CHARACTER FORMULAS
AND LOCALIZATION OF INTEGRALS

WILFRIED SCHMID

In these notes, I shall describe two character formulas for semisimple Lie groups.
Both are of interest by themselves, but the potential connections between the two
formulas raise some intriguing questions. The formulas represent joint work with
Kari Vilonen; full details will appear elsewhere.

The formulas and their relation are well understood in the case of a compact
group. For motivation, I shall start out with a discussion of the compact case.
Thus I consider K, a connected, compact Lie group, and T' C K, a maximal torus.
I write fg, tg for the Lie algebras of K, T, and ¢, t for their complexified Lie
algebras.

Let 7 be an irreducible unitary representation of K. Because of the compactness
of K, m must be finite dimensional. The Weyl character formula describes the
character ©, as a function of T, and thus — since the maximal torus meets every
conjugacy class — globally as function on all of K. To recall the formula, I use the
exponential map to identify the torus 7" with the quotient of its Lie algebra by the
unit lattice,

(1a) T ~ tg/L, with L = unit lattice =qef {2 € tg | exp(z) =id }.
Dually, the character group T is isomorphic to the weight lattice,

(1b) T ~ A = weight lattice =qe¢ { A € ith | (\, L) C 2miZ}.

Under this isomorphism, A € A corresponds to e* € f, where e*(expz) = el
for x € tg. The Weyl group W = N (T)/T operates on ith. This action preserves
a positive definite inner product (-, -) on it;. It also preserves the weight lattice
and the root system ®, i.e., the set of non-zero a € A such that there exist x # 0 in

€ on which T acts according to the character e®. The Weyl character formula can
be stated as follows:

ew)\

(2) Oxlr =

v Haca, worpmso (L—€7)

Here A = A(7) is a particular element of the weight lattice, the highest weight of
the representation 7, and p a certain small vector in ity, independent of 7, which
will be described presently.

The root hyperplanes { p € itg | (o, u) =0}, @ € ¥, divide itg into a number of
convex cones, the Weyl chambers, which are permuted simply transitively by W.

Typeset by AMS-TEX



2 WILFRIED SCHMID

Customarily, one singles out one of the Weyl chambers and calls it the dominant
chamber. When K happens to be simply connected, p can be characterized as
the shortest element of A lying in the interior of the dominant Weyl chamber. In
general, the definition of p can be reduced to the case of a simply connected group:
some finite covering of any connected, compact Lie group splits into the product
of a torus and a simply connected compact group. To complete the statement of
the Weyl character formula, one only needs to add that an element A of the weight
lattice A arises as highest weight of an irreducible representation precisely when it
is dominant, i.e., when it lies in the (closed) dominant Weyl chamber.

The Weyl character formula (2) is a beautiful, explicit formula — in some sense,
one could hardly ask for more. Still, it has inspired attempts to explain it, or at
least interpret it, in geometric terms.

The Atiyah-Bott fixed point formula [1] provides one such geometric geometric
interpretation. It depends on the Borel-Weil theorem [4,17], whose statement I
need to recall. I fix a particular dominant weight A. The splitting tg = tg @ [tg, tg]
induces a dual splitting of the vector space i€y, which allows me to think of A and
p as lying in i€}, and to define

(3) Qyp = K-orbit of A+ p in ity .

As homogeneous space, x4, is isomorphic to the quotient space K/T, and thus
to the flag variety of . Since A\ exponentiates to a character e* of the isotropy
subgroup T of K at A + p, it determines a K-equivariant line bundle

(4) Ly — Qgp.

Except for the multiplication by i = v/—1, Q,4, is a coadjoint orbit of K — an orbit
in the dual of the Lie algebra; as such, it carries a canonical symplectic structure.
An complex polarization for Qy,, is a K-invariant pseudo-Kahler structure com-
patible with the intrinsic symplectic structure. Complex polarizations exist; they
correspond naturally and bijectively to the Weyl chambers. Once a polarization
is chosen, the line bundle £, has a unique structure of K-equivariant holomorphic
line bundle. The polarization corresponding to the dominant Weyl chamber is the
unique positive polarization — positive in the sense that the pseudo-Kéahler structure
is positive definite, i.e., a true Kéahler structure.

