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§1 Introduction.

In this note, we describe proofs of certain conjectures on functorial, geometric con-
structions of representations of a reductive Lie group Gg. Our methods have applications
beyond the conjectures themselves: unified proofs of the basic properties of the maxi-
mal and minimal globalizations of Harish-Chandra modules, and a criterion which insures
that the solutions of a Gg-invariant system of linear differential equations constitute a
representation of finite length.

Let G be a connected, reductive, complex algebraic group, and G a real form of G —
i.e., a closed subgroup of the complex Lie group G*"*, whose Lie algebra ggr lies as real
form in the Lie algebra g of G. We fix a maximal compact subgroup Kr C Ggr; Kg is the
group of real points of some algebraic subgroup K C G. As subgroups of G, Gg and K
operate on the flag variety X of g. For each linear form A on the universal (i.e., equipped
with a positive root system) Cartan algebra, we consider the bounded equivariant derived
categories DZ,R’ L (X)), D?Q (X)) of constructible sheaves of C-vector spaces on X with twist
A, and the twisted sheaf of holomorphic functions Ox (). In [K2], one of us conjectured:

a) There exists a natural equivalence of categories @ : D%’ V(X)) = Dg]]b NO.SE
b) the Ext-groups Ext?(S,Ox())), for S € D%m A\(X), carry natural Fréchet
topologies and continuous linear Gr-actions;

¢) the cohomology groups HY(X,S ® Ox(—2A)), for S € D%R’A(X), have natural
DNF topologies and continuous linear Gr-actions;

(1.1) d) the resulting representations of Gg on Ext?(S,Ox())) and
' HY(X,S8 ® Ox(—A)) are admissible, of finite length;

e) ExtP(S,0x(\) and HP(X, 8 ® Ox(—))), with d = dim¢ X, are each
other’s strong duals;

f)it M e D?(’A(X) is the image of a holonomic (D_, K)-module 2 under the
Riemann-Hilbert correspondence, then H?(X, 9t) coincides with the dual

of the Harish-Chandra module of Kg-finite vectors in Ext® P (®M, Ox()\)).
The first of these conjectures was established by Mirkovié-Uzawa-Vilonen [MUYV]. In this
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note, we sketch proofs of (b-f).

In effect, (1.1b-f) may be viewed as counterparts, on the level of group representations,
of the Beilinson-Bernstein construction of Harish-Chandra modules. Our positive answer
to the conjectures has already been used, in [SV1,2], to establish other, related conjectures.
A general discussion of these matters can be found in [K1,K4].

Special cases of (1.1b-f) had been worked out previously. If j : D — X is the inclusion of
a Gr-orbit D, and S = 5 & the proper direct image of a Gr-equivariant twisted local system
& on the orbit, then Ext?(ji€,Ox(\)) can be identified with an appropriately defined
local cohomology group along D, and HY(X, i€ ® Ox(—\)) with compactly supported
cohomology of an appropriate sheaf on D. These representations are produced and studied
in [S1,HT,SW], and the remaining assertions (1.le,f), in these special cases, then follow
from results in [HMSW,S2].

It turns out that Ext?(S,Ox(A)) and HY(X,S ® Ox(—\)) are, respectively, the maxi-
mal and minimal globalizations, in the sense of [S2], of their underlying Harish-Chandra
modules. It is not difficult to construct the maximal and minimal globalization functors.
However, two crucial properties — topological exactness and the explicit characterization
of the maximal and minimal globalizations of principal series representations — are not so
obvious. The arguments outlined in [S2] depend on relatively subtle lower bounds for the
matrix coefficients of Harish-Chandra modules. Our proofs of the conjectures (1.1b-f) not
only depend on these properties of the maximal and minimal globalization functors, they
also imply them. As a consequence, we obtain alternate, more satisfactory proofs of the
results announced in [S2].

The first named author observed that the explicit characterization of the maximal glob-
alization of principal series representations is but a special instance of a quite general
phenomenon. Representations of a reductive Lie group Ggr often arise as spaces of solu-
tions of a system of Gr-invariant, linear differential equations on a manifold on which G
acts. Intuitively, one expects the space of solutions of such a system to be a representation
of finite length only if the manifold is “small” and the system of differential equations
“strong”. Theorem (7.6) below gives a precise sufficient condition. In particular, the the-
orem covers the following situation. Let Z be a smooth, quasi-projective variety over C,
with an algebraic action of the complexified group G, Zr a Gg-invariant real form of 7,
and pyz : T*Z — g* the moment map. We consider a G-invariant linear system of differen-
tial equations on Z, with algebraic coefficients, and let 9t denote the Dz-module defined
by the system. The space of hyperfunction solutions of the restricted system on Zy has
a natural Fréchet topology, constitutes a Gr-representation of finite length, and coincides
with the maximal globalization of its space of Kg-finite vectors, provided the following two
conditions are satisfied:

a) M is annihilated by an ideal of finite codimension in Z(g) (= center of U(g));

(1.2) b) the characteristic variety Ch(90) intersects u,'(b") in a Lagrangian
subvariety of T*Z, for every Borel subalgebra b C g.

Condition b) holds vacuously if a Borel subgroup B of G acts on Z with only finitely
many orbits — for example, if Z is a flag variety, or a quotient of G by a maximal unipotent
subgroup U, or a complexified symmetric space G/K. In the case of a flag variety, even the
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“empty” system of differential equations satisfies a). In particular, theorem (7.6) applies
to the principal series, to Whittaker models [GW ,Mo|, and to Helgason’s conjecture for
affine symmetric spaces [He, KMOT].

We exhibit the representations (1.1b,c) as cohomology groups of objects in a derived cat-
egory of representations. The construction of this derived category, in section three below,
is of some independent interest. To make the connection between the Beilinson-Bernstein
construction and Gg-representations, we set up a correspondence between Ggr-sheaves on
X and certain D-modules on the complexified symmetric space G/K. Our arguments,
and also the statement of theorem (7.6), involve the notion of quasi-equivariant D-module,
which was introduced, independently, in [K3] and — under the names “weakly equivariant
D-module” and “weak (Dx,G)-module” — in [BBM] and [BB3]; we shall elaborate upon
it in section four. This, too, has implications beyond the proofs outlined in this note.
We intend to publish our results in more detailed form, including complete proofs, in the
future.

62 Minimal and Maximal Globalization.

We consider the category R(Gr) of Ggr-representations — by definition, its objects are
complete, locally convex, Hausdorff topological vector spaces with continuous, linear G-
action, such that the resulting representation is admissible!, of finite length; morphisms in
R(GRr) are continuous, linear, Gg-invariant maps. For V' € R(Gg),

Vkg—fini = linear span of the finite dimensional,
(2.1) L
Kg-invariant subspaces of V'

is dense in V' and consists entirely of C* vectors [HC3]. Both g and K operate on Vi, _ fini
— the former by differentiation of the Gr-action, the latter by complexification of the K-
action — and the two operations are compatible. Thus Vi, _rin; becomes an algebraic
(g, K)-module. On the infinitesimal level, the hypotheses of admissibility and finite length
on the representation V' imply that Vi, _fin; is in fact a Harish-Chandra module: an
algebraic (g, K)-module, finitely generated over the universal enveloping algebra U(g),
with finite K-multiplicities [HC1,2].

We denote the category of Harish-Chandra modules by HC (g, K). It is a full subcategory
of Mod(g, K), the category of algebraic (g, K)-modules and (g, K)-invariant linear maps.
The passage from V' to Vi, _ fini defines a functor

(2.2) HC : R(Gr) — HC(g, K).

