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w I. Introduction 

In the representation theory of a compact group K, a major role is played by the 
Peter-Weyl theorem, which asserts that the regular representation LZ(K) decom- 
poses as a countable direct sum of irreducibles with finite multiplicity. For 
compact connected Lie groups this becomes much more concrete: the irreduc- 
ibles are explicitly known, their characters are given by the famous Hermann 
Weyl formula, and there is a uniform geometrical construction for them due to 
Borel and Weil. 

For a general locally compact group G, the general Plancherel theorem, 
which goes back essentially to yon Neumann and is a very sophisticated 
generalization of the Peter-Weyl theorem, gives a direct integral decomposition 
of L 2(G). For real semisimple Lie groups (connected and with finite center) the 
work of Harish-Chandra makes the Plancherel theorem quite explicit. The first 
and basic step is the identification of the discrete part of LZ(G): the irreducible 
representations which enter here are (by definition) those of the discrete series. 
For these Harish-Chandra has given very precise results in terms of their 
(generalized) characters [14, 15]. Moreover, a geometrical realization of the 
discrete series, analogous to the Borel-Weil theorem, was conjectured by Lang- 
lands and subsequently established in various forms (cf. [21, 23, 22, 25]). 

The purpose of this paper is to give a new and, to a large extent, self- 
contained account of the principal results concerning the discrete series. The 
main novelty in our presentation is that we use (a weak form of) the geometric 
realization to construct the discrete series representations and to obtain infor- 
mation about their characters. Previously things were done in the reverse order, 
the existence of the discrete series, proved by Harish-Chandra, being used to get 
the geometric realization. Analytically our proof of the existence of the discrete 
series rests on the LZ-index theorem [1], which gives a suitable generalization to 
non-compact manifolds of the Atiyah-Singer index theorem. The way in which 
the LZ-index theorem is used is quite analogous to the role of the Riemann-Roch 
theorem in the Borel-Weil-Bott approach to the representations of compact Lie 
groups. 
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In broad outline the main results concerning the discrete series may be listed 
as follows: 

(1) existence of discrete series representations Ha, indexed by a suitable 
lattice parameter 2, 

(2) exhaustion-proof that the representations in (1) give all the discrete 
series, 

(3) Geometric realization- identification of H a with the space of U-solutions 
of a certain elliptic differential equation (of Dirac type) on the symmetric space 
G/K, 

(4) Character behavior-discrete series characters decay at oo (in an appro- 
priate sense) and are determined by their restriction to (regular points of) a 
compact Caftan subgroup. 

(5) Character formula- explicit formula for the character of H z on a compact 
Cartan subgroup. 

One of the features of our approach is that (1), (-2) and (3) are all treated 
together in a rather natural manner. The character properties (4) and (5) are 
needed for the proof of (2). The results given in this paper are complete for (1), 
(2), (4) and (5), and almost complete for (3). We refer to Section 9 for a more 
detailed description of the situation concerning (3). 

To a great extent this paper is a synthesis of existing results and methods. Its 
aim is to demonstrate how the theory of the discrete series may be established 
on geometric-analytic foundations. Because the literature is diverse, extensive 
and highly technical, we have thought it worthwhile to present here a reason- 
ably complete account, hopefully written so as not to make extensive demands 
on the reader's knowledge of Lie group theory. As a result many relevant results 
are reproved (or sketched) in the version which we need-frequent ly  this is 
much simpler than in the published form. 

Naturally some basic results are going to be needed. In order to clarify the 
situation it is perhaps best to list the sort of results which we shall assume. 
These belong to several different categories beginning with some generalities: 

(a) algebraic structure of semisimple Lie groups, 
(b) basic generalities about unitary representations, including the existence 

of the Harish-Chandra distributional characters, 
(c) representation theory of compact Lie groups, 
(d) abstract Plancherel theorem. 

Next come the results which are crucial to our approach: 
(e) existence of uniform discrete subgroups F of real semisimple Lie groups, 
(f) U-index theorem, 
(g) index theorem for compact manifolds, 
(h) differential-geometric computations involving curvature. 

The existence of F is essential for the application of (f), which via (g) leads to 
the curvature computations in (h), exactly as in the work of Hirzebruch [17]. 
Finally there are three more specific results of Harish-Chandra: 

(i) H | V has a finite composition series when H is an irreducible unitary 
representation of G and V is a finite-dimensional representation, 

(j) structure of the algebra of bi-invariant differential operators on G, 
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(k) local integrability of the Harish-Chandra characters. 
Of these (i) follows from the fact that H appears as a subrepresentation of an 
induced representation (see the simple proof by Casselman [9]). The algebraic 
result (j) is required as the first step in the proof of the much deeper theorem (k). 
An alternative proof of (k), incorporating also a simple proof of (j), will be given 
in [3], which should therefore be viewed as foundational for the present paper. 

A number of purely algebraic arguments which we reproduce in suitable 
form are relegated to an Appendix. These include Parasarathy's computation of 
the spinor Laplacian, an estimate for the action of the Casimir operator on a 
unitary representation, and an algebraic characterization of certain represen- 
tations in terms of their K-decomposition. 

We turn now to a description of the contents of the various sections, 
highlighting the main features. We begin in Section 2 with a general review of 
the abstract Plancherel theorem. This is essentially standard material included 
for the benefit of the reader, but it also sets the scene for Section 3, where we 
apply the U-index theorem of [1] to Dirac operators on the symmetric space 
G/K, with G and K having the same rank. The final result of Section 3 is 
Theorem (3.16), which gives an explicit formula for the difference of the Plan- 
cherel measures of two spaces J~u + and ~ff,- of square-integrable, harmonic 
spinors on G/K, with values in a vector bundle ~,,. The space ~ +  will 
eventually turn out to be the representation space of a discrete series repre- 
sentation, but the important fact at this stage is that iF, + 4=0, for suitable 
parameters #. 

In Section 4 we show that the formal difference J g , + - ~ -  is a finite linear 
combination of irreducibles, which therefore belong to the discrete series. This is 
made precise by the difference formula (4.24), which in particular contains an 
existence theorem for the discrete series. From the identity (4.24) we derive a 
formula, valid on the elliptic set, for the sum of the discrete series characters 
which correspond to a given infinitesimal character, each multiplied by its 
formal degree (Theorem (4.41)). The arguments in w 4 depend on an analysis of 
the K-characters of representations of G, and the one non-trivial fact we use is 
that only finitely many irreducible representations can have a particular in- 
finitesimal character (a consequence of the local integrability of characters). 

In Section 5 we assume the parameter /~ is sufficiently positive. Using an 
algebraic version of Parasarathy's formula (explained in the Appendix) we 
deduce that Jgu-= 0 and that any irreducible constituent H i of ocg, + has a K- 
decomposition with a lowest highest weight. Combined with a purely algebraic 
result concerning such representations (Proposition (5.14), proof sketched in 
Appendix), this leads rapidly to Theorem(5.20), which asserts that ~fu + is 
irreducible and gives its formal degree, as well as the character formula on the 
elliptic set. 

Sections 6 and 7 are devoted to a study Qf growth conditions at infinity for 
characters, or more generally, for invariant eigendistributions. Unlike Harish- 
Chandra, who uses a certain Schwartz space for this purpose, we carry out our 
analysis in the framework of Sobolev spaces. The Sobolev spaces are technically 
simple to deal with, and they are already used in [1], on which our construction 
of the discrete series rests. We first show (Lemma (6.3)) that a discrete series 
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character extends from C~(G) to some Sobolev space. We then enunciate the 
main results (Proposition (6.10) and (6.11) and Lemma (6.15)), which give the 
precise form of (4) above, and in particular show that the discrete series occurs if 
and only if r a n k G = r a n k K .  As a further consequence of these results, in 
combination with Theorem (4.41), we also obtain an explicit description of the 
infinitesimal characters of the discrete series (Corollary (6.13)). Here we use 
(4.41), which came from the LZ-index theorem, for singular as well as non- 
singular weights. Thus the LZ-index theorem, as applied to G/K, embodies both 
an existence theorem (leading to the existence of the discrete series) and a non- 
existence theorem, which enters our exhaustion proof for the discrete series. 

The proofs of (6.10), (6.11) and (6.15) are given in Section 7. In the first place 
we verify (Corollary(7.12)) that the Sobolev spaces of G and of a Cartan 
subgroup B are compatible in the way one would expect. By splitting B into its 
toroidal part and its vector part, (6.10) is eventually reduced to an easy property 
of Sobolev spaces in Euclidean space. The proofs of (6.11) and (6.15) are then 
straightforward applications of the Harish-Chandra "matching conditions", 
which describe the behavior of an invariant eigendistribution as one moves 
between two adjacent Cartan subgroups. These matching conditions are an 
essential supplement to the local integrability, and they will also be established 
in [3]. 

In Section 8 we use the properties of characters just described, together with 
Zuckerman's tensor product technique (which we explain to the extent that it is 
used here), to deal with those parameters /~ not covered by Theorem (5.20). 
Zuckerman's method enables us to "shift" #, making it sufficiently nonsingular 
to apply Theorem (5.20). This makes it possible to refine Theorem (4.41), which 
gave a formula for certain linear combinations of discrete series characters on a 
compact Cartan subgroup, into the corresponding formula for individual dis- 
crete series characters. The resulting character formula constitutes one part of 
our main theorem (8.1), the others being the computation of the formal degree 
and an exhaustion statement. These last two parts are easy and purely formal 
consequences of the same arguments which produced the character formula. 
Finally, at the end of Section 8, we prove Theorem (8.5), which extends to all 
discrete series representations the results on the "lowest highest weight" of their 
K-decompositions, previously established for sufficiently nonsingular parame- 
ters. Again the proof uses the Zuckerman technique to shift the parameter. 

Section 9 deals with the problem of realizing the discrete series geometrically. 
The enumeration of the discrete series representations and the results about 
their K-decompositions, as described in Section 8, make it a simple matter to 
identify the discrete part of the spaces of square-integrable, harmonic spinors 
3r +, ~ -  (Lemma (9.4)). In order to eliminate the continuous part from the 
Plancherel decomposition of 3r +, Jgu-, we must appeal to Harish-Chandra's 
results about the explicit form of the Plancherel formula. The crucial statement 
appears as Lemma (9.8); although the details of its proof go well beyond the 
framework of this paper, we indicate at least the main ideas. The final con- 
clusion is Theorem(9.3), which describes the spaces ~ + ,  ~ - ,  and which in 
particular provides a geometric realization for every discrete series repre- 
sentation. We end the section with some comments about ways to avoid the use 
of delicate properties of Plancherel measure. 
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The Appendix, finally, contains proofs of four technical statements, which 
have appeared elsewhere, and which are collected here for the convenience of 
the reader. 

An approach to the discrete series similar to ours has recently been develop- 
ed by de George and Wallach. They start in the same way by choosing a 
uniform discrete subgroup F and then computing the index of the Dirac 
operator on F\G/K. However, instead of using the L2-index theorem to relate 
this to G/K, they use a descending sequence F ~ - . . ~ F , ~ . . .  of normal sub- 
groups of finite index, intersecting in the identity. In a sense their argument is 
more elementary, since they only work with compact manifolds. On the other 
hand it appears to yield somewhat weaker results, and it does not tie in so 
directly with the geometric realization. A connecting link between the de 
George-Wallach approach and ours is to be found in a paper by Kazdan [18], 
which investigates LZ(G/K) via the limit of L2(F,,kG/K), as n ~  oo. 

w 2. Review of the Plancherel Theorem 

Since we shall be making essential use of the Plancherel theorem, we review here 
the basic facts, with particular reference to those properties which we shall be 
using. We restrict ourselves to connected real semisimple Lie groups G with 
finite center and recall that these are unimodular (left and right Haar measure 
coincide). 

The first basic fact is that any irreducible unitary representation H of G, 
when restricted to a maximal compact subgroup K, has a direct sum 
decomposition 

(2.1) H=(~niVi, 
i~K 

where the Vii are the irreducible representations of K, and the multiplicities n i 
satisfy the bound 

n i < dim Vii. 

This in turn implies that for any f e  C~(G), the corresponding operator 

~r(f) = ~ f(g) x(g) dg 
G 

(g~--,rc(g) denotes the action of G on H) is of trace class, and that f~-~traceTr(f) is 
continuous, hence defines a distribution O, called the (Harish-Chandra) charac- 
ter of the representation. Moreover the fact that rr(f) is in particular compact 
implies that G is of type I, i.e. that every factor representation involves only a 
type I factor. This means that every unitary representation of G can be 
decomposed in an appropriate sense into irreducibles. We let (~ denote the set of 
(equivalence classes of) irreducible unitary representations of G. 

The Plancherel theorem is concerned with decomposing the left (right) 
regular representation, i.e. the action on U(G) induced by left (right) translation. 
In the first instance it asserts that we have a direct integral decomposition 
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(2.2) L 2 ( G ) ~ H i ( ~ H  * dj, 

where dj is a positive measure on (~, Hj is the irreducible representation indexed 
by js(~, and Hj@ H* is the Hilbert space tensor product of Hj and its dual. The 
isomorphism (2.2) is compatible with both the left and right actions of G. 
Moreover, if ~r denotes the von Neumann algebra generated by the left 
translations on L z (G), we have an isomorphism 

(2.3) ~ ~ ~ ~r dj, 
G 

where ~r denotes the algebra of all bounded operators on Hi. There is a 
similar statement for right translations which generate the commutant  d '  of d .  

A further aspect of the Plancherel theorem (which determines the Plancherel 
measure dj uniquely) involves the consideration of traces. On the C OO group 
algebra (C~(G) under convolution), evaluation at the identity e of G defines a 
natural "trace". It turns out that this can be extended to the yon Neumann 
algebra d .  More precisely, it extends to a map 

trac%: ~r ~ R  + w {oe}, 

where zr + denotes the cone of positive operators in d .  The elements Aszr  + 
with trac%(A) finite are the positive part m+ of an ideal ~ of d ,  on which 
traceo extends as a linear functional. The elements of m will be said to be of G- 
trace class. If As  mthen  its "Fourier  components" A t in (2.3) are of trace class 
almost everywhere, and 

(2.4) t rac%A = ~ traceA i dj. 
G 

In particular, taking A = l(f) to be the operator representing f s  C~ (G) in the left 
regular representation, we obtain 

(2.5) f (e )=~Oi( f )d j  
G 

( 0  i = Harish-Chandra character of Hi). 

If we apply (2.5) to h = f *  f, where f ( g ) = f ( g - 1 ) ,  then since 

h(e) = I If(g)l 2 dg = l] f II 2 
G 

and rcj(f)=rg(f)*,  the result can be written in the form 

(2.6) Ilfll2=~trace(rcj(f).Tr~(f)*)dj (Plancherel formula). 
G 

The restrictions on f can be relaxed somewhat. If fsL2(G) and l ( f ) s d  (i.e. l( f)  
is bounded), then r r ( f ) ,  n ( f )*  is of G-trace class, and so we can apply (2.4). 
Moreover 

trace6 (l(f) . l(f)*) = II f 112 
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follows by continuity from the corresponding statement with f~C~(G). The 
easiest way to insure that l(f) is bounded is to take f~L2(G)c~D(G). Thus (2.6) 
holds for all f ~L 2 (G) n L 1 (G). 

The preceeding results are all standard, but in addition we shall need: 

(2.7) fsC~(G) and l ( f ) ~  r ~ l(f) is of G-trace class and trace6(f)=f(e). 

As we shall explain in the next section, a proof of (2.7) is essentially given in [1]. 
We shall use (2.7) in the particular case that l(f) is an orthogonal projection 

onto a subspace W of L2(G). We shall write dimGW for t r ac%n( f )  which, by 
(2.6), is then equal to f(e). Now W has a decomposition 

(2.8) W=~Wj~H~dj, 
G 

where W~cHj is the image of the projection operator rcj(f). Since, by (2.4) and 
(2.7), rcj(f) is of trace class (for almost all j), this means that dim Vcj is finite (for 
almost all j), and (2.4) becomes 

(2.9) f(e) = dim G W= ~ dim W~ dj. 
G 

In our applications the space L2(G) will be replaced by I~(G/K, ~ ) - t h e  L z- 
sections of a homogeneous vector bundle ~ over the symmetric space G/K. It is 
a fairly simple matter to modify the above formulae involving the Plancherel 
measure to cover this case, as we shall now explain. 

If F is a finite-dimensional unitary K-module, then ~ - = G  • F is a homo- 
geneous vector bundle over G/K, and L2(G/K,~) may be identified with the 
space of right K-invariants in LE(G)| F. Because of (2.2) this gives 

(2.10) L2(G/K,,~)~ ~ Hj| W~dj, 
G 

where Wj is the K-invariant part of H* | F, which is finite-dimensional by (2.1). 
From (2.3) we see that the algebra ~ of G-invariant bounded operators on 
L2(G/K, ~ )  corresponds under (2.10) to the direct integral 

(2.11) ~s 
G 

In the algebra ~r174 .~e(F) there is a natural trace given by the tensor product of 
traceG in d '  (the algebra generated by right translation in La(G)) and the ordinary 
trace in oLP(F): for brevity we still denote this by tracea and the corresponding 
dimension function by dimo. Restricting to the subalgebra ~ which acts on the 
subspace (2.10), we see that 

traceGA = ~ traceAj d j; 
G 

here Afi~q~(Wj) are the components (given by (2.11)) of an operator A of G-trace 
class in ~ .  In particular, if U ~ L2(G/K, ~ )  is any closed G-invariant subspace, 
then 
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v=I uj| vjdj, 
e 

and 

with Uj c Wj, 

(2.12) dimeU=~ dimUjd j. 
e 

Suppose moreover that orthogonal projection B onto U is given by a smooth 
kernel b - a  section of Hom(~,, ~ )  over G/K x G/K. The corresponding A on G 
given by A=p*Bp, (p: G~G/K being the projection) then also has a smooth 
kernal a, with a(x, y)= b(p(x), p(y)). Hence, by (2.7), A is of G-trace class and 

(2.13) dim e U = traceGA = tr a(e, e) = tr b(0, 0), 

where p(e)--0 is the base point of G/K and tr denotes the usual trace in L~a(F): 
note that the fibre ~'o may be identified with F. 

Remark. In the above we have implicitly assumed that Haar measure on K is 
normalized to have total volume equal to 1, and that G/K is then given the 
quotient of the two Haar measures. On G Haar measure is supposed fixed once 
and for a l l - t h e  Plancherel measure on d depends on this choice. 

Returning to the general Plancherel theorem, we recall that H~o is said to 
belong to the discrete series i f j o e d  has positive measure djo. Then Hjo occurs as 
a direct summand of the left (or right) regular representation, the corresponding 
projection Po is of G-trace class in d '  (or d ) ,  and (2.9) reduces to dim e H~o = dio. 
For this reason, djo is called the G-dimension, or formal degree, of Hjo. 

