THE SMALLEST REPRESENTATIONS OF NON-LINEAR COVERS OF
ODD ORTHOGONAL GROUPS

HUNG YEAN LOKE AND GORDAN SAVIN

ABSTRACT. We construct the smallest genuine representations of a non-linear covers of
the group SO°(p, ¢) where p + ¢ is odd. We determine correspondences of infinitesimal
characters arising from restricting the smallest representations to dual pairs so(p,a) &
s0(b) where a + b = q.

1. INTRODUCTION

Let p and ¢ be two positive integers > 2, and let G, ,, or simply G, be the central
extension of SO°(p, ¢) such that the maximal compact subgroup is K = Spin(p) x Spin(q).
This extension is the universal central extension if p,q # 2. Assume now that p + ¢ is
odd. In particular, p and ¢ have different parity. Without any loss of generality we shall
assume that p is odd and ¢ even. Let Z5 be the center of G. Then

7o = 7,)27 % 7,/27.

However, there exists a unique element of order 2 in Zg, denoted simply by —1, such
that G/(—1) is a linear group. An irreducible representation 7 of G is called genuine if
—1 € Zs acts as multiplication by —1 on 7. The first part of this paper is devoted to
constructing and establishing properties of one genuine representation V' of the group G
if p — 1 < ¢, two genuine representations V' and V'~ of G if p — 1 > ¢, and four genuine
representations V', V= V+* and V" if p—1 =g¢q. If p— 1 = ¢ then the group G is split
with the absolute root system B,. In the special case when ¢ = 2 and p = 3 then G is
isomorphic to the metaplectic group Sp,(R), and the four representations are irreducible
components of two oscillator representations. Thus, our representations can be viewed as
a natural generalization of the oscillator representation to odd orthogonal groups.

The first step in the construction is an explicit description of K-types of these repre-
sentations. To this end, we need to recall a description of irreducible representations of
Spin(n). Let A(n) be the set of all highest weight of finite dimensional representations.
We realize A(n) as in Bourbaki [Bo], see Section 2 of this paper. In particular, any highest
weight 4 is given by

n = (1’1, . ..,:L'[%])
where x; are either all integers or half-integers. Let —1,, be the unique element in Spin(n)
such that Spin(n)/(—1,) = SO(n). We can divide all irreducible representations of
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Spin(n) into two classes, depending whether —1,, acts as 1 or —1. This corresponds
to writing

A@%:MmOUAmé)
where A(n,0) consists of integral and A(n,s) of half-integral highest weights. Let 7/
denote the irreducible representation of Spin(n) with the highest weight u. Let Z,, be
the center of the enveloping algebra of Spin(n). Recall that the infinitesimal character x
defines a ring homomorphism y : Z, — C.

We are now ready to describe the K-types of our representations. Assume that p—1 < q.

In Section 2, we define a surjective homomorphism
JiZqg— 2.

Let x be the infinitesimal character of an irreducible representation 7 of Spin(p). Then the
composition yoj is an infinitesimal character of Spin(g), but not necessarily corresponding
to a finite dimensional representation of Spin(q). More precisely, for every A in A(p,0)

define

AN = A+ 21 1) e Alp,))

B(\) = ()\1,...,)\;%1,0,...,0) € A(q,0).
Then x o j is an infinitesimal character of a finite dimensional representation of Spin(q)
if and only if the highest weight of the irreducible representation 7 of Spin(p) is A(N)
for some A in A(p,0). If that is the case, then x o j is the infinitesimal character of the

irreducible representation of Spin(g) with the highest weight B(\). We now set V- a
potential (g, K')-module - to be the K-module

(1) V = @ T;()‘) ® Tf(’\).
AEA(p,0)

Since —1 € Zg is given by (—1,,—1,) € K we see that V' must correspond to a genuine
representation of GG, once we have defined an action of so(p, q), the Lie algebra of G, on
V.

If p—1 > ¢ then the map j goes in the opposite direction. The main difference here
lies in the fact that j is not surjective anymore. In particular, two different infinitesimal
characters of Spin(q) pull back to the same infinitesimal character of Spin(p). As a
consequence, we can construct two potential (g, K)-modules denoted by V™ and V~. The
story has an additional twist if p—1 = ¢ enabling us to write down four potential modules
in all, here. We refer the reader to Section 2 for details.

The structure of K-types is similar to the structure of K-types of representations of
SOO(p, q), where p + ¢ is even, that are local theta lifts of one dimensional unitary char-
acters of Sp,,(R) (see [KO], [HL] and [ZH]).

From the explicit description of K-types it is not too difficult to determine the associated
variety of V. Indeed, consider the nilpotent orbit of SO,;,(C) corresponding to the
partition (2P, 197P*2). It has a (unique) real form O,1 for the group SO°(p,q). Let
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O% . be the Kc-orbit corresponding to Ogp-1 via the Kostant-Sekiguchi correspondence.
We have the following:

Theorem 1.1. Recall that K = Spin(p) x Spin(q) with p odd and q even. Suppose
p—1 < q. The K-module V' extends to an irreducible and unitarizable (so(p,q), K)-
module. Moreover:

(i) The infinitesimal character of V is

_(p=tp-3 g-1lg¢g=3 1
Hp,q = 2 ’ 2 [ R 2 ) 2 7"')2 .
(i) The associated variety of V' is the closure of Ok .
(i1i) The annihilator of V in the enveloping algebra is the unique mazimal ideal Jyay with
the infinitesimal central character p, 4.

(iv) The module V is the unique (so(p, q), K)-module with the K-types as in (1).

Here we remark that so(p, q) is the real Lie algebra of G, ,. The complexification of so(p, q)
will be denoted by s0,.4(C).

It follows, from a result of Schimd and Vilonen [SV], that the wave front set of V' is the
real orbit Og-1. This, combined with a result of Huang and Li [HL], justifies the use of
the attribute smallest in the title of our paper.

Analogous results hold for V*, V= and V5, V.-. It must be noted, however, that our
results overlap with some already existing in the literature. For example, if p = 3 then V'
is the minimal representation of G , constructed in [Sal, [To] and [BKo]. If p—1 > ¢ then
representations V™ and V'~ were constructed by Knapp [Kn] and further studied by Trapa
[T] by methods of cohomological induction. Our method is based on a simple observation
that V' is admissible for Spin(p). Such phenomenon is called discretely decomposable
restriction in [Ko2]. In particular, the restriction of V' to so(p, 1) decomposes as a direct
sum of irreducible representations. We exploit this observation to define an explicit action
of so(p, 1) on V. This then defines an action of so(p, ¢) on V' because so(p, q) is generated
by so(p, 1) and so(q).

We then extend V' to a (so(p, ¢), Spin(p) x O(g))-module. This extension is needed for
the second part of this paper which is devoted to dual pair correspondences arising from
restricting V' to dual pairs

so(p,a) x O(b), a+b=gq.

Using our explicit description of V' we can show that the Theta-lift of any finite dimen-
sional irreducible representation of O(b) is irreducible. See Theorem 9.1 and Remark 9.2.
We build on this to establish a correspondence of infinitesimal characters. Of course, if
a = 0 and b = p then the correspondence of infinitesimal characters is given by j. In
order to describe a general result let

(2) pn:%(n—Q,n—4,n—6,...)EA(n)
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denote the half sum of positive roots of so(n). Given 8 = (01, ...,0,) and v = (71,...,7s),
we will denote (51, ..., Br71,---,7s) by (5,7) if there is no fear of confusion. Let

Opg—1 = (pp> Pq)-

We remark here that 6, ,1 is the infinitesimal character of two (smallest) genuine rep-
resentations of G ,_1 obtained as Theta-lifts of the trivial and the sign representations
of O(1). (Compare this with (7.2.1) in [KO] for the ladder representations of the even
orthogonal groups.) This statement is in essence a special case (b = 1) of the following
theorem.

Theorem 1.2. Assume that a +b = q. The representation V establishes the following
correspondence of infinitesimal characters for the dual pair so(p,a) x so(b):

()\1,. . .,)\p%l,pa_l) > ()\1,. . .,)\pTﬂ,pb_p+1) Zfb Z D.
(>\1,---,)\g,,up—b,q—b) — ()\1,...,)\%) if b<p andb is even.
()\1,...,)\%,6;”_()4_1’[1_{)) — (Al,...,)\z,%l) if b<p andb is odd.

Warning: We are not claiming here that the correspondence of infinitesimal characters
is one to one. For example, if b is even and b < p then the infinitesimal characters
(A1y-eey )\%) and (A, ..., —A%) of s0(b) correspond to the same infinitesimal character of

so(p,a).

This paper is motivated by two beautiful papers of Bump, Friedberg and Ginzburg
[BFG1] and [BFG2] where, for split groups, a p-adic version of V' is constructed. In par-
ticular, the construction of K-types using the correspondence of infinitesimal characters

induced by j is a real analogue of the correspondence of Satake parameters obtained in
[BFG2].