This functor is faithful, exact, and assigns irreducible Harish-Chandra modules to irre-
ducible representations [HC1-3]. For M € HC(g, K), the K-finite subspace of the algebraic
dual,

(2.3) M = (M*)k_fini,

li.e., in the restriction to Kg, each irreducible representation of Kr occurs only finitely often.
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is another Harish-Chandra module, the Harish-Chandra module dual to M. We write V’
for the continuous dual of a topological vector space V', and topologize V' with the strong
dual topology. The natural Gg-action on the dual V' of some V € R(Gr) need not be
continuous; when it s continuous, then the resulting representation has finite length, is
admissible, and

(2.4) HC(V') ~ (HC(V)),

i.e., duality of Harish-Chandra modules corresponds to duality of representations.

By a globalization of a Harish-Chandra module M, we shall mean a Gg-representation
V € R(Ggr) such that M = HC(V). Every Harish-Chandra module can be globalized
[P,C1], and this fact makes it a relatively simple matter to construct functorial globaliza-
tions, i.e., right inverses to the functor (2.2). In the next definition, we view C*°(GR) as
left (g, Kr)-module via right translation, composed with the canonical antiautomorphism
of g, and as Gg-module via left translation. Every M € HC(g, K) has a countable vector
space basis, so

(2.5) MG(M) = Homy g,)(M',C*(Gr))

inherits a Fréchet topology and a continuous, linear Gg-action from C°°(Gg). The space
MG (M) remains unchanged if one replaces C°°(Gr) by the space of real analytic functions
C“(Gr), or by the space of distributions C~>°(GR):

2.6 Lemma. The inclusions C¥(Ggr) — C*°(Gr) — C~°°(Gr) induce topological iso-
morphisms

Hom(g’KR)(M',Cw(GR)) ~ Hom(g’KR)(M',COO(GR)) ~ Hom(g’KR)(M',C_OO(GR)).

One can deduce this from the regularity theorems for elliptic D-modules by embedding
MG(M) into Homp, (Dg @) M', C*°(Gr)) — in fact, the two spaces coincide if Gg is
connected — and noting that the Dg-module Dg @) M’ is elliptic on G, in the sense
that its characteristic variety intersects the conormal bundle T¢ G only along the zero
section.

The lemma and the mere existence of globalizations imply that the action of Gg on
MG(M) defines an admissible representation of finite length, which globalizes the Harish-
Chandra module M. By construction, MG is a functor, and thus a right inverse to HC'

There is a dual construction, as follows. We now regard C5°(Gr), the space of compactly
supported, C'*° functions, as right (g, Kg)-module via right translation. As a right module,
it can be tensored, simultaneously over U(g) and the group ring C[KRg], with the left
(g, Kr)-module M. This tensor product is naturally a quotient of the tensor product over
C, and therefore inherits a topology. We define

(2.7) mg(M) = largest separated quotient of Cg°(Gr) ®(g, k) M .

We shall see later, as a consequence of our arguments, that the topology on the tensor
product is Hausdorff, so the phrase “largest separated quotient” turns out to be unneces-
sary in the end. The left translation action of Gg on C§°(Ggr) induces a continuous, linear
action on mg(M), and the resulting representation is another functorial globalization of
the Harish-Chandra module M.
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2.8 Theorem. The functors mg, MG are, respectively, left and right adjoint to HC'. They
are each other’s dual, i.e., (mg(M)) ~ MG(M") and (MG(M))" ~ mg(M'). Both mg and
MG are topologically exact functors.

The first assertion can be rephrased as follows. For V' € R(Gg) and M = HC(V'), there

exist functorial morphisms

mg(M) 25V, V LN MG(M), such that
HC(a) and HC(() induce the identity on M = HC (V).

(2.9)

Both a and /3 are injective, since the functor HC is faithful. Thus any globalization of a
Harish-Chandra module M lies sandwiched in between mg(M) and MG(M), and that is
the reason for calling the two functors the minimal globalization and mazimal globalization.
The duality between the two globalizations follows formally from (2.6) and the closed graph
theorem of L. Schwartz: a surjective morphism in the category of locally convex, Hausdorff
topological vector spaces, from a Suslin space to an inductive limit of Banach spaces, is
necessarily open; moreover, C§°(Gr) has the Suslin property [Sz,T].

In slightly different, but equivalent form, theorem 2.8 and the companion statements
(2.12, 2.13) below were announced in [S2]. Except for (2.12) and topological exactness,
they can be readily inferred from known results. Topological exactness and (2.12) are
more delicate; the arguments outlined in [S2] deduce them from certain lower bounds on
the matrix coefficients of Harish-Chandra modules. In this note, they will become natural
consequences of our proofs of the conjectures (1.1b-f).

The minimal globalization functor first appears in the work of Litvinov-Zhelobenko
and Prichepionok [P]. Two other functorial globalizations were constructed by Casselman-
Wallach [C2,W]. Although their terminology differs, we shall refer to these two global-
izations as the C*° and distribution globalization, since they relate to C*° functions and
distributions in the same way the minimal and maximal globalizations relate to real ana-
lytic functions and hyperfunctions — cf. (2.12).

We choose a minimal parabolic subgroup Py of Gk, and let P denote its complexification.
The variety Y of G-conjugates of p = Lie(P) is a generalized flag variety, which contains
the Gr-orbit of p as real form:

Each irreducible, finite dimensional Pg-module E associates an irreducible, Ggr-equivariant,
real analytic vector bundle E — Yg to the principal bundle Gg — Gr/Pr = Yr. The Kg-
finite sections of E constitute a Harish-Chandra module,

K w
(2.11) md5) g (B) = C° (Y, B) iy gini -

Collectively, Harish-Chandra modules of this type make up the principal series. Both
C¥ (YR, E), the space of real analytic sections, and C'~“(Yg, E), the space of hyperfunction
sections, have natural Hausdorff topologies — the latter because Yy is compact — and
continuous Gr-actions. The resulting representations globalize the Harish-Chandra module
(2.11). Hence, by (2.9), they contain its minimal globalization, and in turn are contained
in its maximal globalization.
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2.12 Theorem. The natural inclusions induce topological isomorphisms

K ~ w —w ~ K
g (Indgg’K;mPR)(E)) L C¥(Ya,E), CO~%(Ye,E) 2 MG (Indgﬁ’K]imPR)(E)) .

This statement implies Helgason’s conjecture; conversely, it was inspired by the orig-
inal proof of Helgason’s conjecture [KMOT], and by Casselman-Wallach’s construction
of canonical globalization. In effect, Casselman-Wallach take the analogue of (2.12) as
the point of departure of their definition: the spaces of C*° and distribution sections of
E constitute, respectively, the C*° globalization and the distribution globalization of the
Harish-Chandra module (2.11), but it then takes considerable effort to show that these are
concrete instances of functorial constructions [C2,W].

Now let V' € R(GRg) be a Banach representation. The space of analytic vectors V¥ C V
has a natural inductive limit topology and a natural, continuous Gr-action. If the Banach
topology on V is reflexive, the dual representation is continuous also [HC1], so it makes
sense to define the space of hyperfunction vectors, V=« =4.¢ ((V')¥)’. This space contains
V, and has a natural Fréchet topology and continuous Gg-action. Both V¢ and V¢
globalize the Harish-Chandra module HC(V'), and thus lie between the minimal and the
maximal globalization.

2.13 Theorem. The natural inclusion mg(HC(V)) — V* is a topological isomorphism.
Dually, if V' is a reflexive Banach space, V~% — MG(HC(V)) is a topological isomorphism.

This formally implies (2.12), since C¥(Yg, E) and C™“(Yg, E) can be identified with the
spaces of, respectively, analytic and hyperfunction vectors for any of the reflexive Banach
Ggr-modules LP(Yg,E), 1 < p < oo. Logically, (2.13) follows from (2.12), in conjunction
with [W, §5.8] and the main theorem in [HS].

83 A Derived Category of Representations.

In this section we introduce a derived category of group representations. Much of the
formalism, though in a different setting, is already known — cf. [BBD,L]: while the category
of topological vector spaces fails to be abelian, it is an exact category, and that suffices for
our purposes. However, to keep the discussion short, we shall stay within the context of
topological vector spaces, even though our arguments apply more generally in the setting
of exact categories. We are indebted to J.-P. Schneiders for helpful conversations about
the matters treated below.

