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§1 Introduction.

In this note, we describe proofs of certain conjectures on functorial, geometric con-
structions of representations of a reductive Lie group GR. Our methods have applications
beyond the conjectures themselves: unified proofs of the basic properties of the maxi-
mal and minimal globalizations of Harish-Chandra modules, and a criterion which insures
that the solutions of a GR-invariant system of linear differential equations constitute a
representation of finite length.

Let G be a connected, reductive, complex algebraic group, and GR a real form of G –
i.e., a closed subgroup of the complex Lie group Gan, whose Lie algebra gR lies as real
form in the Lie algebra g of G. We fix a maximal compact subgroup KR ⊂ GR; KR is the
group of real points of some algebraic subgroup K ⊂ G. As subgroups of G, GR and K
operate on the flag variety X of g. For each linear form λ on the universal (i.e., equipped
with a positive root system) Cartan algebra, we consider the bounded equivariant derived
categories Db

GR,λ
(X), Db

K,λ(X) of constructible sheaves of C-vector spaces on X with twist

λ, and the twisted sheaf of holomorphic functions OX (λ). In [K2], one of us conjectured:

(1.1)

a) There exists a natural equivalence of categories Φ : Db
K,λ(X)

∼
−→ Db

GR,λ(X);

b) the Ext-groups Extp(S,OX(λ)), for S ∈ Db
GR,λ

(X), carry natural Fréchet
topologies and continuous linear GR-actions;

c) the cohomology groups Hq(X,S ⊗ OX(−λ)), for S ∈ Db
GR,λ

(X), have natural
DNF topologies and continuous linear GR-actions;

d) the resulting representations of GR on Extp(S,OX(λ)) and

Hq(X,S ⊗OX(−λ)) are admissible, of finite length;

e) Extp(S,OX(λ)) and Hd−p(X,S ⊗ OX(−λ)), with d = dimC X, are each
other’s strong duals;

f) if M∈ Db
K,λ(X) is the image of a holonomic (D−λ, K)-module M under the

Riemann-Hilbert correspondence, then Hp(X, M ) coincides with the dual

of the Harish-Chandra module of KR-finite vectors in Extd−p(ΦM,OX(λ)).

The first of these conjectures was established by Mirković-Uzawa-Vilonen [MUV]. In this
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note, we sketch proofs of (b-f).
In effect, (1.1b-f) may be viewed as counterparts, on the level of group representations,

of the Beilinson-Bernstein construction of Harish-Chandra modules. Our positive answer
to the conjectures has already been used, in [SV1,2], to establish other, related conjectures.
A general discussion of these matters can be found in [K1,K4].

Special cases of (1.1b-f) had been worked out previously. If j : D →֒ X is the inclusion of
a GR-orbit D, and S = j!E the proper direct image of a GR-equivariant twisted local system
E on the orbit, then Extp(j!E ,OX(λ)) can be identified with an appropriately defined
local cohomology group along D, and Hq(X, j!E ⊗ OX(−λ)) with compactly supported
cohomology of an appropriate sheaf on D. These representations are produced and studied
in [S1,HT,SW], and the remaining assertions (1.1e,f), in these special cases, then follow
from results in [HMSW,S2].

It turns out that Extp(S,OX(λ)) and Hq(X,S ⊗ OX(−λ)) are, respectively, the maxi-
mal and minimal globalizations, in the sense of [S2], of their underlying Harish-Chandra
modules. It is not difficult to construct the maximal and minimal globalization functors.
However, two crucial properties – topological exactness and the explicit characterization
of the maximal and minimal globalizations of principal series representations – are not so
obvious. The arguments outlined in [S2] depend on relatively subtle lower bounds for the
matrix coefficients of Harish-Chandra modules. Our proofs of the conjectures (1.1b-f) not
only depend on these properties of the maximal and minimal globalization functors, they
also imply them. As a consequence, we obtain alternate, more satisfactory proofs of the
results announced in [S2].

The first named author observed that the explicit characterization of the maximal glob-
alization of principal series representations is but a special instance of a quite general
phenomenon. Representations of a reductive Lie group GR often arise as spaces of solu-
tions of a system of GR-invariant, linear differential equations on a manifold on which GR

acts. Intuitively, one expects the space of solutions of such a system to be a representation
of finite length only if the manifold is “small” and the system of differential equations
“strong”. Theorem (7.6) below gives a precise sufficient condition. In particular, the the-
orem covers the following situation. Let Z be a smooth, quasi-projective variety over C,
with an algebraic action of the complexified group G, ZR a GR-invariant real form of Z,
and µZ : T ∗Z → g∗ the moment map. We consider a G-invariant linear system of differen-
tial equations on Z, with algebraic coefficients, and let M denote the DZ-module defined
by the system. The space of hyperfunction solutions of the restricted system on ZR has
a natural Fréchet topology, constitutes a GR-representation of finite length, and coincides
with the maximal globalization of its space of KR-finite vectors, provided the following two
conditions are satisfied:

(1.2)

a) M is annihilated by an ideal of finite codimension in Z(g) (= center of U(g));

b) the characteristic variety Ch( M ) intersects µ−1
Z (b⊥) in a Lagrangian

subvariety of T ∗Z, for every Borel subalgebra b ⊂ g.

Condition b) holds vacuously if a Borel subgroup B of G acts on Z with only finitely
many orbits – for example, if Z is a flag variety, or a quotient of G by a maximal unipotent
subgroup U , or a complexified symmetric space G/K. In the case of a flag variety, even the
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“empty” system of differential equations satisfies a). In particular, theorem (7.6) applies
to the principal series, to Whittaker models [GW,Mo], and to Helgason’s conjecture for
affine symmetric spaces [He,KMOT].

We exhibit the representations (1.1b,c) as cohomology groups of objects in a derived cat-
egory of representations. The construction of this derived category, in section three below,
is of some independent interest. To make the connection between the Beilinson-Bernstein
construction and GR-representations, we set up a correspondence between GR-sheaves on
X and certain D-modules on the complexified symmetric space G/K. Our arguments,
and also the statement of theorem (7.6), involve the notion of quasi-equivariant D-module,
which was introduced, independently, in [K3] and – under the names “weakly equivariant
D-module” and “weak (DX , G)-module” – in [BBM] and [BB3]; we shall elaborate upon
it in section four. This, too, has implications beyond the proofs outlined in this note.
We intend to publish our results in more detailed form, including complete proofs, in the
future.

§2 Minimal and Maximal Globalization.

We consider the category R(GR) of GR-representations – by definition, its objects are
complete, locally convex, Hausdorff topological vector spaces with continuous, linear GR-
action, such that the resulting representation is admissible1, of finite length; morphisms in
R(GR) are continuous, linear, GR-invariant maps. For V ∈ R(GR),

(2.1)
VKR−fini = linear span of the finite dimensional,

KR-invariant subspaces of V

is dense in V and consists entirely of C∞ vectors [HC3]. Both g and K operate on VKR−fini

– the former by differentiation of the GR-action, the latter by complexification of the KR-
action – and the two operations are compatible. Thus VKR−fini becomes an algebraic
(g, K)-module. On the infinitesimal level, the hypotheses of admissibility and finite length
on the representation V imply that VKR−fini is in fact a Harish-Chandra module: an
algebraic (g, K)-module, finitely generated over the universal enveloping algebra U(g),
with finite K-multiplicities [HC1,2].

We denote the category of Harish-Chandra modules byHC(g, K). It is a full subcategory
of Mod(g, K), the category of algebraic (g, K)-modules and (g, K)-invariant linear maps.
The passage from V to VKR−fini defines a functor

(2.2) HC : R(GR) −→ HC(g, K) .

