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Abstract. At a Davidson College lecture in 1972, Dr. Howard Eves defined an equihoop

as a binary operator (E, ·) that satisfies the central, idempotent and medial properties with

the commutative equihoop (CEH) also satisfying ab = ba for all a, b ∈ E. We show the

reader how to easily prove for himself that all finite CEH’s (E, ·) have |E| = 3k elements,

and all CEH’s (E, ·) of order |E| = 3k are isomorphic to the direct product of k copies of

the basic CEH ({0, 1, 2, } , ·). In 1974 Marsha Jean Falco, see [1], invented an 81 card game

called SET which is mathematically identical to a CEH (E, ·) with |E| = 81. Three distinct

cards {a, b, c} form a SET if c = ab which is also equivalent to either a = bc or b = ac.

Given a finite CEH (E, ·), a common problem, which is called the SET problem, is to

find a subset S ⊆ E of the highest possible cardinality such that ∀a, b ∈ S, if a 6= b, then

ab ∈ E\S. Such a set S is said to be maximum SET-free and we would like to compute |S|
for such S as |E| ranges over 3k, k = 1, 2, 3, · · · .

To our knowledge nobody has come even remotely close to giving a complete solution

to the SET problem for the CEH, [3]. However, in this paper we precisely define and give

a complete solution to the SET problem if we drop the medial property. We call such a

structure Abstract SET, and it is also identical to the various collections of Steiner triples

on E. Our solution will use the theory of round-robins, and those readers interested only in

a short treatment can stop at the end of Case 1 in Section 2.4. The paper has two sections.

The first section presents known results on Commutative Equihoops. The second section

discusses Abstract SET and the Abstract SET Problem. Only knowledge of cyclic groups is

needed for reading this paper.

1 Commutative Equihoops

Definition 1 (Eves-Davidson College, 1972). An equihoop is a non-empty set E of

elements a, b, c, d, · · · and a binary operation (E, ·) that satisfies the following:
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P1. a (ba) = b for all a, b ∈ E. (left central property of x).

P2. aa = a for all a ∈ E. (idempotent property of x).

P3. (ab) (cd) = (ac) (bd) for all a, b, c, d ∈ E. (medial property of x).

(Eves). A commutative equihoop (E, ·) is an equihoop that satisfies P4.

P4. ab = ba for all a, b ∈ E.

Definition 2 (Quasigroups). A quasigroup is a binary operator (E, ·) that satisfies P5.

See [6].

P5. For all a, b ∈ E, ax = b and ya = b have unique solutions x and y in E.

Definition 3 (Eves). A hoop is a quasigroup that also satisfies P2 and P3.

Definition 4 (medial Quasigroups). A medial quasigroup is a quasigroup that also sat-

isfies P3. D.C. Murdoch, [4], used the term Abelian quasigroup.

Note 1. In 1939 D.C. Murdoch, [4], classified all medial quasigroups (E, ·) that have at

least one idempotent element 0 ∈ E. That is, 0 · 0 = 0.

Definition 5 (Knuth). Donald Knuth in 1968 defined an extremely primitive binary op-

erator (E, ·) that satisfies only P1. Note that P1 is equivalent to P1∗. (ab) a = b for all

a, b ∈ E. He called (E, ·) a grope because it was used to “grope” for results.

Theorem 1 Suppose (E, 0, ·) is a CEH where 0 ∈ E is arbitrary but fixed. ∀a, b ∈ E

define a + b = 0 (ab). Then (E, 0, +) is an Abelian group with identity 0 that satisfies

3a = a + a + a = 0,∀a ∈ E.

Using this (E, 0, +), we can reverse ourselves and define (E, ·) by ∀a, b ∈ E, a · b =

−a− b = (a + a) + (b + b) .

Proof. We let the reader prove this easy theorem.

Corollary 1 If (E, ·) is a finite CEH, then |E| = 3k. Also if (E, ·) is a CEH and |E| = 3k,

then (E, ·) is isomorphic to the direct product of k copies of the basic CEH ({0, 1, 2} , ·) where

0 · 1 = 1 · 0 = 2, 1 · 2 = 2 · 1 = 0, 0 · 0 = 0, etc.

Proof. Follows immediately from Abelian group theory.
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2 Abstract SET and the Abstract SET Problem

In light of Marsha Jean Falco’s 81 card game SET, we call the structure of the following defi-

nition 7 an Abstract SET. An Abstract SET,(E, ·), is also identical to the various collections

of Steiner triples on Ė. This definition was also given by Kirkman.

Definition 6 An Abstract SET (E, ·) is a binary operator that satisfies P1, P2 and P4.

P1. a (ba) = b for all a, b ∈ E.

P2. aa = a for all a ∈ E.

P4. ab = ba, for all a, b ∈ E.

Note 2. Thus, an Abstract SET (E, ·) is a commutative, idempotent grope. However,

in light of Falco’s SET, we ourselves prefer to think of (E, ·) as a CEH in which the medial

property P3 has been dropped. In this paper, we abbreviate an Abstract SET (E, ·) by ASET.

We now develop the most basic properties of the ASET where in some lemmas we consider

E to be finite.

Lemma 1 Suppose (E, ·) is an ASET. Then ∀a, b ∈ E, if a 6= b then ab /∈ {a, b} .

Proof. Suppose ab = a. Then (ab) a = b = a · a = a, a contradiction.

Corollary 2 ∀a, b ∈ E, the set {a, b, ab} is either a tripleton set or a singleton set.

Lemma 2 Suppose (E, ·) is an ASET. Then (E, ·) is a commutative quasigroup.

Proof. Since (E, ·) is commutative, we must show that ∀a, b ∈ E, ∃ a unique x ∈ E such

that ax = b.

First, suppose ax = b. Then (ax) a = x = ab. Also, a (ab) = b.

Corollary 3 ∀a, b ∈ E, if {a, b, ab} is tripleton, then the product of any two distinct elements

equals the third element. Thus, ∀a, b, a, b ∈ E, {a, b, ab}∩
{
a, b, ab

}
can never be a doubleton

set.

Observations 1. Since the idempotent property is trivial to add, an ASET (E, ·) can

be viewed as a collection of distinct tripleton subsets of E (also called Steiner triples), which

we denote as {∆1, ∆2, · · · , ∆t} or {l1, l2, · · · , lt}, that has the following properties:

1. Each li = ∆i = {a, b, c} where a, b, c are three distinct members of E.
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2. ∀i 6= j, li = ∆i 6= ∆j = lj. That is, our collection is a true set.

3. ∀a, b ∈ E, if a 6= b then ∃ a unique li = ∆i such that {a, b} ⊆ li = ∆i.

