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§ 1. Introduction

In the representation theory of a compact group K, a major role is played by the
Peter-Weyl theorem, which asserts that the regular representation I?(K) decom-
poses as a countable direct sum of irreducibles with finite multiplicity. For
compact connected Lie groups this becomes much more concrete: the irreduc-
ibles are explicitly known, their characters are given by the famous Hermann
Weyl formula, and there is a uniform geometrical construction for them due to
Borel and Weil.

For a general locally compact group G, the general Plancherel theorem,
which goes back essentially to von Neumann and is a very sophisticated
generalization of the Peter-Weyl theorem, gives a direct integral decomposition
of L*(G). For real semisimple Lie groups (connected and with finite center) the
work of Harish-Chandra makes the Plancherel theorem quite explicit. The first
and basic step is the identification of the discrete part of L2(G): the irreducible
representations which enter here are (by definition) those of the discrete series.
For these Harish-Chandra has given very precise results in terms of their
(generalized) characters [14, 15]. Moreover, a geometrical realization of the
discrete series, analogous to the Borel-Weil theorem, was conjectured by Lang-
lands and subsequently established in various forms (cf. [21, 23, 22, 25]).

The purpose of this paper is to give a new and, to a large extent, sell-
contained account of the principal results concerning the discrete series. The
main novelty in our presentation is that we use (a weak form of) the geometric
realization to construct the discrete series representations and to obtain infor-
mation about their characters. Previously things were done in the reverse order,
the existence of the discrete series, proved by Harish-Chandra, being used to get
the geometric realization. Analytically our prpof of the existence of the discrete
series rests on the L*-index theorem [1], which gives a suitable generalization to
non-compact manifolds of the Atiyah-Singer index theorem. The way in which
the I2-index theorem is used is quite analogous to the role of the Riemann-Roch
theorem in the Borel-Weil-Bott approach to the representations of compact Lie
groups.
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In broad outline the main results concerning the discrete series may be listed
as follows:

(1) existence of discrete series representations H,, indexed by a suitable
lattice parameter A,

(2) exhaustion—proof that the representations in (1) give all the discrete
series,

(3) Geometric realization—identification of H, with the space of L*-solutions
of a certain elliptic differential equation (of Dirac type) on the symmetric space
G/K,

(4) Character behavior —discrete series characters decay at co (in an appro-
priate sense) and are determined by their restriction to (regular points of) a
compact Cartan subgroup.

(5) Character formula—explicit formula for the character of H, on a compact
Cartan subgroup.

One of the features of our approach is that (1), (2) and (3) are all treated
together in a rather natural manner. The character properties (4) and (5) are
needed for the proof of (2). The results given in this paper are complete for (1),
(2), (4) and (5), and almost complete for (3). We refer to Section 9 for a more
detailed description of the situation concerning (3).

To a great extent this paper is a synthesis of existing results and methods. Its
aim is to demonstrate how the theory of the discrete series may be established
on geometric-analytic foundations. Because the literature is diverse, extensive
and highly technical, we have thought it worthwhile to present here a reason-
ably complete account, hopefully written so as not to make extensive demands
on the reader’s knowledge of Lie group theory. As a result many relevant results
are reproved (or sketched) in the version which we need —frequently this is
much simpler than in the published form.

Naturally some basic results are going to be needed. In order to clarify the
situation it is perhaps best to list the sort of results which we shall assume.
These belong to several different categories beginning with some generalities:

(a) algebraic structure of semisimple Lie groups,

(b) basic generalities about unitary representations, including the existence
of the Harish-Chandra distributional characters,

(c) representation theory of compact Lie groups,

(d) abstract Plancherel theorem.
Next come the results which are crucial to our approach:

(e) existence of uniform discrete subgroups I' of real semisimple Lie groups,

(f) I*-index theorem,

(g) index theorem for compact manifolds,

(h) differential-geometric computations involving curvature.
The existence of I' is essential for the application of (f), which via (g) leads to
the curvature computations in (h), exactly as in the work of Hirzebruch [17].
Finally there are three more specific results of Harish-Chandra:

() H® V has a finite composition series when H is an irreducible unitary
representation of G and V is a finite-dimensional representation,

(j) structure of the algebra of bi-invariant differential operators on G,
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(k) local integrability of the Harish-Chandra characters.

Of these (i) follows from the fact that H appears as a subrepresentation of an
induced representation (see the simple proof by Casselman [9]). The algebraic
result (j) is required as the first step in the proof of the much deeper theorem (k).
An alternative proof of (k), incorporating also a simple proof of (j), will be given
in [3], which should therefore be viewed as foundational for the present paper.

A number of purely algebraic arguments which we reproduce in suitable
form are relegated to an Appendix. These include Parasarathy’s computation of
the spinor Laplacian, an estimate for the action of the Casimir operator on a
unitary representation, and an algebraic characterization of certain represen-
tations in terms of their K-decomposition.

We turn now to a description of the contents of the various sections,
highlighting the main features. We begin in Section 2 with a general review of
the abstract Plancherel theorem. This is essentially standard material included
for the benefit of the reader, but it also sets the scene for Section 3, where we
apply the I*-index theorem of [1] to Dirac operators on the symmetric space
G/K, with G and K having the same rank. The final result of Section3 is
Theorem (3.16), which gives an explicit formula for the difference of the Plan-
cherel measures of two spaces J#," and J,  of square-integrable, harmonic
spinors on G/K, with values in a vector bundle ¥,. The space #," will
eventually turn out to be the representation space of a discrete series repre-
sentation, but the important fact at this stage is that s, +0, for suitable
parameters p.

In Section 4 we show that the formal difference #," — ., is a finite linear
combination of irreducibles, which therefore belong to the discrete series. This is
made precise by the difference formula (4.24), which in particular contains an
existence theorem for the discrete series. From the identity (4.24) we derive a
formula, valid on the elliptic set, for the sum of the discrete series characters
which correspond to a given infinitesimal character, each multiplied by its
formal degree (Theorem (4.41)). The arguments in §4 depend on an analysis of
the K-characters of representations of G, and the one non-trivial fact we use is
that only finitely many irreducible representations can have a particular in-
finitesimal character (a consequence of the local integrability of characters).

In Section 5 we assume the parameter u is sufficiently positive. Using an
algebraic version of Parasarathy’s formula (explained in the Appendix) we
deduce that #,” =0 and that any irreducible constituent H; of 2, has a K-
decomposition with a lowest highest weight. Combined with a purely algebraic
result concerning such representations (Proposition (5.14), proof sketched in
Appendix), this leads rapidly to Theorem(5.20), which asserts that " is
irreducible and gives its formal degree, as well as the character formula on the
elliptic set.

Sections 6 and 7 are devoted to a study of growth conditions at infinity for
characters, or more generally, for invariant eigendistributions. Unlike Harish-
Chandra, who uses a certain Schwartz space for this purpose, we carry out our
analysis in the framework of Sobolev spaces. The Sobolev spaces are technically
simple to deal with, and they are already used in [1], on which our construction
of the discrete series rests. We first show (Lemma (6.3)) that a discrete series
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character extends from CZ(G) to some Sobolev space. We then enunciate the
main results (Proposition (6.10) and (6.11) and Lemma (6.15)), which give the
precise form of (4) above, and in particular show that the discrete series occurs if
and only if rank G=rank K. As a further consequence of these results, in
combination with Theorem (4.41), we also obtain an explicit description of the
infinitesimal characters of the discrete series (Corollary (6.13)). Here we use
(4.41), which came from the I’*-index theorem, for singular as well as non-
singular weights. Thus the I2-index theorem, as applied to G/K, embodies both
an existence theorem (leading to the existence of the discrete series) and a non-
existence theorem, which enters our exhaustion proof for the discrete series.

The proofs of (6.10), (6.11) and (6.15) are given in Section 7. In the first place
we verify (Corollary (7.12)) that the Sobolev spaces of G and of a Cartan
subgroup B are compatible in the way one would expect. By splitting B into its
toroidal part and its vector part, (6.10) is eventually reduced to an easy property
of Sobolev spaces in Euclidean space. The proofs of (6.11) and (6.15) are then
straightforward applications of the Harish-Chandra “matching conditions”,
which describe the behavior of an invariant eigendistribution as one moves
between two adjacent Cartan subgroups. These matching conditions are an
essential supplement to the local integrability, and they will also be established
in [3].

In Section 8 we use the properties of characters just described, together with
Zuckerman’s tensor product technique (which we explain to the extent that it is
used here), to deal with those parameters u not covered by Theorem (5.20).
Zuckerman’s method enables us to “shift” u, making it sufficiently nonsingular
to apply Theorem (5.20). This makes it possible to refine Theorem (4.41), which
gave a formula for certain linear combinations of discrete series characters on a
compact Cartan subgroup, into the corresponding formula for individual dis-
crete series characters. The resulting character formula constitutes one part of
our main theorem (8.1), the others being the computation of the formal degree
and an exhaustion statement. These last two parts are easy and purely formal
consequences of the same arguments which produced the character formula.
Finally, at the end of Section 8, we prove Theorem (8.5), which extends to all
discrete series representations the results on the “lowest highest weight” of their
K-decompositions, previously established for sufficiently nonsingular parame-
ters. Again the proof uses the Zuckerman technique to shift the parameter.

Section 9 deals with the problem of realizing the discrete series geometrically.
The enumeration of the discrete series representations and the results about
their K-decompositions, as described in Section 8, make it a simple matter to
identify the discrete part of the spaces of square-integrable, harmonic spinors
H,*, #, (Lemma(9.4)). In order to eliminate the continuous part from the
Plancherel decomposition of #,*, #,~, we must appeal to Harish-Chandra’s
results about the explicit form of the Plancherel formula. The crucial statement
appears as Lemma (9.8); although the details of its proof go well beyond the
framework of this paper, we indicate at least the main ideas. The final con-
clusion is Theorem (9.3), which describes the spaces #,", #,”, and which in
particular provides a geometric realization for every discrete series repre-
sentation. We end the section with some comments about ways to avoid the use
of delicate properties of Plancherel measure.
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The Appendix, finally, contains proofs of four technical statements, which
have appeared elsewhere, and which are collected here for the convenience of
the reader.

An approach to the discrete series similar to ours has recently been develop-
ed by de George and Wallach. They start in the same way by choosing a
uniform discrete subgroup I' and then computing the index of the Dirac
operator on I'\G/K. However, instead of using the [*-index theorem to relate
this to G/K, they use a descending sequence I'>--->[,>--- of normal sub-
groups of finite index, intersecting in the identity. In a sense their argument is
more elementary, since they only work with compact manifolds. On the other
hand it appears to yield somewhat weaker results, and it does not tie in so
directly with the geometric realization. A connecting link between the de
George-Wallach approach and ours is to be found in a paper by Kazdan [18],
which investigates I?(G/K) via the limit of L*(I,\G/K), as n— co.

§ 2. Review of the Plancherel Theorem

Since we shall be making essential use of the Plancherel theorem, we review here
the basic facts, with particular reference to those properties which we shall be
using. We restrict ourselves to connected real semisimple Lie groups G with
finite center and recall that these are unimodular (left and right Haar measure
coincide).

The first basic fact is that any irreducible unitary representation H of G,
when restricted to a maximal compact subgroup K, has a direct sum
decomposition

1) H=@nV,

ieK
where the V] are the irreducible representations of K, and the multiplicities #,
satisfy the bound

n,<dimV,.
This in turn implies that for any fe Cy(G), the corresponding operator

7r(f)=£f(g) n(g) dg

(g n(g) denotes the action of G on H) is of trace class, and that fi—tracen(f) is
continuous, hence defines a distribution @, called the (Harish-Chandra) charac-
ter of the representation. Moreover the fact that n(f) is in particular compact
implies that G is of type I, i.e. that every factor representation involves only a
type I factor. This means that every umitary representation of G can be
decomposed in an appropriate sense into irreducibles. We let G denote the set of
(equivalence classes of) irreducible unitary representations of G.

The Plancherel theorem is concerned with decomposing the left (right)
regular representation, i.e. the action on I*(G) induced by left (right) translation.
In the first instance it asserts that we have a direct integral decomposition
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22 *(G)=[H;QH}dj,
G

where dj is a po§itive measure on G, H; is the irreducible representation indexed
by jeG, and H;® H} is the Hilbert space tensor product of H; and its dual. The
isomorphism (2.2) is compatible with both the left and right actions of G.
Moreover, if o/ denotes the von Neumann algebra generated by the left

translations on I?(G), we have an isomorphism

23) «=[ZM)dj,
G

where Z(H;) denotes the algebra of all bounded operators on H;. There is a
similar statement for right translations which generate the commutant o/’ of .o.

A further aspect of the Plancherel theorem (which determines the Plancherel
measure dj uniquely) involves the consideration of traces. On the C* group
algebra (C¥(G) under convolution), evaluation at the identity e of G defines a
natural “trace”. It turns out that this can be extended to the von Neumann

algebra /. More precisely, it extends to a map
traceg: & >R* U {0},

where /" denotes the cone of positive operators in 7. The elements Aes/™*
with traceg(A) finite are the positive part #* of an ideal » of o, on which
traceg extends as a linear functional. The elements of » will be said to be of G-
trace class. If A€ » then its “Fourier components” A; in (2.3) are of trace class
almost everywhere, and

(24) tracegA={traced;d;.
G

In particular, taking 4 =1(f) to be the operator representing fe C?(G) in the left
regular representation, we obtain

235 fle= (j; O;,(f)dj

(©;=Harish-Chandra character of H)). L
If we apply (2.5) to h=f + f, where f(g)=f(g~ 1), then since
h(e)=(§;|f(g)|2 dg=|fI”.

and m;( f )=m;(f)*, the result can be written in the form

(2.6) | f1?={trace(m;(f) n;(f)*)dj  (Plancherel formula).
G

The restrictions on f can be relaxed somewhat. If feI?(G) and I(f)eo/ (ie. I(f)
is bounded), then n(f)-n(f)* is of G-trace class, and so we can apply (2.4).
Moreover

tracec(I(f)- U ¥ =IfI?
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follows by continuity from the corresponding statement with feC3(G). The
easiest way to insure that I(f) is bounded is to take fel*(G)nL'(G). Thus (2.6)
holds for all feI?(G)nI}G).

The preceeding results are all standard, but in addition we shall need:

(2.7) feC*(G) and I(f)ed* = [(f) is of G-trace class and traceg(f)=f(e).

As we shall explain in the next section, a proof of (2.7) is essentially given in [1].

We shall use (2.7) in the particular case that I(f) is an orthogonal projection
onto a subspace W of I?(G). We shall write dimgW for trace; n(f) which, by
(2.6), is then equal to f(e). Now W has a decomposition

(2.8) W:gVK@H}" dj,

where W;cH; is the image of the projection operator m;(f). Since, by (2.4) and
(2.7), mi(f) is of trace class (for almost all j), this means that dim W, is finite (for
almost all j), and (2.4) becomes

(29) f(e)=dims W= [ dimW,d;.

In our applications the space L*(G) will be replaced by I1*(G/K, %)~ the 12-
sections of a homogeneous vector bundle & over the symmetric space G/K. It is
a fairly simple matter to modify the above formulae involving the Plancherel
measure to cover this case, as we shall now explain.

If F is a finite-dimensional unitary K-module, then & =G % F is a homo-
geneous vector bundle over G/K, and I*(G/K, %) may be identified with the
space of right K-invariants in I?(G) ® F. Because of (2.2) this gives

(210 B(G/K, )= [H,® Wdj,

where W, is the K-invariant part of Hf ® F, which is finite-dimensional by (2.1).
From (2.3) we see that the algebra # of G-invariant bounded operators on
I[*(G/K, #) corresponds under (2.10) to the direct integral

@11 [LWydj.
G

In the algebra &' ® £(F) there is a natural trace given by the tensor product of
trace; in .o/’ (the algebra generated by right translation in [*(G)) and the ordinary
trace in £ (F): for brevity we still denote this by trace; and the corresponding
dimension function by dimg. Restricting to the subalgebra # which acts on the
subspace (2.10), we see that

traceqA = [ trace A;dj;
G

here A;e.#(W)) are the components (given by (2.11)) of an operator A4 of G-trace
class in 4. In particular, if UcI?*(G/K,#) is any closed G-invariant subspace,
then
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U=[{H;®U,dj, with UcW,
G
and

(2.12) dimgU={dimU;d].
G

Suppose moreover that orthogonal projection B onto U is given by a smooth
kernel b—a section of Hom(%, #) over G/K x G/K. The corresponding 4 on G
given by A=p*Bp, (p: G—»G/K being the projection) then also has a smooth
kernal a, with a(x, y)=b(p(x), p(y)). Hence, by (2.7), A is of G-trace class and

(2.13) dimg U =tracegA=tra(e,e)=trb(0,0),

where p(e)=0 is the base point of G/K and tr denotes the usual trace in Z(F):
note that the fibre %, may be identified with F.

Remark. In the above we have implicitly assumed that Haar measure on K is
normalized to have total volume equal to 1, and that G/K is then given the
quotient of the two Haar measures. On G Haar measure is supposed fixed once
and for all —the Plancherel measure on G depends on this choice.

