p,C), makes the following diagram
commutative:

W (TiX,2)  ——  H3/ (15, X.7)
(eren)s | [ o
@ Hyy! (Wi np, ©) R @, Hyy (Vi Nige, C) .
Proof. Recall the definition of the analytic-geometric category C in §4. To see that
the limit of cycles exists, we shall argue that the family of cycles (f5).(c) is a
C-family — in other words, that the union of the supports fs(|c|) is a C-subset of

N x R. We proceed as in the proof of theorem 3.7. For dimension reasons, |c| is a
union of K-orbits, hence algebraic in Ny. Thus

(5.11) {(Ad(g)n,9Kr,s) | gKr € Gr/Kr,n€|c[,s € R} C Ny x Gr/Kr xR

is a real algebraic subset, and consequently a C-subset of N} x Gr/Kg x R. Since
Pr = Gr/ KR as C-sets,

(5.12) {(Ad(expQ)n,(,s) [ €epr,m€le],s €R} C Np x pr xR

is a C-subset, as is its intersection with { s¢ = Ren }. This intersection is the sup-
port of the family of cycles {(fs)«(c)}. In view of [SV3,§3], the limit lim, o+ (f5)«(c)
exists as cycle in Ny. More specifically,

(5.13) lim (fs)«(c) € HIY (N Nigg, C),

s—0+
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as follows from the argument below the statement of theorem 3.7.

We regard J = [0, 00] as a closed subinterval of the one point compactification
RU{oo} of R. Let us consider a particular C' € Hé’;f(TI*{X, Z). The cycles (Fs).(C)
constitute a family of 2n-cycles in T* X, parametrized by I = (0,00), in the sense
of [SV3,83]. In other words, there exists a (2n + 1)-chain Cy in J x T*X such that

a) |Cy| = closure of {(s,F5(C))|sel,¢e€|C|};
b) Cr = C]|I><,u

) Cs = (Fs)«(C) for0<s<oo;
d) oC; = {oo}xC'—{O}thC

1(\r)) s a 2n-cycle in T x T°X;
(5.14) ©)

o

Here C; denotes the specialization of the family C; at s, i.e.,
(5.15) {s} x Cs = 9C1l(0,s5)xr+x (boundary in (0, s] x T*X).

Let k = k(C) be the least integer k such that C' € HY (T% X, Z);, — equivalently,
the least integer k such that C is supported in p~ (Nk) Since N}, is G-invariant,
this implies that all the cycles (F),(C) are supported in p~'(N;). Thus we can
regard C; as a family of cycles in =1 (Ny).

Recall the definition of ®(C) as the limit of (Fs).(C) as s — 07. The preceding
remarks imply, in particular, that ®(C) is supported in =" (N}), hence k(®(C)) <
k(C). In fact,

(5.16) k(®(C)) = k(C).

To see this, we observe that ® is derived from the functor v of (2.7), which has an
inverse, the functor T' of [MUV] with an appropriate shift in degree. Concretely, T’
is defined in terms of the diagram (2.8), but with K and K/Ky taking the places
of Gr and Gr/Kg and with stars instead of shrieks. Just as v determines ®, the
functor I' determines

(5.17) v HY(TE, X, 2) — HY(T5X.2).

Theorem (3.7) and its proof carry over to this situation word for word, with one
exception: in pinning down the sign in (3.7), it was convenient to use the com-
plex structure of the K-orbits. In any case, the same reasoning that gave us the
inequality k(®(C)) < k(C) gives

(5.18) E(E(C) < k(C) (CeHy (T X.2)).

Since I"o7 is equivalent to the identity on Dy (X)_x, up to sign, ¥o® is the identity
on the CC-image of D (X)_», up to the same sign. We claim:

(5.19) CC(Dg(X)_y) = HM(T:X,7),

for integral A € h*, and in particular for A = p. Assuming this for the moment,
we see that ¥ o & — which does not depend on the particular choice of A — is the
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identity, up to sign, on all of H%f (T3 X,Z). Thus (5.16) follows from (5.18) and
the earlier inequality k(®(C)) < k(C).

We need to establish (5.19). If A = p, as we may assume, Dg(X)_, = Dg(X)
contains all the direct images Rj.Cg of constant sheaves Cg on K-orbits S C X.
The characteristic cycle CC(Rj,Cg) differs from [T{X] by a linear combination
of cycles [T X] with S’ C 0S. Thus, arguing by induction on the dimension of
S, we find [T{X] € CC(Dk(X)) for all K-orbits S. These cycles [T$X] span
HYY (Tr X, Z), so (5.19) follows.

At this point, we have established the first assertion of theorem 5.10, and we have
shown that ® preserves the integer k(C) which enters the definition of integration
over the fibers. This operation can be applied to the family C;. The family of
diffeomorphisms Fy can be used to trivialize C7; in other words,

(5.20) (0,00] x |C] — |C(0,0]] »

so that C(o,0) becomes the product of the interval (0, oo] with the cycle C. Contrary
to appearance, oo is a generic point of the family, since F, extends smoothly across
s = oo — recall (3.6). Integrating e* over the pu-fibers of this family, we obtain a
family of 2k-cycles ¢(g,o0) in Ng. Tt, too, is a product family whose general member
is co = (fs)«(c), with ¢ = [, e*. Asin (5.14), ¢(g o] is the restriction to (0, 00] x N
of a (2k + 1)-chain ¢y in J x N, such that

(5.21) Ocy = {oo} x e — {0} x 11%1+ Cs -

The two families C'y, c; cease to be product families at s = 0. To see that ¢; =
J C,e even at s = 0, we appeal to the formalism of cap product, as follows.