It is sometimes convenient to think of a Steiner triple as being either a triangle ∆i or a line

li. If we are given a collection of Steiner triples {∆1, ∆2, · · · , ∆t} on E, the corresponding

ASET (E, ·) is defined as follows: ∀a ∈ E, a · a = a. ∀a, b ∈ E if a 6= b then ab is the 3rd

member of ∆i where ∆i is the unique member of {∆1, ∆2, · · · , ∆t} satisfying {a, b} ⊆ ∆i.

Of course, if {a, b, c} is any Steiner triple, then ab = c, ac = b and bc = a.

Fig. 1. 7 points, 1
3

(
7
2

)
= 7 lines.

Lemma 3 Suppose (E, ·) is an ASET. If |E| is finite, then |E| must be odd.

Proof. Single out a ∈ E. ∀x ∈ E\ {a} let us pair {x, ax} together where we note that

ax ∈ E\ {a} , x 6= ax and (ax) a = x. It follows from this that |E\ {a}| is even and |E| is
odd.

Lemma 4 Suppose (E, ·) is a finite ASET. Then 3| |E| · (|E| − 1), which is equivalent to

3 - |E| − 2.

Proof. Suppose (E, ·) is represented as the Steiner triples {∆1, ∆2, · · · , ∆T}. Now each

doubleton subset {a, b} of E is a subset of a unique ∆i. Also, each ∆i produces 3 distinct

doubleton subsets of E. Therefore, the total number of doubleton subsets of E equals 3T .

Also, the number of doubleton subsets of E equals C
|E|
2 . Therefore, 3T =

|E| · (|E| − 1)

2
.

Corollary 4 T = 1
3
C

|E|
2 .

Lemma 5 Suppose (E, ·) is a finite ASET. By combining lemmas 3, 4, we know that |E| =
6k + 1 or |E| = 6k + 3.

Remark 1 From the theory of Steiner triples, we know that if E is a finite set, then an

ASET (E, ·) exists on E if and only if |E| is odd and 3 - |E| − 2. However, in order to

solve the abstract SET Problem, we ourselves will be forced to prove this since we must find

very specialized (E, ·)’s. In general if |E| is odd and 3 - |E| − 2, to construct an ASET

(E, ·) we must produce 1
3
C

|E|
2 distinct tripleton subsets of E, call them l1, l2, l3, · · · , such that

∀i 6= j, li ∩ lj is either empty or singleton.
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Definition 7 (E, ·) is a finite ASET. Using terminology from Falco’s 81 card SET game,

if {a, b, c} is any tripleton subset of E, we say that {a, b, c} is a SET if and only if ab = c

which is also equivalent to either b = ac or a = bc. If we view (E, ·) as a collection of Steiner

triples {∆1, ∆2, · · · , ∆t}, we call these ∆i’s SETS.

Definition 8 (E, ·) is a finite ASET and S ⊆ E. We say that S is SET-free if ∀a, b ∈
S, a 6= b ⇒ ab ∈ E\S. In other words, if {a, b, c} ⊆ S is any tripleton subset of S, then

{a, b, c} is not a SET,

The Abstract SET Problem. Suppose E is a finite set such that |E| is odd and

3 - |E| − 2. If |E| is fixed, find the positive integer f (|E|) such that (a) and (b) are true for

f (|E|) .

1. If (E, ·) is any ASET on E and S ⊆ E is any subset of E, then [S is SET-free]⇒ [|S| ≤
f (|E|)].

2. ∃ an asset (E, ·) on E and a subset S ⊆ E such that S is SET-free and |S| = f (|E|) .

The following Main Theorem gives the complete solution to the abstract SET problem.

Main Theorem. Suppose E is a finite set. Then an ASET (E, ·) exists on E if and

only if |E| is odd and 3 - |E| − 2. If |E| is odd and 3 - |E| − 2, define

1. f (|E|) =
|E|+ 1

2
if
|E|+ 1

2
is even,

2. f (|E|) =
|E| − 1

2
if
|E|+ 1

2
is odd.

Then f (|E|) = f (|E|) is the solution to the abstract SET problem.

3. f (|E|) is the even integer that is closest to |E|
2

.

We prove the main theorem in the rest of this paper. Section 2.1 is the easiest part of the

proof.

2.1 Showing that f(|E|) ≤ f(|E|).
The next step is the proof that f(|E|) ≤ f(|E|).

Lemma 6 (E, ·) is an ASET on a finite set E. Then ∀S ⊆ E, if S is SET-free, then |S| ≤
f (|E|) .
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Proof. We will think of (E, ·) as a collection of distinct lines {l1, l2, · · · lt} where each

line has 3 points and each pair of distinct points {a, b} in E lies on exactly one line.

∀x ∈ E\S, let ax be the number of distinct lines through x that intersect S in 2 points,

and let bx be the number of distinct lines through x that intersect S in a single point. Since

S is SET-free, we have (1).

1.
∑

x∈E\S ax = C
|S|
2 = |S|(|S|−1)

2
.

From the definitions of ax, bx we have (2).

2. a. ∀x ∈ E\S, 2ax + bx = |S| which implies

b. 2
∑

x∈E\S ax +
∑

x∈E\S bx = |S| · (|E| − |S|) .

From (1) and (2) we have

3.
∑

x∈E\S bx = |S| · (|E|+ 1− 2 |S|), which implies |S| ≤ |E|+ 1

2
.

Now if |E|+1
2

is even, then lemma 6 is true.

Therefore, suppose |E|+1
2

is odd. Now if |S| = |E|+1
2

, then |S| would be odd. Also, if

|S| =
|E|+ 1

2
, then from (3)

∑
x∈E\S bx = 0, and this implies ∀x ∈ E\S, bx = 0. But if

bx = 0, then from 2-a, 2ax = |S| is true, and this is impossible if |S| is odd. Therefore, if
|E|+ 1

2
is odd, we have |S| ≤ |E|+ 1

2
and |S| 6= |E|+ 1

2
which implies |S| ≤ |E|−1

2
.

We now come to the hard part of actually finding an ASET (E, ·) and a SET-free subset

of E satisfying |S| = f (|E|). To do this, we will use the basic theory of round-robins.

2.2 The Basic Theory of Round-Robins

First, suppose we have an even number of teams which are numbered 1, 2, 3, · · · 2n+2. Each

of these teams wishes to play every other team exactly one time. They also wish to play for

2n + 1 consecutive days with n + 1 games being played on each day, and with each team

playing in exactly one game each day. The problem is to draw up a compatible schedule

The complete solution is to first define an arbitrary commutative quasigroup operator

({1, 2, 3, · · · , 2n + 1} , ·). That is, ∀a, b ∈ {1, 2, 3, · · · , 2n + 1}, (1) ab = ba and (2) ∃ a unique

x ∈ {1, 2, 3, · · · , 2n + 1} such that ax = b.