Returning to the general Plancherel theorem, we recall that H;, is said to
belong to the discrete series if j,€G has positive measure d;,. Then H; occurs as
a direct summand of the left (or right) regular representation, the corresponding
projection F, is of G-trace class in &/’ (or .o¢), and (2.9) reduces to dimg; H; =d;,.
For this reason, d;, is called the G-dimension, or formal degree, of H;,.

Finally we consider the universal enveloping algebra 2 (g%) of the complexified
Lie algebra g% of G. For any unitary representation H of G, we get an action of
U(g%) on the space of C* vectors in H. If H is irreducible, this space of C®
vectors is dense in H, the elements of U(g%) are represented by unbounded
operators, and the center 3 of U(g%) acts by scalars. Thus every element Ze3
defines a scalar function on G. On L*(G), the operator I(Z) and its formal adjoint
[(Z*) are both defined on the dense domain CJ(G) (here * denotes the standard
anti-automorphism of U(g?%), given by X*= — X for X eg%). Hence we may take
the closed operator T=closure of I(Z), and form the bounded operator A=
T(1+ T*T)~ Y% which commutes with both right and left translation and hence
belongs to the center of the von Neumann algebra .o/. Thus, in the decom-
position (2.2), A is represented by a diagonalized operator, i.e. the Fourier
components A; are scalars (almost everywhere), and the function j—4; is
measurable on G. From this it follows easily that the function which Z defines
on G is also measurable (but unbounded) on G. In particular these remarks apply
to the Casimir operator of g

§ 3. The I>-Index Theorem

In this section we shall apply the [*-index theorem of [1] to the symmetric
space G/K of a semisimple Lie group G. Formally this is quite analogous to the
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way in which the index theorem for compact manifolds may be used to derive
the dimension formulae for irreducible representations of compact Lie groups.
Computationally it is also closely related to the manner in which Hirzebruch [17]
computed the dimensions of spaces of automorphic forms.

For the convenience of the reader we shall first recall the statement of the I?-
index theorem. We suppose given a discrete group I' acting smoothly and freely on
a manifold X with X = "X compact, and an elliptic differential operator D on X
which is I-invariant {(and so is the lift of an elliptic differential operator D on
X). Hilbert spaces are defined by using I'-invariant hermitian metrics, and we
put

#+ =space of I2-solution of Du=0,
#~ =space of [*-solutions of D*v =0,

where D* is the adjoint differential operator. The orthogonal projections onto
#* have C* kernels K*(%, 7), which are I'-invariant, i.e.

K*(yX,y9)=K*(%3) for yel.
Hence we can define a (real-valued) I'-dimension of #°* by

dimp# * =trace, K™ = | tr K*(x,%)d%
nx
and similarly for # ~. Here tr denotes the pointwise trace of the matrix K *(%, %)

—acting on the fibers of the vector bundle involved —and the integral is taken
over a fundamental domain in X for I'. Finally we put

index,; D =dim;#* —dim,# .
The I*index theorem then asserts
(3.2) index,D=indexD.

Note that index D is an integer, being the difference of ordinary dimensions. By
the index theorem for compact manifolds [4], there is an explicit formula for
index D in cohomological terms. If index D >0 then (3.2) implies in particular
that the space #* of I2-solutions of Du=0 is non-zero. Moreover it says that
A% is in a certain precise sense “bigger” than 2 ~. In our application to G/K
these consequences will be spelled out in greater detail.

Fundamental to our applications is the following result of Borel [5] (see also
Borel and Harish-Chandra [6]): every real semisimple Lie group has a discrete
torsion-free subgroup I with I'\G compact. If K is a maximal compact subgroup
of G then I meets no conjugate of K, and _so I' acts freely on the symmetric
space X =G/K. The quotient X =I'/X =I'\G/K is then a smooth manifold. We
shall pick such a I once and for all. In our final results the group I' will
disappear; it enters only as a conveninent tool. This is to be contrasted with the
superficially similar situations arising in the study of I'-automorphic forms
where I' is the main object of interest.
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The differential operators D on G/K to which we shall apply the [*-index
theorem are the Dirac operators with coefficients in a (homogeneous) vector
bundle. We begin therefore by recalling the basic facts concerning these oper-
ators; for details we refer to [8, 22].

Recall first that an oriented Riemannian manifold M is said to be a spin
manifold if the structure group of its principal tangent bundle can be lifted from
SO(n) to Spin(n). A choice of such a lifting defines a spin structure, and the basic
Spin representation S of Spin(n) then defines an associated vector bundle & on
M, whose sections are “spinor fields”. The Dirac operator is a first order
formally selfadjoint, elliptic differential operator acting on spinor fields. If dim M
=n is even, then the spin representation S breaks up into two half-spin
representations S*,S™ and correspondingly & =91 @® ¥ ~. The Dirac operator
switches the two factors, so that it consists of an operator

D*: C*(M, ¥ *)»>C*(M, F);
together with D~ =(D*)*. If ¥" is any complex vector bundle on M with a
Hermitian connection, then one can define a Dirac-type operator D, on & ¥~
which again, when n is even, decomposes into D and its adjoint.

We now take M =X=G/K. The standard Riemannian metric of G/K is
certainly G-invariant, but in order for the Spin structure to be G-invariant it is
necessary that the representation Ki— Aut(g/f), induced by the adjoint representa-
tion of G, should lift to the Spin covering of Aut(g/f)=SO(n), so that S becomes a
K-module. We shall assume for the moment that this is the case. Since the Dirac
operator D is canonically associated to the metric and Spin structure, it follows
that it will be G-invariant. Similarly, if ¥~ is any homogeneous vector bundle
with connection on G/K, the operator D, will be G-invariant. Now a homo-
geneous vector bundle on G/K is associated to a representation V of K, and it
inherits a homogeneous connection from that of the principal bundle G—»G/K
(defined by the orthogonal complement p of f in g). In this manner every finite-
dimensional representation V of K defines a G-invariant operator D,..

We now assume that rank K =rankG, ie. that G has a compact Cartan
subgroup. This implies in particular that dimG/K is even, and so the spin
representation S decomposes into a direct sum S=S* @ S~. Thus for every V, we
have a G-invariant operator

Df: CP(G/K, V@ F )= C(G/K, RS ™),
and its adjoint Dy in the opposite direction. We now apply the I2-index
theorem to this operator: to conform with our previous notation we shall relabel
it D}. Since Dj is G-invariant, it is certainly I'-invariant, for any I'c G, and D}
will denote the corresponding operator on I''G/K: it is the Dirac operator on
this double coset space with coefficients in the bundle I'\¥"

The fact that D is actually G-invariant enables us to simplify both sides of
(3.2). On the one hand the I'-dimensions can be replaced essentially by G-
dimensions and related to the Plancherel measure. On the other hand the index
Dy on I'G/K can be computed in terms of invariant differential forms. We
proceed to describe these two aspects in detail.

For simplicity we consider first I2(G), with the two von Neumann algebras
o, ' generated by left and right translations. The operators that commute with
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left translation by all elements of I' form a von Neumann algebra # which
contains /', On # we have the I'-trace defined in [1]. For operators T with
smooth kernel t(x, y), which is compactly supported on I'(G x G) we have

trace, T= | t(x,x)dx.
neG

In particular, if T=r(f) is right convolution by fe C¥(G),
(3.3) tracerr(f)= | f(e)dg=vol(I'G) f(e)
e

=vol(I'\G) tracegr(f).

Since the r(f) are dense in &', this shows that, up to a volume factor, trace; on
o is the restriction of trace, on 4. In particular, for any operator Te’

T isof G-trace class < T 1is of I'-trace class.

Thus (2.7) follows from [1, (4.8)].

An entirely similar situation holds on replacing I?(G) by I*(G/K, #), where
Z is the vector bundle associated to a K-module F. We now take F=V®S*
and T=T% =projection onto the space #* of [*-solutions of the appropriate
Dirac equation on G/K. We get

(vol(I\G))" *dim, #* =trt*(0,0) (t* =kernel of T%)
=dimg #* (by (2.13))
=[{dimUtdj (by(212),

G

where

(B4 #* =(j;H,.® Uit dj.

Hence

(3.5 (vol(N\G)~ " index,-Dy = [ (dim U* —dimU;") dj.
G

We turn now to the other side of the problem, namely the computation of
the index of the generalized Dirac operators on the compact manifold I'G/K.
Since the work of Hirzebruch [17] this has become a standard type of com-
putation, and so we shall review it only briefly. For further details see for ex-
ample [17].

The index formula of [4] gives an explicit expression in terms of the
Pontrjagin classes of ''G/K and the Chern classes of the bundle ¥. Using the
differential forms which represent these characteristic classes, the index formula
takes the form

indexDJ = | f(0,9),

I'\G/K
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where @ is the curvature of I'\G/K, @ the curvature of ¥, and f an explicitly
known polynomial. Since we are dealing with homogeneous spaces and homo-
geneous bundles, the integrand is a constant multiple of the volume form dx:

(3.6) f(©,)=C(V)dx,
and hence
(3.7) indexD} = C(V) vol(I'\G/K).

It remains to calculate the constant C(V), which depends only on the K-
module V. This is a purely algebraic computation in the Lie algebra of G, and
the details are notationally complicated but not difficult. There is however a
proportionality principle due to Hirzebruch which enables us to by-pass the
computations, or rather to reduce them to well-known results for compact
groups. The basic idea is to compare the index formula (3.7) with the cor-
responding formula for M/K where M is a “compact dual” of G.

We assume for the moment that G is a real form of the simply-connected
complex semisimple group G*; we shall show later how to drop this assumption
as well as the earlier spin assumption on K. The compact dual M of G is the
maximal compact subgroup of G® containing K, whose Lie algebra m is related
to that of G by the orthogonal decompositions

g=t®p, wm=tDip.

The Killing form is positive definite on p, negative definite on ip, and so (if one
chooses the appropriate sign) it induces natural invariant metrics on G/K and
M/K. The corresponding curvature tensors essentially coincide up to sign: in
making the comparison we work only at the identity coset (since they are G- or
M-invariant), and then use the correspondence p«—ip. Similar remarks apply to
the curvature tensors of the two bundles associated to the K-module V. Hence
the index of the corresponding Dirac operator on Y= M/K, which we denote by
DJ(Y), is given by

(3.8) indexD}(Y)=(—1)1C(V) vol(Y).

Here C(V) is the same constant as in (3.7), and 2 g=dimG/K=dimY.
Comparing (3.7) with (3.8), we get

(39) indexD} =o,-indexD;(Y),
where o is a constant independent of ¥, but depending on I' and given by

vol(IN\G/K)

(310) or=(=1f -

In this identity both volumes are determined by the Riemannian metrics defined
by the Killing form. Since the volume of K was normalized to be 1, the invariant
measures on G and G/K are related in a definite manner. It will now be
convenient to renormalize Haar measure on G, and along with it the metrics on
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G/K and M/K, by requiring that the total volume of M should also be equal to
1. With this choice of Haar measure, (3.10) becomes

(3.11) op=(=1) vol(I'\G).

If we now apply the I2-index theorem to D} and use (3.5), (3.9) and (3.11), we
get

(3.12) é(dim U* —dimU; ) dj=(—1)? indexD;(Y),

with U* as in (3.4).
Thus we have reduced the problem to that of computing the index of a
homogeneous elliptic operator on the compact homogeneous space Y. This
question has been extensively studied from many different points of view, but a
good account for our purposes is that given in [8]. Clearly it is sufficient to take
¥ =17, associated to an irreducible K-module V, with highest weight u. We then
have the following simple result:
(3.13) indexDy (Y)=(~1)*dim W,

“—pn’

where W, is the irreducible M-module with highest weight 1 and p, the half-sum
of the positive noncompact roots. The ordering of the roots must be chosen so
as to make u+p, dominant (p,=half-sum of the positive compact roots), and
the labelling of &%, %~ is pinned down by requiring that p, should occur as a
weight for the K-module S*. If u—p, is not a possible highest weight (i.e. if u+p,
is singular), W,_, is to be interpreted as zero.

We shall explaln in outline how (3.13) arises, referring to [8] for further
details. First we note that the index of the M-invariant operator Dy (Y) can be
refined to give a (virtual) character of M: the ordinary integer index is then
obtained by evaluating this character index at the identity of M. Next we note
that the spaces of sections I*(Y, V0 ) have well-defined formal M-characters

(i.e. formal series Zmi %i» with meZ and y,=character of icM). Hence the
ieM

character index of Dy (Y) can be computed as the difference of these two formal
characters. The computations give precisely the Hermann Weyl character for-
mula for W,_, , multiplied by the sign factor (—1)%. The dimension formula
(3.13) then follows In fact (3.13) is closely related to the Borel-Weil-Bott
construction for the irreducible representations of M, except that the flag
manifold of M is here replaced by Y.

From (3.12) and (3.13) we deduce

(3.14) [(dimU;* —dim U )dj=dimW,_,
G

This is then the explicit form for the [*-index theorem on G/K. It remains now
to remove the restrictions imposed on G and K.

If the representation K—Aut(g/f) does not lift to Spin, then the bundles ¥ *
on G/K are not G-homogeneous, though they are G-homogeneous for a suitable
double cover of G. The bundles ¥* ® ¥, will be G-homogeneous provided the
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K-modules Si®V descend to K. This is easily seen to be guaranteed by
assuming that u—p, is a weight of K (cf. §4 below). Thus the operators D,, are
defined, as G-invariant operators, under this assumption on pu.

Next we drop the requirement that the real form G, of the simply connected
complex group G coincides with G. The maximal compact subgroup K, is then
only locally isomorphic to K. If u—p, is also a weight of K,, our previous
argument still goes through and we get (3.13).

To extend all this when u—p, is a weight of K but not a weight of K,, we
observe first that the constant C(V}) in (3.6) is a polynomial in u. This follows
easily from the Weyl character formula and the relations between characters
and characteristic classes. Hence (3.14) continues to hold provided we replace
dimW,_, by d(u—p,), the explicit polynomial in g which gives the dimension
formula. Note that Haar measure in G is now normalized by requiring

(3.15) volK=volM/K,=1.
Collecting all our results together, we see that we have proved the following:

(3.16) Theorem. Let u—p, be a weight for K, such that (u+p,.,2)=0 for all
positive roots o. Let #,*, #,” be the I’ null spaces of the Dirac operators
Dy Dy, on G/K, and

HE=[H;QU*dj
G

their Plancherel decompositions. Then

[(dim U —dimUy") dj=d(u~p,),
G

where d(1) is the polynomial in A giving the dimension of the irreducible finite
dimensional representation with hxghest weight A. In this identity, Haar measure
is normalized so that

vol(K)=vol(M/K ) =1,

where M/K | denotes the simply connected compact dual of the symmetric space
G/K.

The spaces #,* in (3.16) are also the I* kernels of the spinor Laplacians
D~D* and D* D~ (we omit here the various subscripts). This is so because the
minimal and maximal domains of D*, and similarly of D™, coincide, as is
proved in [1]. This re-interpretation of j{f has the advantage that the spinor
Laplacians take a particularly simple form, namely

(B.17) D*=—-Q+(u—p,.u—p,+2p),

where Q represents the Casimir operator, acting on L2(G/K,“//”®yi). The
formula (3.17) is due to Parthasarathy [22] and will be proved in the Appendix.
Thus #,* is just the eigenspace of the Casimir operator on I*(G/K,7,® ¥*),
corresponding to the eigenvalue
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(318) c,=(u—pppu—p,+2p).
Hence, if we consider the Plancherel decomposition

XG/K, ,®5*)=[H,;® V;* dj,
G

we see that the subspaces U describing the decomposition of H,* are given by

Uf=V* if Q acts on H, by c,,

=0 otherwise.
The formula of Theorem (3.16) can therefore be re-written as

(3.19) f(dim¥;* —dimV;")dj=d(u—p,),

Gu

where Guc G is the subspace consisting of all jeG at which the Casimir operator
takes the value c,.

§ 4. Existence of the Discrete Series

We now use the results of the preceding section, in particular the identity (3.19),
to prove the existence of discrete series representations. The crucial step consists
of showing that the integrand in (3.19) vanishes for all but finitely many classes
jeG. Any finite subset of G, outside of the discrete series, has zero Plancherel
measure. Hence only the discrete series contributes to the integral (3.19). The
integrand, for any jeG, is related to the global character of j, restricted to the
maximal compact subgroup K. These observations lead to an explicit formula,
on K, for certain linear combinations of discrete series characters; the formula is
stated as Theorem (4.41), at the end of this section. We shall deduce concrete
information about individual discrete series representations in subsequent
sections.

