DUAL PAIR CORRESPONDENCES FOR NON-LINEAR COVERS OF
ORTHOGONAL GROUPS

HUNG YEAN LOKE AND GORDAN SAVIN

ABSTRACT. In this paper we study compact dual pair correspondences arising from smallest
representations of non-linear covers of odd orthogonal groups. We identify representations
appearing in these correspondences with subquotients of cohomologically induced represen-
tations.

1. INTRODUCTION

Let p be an odd positive integer and let ¢ be an even positive integer. Let SO°(p, ¢) be the
identity component of the Lie group SO(p, ¢) and let G be the central extension of SO°(p, q)
with a maximal compact subgroup

o _ ) Spin(p) x SO(q) if p < ¢
SO(p) x Spin(q) if ¢ < p.

The group G is not a linear group. In [LS], we investigated the smallest representations of
G that do not factor through the linear quotient SO°(p, ¢). (Such representations are called
genuine.) We described the corresponding Harish-Chandra modules: one such module V' if
p < ¢ and two modules V* and V™ if p > ¢. These representations are interesting for a
variety of reasons. For example, if G is split then V' (in the case p+ 1 =¢) or V* and V~
(in the case p — 1 = ¢) lift to a trivial representation (of an appropriate algebraic group) via
the local Shimura correspondence [ABPTV].

Let g be the complexified Lie algebra of G. (Lie algebras in this paper are complex
unless specified otherwise.) Let W be the Harish-Chandra module of one of the smallest
representations above. We showed in [LS| that W is a (g, K)-module where K 2 KV is
obtained by replacing the SO-factor of K° be the corresponding full orthogonal group. This
extension is important for investigation of dual pair correspondences arising from W. More
precisely, let Ky = O(s). Consider a standard embedding of K into the O-factor of K.
Note that, by Witt’s lemma, this embedding is unique up to a conjugation. Let g; be the
centralizer of K5 in g. Then

_Jso(p,r),r=q—s, ifp<q
B so(r,q), r=p—s, if p>q.

1991 Mathematics Subject Classification. 22E46, 22E47.
90ctober 31, 2007
1



2 HUNG YEAN LOKE AND GORDAN SAVIN

Let G be a connected subgroup of G' corresponding to the Lie algebra g; and let KY =
G1 N K° Then W, when restricted to g; x K5, decomposes discretely

W:Z®<T>®T

where the sum is taken over all irreducible finite dimensional representations of K5, and O(7)
is naturally a (g1, K¥)-module. In [LS], we obtained some partial results about ©(7), such as
irreducibility of ©(7), which were necessary to established a correspondence of infinitesimal
characters.

Our objective in this paper is to give a more thorough investigation of the correspondence.
Let m = &1 and m/ = 2. Consider a ¢-stable maximal parabolic subgroup q; = [; + n; in

2
g1 whose Levi component corresponds to a subgroup

B U(m) x SO°(1,7) if p < ¢
b SO(r,0) x U(m/) if p > ¢

in G;. We identify ©(7) with subquotients of modules with are cohomologically induced
from irreducible representations of L; which are trivial on the SO-factor and genuine on
the U-factor. In particular this implies that these cohomologically induced subquotients are
unitarizable and we have a detailed information about their Ki-types, since the types of
©(7) could be computed by the usual branching rules of orthogonal groups.

One can consider representations cohomologically induced from representations of L
which are trivial on the SO-factor and not genuine on the U-factor. It is interesting to
note that these representations (of the linear quotient of G1) appear as double lifts from
compact orthogonal groups in the Howe correspondence [Lo| and [NZ].

In Section 6 we highlight a special case. Assume that r > ¢ is an odd integer. Knapp
[Kn] introduced a family 7/, of (so(r, ¢), SO(r) x Spin(g))-modules s = 0,1,2.... The module
7, is a Harish-Chandra module of a genuine representation of G if and only if s is even.
If s is even then p = r + s is odd. We show that 7} is isomorphic to our ©(0) where 0
denotes the trivial representation of O(s). These results, therefore, complement the results
of Paul and Trapa [PT]. It is shown there that 7/ for s odd appear as double lifts of trivial
representations of compact groups in the Howe correspondence [Lo] [NZ].