For the moment, H will denote an arbitrary Hausdorff topological group. Eventually,
Gr will play the role of H, but H can also be the trivial group {e}, for example, in which
case the derived category of representations reduces to the derived category of topological
vector spaces.

Let 7V be the category of locally convex, Hausdorff topological vector spaces and
continuous linear maps, and F an additive full subcategory of 7V. We consider the
category Fp whose objects are vector spaces belonging to F, together with a continuous,
linear action of H; its morphisms are H-invariant, continuous linear maps. Next we form
the category C°(Fy) of bounded complexes in Fyz, and the quotient category K°(Fy),
which has the same objects as C?(Fy), but with homotopic morphisms identified. We call
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a complex (X,dx) in C*(Fy) evact if, for each n, d%¥ ' : X"~! — Kerd} is an open,
surjective map, relative to the subspace topology on Ker d’ .

3.1 Lemma. Let f: X —Y,g:Y — X be morphisms in C®(Fg), and let M(f) denote
the mapping cone of f.

a) If go f is homotopic to idx, and if Y is exact, then so is X.

b) If X and Y are exact, then M(f) is exact also.

Because of a), the notion of exactness descends from C®(Fy) to K°(Fg): if two com-
plexes are isomorphic in K°(Fy), then either both or neither are exact. Statement b)
implies that N(Fz), the full subcategory of K®(Fg) consisting of exact complexes, is a
null-system in the terminology of [KSa, §1.6]. Thus one can “divide” K°(Fg) by N(Fg).
We let D°(Fy) denote the resulting triangulated category; this is our (bounded) derived
category of H-representations. We call a morphism f in K°(Fy) a quasi-isomorphism
if it has an exact mapping cone. In that case, f induces an isomorphism in the cate-
gory D®(Fy). A complex X in K®(Fy) becomes zero in D°(Fy) precisely when it is
quasi-isomorphic to zero, i.e., when it is exact.

The cohomology groups of an exact complex vanish. Consequently, the cohomology
functors on C®(Fg) determine functors on the level of Db(Fg); they take values in the
category V of vector spaces without topology:

(3.2) H" : D*(Fy) — V.
From now on, we assume that the category F is hereditary, in the following sense:

if V' belongs to F, and if W C V is a closed subspace,

3.3
(3:3) then W and V/W also belong to F.

If in addition the open mapping theorem holds in the category F — for example, if F
is the category of Fréchet spaces — then exactness of complexes reduces to the vanishing
of cohomology, and a morphism in D?(Fy) is an isomorphism if and only if it induces
isomorphisms on the level of cohomology.

The hypothesis (3.3) allows us to introduce two pairs of truncation functors 477, 4727

and 57_§n7 STZTL on the Category Cb(fH), as follows:
I7S7(X) = .= X" 2 5 X" S Kerdy — 0 — ...
1727(X) = ... » 0 — Kerd% ' — X"7! - X" — ..
(3.4) .
STEMX) = o= XM X" S Tmdy — 0 — ..
TEMX) = = 0= X /Imdy - X X

where Im d% denotes the closure of Im d’, equipped with the subspace topology inherited
from X™*!. Both are compatible with homotopy and quasi-isomorphism, and hence define
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truncation functors on D°(Fg). We set

1IDSV(Fy) = {X € Db(]:H) . 970X — X is an isomorphism } ,
QDEO(]—"H) = {X ¢ Db(]:H) - X — 9729X is an isomorphism },
&2) SDSY(Fy) = {X ¢ Db(]:H) : 570X — X is an isomorphism } ,
SD=%Fy) = {X € D"(Fy) ; X — *r=°X is an isomorphism } .

3.6 Theorem. Both (1D<°(Fy), 1D=°(Fy)) and (*D=°(Fg), $D=°(Fy)) are t-struc-
tures on D°(Fg).

We let Q(fH) = qDSO(fH)ﬂ quo(fH), S(fH) = SDSO(.FH)Q SDEO(.TH) denote the
hearts of these two t-structures. By construction, they are abelian categories. Each object
of Q(Fpg) is isomorphic to the cokernel of a morphism f in Fy — viewed as morphism in
Q(Fg) — such that f is set-theoretically injective. This is our reason for calling the first
t-structure the “quotient” structure. Dually, every object in the heart S(Fpg) of the “sub”
t-structure is isomorphic to the the kernel of a morphism in Fy with dense image. One
can show that the bounded derived categories built from Q(Fp) or S(Fg) are equivalent
to D®(Fg), but this is not crucial for our purposes.

The functors

TH'(X) = (17570 12X,
(3.7)
an(X) — (sTgno stn)X

take D°(Fp) to the hearts of the two t-structures. We note:
HY("H™ (X)) = H"(X),
(3.8a)
HY(“H"(X)) = 0 if k#0.
On the other hand,
H(*H"(X)) = Kerd%/Imd% ',
(3.8b) H'(*H"(X)) = Imd% /Imd%,
HfCH"(X)) = 0 if k#0,1.

For X € D*(Fg) and n € Z, the following conditions are equivalent:

a) Im d&‘l is closed in X,,, and d&‘l is an open map onto its image;
(3.9) b) YH™(X) is isomorphic to an object in Fy ,

¢) *H""(X) is isomorphic to an object in Fp .



EQUIVARIANT DERIVED CATEGORY AND REPRESENTATIONS 9

The natural functor ¢ : Fi — D°(Fy) is fully faithful. Hence, if the conditions (3.9) are
satisfied, 9 H"(X) and * H*~'(X) are well defined objects in Fy. If these conditions hold
for every n, we say that X is strict; in that case, YH"(X) = *H"(X) for all n.

Finally, let us suppose that H = Gy is a reductive Lie group. We shall say that
X € Db(Fg,) has the property MG — respectively, the property mg — if X is strict and all
its cohomology groups can be realized as maximal — respectively, minimal — globalizations
of Harish-Chandra modules.

84 Quasi-equivariant D-modules.

We recall the definition of a quasi-equivariant D-module [K3,BB3,BBM]. Let G be an
algebraic group with Lie algebra g, and X a smooth algebraic variety with an algebraic
G-action — or algebraic G-manifold for short. We write u for the action morphism, p for
the projection from G x X to X,

(4.1) w:Gx X —-X, plg,z)=9r, p:GxX—X, plg,z)=rx,

and we consider the three maps

g GxGxX —-GxX, 1<j<3,
(4.2)
Q1(91,92,33) = (91,9233)7 Q2(91,92,33) = (9192,5’3)7 Q3(91792733) = (927513)'

Then poq =poga,poga=pogs,and pogs =poq.

As usual, Dy will refer to the sheaf of linear, algebraic differential operators on X.
We let Og W Dx denote the subalgebra Ogxx ®p-104 p1Dx of Doxx. A quasi-G-
equivariant Dx-module, by definition, is a Dx-module 2, together with the datum of an
O¢ W Dx-linear isomorphism 3 : p* 9 — p* M, such that the diagram

q50

G M GptMm
(4.3) zH zH

gt Mm LN qip" M >~ gz M L qzp" M
commutes. If § is linear even over Dgy x, this reduces to the usual definition of a G-
equivariant D x-module.

The definition of quasi-G-equivariance can be loosely paraphrased as follows. For g € G,
let pgy : X — X be translation by g. The datum of 3 consists of a family of isomorphisms
of Dx-modules (3, : py M = M, depending algebraically on ¢, and mutiplicative in the
variable g.

As example, we mention the sheaf of sections O(E) of (E, Vg), a G-equivariant algebraic
vector bundle E with a G-equivariant, algebraic, flat connection Vg. Then Dx acts on
O(E) via the flat connection, and the resulting Dx-module is quasi-equivariant. The
Lie algebra g of G acts on sections of the G-equivariant vector bundle E by infinitesimal
translation; on the other hand, each A € g determines a vector field on X, again by
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infinitesimal translation, and as such also operates on sections via the connection. When
these two actions of g coincide, the Dx-module O(E) is G-equivariant, and one calls the
sheaf of flat sections a G-equivariant local system.