Recall the Plancherel decomposition of the spaces of ¥;-valued I2-spinors:

I2(G/K, #* ®ﬁ):£Hj® V,* dj,

with Vji = K-invariant part of H¥® S t® V,; <f. (2.10). Here V, stands for the
irreducible K-module of highest weight u, on which the homogeneous
vector bundle 7, is modelled. The half spin modules S*,S~ are self-dual if
g=%dimG/K is even, and dual to each other if ¢ is odd. Thus we can identify
the integrand in (3.19) as

4.1) dimV;* —dim¥;-
=dim Hom (V*, H} ® §*) — dim Hom (V*, H*® S~)
=(—1)*{dim Homy(V,, H;® S*)— dim Hom(V,, H,® S)}.
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Restricted to K, the G-module H; decomposes into a direct sum of K-
irreducibles,

H;= @ nV;
ieK
We denote the character of V; by y;. Then, as follows from the bound n,<dim V,
the formal series

42 7= Z n; X

ieK
converges to a distribution on K, the so-called K-character of H;. It should be
noticed that

(4.3) dim Vj’”_—dim V.~ =(—1)* x multiplicity with which y, occurs in the for-
mal series (6% —07) 7,

with x, =character of the irreducible K-module V,, and ¢ * = character of the K-
module S*.

According to a fundamental theorem of Harish-Chandra [13, 3] the global
character @; of H; is (integration against) a locally I! function on G, which
moreover is real-analytic on G/, the set of regular, semisimple elements of G. For
more elementary reasons [12, 3], the K-character t; restricts to a real-analytic
function on G’ K (not necessarily an L' function on K, however), and

(44) O;and t; agree as functions on G'n K.

We now appeal to Lemma 4.10 of [24], whose proof we shall sketch in the
Appendix:

(4.5) (6% —07)1;is a finite integral linear combination of irreducible characters
of K.

From (4.3 —4.5), one deduces:

(4.6) (6*—=067)0O;|s . is a finite linear combination of irreducible characters
of K, in which y, occurs with coefficient (—1)%(dim V;* —dim V7).

As we shall argue next, the coefficient of y, can be non-zero for only finitely
many classes jeG.

We denote the complex1ﬁed Lie algebra of G by g% and the center of its
universal enveloping algebra by 3. Then 3 can be naturally identified with the
algebra of all bi-invariant linear differential operators on G. By its very defini-
tion, the character @, is an invariant eigendistribution, i.e. a conjugation-invariant
distribution, on which the algebra of bi-invariant differential operators 3 acts by
scalars. Hence there exists a character ¢;: 3—C, such that

(47) ZO;=9i(2)0,;, forall ZeJ.

In Harish-Chandra’s terminology, ¢; is the infinitesimal character of the G-
module H;.



A Geometric Construction of the Discrete Series for Semisimple Lie Groups 17

Corresponding to any Cartan subalgebra b® of g%, Harish-Chandra has
constructed a canonical isomorphism

48) y: 3— 1(b9),

between 3 and the algebra I(b%) of all Weyl group invariants in the symmetric
algebra S(b%) [12, 26, 3]. If b® arises as the complexified Lie algebra of a
Cartan subgroup Bc<G, every XeS(b%), and therefore every y(Z), may be
viewed as a translation invariant, linear differential operator on the group B.
Going to a two-fold covering of B, if necessary, one can select a square-root
Age C*(B) of

(49) A5=(—1)det{l —Ad|s: g°/6 - g%/b},

with d=4(dim G —1k G). Since A} vanishes precisely on B n G, 4, makes sense
also as a smooth function on each connected component of B~ G'. The
isomorphism (4.8) has the following crucial property:

(4.10) (ZF)|gn G':(AEI “YZ)-A4p) Flg a6

for any conjugation invariant function F [12, 3].

Since the maximal compact subgroup K was assumed to have the same rank
as G, it contains a Cartan subgroup H of G. Via exponentiation, the dual group
H of the torus H becomes isomorphic to a lattice A,

(411) H=Acib*,

contained in i bh*, the real vector space of all those linear functions on §€, which
assume purely imaginary values on the Lie algebra §. In particular, the root
system @ =P (g% hY) lies inside the lattice 4. A root ae® is said to be compact
or noncompact, depending on whether or not it is a root of the pair (€, §%). Thus
& decomposes into a disjoint union

(4.12) o=90°U "

of the sets @°, @" of all compact and noncompact roots, respectively.

As B ranges over ", ¢® exhausts the set of characters by which H acts on
g%/t%; each of these has multiplicity one. Thus " is the set of weights of the
standard representation of SO(g/f), pulled back to K via K— SO(g/f). Expressed
in terms of the weights +pu,, +p,,..., £ u, of the standard representation of
SO(2n), the weights of the two half spin modules are

%(iﬂl tu, e tu),

with an even number of minus signs in one case, and an odd number in the
other. Hence, if one appropriately chooses a,positive root system ¥ < @,

(@413) (6" —o7)lg= [l (f?—e??);

fed ¥

a “wrong” choice of ¥ would introduce a minus sign. It should be observed that
the labelling of the half spin modules §*, $~ is determined by (3.13), and that a
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positive root system ¥ gives the correct sign if it makes u+p, dominant (p,
=half-sum of the positive, compact roots). Once and for all, we fix! such a ¥.

The function 44 of (4.9), corresponding to the Cartan subgroup H, can be
expressed as

(414) dg=]] (2 —e"?),

ac¥

at least by passing to a covering of H, if necessary. Thus 4, equals the product
of (6* —o ™) with the denominator of Weyl’s character formula for K. We define

(4.15) W= Ngz(H)/H=Weyl group of h€ in €

(the normalizer of H in G is actually contained in K!). Because of (4.6), Weyl’s
character formula leads to an identity

(416a) 440y ¢ =) n€,

where v ranges over a finite subset of A, and

(4.16b) n,,=e(w)n,, for weW

(e(w)=sign of w). Moreover, (4.6) allows us to identify the coefficient of ¢**#< as
(4.16¢) n,,, =(—1*dim V;* —dim V;7).

For the usual reasons, (4.16) may hold, strictly speaking, only on a finite
covering of H.

The group W is contained in W, the Weyl group of h® in g% Via the
mapping y of (4.8), 3 becomes isomorphic to I(§T), which may be thought of as
the algebra of all Wg-invariant polynomial functions on h®*, Thus every veh®*,
and especially every ve, defines a character

@17 ¢,: 3-C,

with @,(Z)=y(Z)(v). The Wg-invariant polynomials separate any two Wg-orbits
in hT*; hence

4.18) @,=@,<u=wv, forsome weWg.

If O;ly.e *0, the identity (4.10) makes it possible to relate the infinitesimal
character ¢, to the character formula (4.16):

419 nF0=9;=0,.
Because of (4.16¢), this implies
(4.20) dim Vj* —dim ¥;~ =0, unless ¢;=¢, ..

! This is possible: one first orders @, so that u becomes dominant for the resulting system of

positive, compact roots; p, is then determined, and u+p, is not only #°-dominant, but also @*-
nonsingular. Thus, if a system of positive roots ¥ makes p+ p. dominant, it necessarily induces the
original ‘ordering on &°
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In particular, the classes je G which contribute a non-zero integrand in (3.19) all
have the same infinitesimal character.

A result of Harish-Chandra [12] asserts that only finitely many classes jeG
can have a given infinitesimal character. One may see this, for example, as
follows. Since the global characters of non-isomorphic representations are
linearly independent, it is enough to prove that the space of invariant eigendis-
tributions, on which 3 acts according to a given character, has finite dimension.
As a consequence of Harish-Chandra’s regularity theorem [13, 3], an invariant
eigendistribution @ is completely determined by its restriction to G’ —or equiva-
lently, by the restrictions @|g,. ., with B running over a set of representatives
for the finitely many conjugacy classes of Cartan subgroups. The intersections
BN G have only finitely many connected components. One can now deduce
the finite-dimensionality from (4.10), provided one knows: for any character
¢: 1(6%)— C, the system of differential equations

Xf=0X)f, Xel(®9,

on any connected open subset of B, has a finite-dimensional solution space. This
is indeed the case, since S(b%) is finitely generated as a module over I(b%) [12, 26,
3].

As we have just finished arguing, only finitely many classes jeG make a
non-zero contribution to the integral (3.19). We denote the discrete series of G
by G,; in other words, G,=G is the subset consisting of all square-integrable
classes. A single point jeG has positive Plancherel mass precisely when j belongs
to G,. The integral (3.19) therefore remains unchanged if we integrate only over
the set G Ma G,, on which the measure is discrete:

421 3 (dimV*—dimV;7)d()=d(u-p,);
JjeGunGy
here d(j) denotes the Plancherel measure of {j}, which is also called the formal

degree of the class jeG,.
Via the isomorphism y, the Casimir operator Q corresponds to

“422) y(@)= ZXZ (,p)-1,

where {X,} is a basis for HT, orthonormal with respect to the Killing form.
Hence

(pp+pc(Q):’Y(Q)(,u+pc)=(‘u+pc7:u+pc)_(p9 p):cu
(cf. (3.18); p=p .+ p,), which means that Gu contains the set
(4'23) {jEG[¢j=¢u+pc}'

According to (4. 20) the summands in (4.2]) vanish outside of this set. Thus,
instead of summing over G n G,, we may sum over the set (4.23), intersected
with G,. Weyl’s dimension formula gives

d(u—p,) ig, bt pe. ) (;pa) %)
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We conclude:

424) Y (dim V;* —dim V") d(j)=[] (i‘if’c_’i‘l,
i ac¥ (p: O()

with j ranging over the finite set {jeG,| Oi=@u1,}
For the moment, we let p denote the half sum of the positive roots, relative
to an arbitrary ordering of the roots. Then

425 A,=A+p

does not depend on the particular ordering: any two possible choices for p differ
by a sum of roots, and hence by an element of A. Roughly speaking, the discrete
series can be parametrized in a natural manner by the W-orbits in A,; this is the
reason for introducing 4,. The Weyl group W does indeed operate on A, since
W preserves the lattice A, and since any W-translate of p differs from p be a sum
of roots. The complex Weyl group W, on the other hand, need not act on 4,
unless G is linear.

For the remainder of this section, we keep fixed a particular 1eA,, and we
define

(426) 6,= i Y d(j)@;.
jeGa, @j=0i

Thus @, is a finite linear combination of discrete series characters. We shall use
the identity (4.24) corresponding to various parameters u, to compute the
restriction of @, to H N G'; (4.16¢c) provides the link between (4.24) and the
formula for &, on H.

We let ¥ denote a positive root system, which makes A dominant. If A is
singular, there will of course be more than one possible choice. The character
formulas (4.16), for the summands @;, lead to an identity

Ya,e
hd .
l_[ (ea/2_e——a/2) ?

xe'¥

4273) O;lgng =

here v runs over a finite set, and the a, are real constants. Moreover
(4.27b) a,,=t(w)a,, for weW,

Because of this skew-symmetry with respect to W,

(4.28) a,=0, whenever v is @°-singular.

All the summands which make up @, have infinitesimal character ¢,. Hence
(4.18) and (4.19) imply

(4.29) a,=0, unless vis We-conjugate to 4.

Although neither the numerator nor the denominator in (4.27) may be well-
defined on H, the quotient necessarily is well-defined. The denominator, multi-
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plied by e~*, equals

[Ta—e,

ae¥

which makes sense on H. It follows that the product of the numerator with e~*
must also be well-defined on H, and hence equal to a finite linear combination
of characters of H. In other words,

(430) a,+0 = ved,.

We remark that the preceeding observations apply equally to any linear
combination of irreducible characters, provided all of the summands have the
same infinitesimal character.

We ennumerate the set of all those Wg-conjugates of 4 in A, which are both
d‘-nonsingular and dominant with respect to ¢ ¥, as

@31) g, Ay, e, Ay

Every veA,, if it is @~nonsingular and W¢-conjugate to A, is then W-conjugate
to precisely one of the 4;. Hence there exist constants a;, 1 <i< N, such that

5 _ weW
(432) O;lpne —'_:Zl a; 1—[ (42 — 2 :

The set (4.31) may be empty, in which case @, vanishes on H. Otherwise,
replacing 4 by one of its W-conjugates, if necessary, we can arrange

@.33) A=1,.

We shall assume that this has been done.

The elements of the weight lattice A are integral with respect to the root
system &, as is p, which is integral even with respect to all of ¢. Thus ie4,
must also be ¢*-integral. Like every 4;, 4 lies in the interior of the positive Weyl
chamber for ¢°n ¥. Hence

(434) p=Ai-p,

is at least integral and dominant with respect to ¢° n . In particular, u arises as
the highest weight of an irreducible fmodule ¥,. The f-action on V, lifts to a
representation of K if and only if u belongs to A, which need not be the case.
However, A contains A+p=p+p, (p,=half sum of the positive, noncompact
roots). Since every weight of the half spin modules §*, $~ differs from p, by a
sum of roots, K acts on the tensor products VH®S+, V,®S~. This makes it
possible to define the vector bundles ¥,® &, ¥,® ¥~ on G/K. We conclude
that the identity (4.24) applies in our present context.

The summations in (4.24) and (4.26) range over the same set. Hence, using
(4.16¢), we can identify the coefficient a, in (4.32) as

A
(435) a,=(—1) Q%,%



22 M.F. Atiyah and W. Schmid

In particular, if A is singular with respect to &, the coefficient a, vanishes. Of
course, A= 4, is not really distinguished among the 4;. We can therefore let each
A; play the role of A. If 1 is singular, then so are all of the ;; hence

(4.36) O,ly.e =0, if Ais singular.

We now suppose that 4, and therefore its conjugates, are nonsingular. Every 4 is
made dominant by a unique positive root system ¥, namely

4.37) ¥={acd|(1,a)>0}.

In analogy to (4.3), we find

A
439 a=s(o1 I]

(p;=half-sum of the roots in lI/,) The sign factor ;= +1 is determined by

(439) [] (7 —e =g [] (/2 —e7*?);

aec¥; ae¥

its presence in (4.38) is due to the fact that the denominator in (4.32) was defined
in terms of P, rather than ¥. Each A, is conjugate to A by the unique we W
which maps ¥ onto ¥; hence

l—[ ((X, '11) _ (CX, /1)

(440) ac¥; ((X, pz) .—ae‘}’ (O(, p) '

Combining (4.364.40), we may conclude:

(4.41) Theorem. If 1A, is nonsingular, the restriction of 6, to H N G’ equals

Y e(w) e

e (1 @ z) WS
(=D (, (@ p) 2 11] (@7 —e )

aE‘I’i

Whenever 1 is singular, @, vanishes on H.

§ 5.1. The “Sufficiently Nonsingular” Case

In the last two sections, we used the I’-index theorem to study the formal
difference " ~9ﬁ , of the two spaces of harmonic, ¥,-valued [*-spinors #,*.
This difference is in particular a finite integral linear combmatlon of dlscrete
series representations. To obtain information about #," and #,~ individually,
we shall now combine the index theorem with a suitable “vanishing theorem”.
Vanishing theorems in various contexts, or rather the proofs of the vanishing
theorems, tend to work only in the “generic” situation. This is also the case
here: we shall have to assume that the parameter p lies far away from all of the

root hyperplanes. For such values of p, certain algebraic arguments will show
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that &, vanishes, whereas #,* is irreducible. Because of what is already known
about the formal difference #," —#,”, #," must then belong to the discrete
series. The algebraic arguments also lead to a formula for the character of ",
restricted to the maximal compact subgroup K. As a result, we obtain explicit
realizations and character formulas for “most” of the discrete series. The full
description of the discrete series will have to wait until § 8, following a dis-
cussion of the growth properties of discrete series characters in § 6 and § 7.
Throughout this section, we freely use the notation of §4. A particular system
of positive roots ¥ in @ will be kept fixed. As in the past, p, and p, stand for the
half-sums of all positive compact and noncompact roots, respectively; p=p.+ p,
is the half-sum of all positive roots. When we talk of the highest weight of an
irreducible K-module, it will always be with respect to the positive root system
@° N ¥ in @°. We recall that the vector bundles ¥, ® & *, 7,8~ on G/K can
be defined whenever u+ p, lies in the weight lattice 4, or equivalently, whenever

(5.1 u+ped,;
cf. (4.25). Once and for all, we require that
(5.2) (u+p.—B,0)>0, forevery ac?,

if B is any sum of distinct positive, noncompact roots. Since there exist only
finitely many possibilities for B, (5.2) would certainly be implied by a condition
of the form

(5.3) (wo)>c, for ae?,

with a suitably chosen constant c.
For the moment, n shall denote an arbitrary irreducible unitary repre-
sentation of G, and ¥, an irreducible K-module, of highest weight v, such that

(5.4a) V, occurs in the restriction of = to K,

and

(5.4b) (v—p,,0)=0, if acd°nVW.

Since # is irreducible, the Casimir operator Q acts under = by some constant
n(£2). According to Lemma 4.11 of [24], the hypotheses (5.4) imply

(55) n(Q)é(v_pn+pcaV_pn+pc)—-(pap)'

We shall outline a proof of this estimate, which is based on an algebraic version
of Parthasarathy’s formula (3.17), in the Appendix.

As was shown in §3, the spaces of square-integrable, ¥,-valued, harmonic
spinors have Plancherel decompositions

(5.6) «%’f=jH,-® I/ji dj, .
Gu
with

(5.7) ¥;* =K-invariant part of H¥ @ S* ®V,
~Homg(H;,S* ®V,),
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and G, =set of all classes j €G on which Q acts as multiplication by

(5-8) c,=(—pup—p,+2p).