Let w € H2"_2k(T*X7 C) be the component in degree 2n — 2k of e*, pulled back
from X to T*X. We shall take the cap product of a cochain representative of w
with the chain C; — or more precisely, with

(5.22) C', = restricition of C; to J x u™*(N%) .

This can be carried out in several ways, but perhaps most transparently in the
simplicial setting. Thus we triangulate, compatibly, the spaces J x u='(Ny), |C%],
{0} x p= (W), and {oo} x =t (Nk); we can do so because |Cy| is a C-set. We
choose a cochain representative of w and, for simplicity, denote it by the same letter.
We can then take the cap products w N C’, w N OC’. Since w is closed, they are
related by the formula

(5.23) AwnC}) = wnoll;
for the sign conventions, we follow [Span]. Because of the triviality of the family
Cr, s+ (wNCY) is the family in Ny, whose general member is obtained by integrating

w over the u-fiber — in other words, the general member is c;, hence

(5.24) px(wnNCr) = er.
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All the top dimensional simplices of C; lie in C7, so (5.24) remains valid with J in
place of I:

(5.25) pxwnCh) = ey.
Because of (5.14d), (5.23), and (5.25),

(5.26)  pa(w N ({00} x €)) = pu(w N ({0} x ©(C)')) = {00} x ¢ — {0} x ¢(c),

where €’ and ®(C)’ denote the restrictions of the two cycles to =t (N).
(From our definition of integration over the fiber, we see that p.(w N ({0} x
®(C)")) equals {0} x fq»(C) e*. Hence, because of (5.26),

(5.27) ¢c) = /<1>(c) et

Taken together, (5.16) and (5.27) give the commutativity of the diagram in the
statement of theorem 5.10.

6. Nilpotent orbits.

Let Ok be a G-orbit in M. Then O Np is a union of finitely many K-orbits, and
similarly, Ok N igr is a union of finitely many Gg-orbits. These intersections are
Lagrangian — in the case of p, with respect to the holomorphic symplectic structure
oo, on Ok, and in the case of igr, with respect to Recp, [KR]; here, as in §5, we
identify g 2 g* and N/ = A'* by means of the bilinear form B. In particular, each K-
orbit in N Np is a complex manifold of dimension k. We use the complex structure
to orient the orbits. This allows us to regard them as K-invariant, top dimensional
cycles in M, Np. In fact, these cycles constitute a basis of Hg}cf (N Np,C)K, the
K-invariant part of the top dimensional homology of NV Np:

(6.12)  HRI NVenp,©)F = {Da;[0p,] | a; €C, dimec Op; =k},

with O, ; enumerating the K-orbits in N'Np. To see this, we note that the connected
components of the K-orbits provide a basis of Hg,if (N N p,C); the fundamental
cycle [0y ;] of a K-orbit O, ; is the sum of the fundamental cycles of the components
of O, ;. Analogously,

(6.1b)  Hy (N Nige,©)%% = {D b;[Og, ]| bj € C, dimg Oy, ; = 2k}

when we enumerate the Gr-orbits in N'Nigr as Og, ;. Each of them lies in a G-orbit
Oy, from which it inherits the symplectic form #aok — note that the restriction
of 0o, is purely imaginary on Oy Nigr. We use the symplectic structure to orient
the Ogs 5, to give meaning to the cycles [Og. ;].

Sekiguchi [Se] and Kostant (unpublished) have described a bijective correspon-
dence between the K-orbits in A/Np on one hand, and the Gg-orbits in A’ Niggr on
the other. Orbits that correspond to each other lie in the same G-orbit, and thus
have the same dimension. Recall the definition of

(6.2) ¢ @ HY (NMenp,C) — @, Hy (N Nige, C)

in the statement of theorem 5.10, which was defined in terms of the family of
diffeomorphisms fs: g — g, fs(n) = Ad(exp(s™' Ren))(n).
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6.3 Theorem. The map ¢ is an isomorphism. It sends K-invariant cycles to
Gr-invariant cycles. On the invariant part of the homology, ¢ coincides with the
Kostant-Sekiguchi correspondence via the identifications (6.1). Concretely, if [O,] €
H;Zj (M Np,C)X is the fundamental class of a K-orbit O, oriented by its complex
structure, then the family of cycles (fs)«[Op] has a limit as s — 0%, and this limit
is the fundamental class [Og,] € H;Zj (NMi Nigr, C)“® of the Sekiguchi image Oy,
of Oy, oriented by its symplectic form.

Sekiguchi describes the correspondence between the two types of orbits by re-
duction to the special case of Gg = SL(2,R), Kg = SO(2,R). Let

(6.4) j o sl(2,C) — g

be a homomorphism, defined over R with respect to the real forms s[(2, R) and gg,
and equivariant with respect to the Cartan involutions — in the case of sl(2,C),
the Cartan involution corresponding to the maximal compact subgroup SO(2,R)
of SL(2,R). According to Kostant-Rallis [KR],

every ¢ € N'Np is K-conjugate to the j-image of (1 _21>

(6.5)
for some homomorphism j as in (6.4).

On the other hand, the Jacobson-Morozov theorem for the Lie algebra gg implies

every n € N Nigg is Gr-conjugate to the j-image of (0 ! )

(6.6) 0 0

for some homomorphism j as in (6.4);

see, for example, [Ko|. Sekiguchi shows that the K-orbit of ¢, and similarly the
Gr-orbit of 1, determines the homomorphism j up to Kg-conjugacy [Se]. Thus

. A . (0 ¢
(6.7) K-orbit ij(l. _1) «—— Gr-orbit 0f]<0 O>’

for every homomorphism j as in (6.4), sets up a well-defined correspondence be-
tween K-orbits in NN p and Gg-orbits in N N igg.