Finally we consider the universal enveloping algebra U(g r of the complexified 
Lie algebra gc of G. For any unitary representation H of G, we get an action of 
lI(g c) on the space of C ~ vectors in H. If H is irreducible, this space of C ~ 
vectors is dense in H, the elements of U(g r are represented by unbounded 
operators, and the center 3 of lI(g ~) acts by scalars. Thus every element Z e 3  
defines a scalar function on G. On LZ(G), the operator l(Z) and its formal adjoint 
l(Z*) are both defined on the dense domain C~(G) (here * denotes the standard 
anti-automorphism of ll(ge), given by X * =  - X  for Xegr Hence we may take 
the closed operator T=closure of l(Z), and form the bounded operator A =  
T(1 + T* T)-1/2, which commutes with both right and left translation and hence 
belongs to the center of the von Neumann algebra ~r Thus, in the decom- 
position (2.2), A is represented by a diagonalized operator, i.e. the Fourier 
components Aj^are scalars (almost everywhere), and the function j~A~ is 
measurable on G. From this it follows easily that the function which Z defines 
on (~ is also measurable (but unbounded) on G. In particular these remarks apply 
to the Casimir operator of ge. 

w 3. The L2-Index Theorem 

In this section we shall apply the L2-index theorem of [1] to the symmetric 
space G/K of a semisimple Lie group G. Formally this is quite analogous to the 
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way in which the index theorem for compact manifolds may be used to derive 
the dimension formulae for irreducible representations of compact Lie groups. 
Computationally it is also closely related to the manner in which Hirzebruch [17] 
computed the dimensions of spaces of automorphic forms. 

For  the convenience of the reader we shall first recall the statement of the L 2- 
index theorem. We suppose given a discrete group F acting smoothly and freely on 
a manifold X with X = F\)(  compact, and an elliptic differential operator b on J( 
which is F-invariant (and so is the lift of an elliptic differential operator D on 
X). Hilbert spaces are defined by using F-invariant hermitian metrics, and we 
put 

ocg + = space of L2-solution o f / )  u = 0, 

ocg- = space of U-solutions o f / )*  v = 0, 

where /)* is the adjoint differential operator. The orthogonal projections onto 
J4 ~-+ have C ~ kernels K-+(2,~), which are F-invariant, i.e. 

K + ( 7 2 , T y ) = K + ( 2 , y )  for 7eF. 

Hence we can define a (real-valued) F-dimension of ~ +  by 

dimr W+ =t race r  K+ = ~_ tr K+(2, 2) dye, 
FiX 

and similarly for ~ - .  Here tr denotes the pointwise trace of the matrix K-+(2, 2) 
-acting on the fibers of the vector bundle i n v o l v e d - a n d  the integral is taken 
over a fundamental domain in 2 for F. Finally we put 

index r / )  = dim r ~ + - dim r o~f-. 

The L2-index theorem then asserts 

(3.2) indexr/3 = indexD. 

Note that index D is an integer, being the difference of ordinary dimensions. By 
the index theorem for compact manifolds [4], there is an explicit formula for 
index D in cohomological terms. If index D > 0 then (3.2) implies in particular 
that the space Jg+ of L2-solutions o f / ) u = 0  is non-zero. Moreover it says that 
~ +  is in a certain precise sense "bigger" than o~f-. In our application to G/K 
these consequences will be spelled out in greater detail. 

Fundamental  to our applications is the following result of Borel [5] (see also 
Borel and Harish-Chandra [6]): every real semisimple Lie group has a discrete 
torsion-free subgroup F with F\G compact. If K is a maximal compact subgroup 
of G then F meets no conjugate of K, a n d  so F acts freely on the symmetric 
space )? = G/K. The quotient X = FIX = F\G/K is then a smooth manifold. We 
shall pick such a F once and for all. In our final results the group F will 
disappear; it enters only as a conveninent tool. This is to be contrasted with the 
superficially similar situations arising in the study of F-automorphic forms 
where F is the main object of interest. 
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The differential operators /7) on G/K to which we shall apply the L2-index 
theorem are the Dirac operators with coefficients in a (homogeneous) vector 
bundle. We begin therefore by recalling the basic facts concerning these oper- 
ators; for details we refer to [8, 22]. 

Recall first that an oriented Riemannian manifold M is said to be a spin 
manifold if the structure group of its principal tangent bundle can be lifted from 
SO(n) to Spin(n). A choice of such a lifting defines a spin structure, and the basic 
Spin representation S of Spin(n) then defines an associated vector bundle 6e on 
M, whose sections are "spinor fields". The Dirac operator is a first order 
formally selfadjoint, elliptic differential operator acting on spinor fields. If d imM 
= n  is even, then the spin representation S breaks up into two half-spin 
representations S +, S-  and correspondingly 6 a = 5  ~+ ff~5 a--. The Dirac operator 
switches the two factors, so that it consists of an operator 

D+: C~(M, SP+)---,C~(M, Sa-); 
together with D-=(D+)* .  If ~/r is any complex vector bundle on M with a 
Hermitian connection, then one can define a Dirac-type operator D~ on 5~| 
which again, when n is even, decomposes into D~ and its adjoint. 

We now take M=X=G/K. The standard Riemannian metric of G/K is 
certainly G-invariant, but in order for the Spin structure to be G-invariant it is 
necessary that the representation K~-+Aut(g/~), induced by the adjoint representa- 
tion of G, should lift to the Spin covering of Aut(9/[)-SO(n),  so that S becomes a 
K-module. We shall assume for the moment that this is the case. Since the Dirac 
operator D is canonically associated to the metric and Spin structure, it follows 
that it will be G-invariant. Similarly, if U is any homogeneous vector bundle 
with connection on G/K, the operator D~ will be G-invariant. Now a homo- 
geneous vector bundle on G/K is associated to a representation V of K, and it 
inherits a homogeneous connection from that of the principal bundle G~G/K 
(defined by the orthogonal complement p of t~ in ~). In this manner every finite- 
dimensional representation V of K defines a G-invariant operator D~. 

We now assume that rank K =-rank G, i.e. that G has a compact Cartan 
subgroup. This implies in particular that dim G/K is even, and so the spin 
representation S decomposes into a direct sum S = S § if)S-.  Thus for every V,, we 
have a G-invariant operator 

D~ : C~~ "r174 ~1/'|162 
and its adjoint D~ in the opposite direction. We now apply the L2-index 
theorem to this operator: to conform with our previous notation we shall relabel 
it b~ .  Since b~  is G-invariant, it is certainly F-invariant, for any F c G, and D~ 
will denote the corresponding operator on F\G/K: it is the Dirac operator on 
this double coset space with coefficients in the bundle F\V.. 

The fact that D~ is actually G-invariant enables us to simplify both sides of 
(3.2). On the one hand the F-dimensions can be replaced essentially by G- 
dimensions and related to the Plancherel measure. On the other hand the index 
D~ on I-~G/K can be computed in terms of invariant differential forms. We 
proceed to describe these two aspects in detail. 

For  simplicity we consider first L2(G), with the two von Neumann algebras 
~r162 generated by left and right translations. The operators that commute with 
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left translation by all elements of F form a yon Neumann algebra ~ which 
contains ~1'. On ~ we have the F-trace defined in [1]. For  operators T with 
smooth kernel t(x, y), which is compactly supported o n / ~ ( G  x G) we have 

tracer T =  S t(x,x) dx. 
r\G 

In particular, if T =  r(f) is right convolution by f~ C~(G), 

(3.3) t r a c e r r ( f ) =  S f(e)dg=vol(l-kG)f(e) 
r\G 

= vol(CkG) traceG r(f). 

Since the r(f) are dense in d ' ,  this shows that, up to a volume factor, trace G on 
~1' is the restriction of trace r on ~ .  In particular, for any operator Tesd' 

T is of G- trace class ~ T is of F-trace class. 

Thus (2.7) follows from [1, (4.8)]. 
An entirely similar situation holds on replacing LZ(G) by L2(G/K,o~), where 

o~ is the vector bundle associated to a K-module F. We now take F = V|  S + 
and T =  T -+ =project ion onto the space ~ +  of LZ-solutions of the appropriate 
Dirac equation on G/K. We get 

(vol(F\G))-1 dimr ~ •  = tr t• 0) (t -+ =kernel  of T +) 

= d i m G ~  • (by (2.13)) 

= ~ dim U / d j  (by (2.12)), 
G 

where 

(3.4) .~•  =~Hi |  Uj -+ dj. 
G 

Hence 

(3.5) (vol(r \@) -1 indexrD ~ = ~(dim Uj + - dim Uj-) dj. 
G 

We turn now to the other side of the problem, namely the computation of 
the index of the generalized Dirac operators on the compact manifold I~G/K. 
Since the work of Hirzebruch [17] this has become a standard type of com- 
putation, and so we shall review it only briefly. For  further details see for ex- 
ample [17]. 

The index formula of [4] gives an explicit expression in terms of the 
Pontrjagin classes of F\G/K and the Chern "classes of the bundle ~. Using the 
differential forms which represent these characteristic classes, the index formula 
takes the form 

indexD~= I f(O, cI)), 
r\~/K 
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where tO is the curvature of F\G/K, cb the curvature of ~, and f an explicitly 
known polynomial. Since we are dealing with homogeneous spaces and homo- 
geneous bundles, the integrand is a constant multiple of the volume form dx: 

(3.6) f(O, q))= C(V) dx, 

and hence 

(3.7) indexD + = C(V) vol(F~G/K). 

It remains to calculate the constant C(V), which depends only on the K- 
module V. This is a purely algebraic computation in the Lie algebra of G, and 
the details are notationally complicated but not difficult. There is however a 
proportionality principle due to Hirzebruch which enables us to by-pass the 
computations, or rather to reduce them to well-known results for compact 
groups. The basic idea is to compare the index formula (3.7) with the cor- 
responding formula for M/K where M is a "compac{ dual" of G. 

We assume for the moment that G is a real form of the simply-connected 
complex semisimple group Gr we shall show later how to drop this assumption 
as well as the earlier spin assumption on K. The compact dual M of G is the 
maximal compact subgroup of G r containing K, whose Lie algebra m is related 
to that of G by the orthogonal decompositions 

g = ~ O p ,  m = ~ O i p .  

The Killing form is positive definite on p, negative definite on i p, and so (if one 
chooses the appropriate sign) it induces natural invariant metrics on G/K and 
M/K. The corresponding curvature tensors essentially coincide up to sign: in 
making the comparison we work only at the identity coset (since they are G- or 
M-invariant), and then use the correspondence p,--~ip. Similar remarks apply to 
the curvature tensors of the two bundles associated to the K-module V. Hence 
the index of the corresponding Dirac operator on Y= M/K, which we denote by 
D~ (Y), is given by 

(3.8) indexD~(Y)=(-1)qC(V)vol (Y) .  

Here C(V) is the same constant as in (3.7), and 2 q=dimG/K=dim Y. 
Comparing (3.7) with (3.8), we get 

(3.9) indexD~ = o  r.indexD.~(Y), 

where ar  is a constant independent of V, but depending on F and given by 

vol(F\G/K) 
(3.10) at= (-1) ~ 

vol(M/K) " 

In this identity both volumes are determined by the Riemannian metrics defined 
by the Killing form. Since the volume of K was normalized to be 1, the invariant 
measures on G and G/K are related in a definite manner. It will now be 
convenient to renormalize Haar  measure on G, and along with it the metrics on 
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G/K and M/K, by requiring that the total volume of M should also be equal to 
1. With this choice of Haar measure, (3.10) becomes 

(3.11) at=(-1) q vol(F\G). 

If we now apply the Le-index theorem to D~ and use (3.5), (3.9) and (3.11), we 
get 

(3.12) ~(dim U~ + - d i m  Uj-) dj = ( -  1) q indexD~(Y), 
G 

with U~ -+ as in (3.4). 
Thus we have reduced the problem to that of computing the index of a 

homogeneous elliptic operator on the compact homogeneous space Y. This 
question has been extensively studied from many different points of view, but a 
good account for our purposes is that given in [8]. Clearly it is sufficient to take 
f "  = ~ associated to an irreducible K-module V, with highest weight/t. We then 
have the following simple result: 

(3.13) indexD~.(Y)=(-  1) q dimWu_p. , 

where Wa is the irreducible M-module with highest weight 2 and p. the half-sum 
of the positive noncompact roots. The ordering of the roots must be chosen so 
as to make /~+Pc dominant (pc=half-sum of the positive compact roots), and 
the labelling of 6 :+ ,6  : -  is pinned down by requiring that p. should occur as a 
weight for the K-module S +. I f / ~ - p .  is not a possible highest weight (i.e. if/~ +Pc 
is singular), W._p. is to be interpreted as zero. 

We shall explain in outline how (3.13) arises, referring to [8] for further 
details. First we note that the index of the M-invariant operator D~.(Y) can be 
refined to give a (virtual) character of M: the ordinary integer index is then 
obtained by evaluating this character index at the identity of M. Next we note 
that the spaces of sections L2(y,, ~uu @ ~,a+) have well-defined formal M-characters 
(i.e. formal series ~mizi, with mieZ and Zi=character of ieM). Hence the 

i~M 

character index of D~,(Y) can be computed as the difference of these two formal 
characters. The computations give precisely the Hermann Weyl character for- 
mula for Wu_p,, multiplied by the sign factor ( - 1 )  q. The dimension formula 
(3.13) then follows. In fact (3.13) is closely related to the Borel-Weil-Bott 
construction for the irreducible representations of M, except that the flag 
manifold of M is here replaced by Y. 

From (3.12) and (3.13) we deduce 

(3.14) ~(dimUi+-dimUF)dj=dimWu_o. 
G 

This is then the explicit form for the L2-index theorem on G/K. It remains now 
to remove the restrictions imposed on G and K. 

If the representation K--,Aut(g/0 does not lift to Spin, then the bundles 5 : •  
on G/K are not G-homogeneous, though they are G-homogeneous for a suitable 
double cover of G. The bundles 5: -+ | ~uu will be G-homogeneous provided the 
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/(-modules S•174 V, descend to K. This is easily seen to be guaranteed by 
assuming that #--pn is a weight of K (cf. w below). Thus the operators/)§ ~. are 
defined, as G-invariant operators, under this assumption on #. 

Next we drop the requirement that the real form G1 of the simply connected 
complex group G c coincides with G. The maximal compact subgroup K~ is then 
only locally isomorphic to K. If # -Pn  is also a weight of K1,  o u r  previous 
argument still goes through and we get (3.13). 

To extend all this when #--pn is a weight of K but not a weight of K~, we 
observe first that the constant C(Vu) in (3.6) is a polynomial in #. This follows 
easily from the Weyl character formula and the relations between characters 
and characteristic classes. Hence (3.14) continues to hold provided we replace 
dim W,_pn by d(#-pn) ,  the explicit polynomial in # which gives the dimension 
formula. Note that Haar measure in G is now normalized by requiring 

(3.15) vo lK=volM/K 1 = 1. 

Collecting all our results together, we see that we have proved the following: 

(3.16) Theorem. Let #--Pn be a weight for K, such that (#+pc,or)>0 for all 
positive roots e. Let W, +, ~r be the L 2 null spaces of the Dirac operators 

+ - G/K, and D~,,D~,, on 

=I j| v? dj 
G 

their Plancherel decompositions. Then 

~(dim Uj + - d i m  Uf) d j=d(#  --Pn), 
G 

where d0.) is the polynomial in 2 giving the dimension of the irreducible finite 
dimensional representation with highest weight 2. In this identity, Haar measure 
is normalized so that 

vol (K) = vol ( M / K  1) = 1, 

where M / K I  denotes the simply connected compact dual of the symmetric space 
G/K. 

The spaces ~+- in (3.16) are also the L 2 kernels of the spinor Laplacians 
D - D  § and D+D - (we omit here the various subscripts). This is so because the 
minimal and maximal domains of D § and similarly of D-, coincide, as is 
proved in [1]. This re-interpretation of ~f~• has the advantage that the spinor 
Laplacians take a particularly simple form, namely 

(3.17) D 2 = - f 2 + ( # - p n , # - p n - l - 2 p ) ,  

where f2 represents the Casimir operator, acting on L2(G/K,'r163174 The 
formula (3.17) is due to Parthasarathy [22] and will be proved in the Appendix. 
Thus Jf,• is just the eigenspace of the Casimir operator on L2(G/K, "t/'.|177 
corresponding to the eigenvalue 
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(3.18) c.=(Ig-p,,,l~-p.+2p). 

Hence, if we consider the Plancherel decomposition 

L2(G/K, ~ |  Hj | Vj + dj, 
G 

we see that the subspaces U~ • describing the decomposition of ~,vf• are given by 

Uj • = V~ -+ if O acts on H~ by cu, 

= 0 otherwise. 

The formula of Theorem (3.16) can therefore be re-written as 

(3.19) ~ (dimVj + - d i m V ~ - ) d j = d ( # - p . ) ,  
d, 

where Gu ~ ~ is the subspace consisting of all j~G at which the Casimir operator 
takes the value c,. 

w 4. Existence of the Discrete Series 

We now use the results of the preceding section, in particular the identity (3.19), 
to prove the existence of discrete series representations. The crucial step consists 
of showing that the integrand in (3.19) vanishes for all but finitely many classes 
jeG. Any finite subset of G, outside of the discrete series, has zero Plancherel 
measure. Hence only the discrete series contributes to the integral (3.19). The 
integrand, for any j~G, is related to the global character of j, restricted to the 
maximal compact subgroup K. These observations lead to an explicit formula, 
on K, for certain linear combinations of discrete series characters; the formula is 
stated as Theorem (4.41), at the end of this section. We shall deduce concrete ~ 
information about individual discrete series representations in subsequent 
sections. 

Recall the Ptancherel decomposition of the spaces of ~-valued LZ-spinors: 

L2(G/K, ~-+ | ~//~)= ~ Hi@ ~-+ dj, 
O 

with V~• =K-invariant  part of H * | 1 7 7 1 7 4  Vu; cf. (2.10). Here V u stands for the 
irreducible K-module of highest weight /~, on which the homogeneous 
vector bundle ~ is modelled. The half spin modules S+,S - are self-dual if 
q=�89  is even, and dual to each other if q is odd. Thus we can identify 
the integrand in (3.19) as 

(4.1) dimV~+ - d i m  VS 

= dim HomK(V*, H* | S + ) -  dim HOmK(l/u*, H*| S-)  

= ( - 1)q {dim Hom K (V,, H i | S +) - dim Hom K ( V~, Hj | S- )}. 
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Restricted to K, the G-module H r decomposes into a direct sum of K- 
irreducibles, 

H j = Q  ni 1~/. 
ir  

We denote the character of V/by Zi. Then, as follows from the bound n i < dim Vii, 
the formal series 

(4.2) r j = ~ n i z l  
iEK 

converges to a distribution on K, the so-called K-character of H r. It should be 
noticed that 

(4.3) dim V~ + - d i m  V i-  = ( - 1 ) q x  multiplicity with which Zu occurs in the for- 
mal series (~r + - a - )  ri, 

with Zu = character of the irreducible K-module Vu, and a -+ = character of the K- 
module S • 

According to a fundamental theorem of Harish-Chandra 1-13, 3] the global 
character O r of Hj  is (integration against) a locally L 1 function on G, which 
moreover is real-analytic on G', the set of regular, semisimple elements of G. For 
more elementary reasons [12, 3], the K-character z r restricts to a real-analytic 
function on G'c~ K (not necessarily an L 1 function on K, however), and 

(4.4) O r and ri agree as functions on G'c~ K. 