Acknowledgment. We would like to thank Peter Trapa for some very insightful discus-
sions and the referee for careful reading and comments. The first author would like to
thank the hospitality of the mathematics department at University of Utah while part of
this paper was written. He is supported by an NUS grant R-146-000-085-112. The second
author is supported by an NSF grant DMS-0551846.

2. POTENTIAL (g, K)-MODULES

We use the standard realization of root systems of classical groups as in Bourbaki [Bo.

Representations of Spin(p) where p is odd. Let —1, be the unique element in Spin(p)
such that Spin(p)/(—1,) = SO(p). Recall that the highest weight of an irreducible finite-
dimensional representation of Spin(p) is given by

A:(xl,...,x;%l)
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where z; € %Z, 1> ...>2xp1 >0and 1y = ... = xp1 (mod Z). The corresponding
2 2

irreducible representation is denoted by TPA. Let A(p) be the set of all highest weights.
We can write

A(p) = Ap,0) UA(, 5)

where if A € A(p,e) then \; € e + Z. Note that —1, acts as 1 on 7. if and only if A is in
A(p,0). The center Z, of the enveloping algebra is equal to

Z, = Clwy, wo, . .. ,prfl]
where wy, is the k-th symmetric function in 22,...,2%_,. The value of an element w in
b=

Z, on the irreducible representation 7'10A is given by evaluating the polynomial w on A+ p,
where where p, is the half sum of positive roots as defined in (2).

Representations of Spin(g) where ¢ is even. Let —1, be the unique element in Spin(q)
such that Spin(q)/(—1,) = SO(q). Recall that the highest weight of an irreducible finite-
dimensional representation of Spin(g) is given by

)\:(1’1,...,1’%)

where x; € 37, 11 > ... > To—2 > |za| and 21 = ... =z (mod Z). The corresponding
2

irreducible representation is denoted by Tq’\. Let A(q) be the set of all highest weights.
We can write

Alg) = Alg,0) UA(g, )

where if A\ € A(g,e) then \; € e + Z. Note that —1, acts as 1 on 7, if and only if A is in
A(g,0).
The center Z, of the enveloping algebra is equal to
Z, = C[Wl,...,Wq%Z,'U%]

where wy, is the k-th symmetric function in 22, ..., 2%, and vg = a1 -...-2g. The value of
2

the element w in Z, on the irreducible representation 7‘;‘ of s0(q) with the highest weight
A is equal to w(X + p,) where p, is the half sum of positive roots as defined in (2).

We are now ready to define K-modules in the three cases, as follows:

Case 1: p—1 < ¢. We have a surjective map j : Z, — Z, given by j(wg) = wy for

k=1,..., p—gl and j = 0 on remaining generators of Z,. For every A = (A, ..., >\pr1) in

A(p,0), we define

5 AN) =X+ 52(1,...,1) € A(p,3) and
(3) BA) = (M, A1, 0,...,0) € Ag, 0)
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A(N)

=2+ copies of 0 in B(A). Notice that the infinitesimal characters of 7,

where there are

B(X)

and 7" are matched by j, that is, for every w in 2,

J(W)(AA) + pp) = w(B(A) + pg).
Moreover, using the explicit description of j, one easily checks that there are no other pairs
of representations with matching infinitesimal characters. Thus it is natural to consider

V= @ T;(A) ® TqBW
AEA(p,0)
which is a representation of the compact Lie group Spin(p) x SO(q). In this way we have

constructed K-types of V.

Case 2: p— 1 > ¢. We have a surjective map j : Z, — Z, given by j(wy) = wy for

k=1,...,%, ](wq) = v3 and j = 0 on remaining generators of Z,, if any. Note that
2
J is not surJectlve here. Indeed, consider the involution o of A(q) (and of Z,) defined by
defined by
o(xq,. ..,m%,x%) = (x1,..., To2 ,—Ta).

Then the image of Z, is equal to the subalgebra of o- 1nvar1ant polynomials in Z,. In
particular, two representations of Spin(gq) will be matched with one representation of
Spin(q). More precisely, for every A in A(q + 1,0) define

A()\)—()\ 0,...,0) € A(p,0)
()—A+”(1 1) € Mg, 5)
B~(\) =o(B*(A ))GA(q,g)

) ()

Then the infinitesimal characters of Tq and Tq are matched with the infinitesimal

character of 71;4 ™, Moreover, if p — 1 > ¢, there are no other matching pairs of represen-
tations of Spin(p) and Spin(q). We can now define V™ and V~, two representations of
the compact Lie group SO(p) x Spin(q), by

(4) VE = @ Tf(A) ® Tfi()‘).
AEA(g+1,0)

The separation of K-types into V™ and V'~ is natural since V™ ® p and V'~ contain no
K-type in common if p — 1 > ¢. (Here p = po ® C and so(p, q) = & @ po is the Cartan
decomposition.)

Case 3: p — 1 = q. Finally, if p— 1 = ¢, there are additional two families of matching pairs
of representations of Spin(p) and SO(p—1). For every A = (A4, ..., )\%) in A(p, 1) define

BT(\) = A+3(1,...,1) € A(p—1,0)
B~(\) = U(B+()\)) A(p—1,0).
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Then .
vie @ gerl®
XEA(p,})

3. REPRESENTATIONS OF Spin(n, 1)

In this section we review some facts about representations of the group Spin(n, 1). The
maximal compact subgroup is Spin(n). We identify the Lie algebra so(n) of Spin(n) with
the set of real skew-symmetric n by n matrices. Let Ej; be the elementary n by n matrix
which is 1 at the kl-th entry and zero elsewhere. Let

Iy = By, — By

We need to fix some additional notation. As in the previous section, let A(n, e), where
e=0, %, denote the set of highest weights A = (A1,..., A, 9) of so(n) where \; € Z +e.
Hence the set of highest weights is A(n) = A(n,0) U A(n, 3). If n is even, then we define
0'()\) = ()\1, ceey )\n/2—1> —)\n/g) Let

1[n/2] = (1, cee 1) and O[N/Q] = (0’ . ’O)

where there are [§] copies of 1’s and 0’s respectively. We set ¢; = (0,...,0,1,0,...,0)

where 1 appears at the ¢-th position.

Gelfand-Zetlin basis. We now define the Gelfand-Zetlin basis of a finite dimensional
representation of so(n). Our main references are [VK] and [Zhe].

Given A = (A1,..., Apyg) € A(n,e), let 7' denote the irreducible representation of
s0(n) with highest weight A as in the introduction. We will equipped it with an so(n)-
invariant Hermitian inner product. It is well known that the restriction of 7 to so(n —1)

is multiplicity free and
A Al
n =B

A=Al

where A' = (Af,..., A\j,,_1)9) € AMn —1,e) and A = Al is defined as follows. There are
two cases:

e If n is odd then [n/2] = (n —1)/2 and A = A! is defined by
M>AT > >N > > Ny > )\%n_l)/z > —An-1)/2-
e If n is even, then A = A is defined by
MZA X >A> 2 A = A > gl

Let s0(7) be the subalgebra of so(n) spanned by I, for all k,1 <. Consider the chain of
decreasing Lie subalgebras so(n) D so(n—1) D ... D s0(2). By restricting 7" successively
to these subalgebras, 7 becomes a direct sum of 1 dimensional irreducible representations
of 50(2). By choosing a unit vector from each of these 1 dimensional subspaces, we have an
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orthonormal basis of 7} consisting of unit vectors called the Gelfand-Zetlin basis. Thus,
each basis vector is represented by an array

(5) M= (MM A2

where \' € A(n —i,e) and \; = \i11. The corresponding unit vector will be denoted by

vys. Note that this vector generates the irreducible representation 7‘2‘_1 under the action
of so(n — 1).

An explicit formula of I; 11 ;- vy as a linear combination of vectors in the Gelfand-Zetlin
basis is given on page 364 in [VK].

Induced representations of Spin(n,1). Let ¢ € A(n — 1) and let Ind,, (1, ¢) denote
the Harish-Chandra module of the normalized induced representation

In dgiiﬁ o 1)1) re.n(Tho1 ®@exp(c) ® 1).

We will equip Ind,, 1 (4, ¢) with an Hermitian form given by

(6) / o DR d

for fi, fo € Ind,, 1 (i, ¢) and dk is the Haar measure on Spin(n) with with the total vol-
ume 1.
We note that Ind,, ;(u, ¢) is multiplicity free as a representation of Spin(n). Indeed

Ind,, 1 (p, c @ T

A= p

By the above discussion and (5), we can assign an orthonormal Gelfand-Zetlin basis to
each 7. Thus, Ind,, ;(u, ¢) has a basis consisting of vectors vy, one for every array M as
n (5) starting with A > p. This basis is denoted by B,,. We shall assume that this basis
is orthonormal under the Hermitian form in (6).

Hirai [Hi] and Klimyk [KG| determined all the irreducible subquotients of Ind,, 1 (4, ¢)
with the help of the orthonormal basis above. They also obtained a classification of
the unitary dual of Spin(n,1). In the rest of this section, we will reproduce some of
their results below which we will need later. These results are entirely due to or easy
consequences of [Hi] and [KG].