The study of our compact dual pairs unfortunately requires use of disconnected groups
for technical reasons. In order to avoid the complications of treating covers of disconnected
Lie groups, we will work exclusively with Harish-Chandra modules in this paper. The main
results and proofs for V and V* are similar but each requires slightly different set of nota-
tions. Hence we will divide the paper into two parts. The first part consists of Sections 2 to
4 where we concentrate on one family of dual pairs for the smallest representation V. The
main purpose is to explain the main ideas quickly and clearly without being buried by the
notations. In the Section 5, we will state but without proofs the corresponding results for
VE,
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2. THE SMALLEST REPRESENTATION

In Sections 2 to 4, we will assume that p < ¢q. Let V be the Harish-Chandra module of
the smallest representation of G as in [LS]. The module V' is unitarizable and it extends to
an irreducible (g, K)-module for K = Spin(p) x O(g). We need some notation in order to
describe the K-types of V.

Notation. The following convention will be used throughout the paper. Given a multiple
of numbers A = (Ay,...A,0,...,0) then, by adding or removing 0’s at the tail, A can be
considered an s-tuple for every s > r. Let 1; := (1,...,1) and Oy := (0,...,0) where
there are k copies of 1’s and 0’s respectively. We set ¢; = (0,...,0,1,0,...,0) where 1
appears at the i-th position. Given § = (f1,...,08,) and v = (y1,...,7s), we will denote
(Biy -y Bryy1y -+, 7Ys) by (B,7) if there is no fear of confusion.

Let A(n) denote the set of highest weights A = (A1, ..., Ajn/2)) of s0(n). For e = 0,1, let
A(n, e) denote the subset of A(n) consisting of A = (Aq,..., Aj/2)) where A\; € Z + e. Hence
A(n) = A(n,0) UA(n, ). Let 7 denote the finite dimensional irreducible representations of
so(n) with the highest weight A\. If X is in A(n,0) then 7 is an irreducible representation
of the compact group SO(n). Otherwise it is an irreducible representation of Spin(n) which
does not descend to SO(n). The trivial representation may be denoted by Cso(,. Let

n—2 n—4

pn = (%57, %57, ...) € A(n) denote the half sum of positive roots of so(n).

Next we discuss irreducible representations of O(n). Let A(O(n)) denote the subset of
elements in Z" such of the form

(1) (Al,...,Ak,On_k) or ()\17"-7>\k:71n—2k’70k2)
where ); are positive integers, and k£ < 7. Irreducible representations of O(n) are parameter-
ized by A(O(n)) (see [GoW] and [Ho]). We will call an element A of A(O(n)) a highest weight
of O(n). Let Té(n) denote the corresponding irreducible finite dimensional representation of
O(n). The trivial representation of O(n) is sometimes denoted by Coy).

Finally we recall a branching rule: Suppose n > s, then Té(n) contains 7'8/(8) if and only if
ANi >N > N forall 1 <i <s.

With this notation in hand, we can now describe the K-types of V. Recall that m = ’%1.
The restriction of V' to K = Spin(p) x O(q) is

M52,
V= Z ™ ®7—8(‘1)'
AEA(p,0)
Here )\ in 7'8( ;) is considered as an element of A(O(n)) by adding 0’s at the tail. In particular,

the minimal K-type of V' is Tp%lm ® Co(g)- The infinitesimal character of V' is

p—11 3 q—1

=(1,2,...,—, =, =,...,—).
/‘LPH (7’ 9 2 a2727 9 2 )
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We now consider the restriction of V' to g; x Ky, where g; = so(p,r) and Ky = O(s) for
some integers r and s such that » + s = ¢q. We obtain a direct sum

(2) V=Y eW) ey

NeA(O(s))

Note that every O(\') is a (g1, K1 )-module, where K; = Spin(p) x O(r). Since V is admissible
with respect to Spin(p) C K, it follows that each ©(\') is an admissible (g;, K7 )-module.

The K;-types of O(7). Let A bein A(O(s)). Write X = (X}, ..., A};,0,...,0). We will now
describe the Ki-types of

ON) = O(7 ).

Let 6; be a Ki-type of ©()\). Obviously, §; must be isomorphic to T;+%1m ® Tg(r) for

some A = (Aq,...,A\p) in A(p,0), and it has to lie in the K-type 6 = 7_1;\+%1m

Furthermore, the multiplicity of § in ©()) is given by

X Tc’\)(q) of V.