If G acts transitively on X, equivariant vector bundles with flat, equivariant connection
are the only examples of quasi-G-equivariant Dx-modules coherent over Ox : the cate-
gory of quasi-G-equivariant, O x-coherent D x-modules coincides with the category of pairs
(E, VE), consisting of a G-equivariant algebraic vector bundle E with a G-equivariant, al-
gebraic, flat connection Vg, and flat, G-equivariant bundle maps between them. The
latter category, in turn, can be identified with the category of finite dimensional, alge-
braic (g, H)-modules, where H C G denotes the isotropy subgroup at some reference point
xg € X. The preceding statements remain correct even without the hypothesis of coher-
ence, provided one allows for algebraic vector bundles of possibly infinite rank, and possibly
infinite dimensional algebraic (g, H)-modules [K3]: if H C G is a closed subgroup, there
exists a natural equivalence between Modg (D¢, i), the category of quasi-coherent, quasi-
G-equivariant D¢, -modules and G-equivariant morphisms, and Mod(g, H ), the category
of algebraic (g, H)-modules and (g, H)-invariant linear maps,

(44) ¢:MOdG(DG/H> LMOd(gvH)v ¢(m> = 9)’t/je[{gj{ .

Here J.py denotes the ideal sheaf of the point eH; the isotropy group H operates on the
“geometric fiber” 9M /T.yg M via the equivariant Ox-module structure, and U(g) via an
action which we shall now describe.

We return to the general case of a quasi-G-equivariant Dx-module 9. Again, the Lie
algebra g acts on 9 in two ways. First, via g — I'(©x) — I'(Dx) and the Dx-module
structure, and secondly, through differentiation of the G-action when we regard 91 as a
G-equivariant Ox-module. We denote the former action by ap, the latter by «;, and we
set v = a; — ap. Then

v:g— Endp, (9), and

(4.5) o :
~ is a Lie algebra homomorphism.

Thus 7 turns 9 into a (Dx,U(g))-bimodule. The quasi-G-equivariant Dx-module 9 is
G-equivariant as Dx-module precisely when v = 0.

In our discussion of quasi-equivariance so far, no particular assumptions were imposed
on the algebraic group GG and the G-manifold X. From now on, however, we shall require
G to be an affine algebraic group — which will be the case if G is reductive, as was assumed
in the introduction — and X a quasi-projective variety. These hypotheses will enable us
to define direct and inverse images, under G-equivariant morphisms, of objects in the
derived category of quasi-G-equivariant Dx-modules. A crucial tool is the following result
of Sumihiro [Su]:

4.6 Proposition. Under the hypotheses just stated,
a) X has a G-equivariant, open embedding into a projective G-manifold X ;

b) the G-equivariant projective completion X admits an ample, G-equivariant line
bundle.
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As before, we let Modg(Dx ) denote the category of quasi-coherent, quasi-G-equivariant
Dx-modules and G-equivariant morphisms between them:; Modg’h(D x ) shall denote the
full subcategory of D x-coherent modules. The analogues of locally free D x-modules in the
quasi-equivariant setting are modules of the form Dx ®e §, for some coherent, locally free,
G-equivariant O x-module §. We write Modg(Dx) for the full subcategory of Modg(Dx)
consisting of such locally free objects. As a consequence of Sumihiro’s result, on can show:

4.7 Lemma. Every 9 € Mod&"(Dx) has a finite left resolution by objects in Modg (Dx).

Standard arguments in homological algebra imply that
(4.8) every 9 € Modg(Dx) can be embedded into an injective object.

Injective objects in Modg(Dx) are injective also as objects of Modg(Ox), the category
of G-equivariant Ox-modules. In this latter category, direct image under a G-equivariant
morphism of quasi-projective G-manifolds, as well as the global Ext functors behave as
they do in the non-equivariant case.

We now consider the bounded derived categories D% (Dx), DbG’COh (Dx) built from the
abelian categories Modg(Dx) and Mod®"(Dx). Alternatively, the latter derived cate-
gory can be described as the full subcategory of D% (Dx) consisting of complexes whose
cohomology lies in Mod&™(Dx).

In view of the discussion in the preceding paragraphs, direct and inverse image functors
can be defined on the bounded derived categories, as follows. Let f : X — Y be a
G-equivariant morphism between the quasi-projective G-manifolds X, Y. Then

(4.9) f* N — Dx_yv ®f*1”Dy f‘l‘ﬁ ~ Ox ®f71(f)y f‘l‘ﬁ

defines a right exact functor from Modg(Dy) to Modg(Dx ), which can be left derived in
the bounded derived category:

(4.10) Lf*: D% (Dy) — D%(Dy).

The usual definition of direct image,

L
(411) M — Rf*(DY<—X ®Dx m):

has meaning also in the G-equivariant case, if properly interpreted: Dy . x has a deRham-
type resolution by (f —1Dy.D x )-bimodules which are flat over Dx; if Dy x is replaced
by this resolution, and if 9t is represented by an injective complex, then (4.11) makes
sense in the bounded derived category. We use the customary notation

(4.12) /f . DY(Dx) — D(Dy)

for this D-module direct image functor.

If f is smooth, Lf* sends D’ , (Dy) into D’ , (Dx), and if f is projective, ff maps
Db, (Dx) into Db, (Dy). If f is both smooth and projective, the two functors are each
other’s left and right adjoints when restricted to the coherent subcategories, up to a shift

in degree:
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4.13 Theorem. Suppose f: X — Y is both smooth and projective, and let dim X/Y
denote the dimension of the fibers. Then, for M € ngcoh (Dx) and M € D%,coh(DY):

a) HomeG(DY)(‘ﬁ,/fim) ~ Hompy (py(Lf*N[-dim X/Y], M),
b) Hompy (py)(9, LFN) = Hong(Dy)(/fﬂﬁ[dimX/Y],‘ﬁ),

functorially in 9 and .

We shall apply these results about quasi-equivariant D-modules in the setting of the
flag variety X of a reductive group G, and we shall need them also in the twisted case.
It is possible to develop them systematically for quasi-G-equivariant modules over a G-
equivariant ring of twisted differential operators — for a general discussion of twisting, see
[K3]. On the flag variety, twisted sheaves are particularly easy to visualize; in effect, they
are monodromic sheaves on the “enhanced flag variety” [BB3]. The extension of the results
above to the twisted case on the flag variety? is therefore straightforward, and we shall use
this more general case without further elaboration.

65 Equivariant Derived Category and Ggr-modules.

The equivariant derived category was introduced by Bernstein-Lunts [BL]; a concise
summary can be found in [MUV]. We now recall the properties that are relevant for our
purposes, but only in as much generality as is needed here.

Let X be a real or complex algebraic variety, considered as topological space in its
Hausdorff topology, and G a linear, real or complex algebraic group acting on X. We write
Mod(Cx) for the category of sheaves of C-vector spaces, D’(Cx) for the bounded derived
category D°(Mod(Cx)); this differs from the notation of the introduction, but is consistent
with the conventions in the previous section. In the real algebraic case, D} _(Cx) will
denote the full subcategory of complexes with R-algebraically constructible cohomology;
similarly, in the complex case, D(l(’j_c((C x) is the bounded derived category of sheaves with
C-algebraically constructible cohomology — cf. [KSa|, where the analytic case is treated;
the algebraic case is considerably simpler in most respects.

We choose a tower of connected real, respectively complex algebraic G-manifolds

(5.1) VieVo—s . oV, o Vi — ..

such that

a) G acts freely on each V,, ;

5.2
(52) b) for each p > 0, HP(V,,,C) =0 if n>0.