First, we shall give an explicit action of the Lie algebra so(n,1) on the induced rep-
resentations. To that end, we identify the Lie algebra so(n,1) with the subspace of
(n+ 1) x (n+ 1) real matrices spanned by Iy for | < k < n and

In+1i = Biny1 + Epyr.

The Lie algebra so(n, 1) is generated by I;11,; (¢ < n) and J,41,. The elements [y,
(i < m) preserve Spin(n)-types, and the action is given on page 364 in [VK]. The most
interesting, of course, is the action of .J,, 11, which is given as follows. Let vy be in B,.
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Let M (resp. M~*) denote the array obtained from M by increasing (resp. decreasing)
As by 1. Then

(5] (3]
() Jngt1nVu = Zws(c, oy M)V s — Zws(—c,u, M™*)Wy-s + cwolp, M)vy
s=1 s=1

where

1
wyles 11, M) = (A + 25

— s+ c)ws(p, M)

and ws(u, M) is defined on pages 418-419 in [VK]. It depends on p and the first two rows
A= A of M only. Also wy(p, M) =0 if n is even. If n is odd then

n—1
WO:ﬁ(er"T‘l—i)(AH"T‘l—i)
ST+ =)+ 55— )

Note that wo(p, M) # 0 if p is half integral. This observation is crucial in the proof of
uniqueness of V. More precisely, consider the Cartan decomposition so(n)®p, of so(n, 1).
Let IT be an (so(n, 1), Spin(n))-module with multiplicity free Spin(n)-types. This situation
occurs for all induced representations and, therefore, all irreducible (so(n,1),Spin(n))-
modules. Let 7* a Spin(n)-type in II. Since py ® C = C", the action of py on 7 followed
by the projection on 7* defines a Spin(n)-equivariant map

pCh e =
If n is even then C", the standard representation of so(n), does not contain a trivial
weight. Therefore the tensor product C" ® 7 does not contain 7*. This shows that p, is
always zero if n is even. In general, p) depends on the action of J,,1;,. Uniqueness of V'
is based on the following.

Proposition 3.1. Assume that n is odd. Let I1 be an irreducible (so(n,1),Spin(n))-
module with half-integral types. Assume that py = 0 for every Spin(n)-type 7 of Il. Then
IT is isomorphic to Ind,,1(u,0) for some p in A(%52,3). In particular, 11 is determined
by its minimal Spin(n)-type.

Proof. Suppose 11 is a subquotient of Ind(u, ¢) for some u in A(["T_l], %) The map p, is
determined by the action of the operator .J,.;,. Since p is half-integral, as we remarked
above, wo(u, M) # 0 for all M. This shows that p, # 0 for all types of the induced
representation unless ¢ = 0. This shows that II is contained in Ind(p,0) for some u.
Since Ind(u,0) is irreducible and determined by its minimal type among all induced
representations with ¢ = 0, the proposition follows. O

Discrete series. The group Spin(n, 1) has square integrable representations if and only
if n is even. Let u € A(n — 1,e). Suppose that ¢ + e + % is a positive integer. Then
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Ind,, ; (1, ¢) contains two discrete series representations (or limits of discrete series if ¢ = 0
and e = 1) with Spin(n)-types

Dt = @TﬁandD_: @ ™

An>c! An<—c'
2 2
where ¢ = ¢+ %

Remark. We would like to point out three errors in [VK]. The right hand side of Eq. (6)
on page 418 should be divided by 2. The factor (4/s 2,41 — 1) in the denominator on the
right hand side of Eq. (8) is incorrect. It should be (412, ,, —1). The first line of page 419

should be l; = r; + [%52] — . Also see page 86 in [Hi] for the correct formulas.

4. UNIQUENESS

In this section we show that the K-modules introduced in Section 2 can be extended
to (g, K)-modules in at most one way. Moreover, the extension is necessarily irreducible
and unitarizable.

Let U denote the real vector space with basis {us,...,up+,}. We equip U with a
symmetric bilinear form B of signature (p, ¢) such that

B(Ui, Uj) = 52']‘62‘
where ¢; = 1if i < p and ¢, = —1 if i > p. We realize so(p, q) as (p+ q) X (p+ q)-matrices
skew symmetric with respect to the bilinear form B. Let E;; denote the (p+¢) X (p+q)

square matrix whose (7, j)-th entry is 1 and 0 elsewhere. Of special interest will be the
following elements in so(p, q):

Iiv1; = B — B for i # p,
Jpt1p = Eppt1 + Epy1p.

For i = 1,2... let U; denote the subspace of U spanned by {uy,...,u;}. Let g=a+b
for some non-negative integers a and b. Then the stabilizer of U, is

so(p,a) @ so(b).

These algebras are of special interest to us. We pick K so that its Lie algebra is the
stabilizer of U,. We also note that the subalgebra so(p,1) (case a = 1) is generated by
so(p) and Jyi1,.

Case of V.

Proposition 4.1. Assume that the K-module V' extends to a so(p,q)-module. Then
this extension is unique, irreducible and unitarizable. Moreover, the restriction of V' to
s0(p, 1) x SO,4_1 decomposes discretely as a direct sum

q—7p (A15eAp—1,0,...,0)
P Ind,. A+ sl 0)@r,, T
AEA(p,0)
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Proof. Recall that

V = @ r;j‘“’@rf(”
AEA(p,0)

where, for A = (A, .. .,)\prl) € A(p,0), AN =+ %1%71 and B(\) = ()\,0qu+1).

As in the previous section, let {vj,} be an orthonormal Gelfand-Zetlin basis of T,}A »
defined with respect to the chain of subgroups so(U,) 2 s0(U,_1) 2 .... Similarly let Ug
denote the orthogonal complement of U, and let {vy} be an orthonormal Gelfand-Zetlin
basis of 72" defined with respect to the chain of subgroups so(Us) 2 s0(Up,y) 2 ... It
follows that

(8) Vi @V

where M and N are arrays with the first row A(\) and B(\) respectively, is a basis of V.
Since so(p, q) is generated by so(p) @ so(q) and J,11, it suffices to show that J,.; , acts
in only one possible way on the basis vj; ® vy.

Note that .J,11, and so(p) generate so(p, 1). Define an equivalence relation on the basis
vectors of V by vy @ viy ~ vy ® vy if the arrays NV and N’ have all rows equal except,
perhaps, the first row. Fix an equivalence class C'. Let I be the subspace of V' spanned by
all basis vectors in C. If V' extends to a so(p, ¢)-module, then II is an (so(p, 1), Spin(p))-
module. Its Spin(p)-types are described as follows. Let (yi,. ..,yqu,O...,O) be the
second row of the array N for all basis vectors in the equivalence class C'. Define

1 1
(9) p= (e ye) + 5@ = p)les €Ap—1,5).
Notice that A(A) = p. In fact, the Spin(p)-types of II are the same as the types of the
induced representation Ind, ; (1, ¢). We claim that

(10) II = Ind, ;(p, 0).

In view of Proposition 3.1 we must show that p4\) = 0 for any type 74 of TI. In other
words, we must show that the action of .J,.;, on 74Y

74 is zero. But this is easy. Indeed, the maximal 7
by

composed with the projection on
AN isotypic summand of V is given

FAN g B0,

The action of J,11 , is a part of the action of po®C = C?®C? (of the Cartan decomposition
of s0(p, q)). Since ¢ is even, C? ® 72M does not contain 7™ as a summand. This shows
that pay) = 0 and II must be isomorphic to Ind,;(s,0). Let T": Ind, (4, 0) — II be an
isomorphism. In particular, the action of J,11 , must be equal to T om(J,41,) 0T~ where
7(Jp41,) is the action of J,41, on Ind,(p, 0). Since 7' is unique up to a non-zero scalar
the action of so(p, q) on V' is unique.

Next we show that V is unitarizable. Let V denote the Hermitian dual of V. Since it
has the same K-type as V, it follows that V and V are isomorphic (so(p, ¢), K )-modules.
This isomorphism induces a non-degenerate (so0(p, q), K)-invariant Hermitian form on V.
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We may assume that it is positive definite on the minimal K-type. We claim that the
A(N) B(X)

Hermitian form is positive definite so V' is unitarizable. Let 7'1;\7 =17, @7, where
A= (Ao, )\%). Suppose TI;\;ES is nonzero and the signatures on 7'1;\7(] and TI;\;ES are
different. Define

(11) R T R S

and IT" = Ind,(¢/,0). Then II" intersects the two K-types 7., and 7., non-trivially.
The restriction of the invariant Hermitian form of V' to II’ is positive deﬁmte since IT' is
unitarizable. This contradicts the fact that the signatures are different on 7' , and 7')‘ &
and proves our claim.

