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Kirillov’s famous formula says that the characters y of the irreducible unitary
representations of a Lie group G should be given by an equation of the form

x(exp(x))=p(x)~" [ &P duy(2) (®)
(o]

where Q=Q(y) is a G-orbit in the dual g* of the Lie algebra g of G, u, is
Kirillov’s canonical measure on £, and p is a certain function on g, namely p(x)
=det'/? {sinh(ad(x/2))/ad(x/2)}, at least for generic orbits Q [10].

This formula cannot be taken too literally, of course (the integral in (@) is
usually divergent), but has to be interpreted as an equation of distributions on a
certain space of test function on g. To make this precise, denote by g° an open
neighbourhood of zero in g so that exp:g— G restricts to an invertible analytic
map of ¢° onto an open subset of G. For our purposes, the formula (&) should
be interpreted as saying that

trf p(x)m(exp(x) dx= | {[e'“* P (x) p(x)™ ' dx} dpg(2) (®)
aq Q2 g

for all C* functions ¢ with compact support in g°. (Here = is the representation
of G with character y.)

Of course, Kirillov’s formula does not hold in this generality. It is in fact a
major problem in representation theory to determine its exact domain of
validity. In this paper we shall show that Kirillov’s formula holds for the
characters of a reductive real Lie group which occur in the Plancherel formula.
Actually, we shall deal in detail only with the discrete series characters. The
formula for the other characters can then be reduced to the formula for the
discrete series characters by familiar methods (Duflo [3]). Kirillov’s formula for
the discrete series is a consequence of a formula relating the Fourier transform
on g with the Fourier transform on Cartan subalgebras of compact type by
means of the invariant integral. This is the form in which Kirillov’s formula will
be proved.
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The proof depends of course heavily on the fundamental results of Harish-
Chandra [5-7]. (These results are conveniently collected in Varadarajan’s book
[14], which will serve as standard reference for this paper.) In fact, it follows
from Harish-Chandra’s results that the characters in question are of the form

x(exp(x))=p(x)71 Y co [ €4 ¥ dpg(2)
Q Q

where Q runs over a finite set of orbits and the ¢,’s are complex constants. In
this context the formula (@) simply says that ¢, is in fact zero, except for a single
orbit Q for which it is one. The amount of effort and machinery involved in
proving this simple assertion does seem somewhat surprising. An important
ingredient in the proof is a Bochner type formula for the Fourier transform on a
Euclidean space with indefinite metric, due to Strichartz [13].

Special cases of the result given here have been known for some time: the
case when G is compact reduces essentially to Weyl’s character formula together
with results of Harish-Chandra and has been worked out by Kiriliov himself
[10]; the case when G is complex semisimple by Gutkin [4]; and the case of the
principal series of a real semisimple group by Duflo [3].

There is of course also the extensive literature on Kirillov’s theory for
nilpotent and solvable Lie groups, starting with Kirillov’s original paper [9].
(Cf. [1,2], for example, for the solvable case.) Generalizations to other groups
have been studied by Kirillov in [10], and by Lipsman in a recent paper [11], in
which he also poses the problem of establishing Kirillov's formula for the
characters of the discrete series of a semisimple Lie group.

We shall deal with the following kind of group, familiar from the work of
Harish-Chandra (called “groups of class #” in [14]):

(1) G is a real Lie group whose Lie algebra ¢ is reductive.

(2) G has only finitely many connected components.

(3) Ad(G) is contained in Int(gg).

(4) The center of the connected subgroup with Lie algebra [g, g] is finite.

Recall that such a group has a discrete series precisely when it has a compact
Cartan subgroup. This we assume to be so, and denote by T a fixed compact
Cartan subgroup of G. The complexified Lie algebra te of T is then a Cartan
subalgebra of g5, whose Weyl group will be denoted by Wg. We write W for the
subgroup N;(T)/T of We. Fix once and for all a system of positive roots for t¢ in
g¢ and denote by n:tg — € the product of these positive roots. The set of regular
elements in t is then t,={tret|n()30}. If g, denotes the (open) set of regular,
elliptic elements in g, then the map G/Txt,—gq,, (gT,t)—>g-t is onto, locally
(analytically) invertible, and has fiber {(gwT, w™!-t})|we W} above g-1.