(3) dim(c HOIHKIXK2 (51 (%9 7'])%,2, (5) = dim(c Homo(r)xo(s) (Tg(T) & TSI(S), Té(q)> .

By the branching rule stated after (1), the right hand side is nonzero only if A\; > X, for all
i <m, and A\, =0 for all i« > m. In particular ©(\") is nonzero if and only if the number of
nonzero integers in X\’ is not greater than (p — 1)/2, that is, t < m. (If that is the case then
A can be viewed as a highest weight for so(p).) Moreover, the branching rule implies that

w0 =

® Co
appears in O(\") with multiplicity one and it is the (unique) minimal K;-type of ©(\).

Let KY = Spin(p) x SO(r) be the identity component of K;. We can view O()) as a
(g1, K9)-module. The minimal K;-type restricts irreducibly to K?, and it is not hard to see
that it becomes the unique minimal K?-type of ©(X).

We will now state Theorem 9.1 in [LS]. The use of disconnected K> is crucial here. (Note
that we have just proved the second part.)

Theorem 2.1. Recall that g1 = so(p,7), Ky = O(s) and K? = Spin(p) x SO(r). Let O(7)

be a the lift of an irreducible representation T of Ko. Then

(i) The (g1, KY)-module ©(1) is either zero or irreducible.

(ii) Suppose T and T are non-isomorphic irreducible representations of Ks, and suppose
O(7) and O(7') are nonzero. Then the minimal K?-types of ©(7) and O(7’) are non-
isomorphic. In particular, ©(1) and ©(7") are non-isomorphic (g1, KY)-modules. [

3. COHOMOLOGICAL INDUCTION

The purpose of this section is to introduce cohomological induction and realize V' in terms
of the cohomological induction.
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Notation. We recall some basic definitions and notation from [KV] and [Wal]. We use a
subscript 0 to denote a real Lie algebra. Those without are complex Lie algebras. Consider a
reductive pair (go, K°) where K is a connected compact Lie group. Let gq be the Lie algebra
of K°. Let 6 be the Cartan involution of g, fixing €. Let q = [+ n be a #-stable parabolic
subalgebra of g. Let g denote its opposite parabolic subalgebra. If Z is an irreducible
representation of [, then we put Z% = Z ® A*Pn and

inng = Ll(g) ®q Z.

We will write indZ if it is clear what g and q are. If Z has infinitesimal character Az, then
indZ* has infinitesimal character A\ + p(n). Let

Li(Z) = 1L;(ind Z%)

where II; = (Hg’fg x0)i is the i-th derived functor of the Bernstein functor. Given a (g, K°)-

module W, we set W to be the subspace of K-finite vectors in the conjugate linear dual
vector space of W. Let sy := dim(nN¢). By Eq. (6.25) in [KV] and Theorem 6.3.5 in [Wal],

Lo, (Z) =, (indZ%) = (T*°((indZ*)"))* = I'*0(ind Z%)

where I'*° is the so-th derived functor of the Zuckerman functor of taking K°-finite vectors.
If Z = C, is the one-dimensional character of [, then we denote A4(\) = I'*°(indC%) and it
has infinitesimal character A + p(g).

A positive root system. We now specialize to g = so0(p,q) and K° = Spin(p) x SO(q).
Recall that m = ;%1 and m' = . Let go and € be the real Lie algebras of G and KO,
respectively. Choose a compact Cartan subalgebra hy C €, of gy and positive root system
®* with respect to ho such that the simple roots g; — ;41 for 1 < i < m — 1 belong to so(p),
and g; — g;41 for m+1 < i < m+m’ — 1 belong to so(¢q). The non-compact simple roots

are £, — Ema1 and €1

Let Ao = (1,,,0,/) € V—1b§. Let ¢ = [+ n be the maximal parabolic subalgebra in
g where [ is spanned by roots perpendicular to \g. Then q is f-stable. The Levi factor [
corresponds to the subgroup