The schedule for teams {1, 2, 3, · · · , 2n + 1} ∪ {2n + 2} is defined as follows. ∀x, y ∈
{1, 2, 3, · · · , 2n + 1}, if x 6= y then teams x, y play each other on day x · y. Also, ∀x ∈
{1, 2, 3, · · · , 2n + 1}, team x plays team 2n + 2 on day x · x. We will show that the function

x ·x : {1, 2, 3, · · · , 2n + 1} → {1, 2, 3, · · · , 2n + 1} is a bijection after we first give a graphical

definition of the round-robin.
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Suppose you have a complete undirected graph on the vertices 1, 2, 3, · · · 2n + 1 and each

vertex has a self-loop. Also, you have assigned one of the numbers 1, 2, 3, · · · , 2n + 1 to

each edge of the graph in such a way that all of the numbers 1, 2, 3, · · · , 2n + 1 are touching

each vertex. Suppose ∀a, b ∈ {1, 2, 3, · · · , 2n + 1} we define a · b to be the number on edge

(a, b) where edge (a, a) is the self-loop on a. Then ({1, 2, 3, · · · , 2n + 1} , ·) is a commutative

quasigroup. Now if the function x · x is not a bijection on {1, 2, 3, · · · , 2n + 1}, this means

that at least one of the numbers 1, 2, 3, · · · , 2n+1, (call it y) is not assigned to any self-loop.

Now exactly one edge having the number y must be touching each vertex. Therefore, the

2n + 1 vertices must be paired off into doubleton sets by the edges assigned the number y.

But this is impossible since 2n + 1 is odd.

Next, suppose the number of teams is odd, and they are numbered 1, 2, 3, · · · , 2n + 1.

Each team wishes to play every other team exactly one time. They also wish to play for 2n+1

consecutive days with n games being played on each day and with a different team sitting

out on each day. Using an arbitrary commutative quasigroup ({1, 2, 3, · · · , 2n + 1} , ·), the

schedule is computed as follows. ∀x, y ∈ {1, 2, 3, · · · , 2n + 1}, if x 6= y then teams x, y play

each other on day x · y. Also, ∀x ∈ {1, 2, 3, · · · , 2n + 1}, team x sits out on day x · x. Of

course, this is the same as adding an imaginary team 2n + 2 and having team x play an

imaginary game on day x · x.

2.3 The Two Cases

Suppose E is a finite set with |E| odd and 3 - |E| − 2.

We now consider the two cases that occur in defining f (|E|). Case 1 is very easy, but

case 2 is rather difficult.

Case 1. |E|+1
2

is even. We partition E = S ∪ E where |S| = |E|+1
2

,
∣∣E∣∣ = |E|−1

2
. Of course, |S|

is even, |E| is odd and |S| =
∣∣E∣∣ + 1. We will soon find an ASET

(
S ∪ E, ·

)
= (E, ·)

such that S is SET-free, which will solve the problem.

Case 2. |E|+1
2

is odd. We partition E = S ∪ E where |S| = |E|−1
2

,
∣∣E∣∣ = |E|+1

2
. Of course, |S|

is even,
(
E

)
is odd and |S| =

∣∣E∣∣− 1. We will later find an ASET
(
S ∪ E, ·

)
= (E, ·)

such that S is SET-free, which will solve the problem.

We can take care of Case 1 almost immediately.

2.4 Case 1

We first show that 3 -
∣∣E∣∣− 2. Now 2

(∣∣E∣∣− 2
)

= 2
∣∣E∣∣− 4 = |E| − 1− 4 = (|E| − 2)− 3.

Therefore, 3 - |E| − 2 implies 3 -
∣∣E∣∣− 2.
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Since
∣∣E∣∣ is odd and 3 -

∣∣E∣∣− 2, from the theory of Steiner Triples (which we ourselves

prove later), ∃ an ASET
(
E, ·

)
on E .

Let us call E =
{

1′, 2′, 3′, · · · ,
∣∣E∣∣′}. Also, let us call S =

{
1, 2, 3, · · · ,

∣∣E∣∣ + 1
}

where

we look at S as being an even set of teams.

Let
(
E, ·

)
be any arbitrary ASET on E. Also, let (S, ·) be any arbitrary round-robin on

S where we interpret (S, ·) as follows. ∀x, y ∈ S, if x 6= y then teams x, y play each other on

day x · y where x · y ∈
{
1, 2, 3, · · · ,

∣∣E∣∣}. Also, x · x is not defined and is not needed.

From the definition of round-robin, we have the following equality of sets. For all x ∈
S,

{
x · 1, x · 2, · · · , x · (x− 1) , x · (x + 1) , · · · , x ·

(∣∣E∣∣ + 1
)}

=
{
1, 2, 3, · · · ,

∣∣E∣∣} .

From the definition of round-robin, we know that ∀i ∈
{
1, 2, 3, · · · ,

∣∣E∣∣}, the teams

1, 2, 3, · · · ,
∣∣E∣∣ + 1 can be paired together into

∣∣E∣∣ + 1

2
pairs so that each pair of teams will

play each other on day i.

Fig. 2.
|E|+1

2
pairs playing each other on day i.

We now define the ASET
(
S ∪ E, ·

)
= (E, ·) as follows where we define the tripleton sets

making up
(
S ∪ E, ·

)
= (E, ·) .

(1) If {x, y, z} ⊆ E is any tripleton subset of E, then {x, y, z} is a member of (E, ·) if and

only if {x, y, z} is a member of
(
E, ·

)
.

(2) If {x, y} ⊆ S is any doubleton subset of S , define x · y = i using the operator (S, ·).
In other words, teams x, y play each other on day i.

We define the tripleton set {x, y, i′} to be a member of
(
S ∪ E, ·

)
= (E, ·). Note that

(1) and (2) together define a total of C
|S|
2 + 1

3
C

|E|
2 = C

|E|+1
2

2 + 1
3
C

|E|−1
2

2 = 1
3
C

|E|
2 tripleton sets

which is all the tripleton sets that we need. If {a, b} is a doubleton subset of E = S ∪ E,

then the 3 cases are (1) a, b ∈ S, (2) a ∈ S, b ∈ E, (3) a, b ∈ E.

From the definition of the ASET
(
E, ·

)
and from the definition of the round-robin (S, ·)

and considering Fig. 2, it is easy to consider these 3 cases to show that each doubleton

subset {a, b} of S ∪ E = E is a subset of exactly one of the tripleton sets making up (E, ·).
Also, it is obvious that S is a SET-free subset of E and |S| = f (|E|) .