Every ( € N Np is K-conjugate to its negative, but n € N N igr need not
be Ggr-conjugate to —n. It would be equally natural to let the K-orbit of ¢ in
(6.5) correspond to the Ggr-orbit of —n in (6.6). From our point of view, the
microlocalization of the functor « dictates the choice of 1 over —n: since

1 1 i 1 i B 1 ie2s
(6.8) exp<s Re(i —1)><i _1> = <i6251 4 ,

the definition of ¢ forces

o9 e(U ) e (8)
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in the case of SL(2,R), and correspondingly (6.7) in general.

The proof of theorem 6.3 is lengthy. It uses methods completely different from
those in the rest of the paper. Here we shall reduce the assertion of the theorem to
certain technical statements about nilpotent orbits, which are proved in [SV5].

We begin with a simplification of the problem: it suffices to consider the case of
a connected semisimple group Ggr. Indeed, when Gy is connected, then so are K
and K. In that case all homology classes in H;Zf (N Np,C) are K-invariant, and

similarly all classes in Hg,ij (Nk Niggr,C) are Gg-invariant. Now
(6.10) K/K° = Kg/Kp = Ggr/G%,

so the invariance conditions in (6.1) are equivalent to invariance under the compo-
nent group Kr/Kg. But ¢ commutes with the action of Kg. Thus we may as well
assume that Gy is connected. All nilpotents lie in the derived algebra [g, g]. Hence,
without changing the problem, we can replace Gg by its quotient by the connected
component of the center. For emphasis,

(6.11) Ge = G, ¢ = [0,9],

as will be assumed from now on.

The support of the family of cycles (fs)«[Op], s > 0, is contained in a single
G-orbit O — the G-orbit which contains the K-orbit O,. We suppose O # {0},
since otherwise there is nothing to prove. According to theorem 5.10, the limit of
the family exists as cycle in the union of G-orbits having the same dimension as O.
This union is disjoint, hence

(6.12) the limit lim (fs)«[Op] exists as cycle supported on O Nigr .

s—0t
Since O, has the same dimension as O N igg, the limit is necessarily an integral

linear combination of fundamental classes of the finitely many Ggr-orbits in O Nigg.
We enumerate these orbits as Oy, ;; then

(613) Tim (£).04] = Yo (O], b €2
Note that both O, and the Oy, ; are connected because of (6.11). With this nota-
tion, theorem 6.3 amounts to a description of the b;,

(6.14) b, — { 1 if Oy, ; is the Sekiguchi image of O, ,

0 otherwise.

That is what we must prove.

The multiplicities b; can be expressed as intersection multiplicities of the cycles
(fs)«[Op] with normal slices to the Oy, ;. To do this, we fix a particular v € Oy, ;
and choose a linear complement qr to the kernel of ad v in gg. For a > 0 sufficiently
small,

(6.15) N(v,a) = {Adexp(in)(v) [v € qr, [In]| <a}
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is a real analytic submanifold of O which meets Og, ; only at v, and the intersection
at v is transverse — in other words, N (v, a) is a “normal slice” to Oy, ;, at v, in O.
Then

for generic v € Oy, j, with a > 0 sufficiently small, and
(6.16) s small in relation to a, the cycle (fs).[Oy] intersects N(v,a)

transversely, with total intersection multiplicity b;.

In this statement, “generic” means “on an open, dense C-set”, where C refers to
the analytic-geometric category introduced and used in §4; intersections are to
be counted with the same sign convention that makes Og, ; meet N(v,a) with
multiplicity +1. We refer to [SV3,83] for the notion of limit of a family of cycles,
as we have earlier.

It looks prohibitively difficult to compute the intersection multiplicities at a
generic point v directly. Instead, we shall establish a slightly stronger statement at
certain (conceivably) non-generic points?, from which we then deduce the needed
information about generic points. In preparation for the argument, we introduce
the compact real form

up = tr@ipr = {C€g|l(=(}

(6.17a) _ ) i
(¢ = complex conjugate of ¢ with respect to ggr )

in g, and the maximal compact subgroup

(6.17b) Ur = connected subgroup of G with Lie algebra ug

of GG. Since G is connected,

(6.176) GeNUr = Kg = KNUg;

cf. [He], for example. In previous sections we had chosen a particular Ad-invariant
bilinear form B on g. Now that g is semisimple by assumption, we let B denote
the Killing form, normalized as follows. By Jacobson-Morozov, any ¢ € O can be

embedded in an essentially unique sle-triple. In other words, there exist 7, (_ in g
such that

(618) [Ta C] = 2(7 [Tv C*] = _2<* ) [Cv C*] =T,
T is unique up to conjugacy by the centralizer G¢ of ¢, and (_ becomes unique
once 7 has been chosen. In particular, the orbit O determines 7 up to G-conjugacy.

Since 7 is non-zero (recall: we had assumed O # {0}), semisimple, with integral
eigenvalues, we can normalize B by requiring

(6.19) B(r,7) = 2.

?Indeed, we believe that in our particular situation, every point is generic in the sense of (6.16).
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Thus B restricts to the linear span of {,{_, 7 as the trace form of sl(2, C), to which
this linear span is isomorphic. In terms of B, we define

(6.20) (G1,¢2) = —B(¢1,0¢) (1,2 €9.

This is a (positive definite) Ug-invariant inner product on g.

We introduce a moment map for the action of G on O, following Ness [N]. From
an intrinsic point of view, we should think of the moment map as taking values in
tug™. It will be more convenient, however, to identify jug = iug*, and to define

(6.21a) m : O — dug
implicitly, by the equation

1

(6.21b) 2 Re (m(¢),n) = IRE

d
(% I adexp(en)c]?) lco.