Finally we show that V is irreducible. Suppose W is a proper submodule of V. By
taking its orthogonal complement if necessary, we assume that W does not contain the
minimal K-type. Let TP):q = 7'134(” ® Tf(/\) be a K-type in W such that >, \; is minimal.
Since TI;\q is not the minimal K-type, 7./\—53 is nonzero for some s < p—gl. We define p/
and II" = Indpl(u’ 0) as in (11). Then H intersects 7., and 7.\, non-trivially. Hence
W contains 7, <. This contradicts that fact that ), \; is mmlmal in W. Therefore V' is

irreducible and this completes the proof of the proposition. U

By scaling the basis vectors vy, ® vy in (8) if necessary, we may assume that the basis
vectors they form an orthonormal basis of V' and, the action of J,41, on Il in (10) is the
same as the action of J,;;, on the basis vectors B, of the induced representation in (7):

p—1
2
q+1
(12) Jpi1pV @ VN = Z()\s + T S)ws(fby M)V ps+s @ Vy+s
s=1
p—1
2

—1
— (As + T S)ws(pt, M™2)Var—s @ Viy-s.

@
Il
—

Case of VX, We remind the reader that ¢ = p — 1 holds here.

Proposition 4.2. Assume that V,© (respectively V) extends to a so(p,p — 1)-module.
Then this extension is unique, irreducible and unitarizable. Moreover, the restriction of
VE to so(p,1) x SO(p — 2) decomposes discretely as a direct sum

1
& Ind,,, (()\, 1) - §1,)21,0) T,

AEA(p—2,0),A p_3 >1
2

The proof is identical to one of Proposition 4.1, so it is omitted.

Case of VE. Since V* and V—, as (so(p, ¢), K)-modules have been constructed by Knapp
in [Kn], here we describe a somewhat different result needed to construct V', V.* and V-
via the Wallach transfer of V* and V.
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Proposition 4.3. The representation V' (resp. V'~ ) is the unique representation with K -
types as in (4). The restriction of V' (respectively V=) to SO(p—1) xs0(q, 1) decomposes
discretely as a direct sum

@ TI;\_l ® O(A)

AEA(p—1,0)Ag ;=0

where ©(N\) is the discrete series representation of Spin(q, 1) (or limit of discrete series if
p—l=gqand g = 0) whose minimal Spin(q)-type has highest weight (A, . . ., A%) + p—;qlg
(respectively o (A1, ..., As) +E5214)) and the infinitesimal character

b—4q

ALy .

) +

1% + Pgt1-

N

5. EXISTENCE

Since so0(p, ¢) is generated by so(p, 1) and so(q), the formula for J,;,, in (12) gives a
representation of so(p,q) on V, provided that certain relations have been verified. The
same also applies to V* and V£, While the verification is straightforward, it is also
rather cumbersome. It is much quicker to construct V and V.* from V* using the Wallach
transfer.

If p—1 > g then Knapp [Kn] has constructed two representations with the same K-
types as V1 and V~. Trapa [T] has further established some properties of V* and V.
In order to state their results, define

-1 p—3 -1 g—3 .
" _{(pT,pT,...,l,qT,qT,...,%) 1fp<q—]_
Pq — q q—2 p—2 p—4 1\ :
(5,—,...,177777...75) lfpzq—l

Theorem 5.1. If p — 1 > g then V' and V'~ can be extended to unitarizable and ir-
reducible (so(p, q), K)-modules. The infinitesimal character of V™ and V~ is u,, and
the annihilator in the universal algebra is the unique mazximal two sided ideal with the
infinitesimal character i 4.

We can now use the Wallach transfer to construct V from V*. Take first p — 1 <
q. Consider V* for so(q + 1,p — 1). The restriction of V* to SO(q) x so(p — 1,1)
is given by Proposition 4.3. Let Fio(m) denote the i-th derivative of the Zuckerman

p—1

functor with respect to so(p,1). Then, by [Wal], Ioo(p1) applied to a discrete series
representation produces an irreducible finite dimensional representation with the same

infinitesimal character. It follows that the so(p, ¢)-modules
p=1 p=1 B
1—‘502(10—1,1)(‘/—’_) and 1_‘502(10—1,1)(‘/ )

have the same types as V. By uniqueness of V' in Proposition 4.1, these two representations
must be isomorphic. Since Zuckerman’s functor can only increase the annihilator, we have
the following theorem:
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Theorem 5.2. If p — 1 < q then V can be extended to unitarizable and irreducible
(so(p, q), K)-module. The infinitesimal character of V' is p,, and the annihilator in the
universal algebra is the unique mazimal two sided ideal with the infinitesimal character

Hp,q-

Finally, assume that p — 1 = ¢. Consider V* for so(p,p — 1). The restriction of V* to
SO(p—1) xso(p—1,1) is given by Proposition 4.3. Then, by [Wal], so(p, p — 1)-modules
1

p—1 p—1
[z (V1) and Fﬁf(p_l’l)(v_)

so(p—1,1)

~~, respectively. Again, since Zuckerman’s functor can
only increase the annihilator, we have the following theorem:

have the same types as V" and V-

Theorem 5.3. If p — 1 = q then V5 can be extended to unitarizable and irreducible
(so(p,p — 1), K)-modules. The infinitesimal character of V.= is p,,_1 and the annihila-
tor in the uniwversal algebra is the unique mazimal two sided ideal with the infinitesimal
character fip 1.

6. ASSOCIATED VARIETY

In this section we will compute the associated varieties of V, V* and V;*. A definition
and basic properties of associated varietie could be found in [Vo2]. In order to simplify

notation, define
. (pr—=14q
m=min | ——, = | .
2 2

Recall that nilpotent orbits of the complex group O,,(C) are parameterized by partitions of
n such that every even part has an even multiplicity. The classification of (real) nilpotent
O(p, q)-orbits on so(p, q) is refined as follows: To every partition we attach the Young
diagram as usual. Then we insert signs + and — into the boxes corresponding to odd
(length) rows such that the signs alternate. Then this signed partition parameterizes an
orbit of O(p, q) if and only if the difference of the number of positive and negative signs
is equal to the signature p — ¢. Two signed partitions correspond to the same real orbit
if and only if one signed partition can be obtained form another by permuting the rows
of the same length.

Case p — 1 < ¢. Consider the partition (2P~!,1977%2), The number of odd rows is ¢—p+2.
On the other hand, the signature is equal to p—¢q. Thus we can mark the Young diagram by
putting + in the first row of length 1 and — in all other. Let Og-1 be the corresponding
nilpotent O(p, ¢)-orbit. Let g = € @ p denote the complexified Cartan decomposition
of so(p,q). Let O _, be the Kc-orbit in p corresponding to Og-1 by the Kostant-
Sekiguchi correspondence. We shall now describe this orbit in more details. Let K¢ =
SO, (C) x SO,(C). Recall that p = CP ® C? under the action of Kc. Let (, ) denote a
SO, (C)-invariant symmetric bilinear form on CP. Pick a basis {e1,...,e,} of C? so that
(e;,e;) = 0 except (e;,e,11-;) = 1. We do likewise for C? to get a basis {fi,...,f,}.
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Using these two bases, we can identify p with the set of p by ¢ matrices so that the e; ® f;
corresponds to the elementary matrix £; ;. Define

P=FEi1+Ey+- -+ E,,€p.

Let ¢ be the standard representation of so,.,(C). Then it is a simple exercise to show
that

e the null space of +(P) has the dimension ¢ + 1.
e (P)? =0, that is, ¢(P) is a nilpotent element.
This implies that P belongs to the complex nilpotent O, ,(C)-orbit corresponding to the
partition (2P~!, 197P72). Thus, the orbit O _, is generated by P.
For the rest of this section, we identify p with p* using the Killing form, and we identify
adjoint orbits with co-adjoint orbits.
Let U,(g) denote the standard filtration on the universal enveloping algebra of so(p, q).

a—-p 1m

Let F,, = U, (8) - Tmin be the subspace in V' where 7, = 7,2~ ®C is the minimal K-type
of V. The graded module

Cr(V) = é F,/F,_y

is a (Sym(p), K¢)-module generated by T, = Fp. Note that €- F,, C F), so ¢ acts trivially
on the graded module. By induction we have p - I}, = F,, 1. By the formula J,.;, € p on
the K-types of V in (12), we see that

M52,

(13) Gr,(V)=F,/Fooi =P ® T

A
where the sum is taken over A = (Ay,..., A;,) € A(p,0) such that Y. \; = n. Let I be the
annihilator ideal of Gr(V') in Sym(p). It is also the annihilator ideal of Ty = Gro(V).
The variety in p* = p cut out by [ is called the associated variety of V. We now state the
main theorem of this section.

Theorem 6.1. The associated variety of V is @gg,l, the algebraic closure of the K¢-orbit.

More precisely,
Sym(p)/I = T'(Og-),
the ring of regular functions on O _,.
Proof. The first step in the proof is a description of the space of regular functions on
Ofp,l as a K¢-module.

Lemma 6.2. Let T(OL,_,) be the algebra of regular functions on the closure O}, of
Ok .. We have the following isomorphism of K¢ = SO, x SO,-modules

(14) rop) = @ o
AEA(p,0)
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Proof. Recall that we have identified p with the set of complex p x ¢ matrices. Consider
the m x m block located in the upper left corner. The stabilizer of this block in SO, x SO,
is a product of two maximal parabolic subgroups ()1 = L1 N; and Q3 = Ly Ny with Levi
factors

Ll = GLm and L2 = GLm X SOq_Qm.