If ¢ is a function on g, we denote by M, ¢ the (partially defined) function on t
given by

M¢¢(t)=ﬂ(t)£¢(g't)dg (1)

whenever this integral converges. The integral here is taken with respect to Haar
measure on G normalized so that ([14], Lemma 2. p. 37):

§¢(X)dX={|n(t)12{(§;¢(g-t)dg}dt ()
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when the Lebesgue measures on g and on t are normalized as indicated below.
From the regularity properties of the map G/T xt, —g, it is clear that M, maps
the space Di(g,) of compactly supported C* functions on g, (with its usual
topology) continuously onto the space D(t,),, of W-anti-invariant compactly
supported C* functions on {,. (A function ¢ on t is W-anti-invariant if 7(w) ¢
=¢(w) o for all weW; here e(w)=det(w:t—1) and 1(w) p(t)=p(w=1-1))

We fix a G-invariant inner product ( , ) on g which is negative definite on t
and use it to define the Fourier transforms on g and on t:

F,p(x)=[e' ™" (y)dy, (3)
Fot)=[e"¢(s)ds. (4)

The Lebesgue measures on g and on t we assume normalized so that ngd)(x)
=¢(—x) and F? ¢(t)=¢(—1) for rapidly decreasing functions ¢. We also extend
F, and F to transforms of tempered distributions in the usual way.

Set D(g,)=F, 2 D(g,), D(t,)=F,D(t,), and write D(t,),, = F,D(t,),, for the W-anti-
invariants in Ij(i,). With this notation the main result of this paper can be stated
as follows.

Theorem. M, maps D(g,) onto D(1,),, and D(g,) onto D(t,),.. This map M, satisfies
ng ¢p=yFM$
for all peD(g,) and all $eD(g,). Here

= (i)i dim(s;/f)( _ ])5 dim({g/)

where t is a subalgebra of g containing t for which In[g,g] is maximal compactly
embedded in [g,q]. (So dim(g/T) is the maximal dimension of a subspace of g on
which ( , ) is positive definite.)

The first step in the proof of this theorem is the following lemma, which is an
claboration on a result of Harish-Chandra ([14] Thm. 7, p. 111).

Lemma A. There is a function ¢: Wg—C so that

ML E,§=(= F00 F c(w)(w) F, M, ¢
weWg
for all ¢peD(g,), and so that
(1) cw)y=cw™Y) for all we W,
(2) c(v-w)y=¢(v)c(w) for all ve W, we Wy,
(3) cxl=gy =Cxc for some function ¢ We— € which also satisfies (1) and (2).
Here

cxéwy= Y c(wo™)é(v),
veWe
_je(w) il weW
o )“{0 it we W,
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To prove this lemma we introduce for tet, the (tempered) distribution g, on
g defined by

(b, D) =m(1) £¢(g~t)dg &)

and denote by 6,=F, y, its Fourier transform. According to a theorem of Harish-
Chandra 9, is a locally integrable function whose restriction to t, is given by the
formula

0,(s)=m(s)"" Y c(w,t)elt (6)
weWg
where for fixed we W t — c{(w, t) is a locally constant function on t, ([14 Thm. 7],
p. 111). Now these functions are actually constant on all of {. To see this we
show that

7(s) 0,(s) = (1) ,(1) Q!

for all s,t in t,. This will be sufficient because in view of (6) the equation (7) says
that

z C(W,t)ei(w'l’s)z Z C(W,S)eitw‘s")

weWg weWg

— z C(W—I,S)ei(w't’s)
weWe
for all s,tet,. But for fixed tet, the functions s— e ™ "9 weW,, are linearly
independent (even after restriction to a connected component of t,, where
s—c(w,s) is constant). So c(w,t)=c(w™1,s) for all s,tet,, ie c(w,)=c(w) is
constant and c(w)=c(w™?).
To prove (7) it suffices to show that

§ m(s)0,(s) M, d(s) M, (1) dsdt

txt

= | =) 0,() M, §(s) M,y (1) ds dt (8)

txt

for all ¢, ¥reD(g,) (because n(s)0,(s) and =(t) 0,(¢t) are W-anti-invariant in s and ¢,
and M, maps D(g,) onto D(t,),). For this we use formula (2) and the fact that
|7(0)|? =(~1)¥%m6 7(£)2 to compute

§ 7(s)0.(5) M, $(s) M,y (1) ds dt

={[ | n(5)* 0,(5) p(g-s)dgds} M (1) dt
t tG
=(= 1m0 [{]6,(x) p(x)dx} My (t)dt
(= 1FEmON [{n(e) [ F, ¢ (g-t)dg} My () dt
G

t

=[[[Fd(g-0¢h-0ln@)?dgdhdt
tGG
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7t
e

d(gh-Oyth-O)\n(t)|)*dhdtdg

fl
Qe

Q‘«—a "}L—u

| Fy
G
Fyp(g-x)y(x)dxdg

{9y () drdydg

Since this expression 1s symmetric in ¢ and ¥ we get (8).