As n runs over g in this equation, m(¢) becomes determined as vector in g. But
the inner product is Ug-invariant, hence m(() does lie in iug. The Ug-invariance
also implies

(6.22) m(Ad(u)¢) = Ad(u)(m(¢))  (ueUr),

i.e., the map m is Ug-equivariant. To get an explicit formula for m(¢), we calculate:

(% Iadexplenc]? ) 1o = 2 Refr.c1)

— 9 Re B, (.00) = —2Re B(n,[¢.6C]) = 2 Re Bln,01C,00)
= =2 Re(nv K,GC_]) = -2 Re([Caeavn)a

for every test vector 7 € g, hence

_[¢.0]]
I

(6.23) m(¢) =

The moment map descends to the image of the orbit O in the projectivized Lie
algebraP(g). Viewed as map from P(g) to iug = iug*, m coincides with the moment
map, in the sense of symplectic geometry, relative to a Ug-invariant symplectic
structure on P(g) [N].

Because of the equivariance (6.22), the square length |m({)||? is invariant under
the Ug-action. It is also invariant under scaling by any nonzero complex number.
Scaling by positive real numbers plays a special role, since it preserves Ggr-orbits.
We thus regard O as manifold with Ur x R*-action, with R™, the multiplicative
group of positive real numbers, acting by scaling.

[
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6.24 Lemma. A point ¢ € O is a critical points of the function ¢ — ||m(¢)||* if
and only if [¢,0(] can be rescaled so that (,[(,0C],0( becomes an sly-triple — in
other words, if and only if there exists a € R, a # 0, such that

[[Cueaud = CLC and [[Cﬁaa@a = —a9§.
The set of critical points is not empty and consists of a single Ur x RT-orbit. The
function ||m||? on O assumes its minimum values exactly on the critical set. Every
K-orbit in ONyp and every Gr-orbit in O Nigr meets the critical set along exactly
one Kg x Rt -orbit.

This follows from a general property of the moment map [N, theorem 6.1]; for
details, see [SV5]. We shall be able to analyze the intersection of the family of cycles
(fs)«[Op] with an appropriately chosen normal slice N (v, a) for points v € Ogg ;
which are critical of the function ||m||?. As a first step, we show:

6.25 Lemma. Let O, be a K-orbit in ONp, and ¢ € O, a critical point for ||m||?.
Then f4(¢) lies in the critical set for every s € Rsqg. Moreover, the limit

A
w0+ TAOT

exists and lies in the Sekiguchi image Oy, of Oy.

Proof. For t > 0, fs(t¢) = tfs-1(¢), so we are free to rescale { by a positive
real number. Also, ¢ is Kgr-conjugate to —(, because [[¢,6(],¢] is a non-zero real
multiple of ¢ and exp(it[¢,0(]) € Kg for t € R. Since f, is Kg-equivariant, we
can now rescale ( by any non-zero real number. In other words, we may assume
that @ = —2, in the notation of the previous lemma. In that case, the linear map

j:5l(2,C) — g, defined by

. j((l) _01) = (-0C, j(g (1)) = %(<+9§+[<,9§]),
w i(10) = gc+oc-ic.o.

satisfies the conditions on j in (6.4): it is a homomorphism, defined over R with
respect to the real form sl(2,R) C s[(2,C), and equivariant with respect to the
Cartan involution corresponding to the maximal compact subgroup SO(2,R) of
SL(2,R). In this way we can reduce the problem to a computation in sly, which
we have already done — see (6.8).

For the moment, we keep fixed a particular ¢ € O,. Since m(fs(¢)) € iur =
itr @ pr, we can write

m(fs(C)) = mi(s,¢) +ma(s,¢) +ms(s,{), with

(6.27) | _
mi(s,() ER-Re ¢, ma(s,{) €prN(Re )~, ms(s,() € itg.

Experimental evidence suggests that ||m(fs(¢))||? is decreasing for s > 0. The
parametric curve f,(¢) would then move away from the critical set of ||m|? as s
approaches 0. We do not how to prove this; however, the following suffices for our

purposes.
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6.28 Lemma. For s >0, |mi(s,0)|* + [[ma(s,Q)|I> > [|m(Q)]?.

This lemma plays the crucial role in the proof of the next one; both are estab-
lished in [SV5].

6.29 Lemma. Let vy € Oy, ; be a critical point for ||m||*. Then there exists a
normal slice N (vy, a) with the following properties. If Oy, ; is the Sekiguchi image
of Oy, then the submanifolds fs(O,) and N(vp,a) of O meet exactly once, for all
sufficiently small values of s. The intersection is transverse and has multiplicity +1,
relative to the sign convention which makes Oy, ; meet N(vy,a) with multiplicity
+1 at vy. On the other hand, f(Op) N N(vy,a) =0 if Oy, ; is not the Sekiguchi
image of Oy, again for all sufficiently small s.

We shall deduce theorem 6.3 from lemma 6.29. In effect, one can phrase the
criterion (6.16) less restrictively in the case of a subanalytic or C-family of cycles:
one may use even non-generic normal slices to calculate the intersection multiplicity,
provided they satisfy two conditions. First, the normal slice is normal not only to
the carrier of the limit cycle, but also normal to limit of the carriers; secondly, the
carrier of the family is transverse to the particular normal slice, except possibly at
s = 0. We shall not try to establish the more general statement in full generality,
but only in our particular situation.

We fix a point vy € Oy, ; which is critical for the function ||m/||?. The normal slice
N(vp,a) mentioned in the lemma corresponds to a choice of a linear complement
qr to Ker(advg) in gr. The same qg will then be a linear complement also to
Ker(ad v) for every v € Og, ; close to 9. We choose a small open neighborhood Vj
of 1y and a sufficiently small constant a > 0 so that

Bla)xVo — O (B(a) = {neaelnll<a}),

(6.30) (n,v) — Ad(expn)v

is a bianalytic map onto its image. We shrink a further, if necessary, so that the
normal slice N(vp,a) satisfies the conclusion of lemma 6.29, and so that the map

(6.30) extends bianalytically to B(a) x Vp, the partial closure of B(a) x V; in the
gr-directions. We use this bianalytic map and B(a) 2 N(vp, a) to identify

(6.31a) N(vg,a) x Vo = neighborhood of vy in O.