Since P is the identity matrix located in the m xm block, it is now clear that the stabilizer
of Pin K¢ is

(15) Kc(P) = AGL,, x N; X SOy_g,, X Ny

where AGL,, = GL,, is diagonally embedded in GL,, x GL,, C L; x Ly. It follows that
every regular function on @gg,l gives a right Kc¢(P)-invariant regular function on K.
The Peter-Weyl Theorem implies that the subspace of K¢ (P)-invariant functions on K¢
has precisely the types given by the right hand side of (14). This implies that F(@gg,l)
is contained in the right hand side of (14)

To prove the opposite inclusion, we consider Sym(p) as a GL, x GL,-module, since p
has been identified with the set of p x g-matrices. Then

(16) Sym(p) = P e, © 7,
Y

where the sum is taken over Young diagrams Y with at most min(p, ¢) rows (see Thm 2.1.2
in [Ho2]). Recall that a joint highest weight vector of 7% ® 7, is given as a product of
determinants of r x r square blocks located in the upper left hand corner of p. If Y has
at most m rows then the blocks needed are of size r < m and the highest weight vector
does not vanish on the matrix P. Hence it generates a representation of K¢ isomorphic

to 7' ® Té/\’o) in Sym(p) as well as in I'(OX ;). The lemma is proved. d

Let J be the prime ideal in Sym(p) corresponding to @g;,l. Since I and J have the
same Krull dimension and J is prime, in order to show that J = I, it suffices to show
that J C I. We need the following lemma.

Lemma 6.3. Let 7 = 7) ® TJ/ be a Kc-type in Sym"(p) which does not lie in the ideal
I. Then ~" = (v,0,...,0) and 7 is generated by a joint highest weight vector of the

representation Tgﬁg”’m) ® Tgﬁgq’m) in Sym”(p) in (16).

Proof. Note that any irreducible summand of 7 ® 7, is isomorphic to T];YJ'-V & TJ’ for

some weight v of Tp%l. Since 7 is not contained in I, 7 - Ty # 0 in Gr, (V). By (13),
7" = (A, 0) for some A and ), \; = n and

y+v=xr+ 1L

1&.
2
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By the theory of SO, x GL, harmonics on p* (for example see [Hol]), the representation
7, first appears in degree

Z%:ZAML%m— Vi:n—ir%m— v; > n.

7 %

q9—p
The last equality holds if and only if v is the highest weight vector of 7, * Yiey = 1.
Since, by the assumption, 7 occurs in the degree n we must have A = . On the other
hand, the first occurrence of 77 happens in Sym"(p) within the harmonics. It follows that

T occurs in the harmonics 7)) ®ré’£‘;‘I*7’L’. By the branching rule from GL, to SO,, T&Sq””)

contains Tq(%o) with multiplicity one and it is generated by the highest weight vector. This

joint highest weight vector also generates Tg}f”’w ®7’&S“””> in Sym"(p). This proves the
lemma. U

Since the highest vector of Tg}f”f"b) ®7'g£2‘1’7”) does not vanish on P, we have shown that

any K-type outside I is also outside J. This shows that J C I, as desired. Theorem 6.1
is proved. U

Case p — 1 > ¢. In this case we only state the results. Consider the partition (27, 1777).
There is only one real form of this orbit for O(p,q). Indeed, since the number of odd
rows is p — ¢ and the signature is p — ¢ we have to enter + in all rows of length one. Let
Oaq be the corresponding nilpotent O(p, ¢)-orbit. By Theorem 9.3.4 [CM], Oy is a union
of two SO(p, q)%-orbits, denoted by O, and O,, respectively. Let (9557* and (9557‘ be
the Kc-orbits in p corresponding to O, and O,,, respectively, via the Kostant-Sekiguchi
correspondence. If we identify p with the space of complex p x ¢ matrices then the two
Kc-orbits are generated by elements

Pt =FEi 1+ -+ Epmand P =Fi1+ -+ Ep_1m1 + Epmi-

Theorem 6.4. The associated variety of V* and of V& is the closure of the Kc-orbit
O§’+. The associated variety of V™~ and of V;~ is the closure of the Kc-orbit (’)52’_.

One also could prove the above theorem for V* using the results of Knapp [Kn| and
Trapa [T].

7. LANGLANDS PARAMETERS

In this section we will compute Langlands’ parameters of V, V* and V. In order to

simplify some notation, let
m — min (P14
2 '2)°

Case p < ¢ — 1. Fix a minimal parabolic subgroup Puin = MuinAmin VNmin- The root sys-
tem of G, , relative to A, is B,. We shall realize this root system in a standard fashion,
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so that
) =€ —€2, ... ,0p_1 =6Ep_1 —Epand B=¢,
are simple roots. Long root spaces are one-dimensional and for every long root o we have
an embedding -
Pa : SL2(R) — Gpq
where SLy(R) is the metaplectic cover SLy(R). Let Z, be the image, under ¢, of the

center of SLy(R). Note that Z, is a cyclic group of order 4. On the other hand, for every
short root and § in particular we have an embedding

pp:Spin(g —p+1,1) = Gy,
The existence of this embedding is a combination of two facts. First, the rank one Lie
subalgebra of so(p,q) corresponding to [ is so(¢ — p + 1,1) which gives a map from
Spin(g—p+1, 1) into Spin(p, q). Second, Spin(g—p+1, 1) is topologically simply connected,
so the map lifts to G, ;. Let Zg be the image of the center of Spin(¢ —p+1,1). Then Zg
is a cyclic group of order 2.

Pseudo-spherical principal series. Here we define the principal series representations
associated to the minimal parabolic subgroup. Note that the connected component of
Mmin is Spln(q - p)> and
Mpin = Spin(q — p) X Zg X Zay Xy -+ Xy Zay_,
where po = {£1} is the subgroup of G, such that G,/ is linear. Define
Mmin,ﬁ = Spln(q _p) X Zﬁ'

Then Myyin/Mming is a Heisenberg group of order 2P. Let S be the unique representation
of this group such that the center us acts via the unique non-trivial character. The

dimension of S is 2™.
Let x € af. be such that Re(y) is dominant. Then we have a pseudo-spherical,

min

standard module (normalized induction)
Generalized principal series. For every k = 1,...,m, the group G, , has a parabolic

subgroup P = M AN - depending on k - such that A = (R )™ xR} . and the connected
component of M is

(18) My = Spin(q — p) x SLa(R) X, . .. X, SLa(R).

where there are m factors of éig(R). More precisely,

(i) The factors of A = (R )™ x Ry, correspond to m long roots e; + e,63 +
€4, ..., E2k—3 F E2k—2, E2k + E2%+1, - - -, Ep—1 + €p and the short root egp_;.

(ii) The factors éIQ(R) in (18) correspond to the following m long roots: ai, as, ...,
Qok—3, Ok, Q2k42, - .., Op_1.
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Define
Mﬁ = M(] X Zﬁ.
The quotient M/Mjg is a Z/2Z-vector space of rank m. It is spanned by h,, where h,, is
an element of order 4 in M, as « runs through the following m long roots:

Qg, Ay, ..., Aok—2, A2k —1, A2k41, ..., Up_9.
Assume now that p < ¢ — 1 so that 5% > 3/2. Let D(%%)" and D(%*)” be the

holomorphic and anti-holomorphic discrete series representations of gig(R) such that

the lowest weight of D(%52)" is %52 and the highest weight of D(%Z2)™ is —452. The

infinitesimal character of these two representation is lé_z. Define a representation W of
M by

W = Indjy [(D(E55))*"),

where Spin(q — p) X Zg acts trivially. We claim that W is irreducible. Indeed, the
restriction of W to Mp is a sum of 2™ terms of type

q— D¢ q_pem
p(t Py on L)

where €;,...,€6, = £ (all possible choices). Since these summands are mutually non-
isomorphic, irreducibility of W follows at once from Mackey’s criterion.
Define a standard module for G, by

(19) Ind (" [W @ exp(—n)]
where
n = mer+e)+. ...+ mer+ ...+ Nmri(ep1 +€p)
(20) = (00,70 1 M= Tk The+1s Tk - - - Tt L T 1)
and 17 > ... > Npa1 > 0. This representation has a unique submodule with the minimal
K-type qug_h ® C.
Theorem 7.1. We have the following:

(i) Suppose ¢ = p+ 1. Then V is the Langlands submodule of a normalized induced
(pseudo-spherical) principal series representation (17) with

1
X:§@m—Lp—ZHWH

(ii) Suppose ¢ > p+ 1. Then V is the unique Langlands submodule of a normalized
induced principal series representation in (19) where k =1 and

pt+q p—1 q—p—2

77:(1717’171,7“):( 4 ? 2 7“"2?1)+ 4

1pt1.
2

q—p
The submodule V' in each case is generated by the minimal K-type 1p° ‘o C of the
principal series representation.
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Proof. The first case, when ¢ = p+1, is trivial since V' is a pseudospherical representation
of the split group G, ,41. See also [A-V] and [Wa2].