Next we show that the function c: Wy— € defined in this way satisfies the
conditions (1)+3) of the lemma. (1) we already know. For (2) we note that p,
=¢(v) y, for all ve W, which is immediate from (5). Therefore

0,..(s)=¢(v) n(s)~? Z c(w)eltr ),

weWgr

But also

B, o=7(s)"" Y clw)etrvt)

weWg

=n(s)"" ) clwo e
weWg

Comparison of these formulas gives that c(wo™')=¢(v)c(w) for all veW and
we Wg, hence also c(ow)=¢(v) c(w) in view of (1). To prove (3) we use the fact
that the matrix [c(uv™")], u,veW,, has rank |Wg/W| ([14], Thm. 20, p.121),
which is precisely the dimension of the space of functions a: Wy — € satisfying
a{v-w)y=¢(v)a(w) for all veW, weW,. So the map a—cxa defines a linear
automorphism of this space of functions. In particular there is a unique such
function ¢ so that cxé=g¢y. This ¢ clearly also satisfys (1).

Finally it remains to be shown that this function c satisfies the first assertion
of the lemma. For this we use formula (2) to compute:

MtEqd)(t):(MtaFg¢)
=(0,, )
=[ {0z 5)¢(g-9)dg|n(s)ds

t G

=(— 1)"1""(“/"[7[(9 )0,(5) {n(s f(]ﬁ(g s)dg) ds

=(=1mO0 N c(w) [ M p(s)ds
i

weWg

= (= 1)1 T ) M, p(w- 1)

weWg
This completes the proof of the lemma.

Write D'(g,) for the topological dual of D(g,) (ie. for the space of distri-
butions on g,), and D'(g,) for the dual of D(g,). The map F,: D(g,) - D(g,) gives
F:D D'(g,)— D'(g,). (I write 4’ for the transpose of a contmuous map A between
tOpO]OglCdl vector spaces.) F, clearly maps D'(g,)¢ onto D'(g,) (the superscript
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G denoting the G-invariants). Similarly we have a map F: D D'(t,)— D'(t) mapping
D'(t,),, onto D'(t,), (the subscrlpt W denoting W-anti-invariants). Finally, the
mdp M,: D( J=D(t),, D(g )—+D(t Jw gives rise to a map M :D'(t,), —>D( JE,
(t,)W—>D (a,)¢. Note that if ¢peD’(1,),, is a function, so is M (;SeD (9.)°: M p(x)
=n(t) ' ¢(¢) if x=g-t with geG and tet,. The next lemma shows how certain
distributions behave under these maps:

LemmaB. (1) If h is a W-anti-invariant, harmonic polynomial on t, then Mh
extends to a G-invariant, harmonic, tempered distribution H on g. If h is
homogeneous of degree deg(h), then H is homogeneous of degree deg(h)
~Ldim(a/t)

(2) For h as above

Fc; M;(Vh)=(i)%dim(gm(* 1)‘7dim(g/f) M; E’(rh)
on g,, for every function r of the form r(t)=f(|t]), feCZ((0, c0)).

By “harmonic” is meant “annihilated by the Laplacian 4, or 4, of the inner
product ( , ) on g or on t”; and |¢[=](t, £)|%.

The assertions of the lemma should be understood as follows. In (1) we think
of h as an element of D'(t,),, so that M}k is in D'(g,)°. In (2) we think of »h as an
element of D'(t,), so that F.M(rh) and M{F/ (rh) are both in D'(g,)°.