For example, a sequence of Stiefel manifolds V,, will do, since the group G is assumed to
be linear. Because of (5.2a), the quotients G\ (X x V,,) exist as algebraic varieties. We let

2more precisely, on products of the flag variety with another variety, with the twisting confined to the

flag variety factor.
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pn @ X XV, — X denote the projection onto the first factor, ¢, : X x V,, — G\(X x V},)
the quotient map, i, : X x V,, — X x V41 the natural inclusion, and j,, : G\(X x V) —
G\(X x Vp,41) the map induced by iy,.

Objects of the bounded G-equivariant derived category Dg(@x) are, by definition,
quadruples S = (S, (Sn), (6n), (¥n)), with So € D®(Cx), (Sn)1<n<oo a sequence with
S, € Db((Cg\(Xxvn)), and (¢n)1<n<oco, (¥n)i1<n<oo sequences of isomorphisms

(5'33) On j£13n+1 e Sn, Yn: pr_LlSoo s qrjlsn )
such that, for each n,

Un Dy, 1S — q, 1S, coincides with the composition of
(5.3b)

p,_LlSOO ~ i;lp;}rlSoo —- Z';lq;ilsnﬂ ~ q;1j5i15n+1 — qglsn .

U Gn  bn
Morphisms in this category are pairs (7.0, ((,)), consisting of a single morphism 7., and a
sequence of morphisms ({,)1<n<co between corresponding objects, which are compatible
with the consistency conditions (5.3a). The category D% (Cx) inherits the structure of
triangulated category from D’(Cyx) and the Db(Cg\(XXvn)).

The G-equivariant bounded derived category of R-algebraically constructible sheaves,
D&R_C(CX), is the full subcategory of D% (Cx) consisting of objects S whose components
S, Sp belong to the appropriate derived categories of constructible sheaves. Analogously,
in the complex algebraic case, there is a G-equivariant derived category of C-algebraically
constructible sheaves, D%,C—C(CX)'

As in the previous section, we shall need to work also with twisted equivariant derived
categories. A systematic discussion can be found in [K3]. In the applications we have
in mind here, the twisting will take place only on flag varieties. This case is particularly
simple, so we shall not go into further detail.

The direct and inverse image functors Rf., Rfi, f~', f' corresponding to a G-equi-
variant, algebraic morphism f : X — Y exist in the G-equivariant case, and also in the
G-equivariant constructible case. They have the same formal properties as in the usual
bounded derived category D°(Cx).

Now let H C G be a closed, algebraic subgroup. The tower {V,,} that was used to define
the G-equivariant derived category can be used also for H, and thus, via inverse image
from the G\(X x V,,) to the H\(X x V},), one obtains the restriction functor

(5.4) Res$ : DY (Cx) — D% (Cx).

If H is normal in G, and if H acts freely on X, D% (Cx) ~ Dg/H((CH\X). Applying this
twice, viewing first G and then H as normal subgroup of G x H, and letting X x G play
the role of X, results in equivalence of categories

(5.5) Indy : DY (Cx) —— D%(Cxx(a/m))

“induction from H to G”; here G acts diagonally on X x (G/H). The terminology is
appropriate: Let p : X x(G/H) — X denote the projection; then Rp*OIndg and Rp!oInde
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are, respectively, the right and almost left adjoint functors of Resg — almost left adjoint
in the sense that the adjointness relation involves a dimension shift and tensoring by the
stalk of the orientation sheaf of G/H at the identity coset. Here, again, everything that
was said remains valid in the twisted case.

Let us recall the definition of the Matsuki correspondence for sheaves. We adopt the
notation of the introduction: X is the flag variety of the complex reductive group G, Gg
is a real form of G*", Kr C Gr a maximal compact subgroup. We fix a linear function
A on the universal Cartan algebra, and let D% 1 (Cx), D%R’ 1(Cx) denote the equivariant
derived categories with twist A\. For equivariant derived categories on products of X with
another space, the subscript A shall refer to the category of sheaves with twist A along the
factor X, but without twist along the other factor. Since K and Gy operate on X with
finitely many orbits, constructibility for objects in Dl}(’ L(Cx), DbGR’ 1(Cx) comes down to
finite dimensionality of the stalks of the cohomology sheaves. The inclusion

(5.6) i:SR =def GR/KR — S =def G/K

realizes the Riemannian symmetric space Sg as real form in the affine symmetric space S.
Further notation:

(5.7) p:XxS—X, ¢g:XxS—S8
are the projections onto the two factors. In [K2], it was conjectured that

P D?{,A,C—C(CX) - DgR,A,R—c(CX) )

(5:8) o(T) = Rpi ((Resd, md§(T)) @ (¢70.i'Cs) ) [2dim §|

defines an equivalence of categories. This was proved by Mirkovi¢-Uzawa- Vilonen® [MUV].
Note that i'Cg ~ org,,s[— codimg Sg] ~ org,[—dim S], since S lies as real form in the
complex manifold S.

The key to our proof of (1.1b-f) is the definition of RHom%OZ(Sﬁ ® 7,0x) as an
object in the derived category of Fréchet Gg-modules D®(Fg, ), for M € D%,coh(DX) and

T e D%R’R_C(C x). For this purpose, we consider — slightly more generally than in the
previous paragraph — an affine algebraic group G, a quasi-projective G-manifold X, and
a real form Gy in G*". Since our construction involves both the algebraic and analytic
structure, we shall now make notational distinctions, for example, between the structure
sheaves Ox of the algebraic variety X and Oxan of the complex manifold X*". We write
F for the category of Fréchet spaces and F¢, for the category of Fréchet Gr-modules.

Let us work backwards to justify and motivate our definition. As before, p,, shall denote
the projection from X x V,, to X, with {V,,} asin (5.1). If we disregard the topology and
Gr-action for the moment,

RHomDXXVn (Lp;, M ®p;17, O(Xan)‘m) ~ RHomp, (M ® 7T,0xan) @ RI'(Cy,));

3[MUV] establish a slightly different equivalence, but their arguments can also be used to show that
(5.8) is an equivalence.
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hence, and because of (5.2b),

(5.9) RHomp, (M ®@7T,0O0xan) =~ l(iinRHomDXWn (Lp: M @ p, ' 7T, O(xxv,)an) -

n

This, in effect, allows us to replace X by X x V,,; in other words, we may as well assume
that G acts freely on X. But then 7 is isomorphic to the inverse image 7~ 'S of some
S € D%_C(CGR\X) under the quotient map 7 : X — Ggr\X. Like any object in the latter
derived category, S can be represented by a complex whose terms are finite direct sums
of sheaves jiCy, where j is the inclusion of some open, semi-algebraic subset U C Gg\X.
Thus 7 can be similarly represented, but the open subsets in question are then inverse
images of open subsets of Ggr\X, i.e., they are Gr-invariant open subsets of X. We now
replace O xan by the C* Dolbeault complex A%, to which it is quasi-isomorphic, and 90t
by a bounded complex of locally free quasi-G-equivariant Dx-modules — cf. (4.7). Again
neglecting the topology and Gr-action,

R Homp, (Dx ®ox §® jiCu, A”)) ~ RHomo, (§ @ jiCy, A®)) =

(5.10)
~ RT(U; (§)™ @0 yan AP)) =~ T(U; (F)" @0 yan ALY,
for every M = Dx ®p, § € Molef (Dx), with § € Modg’h(OX) locally free, and every
inclusion j : U — X of a Ggr-invariant, open subset U of X.
The complex on the right in (5.10) has a natural Fréchet topology — the C°° topology
for differential forms — and continuous Gr-action. That, in conjunction with the acyclicity
asserted by (5.10), makes it possible to define the functor

D%,coh(DX) X D%R,R—C(CX> - Db(fG]]O?

(5.11)
(M, T) — RHom? (M @ T, Oxen).

Formally, this functor is a projective limit with respect to the tower (5.1), and an inductive
limit with respect to the choice of a complex in Modg(Dx) quasi-isomorphic to 91, and
choices of particular representatives of 7.

