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Kirillov's famous formula says that the characters 1: of the irreducible unitary 
representations of a Lie group G should be given by an equation of the form 

Z (exp(x)) = p(x) -  1 ~ ei~a, :,) dp~(2) ((b) 

where t?=Q(Z) is a G-orbit in the dual 9" of the Lie algebra g of G, #~ is 
Kirillov's canonical measure on f2, and p is a certain function on g, namely p(x) 
=de t  1/2 {sinh(ad(x/2))/ad(x/2)}, at least for generic orbits ~ [10]. 

This formula cannot be taken too literally, of course (the integral in (qs) is 
usually divergent), but has to be interpreted as an equation of distributions on a 
certain space of test function on 9. To make this precise, denote by 9 ~ an open 
neighbourhood of zero in 9 so that exp: ,q--+ G restricts to an invertible analytic 
map of g0 onto an open subset of G. For our purposes, the formula ((b) should 
be interpreted as saying that 

tr ~ q5 (x) ~(exp(x)) dx = ~ {~ e i{~' x) dp (x) p(x)-  ~ dx} dp~(2) (q~') 
.q .Q g 

for all C Oo functions (/5 with compact support in go. (Here = is the representation 
of G with character Z.) 

Of course, Kirillov's formula does not hold in this generality. It is in fact a 
major problem in representation theory to determine its exact domain of 
validity. In this paper we shall show that Kirillov's .formula holds Jbr the 
characters of a reductive real Lie group which occur in the Plancherel formula. 
Actually, we shall deal in detail only with the discrete series characters. The 
formula for the other characters can then be reduced to the formula for the 
discrete series characters by familiar methods (Duflo [3]). Kirillov's formula for 
the discrete series is a consequence of a formula relating the Fourier transform 
on g with the Fourier transform on Caftan subalgebras of compact  type by 
means of the invariant integral. This is the form in which Kirillov's formula will 
be proved. 
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208 W. R o s s m a n n  

The proof depends of course heavily on the fundamental results of Harish- 
Chandra [5-7]. (These results are conveniently collected in Varadarajan's book 
[14], which will serve as standard reference for this paper.) In fact, it follows 
from Harish-Chandra's results that the characters in question are of the form 

x(exp(x)) = p(x)- 1 ~ ce ~ e i{'<x) d/~n(2 ) 

where Q runs over a finite set of orbits and the ce's are complex constants. In 
this context the formula (q~) simply says that ce is in fact zero, except for a single 
orbit f2 for which it is one. The amount of effort and machinery involved in 
proving this simple assertion does seem somewhat surprising. An important 
ingredient in the proof is a Bochner type formula for the Fourier transform on a 
Euclidean space with indefinite metric, due to Strichartz [13]. 

Special cases of the result given here have been known for some time: the 
case when G is compact reduces essentially to Weyl's character formula together 
with results of Harish-Chandra and has been worked out by KirilIov himself 
[10] ; the case when G is complex semisimple by Gutkin [4] ; and the case of the 
principal series of a real semisimple group by Duflo [3]. 

There is of course also the extensive literature on Kirillov's theory for 
nilpotent and solvable Lie groups, starting with Kirillov's original paper [9]. 
(Cf. [1, 2], for example, for the solvable case.) Generalizations to other groups 
have been studied by Kirillov in [10], and by Lipsman in a recent paper [11], in 
which he also poses the problem of establishing Kirillov's formula for the 
characters of the discrete series of a semisimple Lie group. 

We shall deal with the following kind of group, familiar from the work of 
Harish-Chandra (called "groups of class .y~" in [14]): 

(1) G is a real Lie group whose Lie algebra 9 is reductive. 
(2) G has only finitely many connected components. 
(3) Ad(G) is contained in Int(9c). 
(4) The center of the connected subgroup with Lie algebra [g, g] is finite. 
Recall that such a group has a discrete series precisely when it has a compact 

Cartan subgroup. This we assume to be so, and denote by T a fixed compact 
Cartan subgroup of G. The complexified Lie algebra t e of T is then a Cartan 
subalgebra of ge, whose Weyl group will be denoted by W e. We write W for the 
subgroup NG(T)/T of W e. Fix once and for all a system of positive roots for t e in 
ge and denote by ~: t e--+ I17 the product of these positive roots. The set of regular 
elements in t is then tr={tetl~(0=l=0}. If g, denotes the (open) set of regular, 
elliptic elements in g, then the map G/T x t~--+g~, (gT, t)--+g.t is onto, locally 
(analytically) invertible, and has fiber {(gwT, w-~. t)[ we W} above g-t. 