L =TU(m) x SO°(1, q)

in G. Here U(m) C Spin(p) is a two fold cover of U(m) C SO(p). Under the adjoint action
of L, the radical n decomposes as

n—= (Cm ® (C1+q EB AQ(@m)

where C™ is the standard representation of U(m) and C'*¢ the standard representation of
SO°(1,¢). The summand A%(C™) is spanned by long roots €; + ¢, for 1 <i < j < m. These
long roots and short roots ¢; for 1 < i < m are precisely all compact roots contained in n.
It follows that

m(m+1) p*—1

so =dim(nNt) = 5 =g

and this number is independent of ¢. N
A maximal compact subgroup of L is L N K° = U(m) x SO(q). However, since our
considerations involve a disconnected group, we also need to consider a slightly larger group
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U(m) x O(q). We view C'"_ in the decomposition of n above, as a natural (so(1,¢q), O(q))-
module. Then, as (I, U(m) x O(q))-modules,

to ~ q+m m
AP = det ) @ det ).

The action of [ is, of course, trivial. Recall that if Z is an (I, U(m) x O(q))-module then,
using the cohomological induction, Z gives rise to a (g, K°)-module

L., (Z) =T (indZ%).

There are two important observations to be made here: First, since indZ* is already SO(q)-
finite, the functor I'*° is simply the so-th derived functor of the Zuckerman functor of taking
Spin(p)-finite vectors. Using the definition and the treatment of I'*° in Chapter 6 in [Wal],

[*0(ind Z*) can be computed by considering indZ* as an (so(p), U(m))-module. Furthermore
since indZ* is an O(g)-module, and the action of so(p) commutes with the action of O(q),
[*0(indZ¥) is naturally an O(g)-module . In other words, L,,(Z) extends to a (g, K )-module.

Let Zy be a one-dimensional (I, U(m) x O(g))-module such that

pt+q

(4) Zy = det 2

u(m)

S0

X det gl(q) .

We can apply the functor L, to Zy. One easily checks that the infinitesimal character of
Ls,(Zy) i pp 4, the infinitesimal character of V.

Lemma 3.1. The (g, K)-module Ls,(Zy) contains the K-type Wy = Tp%lm ® Co(q) with
multiplicity one. It is also the minimal K°-type of Ly, (Zy). In particular, it is nonzero.

We will derive this lemma as a corollary of the proof of Theorem 4.2 in the next section.
Alternatively the lemma also follows from the Blattner formula (see Thm 5.64 in [KV]).

Since the K-type Wy appears in L,,(Z) with multiplicity one, we define £,,(Zy) to be
the unique irreducible (g, K)-subquotient of Ly (Zy) containing W.

Proposition 3.2. The irreducible (g, K)-modules V and L, (Zy) are isomorphic.

Proof. Both representations have the same infinitesimal character p, , and the minimal K°-
type Wy. We showed in [LS] that V is the unique irreducible (g, K°)-module with infini-

tesimal character p,, and minimal K%type Tp%lm ® Cso(q). Hence the two modules are
isomorphic (g, K°)-modules. There are two ways to extend V from a (g, K°)-module to a
(g, K)-module. One differs from the other by the determinant character of O(q). Hence V
and L,,(Z) are the same because they have the same minimal K-type Wj,. O

4. IDENTIFYING O(X)

Let r and s be two integers such that r + s = ¢. Choose a standard embedding of O(s)
into O(q), the second factor of K. Let g; = so(p,r) be the centralizer of O(s) in g. Note
that g is f-invariant. In this section we consider the restriction of V to (g1, K?) x K, where
K = Spin(p) x SO(r) and K, = O(s).

Suppose X = (N[,...,A,) is in A(O(s)) such that ©()\) in (2) is nonzero. Then by (3),

No=0ifi>m= ’%1. In particular, \ can be considered in element in A(p,0) by adding or



DUAL PAIR CORRESPONDENCES FOR NON-LINEAR COVERS OF ORTHOGONAL GROUPS 7

removing some 0’s at the tail. The irreducible (g1, K)-module ©()\’) has a unique minimal
KY-type
N495E1,,

W) =m, ® Cso(r)
Using the #-stable parabolic ¢ = [+n in g, we define q; = qNg;. Write q; = [; +ny. Then
[, corresponds to a subgroup
Ly = U(m) x SO°(1,7)
in G;. For every X such that ©()\) # 0 (or equivalently \; = 0 for i > m) let Z(X\') be an
irreducible L;-module such that the action of SO°(1,r) is trivial and

)\/+ 9= P2—2T‘ 1
Tu(m)

Z(N) =T

as ﬁ(m)—modules. We can apply the functor Ly, for so = dim(¢; Nny) = ’% to Z(X), as
specified in the previous section. Note that L, is in this case also computed by I'*°; the
so-th derived functor of the Zuckerman functor of taking Spin(p)-finite vectors.