The rest of the paper deals with case 2 which is the hard part.

2.5 Plan to solve case 2

Recall that |E| is odd, 3 - |E|−2, and in case 2, |E|+1
2

is odd. We partition E = S ∪E where

|S| = |E|−1
2

,
∣∣E∣∣ = |E|+1

2
. Therefore, |S| is even,

∣∣E∣∣ is odd and |S| =
∣∣E∣∣− 1. We first prove
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that 3 -
∣∣E∣∣. Now 2

∣∣E∣∣ = |E|+ 1 = |E| − 2 + 3. Therefore, 3 - |E| − 2 implies 3 -
∣∣E∣∣ .

Since
∣∣E∣∣+2 is odd and 3 -

(∣∣E∣∣ + 2
)
−2, this will allow us later to find a very specialized

ASET on E∪{A, B}. In case 2, we proceed in a way that is roughly analogous to case 1. To

solve case 2, we define a hybrid round-robin on S and an incomplete ASET on E. Analogous

to case 1, we then use these two structures to define an ASET on S ∪ E = E such that S

is SET-free. Since |S| = f (|E|) this will solve the problem. However, in case 2 no matter

how we define the hybrid round-robin on S and the incomplete ASET on E there is always

a complicated compatibility condition that must be satisfied between these two structures.

Using the simplest structures that we can find, we will proceed in the following 4 steps.

(1) We define the hybrid round-robin on S,

(2) We conjecture an incomplete ASET on E that will satisfy the compatibility condition,

(3) We solve the problem,

(4) We show that our conjectured incomplete ASET on E is realizable.

Step 4 is the hardest part of the paper, and some readers might wish to just grant us (4).

2.6 The first 3 steps in case 2

It is convenient to call |S| = 2n,
∣∣E∣∣ = 2n + 1 where 3 - 2n + 1. We also call S =

{1, 2, 3, · · · , 2n} , E =
{
0′, 1′, 2′, 3′, · · · , (2n)′

}
.

Of course, |E| = 4n + 1. Now |E| is odd. Also, 3 - |E| − 2 since |E| − 2 = 6n− (2n + 1)

and 3 - 2n + 1.

Step 1. We now define the hybrid round-robin on S = {1, 2, 3, · · · , 2n} which we denote

(S, ·) = ({1, 2, · · · 2n} , ·). This hybrid round-robin on {1, 2, · · · , 2n} was obtained by first

using a cyclic group to define a regular round-robin on {0, 1, 2, · · · 2n + 1}. We then removed

the two vertices 0, 1 and then renamed the vertex 2n + 1 vertex 1.

Let {1, 2, 3, · · · , 2n} denote the team numbers of 2n teams. Also, the days that they play

are numbered 0, 1, 2, · · · 2n. (C, 0, +) = ({0, 1, 2, · · · 2n} , 0, +) is the cyclic group defined by

x + y ≡ x + y, (mod 2n + 1). The hybrid round-robin on {1, 2, · · · , 2n} is defined as follows.

(1) ∀x, y ∈ {1, 2, · · · , 2n}, if x 6= 1, y 6= 1 and x 6= y, then teams x, y play each other on

day x · y = x + y ≡ x + y, (mod 2n + 1). Note that x · y ∈ {0, 1, 2, · · · 2n} .

(2) ∀x ∈ {1, 2, · · · , 2n}, if x 6= 1 then teams 1, x play each other on day 1 · x = 2x ≡ 2x,

(mod 2n + 1),
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(3) As always, x · x is not defined.

Using x + y and 2x = x + x, from (C, 0+), we know the following.

(a) Team 1 plays the teams {2, 3, 4, · · · , 2n} on the days {1 · x : x = 2, 3, 4, · · · , 2n} =

{2x : x = 2, 3, 4, · · · , 2n} = {2x : x = 0, 1, 2, 3, · · · , 2n} \ {0, 2} = {0, 1, 2, 3, · · · , 2n} \ {0, 2},
since 2n + 1 is odd. Thus, team 1 sits out on days 0, 2.

(b) Also, ∀i ∈ {2, 3, · · · 2n}, team i plays the teams {1, 2, 3, · · · i− 1, i + 1, · · · , 2n} on

the days {i · 1}∪{i · x : x = 2, 3, · · · , i− 1, i + 1, · · · , 2n} = {2i}∪{i + x : x = 2, 3, · · · , i− 1, i + 1, · · · , 2n} =

{i + x : x = 0, 1, 2, 3, · · · , 2n} \ {i, i + 1} = {0, 1, 2, 3, · · · , 2n} \ {i, i + 1}. Thus,

team i sits out on days i, i + 1.

Note that each team sits out two days, and the two days that each of the teams

1, 2, 3, · · · , 2n do not play is given in Fig. 3. We observe that each team plays on day

1. However, two teams sit out on each of the other days 0, 2, 3, 4, · · · , 2n. Also, observe

that the 2n teams sit out 2 days according to one big 2n-cycle, and this is as simple

as we have been able to make compatibility problem.

Fig. 3. We later call 0 = 1′, 1 = 0′, i = i′, i = 2, 3, · · · , 2n.

Thus on day 1 the 2n teams are paired into n pairs so that each pair plays each other

on day 1.

Also, on each of the other days i ∈ {0, 2, 3, 4, · · · , 2n} the 2n teams are paired into

n − 1 pairs so that each pair plays each other on day i and the remaining two teams

sit out on day i.

Step 2. Next, we will conjecture an incomplete ASET on E =
{
0′, 1′, 2′, · · · , (2n)′

}
which

we call
(
E, ·

)
that has the following properties. As always, we can define

(
E, ·

)
as a collection

of distinct tripleton subsets of E.

First, we agree that none of the 2n doubleton sets in (∗) will be a subset of any tripleton

set in
(
E, ·

)
.

(∗) {1′, 2′} , {2′, 3′} , {3′, 4′} · · ·
{
(2n− 1)′ , (2n)′

}
,
{
(2n)′ , 1′

}
.

For compatibility between (S, ·) and
(
E, ·

)
, we note that the 2n doubleton sets in (∗) are

arranged in a 2n-cycle. Also, note that we are left with C2n+1
2 − 2n = (2n + 1) (n) − 2n =

n (2n− 1) doubleton subsets of E that we have to deal with.
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Since 3 - 2n + 1 we know that 3| (2n) (2n− 1) which implies 3|n (2n− 1). Therefore,

in step 4, we will be able to specify
n (2n− 1)

3
tripleton sets that make up the incomplete

ASET
(
E, ·

)
so that (1) and (2) are true.

(1) None of the 2n doubleton sets in (∗) is a subset of any tripleton set in
(
E, ·

)
.