If ~b is a function on g, we denote by M t ~b the (partially defined) function on t 
given by 

Mtqb(t)=lr(t) 5 (a(g. t) dg (1) 
G 

whenever this integral converges. The integral here is taken with respect to Haar 
measure on G normalized so that ([14], Lemma 2. p. 37): 

j r  In(t)l 2 {j O(g" t)dg} dt (2) 
ge It G 
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when the Lebesgue measures on g and on t are normalized as indicated below. 
F r o m  the regularity properties of the map G/T • t r ~ ~qe it is clear that  M t maps 
the space D(,qe) of compact ly  supported C ~ functions on ~qe (with its usual 
topology) continuously onto the space D(tr) w of W-anti-invariant compact ly  
supported C a' functions on t r. (A function 4' on t is W-anti-invariant if z(w)4' 
= ~(w)r for all we W; here ~(w) = det(w: t ~ t) and ~(w) 4'(t) = 4' (w- 1. t).) 

We fix a G-invariant inner product  ( , ) on g which is negative definite on t 
and use it to define the Fourier  transforms on g and on t: 

r ,  4' (x) = ~ e'~X'"~ 4' (y) dy. (3) 
g 

F t 4'(t) = ~ e itt' ~) 4'(s) ds. (4) 
t 

The Lebesgue measures on .q and on t we assume normalized so that F~ 4'(x) 
= 4 ' ( - x )  and F~ z 4 ' ( 0 = 4 ' ( - 0  for rapidly decreasing functions 4'. We also extend 
F~ and ~ to transforms of  tempered distributions in the usual way. 

Set D(g~)--~D(,q,,),/)(t~)=FtD(t,) , and write b( t , )w=FtD(t , )  w for the W-anti- 
invariants in D(t~). With this notat ion the main result of  this paper can be stated 
as follows. 

Theorem. M t maps O(ge) onto D(t~) w and/)(g~) onto/)(t~) w. This map M t satisfies 

MtFo 4'= y Ft M, 4' 

Jot all 4'~D(g~) and all 4'~l)(,qe). Here 

where ~ is a subalgebra of g containing t Jot which fc~ [g, g] is maximal compactly 
embedded in [.q,,q]. (So dim(g/f) is the maximal dimension of a subspace of g on 
which ( , ) is positive definite.) 

The first step in the p roof  of  this theorem is the following lemma, which is an 
elaborat ion on a result of  Har i sh-Chandra  ([14] Thin. 7, p. l l l ) .  

Lemma A. There is a .function c: Wr so that 

M,F~ 4' =(  - 1)�89 ~ C(W) T(W) F t M t 0 
w'~W~ 

Jbr all 4'6D(~e), and so that 
(1) c(w)=c(w -1) for all w~Wr 
(2) c(v. w)=e,(v)c(w) for all v~W, w~Wr 
(3) c , ~: = e w = ~ , c  Jbr some function ~ : Wr ~ ~ which also satisfies (l) and (2). 
Here 

c,~(w)= ~ c(wv-t)~(tO. 
v~W~ 

Cw(W)={o(W) if w ~ W  
if wCW. 
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To prove this lemma we introduce for to t  r the (tempered) distribution #t on 
g defined by 

(~,, ~ ) = ~ ( t )  ~ 4 , ( g - 0 a g  (5) 
G 

and denote by 0 t = F, p, its Fourier  transform. According to a theorem of Harish- 
Chandra  0 t is a locally integrable function whose restriction to t r is given by the 
formula 

Ot(s)=rt(s) -1 ~ c(w,t)e i<w'''s> (6) 
wEW C 

where for fixed we W+ t-+ c(w, t) is a locally constant  function on t, ([14 Thin. 7], 
p. 111). N o w  these functions are actually constant  on all of t. To see this we 
show that 

rt(s) O,(s) = ~(t)  O s(t) (7) 

for all s, t in t r. This wilt be sufficient because in view of  (6) the equat ion (7) says 
that  

Z c(w,t) e'<w''~>= Z c(w,s) e 'e~ '~  
w+W~ w~W c 

= Z C ( W -  1, S) C i(w't's) 

weW~ 

for all s,t~tr. But for fixed t~t,  the functions s ~ e  i<wt's), w~W~, are linearly 
independent  (even after restriction to a connected component  of  t~, where 
s ~ c ( w , s )  is constant). So c (w , t )=c(w- l , s )  for all s , t ~ t ,  i.e. c(w,t)=c(w) is 
constant  and c(w)=c(w-1).  