We now appeal to Lemma4.10 of [24], whose proof we shall sketch in the 
Appendix: 

(4.5) (a + - a - ) z j  is a finite integral linear combination of irreducible characters 
of K. 

From (4.3-4.5), one deduces: 

(4.6) (a + - o - - ) O r ]  G'~K is a finite linear combination of irreducible characters 
of K, in which Zu occurs with coefficient ( -1)~(dim V~ + - d i m  V~-). 

As we shall argue next, the coefficient of Zu can be non-zero for only finitely 
many classes j~G. 

We denote the complexified Lie algebra of G by gr and the center of its 
universal enveloping algebra by ,3. Then ,3 can be naturally identified with the 
algebra of all bi-invariant linear differential operators on G. By its very defini- 
tion, the character O r is an invariant eigendistribution, i.e. a conjugation-invariant 
distribution, on which the algebra of bi-invariant differential operators 3 acts by 
scalars. Hence there exists a character ~Pr: -3 ~ r  such that 

(4.7) ZOr=tpj(Z)O ~, forall  Z ~ 3 .  

In Harish-Chandra's terminology, q~ is the infinitesimal character of the G- 
module Hi. 



A Geometric Construction of the Discrete Series for Semisimple Lie Groups 17 

Corresponding to any Cartan subalgebra b C of gr Harish-Chandra has 
constructed a canonical isomorphism 

(4.8) 7 : 3  ~ ' / (be) ,  

between 3 and the algebra/(b e) of all Weyl group invariants in the symmetric 
algebra S(b e) [12, 26, 3]. If b e arises as the complexified Lie algebra of a 
Cartan subgroup BeG, every XeS(be), and therefore every y(Z), may be 
viewed as a translation invariant, linear differential operator on the group B. 
Going to a two-fold covering of B, if necessary, one can select a square-root 
AnEC~176 of 

(4.9) A2=( - 1) a d e t { 1 - A d l s :  gr c ~ ge/bC}, 

with d=�89 G - r k  G). Since Ag vanishes precisely on B ~ G', A s makes sense 
also as a smooth function on each connected component of B n G'. The 
isomorphism (4.8) has the following crucial property: 

(4.10) ( /F) ls~ ~, =(A~ ' .  y(Z). As) F l ~ a , ,  

for any conjugation invariant function F [12, 3]. 
Since the maximal compact subgroup K was assumed to have the same rank 

as G, it contains a Cartan subgroup H of G. Via exponentiation, the dual group 
/4 of the torus H becomes isomorphic to a lattice A, 

(4.11) / ~ - A  miD* , 

contained in i t)*, the real vector space of all those linear functions on b e, which 
assume purely imaginary values on the Lie algebra D. In particular, the root 
system q~= ~(ge, De) lies inside the lattice A. A root ~eq~ is said to be compact 
or noncompact, depending on whether or not it is a root of the pair ([e, be). Thus 

decomposes into a disjoint union 

(4.12) ~=q~c u ~" 

of the sets 4~ C, cb" of all compact and noncompact roots, respectively. 
As fl ranges over 4~", e ~ exhausts the set of characters by which H acts on 

ge/Te; each of these has multiplicity one. Thus ~" is the set of weights of the 
standard representation of SO(g/D, pulled back to K via K~SO(g/D.  Expressed 
in terms of the weights +PI ,  -+P2 . . . . .  •  of the standard representation of 
SO(2n), the weights of the two half spin modules are 

�89 +~2+... +~,), 
with an even number of minus signs in one case, and an odd number in the 
other. Hence, if one appropriately chooses a,positive root system ~ c @, 

(4.13) (tY+--Cr-)IH = In[ (et~/2--e-t~n); 

a "wrong" choice of 7, would introduce a minus sign. It should be observed that 
the labelling of the half spin modules S +, S-  is determined by (3.13), and that a 
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positive root system 7' gives the correct sign if it makes #+pc  dominant (Pc 
= half-sum of the positive, compact roots). Once and for all, we fix 1 such a 7 j. 

The function A n of (4.9), corresponding to the Cartan subgroup H, can be 
expressed as 

(4.14) An= I-[ (ea/2--e-~/2) , 
~t~t/t 

at least by passing to a covering of H, if necessary. Thus A n equals the product 
of (a + - t  r - )  with the denominator of Weyl's character formula for K. We define 

(4.15) W= NG(H)/H = Weyl group of b e in R e 

(the normalizer of H in G is actually contained in K !). Because of (4.6), Weyl's 
character formula leads to an identity 

(4.16a) A n 6 ) j [ n ~ , = ~  nve ~, 
v 

where v ranges over a finite subset of A, and 

(4.16b) nw~=e(w)n~, for w~W 

(e(w)=sign of w). Moreover, (4.6) allows us to identify the coefficient of e u+p~ as 

(4.16c) n , + p o = ( -  1)q(dim Vj + - d i m  V~-). 

For  the usual reasons, (4.16) may hold, strictly speaking, only on a finite 
covering of H. 

The group W is contained in Wc, the Weyl group of b e in 9 c. Via the 
mapping 7 of (4.8), ,3 becomes isomorphic to I(bC), which may be thought of as 
the algebra of all We-invariant polynomial functions on b e *. Thus every veb e *, 
and especially every v~A, defines a character 

(4.17) cp~: 3 ~ ,  

with ~o~(Z)=y(Z)(v). The We-invariant polynomials separate any two We-orbits 
in I) e * ; hence 

(4.18) ~o~=~ouc~#=wv, forsome w~Wr 

If Oilu~w4:0,  the identity (4.10) makes it possible to relate the infinitesimal 
character cpj to the character formula (4.16): 

(4.19) nv4:0 =~ q~i=q~. 

Because of (4.16c), this implies 

(4.20) dim V / + - d i m V j - = 0 ,  unless ~0i=q~u+p. 

This is possible: one first orders ~, so that/~ becomes dominant for the resulting system of 
positive, compact roots; p~ is then determined, and ~+p~ is not only O~-dominant, but also r 
nonsingular. Thus, if a system of positive roots ~ makes #+p~ dominant, it necessarily induces the 
original ~ordering on ~ 
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In particular, the classes j e G  which contribute a non-zero integrand in (3.19) all 
have the same infinitesimal character. 

A result of Harish-Chandra [12] asserts that only finitely many classes je(~ 
can have a given infinitesimal character. One may see this, for example, as 
follows. Since the global characters of non-isomorphic representations are 
linearly independent, it is enough to prove that the space of invariant eigendis- 
tributions, on which ,3 acts according to a given character, has finite dimension. 
As a consequence of Harish-Chandra's regularity theorem [13, 3], an invariant 
eigendistribution O is completely determined by its restriction to G ' - o r  equiva- 
lently, by the restrictions OIBno., with B running over a set of representatives 
for the finitely many conjugacy classes of Cartan subgroups. The intersections 
Br iG '  have only finitely many connected components. One can now deduce 
the finite-dimensionality from (4.10), provided one knows: for any character 
~o: I(br162 the system of differential equations 

X f =cp(X)f, XeI(br 

on any connected open subset of B, has a finite-dimensional solution space. This 
is indeed the case, since S(b r is finitely generated as a module over I(b r [12, 26, 
3]. 

As we have just finished arguing, only finitely many classes j e G  make a 
non-zero contribution to the integral (3.19). We denote the discrete series of G 
by (~d; in other words, G a c d  is the subset consisting of all square-integrable 
classes. A single point j~G has positive Plancherel mass precisely when j belongs 
to G n. The integral (3.19) therefore remains unchanged if we integrate only over 
the set G, c~ Gd, on which the measure is discrete: 

(4.21) Z (dim V~ + - d i m  Vj-)d(j)=d(#-p,); 
je G. n C?d 

here d(j) denotes the Plancherel measure of {j}, which is also called the formal 
degree of the class jeGd. 

Via the isomorphism 7, the Casimir operator f2 corresponds to 

(4.22) 7 ( f 2 ) = ~ X  2 - ( p , p ) .  1, 
i 

where {Xi} is a basis for [)r orthonormal with respect to the Killing form. 
Hence 

~0. +pc(~) = ~(~)(l' + p3 = (~ + p~, ~, + p 3 -  (p, p) = c. 

(cf. (3.18); p = p~ + p,), which means that G u contains the set 

(4.23) {jed[q~=q~,+o~ }. 

According to (4.20), the summands in (4.21) vanish outside of this set. Thus, 
instead of summing over d u n de, we may sum over the set (4.23), intersected 
with Ga. Weyl's dimension formula gives 

a ( ~ - p . ) =  1] (~+pc,~) ~ ,  (p, ~) 
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We conclude: 

(4.24) ~ (dim V; + -d imVj- )  d(j)= 1-I (/~+Pc, c~) 
j ~ (p ,  ~)  ' 

with j ranging over the finite set {jeGel g0s=~pu+po}. 
For the moment, we let p denote the half sum of the positive roots, relative 

to an arbitrary ordering of the roots. Then 

(4.25) Ap=A+p 

does not depend on the particular ordering: any two possible choices for p differ 
by a sum of roots, and hence by an element of A. Roughly speaking, the discrete 
series can be parametrized in a natural manner by the W-orbits in AR; this is the 
reason for introducing AR. The Weyl group W does indeed operate o n  AR, since 
W preserves the lattice A, and since any W-translate of p differs, from p be a sum 
of roots. The complex Weyl group We, on the other hand, need not act o n  AR, 
unless G is linear. 

For the remainder of this section, we keep fixed a particular ~Ap, and we 
define 

(4.26) O~ = ~ d(j) @s" 
j ~  G a ,  q~3 = tp~. 

Thus t0~ is a finite linear combination of discrete series characters. We shall use 
the identity (4.24) corresponding to various parameters /~, to compute the 
restriction of O~ to H n G'; (4.16c) provides the link between (4.24) and the 
formula for Oa on H. 

We let 7 t denote a positive root system, which makes 2 dominant. If 2 is 
singular, there will of course be more than one possible choice. The character 
formulas (4.16), for the summands O j, lead to an identity 

a v e v 

(4.27 a) O~lHnW-- 
I ]  ( e~/2 - -  e-'/2) ' 

at ~ kltt 

here v runs over a finite set, and the a~ are real constants. Moreover 

(4.27b) a,,~=e(w)a,,, for w~W. 

Because of this skew-symmetry with respect to W, 

(4.28) a v = 0, whenever v is ~C-singular. 

All the summands which make up Oa have infinitesimal character ~o~. Hence 
(4.18) and (4.19) imply 

(4.29) a~=0, unless v is We-conjugate to 2. 

Although neither the numerator nor the denominator in (4.27) may be well- 
def inedon H, the quotient necessarily is well-defined. The denominator, multi- 
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plied by e-o, equals 

[ I  (1 - e - ' ) ,  
a t i l t  t 

which makes sense on H. It follows that the product of the numerator with e -p 
must also be well-defined on H, and hence equal to a finite linear combination 
of characters of H. In other words, 

(4.30) a~4=O ~ v~Ap. 

We remark that the preceeding observations apply equally to any linear 
combination of irreducible characters, provided all of the summands have the 
same infinitesimal character. 

We ennumerate the set of all those Wc-conjugates of 2 in Ao, which are both 
�9 %nonsingular and dominant with respect to ~bcn ~, as 

(4.31) 2a,22 . . . . .  2 N. 

Every reAp, if it is q~-nonsingular and We-conjugate to 2, is then W-conjugate 
to precisely one of the 2 i. Hence there exist constants ai, 1 <_i<N, such that 

N ~ e(w) e w~' 
~----1 weW ai (4.32) 6 )~ ln~ ,= i=  FI (e~/Z-e-~/2) ' 

~t~ tP  

The set (4.31) may be empty, in which case O~ vanishes on H. Otherwise, 
replacing 2 by one of its We-conjugates, if necessary, we can arrange 

(4.33) 2=2~. 

We shall assume that this has been done. 
The elements of the weight lattice A are integral with respect to the root 

system ~c, as is p, which is integral even with respect to all of ~. Thus 2~A o 
must also be ~<integral. Like every 21, 2 lies in the interior of the positive Weyl 
chamber for cb ~ ~ ~. Hence 

(4.34) / ~ = 2 - p c  

is at least integral and dominant with respect to r c~ 7,. In particular, p arises as 
the highest weight of an irreducible [e-module V~. The [C-action on Vu lifts to a 
representation of K if and only if # belongs to A, which need not be the case. 
However, A contains 2 + p  = # + p ,  (p, =ha l f  sum of the positive, noncompact  
roots). Since every weight of the half spin modules S +, S-  differs from p, by a 
sum of roots, K acts on the tensor products V~,| +, Vu| This makes it 
possible to define the vector bundles ~ |  ~ |  on G/K. We conclude 
that the identity (4.24) applies in our present context. 

The summations in (4.24) and (4.26) range over the same set. Hence, using 
(4.16c), we can identify the coefficient al in (4.32) as 

(4.35) a l = ( - 1 )  q l-[ (~,2) 
~ ,  (~, p)" 
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In particular, if 2 is singular with respect to 4, the coefficient al vanishes. Of 
course, )[=h I is not really distinguished among the 2~. We can therefore let each 
h i play the role of h. If 2 is singular, then so are all of the 2g; hence 

(4.36) O ~ [ n ~ , = 0 ,  if 2 is singular. 

We now suppose that h, and therefore its conjugates, are nonsingular. Every h i is 
made dominant by a unique positive root system ~i, namely 

(4.37) ~ =  {~E~[(2i, a)>0}.  

In analogy to (4.3), we find 

(4.38) ai=ei(-1)  ~ I~ (~'hi) 

(Pi =half-sum of the roots in ~/i. The sign factor e i = _+ 1 is determined by 

(4.39) [-I (d'/2-e-~'/2) =e` I-I (e=/2-e-=/2); 
at e~/Ji ~ r  

its presence in (4.38) is due to the fact that the denominator in (4.32) was defined 
in terms of ~, rather than ~.  Each 2~ is conjugate to h by the unique w~Wr 
which maps ~ onto ~ ;  hence 

FI (~' "~) - FI  (~' '~) (4.40) ~ 1 (~, 
,,~,,,, (p , )  ~ ,  (~, p)" 

Combining (4.36-4.40), we may conclude: 

(4.41) Theorem. If hEAp is nonsingular, the restriction of Oz to H n G' equals 

( _ i),~ (~l~-le (~, h)'l ~ w~W e(w) ew~' 
(~,P)] i=1 I~ (e=/2-e-=/2)" 

a c ~  i 

Whenever h is singular, O~ vanishes on H. 

w 5.1. The "Sufficiently Nonsingular" Case 

In the last two sections, we used the L2-index theorem to study the formal 
difference ~ + - ~ - ,  of the two spaces of harmonic, ~/~-valued L2-spinors ~r177 
This difference is in particular a finite integral linear combination of discrete 
series representations. To obtain information about ~ +  and ~ -  individually, 
we shall now combine the index theorem with a suitable "vanishing theorem". 
Vanishing theorems in various contexts, or rather the proofs of the vanishing 
theorems, tend to work only in the "generic" situation. This is also the case 
here: we shall have to assume that the parameter p lies far away from all of the 
root hyperplanes. For such values of #, certain algebraic arguments will show 
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that 3~f u- vanishes, whereas ~ff~+ is irreducible. Because of what is already known 
about the formal difference J f ~ + - ~ - ,  ~ +  must then belong to the discrete 
series. The algebraic arguments also lead to a formula for the character of ~f~+, 
restricted to the maximal compact subgroup K. As a result, we obtain explicit 
realizations and character formulas for "most"  of the discrete series. The full 
description of the discrete series will have to wait until w 8, following a dis- 
cussion of the growth properties of discrete series characters in w 6 and w 7. 

Throughout this section, we freely use the notation of w A particular system 
of positive roots ~ in �9 will be kept fixed. As in the past, Pc and p, stand for the 
half-sums of all positive compact and noncompact roots, respectively; p = Pc + P, 
is the half-sum of all positive roots. When we talk of the highest weight of an 
irreducible K-module, it will always be with respect to the positive root system 
~c c~ T in ~c. We recall that the vector bundles ~ @ 6 e +, ~ @ 6 e-  on G/K can 
be defined whenever # + p, lies in the weight lattice A, or equivalently, whenever 

(5.1) #+pc~Ap; 

cf. (4.25). Once and for all, we require that 

(5.2) ( # + p c - B , ~ ) > 0 ,  forevery ae~u, 

if B is any sum of distinct positive, noncompact roots. Since there exist only 
finitely many possibilities for B, (5.2) would certainly be implied by a condition 
of the form 

(5.3) (#,~)>c, for ~E~u, 

with a suitably chosen constant c. 
For the moment, zt shall denote an arbitrary irreducible unitary repre- 

sentation of G, and V~ an irreducible K-module, of highest weight v, such that 

(5.4a) V~ occurs in the restriction of rc to K,  

and 

(5.4b) (v-p , ,~)>O,  if ~ q ~ c n ~ .  

Since n is irreducible, the Casimir operator f2 acts under n by some constant 
n(f2). According to Lemma 4.11 of [24], the hypotheses (5.4) imply 

(5.5) rc(12)<=(v-p, + pc , v - p ,  + p~)-(p,p). 

We shall outline a proof of this estimate, which is based on an algebraic version 
of Parthasarathy's formula (3.17), in the Appendix. 

As was shown in w 3, the spaces of square-integrable, K-valued, harmonic 
spinors have Plancherel decompositions 

(5.6) ougu• = ~ n j  | Vj• dj, 
Gt, 

with 

(5.7) V~ • =K-invariant  part of  H* |  +- @ V u 

---HomK(H~, S • @ V.), 
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and Gu=set  of all classes j~(~ on which 0 acts as multiplication by 

(5.8) c~,=(p-p,,t~-p,+2p). 