To prove this lemma we denote by h for the moment any W-anti-invariant
polynomial on t. Write D, for the constant coefficient operator corresponding to
multiplication by & under F,. Now, according to a result of Harish-Chandra
([14] Cor. 24, p. 50), the formula

¢— lim D, M, ¢(t)
t—0*%

defines a tempered distribution on g. (Here t -0 means that t goes to zero in
the positive Weyl chamber. Any other Weyl chamber would also do.) We can
therefore define a tempered distribution v* on g by setting

(_ 1)%dim(g/t>

=

Y. Eé(w) lim D, t(w) M, ¢(¢).
t—0*

we W

Let H=F,v" be its Fourier transform.
Then H is a tempered, G-invariant distribution on g, and 1 claim that H
coincides with M;h on g,. In fact, if pD(g,), then

(H,9)=0", F,¢)

= w%@C(W}{Lﬂg{ D, t(w) M,F, $(1)
“ W Y éu)c(v) Dy t(u)t(v) F;, M, ¢(0)
u,ve W

(by Lemma A.—The limit becomes evaluation at t =0 because F, M, peD(t,), is
C* on all of t.) Thus
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(H, d))—— Y, Cwe()Dy(u-v) F M, $(0)
|W| u, ve W

1
|W| ZW Exc(w) D, t(w) F, M, ¢(0)
weWg

1
:WWGWE(W)D" (W) K, M, ¢(0)

=D, FEM$(0)
=FhM $(0)
=(h, M)
=(Mih, ).

So H does indeed coincide with M{h on g,. Moreover, if h is homogeneous
of degree deg(h), then H is clearly homogeneous of degree deg(h)—deg(n)
=deg(h) -3 dim(g/t).

To prove that H is harmonic when % is we argue as follows. Let P be any G-
invariant polynomial on g, p its restriction to t, and Dp (resp. D)) the cor-

responding constant coefficient operator an g (resp. on t). For any rapidly
decreasing C* function ¢ on g we have:

(DpH, §)=(Dp F,V", ¢)

=(V", PF, ¢)
(_ 1)—;—dim(g/t)

—T z E(w) llm D, t(w) M, PF_ (1)
(_ 1)5 dim(g/t) ¢

= Y, C(w) lim D, t(w)pM F,(1).

weWg -0

Now one easily verifies that for any two polynomials p,q on a Euclidean space
and any C™ function ¢ one has

D, (pp)=D, P+

where ¢'=D,q and ¥ is a function (defined by this equation) which satisfies y(0)
=0. We would like to apply this observation to the terms D, t(w)p M, F, ¢ in the
above sum. Now M, F, ¢ need not be C* on all of t, but its partlals do extend to
continuous functlons on the closure of any fixed Weyl chamber ([14] Thm. 23,
p.50). From this one can conclude that the function ¥ on t, defined by

D,pM,F,¢=D, M F,¢+y (on t,)
W=D,h

still has the property that y(1)—0 as t—0". (By subtracting a suitable poly-
nomial from M, F, ¢ it evidently suffices to see that a function f on t, whose
partials up to suffmently high order all vanishes as t —» 0% has the property that

D,pf=D, f+g where g(t)—0 as t »0*. But this is clear, since—for fixed h,p—
g is a linear expression in the partials of f with polynomial functions for
coefficients.) So the formula for Dp H becomes
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(DpH,p)=const. ». ¢é(w) lim D, t(w) M F,¢(t)
weWg t=0*

where h, =D, h. In particular, for P(x)=(x,x) we have p(t)=(t,t), Dp=A4,D,

=4,. So if h is harmonic, then h,,=0 for all we W and consequently (4, H, ¢)=0

also.

This proves the first part of the lemma. For the second part we need
Strichartz’s extension of Bochner’s formula for the Fourier transform of a
distribution of the type “radial x homogeneous harmonic” for Euclidean spaces
with indefinite metric [13]. We therefore introduce the following notation

E=R" with inner product

(x,X)=xi++x} —x2, = —x2 - (nT +n"=n),
x| =1(x, x)I*,
E, ={xeE| +(x,x)>0},

a2 a2 a2
A::5;?+”.“+5;?:_”.“_5;?.

We define the Fourier transform F on E by
Fo(x)=[e™" p(y)dy
E

and assume the Lebesgue measure on E normalized so that
F2$(x)=¢(—x).