This identification is consistent with the tautological inclusions N(vp,a) C O and
Vo C O, C O. The projection

(6.31Db) 7w : N(vg,a) x Vo — Vo

retracts the neighborhood (6.31a) of v in O to the neighborhood V; of v in Oy, ;.
The fibers of 7 are normal slices, i.e.,

(6.31c) 7 *(v) = N(v,a) = normal slice to v.

By construction, the product structure (6.31) extends to the closure in the fiber
directions.
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The carrier of the family of cycles {(fs)«[Op]}s>0 is a closed real analytic sub-
manifold of R<g x O; it is also a C-set in R x O. Here, once again, C refers to the
analytic-geometric category used earlier. We denote the submanifold by M. The
natural bianalytic map

(6.32) Roox Op — M,  (5,¢) — fs(C)

orients M. We observe that

M N (Rsog x N(vp,a) x Vo) is closed in Rsg X N(vp,a) x Vp, and
6.33 I— -
(6.33) M N (Rsg X N(vg,a) x V) is closed in Rsg x N(vg,a) x Vp.

The projection M N (Rsg X N(vg,a) x Vo) — Vp can be partially compactified to a
proper C-map

(6.34) MN({0<s<oo} x N(vg,a) x Vo) — V.

We shall show:
there exists a dense open C-set V3 C V; such that
(6.35) the projection M N (Rsg X N(vg,a) x Vi) — W,

is of maximal rank everywhere in the domain.

Indeed, by [DM, statement D.13], the projection (6.34) can be stratified, so that on
each stratum in the domain the projection has constant rank. Note that dim M =
dim Vj + 1. Thus, by dimension count, each stratum in the domain either maps to
a lower dimensional stratum in Vj, or the projection has maximal rank on it. Our
statement (6.35) follows; it may happen, of course, that Rsg X N (v, a) x Vi does
not intersect M at all.

The generic triviality statement [DM, 4.11] for compactifiable C-maps allows us
to shrink V; further, so that

Vi C Vy is open, 1/0671, and

(6.36) _
M N (R>p x N(vp,a) x V1) — V4 is a product

(product in the C-continuous sense). What can we say about the fiber F), of this
product over a v € V17 To begin with,

(6.37a) F, is a C-curve in R>¢ x N(v,a), wunless F, is empty,
for dimension reasons. Secondly,

F, N ({0} x N(v,a)) C {(0,v)} and

(6.37b) F,N(Rsp x N(v,a)) C Rsgx (N(v,a)—{v});

here we use (5.13), which holds and is proved on the level of supports. Also, for
s # 0 and ¢ € Oy, the real part of f,(¢) equals the real part of ¢, hence is non-zero,
which prevents fs(¢) from lying in igg. Lastly, because of (6.35),

(6.37¢) F,N(Rso x N(v,a)) is a closed submanifold of Rsg x N(v,a).
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It is also a C-subset, hence has only a finite number of connected components.
We enumerate the finitely many connected components of F, N (Rs x N(v,a))
as F, ¢, 1 </¢< L;note that

(6.38) F,N(Rso x N(v,a)) = F, —{(0,v)}

because of (6.37). A priori each of the F) ; can be compact, have zero, one, or two
endpoints at v, with the remaining ends “at infinity”, i.e., tending to the boundary
of the normal slice. Note that an end at v corresponds to s = 0, and an end in
ON(v,a) to a strictly positive value of s; cf. (6.37b). When we count the net
intersection multiplicity of (fs)«[Op] with the normal slice N (v, a), the component
F, ¢ contributes only if it has one end at v and the other at infinity. After all, we
are computing the multiplicity at {0} x v of the boundary of the chain [F,]. We
claim:

a) among the F, ¢, either one or none run from zero to infinity,

depending on whether or not Oy, ; is the Sekiguchi image of Op;

6.39
( ) b) if F}, ¢ does run from zero to infinity, this curve can be continued

across v = 1.

According to lemma 6.29, over v = 1y we see either one curve or none, again
depending on whether or not Og, ; is the Sekiguchi image of Op. In the former
situation, the curve runs from zero to the boundary of the normal slice and has
the same intersection multiplicity with (fs).«[Op], 0 < s < 1, as with [Og,]. Thus
(6.39) does imply theorem 6.3.

The verification of (6.39) involves two processes: extending the curve over vy —
if there is one — to nearby points v, and specializing to v = vy those F}, ¢ which run
from zero to infinity. For the former, we note that

the projection M N (Rsg x N(vg,a) x Vo) — V; has maximal

(6.40) rank along Fy, = {(0,10)} = M N (R0 x N(vo,a) x {v0});

this follows from the transversality assertion in lemma 6.29. We conclude that the
curve over vy — if it exists — can be continued smoothly to nearby points v, at least
if we stay away from s = 0. These nearby curves over v € Vi must run from v
to ON(v,a), or from v back to v, or from one point on IN(v,a) to another, or
be compact — these are the only possibilities for curves over points in Vi, as was
mentioned earlier. All but the first possibility are ruled out by the local smoothness
(6.40) of the family across F,,, away from s = 0. To summarize, when there is a
curve F},, over vy, it can be continued to a curve over nearby points v € V; which
runs from v to ON(v,a). There is at most one such curve above nearby points
v € V1, since otherwise the local smoothness (6.40) would be contradicted.