This functor is faithful, exact, and assigns irreducible Harish-Chandra modules to irre-
ducible representations [HC1-3]. For M ∈ HC(g, K), the K-finite subspace of the algebraic
dual,

(2.3) M ′ = (M∗)K−fini ,

1i.e., in the restriction to KR, each irreducible representation of KR occurs only finitely often.
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is another Harish-Chandra module, the Harish-Chandra module dual to M . We write V ′

for the continuous dual of a topological vector space V , and topologize V ′ with the strong
dual topology. The natural GR-action on the dual V ′ of some V ∈ R(GR) need not be
continuous; when it is continuous, then the resulting representation has finite length, is
admissible, and

(2.4) HC (V ′) ≃ (HC (V ))′ ,

i.e., duality of Harish-Chandra modules corresponds to duality of representations.
By a globalization of a Harish-Chandra module M , we shall mean a GR-representation

V ∈ R(GR) such that M = HC (V ). Every Harish-Chandra module can be globalized
[P,C1], and this fact makes it a relatively simple matter to construct functorial globaliza-
tions, i.e., right inverses to the functor (2.2). In the next definition, we view C∞(GR) as
left (g, KR)-module via right translation, composed with the canonical antiautomorphism
of g, and as GR-module via left translation. Every M ∈ HC(g, K) has a countable vector
space basis, so

(2.5) MG(M) = Hom(g,KR)(M
′, C∞(GR))

inherits a Fréchet topology and a continuous, linear GR-action from C∞(GR). The space
MG(M) remains unchanged if one replaces C∞(GR) by the space of real analytic functions
Cω(GR), or by the space of distributions C−∞(GR) :

2.6 Lemma. The inclusions Cω(GR) →֒ C∞(GR) →֒ C−∞(GR) induce topological iso-
morphisms

Hom(g,KR)(M
′, Cω(GR)) ≃ Hom(g,KR)(M

′, C∞(GR)) ≃ Hom(g,KR)(M
′, C−∞(GR)) .

One can deduce this from the regularity theorems for elliptic D-modules by embedding
MG(M) into HomDG

(DG ⊗U(g) M
′, C∞(GR)) – in fact, the two spaces coincide if GR is

connected – and noting that the DG-module DG ⊗U(g) M
′ is elliptic on GR, in the sense

that its characteristic variety intersects the conormal bundle T ∗GR
G only along the zero

section.
The lemma and the mere existence of globalizations imply that the action of GR on

MG(M) defines an admissible representation of finite length, which globalizes the Harish-
Chandra module M . By construction, MG is a functor, and thus a right inverse to HC .

There is a dual construction, as follows. We now regard C∞0 (GR), the space of compactly
supported, C∞ functions, as right (g, KR)-module via right translation. As a right module,
it can be tensored, simultaneously over U(g) and the group ring C[KR], with the left
(g, KR)-module M . This tensor product is naturally a quotient of the tensor product over
C, and therefore inherits a topology. We define

(2.7) mg(M) = largest separated quotient of C∞0 (GR)⊗(g,KR) M .

We shall see later, as a consequence of our arguments, that the topology on the tensor
product is Hausdorff, so the phrase “largest separated quotient” turns out to be unneces-
sary in the end. The left translation action of GR on C∞0 (GR) induces a continuous, linear
action on mg(M), and the resulting representation is another functorial globalization of
the Harish-Chandra module M .
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2.8 Theorem. The functors mg , MG are, respectively, left and right adjoint to HC . They
are each other’s dual, i.e., (mg(M))′ ≃ MG(M ′) and (MG(M))′ ≃ mg(M ′). Both mg and
MG are topologically exact functors.

The first assertion can be rephrased as follows. For V ∈ R(GR) and M = HC (V ), there
exist functorial morphisms

(2.9)
mg(M)

α
−−→ V , V

β
−−→ MG(M) , such that

HC (α) and HC (β) induce the identity on M = HC (V ) .

Both α and β are injective, since the functor HC is faithful. Thus any globalization of a
Harish-Chandra module M lies sandwiched in between mg(M) and MG(M), and that is
the reason for calling the two functors the minimal globalization and maximal globalization.
The duality between the two globalizations follows formally from (2.6) and the closed graph
theorem of L. Schwartz: a surjective morphism in the category of locally convex, Hausdorff
topological vector spaces, from a Suslin space to an inductive limit of Banach spaces, is
necessarily open; moreover, C∞0 (GR) has the Suslin property [Sz,T].

In slightly different, but equivalent form, theorem 2.8 and the companion statements
(2.12, 2.13) below were announced in [S2]. Except for (2.12) and topological exactness,
they can be readily inferred from known results. Topological exactness and (2.12) are
more delicate; the arguments outlined in [S2] deduce them from certain lower bounds on
the matrix coefficients of Harish-Chandra modules. In this note, they will become natural
consequences of our proofs of the conjectures (1.1b-f).

The minimal globalization functor first appears in the work of Litvinov-Zhelobenko
and Prichepionok [P]. Two other functorial globalizations were constructed by Casselman-
Wallach [C2,W]. Although their terminology differs, we shall refer to these two global-
izations as the C∞ and distribution globalization, since they relate to C∞ functions and
distributions in the same way the minimal and maximal globalizations relate to real ana-
lytic functions and hyperfunctions – cf. (2.12).

We choose a minimal parabolic subgroup PR ofGR, and let P denote its complexification.
The variety Y of G-conjugates of p = Lie(P ) is a generalized flag variety, which contains
the GR-orbit of p as real form:

(2.10) YR = GR/PR →֒ G/P = Y .

Each irreducible, finite dimensional PR-module E associates an irreducible, GR-equivariant,
real analytic vector bundle E→ YR to the principal bundle GR → GR/PR = YR. The KR-
finite sections of E constitute a Harish-Chandra module,

(2.11) Ind
(g,K)
(p,KR∩PR)(E) = Cω(YR,E)KR−fini .

Collectively, Harish-Chandra modules of this type make up the principal series. Both
Cω(YR,E), the space of real analytic sections, and C−ω(YR,E), the space of hyperfunction
sections, have natural Hausdorff topologies – the latter because YR is compact – and
continuous GR-actions. The resulting representations globalize the Harish-Chandra module
(2.11). Hence, by (2.9), they contain its minimal globalization, and in turn are contained
in its maximal globalization.
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2.12 Theorem. The natural inclusions induce topological isomorphisms

mg
(

Ind
(g,K)
(p,KR∩PR)(E)

)

∼
−−→ Cω(YR,E) , C−ω(YR,E)

∼
−−→ MG

(

Ind
(g,K)
(p,KR∩PR)(E)

)

.

This statement implies Helgason’s conjecture; conversely, it was inspired by the orig-
inal proof of Helgason’s conjecture [KMOT], and by Casselman-Wallach’s construction
of canonical globalization. In effect, Casselman-Wallach take the analogue of (2.12) as
the point of departure of their definition: the spaces of C∞ and distribution sections of
E constitute, respectively, the C∞ globalization and the distribution globalization of the
Harish-Chandra module (2.11), but it then takes considerable effort to show that these are
concrete instances of functorial constructions [C2,W].

Now let V ∈ R(GR) be a Banach representation. The space of analytic vectors V ω ⊂ V
has a natural inductive limit topology and a natural, continuous GR-action. If the Banach
topology on V is reflexive, the dual representation is continuous also [HC1], so it makes
sense to define the space of hyperfunction vectors, V −ω =def ((V ′)ω)′. This space contains
V , and has a natural Fréchet topology and continuous GR-action. Both V ω and V −ω

globalize the Harish-Chandra module HC (V ), and thus lie between the minimal and the
maximal globalization.

2.13 Theorem. The natural inclusion mg(HC (V )) →֒ V ω is a topological isomorphism.
Dually, if V is a reflexive Banach space, V −ω →֒ MG(HC (V )) is a topological isomorphism.

This formally implies (2.12), since Cω(YR,E) and C−ω(YR,E) can be identified with the
spaces of, respectively, analytic and hyperfunction vectors for any of the reflexive Banach
GR-modules Lp(YR,E), 1 < p < ∞. Logically, (2.13) follows from (2.12), in conjunction
with [W, §5.8] and the main theorem in [HS].

§3 A Derived Category of Representations.

In this section we introduce a derived category of group representations. Much of the
formalism, though in a different setting, is already known – cf. [BBD,L]: while the category
of topological vector spaces fails to be abelian, it is an exact category, and that suffices for
our purposes. However, to keep the discussion short, we shall stay within the context of
topological vector spaces, even though our arguments apply more generally in the setting
of exact categories. We are indebted to J.-P. Schneiders for helpful conversations about
the matters treated below.

For the moment, H will denote an arbitrary Hausdorff topological group. Eventually,
GR will play the role of H, but H can also be the trivial group {e}, for example, in which
case the derived category of representations reduces to the derived category of topological
vector spaces.

Let T V be the category of locally convex, Hausdorff topological vector spaces and
continuous linear maps, and F an additive full subcategory of T V. We consider the
category FH whose objects are vector spaces belonging to F , together with a continuous,
linear action of H; its morphisms are H-invariant, continuous linear maps. Next we form
the category Cb(FH) of bounded complexes in FH , and the quotient category Kb(FH),
which has the same objects as Cb(FH), but with homotopic morphisms identified. We call
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a complex (X, dX) in Cb(FH) exact if, for each n, dn−1
X : Xn−1 → Ker dnX is an open,

surjective map, relative to the subspace topology on Ker dnX .