In the tensor product V v | W of an irreducible K-module Vv, of highest weight v, 
with an arbitrary finite-dimensional K-module W, every irreducible constituent 
has a highest weight which is the sum of v and some weight z of W. Moreover, 
v + z occurs as highest weight in V~ | W at most as often as the multiplicity of the 
weight z in W. According to the discussion which preceeds (4.13), every weight of 
S + G S -  can be expressed as p,-B, where B stands for a sum of distinct 
positive, noncompact roots; the weight p. has multiplicity one and occurs in S +. 
Thus V~ + and V~- can be non-zero only if Hj contains an irreducible K-module 
with a highest weight of the form # + p, - B, and, in the case of Vj-, B # 0. 

Because of the assumption (5.2), any such highest weight v=#+p , -B  
satisfies the hypothesis (5.4b): if a weight z, e.g. z=#+pc-B, is dominant and 
nonsingular with respect to ~Cn 7 ~, then z -  Pc must at least be dominant. Thus 
we may apply the estimate (5.5).to any class jeGu, for which Vj -+ does not vanish, 
to conclude 

(5.9) (#-p , ,#-p ,+2p)=% <(#+pc-B,#+pc-B)-(p,p), 

or equivalently, 

(5.10) 2(#+pc, B)<(B,B ). 

On the other hand, B is a sum of positive roots, so (5.2) insures that both I~+pc-B 
and /~+  Pc (B =0  is not excluded in (5.2)!) have a strictly positive inner product 
with B, unless B = 0. But then 

O<(# + pc- B,B)+(p + pc, B)= 2(# + pc, B)-(B,B) 

which contradicts (5.10). 
We have shown: among the irreducible constituents of V,| +, only the one 

having highest weight ~t+p, can appear in Hj, for any class jr This 
irreducible constituent has multiplicity one in V~| +, and multiplicity zero in 
V~| In particular, for j e ~ ,  

(5.11) d imVj-=0,  dimVj + =multiplicity, in H~, of the irreducible K-module 
of highest weight # + p.. 

The estimate (5.9) also proves: 

(5.12) no irreducible K-module which occurs in H~ can have a highest weight 
of the f o r m / ~ + p , - f l ,  wi th /~q~"n  ~ ,  

again for any j~(7~. As one consequence of (5.11), we obtain the vanishing 
theorem 

(5.13) 

(Parthasarathy [-22-]). 
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We should remark that the arguments leading up to (5.13) are really 
curvature estimates, in algebraic disguise. The decomposition of the K-modules 
Vu | S • into irreducibles determines an analogous decomposition of the bundles 
~ | 1 7 7  Under the assumption (5.2), the curvature properties of the bundles 
and of the manifold G/K force all square-integrable, harmonic spinors to take 
values in a certain sub-bundle of ~ |  namely the one that corresponds to 
the K-submodule of highest weight /z+p, in V~,| +. As happens often with 
differential-geometric arguments of this nature, the resulting vanishing theorem 
fails to be precise: the hypothesis (5.2) is unnecessarily stringent. 

We shall now appeal to some algebraic results about representations of G, 
which can be found, for example, in [24]. The arguments of 1-24] work with 
much weaker hypotheses than (5.2), and can be simplified considerably in our 
more special situation. For this reason, we shall present a proof of the relevant 
result in the Appendix. 

(5.14) Proposition. Suppose that p satisfies the inequalities (# + p - B ,  a)>0, for 
every ~e~bCn ~, and every sum B of distinct positive, noncompact roots. Up to 
isomorphism, there exists at most one irreducible unitary representation n of G, 
such that 

a) nlK has an irreducible constituent of highest weight #+p , ,  and 
b) no irreducible constituent of n[K has a highest weight of the form # + p ,  

- / L / ~ " n  ~. 
In such a representation re, the irreducible K-module of highest weight / t+p,  
occurs exactly once. The highest weight of any irreducible constituent of nlr can 
be expressed as I~ + p, + ~ nifli, with f l i~"  n ~, ni>O. 

We first observe that (5.2) implies the hypothesis of the proposition. Indeed, 
as the highest weight of an irreducible K-module (which occurs in S+), p, has a 
non-negative inner product with every ~ c n  7s; hence 

(# + p - B ,  cO>-(l~ + pc-B,~), 

which is positive because of (5.2). According to (5.11-5.12), any class j~(~u which 
contributes to the Plancherel decomposition of ~ •  has the two properties a) 
and b). The Plancherel measure of the totality of these classes j~Gu is non-zero, 
as follows from (3.19). The proposition now guarantees that there can be only 
one such jeG~,, which necessarily belongs to the discrete series; also 

(5.15) Vj- = 0, dimVj+ =1. 

Since j alone enters the Plancherel decomposition of ouYu +, one can identify 9flu + 
with Hj| + ~Hj .  We recall that the Plancherel measure of a class in the 
discrete series is also called the formal degree. The difference formula (3.19) gives 
the formal degree of j  as 

d(~-p. )= I]  (~,u+p3 ~ ,  (~, p) 

We summarize: in the situation (5.2), ~ -  vanishes, and ~ +  is a non-zero, 
irreducible, unitary G-module, belonging to the discrete series, whose formal 
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degree is d (# - p , ) ;  moreover, ~ +  has the two properties a) and b) in the 
statement of Proposition (5.14). 

We denote the global character of ~ +  = H j  by O. According to (4.16), the 
restriction of O to H c~ G' can be expressed as 

(5.16a) AnOlnnG,= ~ n~e v 
v ~ A  

(finite sum), with 

(5.16b) nw~,+pc)=(-1)~e(w), for w e W  

(cf. (5.15)). The significance of the coefficients n~ is that 

n v e v 

(5.17) r(a+--a-)ln~G , -  v ; 
1-I (e~'/E-e-'/z) 

~ e O c  ~ W 

here z stands for the K-character of H i. In a formal sense, z(a + - a - )  is the 
character of the virtual K-module H i | S + - H 2 | S-.  We set C+ = closed cone 
spanned by the positive roots. As follows from (5.14), the highest weight of any 
K-invariant, K-irreducible component of Hj lies in # + p, + C+. Every weight of 
S + O S -  can be expressed as - P , + f l l  + "'" +ilk, with flle4~"c~ T. If the charac- 
ter of an irreducible K-module appears in z(a + - a - ) ,  its highest weight must be 
the sum of a highest weight occuring in Hj and some weight of S + O S - ,  and 
hence lies in # +  C+. Combining this information with Weyl's character formula, 
we find 

(5.18) n ~ O ~ w v ~ p + p c + C + ,  for some weW. 

Any two weights v which occur in (5.16) with non-zero coefficient n~ are W C- 
conjugate; this follows from (4.18-4.19). In particular, 

(5.19) n~4:O ~ (v,v)=(#+pc,#+p~). 

Since it +p~ was assumed dominant with respect to T, it has a strictly smaller 
length than all other elements of the cone i t+p~+ C+. Comparing (5.18) and 
(5.19), we may conclude that n~=0, unless v is W-conjugate to #+pC. This 
proves: 

(5.20) Theorem. Subject to the condition (5.2), ~g~- vanishes, whereas ~ +  is a 
non-zero Hilbert space, on which G acts unitarily and irreducibly. The resulting 
representation belongs to the discrete series and has formal degree d (# -p , ) .  Its 
character O satisfies 

e(w)e ~u+pc) 
OIH~,G" =( __ 1) q w~W 

r I  ( e~`lz - e-:12) 

Every irreducible K-module which occurs in ~ +  has a highest weight of the 
form i t + p , + ~ n i f l , ,  with flieq~"c~T, ni>0. The irreducible K-module with 
highest weight # + p~ occurs exactly once in ~ + .  
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w 6. Characters and Sobelev Spaces 

The characters of discrete series representations, unlike those of a general 
irreducible, unitary representation, extend continuously from C~(G) to much 
larger function spaces. Harish-Chandra has shown that they are in particular 
tempered, i.e. their domain of definition includes a suitably defined Schwartz 
space of rapidly decreasing functions. He used this fact to describe the discrete 
series characters: within the class of tempered invariant eigendistributions, a 
discrete series character is completely determined by its restriction to a compact 
Cartan subgroup. 

In this section, we present Harish-Chandra's results in somewhat modified 
form. The vehicle for our arguments will be certain global Sobolev spaces, rather 
than the Schwartz space. This is not only consistent with our emphasis on L 2- 
methods elsewhere in our construction, but allows us also to prove the com- 
pleteness of the parametrization of the discrete series within the framework of 
the existence proof. Sobolev spaces usually serve as a tool for studying local 
regularity properties of functions and distributions. Not so in our context, where 
they are used to measure global growth properties. 

By infinitesimal right translation, the complexified Lie algebra gc of G acts 
on C~(G) as the Lie algebra of left-invariant complex vector fields. When this 
action is extended to the universal enveloping algebra ll(g~:), one obtains an 
isomorphism 

(6.1) r: U(g~)-~z,  

between 1I(9 ~) and the algebra ~z of all left-invariant linear differential oper- 
ators. As a quotient of the tensor algebra of gr ll(g r has a natural filtration. We 

shall say that X~11(9 ~) has degree at most n if it lies in the image of ~)  k (| s~). 
k=O 

For each positive integer n, we define the n-th (left) Sobolev space H,(G) as 

(6.2) H,(G)= {f~L2(G)Ir(X)feL2(G), for every XelI(g r of degree at most n}; 

here r(X) f is to be interpreted in the sense of distributions. 
One can turn H,(G) into a Banach space, in an essentially natural manner: 

although the Banach norm is not intrinsic, the resulting topology is. The group 
G acts continuously on H,(G), by left translation, but H,(G) is not right 
invariant. When one topologizes C~(G) in the usual fashion, the inclusion of 
C~(G) into H,(G) becomes continuous. We remark that C~(G) lies densely in 
H,(G); this fact is proven, in effect, in [1], but it will not be needed here. 

The next result is implicit in the proof of Harish-Chandra's lemma 76 [15]. 

(6.3) Lemma. Let O~ be the character of an irreducible, unitary representation 
r~, which belongs to the discrete series. Then O~ extends continuously from 
C~(G) to H,(G), for every sufficiently large integer n. 

At first glance, the statement of the lemma appears to be asymmetric, since it 
prefers the left Sobolev spaces over their right counterparts. However, the two 
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possible versions of the lemma, corresponding to choices of either left or right 
Sobolev spaces, are quite immediately equivalent: the distribution O~ remains 
invariant under conjugation; hence, if one lets it act on r(X)f, faC~ the 
differentiation r(X) can be shifted to the left, without affecting the result. 

Proof of (6.3). The assertion of the lemma amounts to saying that the linear 
functional 

f~-~O~(f)=trn(f), faC~(G), 

is continuous, relative to the topology which H,(G) induces on its subspace 
C~(G). It therefore suffices to prove the following two statements: 

n(f) is a Hilbert-Schmidt operator, and [trc(f)lln.s. <c  tl f I[ 2, with c = c(n), (6.4) 

and 

(6.5) there exists a Hilbert-Schmidt operator T, and some ZEtI(gr such that 
n ( f )  = n(r(Z) f ) .  T 

for every fEC~~ Indeed, (6.4) and (6.5) give the estimate 

[O~(f)I = [trace ~(f)[ = I trace(n(r(Z)f) ,  r)l  

<-_ II~(r(Z)f)l[H.s. It Ttla.s. =< c It TlIH.s. I[r(Z)flI2; 

this bounds O~ in terms of the seminorm fF--~ IIr(Z)f ti2, which is continuous with 
respect to the topology induced by H,(G) on C~(G), provided n>_ degZ. 

The Plancherel theorem asserts that for any given faL2(G)c~L](G), the 
operators nj(f), jaG, are Hilbert-Schmidt operators, except possibly on a set of 
Plancherel measure zero, and 

l[fll~ = ~ Hgj(f)H2.s. dj. 
G 

Since n belongs to the discrete series, its class in G has positive Plancherel 
measure d(rc). Hence 

IIf[l~ >d(n)II~(f)llI~.S., 
which implies (6.4), with c=  d(n)-1/2. 

We now turn to (6.5)-which, incidentally, holds for any irreducible unitary 
representation. The various K-invariant, K-irreducible subspaces of the repre- 
sentation space H span a dense linear subspace Ho~ c H ,  which consists entirely 
of analytic vectors. In particular, the complexified Lie algebra fie of G acts on 
H~.  This infinitesimal representation turns Ho~ into a module over the universal 
enveloping algebra lI(gr we refer to the action of ll(g r on Ho~ also by the 
symbol n. For f a  C~(G), yaHoo, and ZalI(gr the identity 

n(r(Z) f )  v = r~(f) n(Z) v 

amounts to a tautology. Since OK, the Casimir operator of K, is positive semi- 
definite, 7r(1 +f2K) has a bounded inverse. Hence, setting Z =(1 + ~2K)", one finds 
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(6.6) n(f)=n(r(Z) f ) .n ( l  +Dr)-", 

for any fzC~(G) ,  n~N. The set g of isomorphism classes of irreducible K- 
modules has a natural parametrization in terms of highest weights, which range 
over a lattice, intersected with a cone. On the irreducible K-module of highest 
weight #, Y2 K acts by a constant approximately equal to I1~112. Each class i~/( 
occurs in H at most as often as its degree, and this degree can be bounded by a 
polynomial in the length of the highest weight. Conclusion: for every sufficiently 
large nzlN, n(l+~2r) -n is a Hilbert-Schmidt operator. Because of (6.6), the 
assertion (6.5), and hence the lemma, follow. 

According to Harish-Chandra's fundamental regularity theorem 1-13, 3], 
every invariant eigendistr ibut ion-in particular, every cha rac te r -can  be repre- 
sented as integration against a locally L 1 function; this locally L 1 function is 
actually real-analytic on G', the set of regular, semisimple elements. We shall not 
distinguish between the invariant eigendistribution and the real-analytic func- 
tion on G' that represents it. 

We recall the definition of the rank of G: it is the minimal possible 
multiplicity of the eigenvalue one for the automorphisms Ad g of gr as g ranges 
over G. Any particular geG realizes this minimal multiplicity precisely when g is 
both regular and semisimple. Thus, writing 

(6.7) d e t ( 2 + l - A d g ) =  ~ DR(g)2 r+k 
k->0 

(r = rank of G), one finds 

(6.8) G'={g~GIDo(g)#O }. 

Incidentally, Do assumes only real values, since AdG preserves the real form 
g c gr After passage to some finite covering of G, if necessary, the function Do, 
restricted to any Caftan subgroup, admits a smooth square-root; D~/2 appears 
as a universal denominator in character formulas. We shall amplify on these 
statements later. To motivate the definitions which follow, we merely remark 
that the singularities of a general invariant eigendistribution near the comple- 
ment of G' are comparable to those of D O ~/2. In particular, multiplication by 
IDol ~/2 renders any invariant eigendistribution O locally bounded on G. For this 
reason, the growth properties of such a distribution O tend to be reflected by the 
behavior at infinity, along the various Caftan subgroups 1, of the function 
[Do[ 1/2 O, rather than by the behavior of the function O itself. 

For lack of better terminology, we shall call an invariant eigendistribution (9 
"bounded at infinity" if, for any Caftan subgroup B, 

(6.9) sup IDo(b)[ 1/210(b)l< ~ .  
bEBc~G' 

Similarly, O will be said to "decay at infinity" if the restriction of IDo11/20 to 
any Cartan subgroup B tends to zero outsidd of compact subsets. According to a 

1 Since IDoJl/20 is invariant under conjugation, its behavior at infinity must be measured 
transversely to the conjugacy classes, i.e. along the various Cartan subgroups 
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criterion of Harish-Chandra, the property of being bounded at infinity is 
essentially equivalent to his notion of temperedness. When O arises as the 
character of a representation, the equivalence becomes precise, as follows from a 
result of Fomin-Shapovalov [11]. However, we shall not use the notion of a 
tempered distribution. 

Until the present section, G was assumed to contain a compact Cartan 
subgroup. This hypothesis did not play a role in Lemma (6.3), nor will it enter 
the next two propositions. The first of these amounts to a modified version of 
one direction of Harish-Chandra's temperedness criterion; the second is the 
analogue, in our context, of the uniqueness statement in [14, Theorem 3]. 

(6.10) Proposition. An invariant eigendistribution, which extends continuously 
from C~(G) to H,(G), for some n~N, decays at infinity. 

(6.11) Proposition. A non-zero invariant eigendistribution which decays at 
infinity has a non-trivial restriction on some compact Cartan subgroup. In 
particular, no such invariant eigendistributions exist on G, unless G contains a 
compact Cartan subgroup. 

The proofs of the two propositions will be given in w 7. "We conclude this 
section with some fairly immediate corollaries. 

According to the results of w 4, if G has a compact Cartan subgroup, then its 
discrete series is not empty. The preceeding two propositions, in conjunction 
with Lemma (6.3), also imply the converse: 

(6.12) Corollary (Harish-Chandra). For the existence of a non-empty discrete 
series it is necessary, as well as sufficient, that G contain a compact Cartan 
subgroup. 

Let us assume then that G does contain a compact Cartan subgroup, which 
we may choose to lie in K. We denote this group by H. As in w 4, A shall refer to 
the weight lattice of the torus H, and Ap to the weight lattice translated by the 
half-sum of the positive roots; cf. (4.25). We also recall the definition (4.17) of 
the characters tpv of 3 (=  center of the universal enveloping algebra ll(gr 

(6.13) Corollary. The infinitesimal character of any given discrete series repre- 
sentation is equal to ~o~, for some nonsingular 2~Ap. Conversely, every such ~0~ 
arises as the infinitesimal character of some discrete series representation. 

Proof. We consider a particular discrete series character Oj, and we express its 
restriction to H as in (4.16a). The argument which proves (4.30) also applies in 
the present situation; thus 

(6.14) nv@0 => veAp. 
Because of (6.3) and (6.10-6.11), not all of the coefficients n v can vanish (any two 
compact Cartan subgroups are conjugate!). Combining this knowledge with 
(4.19) and (6.14), we find that Oj has infinitesimal character ~o~, for some 2~Ap. 
As a linear combination of discrete series characters, the invariant eigendistri- 
bution Ok of (4.26) must decay at infinity, and hence 

  lH=0. 
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We now appeal to Theorem (4.41): 

Oa = 0 ~ 2 is singular. 

On the other hand, Oa is a linear combination, with non-zero coefficients, of all 
discrete series characters which correspond to the infinitesimal character q~z. 
Characters of non-isomorphic irreducible unitary representations are linearly 
independent. Consequently Oz vanishes if and only if no discrete series repre- 
sentation has infinitesimal character q~z. This concludes the proof of the 
corollary. 

The two Propositions (6.10 6.11) make it possible to describe the discrete 
series characters, uniquely within the class of invariant eigendistributions which 
decay at infinity, in terms of their restriction to a compact Cartan subgroup. 
More generally, one can give such a description within the larger class of 
invariant eigendistributions which are merely bounded at infinity. For  this 
purpose, we state a lemma, due to Harish-Chandra [14], whose proof is similar 
to that of (6.11). It will be proved in the next section, along with the two 
propositions. 