Lemma 4.1. Any Spin(p)-type of the (g1, KY)-module L,,(Z(\')) is isomorphic to
T;’+%1m+n

where k is an m-tuple of non-negative integers. The module Ly (Z(XN')) contains the K -type

W(XN') with multiplicity one.

We will prove Lemma 4.1 together with Theorem 4.2 below. One could also verify this
lemma directly using the Blattner’s formula.

Let L, (Z(N)) denote the unique irreducible subquotient of Ly (Z(\')) containing the
minimal K{-type W (\'). We can now state the main result of this section.

Theorem 4.2. The irreducible (g1, K7)-modules ©(N') and Ly, (Z(X)) are isomorphic. In
particular Ls,(Z(N)) is unitarizable and it has K3 -types given by the branching (3).

Remarks. It is interesting to note that L4, (Z(\')) is not always in the good or weakly good
range (see Def. 0.49 in [KV]). Hence it may be reducible. It is of separate interest that
the image of the bottom layer map induces an unitarizable subquotient. The infinitesimal
character of L(Z()\)) is
—p—2

( N+ q 172 T
Hence Theorem 4.2 gives an alternative proof of the correspondence of infinitesimal charac-
ters of so(p,r) and so(s), Theorem 1.2 in [LS].

Lo, Ort1) + Ppetr-

The rest of this section contains the proofs of Lemma 3.1, Lemma 4.1 and Theorem 4.2.
It is inspired by the work of [GW] and [Wa2].

Recall that n; € n. We have a decomposition n = n; + n, such that np = C"™ ® C*® is a
tensor product of standard representations of U(m) and O(s), while the group SO°(1,7) acts
trivially on it. We extend ny to a representation of U(m) x U(s). It is well known that (see
[GoW] and [Ho])

(5) Sym"ny = ZTU ®7’U(S
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where the sum is taken over all partitions p of n of length not longer than min(m,s). (So
every such partition can be viewed as a highest weight for both U(m) and U(s).) We further
restrict the summand TG(S) to O(s)

(6) To@s) = Z TO(s)-

AN

The notation X T p simply means that TC)‘)/(S) is a subrepresentation of TG(S), and the sum is
taken with multiplicities. Note that 7o(s) appears in the restriction from 7y, with multi-
plicity one. Using this notation, we get

" Sy = 3t ©
I

as a sum of irreducible representations of U(m) x O(s).

We now recall the definition of Zy from (4). One easily sees that the restriction of Z5 to
Ly x O(s) is given by

Z§ = det ®csm) ® Cos)
By the Poincare-Birkhoff-Witt theorem,
indZ5 = Un) @ U(ny) ® Z

as L x O(s)-modules. Let U, (ny) denote the natural filtration of U(ny) by degrees. We
define F,, to be the (g1, L1 N K9)-submodule of indZ} generated by 1 ® U, (ny) ® Z5. Hence
{F, :n=0,1,2,...} forms an exhaustive increasing filtration of g; x O(s)-submodules of

indZ:. We will now state a special case of a known fact which is used in proof of the Blattner
formula in [KV].

Lemma 4.3. For every positive integer n, we have an isomorphism of g1 X O(s)-modules

f/fn 1_ZZIHdgl 2)1m®Csolr)®7_O(s)

N

where [ is any partition of n of length not more than min(m,s) and TS/(S) 15 counted with
multiplicity with which it appears in the restriction of T{J‘(S). O

We shall use the filtration F, to compute ['*(ind Z?).
Case 1. We first consider the filtration F,, in the case r = 0 and s = ¢. In particular,
g1 = so(p). Put

Vi) = indg (7o) =),

Tu(m)

q9—p
The infinitesimal character of V(1) is the same as the infinitesimal of 7, R particular,
these infinitesimal characters are pairwise different for different partitions p. It follows that
the filtration F,, splits:

(8) indZf => Y " V(n) @7,

o NTp
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Here the first sum is taken over all partitions u of length no more than m = &= 2 ,

and TO( )
is counted with multiplicity with which it appears in Tg(q).