The functor (5.11) interchanges the roles of direct and inverse images on its two argu-

ments: let f: X — Y be a G-equivariant morphism between algebraic, quasi-projective
G-manifolds X, Y; then

5.12 Theorem. If f is projective, there exists an isomorphism
RHom%? (M @ f,,' T, Oxan) ~ RHomy? ( / MmeT, Oyan) [~ dim X/ Y],
f

functorially in MM € DbG,coh(DX) and T € D%RR_C(Cy). If f is smooth,

RHomy? (Lf*M ® T,0xan) ~ RHompP (M @ R(fan)7T, Oyen)[—2dim X/ Y],
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functorially in 9 € DbG,coh(DY> and T € D%R,R—C(CX>'

We end this section with the statement of our main technical result, from which the
other results will follow. We return to our earlier hypotheses, with X denoting the flag
variety of g, the Lie algebra of the connected reductive group GG. The groups Kg and K
have the same meaning as in the introduction, i : Sg < S is the inclusion (5.6), and p, q
are the projections from X x S to the two factors, as in (5.7). We view X, S as algebraic
G-manifolds, and Sk as real analytic manifold.

The twisted version of the covariant Riemann-Hilbert correspondence [K3] establishes
an equivalence of categories

DRy : D%_eqﬁoh(Dx,,\) — DZI)(,—)\,(C—C<(CX)7

(5.13)
DRx(m) = RHOTI’LDX,A(O)(()\%W),

between D’I’(_e q.coh (Dx,»), the bounded K-equivariant derived category of coherent Dx -

modules?, and Dl}(’_ rc—c(Cx), the bounded K-equivariant, C-constructible derived cat-
egory with twist —A. A word about the twists: 91 is a complex of sheaves on X, i.e.,
sheaves without twist, over the ring of twisted differential operators Dx x, whereas Ox ()
is a twisted sheaf, with twist A, of Dx y-modules. Thus it makes sense to apply the functor
R Hom over Dx to this pair, and the result will be an object in the derived category with
twist opposite to that of Ox(\), since R Hom is contravariant in the first variable. The
Riemann-Hilbert correspondence is compatible with induction: if

(514) Ind?( : Dll)(—eq,coh(,DX)\) - Dg—eq,coh(pxxs)\)
is defined analogously to the induction functor (5.5), then

Ind%
Dl}(—eq,coh(DXJ\) — D%—eq,coh<,DX><S,>\)

(5.15) DRXl lDRst

Ind$
D?(,—A,(C—C(CX) — D%,—)\,C—C(CXXS)

commutes. The following result is now a consequence, essentially, of theorem 5.12, (5.15),
and other functorial properties of the deRham functor:

5.16 Theorem. For M € D¢ .., (Dx,-»), £ € Dy, .on(Dx.2), and L = DRx (L) €
Dll)(,—)\,(C—c(CX>7

R Homs” < / (Lp* M @0y, Ind%(L)) ®i*i!Cg,OSan) ~

q

~ RHomp? (M @ (L), Oxan(—A))[dim X]

4coherent K-equivariant Dx x-modules are necessarily holonomic, since K operates on X with finitely
many orbits.



EQUIVARIANT DERIVED CATEGORY AND REPRESENTATIONS 17

as objects in D*(Fg,).

On the left in this identity, the (complexes of) sheaves Lp* M , Ind% (£) are modules over
the rings of twisted differential operators Dx x5 —x and Dxx s,x, respectively, so their tensor
product over Oxxs becomes a module for the ring of (untwisted) differential operators
Dx «s via the “twisted comultiplication”

(5.17) Dxxs — Dxxs,-x®0x,s Dxxsx-

The direct image of this tensor product is simply G-equivariant “integration over the fibers”
of a complex in DbG’COh(DXXS). On the right hand side in (5.16), 9t is an untwisted module
over the ring of twisted differential operators Dx _y, and the sheaf of Cx-modules ®(L)
has twist —A, so their tensor product — this time over Cx — becomes a Dx _y-module with
twist —A, i.e., with the same twist as Oxan(—A).

We need to comment on our notational convention concerning twists. To keep the
discussion in the introduction brief, we tacitly incorporated the shift by p (=one half of
the sum of the positive roots), as is customary in representation theory. In the context of
D-modules, this p-shift would affect the definition of inverse image. Thus, beginning with
the present section, we normalize twists so that A = 0 corresponds to the untwisted case.

If one disregards both the topology and Ggr-action, one can re-interpret the left hand
side of the identification (5.16) as

R Hompg (/(Lp*ﬁﬁ ROx x5 IndIG((S)),CS—Rw) )

q

where Cg* denotes the sheaf of hyperfunctions on Sg. Thus (5.16) amounts to a Poisson
transform from Ggr-modules, geometrically realized on the symmetric space Sg, to the
same Gr-modules, but now realized on the flag variety X.

Under suitable ellipticity hypotheses, hyperfunction solutions are necessarily smooth.
Concretely, the space Homp,(91,C5), for any 91 € Mod&"(Dg), has a natural Fréchet
topology and continuous Gg-action, as a consequence of (4.7), for example. If M is elliptic
along Sg, in the sense that its characteristic variety Ch(M) intersects the conormal bundle
TS of Sg only in the zero section, then this €' solution space coincides with the space
of hyperfunction solutions, as topologized Gr-module:

5.18 Proposition. Hompg(M,CF) ~ 9 HO(R Homg’g (M ®4,i'Cg, Ogan)), as objects in
Q(Fay) , provided Ch(M)NTE S CTsS.

§6 Proof of the Conjectures.

We now have the machinery in hand to prove (1.1b-f), as well as (2.12) and the exactness
of the functors mg, MG. The crux of the matter is to identify both sides in (5.16) explicitly
for particular choices of 9t and £. Throughout this section, the notation of (5.16) shall
remain in force.

For any Borel subalgebra b C g, we identify the quotient b/[b,b] with the universal
Cartan algebra by specifying the the set of weights of g/b as the set of positive roots.
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This differs from the convention in [BB1,K3], but has the advantage of making dominant
weights correspond to positive line bundles. In particular, if p denotes one half of the sum
of the positive roots, then

(6.1) Ox(2p) ~ (L)™' (d=dimX)

is the reciprocal of the canonical sheaf.
The equivalence of categories (4.4) induces an equivalence of derived categories

(6.2) ¢ : D%(Ds) —— D’(Mod(g, K)).

We note that the original definition of ¢ can be re-interpreted as the D-module inverse
image functor (4.9) corresponding to the inclusion {eK} — G/K = S. Our next lemma
follows from base change in the Cartesian square

X — XxS8

l !

{eK} - S ’

applied to the Dg-module Lp* M ®p, Ind% (L), and with Dx _y ®o, (%)~ in the role
of M.

6.3 Lemma. For M = Dx _) Qo, (%)~ and £ € D%_eth(DX,)\),

/ (Lp*im R0, Ind%;(s)> ~ ¢~L(RI(L)).

q

coh

The characteristic variety of any 91 € Modg" (Dg) is G-invariant and intersects TS =~
(g/€)* exactly in the characteristic variety® of the finitely generated (g, K )-module ¢(N ).
If, moreover, M is annihilated by an ideal of finite codimension in Z(g) — equivalently,
if (M) is a Harish-Chandra module [HC1] — Ch(¢(M)) lies in the nilpotent cone when
one identifies g* ~ g via a non-degenerate, Ad-invariant symmetric bilinear form. On the
other hand, Tg S NTJ S ~ (gr/tr)™ consists of semisimple elements, so the assumptions
on N ensure that N satisfies the ellipticity hypothesis of (5.18). Recall the notation (2.3)
for the dual of a Harish-Chandra module. At this point, the definition of the ¢(g)-module
structure (4.5) and the definition of the functor MG imply:

coh

6.4 Lemma. Suppose 9N € Mod"(Dgs) is annihilated by an ideal of finite codimension
in Z(g). Then ¢(N) is a Harish-Chandra module, and

MG(¢(M)') ~ Homp,(M,C) ~ THORHomz? (N @ i.i'Cs, Ogan)),
as objects in Q(Fg,).