To prove (7) it suffices to show that  

7z(s) O,(s) M t cb(s) M t tp(t) ds dt 
t •  

= ~ 7z(t)O~(t)Mtc~(s)Mttp(t)dsdt (8) 
t •  

for all ~b, ~p~D(ge) (because zt(s)Ot(s) and ~(t)Os(t ) are W-anti-invariant in s and t, 
and M t maps D(ge) onto  D(t,)w). For  this we use formula (2) and the fact that  
[rt(t)l 2 = (  - 1) -: dim<g/~ re(t) 2 to compute  

7z(s) Ot(s ) M t qb(s) M t ~b(t) ds dt 
t x t  

= ~ {~ ~ ~z(s) 20t(s ) ~b(g-s)dg ds} M t ~p(t) dt 
t t G  

= ( - 1) + ~m<"/' j" {.f O,(x) ~(x) ax} M~ O(t) at 
t g 

= ( - 1) + ~i'n<~/' S {~(t) j" F, 4 , ( g  t)rig} m~ r  
t G 

= ~ ~ ~ F. q5 (g. t) ~b (h. t) lrt (012 dg dh at 
t G G  
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= 5 j j F~ q~(gh, t )~(h ,  t)I~(t)[ 2 dh dt dg 
G I G  

= j [ Fq qS(g. x)O(x)dxdg 
G.q 

=5 J ei<~'~'Y'(~ " 
GgL• 

Since this expression is symmetric  in ~b and tp we get (8). 
Next we show that the function c: W~--+C defined in this way satisfies the 

conditions (1)-(3) of  the lemma. (1) we already know. For  (2) we note that it,,., 
=~,(v)tt, for all v~W, which is immediate from (5). Therefore 

O,,.,(s)=e(v)~(s) -1 ~ c(w)e i("'''~. 
w E W~ 

But also 

0,.,+ = ~z(s)-I  y ,  c (w)  e *~'';'s~ 
w~W~" 

= TC(S)- 1 s C(WU- 1) ei( ....... ) 

Compar ison  of these formulas gives that c(wv-1)=~(v)c(w) for all v~W and 
weWr hence also c(vw)-e(v)c(w) in view of (1). To prove (3) we use the fact 
that  the matrix [c(uv-1)], u, veWr has rank ]We/W[ ([14], Thin. 20, p. 121), 
which is precisely the dimension of the space of functions a: Wr satisfying 
a(v.w)=e(l~)a(w) for all v~W, w~Wr So the map a ~ c , a  defines a linear 
au tomorphism of this space of functions. In particular there is a unique such 
function ~ so that c , 6 = ~  w. This/~ clearly also satisfys (1). 

Finally it remains to be shown that this function c satisfies the first assertion 
of the lemma. For this we use formula (2) to compute:  

M,V,q (a(t)=(#,,F, (a) 

=(0, , r  

=S J" O,(g..~) 4,(g. s) dg I,~(s)l ~ ds 
tG 

= ( - 1 )~ ~'"~.~/'~ J = (s) 0, (s) { = (s) J r ( g  s) d g} d s 
[ G 

= ( -  1)~dim~"/'' ~, c(w) jei~'~"*'Mt$(s)ds 
w~Wr t 

= ( -  1) -~"~-~;*~ y, c(w)F~M~(w.t). 
w~W~2 

This completes the proof  of the lemma. 

Write D'(ge) for the topological  dual of D(,%) (i.e. for the space of distri- 
butions on -qe), and /5'(,q~) for the dual of D(~qe)" The map ~:D(~q,,)~lS(,q~) gives 
F~:/5'(ge)--,D'(,q~). (I write A' for the transpose of a continuous map A between 
topological  vector spaces.) F~ clearly maps /5'(~e) ~ onto D'(.%) G (the superscript 
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G denot ing the G-invariants). Similarly we have a m a p  F(:/) '( tr)  ~ D'(tr) mapp ing  
/)'(tr) w onto D'(tr) w (the subscript  W denot ing W-anti-invariants).  Finally, the 
m a p  Mr: D(ge) - ,  D(tr)w, /5(9o) -+/)(tr)w gives rise to a m a p  M't:D'(tr) w - ,  D'(ge) G, 
/) '  (t,)w -,/~'(9e) ~. No te  that  if ~b E D'(t,)w is a function, so is M' t 4) e D' ( 9 S :  M't 4>(x) 
=~( t )  lqS(t) if x = g . t  with g e G  and t~t  r. The next l emma shows how certain 
distr ibutions behave under  these maps :  