We let R* operate on functions on E by setting

(@) ¢p(x)=¢(a"'x)

for aeR* and ¢:E—>C. We extend this action to distributions on E by
requiring that

(t(a) o, (@) y) =lal" (¢, ¥)
for distributions ¢ and test functions . With this notation we can state:
Strichartz’s Formula. Let ¢ be a tempered distribution on E which satisfies
4¢=0,
t(a) p=|a|~" sgn"(a) ¢

Jor some 6T and ¢=0,1 (identically in acR ™). Let  be a function supported on
E, of the form

Y(x)=/(x)) for xeE,

with fe C¥((0, «0)).
Then the restriction to E . of the Fourier transform of the distribution y ¢ is
given by the formula
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Fyd)=y¢ (on E,) ©)
where  is the function on E , defined by

=9}

P(x)=()" | {cosg(;ﬁ +o+e)d,(xlt)
]
—sing(rﬁ +o+e) V(x| r)}_/(r) x|~ %%+ 1. (10)

Here a=4n+0—1and J,, Y, are the usual special functions denoted by these
symbols. The assertions are to be taken in the sense that either the upper sign or
the lower sign in the symbols +, F is consistently chosen throughout. The
formula differs from the one in [13] by a factor of (27)"? because of different
normalizations of the Lebesgue measure on E. Strichartz also requires that ¢ be
a C*® function on E,, but this superfluous since on E, a homogeneous
harmonic distribution is a limit (in the distribution sense) of homogencous
harmonic C*-functions (in fact of harmonic analytic functions, as one sees from
Lemma 3(a) of [12]).

We apply this formula as follows. First we take E=t with its inner product
(, ). For ¢ we take a homogeneous harmonic polynomial # on t and for ¢ a
function r(t)=f(]t]) as in the lemma. Then on t~ {0}, F(rh)=Fh, where 7 is the
function defined at xet~ {0} by taking the lower signs on the rhs of (10) and
substituting

=0; 6=deg(h); e=deg(h)ymod2; a=3dim(t)+deg(h)—1.
This gives (for xet~ {0}):

O =(— 8 | U, (1l x|~ .
0

Next we take E=g with its inner product ( , ). For ¢ we take a harmonic
distribution H (homogeneous of degree deg(h)—%dim(g/t)) as in part (1) of the
lemma, and for ¥ the function R on E_=g_ defined by R(x)=f(x|) (f as
above). Then on g_, FQ(RH)zﬁH, where R is the function defined at xeg_ by
taking the lower signs on the rhs of (10) and substituting

" =dim(g/t); o=deg(h)—zdim(g/t);
s=deg(h)—%dim(g/t) mod 2;
a=1dim(t)+deg(h)— 1.

This gives (for xeg_):
R(x)=y(—iy* ™ [ J(Ix]0) f(0) |x| 7= ¢*+ 1 de
0

where

Y= (i)%dim(g/t)( _ 1)% dim(g/f)'
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Since « has the same value for g and for t we find that R=y 7 on t~ {0}.
We now use the fact that g, is a subset of g_ and the relations

M(rh)=RM(h)=RH (on g,),
M(Fh)=y~'RM(h)=y~*RH (on g,)

to compute:
MK (rh)= M{(7h) (on g,)
=y~ 'RH (on g,
=y~ 'F)(RH) (on g,
=y~ 'F;Mi(rh) (on g,). (11

This finishes the proof of Lemma B.

To complete the proof of the Theorem we compare Lemma A with Lemma B
to find that (notation as above, § =(— 1)?dimia/t));

MF/(rh)=3|W[~* Y. ¢(w)F, M, (w) (rh) (12)

weWg

(by taking transposes in Lemma A); but also
M F/(rh)=y"'F; M{(rh), (13)

where (12) and (13) are understood as equations between distributions on g,.
Now by (11) these distributions are actually functions on g,, namely

MF/(rh)=y~'RH,
F, Mi(rh)=RH.
So if we equate the rhs of (12) and (13) and restrict to t, we get

oW1 Y é(w)t(w)Fh=Fh.

weWg

Since r is radial (hence W-invariant) this shows that

vd

G FY éwyt(w)h=Fh

as functions on ¢,. Thus

y0

I_V7| Ew)t(w)h=h (14)

for all W-anti-invariant harmonic polynomials / on t. Since every polynomial on
t is a sum of polynomials of the form p(x)=g((x, x)) h(x) with h harmonic we see
that (14) holds for all W-anti-variant polynomials # on t. So the operator

d . .. .
l—yﬁ/—l Y &(w)t(w) maps the polynomials on t onto the W-anti-invariant poly-
weWg
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nomials and leaves the W-anti-invariants fixed. This means that this operator is
the W-projection onto the space of W-anti-invariants, i.e.

yo _ :
W WEZW(I: ) T(W) W weW F(W) T(W)

Comparing coefficients of T(w) shows that

!
J—B(w) if weW
oy

c(w)=
10 if weW

Equation (3) of Lemma A now gives

v , .
c{w):J [‘_WTE(M) if weW (15)
{() if wgW.