The reverse process, of specializing from v € V; to vy, depends on a property of
our particular setting that we have not used so far. Let us consider a curve F, ¢
over a point v € V; that runs from v to ON (v, a). It was mentioned already that v
corresponds to s = 0 and the boundary point to some strictly positive soo = So0 (V).
We need to know:

(6.41) Soo(V) is bounded away from 0 for v € V4 near vy.
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Assuming this for the moment, we can specialize F, ; to a curve F,, which runs
from vy to ON(vg,a). Together with the conclusion of the preceding paragraph,
this establishes (6.39).

At this point, only (6.41) needs to be established. If the assertion were false,
there would exist sequences {s,} in Ry and {¢,} in O, such that s,, — 0 and
limy, 00 fs, (Cn) € ON(v9,a). On the other hand, the existence of lim,— fs, (Cn)
with s, — 0 forces lim, . fs, (Cn) € igr, as was argued at the end of §3. Finally,
we can decrease a further, if necessary, to ensure ON (v, a) Nigr = 0.

7. Completion of the proof of theorem 1.4.

The commutative squares (2.9), (3.7), and (5.10) can be combined into a single
commutative diagram, as follows:

{virtual H-C-modules}y ——— {virtual Gg-representations}

| [s

D (X)-x — D, (X)-a
(7.1) ccl lcc
Wi T XD
(ernon | s

@y (Ninp.C©) —2— @ HE (Wi Nige,C).
We saw, in §6, that ¢ induces the Kostant-Sekiguchi correspondence when we make
the identifications (6.1).

The parameter A € h* in (7.1) fixes the infinitesimal character of representations,
but not conversely: xx = x, when A and u are W-conjugate. The particular choice
of \ within its W-orbit has not mattered until now. At this point, however, it will
become convenient to suppose that A is integrally dominant, in the sense that

(A @)

(o, )

(7.2) 2

¢ Z.o forevery a € ®t;

here, as before, ®* refers to the universal positive root system. This situation is
special for the Beilinson-Bernstein construction [BB1]. First of all, it implies

(7.3) HP(X,9M) = 0 if p#£0,

for every coherent Dy-module I — in particular, for every K-equivariant, coherent
Dx-module. When A is not only integrally dominant, but also regular, the assign-
ment M +— HO(X , ) establishes an equivalence of categories between the category
of K-equivariant, coherent Dy-modules on one hand, and the category of Harish-
Chandra modules with infinitesimal character x on the other. When A is integrally
dominant but singular, there exist Dy-modules without sections; however,

for each irreducible Harish-Chandra module M with
(7.4) infinitesimal character x,, there exists a unique irreducible

K-equivariant Dy-module 9 such that H°(X,9) = M .
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Concretely, 91 is the unique irreducible K-equivariant quotient of the Beilinson-
Bernstein localization of M which does have non-zero sections.

We use the bilinear form B to identify g = g*, as in section 5. Correspondingly,
we identify K-orbits in A’ N p with K-orbits in A* N p* and Ggr-orbits in N Nigr
with Gg-orbits in N* Nigr*. Thus we can think of the associated cycle Ass(m)
and the wave front cycle WF(7) as lying in the two groups of nilpotent cycles in
the bottom row of (7.1). Recall the definition (2.4) of the K-equivariant deRham
functor.

7.5 Proposition. Let A be integrally dominant, m an irreducible representation
with infinitesimal character xx, and M the Harish-Chandra module of m. With 9
asin (7.4), set F = DR(OM). Then (gr u.)»(CC(F)) = Ass(w) via the identification
(6.1a).

This is essentially a reformulation of a result of J.-T. Chang [C1]. At the end
of this section, we shall reduce our statement to Chang’s result, and comment on
certain aspects of his proof.

7.6 Proposition. Let m be an irreducible representation with infinitesimal cha-
racter xx, and F € D¢, (X)_x a sheaf such that 3(F) = m up to infinitesimal
equivalence. Then either (gr pu.)»(CC(F)) vanishes or (gr p+)A(CC(F)) = WF ()
via the identification (6.1b).

We shall see, after the fact, that the first alternative, i.e., the vanishing of
(gr ps )2 (CC(F)), cannot happen when F is chosen appropriately. We shall de-
duce the proposition from our integral formula for characters [SV4]. In the case of
complex groups and regular infinitesimal character, (7.6) is due to Rossmann [R2].
Our proof is a generalization of Rossmann’s argument.

Before turning to the proof of (7.6), let us argue that the two propositions,
together with theorem 6.3 and the commutativity of the diagram (7.1), do imply
theorem 1.4.

Proof of theorem 1.4. We consider a particular irreducible representation 7, with
infinitesimal character ). From the construction of the associated cycle, it is
clear that Ass(m) # 0. With A and F as in proposition 7.5, (gr 1:)A(CC(F)) =
Ass(m) # 0. The commutativity of (7.1) now ensures that (gr .)A(CC(yF)) # 0,
hence (gr p.)»(CC(y F)) = WF(7) by proposition 7.6. We appeal once more to the
commutativity of (7.1) to conclude WF(7) = ¢(Ass(m)). Because of theorem 6.3,
this gives the assertion of the theorem.

Proof of proposition 7.6. Let O, denote the character of w, and 6, the pullback of
O, to the Lie algebra gg,

(7.7) 0, = \/det(exp,) exp* O .