L e m m a B .  (1) I f  h is a W-anti-invariant, harmonic polynomial on t, then M'th 
extends to a G-invariant, harmonic, tempered distribution H on 9. I f  h is 
homogeneous of degree deg(h), then H is homogeneous c~f degree deg(h) 
- �89 dim (9/t). 

(2) For h as above 

Fq M't(rh) = ( i)~ d i m ( g / t ) (  _ _  1)~ dim (g/~) MI F( (rh) 

on 9~, for every function r o f  the form r(t)=f([tD, f + C ~  ((0, ~)).  

By " h a r m o n i c "  is meant  "annihi la ted  by the Laplacian Ag or A~ of the inner 
p roduc t  ( , ) on 9 or  on t"; and [t[=1(t,t)[ ~, 

The  assert ions of  the l emma should be unders tood as follows. In (1) we think 
of h as an element of  D'(tAw so that  M'th is in D'(gr ~. In (2) we think of rh as an 
element  of/) ' ( t~) w so that F~ M't(rh ) and M' t F t' (rh) are both  in D'(9 S .  

To  prove  this l emma  we denote by h for the m o m e n t  any W-anti- invariant  
polynomial  on t. Wri te  D h for the constant  coefficient opera to r  corresponding to 
mult ipl icat ion by h under  F t. Now,  according to a result of Har i sh -Chandra  
([14] Cor. 24, p. 50), the formula  

~ b - ,  lim D h M t ~b(t) 
t ~ 0  + 

defines a tempered  distr ibution on 9. (Here t - , 0  + means  that  t goes to zero in 
the positive Weyl chamber .  Any other  Weyl chamber  would also do.) We can 
therefore define a t empered  distr ibution v h on 9 by setting 

( - -  1)~ dimtg/*) 
(vh,~) ~ d(W) l im DhZ(W)Mt~)(t ). 

[Wl w+W~ ,~o+ 

Let H = Fg V h be its Four ier  t ransform. 
Then H is a tempered,  G-invariant  distr ibution on 9, and I claim that  H 

coincides with Mih on 9~. In fact, if q~D(9~), then 

(H, d))=(v h, Fg r  

( -  1)+ dimC~;t> 
- ~ ~ ( w ) l i m  Dhz(w)MtF~qS(t) 

IWl ~ w ~  , ~ o +  

1 
= ~ g(u)c(V)DhZ(U)Z(v)CMt(~ 

IWl ..... we 

(by L e m m a  A . - T h e  limit becomes evaluat ion at t = 0  because F t M t qSe/)(t~) w is 
C ~ on all of  t.) Thus  
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1 
(H, 4)) = ~ .,,~v~: ~(u) c (v) D h r (u . v) F t Mt 4)(0) 

1 
-- 2 c*c(W)Dh'C(w)FtMt4)(O) 

1 
- ~ c,(W)Dhr(W)FtMt4)(O) 

IWl w~W 

= D h F t m t 4)(0) 

= F t h M t  0(0) 

= (h, M, 4)) 

= (M', h, 4)). 

So H does indeed coincide with M' t h on ge- Moreover,  if h is homogeneous  
of  degree deg(h), then H is clearly homogeneous  of  degree deg(h)-deg(r t )  
= d e g ( h ) -  �89 dim(g/0. 

To prove that H is harmonic  when h is we argue as follows. Let P be any G- 
invariant polynomial  on g, p its restriction to t, and D e (resp. Dp) the cor- 
responding constant  coefficient operator  an g (resp. on t). For  any rapidly 
decreasing C ~ function 4) on g we have: 

(D e H, 4)) = (Dp F, v h, 4)) 

= (v h, PF.q 4)) 
( _ 1)21 dim(g/t) 

-- ~ g(W)lim DhZ(W)MtPFq4)(t) 

( - 1)~  d~m~/,~  
-- IWl ~ ~(w)lim Dh~(W)pMtF~4)(t ). 

w ~ W ~  t ~ 0 +  

Now one easily verifies that for any two polynomials  p,q on a Euclidean space 
and any C ~ function 4) one has 