3.1 Lemma. Let f : X → Y , g : Y → X be morphisms in Cb(FH), and let M(f) denote
the mapping cone of f .
a) If g ◦ f is homotopic to idX , and if Y is exact, then so is X .
b) If X and Y are exact, then M(f) is exact also.

Because of a), the notion of exactness descends from Cb(FH) to Kb(FH): if two com-
plexes are isomorphic in Kb(FH), then either both or neither are exact. Statement b)
implies that N (FH), the full subcategory of Kb(FH) consisting of exact complexes, is a
null-system in the terminology of [KSa, §1.6]. Thus one can “divide” Kb(FH) by N (FH).
We let Db(FH) denote the resulting triangulated category; this is our (bounded) derived
category of H-representations. We call a morphism f in Kb(FH) a quasi-isomorphism

if it has an exact mapping cone. In that case, f induces an isomorphism in the cate-
gory Db(FH). A complex X in Kb(FH) becomes zero in Db(FH) precisely when it is
quasi-isomorphic to zero, i.e., when it is exact.

The cohomology groups of an exact complex vanish. Consequently, the cohomology
functors on Cb(FH) determine functors on the level of Db(FH); they take values in the
category V of vector spaces without topology:

(3.2) Hn : Db(FH) −→ V.

From now on, we assume that the category F is hereditary, in the following sense:

(3.3)
if V belongs to F , and if W ⊂ V is a closed subspace,

then W and V/W also belong to F .

If in addition the open mapping theorem holds in the category F – for example, if F
is the category of Fréchet spaces – then exactness of complexes reduces to the vanishing
of cohomology, and a morphism in Db(FH) is an isomorphism if and only if it induces
isomorphisms on the level of cohomology.

The hypothesis (3.3) allows us to introduce two pairs of truncation functors qτ≤n, qτ≥n

and sτ≤n, sτ≥n on the category Cb(FH), as follows:

(3.4)

qτ≤n(X) = ...→ Xn−2 → Xn−1 → Ker dnX → 0→ ...

qτ≥n(X) = ...→ 0→ Ker dn−1
X → Xn−1 → Xn → ...

sτ≤n(X) = ...→ Xn−1 → Xn → Im dnX → 0→ ...

sτ≥n(X) = ...→ 0→ Xn/Im dn−1
X → Xn+1 → Xn+2 → ... ,

where Im dnX denotes the closure of Im dnX , equipped with the subspace topology inherited
from Xn+1. Both are compatible with homotopy and quasi-isomorphism, and hence define
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truncation functors on Db(FH). We set

(3.5)

qD≤0(FH) = {X ∈ Db(FH) ; qτ≤0X → X is an isomorphism } ,

qD≥0(FH) = {X ∈ Db(FH) ; X → qτ≥0X is an isomorphism } ,

sD≤0(FH) = {X ∈ Db(FH) ; sτ≤0X → X is an isomorphism } ,

sD≥0(FH) = {X ∈ Db(FH) ; X → sτ≥0X is an isomorphism } .

3.6 Theorem. Both (qD≤0(FH), qD≥0(FH)) and (sD≤0(FH), sD≥0(FH)) are t-struc-
tures on Db(FH).

We let Q(FH) = qD≤0(FH)∩ qD≥0(FH), S(FH) = sD≤0(FH)∩ sD≥0(FH) denote the
hearts of these two t-structures. By construction, they are abelian categories. Each object
of Q(FH) is isomorphic to the cokernel of a morphism f in FH – viewed as morphism in
Q(FH) – such that f is set-theoretically injective. This is our reason for calling the first
t-structure the “quotient” structure. Dually, every object in the heart S(FH) of the “sub”
t-structure is isomorphic to the the kernel of a morphism in FH with dense image. One
can show that the bounded derived categories built from Q(FH) or S(FH) are equivalent
to Db(FH), but this is not crucial for our purposes.

The functors

(3.7)

q Hn(X) = (qτ≤n ◦ qτ≥n)X ,

sHn(X) = (sτ≤n ◦ sτ≥n)X

take Db(FH) to the hearts of the two t-structures. We note:

(3.8a)
H0(qHn(X)) = Hn(X) ,

Hk(qHn(X)) = 0 if k 6= 0 .

On the other hand,

(3.8b)

H0(sHn(X)) = Ker dnX/Im dn−1
X ,

H1(sHn(X)) = Im dnX/ Im dnX ,

Hk(sHn(X)) = 0 if k 6= 0 , 1 .

For X ∈ Db(FH) and n ∈ Z, the following conditions are equivalent:

(3.9)

a) Im dn−1
X is closed in Xn , and dn−1

X is an open map onto its image;

b) q Hn(X) is isomorphic to an object in FH ,

c) sHn−1(X) is isomorphic to an object in FH .
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The natural functor ψ : FH → Db(FH) is fully faithful. Hence, if the conditions (3.9) are
satisfied, q Hn(X) and s Hn−1(X) are well defined objects in FH . If these conditions hold
for every n, we say that X is strict ; in that case, q Hn(X) = s Hn(X) for all n.

Finally, let us suppose that H = GR is a reductive Lie group. We shall say that
X ∈ Db(FGR

) has the property MG – respectively, the property mg – if X is strict and all
its cohomology groups can be realized as maximal – respectively, minimal – globalizations
of Harish-Chandra modules.

§4 Quasi-equivariant D-modules.

We recall the definition of a quasi-equivariant D-module [K3,BB3,BBM]. Let G be an
algebraic group with Lie algebra g, and X a smooth algebraic variety with an algebraic
G-action – or algebraic G-manifold for short. We write µ for the action morphism, p for
the projection from G×X to X ,

(4.1) µ : G×X → X , µ(g, x) = gx , p : G×X → X , p(g, x) = x ,

and we consider the three maps

(4.2)
qj : G×G×X → G×X , 1 ≤ j ≤ 3 ,

q1(g1, g2, x) = (g1, g2x) , q2(g1, g2, x) = (g1g2, x) , q3(g1, g2, x) = (g2, x) .

Then µ ◦ q1 = µ ◦ q2, p ◦ q2 = p ◦ q3, and µ ◦ q3 = p ◦ q1.
As usual, DX will refer to the sheaf of linear, algebraic differential operators on X .

We let OG ˆ DX denote the subalgebra OG×X ⊗p−1OX
p−1DX of DG×X . A quasi-G-

equivariant DX-module, by definition, is a DX -module M , together with the datum of an
OG ˆDX -linear isomorphism β : µ∗M

∼
−→ p∗M , such that the diagram

(4.3)

q∗2µ
∗M

q∗2β−−−−−−−−−−−−−−−−−−−−−−−−−→ q∗2p
∗M

≀
∥

∥

∥
≀
∥

∥

∥

q∗1µ
∗M

q∗1β−−−−→ q∗1p
∗M ≃ q∗3µ

∗M
q∗3β−−−−→ q∗3p

∗M

commutes. If β is linear even over DG×X , this reduces to the usual definition of a G-
equivariant DX-module.

The definition of quasi-G-equivariance can be loosely paraphrased as follows. For g ∈ G,
let µg : X → X be translation by g. The datum of β consists of a family of isomorphisms

of DX-modules βg : µ∗g M
∼
−→ M , depending algebraically on g, and mutiplicative in the

variable g.
As example, we mention the sheaf of sections O(E) of (E,∇E), a G-equivariant algebraic

vector bundle E with a G-equivariant, algebraic, flat connection ∇E. Then DX acts on
O(E) via the flat connection, and the resulting DX -module is quasi-equivariant. The
Lie algebra g of G acts on sections of the G-equivariant vector bundle E by infinitesimal
translation; on the other hand, each A ∈ g determines a vector field on X , again by
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infinitesimal translation, and as such also operates on sections via the connection. When
these two actions of g coincide, the DX -module O(E) is G-equivariant, and one calls the
sheaf of flat sections a G-equivariant local system.