Equip Qxy, with the positive polarization, and let O(Ly) denote the sheaf of
holomorphic sections of the line bundle £y. Since the action of K preserves the
complex structures of the space €2 1, and of the line bundle £, it induces an
action also on the cohomology groups of the sheaf O(L)). The Borel-Weil theorem
describes the resulting representations of K :

H?(Q34, O(L3)) = 0 if p#0,

5
5) H%(Q4,,0(Ly)) is non-zero, irreducible, and has highest weight A,
provided A is dominant and the polarization positive, as has been assumed. Bott’s
generalized Borel-Weil theorem [4,11] describes the cohomology groups attached to
an arbitrary invariant polarization and every A € A; the precise statement need
not concern us here.
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The maximal torus T" operates on (24, with isolated fixed points, namely the
various W-translates of the base point A+ p. The Atiyah-Bott fixed point formula,
applied to the T-action on {25, , and the holomorphic line bundle £, expresses the
alternating sum of the T-characters of the cohomology groups H?(Qx4,, O(Ly)) as
a sum of terms corresponding to the fixed points; the term corresponding to any
one of the fixed points w(X + p), w € W, turns out to be the summand in the
formula (2) indexed by w. In this way, the Weyl character formula becomes a
formal consequence of the fixed point formula, as was observed already by Atiyah
and Bott.

Kirillov’s formula provides a totally different expression for the irreducible char-
acters of K. By definition,

(6) 0, = (detexp,)?exp* O,

is the character on the Lie algebra of the irreducible representation w. Except
for the factor (detexp,)'/? — which has the effect of relating invariant differential
operators on the group and on the Lie algebra — this is the pull-back of the global
character ©, to the Lie algebra. It is a smooth, bounded function, but is not
square integrable. The exponential map of the connected, compact Lie group K is
surjective and generically non-singular, so 6, completely determines O,. It will be
convenient to define the Fourier transform ¢ of a test function ¢ € C2°(kg) without
the customary factor of ¢ = y/—1 in the exponent, as a function on €} :

(7) o) = [ ola)ecda.

tr

The Fourier transform of 6, exists as distribution, in the weak sense; with the
convention (7), it is given by the relation

~

(8) 0. = integration over Qx4,

(integration relative to the measure induced by the canonical symplectic structure).
Kirillov calls this the “universal formula” for irreducible characters [10]; he estab-
lished it not only in the compact case, but more importantly, in the nilpotent case
where he used it to describe the unitary dual.

One may picture the Weyl character formula, its interpretation in terms of fixed
points, and Kirillov’s formula for é\w as the vertices of a triangle. One side of the
triangle — the connection between the Weyl character formula and its fixed point
interpretation — is filled in by the Atiyah-Bott fixed point formula. Kirillov’s proof
of (8) provides the second side, by direct computation. Berline-Vergne posed, and
later answered the question of whether one can fill in the third side of the triangle:
an identification of the right hand side of (8) with the sum of terms attached to
the fixed points of the action of 7" on 4,, without the “detour” via the Weyl
character formula.

The argument of Berline-Vergne involves the K-equivariant cohomology groups
H}(Qx1p, C). These were defined, for any manifold with a differentiable K-action,
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by Cartan, who also expressed this cohomology in terms of a complex of differen-
tiable forms,

(9a) Hie (1, C) = H*({A Q) @ S(E)});

here A (2x4,) denotes the deRham complex, S(£*) the symmetric algebra of £*, and
{...}¥ the space of K-invariants, relative to the translation action on A (Qx,)
and the conjugation action on S(£*). The differential

(9b) d : {A(Qarp) @ SEN — {A(Qayy) @ S

is the sum of the deRham differential and a term involving the infinitesimal action
of € as a Lie algebra of vector fields and the multiplication map & ® S(€*) — S(&*).
It should be remarked that the equivariant cohomology can be defined whether or
not K is compact. The description (9), on the other hand, depends crucially on
the compactness of K. In the case of a one point space,

(10) Hic({pt},C) = {S(&")}",

since the differential reduces to zero. The analogue of (10) for the maximal torus
T simplifies because T is abelian: Hy({pt},C) ~ S(t*).