D qtP 4)}= D q, 4) + ~ 

where q'=Dpq and ~ is a function (defined by this equation) which satisfies ~(0) 
=0.  We would like to apply this observation to the terms Dnr(w)pMtFg4) in the 
above sum. N o w  M t Fq 4) need not be C ~ on all of t, but its partials do extend to 
cont inuous functions on the closure of any fixed Weyl chamber  ([14] Thin. 23, 
p. 50). F rom this one can conclude that the function ~ on t r defined by 

DhPMtFg4)=Dh, MtFo4)+ ~ (on It) 

h'=Dph 

still has the property that ~b(t)-,O as t - , O  +. (By subtracting a suitable poly- 
nomial from M t Fq4) it evidently suffices to see that a function f on t r whose 
partials up to sufficiently high order all vanishes as t - , 0  + has the property that 
D h p f = D h , f + g  where g(t)- ,O as t - , 0  +. But this is clear, s i n c e - f o r  fixed h , p -  
g is a linear expression in the partials of  f with polynomial  functions for 
coefficients.) So the formula for DeH becomes 
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(DeH, O)=const. ~ ~(w) lim Dhwz(w)MtF~(o(t ) 
w ~  Wr t ~ 0 + 

where h w = D~w)ph. In particular, for P(x)=(x, x) we have p(t)=(t, t), Dp = Ag, D, 
= A t. So if h is harmonic,  then h w = 0 for all we We and consequently (A~H, c~)=0 
also. 

This proves the first part  of  the lemma. For  the second part  we need 
Strichartz 's extension of Bochner 's  formula for the Fourier  t ransform of a 
distribution of the type "radial  x homogeneous  ha rmonic"  for Euclidean spaces 
with indefinite metric [13]. We therefore introduce the following notat ion 

E = I R "  with inner product  

2 .. 2 (n + + n -  =n), (x,x)=x~+'"+x.~+-x.++l- "-:%++~ 

Ixl=l(x,x)lL 

E_+ = {x~EI + ( x , x ) > 0 } ,  
(?2 (~2 ~2  

A ~ - 1  -'~- ' '" -} ~ 2 2" 
G X n + ( ~ X  n 

We define the Fourier  t ransform F on E by 

F (a(x) = ~ e w''') 4(Y) dy 
E 

and assume the Lebesgue measure on E normalized so that 

F2 (o(x)=r x). 

We let IR • operate on functions on E by setting 

z (a) q~ (x)  = 4~ ( a -  i x)  

for aelR • and ~ b : E ~ C .  We extend this action to distributions on E by 
requiring that 

('c(a) qS, r(a) O) = lal"(qS, 0) 

for distributions q5 and test functions O. With  this notat ion we can state: 

Striehartz 's  Formula.  Let ~ be a tempered distribution on E which satisfies 

A4~=0, 

r(a) q5 = lal- ~ sgff(a) q5 

for some aeq~ and e = 0 ,  1 (identically in a~lR • Let O be a function supported on 
E+_ of the form 

O(x)=f(lxl) for xeE+ 

with f 6  C~ ((0, ~)). 
Then the restriction to E+_ of the Fourier transform of the distribution tp ~9 is 

given by the formula 
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F(0~b)=~q~ (on E+) (9) 

where ~ is the function on E• defined by 

~ ~ ( TC 

O ( x ) = ( i )  ! t c o s  ~-(n; +a+c.)J~(Ixlt) 

�9 1I" _._ t - - s , n ~ ( n  +cr+c.)Y=(txlt) .f(t)lx{ ~t~+*dt. (10) 
J 

Here  ~ = � 8 9  and J~, Y= are the usual special functions denoted by these 
symbols.  The  assertions are to be taken in the sense that  either the upper  sign or 
the lower sign in the symbols  _+, g is consistently chosen throughout .  The 
formula  differs from the one in [13] by a factor of  (2g) n/2 because of different 
normal iza t ions  of  the Lebesgue measure  on E. Strichartz also requires that  ~b be 
a C ~ function on E+,  but  this superfluous since on E+ a homogeneous  
ha rmonic  distr ibution is a limit (in the distr ibution sense) of  homogeneous  
ha rmonic  C~*'-functions (in fact of  ha rmonic  analytic functions, as one sees from 
L e m m a  3(a) of [12]). 