If G acts transitively on X , equivariant vector bundles with flat, equivariant connection
are the only examples of quasi-G-equivariant DX-modules coherent over OX : the cate-
gory of quasi-G-equivariant, OX -coherent DX -modules coincides with the category of pairs
(E,∇E), consisting of a G-equivariant algebraic vector bundle E with a G-equivariant, al-
gebraic, flat connection ∇E, and flat, G-equivariant bundle maps between them. The
latter category, in turn, can be identified with the category of finite dimensional, alge-
braic (g, H)-modules, where H ⊂ G denotes the isotropy subgroup at some reference point
x0 ∈ X . The preceding statements remain correct even without the hypothesis of coher-
ence, provided one allows for algebraic vector bundles of possibly infinite rank, and possibly
infinite dimensional algebraic (g, H)-modules [K3]: if H ⊂ G is a closed subgroup, there
exists a natural equivalence between ModG(DG/H), the category of quasi-coherent, quasi-
G-equivariant DG/H-modules and G-equivariant morphisms, and Mod(g, H), the category
of algebraic (g, H)-modules and (g, H)-invariant linear maps,

(4.4) φ : ModG(DG/H)
∼
−−→Mod(g, H) , φ( M ) = M /IeH M .

Here IeH denotes the ideal sheaf of the point eH; the isotropy group H operates on the
“geometric fiber” M /IeH M via the equivariant OX -module structure, and U(g) via an
action which we shall now describe.

We return to the general case of a quasi-G-equivariant DX -module M . Again, the Lie
algebra g acts on M in two ways. First, via g → Γ(ΘX ) →֒ Γ(DX) and the DX -module
structure, and secondly, through differentiation of the G-action when we regard M as a
G-equivariant OX -module. We denote the former action by αD, the latter by αt, and we
set γ = αt − αD. Then

(4.5)
γ : g −→ EndDX

( M ) , and

γ is a Lie algebra homomorphism.

Thus γ turns M into a (DX ,U(g))-bimodule. The quasi-G-equivariant DX -module M is
G-equivariant as DX-module precisely when γ ≡ 0.

In our discussion of quasi-equivariance so far, no particular assumptions were imposed
on the algebraic group G and the G-manifold X . From now on, however, we shall require
G to be an affine algebraic group – which will be the case if G is reductive, as was assumed
in the introduction – and X a quasi-projective variety. These hypotheses will enable us
to define direct and inverse images, under G-equivariant morphisms, of objects in the
derived category of quasi-G-equivariant DX-modules. A crucial tool is the following result
of Sumihiro [Su]:

4.6 Proposition. Under the hypotheses just stated,

a) X has a G-equivariant, open embedding into a projective G-manifold X;
b) the G-equivariant projective completion X admits an ample, G-equivariant line

bundle.
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As before, we let ModG(DX) denote the category of quasi-coherent, quasi-G-equivariant

DX -modules and G-equivariant morphisms between them; ModcohG (DX) shall denote the
full subcategory of DX-coherent modules. The analogues of locally free DX -modules in the
quasi-equivariant setting are modules of the form DX⊗OX

F, for some coherent, locally free,

G-equivariant OX -module F. We write ModlfG (DX) for the full subcategory of ModG(DX)
consisting of such locally free objects. As a consequence of Sumihiro’s result, on can show:

4.7 Lemma. Every M ∈ ModcohG (DX) has a finite left resolution by objects in ModlfG (DX).

Standard arguments in homological algebra imply that

(4.8) every M ∈ ModG(DX) can be embedded into an injective object.

Injective objects in ModG(DX) are injective also as objects of ModG(OX), the category
of G-equivariant OX -modules. In this latter category, direct image under a G-equivariant
morphism of quasi-projective G-manifolds, as well as the global Ext functors behave as
they do in the non-equivariant case.

We now consider the bounded derived categories Db
G(DX), Db

G,coh(DX) built from the

abelian categories ModG(DX) and ModcohG (DX). Alternatively, the latter derived cate-
gory can be described as the full subcategory of Db

G(DX) consisting of complexes whose

cohomology lies in ModcohG (DX).
In view of the discussion in the preceding paragraphs, direct and inverse image functors

can be defined on the bounded derived categories, as follows. Let f : X → Y be a
G-equivariant morphism between the quasi-projective G-manifolds X , Y . Then

(4.9) f∗ : N 7−→ DX→Y ⊗f−1DY
f−1N ≃ OX ⊗f−1OY

f−1N

defines a right exact functor from ModG(DY ) to ModG(DX), which can be left derived in
the bounded derived category:

(4.10) Lf∗ : Db
G(DY ) −→ Db

G(DY ) .

The usual definition of direct image,

(4.11) M 7−→ Rf∗(DY←X
L
⊗DX

M ) ,

has meaning also in the G-equivariant case, if properly interpreted: DY←X has a deRham-
type resolution by (f−1DY ,DX)-bimodules which are flat over DX ; if DY←X is replaced
by this resolution, and if M is represented by an injective complex, then (4.11) makes
sense in the bounded derived category. We use the customary notation

(4.12)

∫

f

: Db
G(DX) −→ Db

G(DY )

for this D-module direct image functor.
If f is smooth, Lf∗ sends Db

coh(DY ) into Db
coh(DX), and if f is projective,

∫

f
maps

Db
coh(DX) into Db

coh(DY ). If f is both smooth and projective, the two functors are each
other’s left and right adjoints when restricted to the coherent subcategories, up to a shift
in degree:
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4.13 Theorem. Suppose f : X −→ Y is both smooth and projective, and let dimX/Y
denote the dimension of the fibers. Then, for M ∈ Db

G,coh(DX) and N ∈ Db
G,coh(DY ),

a) HomDb
G

(DY )(N ,

∫

f

M ) ≃ HomDb
G

(DX)(Lf
∗N [−dimX/Y ],M ) ,

b) HomDb
G

(DX)( M , Lf∗N ) ≃ HomDb
G

(DY )(

∫

f

M [dimX/Y ],N ) ,

functorially in M and N .

We shall apply these results about quasi-equivariant D-modules in the setting of the
flag variety X of a reductive group G, and we shall need them also in the twisted case.
It is possible to develop them systematically for quasi-G-equivariant modules over a G-
equivariant ring of twisted differential operators – for a general discussion of twisting, see
[K3]. On the flag variety, twisted sheaves are particularly easy to visualize; in effect, they
are monodromic sheaves on the “enhanced flag variety” [BB3]. The extension of the results
above to the twisted case on the flag variety2 is therefore straightforward, and we shall use
this more general case without further elaboration.

§5 Equivariant Derived Category and GR-modules.

The equivariant derived category was introduced by Bernstein-Lunts [BL]; a concise
summary can be found in [MUV]. We now recall the properties that are relevant for our
purposes, but only in as much generality as is needed here.

Let X be a real or complex algebraic variety, considered as topological space in its
Hausdorff topology, and G a linear, real or complex algebraic group acting on X . We write
Mod(CX) for the category of sheaves of C-vector spaces, Db(CX) for the bounded derived
category Db(Mod(CX)); this differs from the notation of the introduction, but is consistent
with the conventions in the previous section. In the real algebraic case, Db

R−c(CX) will
denote the full subcategory of complexes with R-algebraically constructible cohomology;
similarly, in the complex case, Db

C−c(CX) is the bounded derived category of sheaves with
C-algebraically constructible cohomology – cf. [KSa], where the analytic case is treated;
the algebraic case is considerably simpler in most respects.

We choose a tower of connected real, respectively complex algebraic G-manifolds

(5.1) V1 →֒ V2 →֒ ... →֒ Vn →֒ Vn+1 →֒ ... ,

such that

(5.2)
a) G acts freely on each Vn ;

b) for each p > 0 , Hp(Vn,C) = 0 if n≫ 0 .

For example, a sequence of Stiefel manifolds Vn will do, since the group G is assumed to
be linear. Because of (5.2a), the quotients G\(X × Vn) exist as algebraic varieties. We let

2more precisely, on products of the flag variety with another variety, with the twisting confined to the

flag variety factor.
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pn : X × Vn → X denote the projection onto the first factor, qn : X × Vn → G\(X × Vn)
the quotient map, in : X × Vn →֒ X × Vn+1 the natural inclusion, and jn : G\(X × Vn) →֒
G\(X × Vn+1) the map induced by in.

Objects of the bounded G-equivariant derived category Db
G(CX) are, by definition,

quadruples S = (S∞, (Sn), (φn), (ψn)), with S∞ ∈ Db(CX), (Sn)1≤n<∞ a sequence with
Sn ∈ Db(CG\(X×Vn)), and (φn)1≤n<∞, (ψn)1≤n<∞ sequences of isomorphisms

(5.3a) φn : j−1
n Sn+1

∼
−−→ Sn , ψn : p−1

n S∞
∼
−−→ q−1

n Sn ,

such that, for each n,

(5.3b)

ψn : p−1
n S∞

∼
−−→ q−1

n Sn coincides with the composition of

p−1
n S∞ ≃ i−1

n p−1
n+1S∞

∼
−−−−−→
i−1
n ψ−1

n+1

i−1
n q−1

n+1Sn+1 ≃ q−1
n j−1

n+1Sn+1
∼

−−−−→
q−1

n φn

q−1
n Sn .