Substituting this formula for ¢(w) into the equation in Lemma A completes the
proof of the Theorem.
As a consequence of the theorem we get:

Corollary. The formula (R, ¢, M, ¥)=(¢p, ¥) defines a linear isomorphism R, of
D'(g,)¢ onto D'(t,)y and of D'(g,)° onto D'(t,),.. This map satisfies

Rth/;d): TR $
for all $eD'(g,)¢ and all $peD'(g,)°.

The fact that R, is an isomorphism of D'(g,)® onto D'(t,), is a well-known
consequency of the regularity properties of the map G xt,—g, ([14] Thm. 3,

p. 25). The other assertions then follow from the theorem.
Another consequence of the theorem is the following:

Corollary. The Fourier transform of the distribution p(tet,} on g defined by

(#17 - j ¢ dg (15)

is the unique tempered, G-invariant eigendistribution (necessarily a function)
whose restriction to t, is given by

9;(5): K‘}T(S)7 1 Z {I(W} ei(u'-sJ). I\':( _ i)}dim(gfl)( . 1)5 dim{g/h) lw171A

weW

This is immediate from equations (6) and (15) together with a well-known
result of Harish-Candra ([14] Thm. 16, p. 119).

The significance of the distributions 0, lies in the fact that they are essentially
the discrete series characters in exponential coordinates. To make this precise,
let ¢ be an open neighborhood of zero in the center ¢ of g on which exp: (-G
is an invertible analytic map onto its image. Write [g, g° for the set of elements
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x of [g,a] for which the eigenvalues 4 of ad(x) satisfy |Im(d)]<n and set g°
=¢°+[g, g1° ¢° is an open G-stable neighborhood of zero in g and exp: ¢° > G
is an invertible analytic map onto its image ([14] Cor. 6, p. 194). This map
allows us to identify distributions on exp(g®) with distributions on g°.

Next, let t: T— € be an irreducible character of T and write the differential
of t in the form dr: t—iIR, s—deg(t)(it—r,s), where r is the half-sum of the
positive roots. Assume that 7 is regular, i.e. that ¢ is in t,. deg(z) is the degree of
7 (which may be >1, since T need not be abelian). According to Harish-
Chandra’s construction there is a discrete series character @, associated to 1
which satisfies

8, (exp (x))=deg (v) () ™ W | (1) p(x)~ ' 0,(x) (16)

as an identity of distributions on g° Here &(t)=sgn(n(it)), p(x)

=det'’?{sinh(ad(x/2))/ad (x/2)}, and 60, =F, ,, as before. [For the definition of
O, see [14] Theorem 1, p. 244 and Theorem 8, p.443.] I have written 7 for
Varadarajan’s b*, @, for his 6,,.,, and used the fact that t(exp(s))
=deg(r) e =", (16) is a special case of equation (14) in Lemma 7, p. 248 of
[14], namely the case when b=1 in T and Q® =exp(g%)].

The relation (16) is essentially Kirillov’'s formula for the discrete series
characters. To see this we need to recall the construction of Kirillov’s canonical
measure U, on an orbit Q. First define a skew form B, on the tangent space T,Q
=ad(g) x for each x in © by the formula B (u, v)=(x, [y, z]) if u=ad (y) x and v
=ad(z)x for some y, z in g. As this form is nondegenerate one can define a
volume element in T, in the usual way: assign the volume |det B, (u;, u))|* to
the parallelepiped spanned by a basis {u;} of T,Q. Having defined a volume
element in each tangent space, we get a smooth measure on £, which 1s casily
seen to be G-invariant. For reasons which will become clear shortly we multiply
this measure by the constant (2 )~ *4™@" {0 arrive at Kirillov’s measure p,.