Integration of the deRham component over the space {254, and restriction from
K to T induce a sequence of morphisms

K
re::T

(1) Hg(,C) 1 Hi({pt},C) —— Hr({pt},C) =~ S(t").

Just as in the absolute case, it is possible to define a K-equivariant index of the line
bundle £y and to prove an equivariant Riemann-Roch theorem. However, in the
equivariant setting, the index formally involves cohomology classes in all degrees,
so its image in the equivariant cohomology of a point lies in the completion of
{S(€*)} X i.e., in the space of K-invariant formal power series on £. Berline-Vergne
[2] identify the image of the equivariant index in the completion of {S(€*)}% with
0. and deduce the Kirillov’s formula. The crux of the matter is the process of
localization — the expression of the composite of the homomorphisms (11) in terms
of contributions of the various fixed points of the action of T.

Berline-Vergne localization applies to any Hamiltonian torus action, with iso-
lated fixed points, on a compact symplectic manifold. Their ideas have been gener-
alized by Witten [19] and Jeffrey-Kirwan [5], who describe the image of equivariant
cohomology classes on the Marsden-Weinstein reduction when it exists.

Let me turn to the noncompact case. I consider a connected, linear, semisimple
Lie group G and a maximal compact subgroup K C G. Any two maximal compact
subgroups are conjugate, so the particular choice of K does not matter. By a
representation of G, I shall mean a continuous representation on a complete, locally
convex Hausdorff topological vector space. A representation 7 is said to have finite
length if every increasing chain of closed, invariant subspaces breaks off after finitely
many steps. One calls m admissible if its restriction to K contains any irreducible
representation of K at most finitely often. Admissibility is automatic for irreducible
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unitary representations. Loosely speaking, the admissible representations of finite
length constitute the smallest universe of representations closed under all standard
constructions, containing at least the irreducible unitary representations. They
are the natural objects of study: on the one hand, admissible representations of
finite length provide the most appropriate context for harmonic analysis on G and
its quotient spaces; on the other, inadmissible irreducible representations are truly
exotic — the first explicit example is relatively recent [18].

An admissible representation of finite length 7 has a character ©,, not in the
naive sense since 7 will not be finite dimensional in general, but in a suitable weak
sense: it is a conjugation invariant distribution on G, and the distributions D O,
with D ranging over the space of bi-invariant linear differential operators, span a
finite dimensional space. An irreducible admissible representation 7 is determined
by its character up to infinitesimal equivalence, in other words, up to isomorphism
of the underlying infinitesimal representation. For irreducible unitary representa-
tions, infinitesimal equivalence forces unitary equivalence, so the character of an
irreducible unitary representation m completely determines 7 as unitary represen-
tation. These facts are all due to Harish-Chandra, as is the reqularity theorem.
This theorem asserts that the character ©, of any admissible 7 of finite length is
(integration against) a locally L! function, which is even real analytic on G.g, the
set of regular semisimple elements in G. The complement of G4 is a proper real
analytic subvariety, so one may think of ©, as a “real meromorphic function”, with
singularities only along the complement of G,s. Every g € Gy lies in a (unique)
Cartan subgroup, of which there are only finitely many conjugacy classes. In par-
ticular, ©, is fully determined by its restriction to finitely many Cartan subgroups,
one from each conjugacy class.

The Weyl character formula, its interpretation in terms of fixed points, and
Kirillov’s formula all have analogues in the present setting. It will simplify the
discussion to restrict attention to characters ©, of representations with trivial in-
finitesimal character, meaning representations whose character is annihilated by
all bi-invariant linear differential operators with zero constant term. All interest-
ing phenomena show up already in this special case. Everything that will be said
carries over to the case of an arbitrary admissible representation of finite length,
though the statements and the proofs become somewhat more complicated.