(2) Each of the n (2n− 1) remaining doubleton subsets of E is a subset of exactly one

tripleton set in
(
E, ·

)
Note that (1), (2) implies that each doubleton subset {0′, b′} of E is a subset of exactly

one tripleton set in
(
E, ·

)
since 0′ does not appear in (∗) .

Step 3. Before we specify the tripleton sets that make up
(
S ∪ E, ·

)
= (E, ·), we must

do the following. In the hybrid round-robin (S, ·) = ({1, 2, 3, · · · , 2n} , ·) defined in step 1,

the teams are numbered 1, 2, · · · , 2n and they play on days 0, 1, 2, 3, · · · , 2n. However, for

compatibility between (S, ·) and
(
E, ·

)
, let us now rename the days that they play as follows.

0 1 2 3 4 5 6 · · · 2n

1′ 0′ 2′ 3′ 4′ 5′ 6′ · · · (2n)′
.

From Fig. 3 this means that on day 0′ all of the teams play, but on each of the other

days 1′, 2′, · · · , (2n)′, two teams sit out, and this pattern defines one big 2n-cycle.

The tripleton sets of
(
S ∪ E, ·

)
= (E, ·) are defined as follows.

(1′) If {x, y, z} ⊆ E is any tripleton subset of E, then {x, y, z} is a member of
(
S ∪ E, ·

)
=

(E, ·) if and only if {x, y, z} is a member of
(
E, ·

)
. Of course, this gives a total of

n (2n− 1)

3
tripleton sets.

(2′) If {x, y} ⊆ S is any doubleton subset of S, define x · y = i′ using the operator (S, ·).
In other words, teams x, y play each other on day i′ where we call 0 = 1′, 1 = 0′, i =

i′, i = 2, 3, · · · , 2n. We define {x, y, i′} to be a member of
(
S ∪ E, ·

)
= (E, ·). This

gives a total of C
|S|
2 = n (2n− 1) tripleton sets.

(3′) From the definition of
(
E, ·

)
, we know that none of the 2n doubleton sets (∗) {1′, 2′} {2′, 3′} , {3′, 4′} , · · ·

{
(2n− 1)′ , (2n)′

}
,
{
(2n)′ , 1′

}
is a member of any tripleton set {x, y, z} that makes up

(
E, ·

)
. Also, from Fig. 3 (af-

ter calling 0 = 1′, 1 = 0′, i = i′, i = 2, 3, · · · , 2n) we know that none of the following

doubleton sets is a subset of any tripleton set that we have defined in step (1) and

step (2): {1, 1′} , {1, 2′} and {2, 2′} , {2, 3′} and {3, 3′} , {3, 4′} and {4, 4′} , {4, 5′} and

· · · , and
{
2n, (2n)′

}
, {2n, 1′}. This gives a total of 2n + 2 · 2n = 6n doubleton subsets

of S ∪ E that we have not dealt with. We now put the following tripleton sets in(
S ∪ E, ·

)
= (E, ·) : {1′, 2′, 1} , {2′, 3′, 2} , {3′, 4′, 3} , {4′, 5′, 4} , · · ·

{
(2n)′ , 1′, 2n

}
. This

gives a total of 2n tripleton sets, and this takes care of the remaining 6n doubleton

sets.
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The total number of tripleton sets from (1′) , (2′) (3′) equals n(2n−1)
3

+ n (2n− 1) + 2n =
2n(4n+1)

3
. Since |E| = |S|+

∣∣E∣∣ = 4n+1, the number of tripleton sets making up
(
S ∪ E, ·

)
=

(E, ·) must equal 1
3
C4n+1

2 = 2n(4n+1)
3

.

If {a, b} is any doubleton subset of E = S ∪ E, then the 3 cases are (1) a, b ∈ S, (2)

a ∈ S, b ∈ E, (3) a, b ∈ E. From the definitions of (S, ·) ,
(
E, ·

)
and

(
S ∪ E, ·

)
= (E, ·) that

we have used, it is easy to consider these 3 cases to show that each doubleton subset {a, b}
of S ∪ E = E is a subset of exactly one of the tripleton sets making up (E, ·). Also, it is

obvious that S is SET-free and |S| = f (|E|) .

The rest of this paper deals with step 4 in which we show that the conjectured incomplete

ASET
(
E, ·

)
that we specified in step 2 actually exists. Showing this is the hardest part of

the paper.

2.7 Finishing the solution (step 4)

We finish the solution by solving two problems.

In problem 1 we show that an ASET (E, ·) exists on E when |E| = 2n+3 and 3 - 2n+1.

We represent E by E = {0, 1, 2, · · · , 2n} ∪ {A, B} .

In problem 2 we use the solution to problem 1 to construct a very specialized ASET

(E, ·) on E when |E| = 2n+3 3 - 2n+1. Immediately after stating problem 2, we show how

the solution, (E, ·), to problem 2 can easily be used to show that the conjectured incomplete

ASET
(
E, ·

)
of step 2, section 2.6 actually exists.

Problem 1

Suppose E is a finite set, |E| is odd and 3 - |E| − 2. Show that an ASET (E, ·) exists on E.

Solution

Since |E| ∈ {1, 3} is trivial, let us assume that |E| ≥ 7. Therefore, since |E| ≥ 7, we can

write |E| = (2n + 1) + 2 where 3 - 2n + 1 and 2n + 1 ≥ 5.

Let us represent E as E = {0, 1, 2, · · · , 2n} ∪ {A, B}. What we now wish to do is define
1
3
C2n+3

2 distinct tripleton subsets {x, y, z} of E such that (∗∗) is true. (∗∗). Each distinct

doubleton subset {a, b} of E is a subset of exactly one {x, y, z}. However, if we define a

collection of tripleton subsets {x, y, z} of E that has this property (∗∗) , we do not need to

prove that the number of these will be
1

3
C2n+3

2 . This will be automatic.

As always, let (C, 0, +) = ({0, 1, 2, · · · 2n} , 0, +) be the cyclic group defined by ∀a, b ∈
{0, 1, 2, · · · , 2n} , a + b ≡ a + b(mod 2n + 1). We now define an incomplete binary operator

(C,�) as follows.

(1) ∀x ∈ C, x� x = x.

(2) ∀x, y ∈ C, if x 6= y and {x, y,−x− y} is a tripleton set, then we define x�y = y�x =

−x− y.
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(3) ∀x, y ∈ C, if x 6= y and {x, y,−x− y} is not a tripleton set, then x� y and y � x are

left undefined.

Of course, (C,�) is idempotent everywhere, and it is commutative when it is defined.

Also, ∀x, y ∈ C, if x 6= y and x � y is defined, then the � product of any two members of

the tripleton set {x, y, x� y = −x− y} is defined and equals the third member of the set.