Our integral formula for characters3[SV4], transferred to g via g = g*, asserts

(7.8) 0, dr = Wih (o + 7 m)",

),
e (2mi)™n! Joo(F)

30ur formula is the explicit version of a formula of Rossmann [R1,R2], who represents invariant
eigendistributions on gr, with regular infinitesimal character, as integrals over unspecified cycles.
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for every test function ¢ € C°(gr). Here uy : T*X — g denotes Rossmann’s
twisted moment map, n the complex dimension of X, o the canonical holomorphic
symplectic form on T*X, m : T*X — X the natural projection, and finally 7, a
particular differential form on X such that

(7.9) % represents the cohomology class ¢;(\) € H*(X, C).

We define the Fourier transform (;3 of ¢ as a holomorphic function on g by the
formula

(7.10) e = / ¢BED o) da.

gRr

Since we have omitted the customary factor of ¢ in the exponent, gzg decays rapidly
along the imaginary directions. This decay property of ¢ makes the second integral
in (7.8) converge.

The definition of the wave front cycle involves scaling the argument of 8, by a
scaling parameter ¢ € Rso. Let m; : g — g denote scaling by ¢, i.e., m(€) = ¢&.
Since

/ 0. (tz) ¢(x) dr = t—d/ 0,(z) ot 'x)dx (d=dimgg),
gr gr

and since
€ — t1p(t€) is the Fourier transform of z — ¢(t 'x),

the scaled family of invariant eigendistributions is given by the formula

1

(7.11) . O (tx) ¢p(z) dz = W/ pimie (—o + 7).

Scaling of cotangent vectors by ¢ defines a map on 7 X; for convenience, we denote
this map also by the symbol m;. The definition of the twisted moment map implies

(7.12) My O [y = [ © My and limg o pen = p.

In particular,

pAM ) (o + 7 )" = mipie (—o + T )" =

(713) * * 7 * * * * 7 —2 *

my (MtA¢ mi(—o+m TA)n) = my (MtA (=t o+ TA)n> .

In the last step we have used the identities m;_,7*7\ = 7n*7\ and m;_,0 = t—20;
the former follows from 7 o m;—1 = 7, the latter from the definition of o. By (7.11)
and (7.13),

(7.14) / 0 (tz) d(x)de = #/Cc(f) g (=t 20 + )",

. (27i)™n!
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since (my)« CC(F) = CC(F) — recall: the characteristic cycle is invariant under
scaling by a positive factor.

As in §5, we let k = E(CC(F)) denote the least integer such that pu~'(N3)
contains the support of CC(F). On T5X N pu~t(Ny),

t—%

= A 0 (=a) A ()"

1
o (=t 20+ 7 1\)"

Thus we can re-write the integral on the right in (7.14) as a sum,

0 (tz) d(x)de =
(7.15) o -y

- y
Z:k (2mi)™Ll(n — 0)! /CC(}')ﬂ,ul(/\/g)

<

0d (=)' A (T )"

To get the full asymptotic expansion of m;6,, one can expand u;\qg as a Taylor
series in t. There are no convergence problems, even though we integrate over
cycles with infinite support: the remainder for the truncated Taylor series involves
various partial derivatives of (;5, which satisfy the same kind of bound as (b itself —
see [SV4,(3.15-16)], where the convergence is deduced from the rapid decay of ¢.
In particular, since gy — p,

0 (tz) d(x)de =
(7.16) %

2k / . . 1%
O A (1 — ) wo (=) A(@* )" + O~
2mi)" k! (n — k) Joom)nu-1 (v (=o)" A( ) ( )

as t — 0. The integral on the right is therefore either zero or the leading term in
the asymptotic expansion of the left hand side.

To relate the integral on the right to the wave front cycle of 7, we must express it
as linear combination of integrals of QAS over Gr-orbits in igg NN , in each case with
respect to the canonical measure of the orbit in question. We consider a particular
Gr-orbit Og in igr NN, and let O denote the G-orbit in which Og lies. According
to [SV3, lemma 8.19],

ILL*O'(/) = —0’|H71(O) .

Hence, on p~1(Og),

1 s
(27Tl)kk' /J’ (b ( ) /J’ (¢ dmOR) )
(7.17) &
where dmo, = % is the canonical measure on O .
i)k k!

Note that (27i) loe is a real, non-degenerate 2-form on Og, whose top exterior
power orients Og; this orientation allows us to regard the top exterior power as
positive measure. The restriction of CC(F) to = (Og) can be regarded, locally, as
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a product of O, oriented as above, and a top dimensional cycle CC(F)(¢) in the
Springer fiber ©=1(¢) over any particular ¢ € Og; this fibration was used already
in the definition of the map (gr p.)x in section 5. We now appeal to (7.9) and the
definition of e* as 1+ ¢1(\) + ... , and conclude

1 * n—k n A
7.18 = '
(7.18) (2mi)"—*(n — k)! /cc(f)@) O o) /ccm(o ’

The characteristic cycle CC(F) of the Gr-invariant sheaf F is Gg-invariant. It
follows that the integral of e* over CC(F)(¢) depends on the orbit Og, not the
particular choice of ¢ € Or. Let b(Og) denote the value of this integral. Combining
(7.17-18), we find

ey
2mi)"kl(n — k) Joc@F)nu-1 (o)

Wh (~0)* At r)
(7.19)

= bOg) [ ¢dmo,.
Or

The assignment ¢ — fORQAS dme, defines a distribution, the Fourier transform of
the orbit Or C igr — more precisely, of the canonical measure dmep, on Og. Here
we normalize the Fourier transform as in (7.10), without a factor ¢ in the exponent.

Let us summarize what we have established so far. Taking the sum of the
expressions (7.19) for all Gg-orbits igr N N, we find

)
2mi) "kl (n — k) Jeo@F)mu-1 (v)

‘u*d) (_O_)k A (7_‘_*7_)\)71—/6

¢

(7.20)

is the Fourier transform of Z b(Or) Or
OrCigrNNg

with Ogr shorthand for the distribution on igr defined by the measure dmep,. We
do not yet know that

Z b(Or) Or # 0.