Thus I consider the character ©, of a representation 7w with trivial infinitesimal
character, a Cartan subgroup H C G, and a connected component C' of Hys =
H N Gys. Since G was assumed to be linear, it has a complexification G¢, and H
has a complexification Hc which is a Cartan subgroup of the complex semisimple
group Gc. The quotient W = Ng.(H)/Hg is the complex Weyl group associated
to H. According to results of Harish-Chandra, there exist integers n,, = n,(m, C)
indexed by w € W, such that

TN

(12) Oxlc =

)

weWg HO&G@, (wp,a) >0 (1 — e—a)

in this formula, ® and p are defined analogously to the corresponding quantities
in the compact case. When G = K is compact, “Cartan subgroup” is synonymous
with “maximal torus”, the complex Weyl group coincides with the usual Weyl
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group, and the only irreducible representation with trivial infinitesimal character is
the trivial representation which has highest weight A = 0. Thus, in this very special
case, the Harish-Chandra character formula (12) reduces to the Weyl character
formula (2), with n,, =1 for all w € W¢ and all connected components C C H,s. In
distinction to the compact case, there exists no simple, completely explicit formula
for the n,, in the general.

The description of the n, in terms of a fixed point formalism depends on a
geometric realization of the representation 7 — in effect, a generalization of the
Borel-Weil-Bott theorem. I write gg, hr, tr for the Lie algebras of G, H, K, and
g, b, € for the complexified Lie algebras. The flag variety X of g is a complex
projective variety with a transitive action of G¢, and is universal with respect to
these properties: any other complex projective variety Y with transitive G¢-action
is an equivariant quotient of X. As homogeneous space, the flag variety can be
identified with G¢ /B, the quotient of G¢ by a Borel subgroup B, i.e., by a maximal
solvable subgroup. When B contains Hc, as can be arranged, the identity coset is
a particular fixed points for the action of H on X, and the complex Weyl group W¢
acts simply transitively on the set of all such fixed points. In the following, I shall
view X as a complex manifold, rather than complex algebraic variety, and write O
for the sheaf of holomorphic functions on X.

As subgroup of G¢, G acts on X; this action has a finite number of orbits.
Let F be a G-equivariant sheaf of finite dimensional complex vector spaces, for
example, the direct image of a G-equivariant local system on a G-orbit S C X via
the embedding S — X. More generally, I want to allow any finite extension of
direct images of G-equivariant local systems — technically speaking, any element F
of the G-equivariant derived category Dg(X) defined by Bernstein and Lunts [3].
Then, for every p € Z,

Ext?(F, Q) carries a natural Fréchet topology and a natural continuous

(13)

G-action; the resulting representation is admissible, of finite length.

This statement was conjectured by Kashiwara [7], and was subsequently proved
by Kashiwara and myself [9]. The proof of (13) also shows that every admissible,
finite length representation 7, with trivial infinitesimal character, is infinitesimally
equivalent to the G-module Ext’(F,0) for some F € Dg(X), all of whose other
Ext-groups vanish. When G = K is compact, with F equal to the constant sheaf
Cx, (13) reduces to the Borel-Weil realization of the trivial representation.

There exists a natural notion of duality in the equivariant derived category, the
Verdier duality operator D : Dg(X) — Dg(X). For F € Dg(X), I set

(14) O(F) = > (-1 6 (Ext’(DF,0)) ;

p

here ©(...) denotes the character of the admissible, finite length G-module ...;
the substitution of DF for F serves the purpose of making the dependence of the
Ext-groups on F covariant. In view of the remarks about (13), every character ©,

of a representation 7 with trivial infinitesimal character can be realized as ©(F),
for some F € Dg(X).
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In the Harish-Chandra character formula (12), each coefficient n,, corresponds
to a fixed point for the action of H on X, as follows. I fix a dominant Weyl chamber
for the pair (g, b), consistently with the choice of the quantity p in (12). The direct
sum of the root space corresponding to the negative roots constitutes a maximal
nilpotent subalgebra n C g, and B = Ng.(n) is a particular Borel subgroup which
contains H¢. 1 identify X ~ G¢/B as before, and set x,, = w-translate of the
identity coset; then { z, | w € W¢ } is precisely the set of fixed points for H acting
on X. Asin (12), I let C denote a connected component of H,s. For h € C, the
action of h on the tangent space T,;, X at the fixed point x,, splits that space into
the direct sum of, respectively, the contracting and the non-contracting directions,
and that splitting depends only on the connected component C, not on h itself.
Using the structure theory of G, one can construct an Hc-invariant, locally closed
submanifold N(z,,C) C X passing through the point z,,, whose tangent space
at x,, contains precisely the non-contracting directions. The action of H on the
triple (X, N(zy,C), {2y }) and the G-equivariant structure of F induce a linear
action of H on Hy, (N (zw,C), F), the local cohomology of the sheaf F restricted
to the subspace N(z,, C) relative to the one point subspace {x,,}. Kashiwara [6]
conjectured that