In the tensor product V, ® W of an irreducible K-module V,, of highest weight v,
with an arbitrary finite-dimensional K-module W, every irreducible constituent
has a highest weight which is the sum of v and some weight t of W. Moreover,
v+1 occurs as highest weight in ¥, ® W at most as often as the multiplicity of the
weight 7 in W. According to the discussion which preceeds (4.13), every weight of
S* @S~ can be expressed as p,— B, where B stands for a sum of distinct
positive, noncompact roots; the weight g, has multiplicity one and occurs in S™.
Thus ¥;* and ¥;~ can be non-zero only if H; contains an irreducible K-module
with a highest weight of the form u+ p,— B, and, in the case of V;~, B%0.

Because of the assumption (5.2), any such highest weight v=u+p,—B
satisfies the hypothesis (5.4b): if a weight 1, e.g. t=u+ p.— B, is dominant and
nonsingular with respect to @Y, then 1 —p, must at least be dominant. Thus
we may apply the estimate (5.5) to any class je Gu, for which Vji does not vanish,
to conclude :

(59) (u—ppu—p,+2p)=c,=(u+p.—B,u+p.—B)—(p,p),
or equivalently,
(5.10) 2(u+p,,B)=(B,B).

On the other hand, B is a sum of positive roots, so (5.2) insures that both u+p.—B
and p+p, (B=0 is not excluded in (5.2)!) have a strictly positive inner product
with B, unless B=0. But then

which contradicts (5.10).

We have shown: among the irreducible constituents of ¥, ® S*, only the one
having highest weight u+p, can appear in H; for any class jeGu. This
irreducible constituent has mllltiplicity one in V,®S™, and multiplicity zero in
V,®S". In particular, for jeG,,

(5.11) dim¥;~ =0, dimV;" =multiplicity, in H;, of the irreducible K-module
of highest weight u+ p,.

The estimate (5.9) also proves:

(5.12) no irreducible K-module which occurs in H; can have a highest weight
of the form p+p,—f, with feP" NP,

again for any jg@u. As one consequence of (5.11), we obtain the vanishing
theorem

(5.13) #, =0
(Parthasarathy [22]).
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We should remark that the arguments leading up to (5.13) are really
curvature estimates, in algebraic disguise. The decomposition of the K-modules
V,®8 * into irreducibles determines an analogous decomposition of the bundles
¥,®F*. Under the assumption (5.2), the curvature properties of the bundles
and of the manifold G/K force all square-integrable, harmonic spinors to take
values in a certain sub-bundle of ¥,® & *, namely the one that corresponds to
the K-submodule of highest weight u+p, in ¥,®S*. As happens often with
differential-geometric arguments of this nature, the resulting vanishing theorem
fails to be precise: the hypothesis (5.2) is unnecessarily stringent.

We shall now appeal to some algebraic results about representations of G,
which can be found, for example, in [24]. The arguments of [24] work with
much weaker hypotheses than (5.2), and can be simplified considerably in our
more special situation. For this reason, we shall present a proof of the relevant
result in the Appendix.

(5.14) Propesition. Suppose that u satisfies the inequalities (u+p — B, a)=0, for
every ae®°nP, and every sum B of distinct positive, noncompact roots. Up to
isomorphism, there exists at most one irreducible unitary representation = of G,
such that

a) 7]g has an irreducible constituent of highest weight z+p,, and

b) no irreducible constituent of n|; has a highest weight of the form u+p,
—B, fed"nYP.
In such a representation =, the irreducible K-module of highest weight u+p,
occurs exactly once. The highest weight of any irreducible constituent of n|x can
be expressed as u+p,+ Y n; f;, with g;,ed" ¥, n;20.

We first observe that (5.2) implies the hypothesis of the proposition. Indeed,
as the highest weight of an irreducible K-module (which occurs in $*), p, has a
non-negative inner product with every ae®°n ¥; hence

(//""p_B,a)g(ﬂ"‘pc_B’a)a

which is positive because of (5.2). According to (5.11-5.12), any class jeé which
contributes to the Plancherel decomposition of #,* has the two propertles a)
and b). The Plancherel measure of the totality of these classes ]eG is non-zero,
as follows from (3.19). The proposition now guarantees that there can be only
one such jeGu, which necessarily belongs to the discrete series; also

(515 ¥~=0, dimV*=1

Since j alone enters the Plancherel decomposition of 3#,*, one can identify J#,*
with H;® V;* @H;. We recall that the Plancherel measure of a class in the
discrete series is also called the formal degree. The difference formula (3.19) gives
the formal degree of j as

du—p)=1] (——a’(g ,:)p ), .

We summarize: in the situation (5.2), 2, vanishes, and " is a non-zero,
irreducible, unitary G-module, belonging to the discrete series, whose formal
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degree is d(u—p,); moreover, X#," has the two properties a) and b) in the
statement of Proposition (5.14).

We denote the global character of #," =H; by ©. According to (4.16), the
restriction of ® to HNG’' can be expressed as

(5.16a) A40|y.6 =) n,e
ved
(finite sum), with
(5.16b)  n,ui,pn=(—1)e(w), for weW

(cf. (5.15)). The significance of the coefficients n, is that
Yone
l—[ (e —e~%?) ’

aePn¥

(517) (6" —0 )lgne =

here 7 stands for the K-character of H;. In a formal sense, t(c* —0~) is the
character of the virtual K-module H;®S™ —H;®S~. We set C, =closed cone
spanned by the positive roots. As follows from (5.14), the highest weight of any
K-invariant, K-irreducible component of H; lies in u+p,+ C .. Every weight of
S* @S~ can be expressed as —p,+f,+ -+, with f;,e®"n¥. If the charac-
ter of an irreducible K-module appears in t(¢ ™ —o ™), its highest weight must be
the sum of a highest weight occuring in H; and some weight of S*@®S5~, and
hence lies in u+ C. . Combining this information with Weyl’s character formula,
we find

(5.18) n,+0=>wveu+p,+C_, forsome weW.

Any two weights v which occur in (5.16) with non-zero coefficient n, are Wy~
conjugate; this follows from (4.18-4.19). In particular,

(5.19) n,#0 = (v,v)=(u+p., u+p.)-

Since u+p, was assumed dominant with respect to ¥, it has a strictly smaller
length than all other elements of the cone u+p,+ C,. Comparing (5.18) and
(5.19), we may conclude that n,=0, unless v is W-conjugate to u-+p,. This
proves:

(5.20) Theorem. Subject to the condition (5.2), 2, vanishes, whereas J," is a
non-zero Hilbert space, on which G acts unitarily and irreducibly. The resulting
representation belongs to the discrete series and has formal degree d(u—p,). Its
character @ satisfies

Z a(w) ew(u+pc)
Olune=(—1)1 2

l—[ (ea/Z _e—-a/Z) '

ac'¥

Every irreducible K-module which occurs in #,* has a highest weight of the
form p+p,+> nB;, with p,e®"n¥, n,20. The irreducible K-module with
highest weight u+ p, occurs exactly once in J£,*.



A Geometric Construction of the Discrete Series for Semisimple Lie Groups 27
§ 6. Characters and Sobelev Spaces

The characters of discrete series representations, unlike those of a general
irreducible, unitary representation, extend continuously from C¥(G) to much
larger function spaces. Harish-Chandra has shown that they are in particular
tempered, i.e. their domain of definition includes a suitably defined Schwartz
space of rapidly decreasing functions. He used this fact to describe the discrete
series characters: within the class of tempered invariant eigendistributions, a
discrete series character is completely determined by its restriction to a compact
Cartan subgroup.

In this section, we present Harish-Chandra’s results in somewhat modified
form. The vehicle for our arguments will be certain global Sobolev spaces, rather
than the Schwartz space. This is not only consistent with our emphasis on I2-
methods elsewhere in our construction, but allows us also to prove the com-
pleteness of the parametrization of the discrete series within the framework of
the existence proof. Sobolev spaces usually serve as a tool for studying local
regularity properties of functions and distributions. Not so in our context, where
they are used to measure global growth properties.

By infinitesimal right translation, the complexified Lie algebra g% of G acts
on C®(G) as the Lie algebra of left-invariant complex vector fields. When this
action is extended to the universal enveloping algebra U(g®), one obtains an
isomorphism

6.1) r: UgH>2,

between U(g%) and the algebra &, of all left-invariant linear differential oper-
ators. As a quotient of the tensor algebra of g%, U(g%) has a natural ﬁltration We

shall say that Xel(g®) has degree at most n if it lies in the image of @ (® a%).

For each positive integer n, we define the n-th (left) Sobolev space H, (G) as
(6.2) H,(G)={fel*(G)|r(X) fe*(G), for every Xell(g®) of degree at most n};

here r(X) f is to be interpreted in the sense of distributions.

One can turn H,(G) into a Banach space, in an essentially natural manner:
although the Banach norm is not intrinsic, the resulting topology is. The group
G acts continuously on H,(G), by left translation, but H,(G) is not right
invariant. When one topologizes C¥(G) in the usual fashion, the inclusion of
C3(G) into H,(G) becomes continuous. We remark that C®(G) lies densely in
H,(G); this fact is proven, in effect, in [1], but it will not be needed here.

The next result is implicit in the proof of Harish-Chandra’s lemma 76 [15].

(6.3) Lemma. Let @, be the character of an irreducible, unitary representation
n, which belongs to the discrete series. Then ©, extends continuously from
C3(G) to H,(G), for every sufficiently large integer n.

At first glance, the statement of the lemma appears to be asymmetric, since it
prefers the left Sobolev spaces over their right counterparts. However, the two
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possible versions of the lemma, corresponding to choices of either left or right
Sobolev spaces, are quite immediately equivalent: the distribution @, remains
invariant under conjugation; hence, if one lets it act on r(X) f, feC(G), the
differentiation r(X) can be shifted to the left, without affecting the result.

Proof of (6.3). The assertion of the lemma amounts to saying that the linear
functional

SO (fN)=trn(f), [feCF(G),

is continuous, relative to the topology which H,(G) induces on its subspace
C¥(G). It therefore suffices to prove the following two statements:

(6.4) =(f) is a Hilbert-Schmidt operator, and (/). <c|fll,, with c=c(n),

and

(6.5) there exists a Hilbert-Schmidt operator 7, and some Zel(g%), such that
(f)=nr(Z)f)-T

for every feC¥(G). Indeed, (6.4) and (6.5) give the estimate

|6, (f)|=|trace n(f)| =|trace(n(r(Z) f)- T)|
Slnr(Z) s N T lus. Sl Tlis. 17(2) f 125

this bounds @, in terms of the seminorm f+|r(Z) f | ,, which is continuous with
respect to the topology induced by H,(G) on C(G), provided n=degZ.

The Plancherel theorem asserts that for any given felI?(G)nI!'G), the
operators m;( f), jeG, are Hilbert-Schmidt operators, except possibly on a set of
Plancherel measure zero, and

llfll§=£ Iy (f)lis. dj-

Since © belongs to the discrete series, its class in G has positive Plancherel
measure d(rn). Hence ’

1A 13 Zd@ In(/)lis.

which implies (6.4), with ¢=d(m)~ /2,

We now turn to (6.5) —which, incidentally, holds for any irreducible unitary
representation. The various K-invariant, K-irreducible subspaces of the repre-
sentation space H span a dense linear subspace H, —H, which consists entirely
of analytic vectors. In particular, the complexified Lie algebra g* of G acts on
H,, . This infinitesimal representation turns H_ into a module over the universal
enveloping algebra U(g%); we refer to the action of U(g% on H_ also by the
symbol 7. For fe C¥(G), veH,_,, and Zel(g%), the identity

n(r(Z) fv=n(f)n(Z)v

amounts to a tautology. Since Q, the Casimir operator of K, is positive semi-
definite, (1 + Q) has a bounded inverse. Hence, setting Z =(1 4 Q)", one finds
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(6.6) n(f)=n(r(Z)f) n(1+Q)7",

for any feC%(G), neN. The set K of isomorphism classes of irreducible K-
modules has a natural parametrization in terms of highest weights, which range
over a lattice, intersected with a cone. On the irreducible K-module of highest
weight p, Qg acts by a constant approximately equal to ||u[|? Each class ieK
occurs in H at most as often as its degree, and this degree can be bounded by a
polynomial in the length of the highest weight. Conclusion: for every sufficiently
large nelN, n{14+Q;)~" is a Hilbert-Schmidt operator. Because of (6.6), the
assertion (6.5), and hence the lemma, follow.

According to Harish-Chandra’s fundamental regularity theorem [13, 3],
every invariant eigendistribution —in particular, every character —can be repre-
sented as integration against a locally L' function; this locally I! function is
actually real-analytic on G', the set of regular, semisimple elements. We shall not
distinguish between the invariant eigendistribution and the real-analytic func-
tion on G’ that represents it.

We recall the definition of the rank of G: it is the minimal possible
multiplicity of the eigenvalue one for the automorphisms Adg of g%, as g ranges
over G. Any particular geG realizes this minimal multiplicity precisely when g is
both regular and semisimple. Thus, writing

(6.7) det(i+1—Adg)= Y Di(g)F**

kz0

(r=rank of G), one finds
(6.8) G ={geG|Do(g)*0}.

Incidentally, D, assumes only real values, since AdG preserves the real form
g g% After passage to some finite covering of G, if necessary, the function Dy,
restricted to any Cartan subgroup, admits a smooth square-root; D}/? appears
as a universal denominator in character formulas. We shall amplify on these
statements later. To motivate the definitions which follow, we merely remark
that the singularities of a general invariant eigendistribution near the comple-
ment of G’ are comparable to those of Dy /2. In particular, multiplication by
|Do|'? renders any invariant eigendistribution @ locally bounded on G. For this
reason, the growth properties of such a distribution @ tend to be reflected by the
behavior at infinity, along the various Cartan subgroups®, of the function
|Dy|Y2 @, rather than by the behavior of the function @ itself.

For lack of better terminology, we shall call an invariant eigendistribution &
“bounded at infinity” if, for any Cartan subgroup B,
(6.9)  sup |Do(b)I'*|O(b)| < 0.

beBnG'

Similarly, © will be said to “decay at infinity” if the restriction of |Dy|!?@ to
any Cartan subgroup B tends to zero outsid€ of compact subsets. According to a

! Since |Dy|¥?@ is invariant under conjugation, its behavior at infinity must be measured

transversely to the conjugacy classes, i.e. along the various Cartan subgroups
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criterion of Harish-Chandra, the property of being bounded at infinity is
essentially equivalent to his notion of temperedness. When @ arises as the
character of a representation, the equivalence becomes precise, as follows from a
result of Fomin-Shapovalov [11]. However, we shall not use the notion of a
tempered distribution.

Until the present section, G was assumed to contain a compact Cartan
subgroup. This hypothesis did not play a role in Lemma (6.3), nor will it enter
the next two propositions. The first of these amounts to a modified version of
one direction of Harish-Chandra’s temperedness criterion; the second is the
analogue, in our context, of the uniqueness statement in [14, Theorem 3].

(6.10) Proposition. An invariant eigendistribution, which extends continuously
from C§(G) to H,(G), for some neNN, decays at infinity.

(6.11) Proposition. A non-zero invariant eigendistribution which decays at
infinity has a non-trivial restriction on some compact Cartan subgroup. In
particular, no such invariant eigendistributions exist on G, unless G contains a
compact Cartan subgroup.

The proofs of the two propositions will be given in § 7. We conclude this
section with some fairly immediate corollaries.

According to the results of §4, if G has a compact Cartan subgroup, then its
discrete series is not empty. The preceeding two propositions, in conjunction
with Lemma (6.3), also imply the converse:

(6.12) Corollary (Harish-Chandra). For the existence of a non-empty discrete
series it is necessary, as well as sufficient, that G contain a compact Cartan
subgroup.

Let us assume then that G does contain a compact Cartan subgroup, which
we may choose to lie in K. We denote this group by H. As in §4, A shall refer to
the weight lattice of the torus H, and 4, to the weight lattice translated by the
half-sum of the positive roots; cf. (4.25). We also recall the definition (4.17) of
the characters ¢, of 3 (=center of the universal enveloping algebra (g?%)).

(6.13) Corollary. The infinitesimal character of any given discrete series repre-
sentation is equal to ¢,, for some nonsingular e 4,. Conversely, every such ¢,
arises as the infinitesimal character of some discrete series representation.

Proof. We consider a particular discrete series character @, and we express its
restriction to H as in (4.16a). The argument which proves (4.30) also applies in
the present situation; thus

(6.14) n,+0 = ved,.

Because of (6.3) and (6.10-6.11), not all of the coefficients n, can vanish (any two
compact Cartan subgroups are conjugate!). Combining this knowledge with
(4.19) and (6.14), we find that ©; has infinitesimal character ¢,, for some le4,.
As a linear combination of discrete series characters, the invariant eigendistri-
bution @, of (4.26) must decay at infinity, and hence

é,l:O < 6]y =0.
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We now appeal to Theorem (4.41):
6,=0< ] is singular.

On the other hand, @, is a linear combination, with non-zero coefficients, of all
discrete series characters which correspond to the infinitesimal character ¢;.
Characters of non-isomorphic irreducible unitary representations are linearly
independent. Consequently @, vanishes if and only if no discrete series repre-
sentation has infinitesimal character ¢;. This concludes the proof of the
corollary.