For example, x� (x� y) = −x− (x� y) = −x− (−x− y) = y.

∀x, y ∈ C we observe that {x, y,−x− y} is a tripleton set if and only if (1) x 6= y, (2)

y 6= −2x and (3) x 6= −2y. Of course, by symmetry the three conditions (1), (2) and (3) are

equivalent to the three conditions x 6= −x− y,−x− y 6= −2x and x 6= −2 (−x− y) .

Also, by symmetry (1), (2) and (3) are equivalent to the three conditions y 6= −x −
y,−x− y 6= −2y and y 6= −2 (−x− y) .

We also observe that if x = 0 and y 6= 0 then {x, y,−x− y} = {0, y,−y} is always a

tripleton set since y 6= 0,−y 6= 0 and since y = −y implies 2y ≡ 0(mod 2n + 1) which is

impossible. Therefore, we know that ∀x ∈ C, x � x and 0 � x are always defined. Also,

∀x, y ∈ C, if x 6= 0, y 6= 0 then x� y is not defined if and only if (1) x 6= y and y = −2x or

(2) x 6= y and x = −2y.

Perhaps a better way of looking at what we have done is as follows. First, we de-

fine all distinct tripleton subsets {x, y, z} of C that satisfy x + y + z ≡ 0(mod 2n + 1).

Thus if {x, y, z} , {x, y, z} are any two such distinct tripleton subsets of C, then {x, y, z} ∩
{x, y, z} is either empty or singleton. Also, if {a, b} is any doubleton subset of C sat-

isfying a 6= −2b and b 6= −2a, then {a, b} is a subset of exactly one {x, y, z} namely

{x, y, z} = {a, b, a� b = −a− b}.
Since E = C ∪ {A, B}, we observe that up to now we have not defined any tripleton

sets {x, y, z} that contain either A or B. Therefore, all doubleton subsets of E containing A

and/or B must be worked in. Also, if {a, b} is any doubleton subset of C we have not defined

a tripleton set {x, y, z} having {a, b} as a subset when either a = −2b or b = −2a. With this

in mind, we now plan to extend the incomplete binary operator (C,�) to define the remaining

tripleton subsets of E = C ∪ {A, B}. This will give us the ASET (E, ·) = (C ∪ {A, B} , ·)
that we wish to find.

Let us now define the function f : C\ {0} → C\ {0} as follows.

∀x ∈ C\ {0} , f (x) = −x−x ≡ −2x, (mod 2n+1). Since 2n+1 is odd, we see that f is a

bijection on C\ {0} = {1, 2, 3, · · · , 2n}. This means that f can be partitioned into the union

of pairwise disjoint cycles C1 ∪ C2 ∪ C3 ∪ · · · ∪ Ct where each Ci =
{
xi1, xi2, xi3, · · · , xi,k(i)

}
with −2xiθ = xi,θ+1 when θ = 1, 2, · · · , k (i) − 1 and −2xi,k(i) = xi1. For convenience,

we are going to call k (i) = k since this omission of i will cause no confusion. Of course,

−Ci = {−xi1,−xi2,−xi3, · · · − xik} is also a cycle since (−2) (−xiθ) = −xi,θ+1 is true if and

only if −2xiθ = xi,θ+1. This implies ∀i ∈ {1, 2, · · · , t} , Ci = −Ci or Ci ∩ (−Ci) = φ. Since

13



∀x ∈ C\ {0} ,−x 6= x and − (−x) = x, we see that if Ci = −Ci, then |Ci| must be even.

Therefore, if |Ci| is odd then Ci ∩ (−Ci) = φ.

We now show that ∀x ∈ C\ {0}, all four elements of the set
{
x,−2x, (−2)2 x, (−2)3 x

}
=

{x,−2x, 4x,−8x} are distinct.

This is true if and only if x 6= −2x, x 6= 4x, x 6= −8x, −2x 6= 4x, −2x = −8x and

4x 6= −8x which is equivalent to the four conditions 3x ≡/0(mod 2n + 1), 9x ≡/0(mod 2n +

1), 6x ≡/0(mod 2n + 1) and 12x ≡/0(mod 2n + 1).

Since 2 - 2n + 1 and 3 - 2n + 1, these 4 conditions are obviously true since x ∈ C\ {0}.
This implies ∀i ∈ {1, 2, · · · , t} , |Ci| ≥ 4. In Fig. 4-a we have drawn a cycle Ci to illustrate

the case where |Ci| is even. In Fig. 4-b, we have drawn two cycles Cj,−Cj to illustrate the

case where |Cj| is odd which implies Cj ∩ (−Cj) = φ. Given such a pair {Cj,−Cj} we have

arbitrarily chosen one of {Cj,−Cj}, namely Cj, to be the top cycle and the other, namely

−Cj, to be the bottom cycle in the drawing.

In drawing (b) we know that |Cj| = |−Cj| ≥ 5 since |Cj| is odd and |Cj| ≥ 4.

In Fig. 4 we have also drawn the three elements 0, A,B. Technically we should use

k = k (i) in (a), which gives |Ci| = k (i), and use k = k (j) in (b), which gives |Ci| =

|−Cj| = k (j). But again this technical omission should cause no confusion.

Fig. 4. |Ci| even, |Cj| = |−Cj| odd, xi1 ∈ Ci, xj1 ∈ Cj fixed.

Of course, in Fig. 4, xi1 ∈ Ci, xj1 ∈ Cj can be arbitrarily chosen. However, we assume

that we have chosen a fixed xi1 ∈ Ci for each Ci such that |Ci| is even. Also, for each

pair {Cj,−Cj} where |Cj| = |−Cj| is odd and Cj is chosen to be the top cycle and −Cj is

chosen to be the bottom cycle, we assume that we have chosen a fixed xj1 ∈ Cj. In Fig.

4, it is convenient to define xi,k+1 = xi1 and xj,k+1 = xj1. ∀Ci and ∀Cj ∪ (−Cj) illustrated

in Fig. 4, we note that none of the doubleton sets {xiθ, xi,θ+1} , θ = 1, 2, 3, · · · and none

of the doubleton sets {xjθ, xj,θ+1} , {−xjθ,−xj,θ+1} , θ = 1, 2, 3, · · · are subsets of any of the

tripleton sets that we have defined up to now. This is because −2xiθ = xi,θ+1,−2xjθ = xj,θ+1

and −2 (−xjθ) = xj,θ+1.

We now see the incomplete binary operator (C,�) = ({0, 1, 2, · · · , 2n} ,�) to define the

ASET (E, ·) = (C ∪ {A, B} , ·) in the steps 1, 2, 3,4, 5, 6 that follow.