(6.15) Lemma. For  every nonsingular 2~Ap, there exists at most one invariant 
eigendistribution Ox, such that Oz is bounded at infinity, and 

y e 
w ~ W  

O~ln~,  = ( -  1) q I~ (e~<12-e-~<12) 
(~,2)>0 

w 7. Proofs of the Preceeding Statements 

We begin with the proof of Proposition (6.10). The crucial step will be to relate 
growth properties of invariant eigendistributions on G to their behavior on the 
various Cartan subgroups. 

Until further notice, O shall denote an arbitrary invariant eigendistribution, 
and B a Cartan subgroup of G. We did not require G to have a faithful finite- 
dimensional representation, and hence B need not be abelian. Nevertheless, the 
identity component B ~ lies in the center of B, so that one can define a mapping 

(7.1) ~: G/B~215 a, with ~(gB~ 
as usual, (B c~ G') G stands for the open subset 

{gbg-alg~G, b~Bc~G'} 

of G. Then ~ is a covering mapping, with fibre N~(B)/B ~ which is finite. At any 
coset gB ~ the complexified tangent space of G/B ~ may be identified, via left 
translation by g, with 

b r = {X~gr b r =0} 

( B ( , )  = Killing form of go). Similarly, for b~B, left translation by b identifies the 
complexified tangent space of B at b with b r In terms of these conventions, the 
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differential 4,  of the mapping ~ at a point (gB ~ b) of G/B~ (B n G') is given by 
the formula 

(7.2) 4, (lg, X, Ib, Y) = lh, Ad g {(Ad b-  1 _ 1)(X) + Y}, 

for X e b  r177 Yeb r h = g b g  -1 =~(gB~ To verify the identity, one may as well 
suppose that the tangent vectors X and Y are real, in which case ~,(/g,X, Ib, Y) 
becomes the tangent vector of the curve 

t ~ ~(g exp(tX) B ~ b exp(t Y)) 

= g exp (t X) b exp (t Y) exp ( - t X) g-  1 

= g b g-  1 exp (t Ad g. Ad b - ~ X) exp (t Ad g Y) exp ( - t Ad g X) 

= h exp(t Ad g {(Ad b-  ' - 1)(X) + Y} + O(t2)), 

at t=0 .  
The identity (7.2) implies, in particular, the following standard integration 

formula: if the invariant measures dg on G, dg* on G/B ~ and db on B are 
suitably normalized, 

(7.3) S fdg=SlDo(b)I ~ f(gbg-1)dg *db, 
(B n G' )  G B G / B  ~ 

for every continuous function f with compact support in (Bc~G')6; cf. (6.7). 
Indeed, Adg operates as the identity on the top exterior power of gr whereas 

A d b -  1 _ 1: br177 Cl 

has determinant +Do(b ). The top exterior power of 4,  is therefore represented 
by the function + D  o, relative to translation-invariant sections of the top 
exterior powers of the various tangent bundles; this proves the integration 
formula. As one consequence of the formula, 

(7.4) ~9(f)= S IOo(b)l~9(b ) ~ f(gbg-~)dg*db, 
B n G "  G / B  o 

whenever f e  C~(G) has support in ( B n  G') G, 
for every invariant eigendistribution O. 

Corresponding to any tpe C~(G/B~ we define a mapping 

(7.5) T,: C~(BnG')~C~((BnG') ~) 

as follows: for feC~(BnG') and g~(BnG') ~, T, f (g )  is to be the average, 
extended over the fibre 3-  l(g), of the values of the function 

(gB ~ b) ~ tp (gB ~ ) f(b)ID o (b)l- 1/2. 

An invariant eigendistribution O, when restricted to B n G', remains invariant 
under the conjugation action of N~(B). Hence 

(7.6) O ( T , f ) =  ~ IDo(b)16)(b ) ~ qg(gB~ 
B n G '  G / B  ~ 

= I ~pdg* I f~91Ool '/2db" 
G / B  ~ B n G" 
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Every root ~ in ~B, the root system of (ge, br lifts to a character e" of B. 
Since the rank of G coincides with the dimension of its Cartan subgroups, one 
finds 

(7.7) Do(b)= I-I (1 -e ' (b ) )  (beB). 
~te~B 

In particular, B~G'={beBId'(b)# 1, for ~OB}. For e>0,  we define 

(7.8) B~={b~Blle~'(b)-ll>~, for ~ B } .  

The sets B e are open in B, and they exhaust B c~G'. As a Cartan subgroup, B 
centralizes its own Lie algebra. Consequently every right-invariant vector field 
on B is automatically left-invariant, and vice versa. More generally, the two 
notions of invariance agree for any linear differential operator. Just as for G, we 
introduce global Sobolev spaces H,(B), n~ N: 

(7.9) feH,(B) .r XfeI_?(B), whenever X is a translation-invariant differential 
operator, of order at most n. 

(7.10) Lemma. For any fixed ~>0 and nsN,  

T~: C~(B~)---,C~((Bn G') ~) 

is continuous with respect to the topologies induced by H,(B) and H,(G). 

Proof We consider a vector field r(Z) on G, with Zegr  cf. (6.1). The mapping 
pulls back r(Z) to a vector field ~*Z on G/B~215 We denote the 
projections of gr onto b ~:-~ and b e by p and q, respectively. According to (7.2), at 
points (gB ~ b) of G/B ~ • (Bc~ G'), ~*Z takes the value (Ig.X, Ib. Y), with 

X=(adb - 1 - 1 )  -~ .p.  Adg-  I(Z), Y=q. Adg-  ~(Z). 

The automorphism (adb-  1 _ 1)- 1 of b r is semisimple with eigenvalues m,(b) 
=(e-~(b)-l) -1, indexed by cce~b B. As functions on B~, the rn, and all their 
derivatives with respect to translation-invariant differential operators are uni- 
formly bounded. For  the purposes of this proof, the space of all such functions 
will be referred to as U~(B~). As follows from our observations, there exist 
smooth vector fields X i on G/B ~ translation-invariant vector fields Y/on B, and 
functions uie U~ vje C~(G/B~ such that 

r 
i j 

To understand the effect of r(Z) on Tel  for f~C~(B~), we average the 
product 

qg f e C~(G/B ~ x Be) 

with respect to the finite group NG(B)/B ~ which operates on G/B ~ by right 
translation, and on B by conjugation; it sho~ald be observed that the action 
preserves B~=B. The averaged product can be expressed as ~ l f z ,  with 
(P t e C~ (G/B~ fl e C'~ (B~). Moreover, l 
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(T~ f ) (g  b g -  ~) = ~ ~ t(gB ~ IDo (b)]- '/2fz(b), 
l 

since Do already is NG(B)/B~ In particular, 

r(Z)( T~ f ) (g  b g- ~) = ~.( X~ (p z)(g B ~ u~(b) IOo(b)l- 1/2 f z(b) 
i, I 

+ ~ vj(g BO) (P/(g B~ Y~(IDol- '/2L) (b). 
j , l  

functions IDoI1/z(YjlDo1-1/2) lie in U~(B~). Hence one Because of (7.7), the 
obtains an identity 

r(Z)( T~ f)(g b g- ') = ~ 
j ,l  

+2 
k,l 

q)jl(gB O) IDo(b)[- ~/2(yj f t)(b) 

Ok t(g B~ hk(b) [Do(b)l- i/2 f l(b), 

with suitably chosen q~j, ~, ~Ok, te C~(G/B~ hk~ U~(B,), which depend on Z and q~. 
Inductively this procedure leads to a formula of the following type: if Z ~ I ( g  r 
has degree n, 

r(Z)(ref)(gbg- ') = ~. (p,j,(gB ~ h,(b)fOo(b)[- 1/2(Yjf)(b). 
i ,j , l  

Here Y~ runs over a basis of translation-invariant differential operations on B, of 
order up to n, {q~ijt} is a collection of functions in C~(G/B~ and the 
hi~C| G') are uniformly bounded on B~. Except for a constant factor, the 
mapping f ~ f ~  is translation by some element of NG(B)/B ~ hence continuous in 
the topology of H,,(B). The lemma now follows from an application of the 
integration formula (7.3). 

We select an ordering > on q>B, and we let PB denote one-half of the sum of 
the positive roots. Then 

Do(b)= 1~ {(1-d'(b))(1-e-~'(b))} 
GtE~B, 

a > O  

= ( - 1 )  d e2pB(b) IF] (1 -e - ' (b ) )  2, 

~ > 0  

with d equal to half of the cardinality of ~ .  Passing to a finite covering of G, if 
necessary, one can arrange that PB lifts to a character e pB of B. In this situation, 

(7.11) 1-[ 
~6r~B, 

= H 
aeOrt, 

~t>t )  

becomes a well-defined function on B, such that 

Do(b ) = ( -  1) a AB(b) 2 (b~B). 
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On any connected c o m p o n e n t  of  BriG',  IDol 1/2 coincides with a cons tant  
mult iple  of  A n (D O is real-valued !). Hence  (7.6) and (7.10) imply:  

(7.12) Corollary.  If  the invar iant  e igendistr ibut ion ~9 extends cont inuously  f rom 
C~ (G) to H,,(G), then the linear functional  

fw-~ S f A B 69 db 
B 

on C~(B,) is con t inuous  with respect  to the topo logy  induced by H,,(B), for any 
~>0.  

At this point,  we have  to recall certain facts abou t  the local s t ructure  of  an 
invar iant  eigendistr ibution.  As before, B will denote  a Ca r t an  subgroup,  with Lie 
a lgebra  b, and ~B the roo t  system of  (g~:, b~). Every roo t  ~t o f  the sub- root  system 

(7.13) ~ ,~={~tEtbB[~  is real-valued on b} 

lifts to a character  e ~ of  B, which assumes only real values a. If  O is an invar iant  
eigendistr ibution,  the funct ion A s 69 on B n G' has a real-analyt ic  extension to 
the larger subset 

(7.14) B"={b~B[e~(b)~ 1, for cr 

of  B; this is pa r t  of  H a r i s h - C h a n d r a ' s  " m a t c h i n g  condi t ion"  [13, 3]. The  g roup  
B can be expressed as a direct p roduc t  

(7.15a) B= B + B_, 

such that  B+ is a compac t  group,  and B a vector  group.  Via the exponent ia l  
map,  B becomes  i somorphic  to its own Lie algebra b_ ,  i.e. 

(7.15b) exp: b_ ~ ,B_ .  

The identi ty c o m p o n e n t  B ~ of B+ is a torus,  with Lie a lgebra  b+,  so that  

(7.15c) B~ = e x p ( b + ) .  

We observe  that  

(7.16) e ~ ( B + ) c { + l } ,  if e s ~ n , ~ ,  

since e ~ takes  only real values. 
We enumera te  the connected  c o m p o n e n t s  of  B" as B';, . . . ,  B}. Fo r  each j, 

(7.17) ~ B , ~ , j = { ~ q ~ , ~ l e ' > 0  on Bj'} 

is then a sub- root  system of  qbn, ~, and 

(7.18) q~$,~,s={~e~B,~,jle'>l on Bj'} 

This is not totally obvious, since B may have several connected components. One should 
observe that the statement really concerns the adjoint group, which is an algebraic group over ~., 
and which contains the image of B as an algebraic subgroup. The character e" is also defined over F,, 
and hence must assume real values on all of B 
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a system of positive roots in ~bB,~, j, which corresponds to the Weyl chamber 

(7.19) C j = { X ~ b _ [ ( ~ , X ) > 0 ,  for ~q~-,~,j} 

in b .  We claim that Bj' can be decomposed into a product 

(7.20) _jR'.'=h. R ~  _+ exp Cj, for some fixed b~B+. 

Indeed, since B+ meets every connected component of B, one can choose a 
bj~B+, such that Bj' lies in the connected component b~ B ~ exp b .  But then Bj' 
must be a connected component of the open subset 

(7.21) {b~biB ~ expb [e'(b)#:l, for ae#B,~} 

of B. According to (7.16), for any e ~ n , ~ ,  e" is identically equal to + 1 or - 1  on 
b~ B ~ depending on whether or not c~ belongs to ~B,~,j. The set (7.21) therefore 
coincides with 

{bjb o exp X[bo~B ~ X~b , (~, X)  +0 for a~cbB,~,j.}, 

i.e. the disjoint union of the connected, open subsets b i B ~ exp C, where C runs 
over the collection of Weyl chambers, in b_, of the root system ~B,a,j. One of 
these is Bj'; the description (7.18) of ~ , j  shows that it can only be bjB~ exp Cj. 

We now focus our attention on a particular invariant eigendistribution O, 
and we keep fixed a connected component Bj' of B", as in (7.20). The Weyl group 
WB, e of (9 e, b e) operates on b e in the usual manner, and by duality also on the 
dual space b e* As a preliminary step in the proof of Harish-Chandra's regularity 
theorem [13, 3], one obtains the following result: there exist polynomial 
functions Pj, w on b_, indexed by weWB,r and a linear function # on b e, such 
that 

(7.22) (AnO)(bjexp(X+ Y))= y' p~,w(X)e <wu'x+r>, 
w~ WB, e 

whenever X~ Cj, Y6b+. 

If/z is nonsingular, i.e. w#=~/t for w#: 1, the Pi, w are actually constants, and they 
are uniquely determined. In general, to make the p j, w unique, one should sum 
not over WB, c, but over the quotient of Wn, e by the stabilizer of/~. 

According to (7.12), if O extends continuously to H,(G), the linear functional 

(7.23) f~--,Ifa, Odb, feC~(Bj' nB~), 
B 

becomes bounded in the topology which H,,(B) induces on C~ (Bj 'n B~); e > 0 is 
arbitrary. To complete the proof of Proposition (6.10), we must deduce: 

(7.24) Pj.w 4=0 ~ R e ( w u , X ) < 0 ,  for any non-zero X in the closure of C~. 

By separating Out the toroidal variable, we shall reduce the problem to one 
about functions on Euclidean spaces. For this purpose, we re-interpret the 
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identity (7.22): there exist distinct characters r h . . . .  ,~/N of the torus B~ and 
functions h 1 ....  , hN~ C~(B_), such that 

(7.25) (A s O)(bj b exp X ) = ~  q,(b) h~(exp X), 
i 

if b~B ~ X~Cj. Moreover, 

Mi 

(7.26) h~(expX)= ~ p~j(X)e < .... x>, X~b_,  
j = l  

where the p~j are polynomial functions on b_, and v~j~b~ * We let Cj denote the 
translate of Cj by some fixed Xo~Cj; thus Cj.contains the closure of Cj. As will 
be argued shortly, one can select a non-empty open subset U~B~ and some 

> 0, which have the property that 

(7.27) bjUexpCj=Bj'  n B  c 

No non-trivial linear combination of the r/i is perpendicular to C~(U) in L2(B~ 
Hence, for suitably chosen functions fie C~ (U), 

[. f~qjdb=6i2. 
80+ 

Testing the linear functional (7.23) against products f/f,  with f e  C~ ~ (exp Cj), one 
finds that 

(7.28) f~-~ S fh ,  db, f eC~(exp  Cj), 
B- 

is bounded, relative to the topology of H,(B ), 

for 1 _< iN N; the Sobolev space H , ( B )  for the vector group B_ ~ b  is defined 
in the usual fashion. 

We still must produce U and e, as in (7.27). For any real root e, e" is 
uniformly bounded away from one, on the entire set bj B ~ exp Cj. Every 0~e~n, 
whether or not it lies in ~n,~, assumes only real values on b_, so that e~>0 on 
B_. On the other hand, [ e ~ [ -- 1 on B +. Hence, if 6 is sufficiently small, 

[e~(bjb)- l[>6 ~ [e~(bjb exp X ) -  11>�89 

whenever beB ~ Xeb_. Thus (7.27) will be satisfied for any open, relatively 
compact subset U of 

(7.29) {beB~ for c t ~  B, ~r 

if only ~>0 is small enough. No character e ~, with ~ n ,  c~r remains 
constant on B ~ The set (7.29) is therefore non-empty, and we can indeed choose 
U and e. 

Because of (7.28), the verification of tke assertion (7.24) amounts to a 
problem about functions on Euclidean space. In order to state the relevant 
result, we let Q denote the positive quadrant in IR a, 
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Q =  {(xl . . . . .  xa)eiR'~lxi > O, 1 < i < d} . 

Via the inclusion IRar162 d and the natural pairing IE d x ~ % - , r  every ~elE d 
defines a complex-valued linear function x~-~,(~,x> on IR a. 

(7.30) Lemma. Let 41 . . . . .  ~N be distinct elements of tE d, and Pl . . . . .  PN non-zero 
polynomial functions on IRe. The distribution 

f~---~ f(x) ~ pi(x) e <r dx, f~C~(Q), 
~.a i 

does not extend continuously to the closure of C~(Q) in any Sobolev space 
H,(IRd), unless the real part of each ~ lies in - Q .  

In terms of suitable linear coordinates x~, ..., xd on b_, the Weyl chamber Cj 
can be described as 

{(x 1 . . . .  ,Xd)eiRdlxi>O, l<i<k},  

for some k<=d. Except for a finite number of hyperplanes, this set decomposes 
into 2 d-k copies of Q. We also note that translation by some x0eiR d transforms 
the distribution described in the lemma into another one, of the same type, with 
the same exponents ~i- In particular, the conclusion remains unchanged if the 
domain C~(Q) of the distribution in question is replaced by C~ For 
these reasons, the lemma implies the statement (7.24). 

Proof of (7.30). If a distribution is continuous in the topology of the n-th Sobolev 
space, then its image under a constant coefficient differential operator, of order 
k, is continuous in the topology of the (n+k)-th Sobolev space. For  any 
polynomial q of d variables, 

q (~-~)(~pj(x)e<r ~ ~ (~-~pj)(x)(~x q) (~ i )e  <r 

with I running over all d-tuples of indices I = (i 1 . . . .  , ia) and I!= I-[ i,!. Hence, by 
l 

appropriate choice of the constant coefficient operator q(~-~.], we can an 
arrange that 

\ u . ~ #  

In this fashion, we reduce the problem to the case of a single exponential term 
e <~,~>, without a polynomial coefficient. A further reduction is possible: by 
testing the distribution e <r against products 

f (xl  .... , xa)=fl(xl)" f2 (x2) . . . . .  fa(xa) , f~eC~(iR+), 

one can deal with one variable at a time. In other words, we may and shall 
assume that d = l .  We now evaluate the distribution e ~ on a sequence of 
functions f k ( X ) = f ( x -  k), for a fixed f e  C~ (IR+). The boundedness of the distri- 
bution in some Sobolev topology gives, at least, the estimate Re 4_<0; we must 



A Geometric Construction of the Discrete Series for Semisimple Lie Groups 39 

exclude the possibility that Re ~ = 0. If r were purely imaginary, translating the 
distribution would change it only by a multiplicative constant, of modulus one. 
Every f~C~(IR) has a translate whose support lies in IR § Consequently, the 
distribution e r would be bounded, in the topology of some Sobolev space, not 
only on C~ (IR +), but actually on all of C~ (IR). That is absurd: evaluation of the 
Fourier transform f at some point y~IR, for f~C'g(lR), fails to be continuous 
with respect to any Sobolev topology. 