The two Propositions (6.10-6.11) make it possible to describe the discrete
series characters, uniquely within the class of invariant eigendistributions which
decay at infinity, in terms of their restriction to a compact Cartan subgroup.
More generally, one can give such a description within the larger class of
invariant eigendistributions which are merely bounded at infinity. For this
purpose, we state a lemma, due to Harish-Chandra [14], whose proof is similar
to that of (6.11). It will be proved in the next section, along with the two
propositions.

(6.15) Lemma. For every nonsingular €4, there exists at most one invariant
eigendistribution @,, such that @, is bounded at infinity, and

Y e(w)er?
weW
Oilgne=(—1)* -
AMHAG n (ea/Z__eAa/Z)
aed,
(2, A)>0

§ 7. Proofs of the Preceeding Statements

We begin with the proof of Proposition (6.10). The crucial step will be to relate
growth properties of invariant eigendistributions on G to their behavior on the
various Cartan subgroups.

Until further notice, @ shall denote an arbitrary invariant eigendistribution,
and B a Cartan subgroup of G. We did not require G to have a faithful finite-
dimensional representation, and hence B need not be abelian. Nevertheless, the
identity component BP lies in the center of B, so that one can define a mapping

(1.1) &: G/B°x(BNG)—(BNG)®, with ¢(gB%b)=gbg™!;
as usual, (B~ G')¢ stands for the open subset
{gbg '|geG, beBNG'}

of G. Then ¢ is a covering mapping, with fibre N;(B)/B°, which is finite. At any
coset gB°, the complexified tangent space of G/B° may be identified, via left
translation by g, with

bt ={Xeg® B(X,b% =0} N

(B(, )=Killing form of g%). Similarly, for beB, left translation by b identifies the
complexified tangent space of B at b with b%. In terms of these conventions, the
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differential ¢, of the mapping ¢ at a point (gB° b) of G/B° x (B G') is given by
the formula

(72) &y X, 1Y) =1 Adg{(Adb~ 1 —1)(X)+ Y},
for Xeb®™, Yeb®, h=gbg~'=¢(gBCb). To verify the identity, one may as well

suppose that the tangent vectors X and Y are real, in which case £, ([, X,[,.Y)
becomes the tangent vector of the curve

t—E(gexp(tX)B% bexp(tY))
=gexp(tX)bexp(tY)exp(—tX)g~!
=gbg 'exp(t Adg- Adb~ ' X)exp(t AdgY)exp(—t AdgX)
=hexp(t Adg{(Adb~ ' - 1)(X)+ Y} +0(t?),
at t=0.
The identity (7.2) implies, in particular, the following standard integration

formula: if the invariant measures dg on G, dg* on G/B° and db on B are
suitably normalized,

(73) | fdg= jIDo(b)I I flghg~")dg*db,

(BNG)C

for every continuous function f with compact support in (BN G')%; cf. (6.7).
Indeed, Adg operates as the identity on the top exterior power of g, whereas

Adb~!—1: BT b

has determinant +D(b). The top exterior power of £, is therefore represented
by the function +D,, relative to translation-invariant sections of the top
exterior powers of the various tangent bundles; this proves the integration
formula. As one consequence of the formula,

(7.4) 6(fH)= IG |Do(b)l@(b)GfB flgbg™")dg* db,
BnG’ /B0

whenever feCy(G) has support in (BN G)¢,
for every invariant eigendistribution @.
Corresponding to any pe CP(G/B°), we define a mapping
(7.5) T,: CZ(BNG)—CF(BNG)%)

as follows: for feC¥(BNG) and ge(BnG)°, T, f(g) is to be the average,
extended over the fibre ¢~1(g), of the values of the function

(8B b)—¢(gB°) f(b) IDo(b)| 2.

An invariant eigendistribution @, when restricted to Bn G, remains invariant
under the conjugation action of N;(B). Hence

(71.6) O(T, f)= [ IDo(b)IO®B) | ¢(gB°) f(B)IDo(b)~"/* dg*db

BnG' G/B®

= j ¢dg* j f@’Doll/z db.

G/B° BnG’
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Every root o in @, the root system of (g%, b%), lifts to a character ¢* of B.

Since the rank of G coincides with the dimension of its Cartan subgroups, one
finds

(1.7) Dob)= [] (1—e*(b) (beB).

acPp

In particular, BnG'={beB|e*(b) £ |, for aeP}. For £¢>0, we define
(7.8) B,={beB|le*(b)—1]>¢, for aePg}.

The sets B, are open in B, and they exhaust BnG'. As a Cartan subgroup, B
centralizes its own Lie algebra. Consequently every right-invariant vector field
on B is automatically left-invariant, and vice versa. More generally, the two
notions of invariance agree for any linear differential operator. Just as for G, we
introduce global Sobolev spaces H,(B), ne N:

(79) feH,(B) < Xfel?(B), whenever X is a translation-invariant differential
operator, of order at most n.

(7.10) Lemma. For any fixed ¢>0 and nelN,
T,: C3(B)—CF(BNG))
is continuous with respect to the topologies induced by H,(B) and H,(G).

Proof. We consider a vector field r(Z) on G, with Zeg?; cf. (6.1). The mapping &
pulls back r(Z) to a vector field ¢*Z on G/B°x(BnG’). We denote the
projections of g© onto b®* and b® by p and g, respectively. According to (7.2), at
points (g B, b) of G/B® x (BN G'), £*Z takes the value (1. X, 1,, Y), with

X=(adb '-1)"'.p-Adg~Y(Z), Y=q-Adg~Y(2).

The automorphism (adb~!—1)~*! of b+ is semisimple with eigenvalues m,(b)
=(e~*(b)—1)~!, indexed by ac®,. As functions on B,, the m, and all their
derivatives with respect to translation-invariant differential operators are uni-
formly bounded. For the purposes of this proof, the space of all such functions
will be referred to as U®(B,). As follows from our observations, there exist
smooth vector fields X; on G/B°, translation-invariant vector fields Y; -on B, and
functions u;e U*(B,), v;e C*(G/B°), such that

2 Su S
i j

To understand the effect of r(Z) on T, f, for feC®(B,), we average the
product

¢ feC§(G/B° xB)

with respect to the finite group N;(B)/B°, which operates on G/B° by right

translation, and on B by conjugation; it should be observed that the action

preserves B,cB. The averaged product can be expressed as an, fi, with
,eC°°(G/B°) fieCZ(B,). Moreover,
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(T¢f)(gbg"‘)=zl¢z(g30)IDo(b)l'”2fz(b),
since D, already is Ny (B)/B°-symmetric. In particular,
r(Z)(T, f)(gbg™") =§;(Xi @1)(gB%) u;(b)IDo(b)| =2 fy(b)
+LZI v;(gB°) @1(g B°) Y;(IDo| =2 1) (b).

Because of (7.7), the functions [Do|'*(Y;|Dol”"?) lie in U*(B,). Hence one
obtains an identity

r(Z)(T, f)(gbg™") =Zt ;18 B%)IDo(b)l~2(Y; f)(b)
+kZl Vi B) (D) IDo(b) |~ /2 fi(B),

with suitably chosen ¢; , ¥, ,€ C§(G/B°), h,e U*(B,), which depend on Z and ¢.
Inductively this procedure leads to a formula of the following type: if Zell(g%)
has degree n,

r(Z)(T, f)(gbg™")= 'Z’%ﬂ(gB") hi()IDo(B) =12 (Y; 1) (8).

Here Y; runs over a basis of translation-invariant differential operations on B, of
order up to n, {@;;} is a collection of functions in CZ(G/B®), and the
h,e C*(B n G') are uniformly bounded on B,. Except for a constant factor, the
mapping f— f; is translation by some element of N;(B)/B°, hence continuous in
the topology of H,(B). The lemma now follows from an application of the

integration formula (7.3).

We select an ordering > on &g, and we let pg denote one-half of the sum of
the positive roots. Then

Dyb)y= [] {1—e*®)1—e*®))}

aePg,

=(—1)"e**=(b) l;[ (1—e=*(d))?,
>0’

with d equal to half of the cardinality of @;. Passing to a finite covering of G, if
necessary, one can arrange that p, lifts to a character ¢’? of B. In this situation,

(7.11) Adg=er® J] 1—e7%
a2e®Pg,
a>0

— H (erz/Z _e—a/Z)

acPpg,
a>

becomes a well-defined function on B, such that

Dy(b)=(—1) 45(b)*  (beB).
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On any connected component of BN G, |D,|'? coincides with a constant
multiple of 45 (D, is real-valued!). Hence (7.6) and (7.10) imply:

(7.12) Corollary. If the invariant eigendistribution @ extends continuously from
C3(G) to H,(G), then the linear functional

fff4,0db
B
on Cg(B,) is continuous with respect to the topology induced by H,(B), for any
¢>0.

At this point, we have to recall certain facts about the local structure of an
invariant eigendistribution. As before, B will denote a Cartan subgroup, with Lie
algebra b, and @, the root system of (g%, b%). Every root « of the sub-root system

(7.13) @,z ={acPyla is real-valued on b}

lifts to a character e* of B, which assumes only real values!. If @ is an invariant
eigendistribution, the function 4;® on B~ G’ has a real-analytic extension to
the larger subset

(1.14) B"={beB|e(b)+1, for aedy 5}

of B; this is part of Harish-Chandra’s “matching condition” [13, 3]. The group
B can be expressed as a direct product

(1.15a) B=B, B_,

such that B, is a compact group, and B_ a vector group. Via the exponential
map, B_ becomes isomorphic to its own Lie algebra b_, i.e.

(7.15b) exp:b_—>B_.

The identity component BS of B, is a torus, with Lie algebra b, so that
(7.15¢) BY =exp(b,).

We observe that

(7.16) e*(B,)c{+1}, if acPpp,

since e¢* takes only real values.
We enumerate the connected components of B” as B, ..., By. For each j,

(7.17) @y g j={aedp gle*>0 on B}
is then a sub-root system of @y, and

o
(7.18) (PB_]R,J- = {ocediB’]R,jl e“>1 on B}'}
! This is not totally obvious, since B may have several connected components. One should
observe that the statement really concerns the adjoint group, which is an algebraic group over R,
and which contains the image of B as an algebraic subgroup. The character ¢* is also defined over R,
and hence must assume real values on all of B
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a system of positive roots in @y p ;, which corresponds to the Weyl chamber
(7.19) C;={Xeb_[{a, X>>0, for ac Py ;}

in b_. We claim that B] can be decomposed into a product

(7.20) Bj=b; B} exp C;, for some fixed b;eB, .

Indeed, since B, meets every connected component of B, one can choose a
b,eB ., such that Bj lies in the connected component b; BS exp b_. But then By
must be a connected component of the open subset

(7.21) {beb; BS exp b_|e*(b)*1, for acPy y}

of B. According to (7.16), for any ae®y , ¢* is identically equal to +1 or —1 on
b; BY%, depending on whether or not a belongs to @5 g ;.- The set (7.21) therefore
c01n01des with

{bjboexp X |boeBS, Xeb_, (a, X>+0 for aePp g ;},

i.e. the disjoint union of the connected, open subsets b; B exp C, where C runs
over the collection of Weyl chambers, in b_, of the root system @5 ;. One of
these is Bj'; the description (7.18) of &7y, ; shows that it can only be b; B0 exp G;.

We now focus our attention on a particular invariant elgendlstrlbutlon @
and we keep fixed a connected component B of B”, as in (7.20). The Weyl group
W, ¢ of (g%, b%) operates on b€ in the usual manner, and by duality also on the
dual space b‘t* As a preliminary step in the proof of Harish-Chandra’s regularity
theorem [13, 3], one obtains the following result: there exist polynomial
functions p; , on b_, indexed by weWj ¢, and a linear function p on b%, such
that

(722) (4pO)bjexp(X+Y)= ) P w(X) e X+

weWp €
whenever XeC;, Yeb, .

If p is nonsingular, i.e. wu#pu for w1, the p; , are actually constants, and they
are uniquely determined. In general, to make the p; ,, unique, one should sum
not over Wy ¢, but over the quotient of Wy ¢ by the stabilizer of .

According to (7.12), if © extends continuously to H (G), the linear functional

(723) f—{f450db, feC3(B/NB,),
B

becomes bounded in the topology which H,(B) induces on Cg(B; N B,); >0 is
arbitrary. To complete the proof of Proposition (6.10), we must deduce:

(7.24) p;, +0=Relw,,X)<0, for any non-zero X in the closure of C;.

By separating out the toroidal variable, we shall reduce the problem to one
about functions on Euclidean spaces. For this purpose, we re-interpret the
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identity (7.22): there exist distinct characters 5,,..., 5y of the torus B, and
functions h,, ..., hye C*(B_), such that

(7.25) (45 0)(b;bexp X)=3 n,(b) hi(exp X),
if beBY, XeC;. Moreover,

M;
(7.26) hyiexp X)= 3 p;(X)e>*,  Xeb_,
j=1
where the p;; are polynomial functions on b_, and v;;eb®™ We let C; denote the
translate of C; by some fixed X e C;; thus Cj.contains the closure of Cj. As will
be argued shortly, one can select a non-empty open subset U< B9, and some
£>0, which have the property that

(727) b;Uexp C;=B; N B,.

No non-trivial linear combination of the #; is perpendicular to CZ(U) in I*(BY).
Hence, for suitably chosen functions f;e C3(U),

BL fin;db=4,;.

Testing the linear functional (7.23) against products f; f, with fe C§ (exp Cj), one
finds that

(7.28) f | fhidb, feCZ(exp C),

B_

is bounded, relative to the topology of H, (B_),

for 1 <i< N; the Sobolev space H,(B ) for the vector group B_=b _ is defined
in the usual fashion.

We still must produce U and g, as in (7.27). For any real root a, ¢* is
uniformly bounded away from one, on the entire set b; BY exp C;. Every ae®p,
whether or not it lies in @y 5, assumes only real values on b_, so that ¢*>0 on
B_. On the other hand, |¢*]=1 on B, . Hence, if ¢ is sufficiently small,

le*(b; b)—1|>6 = |e*(b; b exp X)—1|>%34,

whenever beB%, Xeb_. Thus (7.27) will be satisfied for any open, relatively
compact subset U of

(7.29) {beB%|e*(b;b)%1 for acdy, agdy p},

if only ¢>0 is small enough. No character e* with ae®y, a¢dPy, remains
constant on BY . The set (7.29) is therefore non-empty, and we can indeed choose
U and e

Because of (7.28), the verification of the assertion (7.24) amounts to a
problem about functions on Euclidean space. In order to state the relevant
result, we let Q denote the positive quadrant in R,
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Q0={(xy,..., x)eRx;>0, 1<i<d}.

Via the inclusion R%—C? and the natural pairing €?x C%—C, every ¢eC’
defines a complex-valued linear function x> (& x> on R?

(7.30) Lemma. Let £,, ..., &y be distinct elements of €¢ and p,, ..., py non-zero
polynomial functions on R?. The distribution

o JO T p) e dx, - feCFQ),

does not extend continuously to the closure of C§(Q) in any Sobolev space
H,(R%, unless the real part of each ¢, lies in —Q.

In terms of suitable linear coordinates x, ..., x, on b_, the Weyl chamber C;
can be described as

{(xla --'9xd)61Rd|xi>Os 1§l§k}>

for some k<d. Except for a finite number of hyperplanes, this set decomposes
into 29-% copies of Q. We also note that translation by some x,eR? transforms
the distribution described in the lemma into another one, of the same type, with
the same exponents &;. In particular, the conclusion remains unchanged if the
domain CZ(Q) of the distribution in question is replaced by C¥(Q+x,). For
these reasons, the lemma implies the statement (7.24).

Proof of (7.30). If a distribution is continuous in the topology of the n-th Sobolev
space, then its image under a constant coefficient differential operator, of order
k, is continuous in the topology of the (n-+k)th Sobolev space. For any
polynomial g of d variables,

0 1 /0 0
- . (E5r XD) = | p. = Y <8 x>
4 (55) Cow e N=E T 5 (5 2:) 0 (5 9) €0 €.
with I running over all d-tuples of indices I =(iy, ..., i,) and I!=]] i,!. Hence, by
i

) . . 0
an appropriate choice of the constant coefficient operator g (5—), we can
arrange that Xi

0
_— . &gy XDy = p<&L, XD
‘f(ax,.)@”f(")e y=en,

In this fashion, we reduce the problem to the case of a single exponential term
e“* without a polynomial coefficient. A further reduction is possible: by
testing the distribution e‘** against products

fOeps s X)) = filxg) f(x2) - - falxy),  fie CH(RT),

one can deal with one variable at a time. In other words, we may and shall
assume that d=1. We now evaluate the distribution ¢** on a sequence of
functions f,(x)=f(x—k), for a fixed fe C§(R*). The boundedness of the distri-
bution in some Sobolev topology gives, at least, the estimate Re £ <0; we must
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exclude the possibility that Re £=0. If ¢ were purely imaginary, translating the
distribution would change it only by a multiplicative constant, of modulus one.
Every feCZ(R) has a translate whose support lies in IR*. Consequently, the
distribution e** would be bounded, in the topology of some Sobolev space, not
only on C§(IR™), but actually on all of C¥ (IR). That is absurd: evaluation of the
Fourier transform f at some point yelR, for fe C¥(R), fails to be continuous
with respect to any Sobolev topology.