Morphisms in this category are pairs (η∞, (ζn)), consisting of a single morphism η∞ and a
sequence of morphisms (ζn)1≤n<∞ between corresponding objects, which are compatible
with the consistency conditions (5.3a). The category Db

G(CX) inherits the structure of
triangulated category from Db(CX) and the Db(CG\(X×Vn)).

The G-equivariant bounded derived category of R-algebraically constructible sheaves,
Db
G,R−c(CX), is the full subcategory of Db

G(CX) consisting of objects S whose components
S∞, Sn belong to the appropriate derived categories of constructible sheaves. Analogously,
in the complex algebraic case, there is a G-equivariant derived category of C-algebraically
constructible sheaves, Db

G,C−c(CX).
As in the previous section, we shall need to work also with twisted equivariant derived

categories. A systematic discussion can be found in [K3]. In the applications we have
in mind here, the twisting will take place only on flag varieties. This case is particularly
simple, so we shall not go into further detail.

The direct and inverse image functors Rf∗, Rf!, f
−1, f ! corresponding to a G-equi-

variant, algebraic morphism f : X → Y exist in the G-equivariant case, and also in the
G-equivariant constructible case. They have the same formal properties as in the usual
bounded derived category Db(CX).

Now let H ⊂ G be a closed, algebraic subgroup. The tower {Vn} that was used to define
the G-equivariant derived category can be used also for H, and thus, via inverse image
from the G\(X × Vn) to the H\(X × Vn), one obtains the restriction functor

(5.4) ResGH : Db
G(CX) −→ Db

H(CX) .

If H is normal in G, and if H acts freely on X , Db
G(CX) ≃ Db

G/H(CH\X). Applying this

twice, viewing first G and then H as normal subgroup of G×H, and letting X ×G play
the role of X , results in equivalence of categories

(5.5) IndGH : Db
H(CX)

∼
−−→ Db

G(CX×(G/H)) ,

“induction from H to G”; here G acts diagonally on X × (G/H). The terminology is

appropriate: Let p : X×(G/H)→ X denote the projection; then Rp∗◦IndGH and Rp!◦IndGH



14 MASAKI KASHIWARA AND WILFRIED SCHMID

are, respectively, the right and almost left adjoint functors of ResGH – almost left adjoint
in the sense that the adjointness relation involves a dimension shift and tensoring by the
stalk of the orientation sheaf of G/H at the identity coset. Here, again, everything that
was said remains valid in the twisted case.

Let us recall the definition of the Matsuki correspondence for sheaves. We adopt the
notation of the introduction: X is the flag variety of the complex reductive group G, GR

is a real form of Gan, KR ⊂ GR a maximal compact subgroup. We fix a linear function
λ on the universal Cartan algebra, and let Db

K,λ(CX), Db
GR,λ

(CX) denote the equivariant
derived categories with twist λ. For equivariant derived categories on products of X with
another space, the subscript λ shall refer to the category of sheaves with twist λ along the
factor X , but without twist along the other factor. Since K and GR operate on X with
finitely many orbits, constructibility for objects in Db

K,λ(CX), Db
GR,λ

(CX) comes down to
finite dimensionality of the stalks of the cohomology sheaves. The inclusion

(5.6) i : SR =def GR/KR →֒ S =def G/K

realizes the Riemannian symmetric space SR as real form in the affine symmetric space S.
Further notation:

(5.7) p : X × S −→ X , q : X × S −→ S

are the projections onto the two factors. In [K2], it was conjectured that

(5.8)

Φ : Db
K,λ,C−c(CX) −→ Db

GR,λ,R−c
(CX) ,

Φ(T ) = Rp!

((

ResGGR
IndGK(T )

)

⊗
(

q−1i∗i
!
CS

)

)

[2 dimS]

defines an equivalence of categories. This was proved by Mirković-Uzawa- Vilonen3 [MUV].
Note that i!CS ≃ orSR/S [− codimR SR] ≃ orSR

[−dimS], since SR lies as real form in the
complex manifold S.

The key to our proof of (1.1b-f) is the definition of R Homtop
DX

( M ⊗ T ,OX) as an

object in the derived category of Fréchet GR-modules Db(FGR
), for M ∈ Db

G,coh(DX) and

T ∈ Db
GR,R−c

(CX). For this purpose, we consider – slightly more generally than in the
previous paragraph – an affine algebraic group G, a quasi-projective G-manifold X , and
a real form GR in Gan. Since our construction involves both the algebraic and analytic
structure, we shall now make notational distinctions, for example, between the structure
sheaves OX of the algebraic variety X and OXan of the complex manifold Xan. We write
F for the category of Fréchet spaces and FGR

for the category of Fréchet GR-modules.
Let us work backwards to justify and motivate our definition. As before, pn shall denote

the projection from X × Vn to X , with {Vn} as in (5.1). If we disregard the topology and
GR-action for the moment,

RHomDX×Vn
(Lp∗n M ⊗ p−1

n T ,O(X×Vn)an) ≃ R HomDX
( M ⊗ T ,OXan) ⊗ R Γ(CVn

) ;

3[MUV] establish a slightly different equivalence, but their arguments can also be used to show that

(5.8) is an equivalence.



EQUIVARIANT DERIVED CATEGORY AND REPRESENTATIONS 15

hence, and because of (5.2b),

(5.9) R HomDX
( M ⊗ T ,OXan) ≃ lim

←−
n

R HomDX×Vn
(Lp∗n M ⊗ p−1

n T ,O(X×Vn)an) .

This, in effect, allows us to replace X by X × Vn; in other words, we may as well assume
that G acts freely on X . But then T is isomorphic to the inverse image π−1S of some
S ∈ Db

R−c(CGR\X) under the quotient map π : X → GR\X . Like any object in the latter
derived category, S can be represented by a complex whose terms are finite direct sums
of sheaves j!CU , where j is the inclusion of some open, semi-algebraic subset U ⊂ GR\X .
Thus T can be similarly represented, but the open subsets in question are then inverse
images of open subsets of GR\X , i.e., they are GR-invariant open subsets of X . We now
replace OXan by the C∞ Dolbeault complex A(0,·), to which it is quasi-isomorphic, and M

by a bounded complex of locally free quasi-G-equivariant DX-modules – cf. (4.7). Again
neglecting the topology and GR-action,

(5.10)
R HomDX

(DX ⊗OX
F⊗ j!CU ,A

(0,·)) ≃ R HomOX
(F⊗ j!CU ,A

(0,·)) ≃

≃ R Γ(U ; (F∗)an ⊗OXan A
(0,·)) ≃ Γ(U ; (F∗)an ⊗OXan A

(0,·)) ,

for every M = DX ⊗OX
F ∈ ModlfG (DX), with F ∈ ModcohG (OX) locally free, and every

inclusion j : U →֒ X of a GR-invariant, open subset U of X .
The complex on the right in (5.10) has a natural Fréchet topology – the C∞ topology

for differential forms – and continuous GR-action. That, in conjunction with the acyclicity
asserted by (5.10), makes it possible to define the functor

(5.11)
Db
G,coh(DX) × Db

GR,R−c(CX) −→ Db(FGR
) ,

( M , T ) 7−→ R Homtop
DX

( M ⊗ T ,OXan) .

Formally, this functor is a projective limit with respect to the tower (5.1), and an inductive

limit with respect to the choice of a complex in ModlfG (DX) quasi-isomorphic to M , and
choices of particular representatives of T .

The functor (5.11) interchanges the roles of direct and inverse images on its two argu-
ments: let f : X → Y be a G-equivariant morphism between algebraic, quasi-projective
G-manifolds X , Y ; then

5.12 Theorem. If f is projective, there exists an isomorphism

R Homtop
DX

( M ⊗ f−1
an T ,OXan) ≃ RHomtop

DY

(
∫

f

M ⊗ T ,OY an

)

[−dimX/Y ] ,

functorially in M ∈ DbG,coh(DX) and T ∈ Db
GR,R−c

(CY ). If f is smooth,

R Homtop
DX

(Lf∗M ⊗ T ,OXan) ≃ R Homtop
DY

( M ⊗R(fan)!T ,OY an)[−2 dimX/Y ] ,
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functorially in M ∈ DbG,coh(DY ) and T ∈ Db
GR,R−c

(CX).