Lemma 4.4. Let o be a partition of length not more than m. Then V(u) is an irreducible
s0(p)-module.

Proof. Since V(i) is u(m)-finite, any submodule of V (u) must be a quotient of V(i) where
p+ 921, is a weight of V(i). It follows, from the definition of V(u), that any weight of
V(1) is of the form p + (%4)1,, + 3 a; where the ;s are the roots of ny. Since the roots
of ny are of the form ¢; or ¢; + ¢;, we conclude that ' = p + k where s is an m-tuple of
positive integers. However, if k # 0,, then the infinitesimal characters of V(u) and V' (u')
are different (since these are the infinitesimal characters of two different finite-dimensional
irreducible representations of Spin(p)). This shows that V' (x') cannot map to V(u). The
lemma is proved. U

Recall that the Zuckerman functor IV is computed in the category of (so(p), U(m))-
modules. If we apply I'V to both sides of (8) then

0 ) = Y ) 9 el
BN Tp
Since so = dim(ny N &) = m(’zﬂ) = p2_1 by the Borel-Weil-Bott-Kostant theorem,

D7 (V(u)) = 0if j # so and T5(V () = 7‘;;+ 7™ The reader may recognize that we have
essentially followed the proof of the Blattner formula in [KV] to compute K-types of L;,(Zp).
Now we have the following conclusions:

(1) A K-type of Ly (Z) is of the form 7,

L=l " ® 7'8/( ) where Tél( ) appears in the

restriction from T{j(q). In particular, the minimal K-type is Wy = Tp " ® Coq)
which occurs with multiplicity one. It is also the image of the bottom layer map.
With this, we have proven Lemma 3.1.

(2) The module L;,(Zp) is admissible with respect to Spin(p). This also follows from a
very general criterion in [Ko].

Case 2. Now we return to the general r for g; = so(p,r). Consider the filtration F,, in this
situation. We abbreviate

Lip) = nd2 (ZH 7 ™" @ Coepr,).

u(

Then, F,,/F,-1 is a direct sum of L(u) where p is a partition of n of length not more
than min(m,s). By (8), L(u) is a direct sum of various V(y'). In particular, in order to
understand Spin(p)-types of I'*0(L(u)), we must describe u' such that V(i) C L(u). Let
Hm denote the maximal Cartan subalgebra of u(m). Arguing as in the proof of Lemma 4.4,
any b,,-weight of L(u) is of the form p + (%)1,% + >« where the a;’s are the roots of ny.
Since the roots of ny are of the form ¢;, ¢, +¢; or ¢; — ¢; with j > m, any b,,-weight of L(1)
is of the form

(10) u+@%iﬂm+ﬁ
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where £ is an m-tuple of positive integers. The lowest u(m)-type of V(u') has the highest

B,,-weight 1/ + (%)lm. Combining with the equation (10), we see that p/ = p + k if

V(i) € L(p). In addition, L(x) contains a unique copy of V(u) and SO(r) acts trivially on
,U+ 1mn+k

it. It follows that Spin(p)-types of FSO(L( )) are T , here k is an m-tuple of positive
integers, and the K%-type W (u) = 7 T " ® Cgo(ry occurs with multiplicity one. This, in

particular, proves Lemma 4.1.

Lemma 4.5. Let F, be the filtration as in Lemma 4.3. Then T9(F,) = 0 if j # so.
Furthermore we have an exact sequence

0— I(F,_1) = I°(F,) = I'°(F,/Fn1) — 0.

Proof. Let F,, := F, /Fn_1. By the naturality of the Zuckerman functor, we may compute

I F, in the category of (so(p), U(m))-modules. Then F, and F, are direct sums of V(u)’s
in (8). Hence I'V(F,,) and IV (F,) are direct sums of IV(V (u)) and we have shown that these
are zeros if j # sg. Finally we apply the functor I' to the exact sequence

0— Fn1— Fn— Fn—0
to get the long exact sequence. The exact sequence in the lemma follows immediately. [

Lemma 4.6. In the category of (g1, KY)-modules, T*°(F,) is an ezhaustive increasing filtra-
tion of Ls,(Zo) and

D0 (Fa) [T (Faca) = TP/ Fact) = 20 DT (L10) @ 755

wo X

Here the first sum is taken over all partitions of length no more than min(m, s) and 7'8/(5) 185
counted with multiplicity with which it appears in Tg(s).