Lemma 7.2. Assume that ¢ > p+ 1. Then V is a submodule of Indg”'q (W & exp(—n)]
for some k.

Proof. This is a standard procedure so we only give a sketch. We use Proposition 4.1 in

[Vol]. There one constructs A in it from the minimal K-type. Its stabilizer in s0,,(C)
g—p—1

is a theta stable parabolic [ 4+ n such that [ = su,, ,,, +slo +u; > . We may choose a

split torus ag in [y such that ag is the Lie algebra of A in P = M AN in (18). The discrete

series parameter on M could be read off from \. O

Since the discrete series representation D(%2)* of SLy(R) embeds into the pseudo-

spherical principal series representation of éig(R) with exp(%) on the “A” part of the
minimal parabolic subgroup, it follows from induction in stages that

(21) Indp[W ® exp(—n)] C Indp

min [

S ® exp(—x)],

WhereX:(Xla"'aXp):n+§a

7771 C ank—la nk—b 77/4:7 77/6-{-17 nk:-i-l) CE anm-i-la nm-ﬁ-l)

n=(m
é":q—i 2(1a_1a.~~>1a_1a091a_1"“’1’_1)

and 0 is at the position 2k — 1. Since the infinitesimal character of the pseudo-spherical
principal series is Indp_, [S ® exp(—x)] is (X, p4—p) We see that (n + &, p,—p) is equal to

fipq up to a Weyl group element. Let a = =2, If we remove p,_, from (n+¢, p,—,) and
Iy then, up to a permutation of entries, we have

(771+aan1_aa-"ank—l+a>nk—l_aank>77k+l+a'>77k+l_a'>"'anm+l+a'>77m+1 —CI,)

equals (1,2, ..., p%l, =r, q—]2)+27 o %)

If k£ # 1 then, by comparing the largest entries, 17, + a = %. This implies that the
second entry n; —a = ’%1 which is not an entry of p,,. Hence k£ =1 and n, = "2;1.
Since ¢ > p + 1, the next largest entry is % and we conclude that 17, + a = %3 and
N —a = p—gl. We can apply this argument repeatedly to conclude that n has the desired
form. Theorem 7.1 is proved. U

In the above computation of the Langlands parameter, we only use the minimal K-type
and infinitesimal character of V. This gives the following corollary.

Corollary 7.3. The module V' is the unique irreducible (so(p,q), K)-module with the

p—q
minimal K-type 1 * '®C and infinitesimal character fi, 4.
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Next we consider p—1 > gsom = 1. Let Pnin = MpinAminNmin be @ minimal parabolic
subgroup of G, ,. The restricted root system for A, is of type B,. We realize B, so that
the simple roots are

a1 =€E1 —¢€2,...,0¢-1 = Eg—1 — &, andﬁzsq.

We assume that Ny, is “spanned” by positive roots. We discuss the split (p—1 = ¢) and
non-split (p — 1 > q) cases separately.

Case p — 1 > q. Let P = M AN be a parabolic subgroup of G, , containing P, such that
the connected component M, of M is

My = Spin(p — q) X SLa(R) X, .. X,y SLa(R).

Here there are m copies of §B(R) corresponding to the restricted roots eq9;_1 — €9; for
i =1,...,m. Define

MBZMO X Zﬁ.

Sincep—1>¢q we have 1(p—q) > 2. We recall that D(E5%)" denotes the discrete series

representation of SLy(IR) with the lowest weight ?52 and D(%5?) is its dual module. Let
E = (e1,...,€,) be an m-tuple of signs where ¢; = +. We define

WP = Ind}f [D (2%) ®...9D (1%) ]

where the subgroup Spin(p—q) X Zs acts trivially. The representations W¥ are irreducible
by the Mackey irreducibility criterion. Indeed, the restriction of W back to My consists

of summands
p—q\ p—q\"
D|—= .. D —=

for all possible combinations of signs (€}, ..,€,,) such that [[" € = [[\~, &. (Here we
identify € = + and — with € = 1 and —1 respectively. There are 2™~! such combina-
tions which is precisely the index of My in M.) Thus, not only are representations W¥
irreducible, but two such representations W¥ and W¥" are isomorphic if and only if the
above product condition is satisfied. Thus, we have two isomorphism classes which we
denoted by W+ and W™, where the sign is [\~ €.

Next, A = (RT)™, with the coordinates given by the long roots e9;_1+¢9;, i = 1,...,m.
Let expn denote a character of A where n = >0 mi(€oi1+¢€2). i > ... > Dot > |1
then the induced representation

Indg”'q (W* @ exp(—n))

contains a unique irreducible submodule. Its minimal K-type is the minimal type of V.
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Theorem 7.4. Ifp > q + 1 then V* is the irreducible Langlands submodule of
Ind %P [W+ @ exp(—n)] where

q q—?2 1
cooma)=(z,—,..., ) +-(p—q—2)1a.
(7]17 7772) (27 9 ) ) )+4(p q ) 3
Case p—1=gq. Let P = MAN be the parabolic subgroup in the standard position such
that M contains the following as a subgroup of finite index:

My = Zg % SLy(R) Xy - .. Xy SLa(R).

Here (3 is the unique short simple root and, as before, Z3 the image of of the center of

Spin(2,1) = SLy(R) under ¢gz. There are m copies of SLy(R), corresponding to the long
simple roots o, as, ..., d9,—1. Define an irreducible representation of M - trivial on Zg3
- by
+ M 3 € 3 €
W= = IndMB[D(ﬁ) '®...Q D(§) ™]
which, in an analogy with the case p > ¢ + 1, depends only on the sign of [[", ¢;. Then
the Langlands submodule of

Ind 5 [W;* @ exp(—n)]

contains the minimal K-type of V=

The minimal parabolic Py, = MuyinAminNmin of M, ,_1 is the Borel subgroup. Let
exp(n) be a dominant character of A where n = >"7 | n,e;. Let ST be the irreducible rep-
resentation of M, such that the Langlands submodule of the pseudo-spherical principal
series representation

Ind; ! [5% @ exp(—n)]
contains the minimal K-type of V=.

p—1

Theorem 7.5. Herep —1=q and m = 5= = 1.

(i) V* is a pseudo-spherical submodule of Indgi’i’:l[Si ® exp(—n)] where

1
§(p—1,p—2,...,2,1).

(ii) V= is the irreducible Langlands submodule of Indfi”’*l[Wj ® exp(—n)] where

(nla s >77p—1) =

1
(nl”nm):<m7m_1771>_ilm

8. AN EXTENSION TO DISCONNECTED GROUP

The main purpose of this section is to extend V' to a (so(p, q), Spin(p) x O(g))-module.
This is necessary to obtain a one to one correspondence when we next restrict V to
s0(p,a) x O(b) where a + b = ¢, and O(b) C O(q).
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Representations of O(n). We first describe a classification of irreducible representations
of O(n). Let A(O(n)) denote the subset of elements in Z" such of the form

()\1, ceey )\k, On—k) or ()\1, ceey )\k, 1n—2ka Ok)

where the \;’s are positive integers, and k < [§]. Irreducible representations of O(n) are
parameterized by A(O(n)) as follows (see [GoW] or [Ho2]). Roughly speaking, for every A
in A(O(n)), Tc’\)(n) is the irreducible finite dimensional representation of O(n) generated by
a highest weight vector of the finite dimensional representation of GL, with the highest
weight . In particular, note that
()\1 ..... )\k,lnfgk,ok) o ()\1 ..... )\k,On,k)
=det, ® Towm) )
Elements of A(O(n)) are called highest weights of O(n). Given a highest weight A in
A(O(n)), we define

(22) C()\) = ()\1, RN )\k, O[H/Q}_k) € A(n)

The restriction of Té(n) to SO(n) is irreducible and isomorphic to 72 unless n = 2k and

o)

Ar > 1. In this case Tc’\)(n) is isomorphic to a direct sum < g . In any case the

infinitesimal character of Té(n) is c(A) + py.
Next we discuss branching rule and tensor which are well known. Let A = (Ay,...,\,) €
A(O(n)) and X' = (\},..., \,_;) € A(O(n —1)). We write A ¢ X if

» Mn—1

NN =A== N > A

The restriction of Té(n) to O(n — 1) is given by

A =@ X
To(n) = YA-oNTO(n-1)

This branching rule can be used to define another Gelfand-Zetlin basis of unit vec-
tors of Té(n) by successive restrictions. Then each vector is represented by an array
N = (MM A" such that A € A(O(n — i) and X! =5 A", We will denote the
corresponding basis vector by v. We warn that this basis is closely related but different
from the Gelfand-Zetlin basis of so(n) introduced in Section 3. Let N5 (respectively
N~%) denote the array obtained from N by adding (respectively subtracting) 1 from the
s-th entry of A%