(1) ∀x, y ∈ C = {0, 1, 2, · · · 2n} , x ·y = x�y if x�y is defined in (C,�) with the following

exceptions. Suppose {Cj,−Cj} is any pair satisfying |Cj| = |−Cj| is odd with Cj the

top cycle and −Cj the bottom cycle of such a pair as illustrated in Fig. 4-b.

As always, we wrote Cj = {xj1, xj2, · · · , xjk} where xj1 has been chosen and where

technically we should call k = k (j). Also, −Cj = {−xj1,−xj2, · · · ,−xjk}. Of course,

xj,θ+1 = −2xjθ when θ = 1, 2, · · · , k.
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For all such pairs {Cj,−Cj} with xj1 ∈ Cj chosen for each pair, we now agree that

none of the following have been defined in (E, ·) : 0 · xj1, 0 · (−xj1) and xj1 · (−xj1). In

other words, we assume that the tripleton set {0, xj1,−xj1} is not used in (E, ·) .

Of course, without this agreement, we would have 0 · xj1 = −xj1, 0 · (−xj1) = xj1 and

xj1 · (−xj1) = 0 in (E, ·) .

By symmetry we also agree that none of the following have been defined in (E, ·) :

0 · xjk, 0 · (−xjk) and xjk · (−xjk). In other words, we assume that the tripleton set

{0, xjk,−xjk} is not used in (E, ·) .

Steps 2-6 will come after the following discussion.

Let Ci be any cycle such that |Ci| is even. Of course, |Ci| ≥ 4. In Fig. 4-a, we have

drawn the directed edges of Ci which are xi1 → xi2 → xi3 → · · · xik → xi1 where k ≥ 4

and k is even. Since k is even, we are now able to alternate coloring these directed

edges dark and light as we have illustrated in Fig. 4-a. Of course, this can be done in

two different ways, and we choose one of these 2 ways for each cycle that satisfies |Ci|
is even.

Let Cj be the top cycle and −Cj be the bottom cycle in Fig. 4-b of any pair {Cj,−Cj}
such that |Cj| = |−Cj| is odd. Also, xj1 ∈ Cj has been chosen.

In Fig. 4-b, we have drawn the following directed edges where some are backwards in

(∗ ∗ ∗) which is of no concern:

(∗ ∗ ∗) xj1 → xj2 → xj3 → · · · → xj,k−1 → xjk → −xjk ← −xj,k−1 ← −xj,k−2 ← · · · ←
−xj3 ← −xj2 ← −xj1 → xj1.

Note that the two directed edges xj1 ← xjk and −xjk → −xj1 have been ×’ed out in

Fig. 4-b and are not used.

The number of directed edges in (∗ ∗ ∗) is even so we are now able to alternate coloring

these directed edges dark and light as we have illustrated in Fig. 4-b. This also can

be done in two different ways, and we choose one of these 2 ways for each {Cj,−Cj}
that satisfies |Cj| = |−Cj| is odd. Again we emphasize that the edges xj1 ← xjk and

−xjk → −xj1 have not been colored. Step 1 started our definition of (E, ·). In steps

2, 3, ..., 6, we complete the definition of (E, ·) by defining the additional tripleton

sets that we need. We use Fig. 4 to do this where in Fig. 4 Ci is any arbitrary

cycle satisfying |Ci| is even and {Cj,−Cj} is any arbitrary pair of cycles satisfying

|Cj| = |−Cj| is odd and where one of {Cj,−Cj} is chosen to be the top cycle. Also,

xi1 ∈ Ci, xj1 ∈ Cj are fixed.

(2) We use (0, A,B) in (E, ·). Thus, 0 · A = B, 0 ·B = A, A ·B = 0.
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(3) From each Cj ∪ (−Cj) we use the tripleton sets {0, xj1, xjk} and {0,−xj1,−xjk} in

(E, ·). Thus, 0 · xj1 = xjk, etc.

Recall in step (1) that the tripleton sets {0, xj1,−xj1} and {0, xjk,−xjk} were not to

be used in (E, ·) .

(4) In the Ci drawing of Fig. 4-a of an arbitrary Ci with |Ci| even, if the directed edge xiθ →
xi,θ+1 is colored dark, where θ = 1, 2, · · · , k, we use the tripleton set {xiθ, xi,θ+1, B} in

(E, ·). Of course, this applies to xik → xi1 since we are calling xi,k+1 = xi1.

If the directed edge xiθ → xi,θ+1 is colored light, we use the tripleton set {xiθ, xi,θ+1, A}
in (E, ·) .

(5) In the Cj ∪ (−Cj) drawing in Fig. 4-b of an arbitrary Cj ∪ (−Cj) with |Cj| odd, we use

the alternating dark and light coloring for the edges in the sequence (∗ ∗ ∗) that was

defined earlier. Suppose xθ, xφ ∈ Cj ∪ (−Cj) and xθ → xφ or xθ ← xφ in the sequence

(∗ ∗ ∗) .

If this directed edge xθ → xφ (or xθ ← xφ) is colored dark, we use the tripleton set

{xθ, xφ, B} in (E, ·).

If this directed edge xθ → xφ (or xθ ← xφ) is colored light, we use the tripleton set

{xθ, xφ, A} in (E, ·).

(6) Finally, for completeness, ∀x ∈ E, we specify that x · x = x.

Steps 1-6 give the complete definition of all tripleton sets that make up (E, ·) as well as

x · x = x.

To show that this collection of tripleton sets (E, ·) is indeed an ASET, we need to show

that if {a, b} is any doubleton subset of E = C ∪ {A, B}, then {a, b} is a subset of exactly

one of the tripleton subsets {x, y, z} that we have defined.

To see this we go through the construction that we have given for {a, b, a · b} when the

doubleton subset {a, b} of E lies in each of the following 5 cases.

Case 1. {a, b} ⊆ C\ {0} with a ≡/ − 2b(mod 2n + 1) and b ≡/ − 2a(mod 2n + 1). This

uses step 1 and the part of step 5 that fills in the gap caused by the omitted tripleton sets

in step 1.

Case 2. {a, b} ⊆ C\ {0} with a ≡ −2b(mod 2n + 1) or b ≡ −2a(mod 2n + 1). This uses

steps 3-5.

Case 3. {a, b} = {0, b} with b ∈ C\ {0}. This uses step 1 and step 3 to fill in the gap

caused by the omitted tripleton sets in step 1.

Case 4. {a, b} = {A, b} with b ∈ C\ {0} or {a, b} = {B, b} with b ∈ C\ {0}. This uses

steps 4, 5.
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Case 5. {a, b} = {0, A} or {a, b} = {0, B} or {a, b} = {A, B}. This uses step 2.