On the other hand, for ¢ in t, we have the G-invariant measure v, on G-t
defined by

| fx)ydvix)={ f(g- ) ds.
G-t G

To compare v, with u, we note that the invertible analytic map G/T
xt,—q,(t, ct, a fundamental domain for W) transforms measures according
to the formula

§ /() dx:|W’{[ Gj S dv () n(0) de.

So if we write d, v, for the volume element of v, in the tangent space ad(g) t=1*
of Q at ¢t (t* the subspace of g orthogonal to t with respect to ( , )), then the
decomposition g=t'+t of g <corresponds to the decomposition dx
=|W||r(t)|*d,v,-dt of dx. Thus d,v, differs from the volume element of the
metric (, ) in t' by the factor (27) 34m@YW|-!n(s)}~2 (The factor
(2m)~#4imE comes from the normalizations of dx and dt in terms of Fourier
transforms.) This means that d, v, assigns the volume
(2m)~H @O~ () =2 det (x;, X1

ir V]



Kirillov’s Character Formula for Reductive Lie Groups 219

to the parallelepiped spanned by a basis {x;} in t*. Comparing this with the
volume

(2 m)~2dim@|det B,(x;, x,)I*
— (27 1m0 | det (1, [ad,. ()~ x;. ad,. (1)~ x,])I*
=(2m)~ P60 ()= ! et (x;, x )

assigned to this parallelepiped by the volume element of u,, we get that

pa=IW|In(0)] v,
=IWe(0) () H4m e g,

where y, is defined by (5) and e(tf)=sgnn(it) as before (so that |n(t)|=|n(it)|
=e(t) nl(i t)—s(t)(i)idim“‘/” (t).) Substituting into (16) using 0,=F, y1, we find that
O, =deg(7) F, ug on g% So if we write 7 for the discrete series representatlon with
character O, and use the use the notation introduced above we get the

Character formula for the discrete series of groups of type 4 :

tr§¢ n(exp (x))dx=deg(t Hf@'“"’d) ) p(x) ™" dx} dpg(2)

for all C*® functions ¢ with compact support in g°.

One should note that this formula determines the characters @, only on the
open subset exp(g®) of G. In fact it may well happen that different irreducible
characters 7 of T have the same differential, so that different ©s may cor-
respond to the sqme 0,. If G is connected, however, then so is 7, and this
situation cannot arise.

Note also that the formula differs from (@) in the introduction by the factor
deg (). This kind of extra factor first appeared in a paper of Kaalgui [compete
rendus 284 (1977), p. 531].

We now turn to the other characters which occur in the Plancherel formula.
From Harish-Chandra’s work one knows that the irreducible representations of
G which occur in the Plancherel formula are induced from cuspidal parabolic
subgroups [8]: If P is a cuspidal parabolic in G with Langlands decomposition
P=MAN, choose a discrete series representation ¢ of M and a regular unitary
character v of A to define a representation =, , of P by setting =, ,(man)
=g(m)v(a). Let T be a compact Cartan subgroup of M, 7 the regular, irreduc-
ible character of T which parametrizes the discrete series representation g of M.
Let ¢ be the element in t, so that s »deg(t) (it —r, s) is the differential of 7 and let
a be the element in a so that b—i(a, b} is the differendal of v. (Here ( , ) is the
Killing form of g.) Let Q= Q(s, v) be the G-orbit of t +a in g, i, the canonical G-
invariant measure on €. Finally let #==n(0,v) be the representation of G

unitarily induced from the representation n, , of P. With this notation we have
the

Character formula for principal series of groups of type #:

tr 5 ¢ (x) m(exp (x)) dx=deg (1) | {f €“ ¢(x) p(x) ™" dx} dpug(2)

2 g

Jor all compactly supported C* functions ¢ on g°.
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When P is a minimal parabolic (ie. when M is compact) this has been
proved by Duflo by a reduction to Kirillov’s formula for compact groups [3].
The proof for an arbitrary cuspidal parabolic is an entirely analogous reduction
to Kirillov’s formula for the discrete series characters of groups of class #
established above. [Duflo assumes implicitly that G is linear, which allows him
to drop the factor deg(z) from the formula. He also uses linearity in the proof of
Lemma 2 in [2], but that lemma is valid for all groups of type J#, as one can
verify using [14] Proposition 4, p. 193.]
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