Lemma 8.1. Let I;1,; be the element in so(n) introduced in the beginning of Section 3.
Then

i i
O § O § O
Ii+1,iVN = AV nts,n—i + 65VN—S,7L—1'
s=1 s=1

where the number o (respectively [3,) is non-zero as long as the array N7~ (respectively
N="7") satisfies the Gelfand-Zetlin pattern.
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Proof. We only give a sketch. First, note that it suffices to prove the statement in the
case i+ 1 = n. In this case the proof involves writing out the basis vectors v$ in terms of
the basis vectors vy and then applying the formula for the action of I,, ,_; on the basis
vy given on the page 364 in [VK]. O

Extension. We now extend V to a (so(p, ¢), Spin(p) x O(g))-module. This extension will
be very convenient for investigating dual pairs correspondences. There are two possible
extensions and one differs from the other by the determinant character of O(p, q). Let ¢
be the diagonal matrix diag(1,...,1,—1) in O(g). We define an action of ¢ on the basis
vector vy @ vy by (—1)™ 7" where ny and ny are the sums of the entries of the top and
second top rows of the Gelfand-Zetlin array N respectively. With respect to this extension

V' has Spin(p) x O(q)-types
oy chlcly | A,
@ @ 7-(()(«3)

AeA(p,0)
where, we abbreviated, 1 = 1 p-1 and 0 =0, Pt Note that V' has a basis consisting of

vectors vy & V](\),.

9. COMPACT DUAL PAIR CORRESPONDENCES

In this section we restrict the (so(p, ¢), Spin(p) x O(q))-module V' to so(p, a) x O(b) where
a+b=qand O(b) is included in O(q) in a standard way. Since V' is Spin(p)-admissible,
we have a direct sum

(23) EB @ ) & o)
MNeA(O

where ©()') are admissible and unitarizable Harish-Chandra modules of G,,. Every
summand on the right hand side of (23) is spanned by basis vectors vy @ vy of V' where
X7 = X in N. We now state the main theorem of this section.

Theorem 9.1. Let X € A(O(b)) and ©(X') defined in (23). If O(N') is nonzero, then it
is an irreducible unitarizable Harish-Chandra module of G, .. Moreover, if X' # ~' then
O(X) and ©(y') are not isomorphic.

Remark 9.2. Theorem A in Part II of [KO] proves a similar result for the ladder
representation of O(p, ¢) where p+ ¢ is even. Also compare with Theorem 3 in [Kol] and,

[GW].

Proof. We first describe the minimal Spin(p) x SO(a)-type of ©()\’). To this end, for any
n-tuple x = (z1,...,x,) of real numbers define its height to be

n
o] = |,
i=1
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If ©(\) # 0 then Tél(b) is contained in 7'(’\(;3) for some A in A(p,0). It follows, from
branching rules from O(q) to O(b), that the number of non-zero entries in X" is less than

or equal to
i p—1
= b,—— | .
U mm(, 5 )

In other words, we can write ' = (A},..., X, 0,...,0). Furthermore, the smallest height

A in A(p, 0) such that 7-(()/\(:1(;)

(24) A=(N,...,\..0,...,0)

Y u? )

. )\l .
contains o) 18

and, in this case, Tél(b) is contained in T&g) with multiplicity one. It follows that SO(a)

acts on this summand trivially. Summarizing, we have shown that the Spin(p) x SO(a)-
type
(25) nt e c
appears with multiplicity one in ©()\) where A is given in terms of A\ as in (24). It is
the minimal type of ©()\’). Clearly, if A’ # 4/, then the minimal Spin(p) x SO(a)-types of
O(X) and ©(4') are distinct.

It remains to show that ©(\') is irreducible. We will prove this by induction on a.
When a = 1, this is Proposition 4.1. By a see-saw pair argument, the restriction of ©(\")
to s0(p,a — 1) decomposes as a direct sum

(26) O(X) = @x0(X")

where the sum is taken over all \” € A(O(b+ 1)) such that X" =g X'

Suppose ©()\') is reducible. Then it decomposes completely since it is admissible and
unitarizable. Let II be a proper submodule of ©()\’) which does not contain the minimal
Spin(p) x SO(a)-type (25). By the induction assumption, the summands on the right
hand side of (26) are irreducible and mutually non-isomorphic. Hence II is a direct sum
of some summands ©(\”) in (26). Let ©(\”) be a summand of II such that the height of
A" is minimal. Since II does not contain the minimal type (25),

A" >N
This shows that for some s we have \" — e, =0 N\. Notice that the intersection
(ON) @ To1) N (ON) © 7))

contains a vector of the form v, ®v$§ where the array N contains \” =o X'. By Lemma 8.1
Iyiapra_1, acting on this vector, gives a non-zero summand involving v, ®v$, where N’ is
obtained from N by replacing \” by A" —¢,. In other words I1 contains ©(\"—¢,). However,
this contradicts the assumption that the height |\”| is minimal for ©(\”) contained in II.
Hence ©(\) is irreducible. The theorem is proved. O
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10. AcTiON OF CASIMIR OPERATORS

Let a and b be a pair of non-negative integers such that a+b = ¢. Then so(p, a) ® so(b)
is a dual pair in so(p,q). In this section we shall compute a matching of the Casimir
operators of the two Lie algebras acting on V.

Let 2,, denote the Casimir operator of so(n). We remind the reader that 2, acts by
the scalar ||[A||*> — ||pn||* on a representation of so(n) with the infinitesimal character A,
and that the infinitesimal character of 7" is X' + p,,. Likewise, for X' € A(O(n)), 7‘3/(”) has
infinitesimal character ¢(\') + p, where ¢(\') was defined in (22).

Proposition 10.1. Let Q,., and $, be the Casimir elements of so(p,a) and so(b), re-

spectively. Then
p—1\(a—-1\(p+q
o () (557) (55 )

Proof. In order to simplify notation we shall work with so,,,(C) instead of so(p, q). (The
Casimir operator is invariant of the choice of real form.) Recall that the algebra so,,(C)
can be identified with the set of skew-symmetric matrices. The Casimir operator of

50,.,(C) is equal to
Qp+q - — Z [37

1<i<j<p+q
Clearly, in order to prove the lemma, it suffices to show that the operator annihilates
every summand O()\) ® Té’(b) in (23). Since the factors of any summand are irreducible
representations, we know that is that €2,,, and {2, act as scalars on the summand. Thus,
in order to evaluate €,,, on ©()\'), it suffices to do so on a carefully chosen vector. We
define, as in the previous section,

A= (N, N.0,...,0) € A(p,0).

Then the restriction of TC())E’;;) to O(b) contains Té’(b) with multiplicity one. It follows that
we have a Spin(p) x SO(a) x O(b)-type

annihilates V.

a—p ,
=72 1®C®70(b)

. @ / N . N . . . ()\/,Oq,bfl) ()\/70(1,1,) . .

in ©(X) ® 75, Since 75, is contained in 75 791" C 745 it follows from Proposi-

tion 4.1 that § is contained in

q—0p (\,0)
Ind,, ; ()\ + Tl’ 0) ® TO(g-1)"

Since the infinitesimal character of a principal series Ind, ;(p,0) is (¢ + pp—1,0), a simple
calculation shows that

P
p—1 qg—1
Qp+1_Qp:_ZI§+1,i:_( 9 )( 2 )_|X|
i=1
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on 0. Let j be an integer such that p+1 < 7 < p+ a, and w a Weyl group ele-
ment which permutes €,41 and €;. We can pick a representative of w in SO(a). Since
w(=>F_ I2.,,) = =37 I and SO(a) acts trivially on §, the sums — 7 | I? for
p+1 <7 <p+a act by the same scalar on §. Summing over all j, we get that

p+a p p—]_ q—]_
—szfi:‘“( 5 )( 2 )—a|X|

j=p+1 i=1
on ¢. Since
pt+a p
Qpra =L+ Q- > D I
Jj=p+1i=1
and the values of €2,,, 2, and €2, on J are easily calculated, lemma is reduced to a straight-
forward check. 0

Proposition 10.2. Let X in A(b,0) such that ©(N') # 0. Recall that the infinitesimal
character of Tél(b) is
A= o(X) 4 o = (hay- Ay
b1 p—1

Let v = min([3], %5~). Then there exists numbers v,4, .. ., Vipse) independent of X' such

that the infinitesimal character of O(N') is (A1, ..., Ay Vpg1, -« - - j:l/[era}). In particular, V

2

establishes a correspondence

(O P iy /A T :l:l/[p+a}) — (A1, Ay Po2r)

2

for the dual pair so(p,a) ® so(b).