We end this section with the statement of our main technical result, from which the
other results will follow. We return to our earlier hypotheses, with X denoting the flag
variety of g, the Lie algebra of the connected reductive group G. The groups KR and K
have the same meaning as in the introduction, i : SR →֒ S is the inclusion (5.6), and p, q
are the projections from X × S to the two factors, as in (5.7). We view X , S as algebraic
G-manifolds, and SR as real analytic manifold.

The twisted version of the covariant Riemann-Hilbert correspondence [K3] establishes
an equivalence of categories

(5.13)
DRX : Db

K−eq,coh(DX,λ)
∼
−−→ Db

K,−λ,C−c(CX) ,

DRX( M ) = RHomDX,λ
(OX(λ), M ) ,

between Db
K−eq,coh(DX,λ), the bounded K-equivariant derived category of coherent DX,λ-

modules4, and Db
K,−λ,C−c(CX), the bounded K-equivariant, C-constructible derived cat-

egory with twist −λ. A word about the twists: M is a complex of sheaves on X , i.e.,
sheaves without twist, over the ring of twisted differential operators DX,λ, whereas OX(λ)
is a twisted sheaf, with twist λ, of DX,λ-modules. Thus it makes sense to apply the functor
RHom over DX to this pair, and the result will be an object in the derived category with
twist opposite to that of OX(λ), since RHom is contravariant in the first variable. The
Riemann-Hilbert correspondence is compatible with induction: if

(5.14) IndGK : Db
K−eq,coh(DX,λ) −→ Db

G−eq,coh(DX×S,λ)

is defined analogously to the induction functor (5.5), then

(5.15)

Db
K−eq,coh(DX,λ)

IndG
K−−−−→ Db

G−eq,coh(DX×S,λ)

DRX





y





y

DRX×S

Db
K,−λ,C−c(CX)

IndG
K−−−−→ Db

G,−λ,C−c(CX×S)

commutes. The following result is now a consequence, essentially, of theorem 5.12, (5.15),
and other functorial properties of the deRham functor:

5.16 Theorem. For M ∈ Db
G,coh(DX,−λ), L ∈ Db

K−eq,coh(DX,λ), and L = DRX(L) ∈

Db
K,−λ,C−c(CX),

R Homtop
DS

(
∫

q

(Lp∗M ⊗OX×S
IndGK(L))⊗ i∗i

!
CS ,OSan

)

≃

≃ R Homtop
DX,−λ

( M ⊗ Φ(L),OXan(−λ))[dimX ]

4coherent K-equivariant DX,λ-modules are necessarily holonomic, since K operates on X with finitely

many orbits.
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as objects in Db(FGR
).

On the left in this identity, the (complexes of) sheaves Lp∗M , IndGK(L) are modules over
the rings of twisted differential operatorsDX×S,−λ and DX×S,λ, respectively, so their tensor
product over OX×S becomes a module for the ring of (untwisted) differential operators
DX×S via the “twisted comultiplication”

(5.17) DX×S −→ DX×S,−λ ⊗OX×S
DX×S,λ .

The direct image of this tensor product is simplyG-equivariant “integration over the fibers”
of a complex inDb

G,coh(DX×S). On the right hand side in (5.16), M is an untwisted module

over the ring of twisted differential operators DX,−λ, and the sheaf of CX-modules Φ(L)
has twist −λ, so their tensor product – this time over CX – becomes a DX,−λ-module with
twist −λ, i.e., with the same twist as OXan(−λ).

We need to comment on our notational convention concerning twists. To keep the
discussion in the introduction brief, we tacitly incorporated the shift by ρ (=one half of
the sum of the positive roots), as is customary in representation theory. In the context of
D-modules, this ρ-shift would affect the definition of inverse image. Thus, beginning with
the present section, we normalize twists so that λ = 0 corresponds to the untwisted case.

If one disregards both the topology and GR-action, one can re-interpret the left hand
side of the identification (5.16) as

R HomDS

(
∫

q

(Lp∗M ⊗OX×S
IndGK(L)), C−ωSR

)

,

where C−ωSR
denotes the sheaf of hyperfunctions on SR. Thus (5.16) amounts to a Poisson

transform from GR-modules, geometrically realized on the symmetric space SR, to the
same GR-modules, but now realized on the flag variety X .

Under suitable ellipticity hypotheses, hyperfunction solutions are necessarily smooth.
Concretely, the space HomDS

(N , C∞SR
), for any N ∈ ModcohG (DS), has a natural Fréchet

topology and continuous GR-action, as a consequence of (4.7), for example. If N is elliptic
along SR, in the sense that its characteristic variety Ch(N) intersects the conormal bundle
T ∗SR

S of SR only in the zero section, then this C∞ solution space coincides with the space
of hyperfunction solutions, as topologized GR-module:

5.18 Proposition. HomDS
(N , C∞SR

) ≃ q H0(R Homtop
DS

(N⊗ i∗i
!CS ,OSan)), as objects in

Q(FGR
) , provided Ch(N ) ∩ T ∗SR

S ⊂ T ∗SS .

§6 Proof of the Conjectures.

We now have the machinery in hand to prove (1.1b-f), as well as (2.12) and the exactness
of the functors mg , MG . The crux of the matter is to identify both sides in (5.16) explicitly
for particular choices of M and L. Throughout this section, the notation of (5.16) shall
remain in force.

For any Borel subalgebra b ⊂ g, we identify the quotient b/[b, b] with the universal
Cartan algebra by specifying the the set of weights of g/b as the set of positive roots.
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This differs from the convention in [BB1,K3], but has the advantage of making dominant
weights correspond to positive line bundles. In particular, if ρ denotes one half of the sum
of the positive roots, then

(6.1) OX(2ρ) ≃ (ΩdX)−1 ( d = dimX )

is the reciprocal of the canonical sheaf.
The equivalence of categories (4.4) induces an equivalence of derived categories

(6.2) φ : Db
G(DS)

∼
−−→ Db(Mod(g, K)) .

We note that the original definition of φ can be re-interpreted as the D-module inverse
image functor (4.9) corresponding to the inclusion {eK} →֒ G/K = S. Our next lemma
follows from base change in the Cartesian square

X −−−−→ X × S




y





y

{eK} −−−−→ S ,

applied to the DS-module Lp∗M ⊗OX
IndGK(L) , and with DX,−λ⊗OX

(ΩdX)−1 in the role
of M .

6.3 Lemma. For M = DX,−λ ⊗OX
(ΩdX)−1 and L ∈ Db

K−eq,coh(DX,λ) ,
∫

q

(

Lp∗M ⊗OX
IndGK(L)

)

≃ φ−1(RΓ(L)) .

The characteristic variety of any N ∈ ModcohG (DS) is G-invariant and intersects T ∗eKS ≃
(g/k)∗ exactly in the characteristic variety5 of the finitely generated (g, K)-module φ(N ) .
If, moreover, N is annihilated by an ideal of finite codimension in Z(g) – equivalently,
if φ(N ) is a Harish-Chandra module [HC1] – Ch(φ(N )) lies in the nilpotent cone when
one identifies g∗ ≃ g via a non-degenerate, Ad -invariant symmetric bilinear form. On the
other hand, T ∗SR

S ∩ T ∗eKS ≃ (gR/kR)∗ consists of semisimple elements, so the assumptions
on N ensure that N satisfies the ellipticity hypothesis of (5.18). Recall the notation (2.3)
for the dual of a Harish-Chandra module. At this point, the definition of the U(g)-module
structure (4.5) and the definition of the functor MG imply:

6.4 Lemma. Suppose N ∈ ModcohG (DS) is annihilated by an ideal of finite codimension
in Z(g). Then φ(N ) is a Harish-Chandra module, and

MG(φ(N )′) ≃ HomDS
(N , C∞SR

) ≃ q H0(R Homtop
DS

(N⊗ i∗i
!
CS , OSan)) ,

as objects in Q(FGR
).

We now combine the previous two lemmas with theorem (5.16). We suppose that
L ∈ Db

K−eq,coh(DX,λ) satisfies the vanishing condition

(6.5) Hn(X,L) = 0 for n 6= 0 ,

and set L = DRX(L), as before. Then H0(X,L) is a Harish-Chandra module, hence

5i.e., the “associated variety” in the terminology of [Vo].
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6.6 Corollary. Under the hypotheses just stated,

MG(H0(X,L)′) ≃ q H0
(

R Homtop
DX,−λ

(DX,−λ ⊗OX
(ΩdX)−1 ⊗Φ(L) , OXan(−λ))[d]

)

,

as objects in Q(FGR
).