The proofs of Proposition (6.11) and of Lemma (6.15) are straightforward
applications of Harish-Chandra’s “matching conditions”. We shall briefly recall
what is involved. Until further notice, we keep fixed the following data: an
invariant eigendistribution @, a Cartan subgroup B of G, a connected com-
ponent B} of B”, as in (7.20), and a root ye®p  ; Which is simple with respect to
the positive root system @5 , ;. To any real root, and in particular to y, one can
associate a so-called Cayley transform, an inner automorphism of g%, which maps
b® onto the complexification of a Cartan subalgebra b,<g; the corresponding
Cartan subgroup B, meets B along

B B,={beB|e'(b)=1},

and the dimension of its compact part B, , exceeds that of B, by one. The open
subsets (BN G)® and (B,nG)% of G have a hypersurface §, as common
boundary, which contains B n B,. As an invariant eigendistribution, @ satisfies
certain differential equations, which are used, in particular, to obtain expressions
of the type (7.22). An investigation of the same differential equations, near the
hypersurface S, leads to relations between the restrictions of @ to B and B,,
respectively. These are the matching conditions [13, 3].

Since y is simple with respect to @3 ;, the intersection Bn B, —equivalently,
the kernel of the character e’ on B—contains a whole “wall” of B}, namely

(7.31) {b;b exp X |beBY, Xeclosure of G;, {y, X>=0j.

According to (7.22), the restriction of 45 @ to Bj extends as an analytic function
across the wall (7.31); for simplicity, the extension shall be referred to as ¢. We
now choose a non-zero, translation-invariant vector field X, on B, which is
normal to the codimension one subgroup Bn B,. The matching conditions assert
that, for each odd integer n, X’ ¢ coincides, on the subset (7.31) of BN B, with a
similar expression derived from the restriction of @ to B,. In particular, if =0
on B, all of the odd derivatives X ¢ vanish on the wall (7.31). Equivalently,
Ag @I py Mmust then be symmetric w1th respect to the reflection about the root 7.
The reflections about all simple roots in @5y ; generate the full Weyl group of
the root system @, ;. Hence, if @ vanishes on B,, for every simple root
Y€Pp g j» then Ay @lB will be symmetric with respect to this entire Weyl group.
The compact factor “of every such B, has dimension one greater than the
compact factor of B. We conclude:

(7.32) 4,0 By is symmetric with respect to the Weyl group of &y ;, provided
dim B, is maximal, among all Cartan subgroups on which @ does not vanish
identically.
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Our arguments depend only on this one consequence of the matching
conditions.

Let us suppose now that @ decays at infinity. The exponents wu which
appear with non-zero coefficient p; , in (7.22) then satisfy {wp, X) <0, for every
X #0 in the closure of C;. If 4 @IB were symmetric with respect to the Weyl
group of &y, ;, each wu would havé to assume strictly negative values also on
the various translates of the Weyl chamber C;, i.e. on all of b_. This is impossible
unless @|p.=0, or b_=0, in which case B is compact. The assertion of
Proposition (6.11) follows.

We argue similarly to prove Lemma (6.15). Let us suppose that @,, @, are
two distinct invariant eigendistributions, which both have the properties men-
tioned in the lemma. As was described in § 4, the explicit formula for ;|5 makes
it possible to identify the infinitesimal character of @;, namely

(7.33) Zy4(2)4), Ze3;

yu: 3 —— I(H%) is the isomorphism (4.8) corresponding to the Cartan subalgebra
b%, and y,4(Z) is viewed as a polynomial function on h*® Since @, and &, have
the same infinitesimal character, their difference @ =0, —~@, is again an in-
variant eigendistribution. We now choose a Cartan subgroup B and a connected
component B} of B”, such that @ does not vanish identically on Bj, but does
vanish on any Cartan subgroup whose compact factor has a larger dimension
than B, . Then B cannot be compact: any two compact Cartan subgroups are
conjugate, and @|;=0. Because of our assumptions, @ remains bounded at
infinity. Hence, when the restriction of 4 @ to Bj is expressed as in (7.22), every
exponent wu which occurs with a non-trivial coefficient p; ,, satisfies Rewu=<0,
on C;. The assertion (7.32) allows us to conclude

(7.34) p;,*+0= Rewu=0 on b_.

To complete the proof of (6.15), we must derive a contradiction.
The reasoning which led to the description (7.33) of the infinitesimal charac-
ter of @ also gives the alternate description

Z-y3( D)), Ze3

in terms of the isomorphism y,: 3 — I(b%). Because of the canonical nature of
the Harish-Chandra isomorphism (4.8), y; and yy are related: yg=c - y5, when-
ever ¢: b —> h® is induced by an inner automorphism of g% Hence ¢* A and u
lie in the same Weyl group orbit, i.e.

(7.35) pu=uc*i, for some ueW .

The elements of the weight lattice A of H can be expressed as @Q-linear
combinations of roots ae®. Since every root aedy assumes real values on the
split part b_ of b, and since ¢* ¢ =Py, the Weyl group translates of u must be
real on b_. Thus (7.34) can be sharpened:

(7.36) p; ,+0=>wu=0 onb_.
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The real roots ae®yy vanish on b, and the decomposition b=0b, ®b_ is
orthogonal with respect to the Killing form. Thus (7.36) implies

(wp,a)=0, for aedy,,

provided p; , #0. This is the case with at least one we Wj ¢, because @lBJ,_, £0. A
Cartan subgroup has an empty system of real roots precisely when it is
fundamental, i.e. when its compact part is of maximal possible dimension. In our
situation, G contains a compact Cartan subgroup, so that B cannot be funda-
mental. We conclude that p is singular. In view of (7.35), this contradicts our
assumption on A.

§ 8. Complete Description of the Discrete Series

As was shown in § 6, G has a non-empty discrete series if and only if it contains
a compact Cartan subgroup. We assume that this is the case, and we select a
particular compact Cartan subgroup H < G. We shall follow the notation of § 4.
In particular, 4,<ibh* is the lattice formed by the differentials of characters of
H, translated by the half-sum of the positive roots; cf. (4.25). We recall the
notion of an invariant eigendistribution which is bounded at infinity, as defined
in § 6. With these ingredients, we can now state and prove Harish-Chandra’s
fundamental result on the discrete series [15]:

(8.1) Theorem. Corresponding to any nonsingular e/, there exists exactly
one invariant eigendistribution @ ;, which is bounded at infinity, and such that

Y e(w)ev?
O,lgne=(—1) el

H (ea/z _e—u/Z)

ae®,
(@, 4)>0

(g=%dim G/K). Every such @, arises as the character of a discrete series
representation, whose formal degree equals

(o, 4) :
d(A—p)= , with p=1 o
( p) ( ali—)l, o (CX, p) p 2 (e, lz):> 0

Conversely every discrete series character occurs among the @ .

Because of the uniqueness which is asserted in the theorem, two of the @,
coincide precisely when they have the same restriction to H, and this is the case
whenever their parameters are related by the action of W, the Weyl group of H
in G. In particular, then, the theorem provides a one-to-one parametrization of
the discrete series, in terms of the quotient

(8.2) {Aed,|4 is nonsingular}/W.

Our proof of the theorem also leads to information about the decomposition of
discrete series representations under the maximal compact subgroup K. We
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consider a particular discrete series representation 7, with character @,. The
parameter A determines a system of positive roots ¥ in @, namely

8.3) ¥Y={aecd|(4,0)>0}.
As before, we set

(B84 po.=3 ) o p=3 )

PNy [ et 4
The next statement is a weaker, but useful version of Blattner’s conjecture.

(8.5} Theorem. In the restriction of n; to K, the irreducible K-module of
highest weight A+p,—p, occurs exactly once. Any irreducible constituent of
T, |k has a highest weight of the form A+ p,—p.+ A, where A stands for a sum of
roots in 7.

Turning to the proof of the two theorems, we note that the uniqueness of the
©; was established in §6. We now fix a nonsingular ieA,, and we define
Y, p., p, in terms of A, as above. As was argued below (4.34),

(8.6) u=~i-p,

is the highest weight of an irreducible f®-module V,, and the action of I* on the
tensor products ¥, ® S* lifts to K. Thus we can apply Theorem (5.20): if

(8.7) min |(o, A)|>c,
aed®

for some appropriately chosen constant ¢, there does exist a discrete series
representation n,, which has the properties described in (8.5), and whose
character @, satisfies the conditions of (8.1). In the case of a general A, Theorem
{4.41) provides at least a partial answer. We shall use a method of Zuckerman
[27] to deduce the assertions of (8.1) and (8.5). Since our arguments depend
only on a specialized version of Zuckerman’s technique, we shall develop his
ideas to the extent that they are needed here.

Although we are concerned with unitary representations, it is necessary at
this point to work in the wider context of representations on Banach spaces. We
briefly recall the important properties of such representations; details can be
found in [26], for example. A representation n of G on a Banach space is said to
be admissible if each class ieK occurs with finite multiplicity n; in 7|z. Every
irreducible unitary representation has this property; it is unknown whether
irreducibility implies admissibility in general. Each admissible representation =
gives rise to an infinitesimal representation of U(g%), on the space of K-finite
vectors. The sub-representations of n correspond precisely to the invariant
subspaces for the infinitesimal representations. If the infinitesimal represen-
tations attached to global representations are isomorphic, one calls the global
representations infinitesimally equivalent. Informally, one may think of in-
finitesimally equivalent representations as being identical, except for a modifi-
cation of the topology on the underlying vector spaces. Among unitary repre-
sentations, the notions of infinitesimal equivalence and unitary equivalence
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coincide. Whenever = is both admissible and irreducible, the K-multiplicities #,
satisfy the bound n; <degree of i, just as in the unitary case; moreover, the center
3 of U(gY) then acts by scalars. Conversely, if n is admissible, and if 3 operates
on the space of K-finite vectors according to a character, then n has at least a
finite composition series. _

Admissible, irreducible representations have global characters, for essentially
the same reasons as in the unitary case. More generally, the definition of the
character of an admissible representation = makes sense, provided only n has a
finite composition series. One can describe the character explicitly as the sum, in
the sense of distributions, of the diagonal matrix coefficients, relative to a
“basis” consisting of vectors in the various K-invariant, K-irreducible subspaces.
Characters cannot distinguish between infinitesimally equivalent represen-
tations: two admissible, irreducible representations have the same character
precisely when they are infinitesimally equivalent. In fact, the characters cor-
responding to any finite set of infinitesimally distinct, irreducible representations
are linearly independent.

We now consider a particular admissible, irreducible representation =, and a
finite-dimensional representation 7, whose characters we denote by @, and y..
As is not hard to check, the temsor product will then be admissible, too.
Furthermore, it is known that

{8.8) n®r1 has a finite composition series.

One can see this, for example, as follows. Like any admissible, irreducible
representation, n is infinitesimally equivalent to a sub-representation of some
principal series representation’, which need not be unitary, of course. Hence, in
verifying (8.8), we may as well assume that = itself is a principal series
representation, instead of being irreducible. Thus = is induced, from a minimal
parabolic subgroup Pc G, by a finite-dimensional, irreducible representation o
of P, i.e. n=ind$ ¢. For essentially formal reasons,

n®txind$(c ®1).

Any composition series of the finite-dimensional representation e ®zt of P
determines a filtration of ind§ (s ® 1), of finite length, whose quotients are again
principal series representations. A principal series representation, finally, does
have a finite composition series, as follows from the fact that it has an
infinitesimal character, and that it is admissible.

As the character of the tensor product #®+, ¥, @, equals the sum of the
characters of the composition factors. For each character ¢ of the algebra 3, we
let (., ©,), denote the sum of the characters of those composition factors on
which 3 acts according to ¢. Then

89) % @,=3 (10,

with ¢ ranging over a finite set of characters of 3.

Casselman [9] has given a simple proof of this fact
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For the purpose of stating the next lemma, we fix a system of positive roots
Y <o, and some Aed,, such that 1 is dominant with respect to ¥, but not
necessarily nonsingular. Although G itself need not be linear, it is at least a finite
covering of a linear group. Hence arbitrarily large positive multiples of 4 occur
as highest weights of irreducible, finite-dimensional representations of G. We
suppose that t is such an irreducible, finite-dimensional representation, of
highest weight (m—1) A, m= 1; y, denotes the character of t, and x* the character
of the representation dual to 7. We shall use the symbols €, and €,,, to refer to
the sets of characters of irreducible, admissible representations, with infinite-
simal character ¢, and ¢,,,, respectively; cf. (4.17).

(8.10) Lemma (Zuckerman [27]): The mapping
S: O (x, 0),...

establishes a bijection between the sets %, and %, ;, whose inverse is given by
T: O—(y¥ 0),,.

If @€%, decays at infinity, then so does §@, and converseiy.

Proof. In the obvious manner, S and T extend to mappings between the linear
spans of €, and €,,,, in the appropriate spaces of invariant eigendistributions.
By virtue of their definition, both S and T associate to each irreducible character
an integral linear combination of irreducible characters, with non-negative
coefficients. We shall show that

8.11) TO+0, if Oc%,,;
and
(8.12) T-S=identity, on %,

as well as the corresponding statements with reversed roles for § and T. Thus, if
SO were a sum of more than one irreducible character, @ =T-S® would also
have to be a sum of several irreducible characters, contradicting the irreduci-
bility of @. This will prove the first half of the lemma. The second assertion will
follow from an explicit description of S.

In order to understand S and T, we consider a particular @ €%,, restricted to
a Cartan subgroup B. On any connected component B} of B”, as in (7.20), © can
be expressed by a formula like (7.22):

8.13) (4p@)b;exp(X+Y)= Y p, (X)X for XeC;, Yeb,.

weWp ¢

Since @ is a character, the coefficients p; , are known to be constants, not
polynomials [11], but this fact turns out to be irrelevant for our purposes. The
Cartan subalgebras b® and }? are related by an inner automorphism of g%, say

(8.14) c¢: BT 1T,
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The arguments which precede (7.35) also apply in the present situation. Thus,
modifying ¢ by an element of W, if necessary, one can arrange

(8.15) p=c* i

Every weight v of 1, relative to the Cartan subalgebra b%, lifts to a character e* of
B. We set n,=multiplicity of the weight v; then

Xt|B =Z nv ev'
The Weyl group W ¢ of (g%, b%) leaves y, invariant, so that
(4p 1 O)(b; exp(X +Y))

___z Z n, ewv(bj) pj,w(X) e(w(u+v),X+Y>’

v weWp ¢

if XeC;, Yeb,. In this formula, the contribution of S @ consists of those terms
which belong to the infinitesimal character ¢,,;, i.e. the terms for which g+v is
Wi, c-conjugate to ¢c*(mi)=mpu.

We claim: p+v lies in the Wy ¢-orbit of mpu only if v=(m—1) 4, in which case
n,=1. Indeed, (m—1) u occurs as an extreme weight of the finite-dimensional,
irreducible representation t, and hence has multiplicity one. The weights of ¢ all
lie in the convex body spanned by the extreme weights, ie. by the Wj ¢
translates of (m— 1)u. When this convex body is shifted by u, among the new
vertices, myu lies farthest from the origin. The claim follows, and we deduce:

(8.16) (4p(S@))(b;exp(X +Y)
— Z e(m—l)wn(bj) pj,w(X) em(wu,X+Y>,

weWp ¢

whenever XeC;, Yeb,. Similarly, if the restriction of some @€%,; to B} is
given by
(ApO)(bjexp(X +Y))= Y g (X)em XD,

weWp ¢
then

(8.17) (45(TO))(b;exp(X +Y))
= Z e—-(m—l)w[t(bj) qj,w(X) e(w[t‘X+Y)’

weWp ¢

again for all XeC;, Yeb, ; the verification is entirely analogous to that of (8.16).

Every invariant eigendistribution is completely determined by its restrictions
to the various Cartan subgroups. Hence the explicit formulas (8.16-8.17) imply
the two assertions (8.11-8.12). We recall that an invariant eigendistribution @
decays at infinity if, and only if, in terms of the notation of (8.13),

(8.18) p; ., *+0 = wu assumes strictly negati\{e values on the closure of C;,

except of course at the origin, for all choices of B and B}. The condition (8.18)
remains unchanged by an application of § or T, which has the effect of
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multiplying the exponents by a positive constant. This completes the proof of
the lemma.