The proofs of Proposition (6.11) and of Lemma (6.15) are straightforward 
applications of Harish-Chandra's "matching conditions". We shall briefly recall 
what is involved. Until further notice, we keep fixed the following data: an 
invariant eigendistribution O, a Cartan subgroup B of G, a connected com- 
ponent Bj' of B", as in (7.20), and a root 7 ~ 4~B, ~,j which is simple with respect to 
the positive root system q~b~,~,j. To any real root, and in particular to 7, one can 
associate a so-called Cayley transform, an inner automorphism of fie, which maps 
b e onto the complexification of a Cartan subalgebra b~c g; the corresponding 
Caftan subgroup B~ meets B along 

B nB~={b~Ble~(b)=l}, 

and the dimension of its compact part By, + exceeds that of B+ by one. The open 
subsets (Bc~ G') a and (B~n G') G of G have a hypersurface Sr as common 
boundary, which contains B c~ Br. As an invariant eigendistribution, O satisfies 
certain differential equations, which are used, in particular, to obtain expressions 
of the type (7.22). An investigation of the same differential equations, near the 
hypersurface S~, leads to relations between the restrictions of O to B and B~, 
respectively. These are the matching conditions [13, 3]. 

Since ~ is simple with respect to 4~ ~4, the intersection B c~ B~-  equivalently, 
the kernel of the character e r on B-con t a in s  a whole "wall" of Bj', namely 

(7.31) {bib expXIb~B ~ X~closure of Cj, (~, X ) = 0 } .  

According to (7.22), the restriction of A n O to Bj' extends as an analytic function 
across the wall (7.31); for simplicity, the extension shall be referred to as q~. We 
now choose a non-zero, translation-invariant vector field X~ on B, which is 
normal to the codimension one subgroup B n B~. The matching conditions assert 
that, for each odd integer n, X~ cr coincides, on the subset (7.31) of B c~ B~, with a 
similar expression derived from the restriction of O to B~. In particular, if O =0  
on By, all of the odd derivatives X~ (p vanish on the wall (7.31). Equivalently, 
An O In j, must then be symmetric with respect to the reflection about the root 7. 
The reflections about all simple roots in ~-,~,j  generate the full Weyl group of 
the root system q'B,~,~. Hence, if O vanishes on Br, for every simple root 
7 ~ - , , , j ,  then A n O In,, will be symmetric with respect to this entire Weyl group. 
The compact factor 'of every such B~ has dimension one greater than the 
compact factor of B. We conclude: 

(7.32) An O IR,, is symmetric with respect to the Weyl group of ~n,a,j, provided 
dimB§ is ma]dmal, among all Cartan subgroups on which O does not vanish 
identically. 
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Our arguments depend only on this one consequence of the matching 
conditions. 

Let us suppose now that 6) decays at infinity. The exponents w# which 
appear with non-zero coefficient p j, w in (7.22) then satisfy (w/~, X ) < 0 ,  for every 
X#:0  in the closure of Cj. If A R 6)[B', were symmetric with respect to the Weyl 
group of OB,~,i, each w# would hav~ to assume strictly negative values also on 
the various translates of the Weyl chamber Cj, i.e. on all of b .  This is impossible 
unless 6)In,,=0, or b =0,  in which case B is compact. The assertion of 
Propositio~ (6.11) follows. 

We argue similarly to prove Lemma (6.15). Let us suppose that O1, 6)2 are 
two distinct invariant eigendistributions, which both have the properties men- 
tioned in the lemma. As was described in w 4, the explicit formula for 6)z In makes 
it possible to identify the infinitesimal character of 6)~, namely 

(7.33) Z~--,TH(Z)(2), z e 3 ;  

Yu: 3 - , / ( [  e) is the isomorphism (4.8) corresponding to the Cartan subalgebra 
b e, and vu(Z) is viewed as a polynomial function on b *e. Since t91 and 0 2 have 
the same infinitesimal character, their difference O = 6 ) 1 - 6 )  1 is again an in- 
variant eigendistribution. We now choose a Cartan subgroup B and a connected 
component Bj' of B", such that 6) does not vanish identically on Bj', but does 
vanish on any Cartan subgroup whose compact factor has a larger dimension 
than B+. Then B cannot be compact: any two compact Cartan subgroups are 
conjugate, and 6)[H--O. Because of our assumptions, 6) remains bounded at 
infinity. Hence, when the restriction of A n 6) to Bj' is expressed as in (7.22), every 
exponent w/~ which occurs with a non-trivial coefficient p j, w satisfies Re w#__<0, 
on C i. The assertion (7.32) allows us to conclude 

(7.34) pj, w#0  =~ R e w # - 0  on b_. 

To complete the proof  of (6.15), we must derive a contradiction. 
The reasoning which led to the description (7.33) of the infinitesimal charac- 

ter of O also gives the alternate description 

z ~  r.(z)(~), z e 3  

in terms of the isomorphism 7n: 3 ~ ,/(be). Because of the canonical nature of 
the Harish-Chandra isomorphism (4.8), 7B and ~n are related: yn=c.yn, when- 
ever c: br  be is induced by an inner automorphism of ge. Hence c* 2 and # 
lie in the same Weyl group orbit, i.e. 

(7.35) # = u c * 2 ,  for some u~Wn,r 

The elements of the weight lattice A of H can be expressed as Q-linear 
combinations of roots ~EO. Since every root ~ O  B assumes real values on the 
split part b_ of b, and since c* �9 = OB, the Weyl group translates of p must be 
real on b_. Thus (7.34) can be sharpened: 

(7.36) Pj, w # 0 =~ w# = 0 on b_. 
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The real roots ct~(/)~,~ vanish on b+, and the decomposition b = b + G b _  is 
orthogonal with respect to the Killing form. Thus (7.36) implies 

(w/~, c~) = O, for ~cbB,~, 

provided p j, w 4= O. This is the case with at least one we Ws, ~:, because O 18~, ~ 0. A 
Cartan subgroup has an empty system of real roots precisely whgn it is 
fundamental, i.e. when its compact part is of maximal possible dimension. In our 
situation, G contains a compact Cartan subgroup, so that B cannot be funda- 
mental. We conclude that ~t is singular. In view of (7.35), this contradicts our 
assumption on 2. 

w 8. Complete Description of the Discrete Series 

As was shown in w 6, G has a non-empty discrete series if and only if it contains 
a compact Cartan subgroup. We assume that this is the case, and we select a 
particular compact Cartan subgroup H c G. We shall follow the notation of w 4. 
In particular, A p e  i b* is the lattice formed by the differentials of characters of 
H, translated by the half-sum of the positive roots; cf. (4.25). We recall the 
notion of an invariant eigendistribution which is bounded at infinity, as defined 
in w 6. With these ingredients, we can now state and prove Harish-Chandra's 
fundamental result on the discrete series 1-15]: 

(8.1) Theorem. Corresponding to any nonsingular 2~Ap, there exists exactly 
one invariant eigendistribution Ok, which is bounded at infinity, and such that 

y~ ~(w) e w~ 

OaIH~,__(_ 1) q wEW 
1--[ (e'/2-e-=/a) 

(a,),) > 0 

( q = � 8 9  Every such O k arises as the character of a discrete series 
representation, whose formal degree equals 

(~,2) with p=�89 ~ ~. d ( Z -  p) = ~,l--I (~, P)'  (,, ~)> 0 
(a, 2)>0 

Conversely every discrete series character occurs among the Oa. 

Because of the uniqueness which is asserted in the theorem, two of the O 4 
coincide precisely when they have the same restriction to H, and this is the case 
whenever their parameters are related by the action of W, the Weyl group of H 
in G. In particular, then, the theorem provides a one-to-one parametrization of 
the discrete series, in terms of the quotient 

(8.2) {2~Ap12 is nonsingular}/W. 

Our proof of the theorem also leads to information about the decomposition of 
discrete series representations under the maximal compact subgroup K. We 
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consider a particular discrete series representation rtz, with character Oh. The 
parameter 2 determines a system of positive roots ~u in 4, namely 

(8.3) ~={eeq~l(2,  c0>0 }. 

As before, we set 

(8.4) pc=�89 • r162 p,=�89 ~, ~. 

The next statement is a weaker, but useful version of Blattner's conjecture. 

(8.5) Theorem. In the restriction of ~z z to K, the irreducible K-module of 
highest weight 2 + p , - p c  occurs exactly once. Any irreducible constituent of 
~hl~ has a highest weight of the form 2 + p , - p c + A ,  where A stands for a sum of 
roots in ku. 

Turning to the proof of the two theorems, we note that the uniqueness of the 
Oh was established in w We now fix a nonsingular 2~Ap, and we define 
7J, Pc, P, in terms of 2, as above. As was argued below (4.34), 

(8.6) # = 2 - p c  

is the highest weight of an irreducible ~r V u, and the action of 1~ r on the 
tensor products V u |  +- lifts to K. Thus we can apply Theorem (5.20): if 

(8.7) min l(~,2)[>c, 

for some appropriately chosen constant c, there does exist a discrete series 
representation rch, which has the properties described in (8.5), and whose 
character Oh satisfies the conditions of (8.1). In the case of a general 2, Theorem 
(4.41) provides at least a partial answer. We shall use a method of Zuckerman 
[27] to deduce the assertions of (8.1) and (8.5). Since our arguments depend 
only on a specialized version of Zuckerman's technique, we shall develop his 
ideas to the extent that they are needed here. 

Although we are concerned with unitary representations, it is necessary at 
this point to work in the wider context of representations on Banach spaces. We 
briefly recall the important properties of such representations; details can be 
found in [26], for example. A representation ~ of G on a Banach space is said to 
be admissible if each class ie/~ occurs with finite multiplicity nl in rtl~c. Every 
irreducible unitary representation has this property; it is unknown whether 
irreducibility implies admissibility in general. Each admissible representation 7t 
gives rise to an infinitesimal representation of 11(gr on the space of K-finite 
vectors. The sub-representations of rc correspond precisely to the invariant 
subspaces for the infinitesimal representations. If the infinitesimal represen- 
tations attached to global representations are isomorphic, one calls the global 
representations infinitesimally equivalent. Informally, one may think of in- 
finitesimally equivalent representations as being identical, except for a modifi- 
cation of the topology on the underlying vector spaces. Among unitary repre- 
sentations, the notions of infinitesimal equivalence and unitary equivalence 
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coincide. Whenever n is both admissible and irreducible, the K-multiplicities n~ 
satisfy the bound ni < degree of i, just as in the unitary case; moreover, the center 
3 of ll(g ~) then acts by scalars. Conversely, if g is admissible, and if 3 operates 
on the space of K-finite vectors according to a character, then n has at least a 
finite composition series. 

Admissible, irreducible representations have global characters, for essentially 
the same reasons as in the unitary case. More generally, the definition of the 
character of an admissible representation n makes sense, provided only g has a 
finite composition series. One can describe the character explicitly as the sum, in 
the sense of distributions, of the diagonal matrix coefficients, relative to a 
"basis" consisting of vectors in the various K-invariant, K-irreducible subspaces. 
Characters cannot distinguish between infinitesimally equivalent represen- 
tations: two admissible, irreducible representations have the same character 
precisely when they are infinitesimally equivalent. In fact, the characters cor- 
responding to any finite set of infinitesimally distinct, irreducible representations 
are linearly independent. 

We now consider a particular admissible, irreducible representation n, and a 
finite-dimensional representation z, whose characters we denote by O~ and Z,. 
As is not hard to check, the tensor product  will then be admissible, too. 
Furthermore, it is known that 

(8.8) n | z has a finite composition series. 

One can see this, for example, as follows. Like any admissible, irreducible 
representation, n is infinitesimally equivalent to a sub-representation of some 
principal series representation 1, which need not be unitary, of course. Hence, in 
verifying (8.8), we may as well assume that n itself is a principal series 
representation, instead of being irreducible. Thus n is induced, from a minimal 
parabolic subgroup P c  G, by a finite-dimensional, irreducible representation a 
of P, i.e. n = ind~ a. For  essentially formal reasons, 

r~|174 

Any composition series of the finite-dimensional representation a |  of P 
determines a filtration of indeG(a | v), of finite length, whose quotients are again 
principal series representations. A principal series representation, finally, does 
have a finite composition series, as follows from the fact that it has an 
infinitesimal character, and that it is admissible. 

As the character of the tensor product n |  Z~ O~ equals the sum of the 
characters of the composition factors. For  each character ~0 of the algebra ,3, we 
let (Z~ O~)~o denote the sum of the characters of those composition factors on 
which 23 acts according to cp. Then 

(8.9) Z, 6~. = Z  (Z~ O~)e, 
r 

with ~o ranging over a finite set of characters bf 3. 

i Casselman [9] has given a simple proof of this fact 
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For the purpose of stating the next lemma, we fix a system of positive roots 
7 J c ~ ,  and some 2eA o, such that 2 is dominant with respect to ~u, but not 
necessarily nonsingular. Although G itself need not be linear, it is at least a finite 
covering of a linear group. Hence arbitrarily large positive multiples of 2 occur 
as highest weights of irreducible, finite-dimensional representations of G. We 
suppose that z is such an irreducible, finite-dimensional representation, of 
highest weight ( m -  1) 2, m>  1 ; )~ denotes the character of z, and X* the character 
of the representation dual to z. We shall use the symbols cs and qqm~ to refer to 
the sets of characters of irreducible, admissible representations, with infinite- 
simal character (p~ and q~,,a, respectively; cf. (4.17). 

(8.10) Lemma (Zuckerman [27]): The mapping 

S: 0 r--,(Z~ O)~om~ 

establishes a bijection between the sets cgz and (g,,~, whose inverse is given by 

T: 6) ~ (Z* 19)~. 

If 19e~z decays at infinity, then so does SO, and conversely. 

Proof In the obvious manner, S and T extend to mappings between the linear 
spans of cs and <gm~, in the appropriate spaces of invariant eigendistributions. 
By virtue of their definition, both S and T associate to each irreducible character 
an integral linear combination of irreducible characters, with non-negative 
coefficients. We shall show that 

(8.11) TO.O, if Oe(gmX 

and 

(8.12) T. S =identity,  on cgz, 

as well as the corresponding statements with reversed roles for S and T. Thus, if 
SO were a sum of more than one irreducible character, O =  T.SO would also 
have to be a sum of several irreducible characters, contradicting the irreduci- 
bility of O. This will prove the first half of the lemma. The second assertion will 
follow from an explicit description of S. 

In order to understand S and T, we consider a particular O ecs restricted to 
a Cartan subgroup B. On any connected component Bj' of B", as in (7.20), O can 
be expressed by a formula like (7.22): 

(8.13) (AnO)(bjexp(X+Y))= ~' pj.w(X)e <w~''x+r>, for XeCj, Y~b+. 
w~WB,~. 

Since O is a character, the coefficierits Pj.w are known to be constants, not 
polynomials [11], but this fact turns out to be irrelevant for our purposes. The 
Cartan subalgebras b c and b c are related by an inner automorphism of g~:, say 

(8.14) c: b ~ ~ , b  e. 
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The arguments which precede (7.35) also apply in the present situation. Thus, 
modifying c by an element of We, if necessary, one can arrange 

(8.15) /~=c* 2. 

Every weight v of z, relative to the Cartan subalgebra b e, lifts to a character e v of 
B. We set n~ = multiplicity of the weight v; then 

z~lB=~,n~e ~. 
v 

The Weyl group WB, �9 of (ge, b e) leaves X~ invariant, so that 

(An X~ O)(bj exp(X + Y)) 

=~ ~ n~eWV(bj)pj, w(X)e <w("+*)'x+r>, 
v w~WB, C 

if X6 Cj, Y6b+. In this formula, the contribution of S 0 consists of those terms 
which belong to the infinitesimal character cp,,a, i.e. the terms for which # + v is 
Wn, e-conj ugate to c* (m 2) = m ~. 

We claim:/~ + v lies in the Ws, e-orbit of m# only if v = ( m -  1) #, in which case 
n , = l .  Indeed, ( m - l ) #  occurs as an extreme weight of the finite-dimensional, 
irreducible representation z, and hence has multiplicity one. The weights of z all 
lie in the convex body spanned by the extreme weights, i.e. by the WB, e- 
translates of (m-1)# .  When this convex body is shifted by #, among the new 
vertices, mg lies farthest from the origin. The claim follows, and we deduce: 

(8.16) (AB(SO))(b jexp(X + Y)) 

= ~ e~"-l)WU(bj)pj, w(X)e ''<wu'x+r>, 
w~WB, e 

whenever X6Cj, Y~b+. Similarly, if the restriction of some O6Cgma to Bj' is 
given by 

(AB@)(bjexp(SW Y))= ~ ,7. [X '~e  m ( w u , x + [ )  

weWB, e 

then 

(8.17) (AB(TO))(b jexp(X + Y)) 

= ~ e-("-l)WU(bj)qj, w(X)e (wu'x+r>, 
w~WB, IE 

again for all X~ Cj, Y6b+; the verification is entirely analogous to that of (8.16). 
Every invariant eigendistribution is completely determined by its restrictions 

to the various Cartan subgroups. Hence the explicit formulas (8.16-8.17) imply 
the two assertions (8.11-8.12). We recall that an invariant eigendistribution (9 
decays at infinity if, and only if, in terms of the notation of (8.13), 

(8.18) p~,w4:0 =:- w# assumes strictly negative values on the closure of Cj, 
A 

except of course at the origin, for all choices of B and Bj'. The condition (8.18) 
remains unchanged by an application of S or T, which has the effect of 
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multiplying the exponents by a positive constant. This completes the proof of 
the lemma. 

When the arguments leading up to (8.17) are carried out for the compact 
Cartan subgroup H, one finds: 

(8.19) Corollary. If O~f, ,z  satisfies 

AnOln = ~ awe mwa, 
w~WfE 

then 

An(TO)In= ~ awe w~. 
wsWIE 

We return to the proof of the main theorem. Thus a nonsingular 2cA o is 
given, and 7 s is the system of positive roots which makes 2 dominant. We 
enumerate as 

(8.20) 21 =2,22 , . . . ,2u  

those We-conjugates of 2 which lie in A o and are dominant with respect to 
�9 Cc~ 71; this is consistent with the notation of Theorem (4.41). The correspon- 
dences S and T of (8.10) depend on the choice of the integer m. We make m so 
large that the multiples m 2~ of the various 21 become sufficiently nonsingular, in 
the sense of (8.7). By assumption, (m-1 )2  occurs as weight of a finite- 
dimensional representation of G, hence lies in A, as do its We-conjugates. Thus 
Ap contains not only the various 21, but also their multiples m2~. Theorem (8.1) 
has already been established for every nonsingular parameters. In particular, 
there exist discrete series characters Omz,, such that 

Z e(w) e "wz' 
O,,,z, ln,~' = ( -  1) q w~W 

1-I (d'/2-e-~/a)" 
(a, .~,) > 0 

We define 

(8.21) Ok,= TO,k,. 