Proof. Let v = (14, ..., u[p%a]) be the infinitesimal character of ©()\’). Assume that \” =

N £ ¢; is a highest weight for some i < min(b,%*). Then Lemma 8.1 shows that the
action of so(p,q) on O(\) ® Tél(b) followed by the projection on ©(\") ® Tél(lb) is non-zero.
Since
s0(p, q) = so(p, a) & s0(b) & po
where py ® C = CPT* @ C?, it follows that ©(\”) is a subquotient of CP** @ ©()\'). This
shows that the infinitesimal character of ©()\”) is v £ ¢; for some j or it is equal to v.
The last possibility might happen only for p + a odd, ie b is even.
Before we state the next lemma we note that the infinitesimal character of Tél(/b) is

A—g if N'=N—¢g;or =N+ ¢,_;,1 for some i < b+71
cCANY+pp=K A+ if N =N+4¢g or V=N —¢gp_i4q for some i < b;—l
Aif N = X:I:e%.
The last case occurs only for b odd.

Lemma 10.3. Let N and N as above. Assume that for some X' the infinitesimal character
of O(N) is given by v = (A1, ..., Ay Vps1,y -+ -y 1/[%}) for some v;.
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(i) Suppose that the infinitesimal character of Tc’\)l(lb) 18 A+ ¢; for some i < r. Then the
infinitesimal character of ©(N") is v + ¢;.
(i1) Suppose that the infinitesimal character of T(’)\I(Ib) 1s A —¢g; for some i < r. Then the
infinitesimal character of ©(N") is v —¢;.
(11i) Suppose that the infinitesimal character of Té/(/b) 1s A. This happens only if b is odd
and N =X+ v Then the infinitesimal character of ©(N") is o(v).

Proof. First, we claim that the infinitesimal character of ©()\”) is not equal to v if b is
even. If the infinitesimal character of ©()\’) is v then the matching of Casimir operators
in Proposition 10.1 implies that ||\ 4+ &]|? = [|A||*> and \; = F1/2. However, ); is an
integer since b is even. This is a contradiction and it proves our claim.

Let us prove (i). The infinitesimal character of ©(\”) is v £ ¢; for some j. Assume first
that it is v + ¢;. Then Proposition 10.1 implies that

v+ &5l1* = I = 1A + &l = [IAI7,

that is, v; = A;. Permutation of i-th and j-th places - as an element of the absolute Weyl
group of so(p,a) - replaces v + ¢; by v + ¢;, as desired. Similarly, if the infinitesimal
character is v — ¢;, then v; = —\;. If ¢ # j then we can replace v — ¢; by v + ¢; by
permuting the two places and changing the signs of both of them. If ¢ = j then v; = —\;
implies that \; = 0. It follows that b is even and p + a odd. Hence the absolute Weyl
group of so(p,a) is a B type and v + ¢; can be replaced by v — ¢;. The case (ii) is proved
analogously. For the last case, the infinitesimal character of ©()\”) is v & ¢; for some j.
Then Proposition 10.1 implies that |[v & ¢;||* = [[v|]?, that is, v; = F3. It follows that
v £ ¢; is Weyl group equivalent to o(v). The lemma is proved. O

It remains to show that the infinitesimal character of ©()\’) is of the desired form for
one X. Pick X so that A} > ... > X.. Then X +¢; is a highest weight for alli =1,... r.
Since the infinitesimal character of O(\ +¢;) is equal to v ¢, for some j it follows, from
Proposition 10.1 that A\; = +v;. This shows that every ); is up to a sign equal to an entry
of v. Since the absolute rank of so(p, a) is bigger then r, the Weyl group can in any case
rearrange the entries of v so that it begins with Ay, ..., A,. U

Remark 10.4. The correspondence is independent of the real form of the complex dual
pair §0,,(C) @ s0,(C) in s0,.,(C).

Based on this observation, we can now give a proof of the first correspondence of
infinitesimal characters in Theorem 1.2, that is, when p < b < ¢. Indeed, the above
mentioned correspondence of infinitesimal characters is also equal to that of the dual pair
s50(p,b—p) ®so(p+ a). This uniquely determines the v;’s in Proposition 10.2 and proves
the first correspondence in Theorem 1.2.
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11. CORRESPONDENCE OF INFINITESIMAL CHARACTERS

In order to determine the correspondence of infinitesimal characters for the dual pair
50,4+4(C) @ 50,(C) (Theorem 1.2) it remains to determine the v;’s in Proposition 10.2 if
b < p. Recall that for every p < ¢ — 1 we have an embedding

V ClIndp,, [S ® exp(—x)],

min [
where y is given by Theorem 7.1 if p = ¢—1 and is constructed by means of 7 as explained
in (21), otherwise. Next, for every r = 1,...,p consider

GTJ" X#Q Gp—qu—T g prq

where the simple roots of G, , are oy, g, ..., 01,61 + €.
Let P = M'A’N" and P" = M"A”N" be the minimal parabolic subgroups of G, , and
Gp—rq—r, respectively, in standard position with respect to our choices of simple roots.

Let
p+q
X' = =)+ (T —r) L,
X' = =(Xrt1s 5 X0)-
Lemma 11.1. For every r = 1,...,p there exists a nonzero homomorphism of G, X

Gp—r.g—r-modules
V — Ind [S"® x'] @ Indp 7 [S” @ ]
for some M’ x M"-summand S’ ® S” of S. In particular - for this x' and x" - we have a
correspondence of infinitesimal characters
(27) X — (Xﬂa pq—p)'

Proof. Since V' is a submodule of Indp_. [S ® (—exp x)], the Frobenius reciprocity implies
that there exists a non-trivial homomorphism of Py,-modules V' — S ® exp(p — x).
Restricting to P’ x P” and using the Frobenius reciprocity again, proves the lemma. [

As we shall see in a moment, the correspondence (27) gives v;’s if ¢ —p < b < ¢. In
order to deal with b < ¢ — p we need one more statement. If b < ¢ — p then a > p. For
such a let P, = M,A,N, be the minimal parabolic subgroup of G, , € G, 4. In particular,
we have the following obvious lemma:

Lemma 11.2. Assume that a+b = q and a > p. There exists a non-zero homomorphism
of Gpq x Spin(b)-modules

V — Ind[S @ x] ® C.

In particular we have a correspondence of two the infinitesimal characters

b
(28) (=X + 51p, Pap) < po.
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Proof of Theorem 1.2. The first correspondence in the theorem was established in
Remark 10.4. It remains to deal with b < p.

Case 1: ¢ = p+ 1. In this case x = 3(p,p—1,...,1) and, up to a Weyl group action, (27)
becomes

p—r p—r—1 p—2r+1 p—r p—r—1 1
(55— ) (== 5)-
If we cancel out the same numbers from both sides of the above correspondences until
one side is empty, then the remaining numbers are v;’s. If b is even, we use r = /2. Then

the remaining terms are on the left side. They are

(p—27" p—2r—1 1 p—bp—-0—-1 1

9 ) 9 795):( 9 ) 2 75)
and this is ft,_p ,—p+1, as desired. If b is odd, then we use r = (a+p)/2, and the remaining
terms are on the right side. They are

—1 p—2r+1 1 p—b

(0>7,~~- 5 ):(0’_5’”"_T)
and this is d,_p11 p—p+1, up to a Weyl group action. This proves the third correspondence.
Case 2: q>p+1. Weset e = 0 if r is even and e = % if r is odd. Let m = p—gl and
m' = 4. Then up to a Weyl group action, (27) becomes
(m—r+1,m—r—|—2,...,m—g+e;m'—r+§,m'—r+§,...,m'—T_gl —e)
<—>(1,2,...,m—f+e'1 5 ..,m/—r+1 —e).

2 2727 2
Likewise, we remove the same set of numbers from both sides of the above correspondences
until one side is empty. Then the numbers that are left behind would be the 1;’s. Set
b = 2r and assume that b < p. Then r < m, r < m' and (v;) = pp—pg—p. This
gives the second correspondence of Theorem 1.2. If we set p + a = 2r and assume that
b=p-+q—2r < p then, since r < p, we must also have that b > ¢ — p. In this case
we get (1) = 0p—p+1,4-p- Lhis gives the third correspondence of Theorem 1.2 for the case
p>b>q—p.
Finally if b is odd, b < ¢ — p and b < p, then we refer to Lemma 11.2. Then up to a
Weyl group action, (28) becomes

(Pbs Pp—b+15 Pg—b+1) < Pb

This gives (v;) = 6p—p4—p+1 and proves the third correspondence. With this, we complete
the proof of Case 2 and also the proof of Theorem 1.2. O

Since the annihilator of V* in s0(p, ) is the same as the annihilator of V in so(g+1, p—1)
Theorem 1.1 also gives a matching of infinitesimal characters for V* except when ¢ = p—1.
In this case we have the following:
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Theorem 11.3. Assume q = p — 1. Assume that a and b are positive integers such

that a +b=p—1. Then VT, V= V.F and V" establish the following correspondence of
infinitesimal characters for the dual pair so(p,a) x so(b):

(A, .., )\g,,up_bm_b_l) — (Mg, .., )\%) if b is even

()\1, ceey A?,dp_b,p_b) A— ()\1, ceey )\%) Zfb 1s odd

p—b—1 p—>b—2 1

5 , 5 TR

where we recall 0y by = (Pp—bs Pp—br1) OT ( ,O), up to a Weyl

group action.
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