O(F)(h) =
S, (1P tr (A5 B, (N (2, ), F) = HY,  (N(24,C), F))

2 —e ) ’

weWr Hae@, (wp,a)>0 (1

(15)

for all h € C. The trace in the numerator is locally constant as function of &, hence
the entire numerator depends only on C. In particular, this formula expresses the
constants n,, in the formula (12) for the virtual character ©(F) as local Lefschetz
numbers at the fixed points z,,. A proof of the fixed point formula (15) is sketched
in [14], with details to appear in [16].

As illustration of the fixed point formula, let me consider the simplest case, of
a compact group G = K and the constant sheaf Cx, which corresponds to the
trivial representation 7. The Cartan subgroup H is then H =T, a maximal torus,
whose action at the fixed points cannot have any strictly expanding or contracting
directions. In this case, then, the non-contracting manifold N(z,,,C) is all of X.
The local cohomology of the constant sheaf relative to a one-point subspace is
one dimensional and concentrated in degree equal to the dimension of the ambient
space, i.e., in degree 2dimc X. The identity in H = T must act trivially, of course,
but the trace of the action is locally constant as function on the torus 7', which is
connected. The Lefschetz numbers in the numerator in (15) are therefore all equal
to 1, as they must be for the trivial representation.

Kirillov’s “universal formula” fails in the noncompact semisimple case, as can be
seen already for G = SL(2,R) — there are simply not enough coadjoint orbits! A
remedy for the failure of Kirillov’s formula was suggested by Rossmann [13]. For
any admissible representation 7 of finite length, define 6, the character on the Lie
algebra, by the formula (6) and normalize the Fourier transform 6, as in (7). I
continue with the simplifying assumption that 7 has trivial infinitesimal character.
The complex coadjoint orbit

(16) Q¢ = Gc-orbit of p in g*
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intersects igy in a finite number of coadjoint orbits for G. Rossmann’s idea is to
express @r as an integral not necessarily over one of these G-coadjoint orbits, but
as an integral over a more general type of middle dimensional cycle in the complex
coadjoint orbit Q¢. If — contrary to the standing assumption — 7 were allowed
to have arbitrary infinitesimal character, one would have to work with arbitrary
complex coadjoint orbits, rather than the single orbit (16).

To describe the idea concretely, I let U C G¢ denote the (unique) compact real
form which contains K and is invariant under complex conjugation with respect
to the real form G C Gg. Its Lie algebra ug is then a real form in g. Counting
dimensions, one finds that U acts transitively on X; in fact,

(17) X ~ U-orbit of p in iuy = Q¢ Niug,

as homogeneous space for U. Thus X can be identified with the coadjoint orbit
for U passing through p. As such, it carries a distinguished symplectic form, which
makes the U-action on X Hamiltonian. The resulting moment map

(18) my : X — dug C g*

realizes the isomorphism (17); it is U-equivariant and real algebraic. On the other
hand, the complex algebraic action of G¢ on the flag variety X induces a complex
algebraic, Hamiltonian action on the cotangent bundle T*X — Hamiltonian with
respect to the intrinsic complex algebraic, non-degenerate 2-form which 7* X carries
as cotangent bundle of an algebraic manifold. By construction, its moment map

(19) m:T*X — g*

is Gc-equivariant and complex algebraic. Let p : T*X — X denote the natural
projection. Rossmann calls

(20a) My, =det M + myop : T°X — g*
the twisted moment map and shows that
(20Db) m, : T"X — Qc¢,

real algebraically and U-equivariantly.
Recall that G acts on X with only finitely many orbits, which stratify X real
algebraically. Thus