Then, because of (8.10) and (8.19), 04, is the character of an irreducible 
representation, 

(8.22) 

Y' e(w) e '~z' 
Oz, lnnG" = ( - -  1) q w~W 

I-I (e'/2-e-~'/2) ' 
(a, 4d > 0 

and 04, decays at infinity. 
The invariant eigendistribuition Ok of (4.26) was defined as the sum of the 

discrete series characters which correspond to the infinitesimal character q~z, 
each multiplied by its formal degree. As a linear combination of discrete series 
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characters, ~ decays at infinity. If two invariant eigendistribution agree on a 
compact Cartan subgroup, and if they both decay at infinity, than they coincide; 
this follows from (6.11) (any two compact Cartan subgroups are conjugate!). 
Thus, comparing (4.41) and (8.22), we find 

N 

An invariant eigendistribution can be expressed as a linear combination of 
irreducible characters in only one way, if at all. Also, the coefficient appearing in 
(8.23) is non-zero. We conclude: the 69~,, l < i < N ,  are precisely the discrete 
series characters corresponding to the infinitesimal character ~oa; each has 
formal degree 

The infinitesimal character of any discrete series representation equals ~0~, for 
some nonsingular cEAp, as was shown in w The proof of Theorem (8.1) is 
therefore complete. 

For very nonsingular parameters 2 ~ A , ,  the assertion of Theorem (8.5) is part 
of Theorem (5.20). If 2EA o is nonsingutar, but otherwise arbitrary, we choose the 
integer m as in the previous argument, so that 

63 4 = T O ~  = (Z* 0~)r  

Thus, if 7zz and 7z,~ are discrete series representations with global character 6~ 
and Omz, respectively, then 7tz can be realized as a composition factor of 
rcmz| up to infinitesimal equivalence. Here z* stands for the representation 
dual to z, i.e. the finite-dimensional, irreducible representation which has 
- ( m - l )  2 as lowest weight. In particular, all irreducible constituents of galr are 
among those of (g,,z| z*)lK. The highest weight of any irreducible constituent of 
the tensor product can be expressed as the sum of the highest weight of a 
constituent of ~t~zlr with some weight of ~*. We already know that every highest 
weight in n,,~lr is of the form m 2 + p , - p c + A ,  with A equal to a sum of positive 
roots. Any weight of z* differs from the lowest weight by a sum of positive roots. 
All this implies the second assertion of (8.5). 

Since rc,,~l/~ contains the irreducible K-module of highest weight m2 + p , - P c  
only once, and since the lowest weight - ( m - 1 ) 2  of z* has multiplicity one, the 
irreducible K-module of highest weight 2 + p , - P c  cannot occur more than once 
in r~zl r.  We must check that it does occur. The results in the beginning of w 
especially (4.16c), coupled with the explicit formula for O~lHnw, show that 

(8.24) 2-pc is the highest weight of an irreducible constituent of (rc~lr)| @ s-) 

(s+,s - refer to the action of K on the half spin modules S+,S-).  Every weight of 
S + @S-  can be written as - P , + f l l  + "'" +fl;, with f l i ~ " ~  7 ~, and every highest 
weight in nx] K as 2 + p , - p c + A ,  A being a sum of positive roots. Hence (8.24) is 
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possible only if real K contains the irreducible K-module of highest weight 
2 + p . - p ~ .  This we have proved Theorem (8.6). 

w 9. Realization of the Discrete Series 

Although the spaces J(f,+, i f . -  of square-integrable, harmonic spinors play a 
crucial role in our construction, we have not yet described them completely, 
except for very nonsingular parameters kt. It is known that each ~ +  either 
vanishes, or is an irreducible unitary G-module, which belongs to the discrete 
series; moreover, every discrete series representation can be realized in this 
manner [22, 24]. For the sake of completeness, we now recall the precise 
statement and discuss its proof. 

As in the past,/~ shall denote the highest weight of an irreducible t~r 
V u, and 7 ~ a system of positive roots, such that 

(9.1) (/~+pc, a )>0 ,  for a~7 ~. 

We also assume 

(9.2) # + p.~A, 

which insures that the twisted spin bundles ~. . |  e+ can be defined on G/K. 
(9.3) Theorem. Both ovf+ and Jg.- vanish whenever/~+Pc is singular. Other- 
wise, for nonsingular # +Pc, only ovf.- vanishes, whereas G acts irreducibly on 
ovf+, according to the discrete series representation with character Ou+pc. 

If 2cAp is nonsingular, and if 7 j is the positive root system which makes 2 
dominant, then # = 2 - P c  has the required properties. In particular, the theorem 
provides a concrete realization for every discrete series representation. 

Turning to the proof of the theorem, we recall the Plancherel decomposition 
(5.6) of o~g~. The discrete series contributes to it discretely; any J~Ga occurs as 
often as the dimension of VF +, if j lies in Gu, and does not occur at all for jCGu. 
The explicit enumeration of the discrete series representations, combined with the 
information about  their K-decompositions in Theorem (8.5), makes it possible to 
determine these multiplicities: 

(9.4) Lemma. Suppose j is a class in the discrete series, which belongs to Gu. 
Then Vj++ V~- =0, except in the following situation: # + Pc is nonsingular, and j 
has character Ou+oc, in which case dimVj + = 1, Vj- =0. 

Proof. We consider a particular class j s d n ~  G., with character Ok. For the time 
being, 7 ~ shall denote the system of positive roots 

{~e~ I(=, 2) > 0}, 

which may be inconsistent with (9.1). However, replacing 2 by one of its W- 
translates, if necessary, we can arrange that 

(9.5) (#+pc,  a)>O, for a ~ C c ~ .  
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As was remarked in w 5, Vj -+ can be non-zero only if H i contains a K-invariant, 
K-irreducible subspace with a highest weight of the form kt+p,-B; here B 
stands for a sum of distinct positive, noncompact  roots and, in the case of Vj-, 
B4:0. This statement, incidentally, depends only on the property (9.5) of 7 j, 
except for the labelling of V~ +, which is determined by the stronger condition 
(9.1). According to (8.5), every such highest weight can be expressed as 2 + p , -  Pc 
+A, with A equal to a sum of positive roots. Thus Vj + =0,  unless 

I~+pc=2+A+B. 
The preceding equality implies 

(9.6) (#+pc,#+pc)>(2,2)+2(2,A+B); 

because of our choice of 7 ~, (2 ,A+B)  is strictly positive, except for A = B = 0 .  
Since j lies in Gu, and since r is its infinitesimal character, we find 

(~ + pc, ~ + p J -  (p, p) = c~ = ~o~(r = (L 4 ) -  (p, p); 

cf. (4.22). Equivalently, 

(/t + pc,/t +pc) =(4, 4), 

which is compatible with (9.6) only if A = B = 0, 4 =/~ + Pc. Thus we may as well 
assume that/~ + Pc is nonsingular and equal to 4. In this situation, the positive 
root system ku does have the property (9.1), and hence gives the correct labelling 
of V~ +, V~-. If Vj- were non-zero, the inequality (9.6) would have to hold with 
B + 0, which is impossible. Finally, 

dimV~ + = dim Vj + - d i m  V~- = 1, 

as follows from (4.16c). 

In order to complete the proof of Theorem (9.3), we must show that the 
complement of the discrete series does not contribute to the Plancherel decom- 
position (5 .6 ) -o r  equivalently, that the set 

(9.7) {j~Gu[jCG~, V~ + �9 Vj- :#0} 

has zero Plancherel measure. At present, only one argument is known which 
proves this last statement in full generality. It depends on Harish-Chandra's 
work on the explicit form of Plancherel measure, as we shall now explain. 

To each conjugacy class of Cartan subgroups, Harish-Chandra attaches a 
series of unitary representations, which are induced from a parabolic subgroup; 
the inducing representations, restricted to the semisimple part of a Levi com- 
ponent, belong to the discrete series. At one extreme, the discrete series 
corresponds to the conjugacy class of compact Caftan subgroups (here the 
inducing process becomes trivial: G is viewed as a parabolic subgroup of itself), 
at the other extreme lies the unitary principal series. The union of these so-called 
"nondegenerate series" supports the Plancherel measure. Roughly speaking, the 
series attached to a Cartan subgroup B is parametrized by the dual group /~, 
modulo the action of the Weyl group. In terms of this parametrization, the 
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Plancherel measure is completely continuous with respect to Haar  measure on 
/t. The action of the Casimir operator can be described, in terms of the same 
parametrization, as the Killing form plus a constant, transferred to a function on 
/~ via the exponential map. The set of points where this function assumes a given 
value has zero Haar  measure, except if /~ is discrete, in which case /~ parame- 
trizes the discrete series. The preceding results, which go well beyond the 
bounds of this paper, directly imply the following statement: 

(9.8) Lemma (Harish-Chandra [16]). The set of classes j~G, outside of the 
discrete series, at which the Casimir operator takes any given value, has measure 
zero. 

In particular, the set (9.7) has zero Plancherel measure, and this completes 
the proof of Theorem (9.3). The proof  is not quite satisfactory, of course, since it 
uses almost the full strength of Harish-Chandra's explicit Plancherel formula. 
We shall now mention two alternate approaches to the problem of realizing the 
discrete series geometrically, which are independent of Lemma (9.8). 

Instead of working with the Dirac operator, we could have equally well 
carried out our construction in the framework of L2-cohomology, as originally 
suggested by Langlands [20]. This has the disadvantage of making some of the 
arguments technically more difficult. On the other hand, a comparatively 
elementary result of Casselman and Osborne [10] then takes the place of 
Lemma (9.8). Because of it, all classes j~G which enter the Plancherel decom- 
position of one of the L2-cohomology groups have the same infinitesimal 
character, and consequently only the discrete series can contribute. For details 
the reader is referred to [25]. 

The second alternative applies only in the case of a linear group G, and it 
can deal only with nonsingular values of #+Pc  (which however is enough to 
realize all discrete series representations). In this situation, because/~ + Pc is a 
dominant and nonsingular weight, # - p. = (# + Pc) - P is at least dominant. Thus 
# - p .  occurs as the highest weight of an irreducible ~r V._o. Since p. is 
the highest weight of an irreducible constituent of S +, there exists an injective 
K-homomorphism 

(9.9) V,~--~V,_p.| § GS-). 

The direct sum of the two half-spin modules may be viewed as a square-root of 
the exterior algebra of the standard representation. In our context, this means 
that 

(S + @ S - ) @ (  s+ @S- )  ~- A pc 

(p = orthogonal complement of f in g). Tensoring both sides of (9.9) with (S + • S-), 
one finds 

(9.10) Vu| @S-)c.-~V~,_p,| r 

We recall the isomorphism 

(9.11) Vj +---HomK(Hj,V~,|177 
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Because of (9.10-9.11), the set (9.7) becomes a subset of 

(9.12) {jeGu[jCde, HomK(Hs, v~_o.| 
It will be enough to prove that this set has zero Plancherel measure, or more 
specifically, that it is finite. 

If M is a (g~, K)-module (i.e. a g~-module such that the action of r r lifts to the 
group K), the relative Lie algebra cohomology groups H*(~e, [e; M) can be 
computed in terms of the standard complex C*(g e, [e; M), with 

(9.13) CP(ge, fe; M)=HomK(APpe, M). 

We apply this remark to the tensor product M = H ~  @F, where H~ is the space 
of K-finite vectors in an irreducible, unitary G-module H, and F an irreducible, 
finite-dimensional G-module. The cochain groups (9.13) are then finite- 
dimensional and carry a natural inner product. With respect to this inner 
product, the formal Laplacian turns out to be the difference of the constants by 
which the Casimir operator ~ acts on Ho~ and F [7]. In particular, 

(9.14) HV(9 e, ~e; H~ | F) ~ HomK(A p pC, H | F), provided ~2 acts on Ho~ and F 
by the same constant. 

We let F~_p. denote the irreducible, finite-dimensional G-module of highest 
weight # - p , ,  and F*_p. its contragredient. Then F,_p. contains V~_p. as a K- 
submodule, and ~ operates on both F~_p. and F~*o. as multiplication by the 
constant cu of (3.18). Hence, for any j~G u, 

(9.15) HomK(Hs, Vu_p,| AVpr ~ H"(•,te; Hj,~ |  

as follows from (9.14). 
The category of (8e, K)-modules contains enough projectives, so that one can 

define the derived functors Ext*r of the functor 

M ~--~Hom r N). 

Arguing purely formally, one obtains isomorphisms 

(9.16) Ext~c(M, N) = HP(9 e, ~e; Home(M ' N)), 

since both sides agree for p = 0. The Ext groups classify exact sequences of (9 r K)- 
modules, beginning with N and ending with M, modulo a certain equivalence 
relation (Yoneda equivalence). As was pointed out by D. Wigner, this implies 
in particular: if M, N are (9 r K)-modules with infinitesimal characters ZM and 
Zu, then 

(9.17) Ext~e(M,N)=0 whenever Z~t+ZN. 

Combining (9.15-9.17), we see that the elements of the set (9.12) all have the 
same infinitesimal character as the G-module Fu_o. Consequently the set must 
be finite. 

To our knowledge, the preceding argument was originally put together by 
Zuckerman, although others may have beer  aware of it independently. The 
details which we left out can be found in the first two sections of Borel-Wallach 
[7]. 
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Appendix 

In order to keep this paper reasonably self-contained, we shall sketch the proofs 
of some auxiliary results which were used in our construction, and which have 
already appeared elsewhere, namely: 

a) Parthasarathy's formula (3.17) for the square of the spinor Laplacian [22], 
b) the characterization (4.5) of the singularities of the K-character r24], 
c) the bound (5.5) for the action of the Casimir operator [24], and 
d) Proposition (5.14). 
The first three of these are closely related and have fairly simple proofs. 

Proposition (5.14) is a special case of the main result of [24]; in the situation 
which we consider, its verification can be simplified quite a bit. 

We begin with the proof of (3.17). The Lie algebra of the maximal compact 
subgroup K has a unique AdK-invariant complement p in g. Since the K- 
modules S +,S- were introduced as the half-spin representations of the ortho- 
gonal group of p, there exist distinguished K-homomorphisms 

(A.1) pm@S+-+S -,  p~| + 

which we write as 

X |  s; 

c(X)eHom(S+-,S ~) is "Clifford multiplication" by X. The mappings (2.1) are 
induced by an action of the Clifford algebra on S+• S-, which implies 

(A.2) c (X)2=-B(X,X) ,  for Xep  r 

(B = Killing form of gr As irreducible modules for the orthogonal group of p 
- o r  more precisely, for the corresponding spin g r o u p - S  + and S- carry 
essentially unique Hermitian metrics. When these metrics are suitably 
normalized, 

(A.3) -c ( ) ( )  is the adjoint of c(X); 

here X denotes the complex conjugate of X~p r relative to the real form p. 
Since B is positive definite on p, we can choose an orthonormal basis {Xi}. The 
action s+(Z) of any Zef  c on S + is then given by 

(A.4) s+(X)= - � 8 8  c([Z, Xi] ) c(Xi). 
i 

In fact, the analogous identity holds for every Z in the Lie algebra of SO(p) [2]. 
The twisted spin bundles ~ , |  e+ are associated to the principal bundle 

K--+G--+G/K 

by the action of K on V,| S +. Hence there exist natural G-isomorphisms 

(A.5) C~ ~ |174 V,| 



A Geometric Construction of the Discrete Series for Semisimple Lie Groups 53 

(-..)K refers to the subspace of K-invariants, with K acting on C+(G) by right 
translation, and on V~ | S +- in the obvious manner. 

We again let {Xi} be an orthonormal basis of p. Each Xi determines a left- 
invariant vector field r(Xi), by infinitesimal right translation. In terms of the 
isomorphisms (A.5), the Dirac operators on ~uu| Sp-+ can be expressed as 

(A.6) ~ r(X,) | 1 | (C~176 Vu|174 Vu| . 
i 

Indeed, one can check that these operators preserve the K-invariants in 
C+(G)|  Vu| +, and that they commute with the action of G. Consequently 
they define G-invariant first order operators between ~//~| ~ and ~ |  a - .  
When the fibres of ~ | 5 p+ at the identity coset are identified with V u | S -+, and 
the cotangent space with pr (this latter isomorphism comes from the 
Killing form), the symbols of the operators (A.6) are given by the linear maps 

pr174174177174  T, X | 1 7 4 1 7 4  

which are also the symbols of the twisted Dirac operators. A translation- 
invariant first order operator between ~ |  ~+ and ~ |  e -  is completely 
determined by its symbol: since S + and S -  have no weights in common 1, 

(A.7) HomK(V. |  +, V . |  

which implies that there exist no non-trivial, translation-invariant bundle maps 
between ~ | 5 e + and ~ | 5g-. 

The spinor Laplacian on ~U,| -+ is the composition of the two Dirac 
operators on ~U~| 5P -+, which are adjoint to each other; it therefore equals 

(~  r(X,) | 1 | c(X,)) 2 
i 

--- 2 r ( X j )  r ( X i )  | 1 | c(X;) c ( X i )  
i , j  

= �89 ~. {r(X;) r(X,) | 1 | c(Xj) c(X,) + r(X,) r(Xj) | 1 | c(X,) c(Xj)} 
i , j  

= �89 ~. r(X;) r(X,) | 1 @ (c(Xj) c(X,) + c(X,) c(X;)) 
i , j  

4- �89 Y' r([X,, Xjl) | 1 | c(X,) c(Xj) 
l,J 

= - - ~  r(X,) 2 | 1 | 1 + �89 ~ r([X,. X;]) |  t | c(X,) c(Xj). 
i i , j  

In the last step, we have used the identity 

c(Xi) c(Xj) + c(Xj) c(XD = - 2~ u, 

l According to the discussion above (4.13), if this were not the case, there would exist an odd 
number of noncompact roots which add up to zero. When a noncompact root, positive or negative, 
is expressed as an integral linear combination of simple roots, the sum of the coefficients of the 
noncompact simple roots is an odd integer. An odd number of noncompact roots can therefore 
never add up to zero 
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which follows from (A.2). We now choose an orthonormal basis {Zt} for ~r The 
Casimir operators f2 of ge and f2 r of ~ can then be expressed as 

 =Ex?+Zz, 
i l l 

Hence 

(A.8) (~  r(Xi) | 1 | c(Xi)) z 
i 

= - r([2) | 1 | 1 + r(~x) | 1 | 1 + �89 Z r([X,, Xj]) | 1 | c(X,) c(Xj); 
l ,J  

as in the past, r refers to the right infinitesimal action of ~I(9 r on C~(G). 
Since g = [ @ p  is a Cartan decomposition, [p,p] lies in L and If, p] in p. 