When the arguments leading up to (8.17) are carried out for the compact
Cartan subgroup H, one finds:

(8.19) Corollary. If @c%,, satisfies

AH@|H= Z aw eMWAa

weW
then
45(TO)y= Y, a,e*.
weWg

We return to the proof of the main theorem. Thus a nonsingular AeA, is
given, and ¥ is the system of positive roots which makes 4 dominant. We
enumerate as

(820) A=A Ay, ., hy

those Wg-conjugates of A which lie in A, and are dominant with respect to
P°NY; this is consistent with the notation of Theorem (4.41). The correspon-
dences S and T of (8.10) depend on the choice of the integer m. We make m so
large that the multiples m 4; of the various A; become sufficiently nonsingular, in
the sense of (8.7). By assumption, (m—1)4 occurs as weight of a finite-
dimensional representation of G, hence lies in A, as do its Wg-conjugates. Thus
A, contains not only the various /;, but also their multiples m 4,. Theorem (8.1)
has already been established for every nonsingular parameters. In particular,
there exist discrete series characters 6,,,., such that

Y e(w)emrh

weW
@mlilHnG’=(—’1)q H (ea/Z_e—a/Z)'

as®P,
(@, 4} >0

We define
(8.21) @li = T@mi,"

Then, because of (8.10) and (8.19), @, is the character of an irreducible
representation,

Y e(w)ert
q weW '
(8.22) @Ai'HnG’=(_1) n (ea/Z__e—a/Z)’

acd,
(x, Ai)> 0

and @, decays at infinity.

The invariant eigendistribuition &, of (4.26) was defined as the sum of the
discrete series characters which correspond to the infinitesimal character ¢,
each multiplied by its formal degree. As a linear combination of discrete series
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characters, &, decays at infinity. If two invariant eigendistribution agree on a
compact Cartan subgroup, and if they both decay at infinity, than they coincide;
this follows from (6.11) (any two compact Cartan subgroups are conjugate!).
Thus, comparing (4.41) and (8.22), we find

823) 6,= (H (“”1)) ﬁ o,..

ac'¥ (O(, p) =1

An invariant eigendistribution can be expressed as a linear combination of
irreducible characters in only one way, if at all. Also, the coefficient appearing in
(8.23) is non-zero. We conclude: the ©,, 1 <i<N, are precisely the discrete
series characters corresponding to the infinitesimal character ¢,; each has
formal degree

A
d(/l—p)=g EZ,p;'

The infinitesimal character of any discrete series representation equals ¢, for
some nonsingular ¢eA,, as was shown in §6. The proof of Theorem (8.1) is
therefore complete.

For very nonsingular parameters A€/, the assertion of Theorem (8.5) is part
of Theorem (5.20). If A€, is nonsingular, but otherwise arbitrary, we choose the
integer m as in the previous argument, so that

@}.z T@ml =(X;k @ml)<p,1'

Thus, if 7, and =, , are discrete series representations with global character 6,
and 6,,, respectively, then n, can be realized as a composition factor of
T,.;, ® 7%, up to infinitesimal equivalence. Here t* stands for the representation
dual to 7, i.e. the finite-dimensional, irreducible representation which has
—(m—1)4 as lowest weight. In particular, all irreducible constituents of m,|, are
among those of (r,,; ® 7*)|x. The highest weight of any irreducible constituent of
the tensor product can be expressed as the sum of the highest weight of a
constituent of &, ,|x with some weight of t*. We already know that every highest
weight in n,, ;| is of the form m A+ p,—p.+ A4, with 4 equal to a sum of positive
roots. Any weight of t* differs from the lowest weight by a sum of positive roots.
All this implies the second assertion of (8.5).

Since =,,,|x contains the irreducible K-module of highest weight m A+ p, —p,
only once, and since the lowest weight —(m—1) A of t* has multiplicity one, the
irreducible K-module of highest weight 1+ p, — p, cannot occur more than once
in 7,|;. We must check that it does occur. The results in the beginning of §4,
especially (4.16c¢), coupled with the explicit formula for @,|4 .-, show that

(8.24) A—p, is the highest weight of an irreducible constituent of (r,|x)®(s* ®s™)

(s*, s refer to the action of K on the half spin modules §*,57). Every weight of
S* @S~ can be written as —p,+f, + -+ B2 with f,e®"n P, and every highest
weight in x|, as 1+p,—p.+ A, A being a sum of positive roots. Hence (8.24) is
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possible only if m,|; contains the irreducible K-module of highest weight
A+p,—p.. This we have proved Theorem (8.6).

§9. Realization of the Discrete Series

Although the spaces J#,", #, of square-integrable, harmonic spinors play a
crucial role in our construction, we have not yet described them completely,
except for very nonsingular parameters p. It is known that each #* either
vanishes, or is an irreducible unitary G-module, which belongs to the discrete
series; moreover, every discrete series representation can be realized in this
manner [22, 24]. For the sake of completeness, we now recall the precise
statement and discuss its proof.

As in the past, u shall denote the highest weight of an irreducible I*-module
V,, and ¥ a system of positive roots, such that

9.1) (u+p,0)=0, for ac.
We also assume

9.2) p+p,ed,
which insures that the twisted spin bundles ¥, ® &* can be defined on G/K.

(9.3) Theorem. Both " and ,” vanish whenever u+p, is singular. Other-
wise, for nonsingular u+p,, only J,” vanishes, whereas G acts irreducibly on
#,", according to the discrete series representation with character @, , .

If AeA, is nonsingular, and if ¥ is the positive root system which makes A
dominant, then u=21—p, has the required properties. In particular, the theorem
provides a concrete realization for every discrete series representation.

Turning to the proof of the theorem, we recall the Plancherel decomposition
(5.6) of Jff. The discrete series contributAes to it discretely; any jeG, occurs as
often as the dimension of V%, if j lies in G,, and does not occur at all for j¢ GM.
The explicit enumeration of the discrete series representations, combined with the
information about their K-decompositions in Theorem (8.5), makes it possible to
determine these multiplicities:

(9.4) Lemma. Suppose j is a class in the discrete series, which belongs to Gu.
Then V;* +V,~ =0, except in the following situation: u+ p, is nonsingular, and j

has character @, ., , in which case dimV," =1, V;~ =0.

Proof. We consider a particular class jeG,n Gu, with character @,. For the time
being, ¥ shall denote the system of positive roots

{ae®|(a,4)>0},

which may be inconsistent with (9.1). However, replacing 4 by one of its W-
translates, if necessary, we can arrange that

9.5) (u+p,a)>0, for acdnYP.
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As was remarked in § 5, Vji can be non-zero only if H; contains a K-invariant,
K-irreducible subspace with a highest weight of the form p+p,—B; here B
stands for a sum of distinct positive, noncompact roots and, in the case of V7,
B=0. This statement, incidentally, depends only on the property (9.5) of ¥,
except for the labelling of ¥;*, which is determined by the stronger condition
(9.1). According to (8.5), every such highest weight can be expressed as 1+ p,—p,
+ A, with A equal to a sum of positive roots. Thus ¥;* =0, unless

u+p.=A+A+B.
The preceding equality implies

9.6) (u+p,pu+p)z(4 A)+2(4 A+ B);

because of our choice of ¥, (4, A + B) is strictly positive, except for A=B=0.
Since j lies in G, and since ¢, is its infinitesimal character, we find

(B+pon+p)—(p,p)=c,=0,(Q)=(4,4)—(p, p);
cf. (4.22). Equivalently,

(B+p,1+p)=(4,7),

which is compatible with (9.6) only if A=B=0, A=u+p,. Thus we may as well
assume that p+p, is nonsingular and equal to A. In this situation, the positive
root system ¥ does have the property (9.1), and hence gives the correct labelling
of V;*,V;~. If V;~ were non-zero, the inequality (9.6) would have to hold with
B0, which is impossible. Finally,

dimV;* =dimV;* —dimV,” =1,
as follows from (4.16¢).

In order to complete the proof of Theorem (9.3), we must show that the
complement of the discrete series does not contribute to the Plancherel decom-
position (5.6) —or equivalently, that the set

0.7 {jeG,lj¢G,, V;* @V, +0}

has zero Plancherel measure. At present, only one argument is known which
proves this last statement in full generality. It depends on Harish-Chandra’s
work on the explicit form of Plancherel measure, as we shall now explain.

To each conjugacy class of Cartan subgroups, Harish-Chandra attaches a
series of unitary representations, which are induced from a parabolic subgroup;
the inducing representations, restricted to the semisimple part of a Levi com-
ponent, belong to the discrete series. At one extreme, the discrete series
corresponds to the conjugacy class of compact Cartan subgroups (here the
inducing process becomes trivial: G is viewed as a parabolic subgroup of itself),
at the other extreme lies the unitary principal series. The union of these so-called
“nondegenerate series” supports the Plancherel measure. Roughly speaking, the
series attached to a Cartan subgroup B is parametrized by the dual group B,
modulo the action of the Weyl group. In terms of this parametrization, the
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Plancherel measure is completely continuous with respect to Haar measure on
B. The action of the Casimir operator can be described, in terms of the same
parametrization, as the Killing form plus a constant, transferred to a function on
B via the exponential map. The set of points where this function assumes a given
value has zero Haar measure, except if B is discrete, in which case B parame-
trizes the discrete series. The preceding results, which go well beyond the
bounds of this paper, directly imply the following statement:

(9.8) Lemma (Harish-Chandra [16]). The set of classes jeG, outside of the
discrete series, at which the Casimir operator takes any given value, has measure
zero.

In particular, the set (9.7) has zero Plancherel measure, and this completes
the proof of Theorem (9.3). The proof is not quite satisfactory, of course, since it
uses almost the full strength of Harish-Chandra’s explicit Plancherel formula.
We shall now mention two alternate approaches to the problem of realizing the
discrete series geometrically, which are independent of Lemma (9.8).

Instead of working with the Dirac operator, we could have equally well
carried out our construction in the framework of I*-cohomology, as originally
suggested by Langlands [20]. This has the disadvantage of making some of the
arguments technically more difficult. On the other hand, a comparatively
elementary result of Casselman and Osborne [10] then takes the place of
Lemma (9.8). Because of it, all classes jeG which enter the Plancherel decom-
position of one of the I2-cohomology groups have the same infinitesimal
character, and consequently only the discrete series can contribute. For details
the reader is referred to [25].

The second alternative applies only in the case of a linear group G, and it
can deal only with nonsingular values of pu+p, (which however is enough to
realize all discrete series representations). In this situation, because p+p, is a
dominant and nonsingular weight, u— p,=(u+ p.)—p is at least dominant. Thus
i — p, occurs as the highest weight of an irreducible ¥*-module V,_, . Since p, is
the highest weight of an irreducible constituent of S*, there exists an injective
K-homomorphism

99) V, oV, , ®(S*@S).

The direct sum of the two half-spin modules may be viewed as a square-root of
the exterior algebra of the standard representation. In our context, this means
that

(S*OS)VEST®ST)=AP

(p = orthogonal complement of tin g). Tensoring both sides of (9.9) with (S* @ S™),
one finds

.10) V,®E* @S )=V, . ®AP~
We recall the isomorphism

(0.11) V* xHomg(H,, V,®5%).

i
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Because of (9.10-9.11), the set (9.7) becomes a subset of

(912) {jeG,lj¢G,, Homg(H,, V,_, @ Ap9+0}.

It will be enough to prove that this set has zero Plancherel measure, or more
specifically, that it is finite.

If M is a (g% K)-module (i.e. a g%module such that the action of I* lifts to the
group K), the relative Lie algebra cohomology groups H*(g% C; M) can be
computed in terms of the standard complex C*(g%, fT; M), with

(9.13)  CP(g% 1% M)=Homg(A? p%, M).

We apply this remark to the tensor product M =H_® F, where H_ is the space
of K-finite vectors in an irreducible, unitary G-module H, and F an irreducible,
finite-dimensional G-module. The cochain groups (9.13) are then finite-
dimensional and carry a natural inner product. With respect to this inner
product, the formal Laplacian turns out to be the difference of the constants by
which the Casimir operator Q acts on H_, and F [7]. In particular,

(9.14) H?(g% 1% H, ® F)=Homg(A? p%, H® F), provided Q acts on H_, and F
by the same constant.

We let F,_, denote the irreducible, finite-dimensional G-module of highest
weight u—p,, and F* , its contragredient. Then F, , contains V,_, as a K-
submodule, and € operates on both F,_, and F¥ , as multiplication by the

constant c, of (3.18). Hence, for any jeG,,
(9.15) Homg(H,,V,_, ® APp%)+0 = H? (¢ 1% H, ,® F* , )+0,

as follows from (9.14).
The category of (g%, K)-modules contains enough projectives, so that one can
define the derived functors Ext;‘<D of the functor

MHHomgc(M, N).
Arguing purely formally, one obtains isomorphisms
(9.16) Exth(M,N)gH”(g‘E,fc;HomC(M,N)),

since both sides agree for p=0. The Ext groups classify exact sequences of (g%, K)-
modules, beginning with N and ending with M, modulo a certain equivalence
relation (Yoneda equivalence). As was pointed out by D. Wigner, this implies
in particular: if M, N are (g% K)-modules with infinitesimal characters y,, and
X, then

(0-17) Ext!{M,N)=0  whenever y =+ xy-

Combining (9.15-9.17), we see that the elements of the set (9.12) all have the
same infinitesimal character as the G-module F, _, . Consequently the set must
be finite.

To our knowledge, the preceding argument was originally put together by
Zuckerman, although others may have been aware of it independently. The
details which we left out can be found in the first two sections of Borel-Wallach

7}

P
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Appendix

In order to keep this paper reasonably self-contained, we shall sketch the proofs
of some auxiliary results which were used in our construction, and which have
already appeared elsewhere, namely:

a) Parthasarathy’s formula (3.17) for the square of the spinor Laplacian [22],

b) the characterization (4.5) of the singularities of the K-character [24],

¢) the bound (5.5) for the action of the Casimir operator [24], and

d) Proposition (5.14).

The first three of these are closely related and have fairly simple proofs.
Proposition (5.14) is a special case of the main result of [24]; in the situation
which we consider, its verification can be simplified quite a bit.

We begin with the proof of (3.17). The Lie algebra of the maximal compact
subgroup K has a unique AdK-invariant complement p in g. Since the K-
modules S*, S~ were introduced as the halif-spin representations of the ortho-
gonal group of p, there exist distinguished K-homomorphisms

(A1) p*®ST-S-, pt®S—-S*
which we write as
X ®s—c(X)s;

c¢(X)eHom(S*,S%) is “Clifford multiplication” by X. The mappings (2.1) are
induced by an action of the Clifford algebra on S*™ @ S~, which implies

(A2) c(X)*=-B(X,X), for Xep®

(B=Killing form of g%). As irreducible modules for the orthogonal group of p
—or more precisely, for the corresponding spin group—S* and S~ carry
essentially unique Hermitian metrics. When these metrics are suitably
normalized,

(A.3) —c(X) is the adjoint of ¢(X);

here X denotes the complex conjugate of Xep®, relative to the real form p.
Since B is positive definite on p, we can choose an orthonormal basis {X;}. The
action s*(Z) of any Zet® on S* is then given by

(Ad) s*(X)=-1) c([Z X)) c(X).

In fact, the analogous identity holds for every Z in the Lie algebra of SO(p) [2].
The twisted spin bundles ¥, ® &* are associated to the principal bundle
K-G-G/K

by the action of K on V“®Si. Hence there exist natural G-isomorphisms

(A5) C™(G/K,¥,®@F*)=(C*(G)®V,®5*)k;



A Geometric Construction of the Discrete Series for Semisimple Lie Groups 53

(...)x refers to the subspace of K-invariants, with K acting on C®(G) by right
translation, and on V,® S * in the obvious manner.

We again let {X;} be an orthonormal basis of p. Each X; determines a left-
invariant vector field r(X;), by infinitesimal right translation. In terms of the
isomorphisms (A.5), the Dirac operators on ¥, ® * can be expressed as

(A6) Yr(X)®@1®c(Xy): (C*(G)® V,®5%)~(C*(6)® V,®5% ).

Indeed, one can check that these operators preserve the K-invariants in
C*(G)®V,®S*, and that they commute with the action of G. Consequently
they define G-invariant first order operators between ¥,® " and 7,@ % .
When the fibres of 7, ® #* at the identity coset are identified with V,® S*, and
the cotangent space with p®*xp® (this latter isomorphism comes from the
Killing form), the symbols of the operators (A.6) are given by the linear maps

PrRV,®S*->V,057, X®v®s—v®c(X)s,

which are also the symbols of the twisted Dirac operators. A translation-
invariant first order operator between ¥,® ¥ * and 7,® %~ is completely
determined by its symbol: since S* and S~ have no weights in common?,

(A7) Homy(V,®S*, V,®S~)=0,

which implies that there exist no non-trivial, transiation-invariant bundle maps
between ¥,®@ " and ¥, % ".

The spinor Laplacian on ¥,® % * is the composition of the two Dirac
operators on ¥,® & £, which are adjoint to each other; it therefore equals

O rX)@1®c(X)
=Zr(Xj) rX)®1®c(X)) (X))
=3 2 {r(X) r(X) @ L @ c(X)) e(X)+r(X) (X)) ® 1 ® c(X)) (X))}

=3 HX) r(X) @1 ®(c(X)) c(Xy)+c(X) (X))

iJj

+3 2. r([ X6 XD @ 1® c(X) (X))
=-2r(X)@1@1+7 Y rlX, X ® 1@ c(X) c(X).