We now combine the previous two lemmas with theorem (5.16). We suppose that
£e Dll){_eq7coh(DX7)\) satisfies the vanishing condition

(6.5) H"(X,£) =0 forn#0,
and set £ = DRx(£), as before. Then H°(X, £) is a Harish-Chandra module, hence

5i.e., the “associated variety” in the terminology of [Vo].
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6.6 Corollary. Under the hypotheses just stated,
MG(HO(X, £)) ~ "H® (RHomig? (D, » @oy (9%)™' ® B(L), Oxen(~N)[d])

as objects in Q(Fgy)-

Disregarding both the topology and Gr-action for the moment, we can make the further
identifications

RHomDX,—A(DX7—>\ ®ox (Q§(>_1 ® @([,) ) OX‘“L(_)‘))[d] =
(6.7) ~ RHomp, (%) ' ®@ (L), Oxan(—\))[d] ~
~ RI(RHom(D(L), Oxen(—2p — \)[d]) :

cf. (6.1). Here we view ®(L) as object in D%’_QP_A’C_C(CX), as we may: 2p is an integral
weight, and this implies the existence of a canonical isomorphism

(68) D?(,—Zp—)\,C—C(CX> = D?(',—)\,(C—C(CX) .

We shall apply (6.7) more specifically in the case of a Dx y-module £ which corresponds
to the Harish-Chandra module (2.11) via the Beilinson-Bernstein equivalence.

We use the notation of (2.10-11). Let 7 : X — Y denote the natural projection. Then
D = 7~ (YR) is the unique closed Gg-orbit in X. It is contained in the unique open K-orbit
@ C X, and the Matsuki correspondence pairs the two orbits D, ). The highest weight
spaces E(;)/n:Er(;), as x ranges over D, with b, = stabilizer of x in g and n, = [b,, b,],
constitute the fibers of a Ggr-equivariant line bundle L over D. This line bundle extends
to a K-equivariant algebraic line bundle over the K-orbit (), and we refer to the extension
by the same letter L. As is the case with all K-orbits in X, the inclusion of the open orbit
i : Q — X is an affine morphism, so the D-module direct image of Og(L) coincides with
the sheaf direct image

(6.9a) £ = i,0g(L) € Mod?",,(Dx ),

and the higher (sheaf) direct images vanish; here A denotes the highest weight of E.
Moreover,

(6.9Db) HO(X, ) =Ind®) , (E), H'(X,2)=0 ifn#£0.

Proofs of these assertions can be found in [HMSW], for example.
The Riemann-Hilbert correspondence relates the D-module direct image to the direct
image in the derived category of sheaves of C-vector spaces, so

(6.10&) L =def DR)((S) ~ Ri*(DRQ(OQ(L)))

is the direct image of a K-equivariant, twisted local system on ). The proof of (1.1a) in
[MUV] gives a description of ®(L) for this particular sheaf £, namely

(6.10Db) ®(L) ~ j.i7'L,
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with j denoting the inclusion D <— X. We now use the fact that 7 : D — Yg is a real
analytic fibration, with smooth complex projective fibers, and Bott’s description of the
cohomology of Oxan(—2p — A) along the fibers, to conclude

H (RT(R Hom(D(£) , Oxcen (=20 — A)[d])) =
(6.11) N C™*(Yr,E* @ A™T*Y) ifn=0
0 ifn#0,

still without regard to the the topology and Gr-action. Formally, the identity (6.11) should
involve also the orientation sheaf of Yg, but the connectivity assumption about G implies
that Yg is orientable. In the derived category of Fréchet Gr-modules, vanishing of the
ordinary cohomology forces exactness. Hence, in view of (6.6-8), we have shown:

6.12 Proposition. If £ satisfies the hypotheses (6.9),

"H" (RHom$? (D, x @0 (%)™ @ B(L), Oxen(-N)[d]) =

MG (Indgﬁzgﬂimpk)(E* ® /\m“m(g/p)*)> ifn=0

~

0 ifn#0.

In the next statement, C°°(Gr)xy— fini shall denote the space of C* functions on Gr
which are Kg-finite under the right action. We regard this space as a left (g, K)-module
by composing the right action with the canonical anti-automorphism of g.

6.13 Theorem. For every Harish-Chandra module M and every n # 0,

EXt?g’K)<M, OOO(GR)KR_fZ'nZ‘) ~ EXt%S ((ZS_IM &® i*i!Cs, Osan) = 0.

The isomorphism between the two Ext groups is formal. For any member M of the
principal series, the vanishing of the higher Ext groups follows from (5.16) and (6.12).
It suffices to prove the vanishing for irreducible Harish-Chandra modules. That can be
done by downward induction on n — irreducible Harish-Chandra modules can be realized
as submodules of modules belonging to the principal series [C1,BB2]; for large n, vanish-
ing follows from the finiteness of the global dimension of Dg, or alternatively, from the
analogous finiteness statement in the category Mod(g, K).

Theorem 6.13 implies the exactness of the functor MG, and by duality, also of mg.
Indeed, we may replace C*°(Gr) by C*°(GRr) k- fini in the definition (2.5), and (g, Kr)-
invariance by (g, K)-invariance — the image of a Kg-finite vector under a Kg-invariant
linear map is necessarily Kg-finite also — so the theorem applies directly. The vanishing
of the higher Ext groups means, in particular, that R Hom gy (M, C*°(GRr) Kz fini) €
Db(F¢,) is strict. That, in turn, insures that the induced topology on C§°(Gr) ®(g.1z) M
is Hausdorff, so the phrase “largest separated quotient” in the definition (2.7) becomes
unnecessary.
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The isomorphisms (6.7) justify the following definition. For S € DbGM\’R_C(CX), we
regard R Hom(S,Oxan(\)) as object in the derived category of Fréchet Ggr-modules via
the identification

(6.14) RHom(S,Oxen(})) =~ RHomp? (Do, , @ox (%) 7' @S, Oxan (X +2p)).

According to (5.16), (6.6) and (6.13), this complex has the property MG and satisfies
(1.1b,d,f)®, at least if £ = (DRx)'®'(S) € Dk _., .on(Dx,—r—2,) has non-zero coho-
mology in only one degree; the general case follows by means of standard techniques in
representation theory [SW]. The definition of RT'(S ® Oxan(—A — 2p)) as object in the
derived category of DNF Ggr-modules is analogous and formally dual to the preceding case.
The duality between the two globalization functors then implies the property mg and the
assertions (1lc,d,e) for the latter complex.

Until now, we have used (6.7) and (6.11) only to establish the vanishing of the higher
Ext groups in (6.12). A careful examination of this chain of isomorphisms shows that the
topology and Gr-actions are preserved, i.e.,

"H (R Homig, | (Dx, @0y (%) @ 8(L), Oxen (—N)[d]) =
~ C7%(Yr, E* @ A™T*Y)

(6.15)

2

as objects in Q(Fgy), if £ is chosen as in (6.9). That, in conjunction with (6.6), implies
the second half of theorem 2.12 — the other half follows by duality.

§7 Invariant Systems of Differential Equations.

In this section, Z shall denote a quasi-projective G-manifold, Zg a Gg-invariant real
form, i : Zg — Z the inclusion map, and 91 a coherent, quasi-G-equivariant Dz-module.
We regard R Homp, (9 ,C5*) as an object in the derived category of Fréchet Gg-modules

D®(Fg,) by making the identification
(7.1) R Hom3? (9M,C,*) = RHom? (M ®i,i'Cgz, Ozen) .

We shall show, under appropriate hypotheses, that this object has the property MG. In
particular, the space of hyperfunction solutions of the restricted system on Zx will then
have a natural Fréchet topology and continuous Gg-action, and the resulting representation
will be admissible, of finite length.