Thus we find: 

�89 ~ r([Xi, Xj]) | 1 | c(Xl) c(Xj) 
i , j  

1 - ~  y~ B([X,, Xj], Z~) r(Z~) | 1 | c (X,) c(Xj) 
i , j , I  

({Zt} is an orthonormal basis of [~) 

= - �89 ~ B([Zz, Xj], X,) r(Z z) | 1 | c(X~) c(Xj) 
i, j ,  l 

(B is AdG-invariant) 

= - �89  ~, r(Z,) | 1 @ c([Z, ,  Xj]) c(Xj) 
j , l  

({Xi} is an orthonormal basis of pc) 

=2 ~ r (Z t ) |  1 |  • (Z~) 
l 

(because of (2.4)). 

The various operators act on the K-invariants in C~174  V~ | S • Hence, if v~ 
denotes the representation of gr on Vu, 

r(Zl) | 1 | s-+(Z,) = - - ~  1 |174177 - 1 | 1 |177 
l 1 

Similarly, 

r(I2r)| 1 | 1 = 1 |174 +-)(f2K) 

= 1 | %(OK) | 1 + 1 | 1 | S • (OK) + 2 ~" 1 | z~,(Z ~) | s • (Z t). 
I 

All this allows us to rewrite the identity (A.8) as follows: 

(A.9) (~  r(Xi) | 1 @ c(Xi)) 2 
i 

= - r ( f 2 ) |  1 | 1 + 1 |174 1 - 1 | 1 |177 

On the irreducible It-module with highest weight #, f2 r acts as multiplication by 
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(A.10) zu(f2K)=(#+Pc, l~+Pc)--(pc, pc ). 

In order to complete the proof of (3.17), we must identify s-+(E2K). 
We recall the character formula (4.13). Applying Weyl's denominator for- 

mula for G, one finds 

(A.11) (traces+ - traces-) l~ 

= 1-I (e~/2-e-r 
f le tbn n T: 

=( 1-[ (e~/2-e-~/z)) -a I](e' /2-e-~/2) 
ae~cn~ ~te7 ~ 

=( I ]  (e~/Z-e-~/2)) -1 ~, e(w) ewv" 
c z ~ c n ~  w e W  

The K-rnodulcs S+,S - have no irreducible constituent in common; this is a 
special case of (A.7), with p=0. Since there can be no cancellation in (A.11), 
every irreducible summand of S+@ S- must have a highest weight of the form 
w p - p c ,  for some w~Wr The Casimir operator f2 K therefore acts as multipli- 
cation by 

s • (aK)  = (w p, w p) - (pc, pc) = (p, p)  - (pc, pc). 

Combining this with (A.9) and (A.10), we obtain Parthasarathy's formula (3.17). 
For the proof of (4.5) and (5.5), we consider an irreducible unitary repre- 

sentation r~ of G, on a Hilbert space H. The various K-invariant, K-irreducible 
subspaces span a dense linear subspace HoocH, which consists entirely of 
analytic vectors. Thus gr and hence U(gr act on H~ by differentiation. We 
shall let rt denote also this infinitesimal action. It is irreducible, and determines r~ 
up to unitary equivalence. Again we choose an orthonormal basis {Xi} of pC. 
The two K-invariant linear mappings 

(A.12) d• H~|177174 -*, 

d• : v| ~ n(Xi) v|  s, 
i 

become adjoint to each other, when H~ is viewed as a pre-Hilbert space. This 
follows from (A.3) and is formally analogous to the self-adjointness of the Dirac 
operators. Parthasarathy's formula has a direct analogue in the present context: 

(A.13) d_ d+ =d+ d_ =(rc|177174 1-(p,p) 1 +(Pc,Pc) 1; 

its proof is virtually identical to that of (3.17). 
As a function on the dua l / (  of K, O K tends to + oe outside of finite subsets. 

Since each irreducible K-module occurs only finitely often in Hoo, and hence in 
H~o| • the identity (A.13) forces d§ to have finite-dimensional kernel and 
cokernel. For purely formal reasons 

H~ |  + - H ~  |  =kerd+ -coker  d+, 

as virtual K-modules. Thus, if z denotes the K-character of n, and a -+ the 
character of S • 
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z (a + - a - )  = char (H o~ | S + - H ~ | S-)  = char (ker d + - coker d +). 

In particular, z(a + - a - )  is a finite integral linear combination of characters of 
irreducible K-modules, as asserted by (4.5). We should remark that the preced- 
ing argument does not really use the unitary structure. Thus (4.5) holds more 
generally for irreducible, admissible representations on Banach spaces. 

If V and W are irreducible K-modules, with V having highest weight v and W 
lowest weight t/, then v+t/  occurs as the highest weight of an irreducible 
constituent of V| W, provided 

(v+t/ ,~)>0,  for ~r 

this follows, for example, from Weyl's character formula. With respect to any 
ordering compatible with kg, - p ,  is lowest among weights of S § G S - ,  and 
hence is the lowest weight of an irreducible summand of S + G S-.  The con- 
ditions (5.4) therefore guarantee that H~ | (S + | S-)  contains the irreducible K- 
module of highest weight v - p ,  at least once. On this K-module, ~2 r operates as 
multiplication by 

( v - p .  + pc, v - p ,  + pc)-(pc,pc). 

If one applies the positive semi-definite operator (A.13) to the submodule in 
question, one is led to the estimate (5.5). 

Let us turn to the proof of Proposition (5.14)! We shall show that the two 
conditions a) and b) determine the infinitesimal representation of ~J(9 c) on Hoo. 
The unitary structure will again be irrelevant, and hence (5.14) applies more 
generally to irreducible, admissible representations on Banach spaces: up to 
infinitesimal equivalence, there exists at most one such representation which has 
the two properties a) and b). 

The irreducible K-module of highest weight p+p, ,  V,+p,, is a left H(fr - 
module, and lI(8 r is a right t[(fr via right multiplication. Thus one 
can form the tensor product 

(A.14) M = U ( ~  r | V~+p,, 

on which U(fl r operates by left multiplication. The U(gr M has the 
universal mapping property 

(A.15) Homu(~r 

for any t[(gr L. From U(gr M inherits a filtration 

O c M o c M  l c . . . ~ M . c M . +  l C . . . c M ,  

with 

M o =  1| V~+p., M n + I = M . + 9 r  

it is/e-stable, because the adjoint action of fr on tI(O r preserves the filtration of 
the latter. As a consequence of the Birkhoff-Witt theorem, there exist natural fe- 
isomorphisms 
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(A.16) M,/Mn_l~-pr174 Vu+p, 

(pet,)_ n-th symmetric power of pC). In particular, 

(A.17) M,_-__(pr174 Vu+o, ; 

this splitting is canonical: the irreducible ~r V,+p. does not embed into 
pc| V~+o.. 

Every irreducible component of pC| Vu+o. has a highest weight of the form 
#+p,+fl, f l~" .  Lumping together these components for which fl is, respec- 
tively, positive or negative, one obtains submodules U+ and U ,  which decom- 
pose pC| Vu+o: 

(AA8) pc| v,+,= u+ | u_. 

The isomorphism (A.17) provides an inclusion U~---~M1. We set 

N =  ll(gr of M generated by U_, 

Q = M/N. 

The ~r filtration of M induces a filtration {Q,} of the quotient Q. 
We now suppose that the representation rc has the two properties a) and b) 

mentioned in Proposition (5.14). The former, in conjunction with the mapping 
property (A.15), guarantees the existence of a non-zero tl(gr 
M~Ho~. Because of the latter, any such homomorphism must annihilate N. 
Thus one can produce a non-trivial ll(gr Q - , H ~ ,  which is necessarily 
surjective, since Hoo is known to be irreducible. Consequently, 

(A.19) H~ is isomorphic, as ll(9r to an irreducible quotient of Q, 

and this reduces the proposition to: 

(A.20) Lemma. The tl(gr Q has a unique irreducible quotient. Under 
the action of t~ r Q breaks up into a direct sum of irreducible re-modules, each 
occuring with finite multiplicity. Every irreducible constituent has a highest 
weight which can be expressed as g+P,+fl l+"" +fl~, with ill, ...,flmeq~"c~ 71 
and m> 0; the highest weight # +p ,  appears at most once. 

To begin with, we shall argue that the last two assertions imply the first. 
Indeed, since M 0 generates the lI(gr M, Q0 must generate Q. As a 
quotient of Mo ~- Vu+p., Qo either vanishes, in which case Q =0, or must itself be 
isomorphic to Vu+p., and hence irreducible under the action of ~r In particular, 
no proper submodule of Q can meet Qo. Since the irreducible re-module of 
highest weight # + p ,  is known to occur only once in Q, it cannot lie in any 
proper submodule, nor in the linear span of any number of proper submodules. 
Hence Q has a unique maximal proper submodule, or equivalently, a unique 
irreducible quotient. 

The adjoint action of ~r on ll(g r lifts to the group K, which operates by 
conjugation. Since K operates on Vu+p. as we~l, the action of fr on M, and hence 
on Q, also lifts to K. The finite-dimensional tr Q, exhaust Q. It 
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follows that Q breaks up, under re, into a direct sum of irreducibles, although 
conceivably with infinite multiplicities. In particular, 

(A.21) Q~- ~)  Q./Q,-1, as re-module. 
n = O  

The positive roots lie in a closed cone, which is properly contained in a half- 
space. Each weight can therefore be expressed as a sum of positive roots in at 
most finitely many ways, and a non-empty sum of positive roots can never equal 
the zero weight. Hence the lemma becomes a consequence of the following 
statement, 

(A.22) each irreducible constituent of the [e-module Q,/Q,_~ has a highest 
weight of the form 

# + P ,+ f l l  + " ' + f l , ,  with f l l  . . . .  ,fin E-~)nt''~ ~'l, 

which will be verified next. 
The inclusion of U in p e |  Vu+p,, tensored with the identity on pet,-a), and 

followed by multiplication, determines a [e-homomorphism 

(A.23) h: pe(n-1)|174 

Under the isomorphism (A.16), the image of h will certainly go into 
N n M , / N  n M,_  1, i.e., into the kernel of the projection M, / M,_  ~ ~ Q,/Q,_ 1. 
Thus: 

(A.24) Q,/Q,_ ~ is isomorphic, as ~e-module, to a quotient of the cokernel of h. 

The homomorphism h is induced, in a certain sense, from a homomorphism 
between modules of a Borel subalgebra of ~e. To describe the induction process, 
we use a sequence of functors, which were introduced in [24]. We shall briefly 
summarize their definition and main properties. 

The root spaces in ~e corresponding to all negative, compact roots span a 
maximal nilpotent subalgebra rt c [ e ,  which is normalized by b e. Hence 

b=be@. 

becomes a Borel subalgebra of re. For  any b-module E, the cohomology groups 
HP(rt, E) have natural be-module structures, since b e acts on both E and n. The 
subspace of be-invariants will be denoted by HP(n, E)~e. In the following, we 
only consider finite-dimensional b-modules E, such that the action of I) C on E 
lifts to the torus H. In this situation, E and its n-cohomology groups become 
completely reducible, as be-modules. In particular, any short exact sequence of 
such b-modules 

O-+ E'--+ E-+ E"--* O 

gives rise to a long exact sequence 

t p --* HP(rt, E )~c ~ H (rt, E)bc --., HP(n, E")~e--o H p+ l(rt, E')~e ~ .  
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For each ie/(,  we select a ~e-module W~ which represents the isomorphism 
class i, and we define 

(A.25) IP(E)=(~ W~| W~*QE)be; 
i e K  

here W~*, the re-module dual to W~, is regarded as b-module by restriction. With 
~e acting trivially on the right factors HP(n, Wi* | IP(E) becomes a com- 
pletely reducible re-module. The definition (A.25) is functorial in E. Hence: 

(A.26) I p, 0 < p < d i m n ,  is a sequence of functors from the category of finite- 
dimensional b-modules, for which the action of b ~ lifts to H, to the category of 
completely reducible [e-modules. 

Moreover, 

(A.27) every short exact sequence O ~ E ' ~ E ~ E " ~ O  determines a long exact 
sequence 

o --, l ~  ') --, I ~  ~ E ~  '') - ,  11(E ') -- , . . .  ; 

this follows from the analogous property of the functors E ~ HP(n, E)~e. Loosely 
speaking, I~ is obtained by inducing E holomorphically from the complex Lie 
group with Lie algebra b to the complexification of K. This process is left exact, 
and the functors 11, I z, ... measure the obstruction to its exactness on the right. 

Three properties of the functors I p will be crucial. The first of these is directly 
implied by Kostant's Lie algebra version of the Borel-Weil-Bott theorem [19]. 
For any weight #cA, L u shall denote the one-dimensional b-module on which D e 
acts according to the linear functional/~. Then 

(A.28) I~ is irreducible, with highest weight #, provided # is dominant with 
respect to r ~ ;  in all remaining cases, I~  if (#+pc ,~ )>0  for every 
~crpc n ~, IP(Lu) vanishes for p > 0 .  

Since b is solvable, every finite-dimensional b-module E has a composition series 

(A.29 a) O c E o c E I C . . . c E m = E ,  

with one-dimensional quotients. In this situation, there exists an injective re_ 
homomorphism 

(A.29b) IP(E) ~---) Q IP(E~/E,_O, 
/ = 0  

which need not be functorial, however. Indeed, for each l, 

IP(Et- 1) ~ IP(Et) ~ IP(Et/E~- ~) 

is an exact sequence of completely reducible re-modules, so that the assertion 
can be verified inductively. Finally, 

(A.30) for each finite-dimensional K-module V, there exist ff-isomorphisms 
IP(V| E) ~- V| IP(E), which are functorial in both V and E. 
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To see this, one should observe that 

W,* | V |  ~ @ (W,*| V| WgK | (W~* | 
j ~ K  

where (...)r denotes the subspace of K-invariants, equipped with the trivial b- 
action. Hence 

F(V| E) ~- @^ W~ | (W~* | V| Wj) r | HP(n, W~* | E)br 
i , j ~ K  

~- @ w , |  | V |  F(E)) , ,  ~ - V |  I~(E), 
i~K 

which proves (A.30). 
As a particular consequence of (A.28) and (A.30), 

(h.31) I~ I~174174 

these isomorphisms will be regarded as identities. The root spaces indexed by 
the various negative, noncompact roots span a b-submodule p_ of p*. In any 
composition series of p_, precisely the b-modules L_a, f l ~ "  n ~, occur as 'the 
one-dimensional quotients; similarly, the b-modules La, fist/," n ~, decompose 
p * / p .  Appealing to (A.28) and (A.29), one finds that every irreducible summand 
of iO(p_ | L, +p,) has a highest weight of the form p + p , - f l ,  with fl positive and 
noncompact. None of these highest weights occur in the tO-module U+ of (A.18), 
so that 

Homrr (iO(p_ @L~,+p.), U+) =0. 

For completely analogous reasons 

HomF (U-, I 0 (pC/p_ @ Lu + o,)) = 0. 

Since 

0 ---, I ~ (p _ | L~ + p.) -~ I ~ (pC | L~ + p.) ~ I ~ (pC/p _ | L~ + p.) 

is exact, the subspace U_ cpC |  V~+p=I~ must coincide with the 
image of iO(p_ | We conclude: under the identifications 

pr t) Q U_ ~-pC(n-1) | I~ Q Lt~+p,,)"~- I~162 | p_ Q Lu+p.), 

pC(,) | V, + p. ~ I ~ (pC(,) | L, + p,), 

the [r h of (A.23) corresponds to the mapping 

(A.32) i0(pC(n-i)| |162174 

which arises from the inclusion p_c--*pe, followed by multiplication 
pC(.-1) | pC __. pC(.). We must identify the cokernel of this homomorphism. 

The decomposition pC=p_ E)~_(P_ =complex conjugate of p_) determines 
a complex structure on the real vector space p. When the polynomial version of 



A Geometric Construction of the Discrete Series for Semisimple Lie Groups 61 

the D o l b e a u t  l e m m a  is dualized, one obta ins  an exact sequence 

O-")pC(n-q)(~/~ q I3_ __~ pC(n-q+ 1)(~)Aq- 1 p_  ~ ... 

... __~ pC(n- 1)(~ p_ _~p~(n)__~,(pC/p_)(n)__),O, 

in which all a r rows are b -homomorph i sms .  I t  remains  exact  when it is tensored 
with L , + p :  

(A.33) O ~ p r 1 7 4 1 7 4  --*pr174 q - l p _ |  ~ . . .  

... __. pc ( , -  1) | p | L ,  + , ,  --* pc(') | L ,+p ,  ~ (pr174 + ,  ---~ 0. 

The one-d imens ional  quot ients  in a compos i t ion  series of  the b -module  
A S p _ |  all be long to weights I ~ + p , - B ,  where B s tands for a sum of s 
distinct positive, n o n c o m p a c t  roots.  Hence  the s ta tements  (A.28-A.30), coupled 
with the hypothes is  of  Propos i t ion  (5.14), guaran tee  that  

(A.34) iP(pr @As p _ @ L,+p.)~_ pC(,-,) | ip(As p_  | L~,+,.) = 0 ,  

for O<=s<=q, p>=l. 

Any exact b -module  sequence 0 ~ E, ~ E n_ 1 ~ " "  -* Eo ~ E--* O, which has  the 
p roper ty  that  P'(Es)=O if O<_s<_n and p=>l,  is t r ans formed  into an exact  
sequence by the functor  io;  this is purely formal,  and  can be checked by 
induction. In part icular ,  

I~162  -*I~162174 , + p,~J~--~I~162 -*0  

is exact. 
To  comple te  the p roof  of  Propos i t ion  (5.14), we mus t  verify the s ta tement  

(A.22). According  to (A.24), Q,/Q,_  1 is i somorphic  to a quot ien t  of  the cokernel  
of  h, hence to a quot ient  of  the cokernel  of  the h o m o m o r p h i s m  (A.32), hence 
finally to a quot ient  of  I~174 ). The b -module  (pC/p_)(,) has a 
compos i t ion  series with quot ients  Lal+.. .+a,,  fll . . . . .  fl, scI) '~  tt'. Thus  (A.28) and 
(A.29) al low us to identify the highest  weights of  the potent ia l  i r reducible  
const i tuents  of  I~162174  they all can be expressed as # + P . + f l l  
+ . . . + f l . ,  with fliscrp'~ ~. This  proves  (A.22), and a long with it P ropos i t ion  
(5.14). 
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