Proof. This follows from Lemmas 4.5 and 4.3. U

We are finally ready to prove Theorem 4.2, that is, compute ©()\') where X is in A(O(s))
of length not more than min(m, s). We define S(\') as the set of all partitions u of length not
more than min(m, s) such that TG(S) contains 7’8/(5)- Since V' is an irreducible subquotient of
L, (Zy), it follows that ©()') is an irreducible subquotient of L, (Zy), considered as (g;, K?)-
module. It follows that ©()\’) is an irreducible subquotient of I'**(L(yx)) for some p in S(X).
We now need the following lemma.

Lemma 4.7. Let ji be in S(N'). The K?-type W (\') = T;'+%1m
if and only if p=N.

®@Cso(ry occurs in I'*0(L(p))

Proof. We check Spin(p)-types. If W()') is contained in I'*°(L(u)) for some then, as we have
just seen, X' =+ (Ky,. .., Ky) where k; > 0. On the other hand, since TG(S) contains 7'8/(5)7
this is possible only if u = X as desired. O

Since O(\') contains W (\') the lemma implies that ©()\') is an irreducible subquotient of
I'*o(L(X")). This proves Theorem 4.2.
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5. THE SMALLEST REPRESENTATION VT

In this section, we will extend Theorems 2.1 and 4.2 to representations V* and V~. Since
the proofs are almost identical to those in the previous sections, we will only state the main
results.

Let g = s0(p,q) and K = O(p) x Spin(g). Recall that m = 2 and m’ = 4. Let
go and & be the real Lie algebras of G and K, respectively. Choose a compact Cartan
subalgebra by C & of gy and positive root system ®* such that the simple roots &; —&;,; for
1 <i<m'—1belong to so(q) and, g; — g;41 for m’ +1 <i <m+m' —1 and €,y 1, belong
to s0(p). The non-compact simple root is &, — €pr41.

We refer to the notations on cohomological inductions in the beginning of Section 3. We
set Ao = (1,v,0,,) € v/—1h; and we let ¢ = [+ n be the corresponding the parabolic
subalgebra. The algebra [ corresponds to subgroup

L =S0(p) x U(m)

in G. We have sq = m/("gl_l) = q(q8_2). Let Zo be a one dimensional O(p) x U(m/)-module

_(p+q)

Zy = det 3,y @ det

u(m’)

We consider the (g, K)-module L, (Z). It is equal to Aq(\) where A = —E24),. The
following is essentially a result of [Kn| and [T]. The only difference is that we consider K
and not K°. See Section 6 for more details.

Theorem 5.1. Recall that p > q and K = O(p) x Spin(q).

(i) The minimal K-type of Ly, (Zy) is Wo = Copy ® Tq%lm, and it occurs in Lg,(Zy) with
multiplicity 1.

(11) Let V't = L, (Zy) denote the irreducible subquotient of Ls,(Zy) generated by Wy. Then
VT is an unitarizable (g, K)-module. O

The restriction of V* to K = O(p) x Spin(q) is

+ A At Bt Ly
V = Z TO(p) X Tq .
AeA(g+1,0)

. . . . _92 —9 p—4
Its infinitesimal character is (%, S RIRRRTE Thcn N %

5 ) The module V' remains irre-
ducible as a (g, K°)-module. In [LS] we call VT a smallest representation of the non-linear
cover of SO(p, q), and there is also an outline of a construction of V' using Gelfand-Zetlin

bases.

Remark. We note that by an outer automorphism action of the pair (so(p,q), K) on V',
we get another smallest representation V~. All the results in this paper on V*t would
immediately give corresponding results for V'~ via this outer automorphism. Therefore we
will only work with V.

Choose a standard embedding of Ky = O(s) into O(p), the first factor of K. Let g; =
s0(r, q) be the centralizer of O(s) in g. Note that g is f-invariant. In this section we consider
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the restriction of V' to Ky x (g1, K1) where K7 = O(r) x Spin(q).
v+ — Z TC/\)I(S) ® @()\/)

NEA(O(s))

Since O(s) is compact, the right hand side is a direct sum. Furthermore V' is admissible
with respect to Spin(g), so ©()\’) is an admissible (g;, K;)-module.