Recall the definition of the homomorphism ~ : U(g) — Endp,(9) in §4, and let
wz : T*Z — gx denote the moment map. A calculation with a good filtration of 91 by
G-equivariant coherent Oz-modules shows:

(7.2) Ch(IM) C pz' (ChU(g)/Ann,(M))) ,

Sthe reasons for the appearance of 2p in the present discussion and for its absence in the introduction
were explained in §5.
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where Ann. () denotes the annihilator of 9t in U(g) with respect to the action 7.
If 9 is not only quasi-G-equivariant as Dz-module, but G-equivariant, then the entire
augmentation ideal annihilates 2, so

(7.3) Ch(M) C puy'(0) if M € Mod", (Dz).

The nilpotent cone N* C g* — i.e., the image of the nilpotent cone N' € g when g* is
identified with g by means of an Ad-invariant, nondegenerate symmetric bilinear form — is
the variety defined by the augmentation ideal in S(g)“, hence

(7.4) Ch(9M) C py'(N*) if M is Z(g) — finite;

here Z(g)-finiteness means that some ideal of finite codimension Z C Z(g) (= center of
U(g)) annihilates 1.
Borel subalgebras are solvable. Hence, by arguments in either [KMF] or [G, appendix],

(7.5) Ch(9M)Nu,'(bt) C T*Z is an involutive subvariety,

for any Borel subalgebra b of g. We shall call 9t admissible if this involutive subvariety
is Lagrangian, for every b — or equivalently, for some b, since the action of G preserves

Ch(9M).

7.6 Theorem. Let M € Mod%" (D) be admissible and Z(g)-finite, and S an object in
the bounded equivariant derived category D%R,R—C(CZ)' Then RHomtDOg(i)ﬁ ®S,O0zan),
as object in D°(Fg,), has the property MG.

This statement neither involves, nor depends on, the existence of a Gr-invariant real
form Zr. However, when such a real form does exist, the theorem, with i,3'Cy in place of
S, provides the criterion alluded to at the beginning of this section.

We begin the sketch of the proof of (7.6) with some general remarks. The forgetful
functor

(7.7a) Modg—eq(Dz) — Modg(Dz)
has a left adjoint,
(7.7b) EQ : Modg(Dz) — Modg_cq(Dz),

given by EQ(9M) = 9 /v(g) M ; here v(g) M denotes the image in M of the quasi-G-
equivariant Dz-module g ® M. The functor EQ is visibly right exact.

Coherent, Z(g)-finite, quasi-G-equivariant Dz-modules admit finite filtrations such that
the successive quotients are modules with an infinitesimal character, i.e., modules on which
Z(g) acts by a character. Also, if any two objects in a distinguished triangle in D®(Fg,)
have the property MG, then so does the third. This allows us to assume, without loss
of generality, that 901 itself has an infinitesimal character. To be consistent with our
notational choices in §§5,6, we index characters of Z(g) by linear functionals \ on the
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universal Cartan without the customary shift by p (= half sum of the positive roots);
in other words, x» : Z(g) — C denotes the character by which Z(g) acts on the Verma
module with highest weight A. Then x, = x, if and only if X\ + p is conjugate to p + p
under the action of the Weyl group W. We let Modé‘; (Dz) denote the full subcategory of
Modg(Dz) consisting of modules with infinitesimal character y,, and Modg’h’A(Dz) the
full subcategory of coherent modules in Modé;(DZ). Because of our earlier assumption,
M belongs to one of these subcategories:

(7.8) M € ModS"(Dy).
Replacing A 4+ p by an appropriate W-translate, we can arrange
(7.9) (,\+ p) & Z<o, for every positive coroot é;

we shall refer to this condition by saying that A + p is integrally dominant.

For the moment, we do not assume (7.9). We shall consider modules over the ring
of twisted differential operators Dxyz » on the product of the flag variety X with Z;
the twisting is confined to the factor X, and is indexed by the parameter A\. We write
p: XxZ— X, q: XxZ — Z for the two projections. With these ingredients, we define
functors

7.10) A : Modg(Dz) — Moda—_eq(Dxxz.), AM) = EQ(Dx \XMN),
U : Modg_eq(Dxxz) — Mody(Dy), T(L) = ¢.(2).

The fact that ¥ is well defined requires verification: the G-equivariant projection ¢ has
projective fibers, so the sheaf direct image ¢, exists as a left exact functor between the
categories of quasi-G-equivariant, quasi-coherent D-modules; a small calculation shows
that the Dx x z x-module structure of £ imposes the infinitesimal character y on ¢.(£).

By construction, A is right exact, W left exact. We note also that ¥ is the right adjoint of
A. The next statement, we shall see, formally contains the Beilinson-Bernstein equivalence
of categories [BB1].

7.11 Theorem. If \ + p is integrally dominant,
a) R"q.(£)=0, for every £ € Mod(Dxxz,) and every n > 0;
b) WAM) ~N, for every M € Mod}(Dz).

If A\ + p is both integrally dominant and regular, the functors A, ¥ define equivalences of
categories, and are quasi-inverses to each other.

The proof of this theorem amounts to a reduction to the analogous statements in [BB1].
The vanishing of the higher derived images R"q.(£), for example, is local with respect to
Z, so one may as well suppose that Z is affine. But then R"¢q,(£) is determined by its space
of global sections, and that space coincides with the n-th cohomology of the quasi-coherent
— for affine Z — Dx y-module p,(£), so the Beilinson-Bernstein vanishing theorem applies.
The other assertions can be verified by similar arguments.
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To make the formal connection with [BB1], let us look at an algebraic subgroup H C G.
The theorem, with Z = G/H and A+ p integrally dominant regular, asserts an equivalence
of categories

(7.12a) Mod (D ar) =~ Modg—cq(Dxxa/mn) -

But Modg_cq(Pxxa/m,n) =~ Mody_cq(Dx,2) for formal reasons — “induction from H to
G”. On the other hand, the equivalence of categories (4.4) identifies Modg —cq(Px xc/m,2)

with Mod* (g, H), the category of algebraic (g, H)-modules with infinitesimal character x .
Thus (7.12a) is tantamount to the equivalence of categories

(7.12b) Modg—eq(Dx.x) ~ Mod*(g, H) .

This, of course, follows from the Beilinson-Bernstein equivalence and, in fact, reduces to
it precisely when H = {e}.

Our next statement can be verified directly, by keeping track of the effect of the func-
tors A, W on characteristic varieties; both (7.3) and (7.5) are crucial ingredients of the
argument.

7.13 Lemma. The functor A assigns a holonomic module in Modg_e¢q(Dxx2z,x) to any

admissible module N € Modé‘;(Dz). Conversely, U assigns admissible modules to holo-
nomic modules.

For the proof of (7.6), we may suppose that the admissible, quasi-G-equivariant D z-
module 90t satisfies the additional hypotheses (7.8-9). Because of (7.11) and (7.13), there
exists a holonomic, hence coherent module £ € Modg_¢q(Dxxz,2) , such that

@& =M, R'¢.L =0 ifn#0.

Thus, as a consequence of the definition of the direct image functor (4.12), we obtain the
isomorphism

(7.14) m ~ / (Lp* (DPx,-x ®ox (2%)7") ®ox, s £)

q

in the derived category D&wh(DZ); here d, it should be recalled, denotes the dimension
of X. We now argue as we did in §5: for S € DgR,R—c(CZ)7 and with £ = DRx«z(£),

R Hom7? (/ (Lp*(Dx,—x ®oy (%)) ®oy,, £) ® S, (’)Zan) [2dim Z] ~

q

(7.15)
~ RHomp?  (Dx,x®o0y (%) @ Rp.(L®q7'S), Oxan(=A))[d],

as objects in D°(Fg,). Except for the concrete choices of S and ), the object on the right
in (7.15) coincides with the object (6.14), and thus has the property MG.
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