In the last step, we have used the identity

c(Xy) e(Xp)+ce(Xp) e(X)=~26

ijs
! According to the discussion above (4.13), if this were not the case, there would exist an odd
number of noncompact roots which add up to zero. When a noncompact root, positive or negative,
is expressed as an integral linear combination of simple roots, the sum of the coefficients of the
noncompact simple roots is an odd integer. An odd number of noncompact roots can therefore
never add up to zero
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which follows from (A.2). We now choose an orthonormal basis {Z} for *. The
Casimir operators Q of g° and Q of € can then be expressed as

Q=Y X+YZ} =)Z.
Hence i l l
(A.8) (; r(X)®1®c(X))?
=-rQR1®1+rQYB1®1 +%i2;r([X,~,X,-])®1®c(Xi) e(X));

as in the past, r refers to the right infinitesimal action of U(g%) on C*(G).
Since g=f@p is a Cartan decomposition, [p,p] lies in f, and [, p] in p.
Thus we find:

1Y (X XD @ 1@ (X)) c(X))

=% Z B([X,, Xj],Zl) HZ)®1®c(X) C(Xj)
Ll :
({Z} is an orthonormal basis of I%)

=-1 Z_IB([ZD X, X)r(Z)®1®c(X) c(X))
(B i;’J;\d G-invariant)
= —%Z HZ)®1®c([Z), X;]) c(X)
({XS lis an orthonormal basis of p%)
=2;r(2,)® 1®s*(Z)
(because of (2.4)).

The various operators act on the K-invariants in C*(G)® V,® S*. Hence, if 7,
denotes the representation of f* on V.,

Zr(ZI)®1®Si(ZI)= _Zl®Tp(Zl)®si(Zl)_l®1®Si(‘QK)‘

Similarly,

rQY®1®1=1®(7,®s5")(Q)
=1®1,(2)®1+1®1 Q5% (2)+2Y 1®1,(Z)®s*(Z)).
i

All this allows us to rewrite the identity (A.8) as follows:
(A9) ErX)®1®c(X))*
=-r@Q®1Q1+1®1,(Q)R®1-1R1®s*(Qy).

On the irreducible ¥*-module with highest weight u, Q, acts as multiplication by
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(AlO) Tu(QK)Z(M+pc’lu+pc)_(pc!pc)'

In order to complete the proof of (3.17), we must identify s*(Qg).
We recall the character formula (4.13). Applying Weyl’s denominator for-
mula for G, one finds

(A.11) (traces™ —traces™ )|y

= [ (2=t

Bedrn¥

=( H (ea/Z_e—a/Z))—l n(ea/Z_e—a/Z)
aed ¥ ac¥

=( l_[ (ea/l_e—u/Z))—l Z 8(W) ewp‘
aedcnY weW

The K-modules S*,S~ have no irreducible constituent in common; this is a
special case of (A.7), with p=0. Since there can be no cancellation in (A.11),
every irreducible summand of S* @S~ must have a highest weight of the form
wp—p,., for some weWg. The Casimir operator Q therefore acts as multipli-
cation by

sEQ)=wp,wp)—(p., p)=(p, P) = (Pc> Po)-

Combining this with (A.9) and (A.10), we obtain Parthasarathy’s formula (3.17).

For the proof of (4.5) and (5.5), we consider an irreducible unitary repre-
sentation n of G, on a Hilbert space H. The various K-invariant, K-irreducible
subspaces span a dense linear subspace H_ cH, which consists entirely of
analytic vectors. Thus g% and hence U(g%), act on H_ by differentiation. We
shall let = denote also this infinitesimal action. It is irreducible, and determines =«
up to unitary equivalence. Again we choose an orthonormal basis {X;} of p®.
The two K-invariant linear mappings

(A12) d,: H, ®S*->H_ ®S7,
di: v®s ) (X)) v®c(X)s,

become adjoint to each other, when H_, is viewed as a pre-Hilbert space. This
follows from (A.3) and is formally analogous to the self-adjointness of the Dirac
operators. Parthasarathy’s formula has a direct analogue in the present context:

(A13) d_d,=d,d_=[@®s*)(Q2)-m(Q®1—(p,p) 1 +(pc,p0) 1;

its proof is virtually identical to that of (3.17).

As a function on the dual K of K, Q, tends to + oo outside of finite subsets.
Since each irreducible K-module occurs only finitely often in H_, and hence in
H_,®S*%, the identity (A.13) forces d. to have finite-dimensional kernel and
cokernel. For purely formal reasons

H,®S"-H,®S™ =kerd, —cokerd,,

as virtual K-modules. Thus, if 7 denotes the K-character of n, and ¢* the
character of S¥,
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t(e* —o")=char(H,®S™ —H, ® S~)=char(kerd_ —cokerd_).

In particular, t(6* —¢ ™) is a finite integral linear combination of characters of
irreducible K-modules, as asserted by (4.5). We should remark that the preced-
ing argument does not really use the unitary structure. Thus (4.5) holds more
generally for irreducible, admissible representations on Banach spaces.

If V and W are irreducible K-modules, with V having highest weight v and W
lowest weight #, then v+# occurs as the highest weight of an irreducible
constituent of V® W, provided

(v+n,0=0, for acdn¥,;

this follows, for example, from Weyl’s character formula. With respect to any
ordering compatible with ¥, —p, is lowest among weights of ST@ S, and
hence is the lowest weight of an irreducible summand of S* @ S~. The con-
ditions (5.4) therefore guarantee that H, ®(S™ @ S ) contains the irreducible K-
module of highest weight v—p, at least once. On this K-module, Q2 operates as
multiplication by

(v_pn+pc’v_pn+pc)_(pc’ pc)

If one applies the positive semi-definite operator (A.13) to the submodule in
question, one is led to the estimate (5.5).

Let us turn to the proof of Proposition (5.14)! We shall show that the two
conditions a) and b) determine the infinitesimal representation of U(g%) on H .
The unitary structure will again be irrelevant, and hence (5.14) applies more
generally to irreducible, admissible representations on Banach spaces: up to
infinitesimal equivalence, there exists at most one such representation which has
the two properties a) and b).

The irreducible K-module of highest weight u+p,, V,,, , is a left U(f9-
module, and U(g%) is a right U(F")-module, via right multiplication. Thus one
can form the tensor product

(A'14) M=u(g‘[‘) ®u(tc)l/u+p,,1

on which U(g%) operates by left multiplication. The U(g%)-module M has the
universal mapping property

(A.15) Homyq (M, Ly=Homy(V, . ,,. L),

for any U(g%)-module L. From (g%), M inherits a filtration
OcMocM;c M, M,, =M,

with
Mo=1®V, ., M, =M,+g"M,;

it is fC-stable, because the adjoint action of € on U (g%) preserves the filtration of
the latter. As a consequence of the Birkhoff-Witt theorem, there exist natural f°-
isomorphisms
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(Al6) Mn/Mnolng(n)@)V;‘

+Pon

(p€™ =n-th symmetric power of p%). In particular,
(A17) My=(p®®V,.,)®V,.ip:

this splitting is canonical: the irreducible ¥*-module V, does not embed into

1+ Pn
PE® Vit

Every irreducible component of p°® ¥, , , has a highest weight of the form
u+p,+ B, Be®". Lumping together these components for which B is, respec-
tively, positive or negative, one obtains submodules U, and U_, which decom-
pose p°®V, .

(A18) p*Q@V,,,=U,U..
The isomorphism (A.17) provides an inclusion U_—M,. We set

N =U(g%)-submodule of M generated by U_,
0=M)/N.

The %invariant filtration of M induces a filtration {Q,} of the quotient Q.

We now suppose that the representation n has the two properties a) and b)
mentioned in Proposition (5.14). The former, in conjunction with the mapping
property (A.15), guarantees the existence of a non-zero U(g%)-homomorphism
M —>H,_. Because of the latter, any such homomorphism must annihilate N.
Thus one can produce a non-trivial W(g%)-map Q —»H_, which is necessarily
surjective, since H, is known to be irreducible. Consequently,

(A.19) H, is isomorphic, as U(g*)-module, to an irreducible quotient of Q,

and this reduces the proposition to:

(A20) Lemma. The U (g%)-module Q has a unique irreducible quotient. Under
the action of %, Q breaks up into a direct sum of irreducible f*-modules, each
occuring with finite multiplicity. Every irreducible constituent has a highest
weight which can be expressed as p+p,+8,+ - +8,, with B,,...,B,€d" ¥
and m=0; the highest weight u+ p, appears at most once.

To begin with, we shall argue that the last two assertions imply the first.
Indeed, since M, generates the U(g%)-module M, Q, must generate Q. As a
quotient of Myx=V,  , , Q, either vanishes, in which case Q =0, or must itself be
isomorphic to Vu+pn» and hence irreducible under the action of f€. In particular,
no proper submodule of Q can meet Q,. Since the irreducible ®-module of
highest weight u+p, is known to occur only once in Q, it cannot lie in any
proper submodule, nor in the linear span of any number of proper submodules.
Hence Q has a unique maximal proper submodule, or equivalently, a unique
irreducible quotient.

The adjoint action of € on U(g%) lifts to the group K, which operates by
conjugation. Since K operates on V,, , as well, the action of € on M, and hence

“t+pon
on @, also lifts to K. The finite-dimensional {*-submodules Q, exhaust Q. It
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follows that Q breaks up, under %, into a direct sum of irreducibles, although
conceivably with infinite multiplicities. In particular,

(A21) Q= é 0./Q._1, as -module.
n=10

The positive roots lie in a closed cone, which is properly contained in a half-
space. Each weight can therefore be expressed as a sum of positive roots in at
most finitely many ways, and a non-empty sum of positive roots can never equal
the zero weight. Hence the lemma becomes a consequence of the following
statement,

(A.22) each irreducible constituent of the f*-module Q,/Q, ; has a highest
weight of the form

utp,+B,+--+p,, with B, ...,0,ed"NY,

which will be verified next.
The inclusion of U_ in p®®V,_ ,, tensored with the identity on p®"~", and

followed by multiplication, determines a f ~homomorphism

(A23) h: p®DQU_-p* @YV,

+pn’

Under the isomorphism (A.16), the image of h will certainly go into
NAaM/NnM,_,, ie, into the kernel of the projection M,/M,_,—Q,/Q,_,.
Thus:

(A.24) Q,/Q,_, is isomorphic, as I*-module, to a quotient of the cokernel of h.

The homomorphism h is induced, in a certain sense, from a homomorphism
between modules of a Borel subalgebra of . To describe the induction process,
we use a sequence of functors, which were introduced in [24]. We shall briefly
summarize their definition and main properties.

The root spaces in g¥ corresponding to all negative, compact roots span a
maximal nilpotent subalgebra n< 1%, which is normalized by h*. Hence

b=H"@®n

becomes a Borel subalgebra of . For any b-module E, the cohomology groups
HP(n, E) have natural h%module structures, since b acts on both E and n. The
subspace of hT-invariants will be denoted by H?(n, E)c. In the following, we
only consider finite-dimensional b-modules E, such that the action of h® on E
lifts to the torus H. In this situation, E and its n-cohomology groups become
completely reducible, as h®-modules. In particular, any short exact sequence of
such b-modules

0-E->E->E' -0
gives rise to a long exact sequence

- H?(n, E')yc - H?(n, E)y¢ —» H?(n, E")yc > H?* Yn, E)ye—.
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For each ieK, we select a I-module W, which represents the isomorphism
class i, and we define

(A25) IP(E)=@ W,® HP(n, W*® E)ye;

ieK
here W*, the f*-module dual to W, is regarded as b-module by restriction. With
i acting trivially on the right factors H?(n, W;* ® E),c, I?(E) becomes a com-
pletely reducible f-module. The definition (A.25) is functorial in E. Hence:

(A.26) I, 0=p<dimmn, is a sequence of functors from the category of finite-
dimensional b-modules, for which the action of §¢ lifts to H, to the category of
completely reducible f:-modules.

Moreover,

(A.27) every short exact sequence 0 — E'— E — E”" —» (0 determines a long exact
sequence

0 I°(E) = I°(E)—> EX(E") > ['(E)) — -+ ;

this follows from the analogous property of the functors E — H?(n, E),c. Loosely
speaking, I°(E) is obtained by inducing E holomorphically from the complex Lie
group with Lie algebra b to the complexification of K. This process is left exact,
and the functors I', I?, ... measure the obstruction to its exactness on the right.

Three properties of the functors I” will be crucial. The first of these is directly
implied by Kostant’s Lie algebra version of the Borel-Weil-Bott theorem [19].
For any weight pueA, L, shall denote the one-dimensional b-module on which §®
acts according to the linear functional u. Then

(A.28) I°(L,) is irreducible, with highest weight p, provided u is dominant with
respect to @° N ¥'; in all remaining cases, I°(L,)=0; if (u+p,, )20 for every
aed°n ¥, IP(L,) vanishes for p>0.

Since b is solvable, every finite-dimensional b-module E has a composition series
(A.29a) OcEycE;c---cE,=E,

with one-dimensional quotients. In this situation, there exists an injective -
homomorphism

(A29b) IP(E)> @ I?(E/E,_,),
1=0
which need not be functorial, however. Indeed, for each I,
I"(E,_ )~ IP(E)—>I"(E//E,_,)

is an exact sequence of completely reducible ¥*-modules, so that the assertion
can be verified inductively. Finally,

(A.30) for each finite-dimensional K-module V, there exist fC-isomorphisms
I"(V® E)= V® I?(E), which are functorial in both V and E.
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To see this, one should observe that

W.~*®V®E§@(W*®V®%)K®(%*®E),
je

where (...)x denotes the subspace of K-invariants, equipped with the trivial b-
action. Hence

PVRE)x @ W W*®V® W),®H?(n, W*® E)e

i, jeK

=@ WRW*Q@VRI'(E)x=V®I’(E),

ieK
which proves (A.30).
As a particular consequence of (A.28) and (A.30),
(A-31) IO(L;4+,0,.)g Vu+p"9 IO(pC ® Lu+pn) gpc® Vu+pn 5

these isomorphisms will be regarded as identities. The root spaces indexed by
the various negative, noncompact roots span a b-submodule p_ of p%. In any
composition series of p _, precisely the b-modules L_g, fe®" n ¥, occur as the
one-dimensional quotients; similarly, the b-modules L;, fe®" n ¥, decompose
p%/p_. Appealing to (A.28) and (A.29), one finds that every irreducible summand
of I°(p_ ®L,,,,) has a highest weight of the form pu+p,— B, with § positive and
noncompact. None of these highest weights occur in the f*-module U, of (A.18),
so that

Home (I°(p_® L, ,,), U,)=0.
For completely analogous reasons
Homge (U_, I°(p%/p_®L,.,,))=0.

Since

0-1%0p_®L,,,) > I°0°®L,,,) > I°0 /P _®L,,,,)

is exact, the subspace U_<p®*®V,,, =I°(p*®L,,,) must coincide with the

image of I°(p_ ®L,,,) We conclude: under the identifications

PP VU =p™ V@I _QL,,,)=I°0*" " V@p_®L,,,)
PO®V,,, 20" ®L,,,),

the f*-homomorphism 4 of (A:23) corresponds to the mapping
(A32) I°(G " V®p_®L,y,) > I°G*"®L,.,,),

which arises from the inclusion p_<sp% followed by multiplication
Pt~V @ p®— pt™. We must identify the cokernel of this homomorphism.

The decomposition p*=p_@ P _(p_ =complex conjugate of p_) determines
a complex structure on the real vector space p. When the polynomial version of
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the Dolbeaut lemma is dualized, one obtains an exact sequence
0 pl-d@Nip_ —pCi-a+t Dy Aa-1 p_— e
C(n—1)®p__,pc(n)_,(pc/p_)(n)_,()’

in which all arrows are b-homomorphisms. It remains exact when it is tensored
with L, ,

(A.33) 0_)pc(n—q)®/\qp—®L __>p¢(n q+1)®/\q—1p ®Lu+pn
"_’PC("~1)®p®Lu+pn_’pc(n)®Lu+pn_'(pc/p—)(n)®l‘u+pn_’0'

u+on

The one-dimensional quotients in a composition series of the b-module
/\5p_®Lﬂ+ o all belong to weights u+p,— B, where B stands for a sum of s
distinct positive, noncompact roots. Hence the statements (A.28—A.30), coupled
with the hypothesis of Proposition (5.14), guarantee that

(A34) PPN p QL
for 0<s=<q, p=1.

y=pt QI P_®L,,,)=0,

1+ pn H+pn

Any exact b-module sequence 0> E,—E,_;—---—E;— E—0, which has the
property that IP(E)=0 if 0<s<n and p=1, is transformed into an exact
sequence by the functor I°; this is purely formal, and can be checked by
induction. In particular,

PE*-P®p_®L,,,) > °G““®L,.,) > (/P )" ®L,.,) >0

is exact.

To complete the proof of Proposition (5.14), we must verify the statement
(A.22). According to (A.24), Q,/0Q, _, is isomorphic to a quotient of the cokernel
of h, hence to a quotient of the cokernel of the homomorphism (A.32), hence
finally to a quotient of I°(p%/p_)"®L,,,). The b-module (p/p_)" has a
composition series with quotients Ly ... 4., By, ..., ,€P" " ¥. Thus (A.28) and
(A.29) allow us to identify the highest weights of the potential irreducible
constituents of I°((p%/p_)"®L,,,): they all can be expressed as p+p,+p;
+---+B,, with f,e®d"~ V. This proves (A.22), and along with it Proposition
(5.14).
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