The K;i-types of ©()\) can be computed using branching rules similar to (3). More pre-

ar ’ . . .
cisely, suppose §; = TS(T) ®7';\+ 2 g g Ki-type of ©()X). Then 6; has to lie in the K-type

o= Tg(p) ® T(;\+%1m, of V. The multiplicity of ¢ in O(\') is given by

(11) dime Homp, xos) (51 ® TC’\)/(S), 5) = dim¢ Homoryxo(s) (Tg(r) ® 7'6\/(3), T(’\)(p)> :

By the right hand side of (11), ©(\') is nonzero if and only if nonzero entries of X" is not
greater than 2. The minimal K{-type of ©(X') is

/4 P—4q
71m/

A
(12) W(X) = Csom ® 74
We compare the next theorem with Theorem 2.1.

Theorem 5.2. Recall that g, = so(r,q), Koy = O(s) and K = SO(r) x Spin(q). Let O(1)
be the lift of an irreducible representation T of Ky. Then
(i) The (g1, KY)-module ©(X') is either zero or irreducible.
(ii) Suppose O(N') and ©(n') are nonzero. Then O(XN) and O(n') are isomorphic (g1, KY)-
modules if and only if N = 1.

Part (i) follows the same argument as that of Theorem 9.1 in [LS]. We will omit the proof.
Part (ii) is a consequence of (12) because if X # 7/, then ©()\) and ©(n') have distinct
minimal K%-types.

Cohomological induction. We would like to identify ©()\’) as a subquotient of a cohomo-
logical induced module.

Suppose O(\') is nonzero. Then the number of nonzero entries in A’ is not greater than
m/. Let g1 = qN g, be a theta-stable parabolic subalgebra of g;. Its Levi subalgebra [;
corresponds to a subgroup

Ly =SO(r) x U(m')
in G1. Let Z(X\') be an irreducible Li-module which is trivial on SO(r) and such that the
restriction to U(m’) is
N 4 R=g=2r

ZN)y =gt

u(m/)

We consider the cohomologically induced representation L, (Z(\')). Its minimal K-type
is W(X) in (12) and it occurs with multiplicity one. Let L, (Z()\')) denote the unique
irreducible (g1, K7 )-subquotient of L (Z(\')) containing W (X'). The next theorem is proved
in the same way as Theorem 4.2.

Theorem 5.3. The irreducible (g1, K7)-modules ©(N') and Ly, (Z(X)) are isomorphic. In
particular, Ls,(Z(N')) is nonzero and unitarizable. O
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6. ON RESULTS OF KNAPP AND TRAPA

The aim of this section is to relate our results to some results of Knapp and Trapa. Assume
that = is an integer and r > ¢. For every non-negative integer s, Knapp [Kn| defined an
(so(r,q), KY)-module 7! as a certain (naturally unitarizable) subquotient of A4(\) where
q="I[+n, [=u(m)+so(r) and

A= (ulm,,om) _
2 2

The module 7, contains the minimal K{-type of Ay4(\). Trapa showed in [T] that 7, is
irreducible. We now focus our attention to nonnegative integral values of s so that A4(\) is
a faithful representation of K7. This implies that *=—% € Z + %, that is, r + s is odd.

Consider W = V7 and the dual pair (g1, K1) x O(s) where g; = so(r,q), K1 = O(r) x
Spin(q) and p = r + s. Let ©(0) denote the theta lift of the trivial representation of O(s).
Then ©(0) is an (so(r, ), KY)-module. The next theorem follows from Theorem 5.3.

Theorem 6.1. Let r and s be two positive integers such that r > q and p = r + s is odd.
Then the (so(r,q), KY)-module ©(0) is isomorphic to . O

We note that Knapp computed K?-types of 7. His computation shows that K?-types of
7. coincide with KV-types of ©(0). Hence this paper gives an independent proof of the fact
that 7/, is irreducible (see [T]).

An interesting way to formulate the above result for odd r is as follows: Let 7(, 7}, ... be
Knapp’s family for so(p,q) , where p > ¢. Then 7, = ©(0) where ©(0) is the theta lift of
the trivial representation of O(2a). Again, we note that Paul and Trapa studied how 75, ,
appear in the Howe correspondence [PT].
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