We apply this formula  as follows. First we take E = t  with its inner product  
( , ). For  q5 we take a homogeneous  harmonic  polynomia l  h on t and for ~ a 
function r(t)=f(lt]) as in the lemma.  Then on t'--{0}, Fdrh)=?h, where ~ is the 
function defined at x e t \  {0} by taking the lower signs on the rhs of (10) and 
substi tuting 

n + = 0 ;  a = d e g ( h ) ;  g - d e g ( h ) m o d 2 ;  ~ = � 8 9  

This gives (for x e t \  {0}): 

r(x) =(- - i )  deg(h) J~(Ixl Of(t)Ixl ~t =+' dt. 
0 

Next  we take E = g  with its inner product  ( , ). For  4) we take a ha rmonic  
distr ibution H (homogeneous  of degree deg(h) - �89  as in part  (1) of the 
lemma,  and lor 0 the function R on E = 9  defined by R(x)=f(Ixl) (f  as 
above)�9 Then on g , Fg(RH)=RH, where /~ is the function defined at x e g  by 
taking the lower signs on the rhs of  (10) and substi tut ing 

n + = dim (gfl); ~r = deg(h) - �89 dim (g/t); 

e, - deg(h) - �89 dim (g/t) mod  2; 

c~ = �89 dim(t) + deg(h) - 1, 

This gives (for x e q  ): 

/ ~ ( x ) = 7 ( - i )  aeg(h) J~(lxlt)f(t)lx]-~t~+ldt 
O 

where 

= ( i ) ~  dimt~/O ( _ 1)  ~ dim (,q/f). 
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Since c~ has the same value for g and for t we find t ha t /~=7 ~  on t'-. {0}. 
We now use the fact that ge is a subset of g_ and the relations 

M'l(rh)=RM't(h)=RH (on ge), 

MI(~h)=?-I RM;(h)=? -1RH (on 9e) 

to compute: 

M I F~'(rh) = M;(?h) (on ge) 

=7-1fill  (on .qe) 

=7-1Fs (on .%1 

=7-1Fs (on ge)" (11) 

This finishes the proof of Lemma B. 

To complete the proof of the Theorem we compare Lemma A with Lemma B 
to find that (notation as above, 6=(-1)~d~m(g/O): 

M'tFt'(rh)=6[W[ -1 ~ C(w)F~M'tz(w)'(rh) (12) 
w e  W ~  

(by taking transposes in Lemma A); but also 

MI Ft'(rh)= 7-1F'.q M't(rh), (131 

where (12) and (13) are understood as equations between distributions on g~. 
Now by (11) these distributions are actually functions on g~, namely 

MiF((rh)=? -1RH, 

M't(rh ) = RH. 

So if we equate the rhs of (12) and (13) and restrict to t~ we get 

761Wt -1 ~ ~(w)'c(w)fh=fh. 
w e Wir 

Since r is radial (hence We-invariant) this shows that 

73 
]WI f ~ ~(w) r(w) h=f h 

as functions on C. Thus 

73 
I WI ~ g(w) r(w) h = h (14) 

for all W-anti-invariant harmonic polynomials h on t. Since every polynomial on 
t is a sum of polynomials of the form p(x)=g((x, x)) h(x) with h harmonic we see 
that (14) holds for all W-anti-variant polynomials h on t. So the operator 

73 ~ ~(w)z(w) maps the polynomials on t onto the W-anti-invariant poly- 
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nomials  and leaves the W-anti-invariants fixed. This means  that  this opera to r  is 
the W-projection onto the space of W-anti-invariants,  i.e. 

Y~ y~ ~(w) t(w)= 1 

C o m p a r i n g  coefficients of  r(w) shows that  

Equat ion (3) of L e m m a  A now gives 

I :=-- a(w) if w e W  
c(w)=]lWl (15) 

[0  if wqIW. 

Substi tut ing this formula for c(w) into the equat ion in L e m m a  A completes the 
p roof  of the Theorem.  

As a consequence of the theorem we get: 

Corollary. The Jormula (Rt,;b , M, O)=(qS, t)) defines a linear isomorphism R t oJ 
O'(g,,) G onto D'(tr)W and of/)'(g~,) 6 onto/)'(t~) w. This map satisfies 

for all (~D'(g,,) G and all qS~/)'(,q,,) G. 

The fact that R t is an i somorphism of D'(,q,,) (; onto  D'(t~) w is a well-known 
consequency of the regularity propert ies  of the map  G x t ~ %  ([14] Thm. 3, 
p. 25). The  other assert ions then follow from the theorem. 