OrCigrNNG

However, when this holds, (7.16) shows that the distribution (7.20) is the Fourier
transform of the leading term of m;6, as t — 0. In other words,

WF(m) or

(7.21) > b(Or)Or = {O

OrCigrNNG

The definition of the constants b(Og) tells us that Y b(Or) [Og] is the cycle in
N Nigg obtained from CC(F) by integrating e* over the fibers of y, as defined in
§5. Thus, in the notation of §5,

(7.22) > b(Og) [Or] = (gru)a(CC(F)).

OrCigrNN}



CHARACTERISTIC CYCLES AND WAVE FRONT CYCLES 41

Proposition (7.6) now follows from (7.21-22).

Remarks on proposition 7.5. The characteristic cycle of a holonomic D-module is
a local invariant — i.e., local with respect to the base manifold X. In particular,
the holonomic Dy-module 9 has a well defined characteristic cycle CC(9). By
construction, it is a complex algebraic cycle of the same dimension as X. We regard
it as a geometric cycle, in other words, as cycle in Hgflf (T X,Z), by orienting its
components via the complex structure. A result of Kashiwara [K2,§8.2] asserts that
CC(9M) coincides with the characteristic cycle of F = DR(IM):

(7.23) CC(M) = CC(DR(M)).

We shall give a short proof, based on a result of Ginzburg and on [SV3, theorem
4.2], which we have used already.

The reason for (7.23) is simple: both notions of characteristic cycle obey the same
formalism. We shall establish the equality for every (algebraic) regular holonomic
D-module on a complex algebraic manifold X. Since the characteristic cycles are
local invariants, we may as well assume that X is affine. To begin with, we suppose
that 9 is the D-module direct image of a vector bundle Fg, with a flat algebraic
connection, on a closed irreducible submanifold S C X. In that particular case,

(7.24) DR(9) is the sheaf of flat sections of Eg in degree codimc(S, X),
as can be computed directly. Thus, by (4.3a),
(7.25) CC(DR(M)) = (—1)dimelSX) ke (EBg)[TEX],

with T¢X oriented according to our general convention, as in [SV3,(2.3)]. On the
other hand,

the D-module characteristic cycle CC(90) is the conormal bundle

7.26
(7.26) T$X , oriented by its complex structure, with multiplicity rke(Es) .

The two orientations of 73X — by our general convention for orienting conormal
bundles and via the complex structure — are related by (—1)°dime(5:X): see (4.34-
35). This implies (7.23) in the special case of a flat vector bundle on a closed
submanifold.

Next we suppose that 9 is the D-module direct image of a regular holonomic
D-module 9 on U, the complement of a divisor {f =0} in X, and further, that 91
satisfies (7.23) on U. Let j denote the embedding U — X. Then

(7.27) DR(M) = Rj. DR(M);
see, for example, [Bo]. Thus our open embedding theorem [SV3,(4.2)] implies

(7.28) CC(DR(M)) = lim (CC(DR(M)) + sdlog|f|*) .

s—0+
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Ginsburg’s theorem [Gi, theorem 3.2], which inspired our theorem, asserts

s—0

(7.29) CC(M) = lim (CC(m) + s%) .

The equality (7.28) takes place in the real cotangent bundle of X, and (7.27) in the
holomorphic cotangent bundle. Our convention (3.1) for identifying the two bundles
identifies the two differentials dlog|f|*> and d—;. Since CC(M) = CC(DR(M)) by
assumption, '

(7.30) CC(DRM)) + sdlog|f|* = CCM) + scjc—f (s €R)

via T*(X®) = T*X. The family of cycles whose limit we take in (7.28) is therefore
the restriction to R>¢ of the complex family appearing in (7.29). The two notions
for taking limits are consistent, hence (7.23) holds for the D-module direct image
M = 5. N if it does for MN.

Beginning with flat vector bundles on closed submanifolds, one can generate
the K-group of holonomic D-modules on smooth affine varieties by a succession of
direct images under open affine embeddings. This now gives us the equality (7.23)
in general.

The identity we just established reduces the assertion (7.5) to the analogous one
about the D-module characteristic cycle CC(9M) of the K-equivariant D-module
M. This cycle is K-invariant and thus can be expressed as an integral linear
combination of conormal bundles of K-orbits in X,

(7.31) ccEm) = ¥, my (T3 Xle.

Here [ng X]c is the fundamental cycle of ngX oriented by its complex structure,
not by our general convention for orienting conormal bundles. The moment map
exhibits each of these conormal bundles as a fiber bundle over a K-orbit O, ; in

Nnp,
* F;
(7.32) Tsj — (’)p)j,

with fiber F;, which is a union of irreducible components of the Springer fiber ©='¢
over any particular ¢ € Oy ;. Note that several conormal bundles may lie over the
same K-orbit in A N p; in other words, as the index j enumerates K-orbits S; in
X, there may be repetition among the O, ;. J.-T. Chang proves

(7.33) Ass(m) = Ej m;j fFj e* [0y ]

[C1,(2.5.6)]. Chang’s actual statement relates two homogenous polynomials, one of
which expresses the multiplicity of a K-orbit in Ass(m) as 7 runs over the coherent
family generated by w. Chang expresses this polynomial in terms of the integral
of e* over fibers F}, regarded as a polynomial in the variable A, which ranges over
h*. The polynomial identity, evaluated at the localization parameter A, reduces to
(7.33). Going back to our definition of integration over the Springer fiber, one finds

(7.34) 225 mi Jp, € [Opg] = (grp)A(CC(AM)).

Proposition 7.5 now follows from (7.23), Chang’s identity (7.33), and the re-inter-
pretation (7.34) of the right hand side of (7.33).
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