Disregarding both the topology and GR-action for the moment, we can make the further
identifications

(6.7)

R HomDX,−λ
(DX,−λ ⊗OX

(ΩdX)−1 ⊗ Φ(L) , OXan(−λ))[d] ≃

≃ R HomOX
((ΩdX)−1 ⊗Φ(L) , OXan(−λ))[d] ≃

≃ R Γ(RHom(Φ(L) , OXan(−2ρ− λ))[d]) ;

cf. (6.1). Here we view Φ(L) as object in Db
K,−2ρ−λ,C−c(CX), as we may: 2ρ is an integral

weight, and this implies the existence of a canonical isomorphism

(6.8) Db
K,−2ρ−λ,C−c(CX) ≃ Db

K,−λ,C−c(CX) .

We shall apply (6.7) more specifically in the case of a DX,λ-module L which corresponds
to the Harish-Chandra module (2.11) via the Beilinson-Bernstein equivalence.

We use the notation of (2.10-11). Let π : X → Y denote the natural projection. Then
D = π−1(YR) is the unique closed GR-orbit inX . It is contained in the unique openK-orbit
Q ⊂ X , and the Matsuki correspondence pairs the two orbits D, Q. The highest weight
spaces Eπ(x)/nxEπ(x), as x ranges over D, with bx = stabilizer of x in g and nx = [bx, bx],
constitute the fibers of a GR-equivariant line bundle L over D. This line bundle extends
to a K-equivariant algebraic line bundle over the K-orbit Q, and we refer to the extension
by the same letter L. As is the case with all K-orbits in X , the inclusion of the open orbit
i : Q →֒ X is an affine morphism, so the D-module direct image of OQ(L) coincides with
the sheaf direct image

(6.9a) L = i∗OQ(L) ∈ ModcohK−eq(DX,λ) ,

and the higher (sheaf) direct images vanish; here λ denotes the highest weight of E.
Moreover,

(6.9b) H0(X,L) = Ind
(g,K)
(p,KR∩PR)(E) , Hn(X,L) = 0 if n 6= 0 .

Proofs of these assertions can be found in [HMSW], for example.
The Riemann-Hilbert correspondence relates the D-module direct image to the direct

image in the derived category of sheaves of C-vector spaces, so

(6.10a) L =def DRX(L) ≃ Ri∗(DRQ(OQ(L)))

is the direct image of a K-equivariant, twisted local system on Q. The proof of (1.1a) in
[MUV] gives a description of Φ(L) for this particular sheaf L, namely

(6.10b) Φ(L) ≃ j∗j
−1L ,
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with j denoting the inclusion D →֒ X . We now use the fact that π : D → YR is a real
analytic fibration, with smooth complex projective fibers, and Bott’s description of the
cohomology of OXan(−2ρ− λ) along the fibers, to conclude

(6.11)

Hn(R Γ(RHom(Φ(L) , OXan(−2ρ− λ))[d])) ≃

≃

{

C−ω(YR,E
∗ ⊗ ∧maxT ∗Y ) if n = 0

0 if n 6= 0 ,

still without regard to the the topology and GR-action. Formally, the identity (6.11) should
involve also the orientation sheaf of YR, but the connectivity assumption about G implies
that YR is orientable. In the derived category of Fréchet GR-modules, vanishing of the
ordinary cohomology forces exactness. Hence, in view of (6.6-8), we have shown:

6.12 Proposition. If L satisfies the hypotheses (6.9),

q Hn
(

R Homtop
DX,−λ

(DX,−λ ⊗OX
(ΩdX)−1 ⊗ Φ(L) , OXan(−λ))[d]

)

≃

≃







MG
(

Ind
(g,K)
(p,KR∩PR)(E

∗ ⊗∧max(g/p)∗)
)

if n = 0

0 if n 6= 0 .

In the next statement, C∞(GR)KR−fini shall denote the space of C∞ functions on GR

which are KR-finite under the right action. We regard this space as a left (g, K)-module
by composing the right action with the canonical anti-automorphism of g.

6.13 Theorem. For every Harish-Chandra module M and every n 6= 0,

Extn(g,K)(M , C∞(GR)KR−fini) ≃ ExtnDS
(φ−1M ⊗ i∗i

!
CS , OSan) = 0 .

The isomorphism between the two Ext groups is formal. For any member M of the
principal series, the vanishing of the higher Ext groups follows from (5.16) and (6.12).
It suffices to prove the vanishing for irreducible Harish-Chandra modules. That can be
done by downward induction on n – irreducible Harish-Chandra modules can be realized
as submodules of modules belonging to the principal series [C1,BB2]; for large n, vanish-
ing follows from the finiteness of the global dimension of DS , or alternatively, from the
analogous finiteness statement in the category Mod(g, K).

Theorem 6.13 implies the exactness of the functor MG , and by duality, also of mg .
Indeed, we may replace C∞(GR) by C∞(GR)KR−fini in the definition (2.5), and (g, KR)-
invariance by (g, K)-invariance – the image of a KR-finite vector under a KR-invariant
linear map is necessarily KR-finite also – so the theorem applies directly. The vanishing
of the higher Ext groups means, in particular, that R Hom(g,K)(M , C∞(GR)KR−fini) ∈

Db(FGR
) is strict. That, in turn, insures that the induced topology on C∞0 (GR)⊗(g,KR)M

is Hausdorff, so the phrase “largest separated quotient” in the definition (2.7) becomes
unnecessary.
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The isomorphisms (6.7) justify the following definition. For S ∈ Db
GR,λ,R−c

(CX), we

regard R Hom(S,OXan(λ)) as object in the derived category of Fréchet GR-modules via
the identification

(6.14) R Hom(S,OXan(λ)) ≃ R Homtop
DX,λ

(DDX,λ
⊗OX

(ΩdX)−1 ⊗ S , OXan(λ+ 2ρ)) .

According to (5.16), (6.6) and (6.13), this complex has the property MG and satisfies
(1.1b,d,f)6, at least if L = (DRX)−1Φ−1(S) ∈ Db

K−eq,coh(DX,−λ−2ρ) has non-zero coho-
mology in only one degree; the general case follows by means of standard techniques in
representation theory [SW]. The definition of R Γ(S ⊗ OXan(−λ − 2ρ)) as object in the
derived category of DNF GR-modules is analogous and formally dual to the preceding case.
The duality between the two globalization functors then implies the property mg and the
assertions (1c,d,e) for the latter complex.

Until now, we have used (6.7) and (6.11) only to establish the vanishing of the higher
Ext groups in (6.12). A careful examination of this chain of isomorphisms shows that the
topology and GR-actions are preserved, i.e.,

(6.15)
q H0

(

R Homtop
DX,−λ

(DX,−λ ⊗OX
(ΩdX)−1 ⊗Φ(L) , OXan(−λ))[d]

)

≃

≃ C−ω(YR,E
∗ ⊗ ∧maxT ∗Y ) ,

as objects in Q(FGR
), if L is chosen as in (6.9). That, in conjunction with (6.6), implies

the second half of theorem 2.12 – the other half follows by duality.

§7 Invariant Systems of Differential Equations.

In this section, Z shall denote a quasi-projective G-manifold, ZR a GR-invariant real
form, i : ZR →֒ Z the inclusion map, and M a coherent, quasi-G-equivariant DZ-module.
We regard R HomDZ

( M , C−ωZR
) as an object in the derived category of Fréchet GR-modules

Db(FGR
) by making the identification

(7.1) R Homtop
DZ

( M , C−ωZR
) = R Homtop

DZ
( M ⊗ i∗i

!
CZ ,OZan) .

We shall show, under appropriate hypotheses, that this object has the property MG. In
particular, the space of hyperfunction solutions of the restricted system on ZR will then
have a natural Fréchet topology and continuous GR-action, and the resulting representation
will be admissible, of finite length.

Recall the definition of the homomorphism γ : U(g) → EndDZ
( M ) in §4, and let

µZ : T ∗Z → g∗ denote the moment map. A calculation with a good filtration of M by
G-equivariant coherent OZ-modules shows:

(7.2) Ch( M ) ⊂ µ−1
Z (Ch(U(g)/Annγ( M ))) ,

6the reasons for the appearance of 2ρ in the present discussion and for its absence in the introduction

were explained in §5.
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where Annγ( M ) denotes the annihilator of M in U(g) with respect to the action γ.
If M is not only quasi-G-equivariant as DZ-module, but G-equivariant, then the entire
augmentation ideal annihilates M , so

(7.3) Ch( M ) ⊂ µ−1
Z (0) if M ∈ ModcohG−eq(DZ) .