Another  consequence of the theorem is the following: 

Corollary. The Fourier trans'Jorm of the distribution #,(t~tr) on ,q defined by 

(~,, oh) = re(t) j" O(g t)~tg 0 5 )  
G 

is the unique tempered, G-invariant eigendistribution (necessarily a function) 
whose restriction to t r is given by 

O,(s)=~(s) 1 ~ ~:(w)e,l..-s.,L 
u,~W 

tr 1)~dim~n!l)[W 1 I .  

This is immedia te  from equations (6) and (15) together  with a wel l -known 
result of Har i sh -Candra  ([14] Thin. 16, p. 119). 

The significance of the distributions 0 t lies in the fact that  they are essentially 
the discrete series characters  in exponential  coordinates.  To  make  this precise, 
let c o be an open ne ighborhood  of zero in the center c o f g  on which exp: c ~  
is an invertible analytic m a p  onto its image. Write [g, ,q]0 for the set of  elements  
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x of  [9 ,9]  for which the eigenvalues )~ of  ad(x) satisfy I lm(2) l<n  and set 90 
= co+ [g, 9]o. go is an open G-stable ne ighborhood  of zero in 9 and exp: 9 ~ 
is an invertible analytic map onto  its image ([14] Cot. 6, p. 194). This map 
allows us to identify distributions on exp (9o) with distributions on 90. 

Next, let z: T ~ I E  be an irreducible character  of T and write the differential 
of  r in the form dr :  t ~ i l R ,  s~deg(r)( i t -r ,s) ,  where r is the half-sum of the 
positive roots. Assume that  z is regular, i.e. that  t is in 1~. deg (z) is the degree of 
z (which may be >1,  since T need not  be abelian). According to Harish- 
Chandra ' s  construction there is a discrete series character @ associated to r 
which satisfies 

@ (exp (x)) = deg (r) (i) ~ dim (g/t} I W l/;(t) p ( x ) -  10t (x) (16) 

as an identity of distributions on 90. Here e(t)=sgn(~(it)) ,  p(x) 
=detl/2{sinh(ad(x/2))/ad(x/2)}, and Ot=Fgl~ ,, as before. [Fo r  the definition of 
O~ see [14] Theorem 1, p. 244 and Theorem 8, p. 443.] I have written z for 
Varadara jan 's  b*, O~ for his Oo~b,), and used the fact that ~(exp(s)) 
=deg(r)d i' . . . .  ). (16) is a special case of  equat ion (14) in Lemma 7, p. 248 of 
[14],  namely the case when b =  1 in T and Q(bl=exp(g~ 

The relation (16) is essentially Kirillov's formula for the discrete series 
characters. To see this we need to recall the construct ion of  Kirillov's canonical  
measure #~ on an orbit ~. First define a skew form B~ on the tangent space T~ O 
= a d ( g ) x  for each x in ~ by the formula B~(u, v)=(x,  [y, z]) if u=ad(y)x and v 
= a d ( z ) x  for some y, z in g. As this form is nondegenerate  one can define a 
volume element in TxQ in the usual way: assign the volume [detB~(ui, uj)l ~ to 
the parallelepiped spanned by a basis {ui} of TxO. Having defined a volume 
element in each tangent space, we get a smooth  measure on f2, which is easily 
seen to be G-invariant. For  reasons which will become clear shortly we multiply 
this measure by the constant  (2 ~z) -~a~m(~/' to arrive at Kirillov's m e a s u r e / ~ .  

On the other hand, for t in t~ we have the G-invariant measure v, on G. t 
defined by 

f(x) dv,(x)= ~ f(g. t)dg. 
G ' t  G 

To compare  v t with #~ we note that  the invertible analytic map G/T 
x t ~--,ge(t + ~ t ,  a fundamental  domain  for W) transforms measures according 

to the formula 

f (x)dx=lWI ~ ~ f(y)dvt(Y)l~(t)[a dt. 
ge [+ G ' I  

So if we write d~ v t for the volume element of  v, in the tangent  space ad (g) t = l • 
of  ~ at t (t z the subspace of g or thogonal  to t with respect to ( , )), then the 
decomposi t ion  g = t  •  of g corresponds to the decomposi t ion dx 
=[WL [Tr(t)[ z dtvt" dt of dx. Thus d~v t differs f rom the volume element of the 
metric ( , )  in t I by the factor (2re) ~aim(~/t)[W[-ll~(t)[-z. (The factor 
(2re) -~alm~/~ comes from the normalizat ions of  dx and dt in terms of  Fourier  
transforms.) This means that  d r v t assigns the volume 