(21) TEX =get union of the conormal bundles of the G-orbits

is a real algebraic, Lagrangian subvariety of 7% X in particular, it has dimension
2n, where n = dimc X. By a “2n-cycle in T§ X with possibly infinite support”, I
mean an element of HiM(T% X, C), the Borel-Moore homology of T;X in degree 2n;
this is the homology theory built on cycles that are allowed to run off to infinity.
Since 2n is the dimension of T, X, any ¢ € Hi(T X, C) can be regarded as a true
geometric cycle, rather than a homology class. I can now state Rossmann’s result:
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for each admissible 7 of finite length, subject to our standing assumption of trivial
infinitesimal character, there exists a unique 2n-cycle ¢ € Hi¥ (T X, C), such that

(22) / Orpdr = / ¢ " for any ¢ € C°(gr);
gr my(c)

here o refers to the intrinsic holomorphic symplectic form on the complex coadjoint
orbit ¢, and the Fourier transform (E of the test function ¢, normalized as in (7), is
regarded as a holomorphic function on g*. According to the Paley-Wiener theorem,
(E decays rapidly in the imaginary directions, and that makes the integral on the
right in (22) converge. Loosely paraphrased, (22) expresses the Fourier transform
@r of the distribution 6 as integration over the cycle m,(c) in Qc.

Rossmann’s argument does not specify the cycle ¢, except in the special case
of a complex group. The linear span of the various 6, lies in the space of invari-
ant eigendistributions with trivial infinitesimal character, i.e., conjugation invariant
distributions on ggr that are annihilated by all conjugation invariant, constant co-
efficient linear differential operators with zero constant term. Whatever the cycle
¢, the right hand side of (22) defines such an invariant eigendistribution, and the
resulting map from HiM(T% X, C) to the space of invariant eigendistributions is in-
jective. The crux of Rossmann’s proof of (22) is the equality of the dimensions
of the two vector spaces, which he establishes by calculating each and comparing
them.

To make the character formula (22) explicit, it is necessary to describe the cycle
¢ in terms of the representation 7. This was done in the announcement [15], with
details to appear in [16]. The description of the cycle ¢ involves first of all the geo-
metric realization of the character as 8, = 0(F) for some F € Dg(X), as in (13-14),
and secondly, Kashiwara’s notion of the characteristic cycle of a constructible sheaf:
to each such sheaf F on a real analytic manifold, Kashiwara associates CC(F), a
Lagrangian, R"-conical cycle in the cotangent bundle; details of the construction
can be found in [8]. In the case at hand, CC defines a Z-linear map

(23) CC : Dg(X) — HI(TLX,7Z).

With these ingredients, the Fourier transform of 8(F) is given by the formula

o~

(24) / O(F)pdr = Fom (6 C™(an)).

|
. (2m)"nl S, coFy)

In what sense can (24) be regarded as an extension of Kirillov’s formula to the
noncompact semisimple case? The integrand 5 o™ is closed; thus, if we were deal-
ing with ordinary (finite) cycles, the integral would remain unchanged if the cycle
m,(CC(F)) were replaced by any homologous cycle in Q¢. Even without the finite-
ness condition, one can still deform the cycle without changing the value of the
integral, provided the notion of homology is taken in a restricted sense, taking into
account the growth of chains at infinity. The characteristic cycles associated to so-
called tempered representations turn out to be homologous, in this restricted sense,
to G-coadjoint orbits. Thus (24) reduces to Kirillov’s formula for those representa-
tions of G for which it is known to hold [12], namely the tempered representations.
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Via the process of going to the Lie algebra and taking the Fourier transform,
the integral formula (24) describes the same object as the fixed point formula.
The equivalence of the two expressions can be stated in terms of the sheaves F
alone, without any reference to their representation-theoretic significance. The
existing proof, on the other hand, depends totally on representation theory. It is
natural to ask whether this equivalence can be seen directly, just as in the compact
case. A hypothetical argument would most likely involve a version of localization
of integrals, in the manner of Berline-Vergne, Witten, and Jeffrey-Kirwan, but for
actions of noncompact groups. The technical problems of such an approach appear

formidable!
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