The nilpotent cone N ∗ ⊂ g∗ – i.e., the image of the nilpotent cone N ∈ g when g∗ is
identified with g by means of an Ad -invariant, nondegenerate symmetric bilinear form – is
the variety defined by the augmentation ideal in S(g)G, hence

(7.4) Ch( M ) ⊂ µ−1
Z (N ∗) if M is Z(g)− finite ;

here Z(g)-finiteness means that some ideal of finite codimension I ⊂ Z(g) (= center of
U(g)) annihilates M .

Borel subalgebras are solvable. Hence, by arguments in either [KMF] or [G, appendix],

(7.5) Ch( M ) ∩ µ−1
Z (b⊥) ⊂ T ∗Z is an involutive subvariety,

for any Borel subalgebra b of g. We shall call M admissible if this involutive subvariety
is Lagrangian, for every b – or equivalently, for some b, since the action of G preserves
Ch( M ).

7.6 Theorem. Let M ∈ ModcohG (DZ) be admissible and Z(g)-finite, and S an object in

the bounded equivariant derived category Db
GR,R−c

(CZ). Then R Homtop
DZ

( M ⊗ S,OZan),

as object in Db(FGR
), has the property MG.

This statement neither involves, nor depends on, the existence of a GR-invariant real
form ZR. However, when such a real form does exist, the theorem, with i∗i

!CZ in place of
S, provides the criterion alluded to at the beginning of this section.

We begin the sketch of the proof of (7.6) with some general remarks. The forgetful
functor

(7.7a) ModG−eq(DZ) −→ ModG(DZ)

has a left adjoint,

(7.7b) EQ : ModG(DZ) −→ ModG−eq(DZ) ,

given by EQ( M ) = M /γ(g) M ; here γ(g) M denotes the image in M of the quasi-G-
equivariant DZ-module g⊗ M . The functor EQ is visibly right exact.

Coherent, Z(g)-finite, quasi-G-equivariant DZ-modules admit finite filtrations such that
the successive quotients are modules with an infinitesimal character, i.e., modules on which
Z(g) acts by a character. Also, if any two objects in a distinguished triangle in Db(FGR

)
have the property MG, then so does the third. This allows us to assume, without loss
of generality, that M itself has an infinitesimal character. To be consistent with our
notational choices in §§5,6, we index characters of Z(g) by linear functionals λ on the
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universal Cartan without the customary shift by ρ (= half sum of the positive roots);
in other words, χλ : Z(g) → C denotes the character by which Z(g) acts on the Verma
module with highest weight λ. Then χλ = χµ if and only if λ + ρ is conjugate to µ + ρ

under the action of the Weyl group W . We let ModλG(DZ) denote the full subcategory of

ModG(DZ) consisting of modules with infinitesimal character χλ, and Modcoh,λG (DZ) the

full subcategory of coherent modules in ModλG(DZ). Because of our earlier assumption,
M belongs to one of these subcategories:

(7.8) M ∈ Modcoh,λG (DZ) .

Replacing λ+ ρ by an appropriate W -translate, we can arrange

(7.9) 〈α̌, λ+ ρ〉 /∈ Z<0 , for every positive coroot α̌ ;

we shall refer to this condition by saying that λ+ ρ is integrally dominant .
For the moment, we do not assume (7.9). We shall consider modules over the ring

of twisted differential operators DX×Z,λ on the product of the flag variety X with Z;
the twisting is confined to the factor X , and is indexed by the parameter λ. We write
p : X×Z → X , q : X×Z → Z for the two projections. With these ingredients, we define
functors

(7.10)
∆ : ModλG(DZ) −→ ModG−eq(DX×Z,λ) , ∆(N ) = EQ(DX,λ ˆ N ) ,

Ψ : ModG−eq(DX×Z,λ) −→ ModλG(DZ) , Ψ(L) = q∗(L) .

The fact that Ψ is well defined requires verification: the G-equivariant projection q has
projective fibers, so the sheaf direct image q∗ exists as a left exact functor between the
categories of quasi-G-equivariant, quasi-coherent D-modules; a small calculation shows
that the DX×Z,λ-module structure of L imposes the infinitesimal character χλ on q∗(L).

By construction, ∆ is right exact, Ψ left exact. We note also that Ψ is the right adjoint of
∆. The next statement, we shall see, formally contains the Beilinson-Bernstein equivalence
of categories [BB1].

7.11 Theorem. If λ+ ρ is integrally dominant,

a) Rnq∗(L) = 0 , for every L ∈ Mod(DX×Z,λ) and every n > 0 ;

b) Ψ∆(N ) ≃ N , for every N ∈ ModλG(DZ) .

If λ+ ρ is both integrally dominant and regular, the functors ∆, Ψ define equivalences of
categories, and are quasi-inverses to each other.

The proof of this theorem amounts to a reduction to the analogous statements in [BB1].
The vanishing of the higher derived images Rnq∗(L), for example, is local with respect to
Z, so one may as well suppose that Z is affine. But then Rnq∗(L) is determined by its space
of global sections, and that space coincides with the n-th cohomology of the quasi-coherent
– for affine Z – DX,λ-module p∗(L), so the Beilinson-Bernstein vanishing theorem applies.
The other assertions can be verified by similar arguments.
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To make the formal connection with [BB1], let us look at an algebraic subgroup H ⊂ G.
The theorem, with Z = G/H and λ+ρ integrally dominant regular, asserts an equivalence
of categories

(7.12a) ModλG(DG/H) ≃ ModG−eq(DX×G/H,λ) .

But ModG−eq(DX×G/H,λ) ≃ ModH−eq(DX,λ) for formal reasons – “induction from H to
G”. On the other hand, the equivalence of categories (4.4) identifies ModG−eq(DX×G/H,λ)

with Modλ(g, H), the category of algebraic (g, H)-modules with infinitesimal character χλ.
Thus (7.12a) is tantamount to the equivalence of categories

(7.12b) ModH−eq(DX,λ) ≃ Modλ(g, H) .

This, of course, follows from the Beilinson-Bernstein equivalence and, in fact, reduces to
it precisely when H = {e}.

Our next statement can be verified directly, by keeping track of the effect of the func-
tors ∆ , Ψ on characteristic varieties; both (7.3) and (7.5) are crucial ingredients of the
argument.

7.13 Lemma. The functor ∆ assigns a holonomic module in ModG−eq(DX×Z,λ) to any

admissible module N ∈ ModλG(DZ). Conversely, Ψ assigns admissible modules to holo-
nomic modules.

For the proof of (7.6), we may suppose that the admissible, quasi-G-equivariant DZ-
module M satisfies the additional hypotheses (7.8-9). Because of (7.11) and (7.13), there
exists a holonomic, hence coherent module L ∈ ModG−eq(DX×Z,λ) , such that

q∗L = M , Rnq∗L = 0 if n 6= 0 .

Thus, as a consequence of the definition of the direct image functor (4.12), we obtain the
isomorphism

(7.14) M ≃

∫

q

(

Lp∗(DX,−λ ⊗OX
(ΩdX)−1)⊗OX×Z

L
)

in the derived category Db
G,coh(DZ); here d, it should be recalled, denotes the dimension

of X . We now argue as we did in §5: for S ∈ Db
GR,R−c

(CZ), and with L = DRX×Z(L ),

(7.15)
R Homtop

DZ

(
∫

q

(

Lp∗(DX,−λ ⊗OX
(ΩdX)−1)⊗OX×Z

L
)

⊗ S , OZan

)

[2 dimZ] ≃

≃ R Homtop
DX,−λ

(DX,−λ ⊗OX
(ΩdX)−1 ⊗Rp∗(L ⊗ q

−1S) , OXan(−λ))[d] ,

as objects in Db(FGR
). Except for the concrete choices of S and λ, the object on the right

in (7.15) coincides with the object (6.14), and thus has the property MG.



EQUIVARIANT DERIVED CATEGORY AND REPRESENTATIONS 25

References

[BB1] A.Beilinson and J.Bernstein, Localisation de g-modules, C. R. Acad. Sci. Paris 292 (1981),
15–18.

[BB2] A.Beilinson and J.Bernstein, A generalization of Casselman’s submodule theorem, in: Repre-
sentation Theory of Reductive Groups, Progress in Mathematics, vol. 40, Birkhäuser, Boston,
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