(2 g)-  ~ din,(g/t) [ W [ - I I/1;(t)[- 2 ]det (x i, xj)l ~ 
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to the paral lelepiped spanned by a basis {x~} in t • C o m p a r i n g  this with the 
volume 

(2 ~)-~aim('qmldet B,(xi, xi)[ ~ 

=(2  =)-  ~dlm(gmldet (t, [ a d . ( t ) -  1 xi ' ad~,(t)- ' Xa])l ~= 

= (2 =)-  ~ dim('q/t)l~(t)l- 1 Idet (x i, xj)l ~ 

assigned to this paral lelepiped by the volume element of  pe,  we get that  

~-- Iw117t( t ) l  v, 

= I WI e(t) (i)- ~ dim(~q/t) ,/2t 

where p~ is defined by (5) and e ( t )=sgn : r ( i t )  as before (so that  I~(t)l=[Tr(it)l 
= ~:(t) ~r(i t) = e.(t) (i) ~ dimCqm ~(t).) Substi tut ing into (16) using 0, = Fg p~ we find that  
O~ = deg (r) F~/~o on go. So if we write 7r for the discrete series representat ion with 
character  O~ and use the use the nota t ion  int roduced above we get the 

Character formula for the discrete series of  groups of type J f  : 

tr ~ q~(x) 7z(exp (x)) dx = deg (z) ~ {~ e "~' x) ~b(x) p(x) - I  dx} dp~(2) 
.q .Q g 

for all C "~ functions 0 with compact support in go. 
One should note that  this formula  determines the characters  O~ only on the 

open subset exp(g~ of G. In fact it may well happen  that  different irreducible 
characters  z of T have the same differential, so that  different O~'s may  cor- 
respond to the sqme 0,. If  G is connected,  however,  then so is T, and this 
si tuation cannot  arise. 

Note  also that the formula  differs f rom (4~) in the in t roduct ion  by the factor 
deg(z). This kind of extra factor first appeared  in a paper  of  Kaalgui  [-compete 
rendus 284 (1977), p. 531]. 

We now turn to the other characters  which occur  in the Plancherel  formula. 
F r o m  Har i sh -Chandra ' s  work  one knows that  the irreducible representat ions of 
G which occur in the Plancherel  formula  are induced f rom cuspidal parabol ic  
subgroups  [8]:  If P is a cuspidal parabol ic  in G with Langlands  decomposi t ion  
P = M A N ,  choose a discrete series representat ion cr of M and a regular unitary 
character  v of A to define a representat ion ~ . ~  of P by setting ~,~(man)  
= a ( m )  v(a). Let T be a compac t  Car tan  subgroup  of M, ~ the regular, irreduc- 
ible character  of T which parametr izes  the discrete series representat ion a of M. 
Let  t be the element in t~ so that  s ~ deg (z) (i t -  r, s) is the differential of  z and let 
a be the element in a so that  b ~ i(a, b) is the differential of v. (Here ( , ) is the 
Killing form of g.) Let (2 = ~(a,  v) be the G-orbit  of  t + a in g, p~ the canonical G- 
invariant  measure  on ~2. Finally let rc=~z(a, v) be the representa t ion of G 
unitarily induced from the representat ion ~ ,~  of P. With this nota t ion  we have 
the 

Character formula for principal series of  groups of  type ~ :  

tr S qS(x) n(exp (x)) dx = deg (z) ~ {S e i(~' x) r  p(x) -1 dx} dpa(2 ) 
g (2 g 

Jbr all compactly supported C ~ functions 0 on g0. 
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When P is a minimal parabolic (i.e. when M is compact) this has been 
proved by Duflo by a reduction to Kirillov's formula for compact groups [3]. 
The proof for an arbitrary cuspidal parabolic is an entirely analogous reduction 
to Kirillov's formula for the discrete series characters of groups of class ~ 
established above. [Duflo assumes implicitly that G is linear, which allows him 
to drop the factor deg (z) from the formula. He also uses linearity in the proof of 
Lemma 2 in [2], but that lemma is valid for all groups of type ~ ,  as one can 
verify using [14] Proposition 4, p. 193.] 
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