We will soon tamper with the ASET (E, ·) that we just constructed to create a more

specialized ASET (E, ·) that satisfies the conditions required in Problem 2.

Lemma 7 Suppose (E, ·) is a finite ASET. ∀a, b ∈ E, if a 6= b then we can partition E into

pairwise disjoint sets E = C0∪C1∪C2∪· · ·∪Ct such that C0, C1, · · · , Ct have the following

properties.

(1) C0 = {a, b, ab} .

(2) ∀i ∈ {1, 2, · · · t}, we can write Ci =
{
xi1, xi2, · · · , xi,2k(i)

}
where 2k (i) ≥ 4 and where

∀θ ∈ {1, 2, · · · , 2k (i)}, the following is true.

(a) If θ is odd, xiθ · xi,θ+1 = b.

(b) If θ is even, xiθ · xi,θ+1 = a where we define xi,2k(i)+1 = xi1.

Fig. 5.
∣∣C0

∣∣ = 3 and ∀i ≥ 1,
∣∣Ci

∣∣ ≥ 4 and even.

Proof. First consider E\C0. Choose any x1,1 ∈ E\C0. Define x1,2 = x1,1 · b, x1,3 =

x1,2 · a, x1,4 = x1,3 · b, x1,5 = x1,4 · a · · · . Using the properties of (E, ·) it is fairly easy to see

that C1 forms a cycle,
∣∣C1

∣∣ is even and
∣∣C1

∣∣ ≥ 4.

Next choose any x2,1 ∈ E\
(
C0 ∪ C1

)
and do the same thing, etc.

Observation 2. (E, ·) is a finite ASET. Choosing any a, b ∈ E, a 6= b , let us par-

tition E = C0 ∪ C1 ∪ C2 ∪ · · · ∪ Ct as in Lemma 7. Let us now pick out a specific

Ci =
{
xi1, xi,2, · · · , xi,2k(i)

}
.

It follows from Lemma 7 that

A. {xiθ, xi,θ+1, b} , θ = 1, 3, 5, · · · , 2k (i) − 1 and {xiθ, xi,θ+1, a} , θ = 2, 4, 6, · · · , 2k (i) are

tripleton sets used in (E, ·) where xi,2k(i)+1 = xi1.

Suppose we interchange a and b in Ci. That is, for the above tripleton sets A we

substitute in (E, ·) the new tripleton sets given in B.

B. {xiθ, xi,θ+1, a} , θ = 1, 3, 5, · · · , 2k (i)− 1 and {xiθ, xi,θ+1, b} , θ = 2, 4, 6, · · · , 2k (i).

After we make this substitution and keep the other tripleton sets in (E, ·) the same, it

is fairly obvious that the new collection of tripleton sets that results is also an ASET

on E. This follows since all of the doubleton subsets appearing in the tripleton sets in

A also appear in the tripleton sets in B.
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Problem 2 Suppose E is a finite set with |E| ≥ 7. Also, |E| = 2n + 3 and 3 - 2n + 1.

Therefore, 2n + 1 ≥ 5.

We wish to construct an ASET (E, ·) that has the following properties. ∃a, b ∈ E, a 6= b,

such that the partition of E defined in lemma 7 for a, b has only two sets namely E = C0∪C1.

Of course,
∣∣C0

∣∣ = 3,
∣∣C1

∣∣ = 2n.

Step. 4. Before solving problem 2, we show that the solution (E, ·) of problem 2 easily

solves the conjectured incomplete ASET
(
E, ·

)
conjectured in step 2, section 2.6. Let us

define E = E\ {a, b} = {ab} ∪ C1 = {ab} ∪ {x11, x12, x13, · · ·x1,2n} .

We define an incomplete ASET
(
E, ·

)
on E as follows. If {x, y, z} is any tripleton subset

of E, then {x, y, z} is a member of E if and only if {x, y, z} is a member of (E, ·). In other

words,
(
E, ·

)
keeps those tripleton set {x, y, z} of (E, ·) that satisfy {x, y, z} ∩ {a, b} = φ

and throws away those tripleton sets {x, y, z} of (E, ·) that satisfy {x, y, z} ∩ {a, b} 6= φ.

Of course, from the notation of lemma 7, this means that {x11, x12, b} , {x12, x13, a} , {x13, x14, b} , {x14, x15, a} , · · · , {x1,2n, x11, a}
have been thrown away. Also, if we now call 0′ = ab, 1′ = x11, 2

′ = x12, 3
′ = x13, · · · , (2n)′ =

x1,2n, then it is obvious that none of the 2n doubleton sets (∗). {1′, 2′} , {2′, 3′} , {3′, 4′} , · · · ,
{
(2n− 1)′ , (2n)′

}
,
{
(2n)′ , 1′

}
will be a subset of any tripleton set in

(
E, ·

)
. Also, all of the remaining doubleton subsets

{a, b} of E will be a subset of a unique tripleton set {x, y, z} in
(
E, ·

)
.

Solution to Problem 2. The plan is to first construct an ASET (E, ·) such that

∃a, b ∈ E, a 6= b , such that the partition of E defined by lemma 7 for a, b satisfies (a) or (b).

1. E = C0 ∪ C1 with
∣∣C0

∣∣ = 3,
∣∣C1

∣∣ = 2n or

2. E = C0 ∪ C1 ∪ C2 with
∣∣C0

∣∣ = 3,
∣∣C1

∣∣ =
∣∣C2

∣∣ = n.

Of course (a) solves the problem. In (b) we show that we can slightly modify the con-

struction of (E, ·) to obtain a final (E, ·) such that the partition of E of lemma 7 for a, b is

E = C0 ∪ C
∗
1 where

∣∣C0

∣∣ = 3,
∣∣∣C∗

1

∣∣∣ = 2n. Of course, C0, C
∗
1 solves the problem.

To construct (E, ·) we call E = {0, 1, 2, · · · , 2n} ∪ {A, B} and then use the same con-

struction that was used to solve problem 1. In that construction, each |Ci| of Fig. 4-a was

even with |Ci| ≥ 4. Also, each |Cj| = |−Cj| of Fig. 4-b was odd with |Cj| = |−Cj| ≥ 5.

Also, for each pair {Cj,−Cj} we arbitrary chose Cj to be the top and −Cj to be the bottom

in Fig. 4-b.

In that construction, for each Cj ∪ (−Cj) we need to place one restriction on the xj1 ∈ Cj

that we choose. We agree to choose xj1 ∈ Cj so that (∗ ∗ ∗∗) {xj1,−xj1, xjk,−xjk}∩{−1, 1} =

φ where −1 = (2n + 1)−1 = 2n in (C, 0, +) = ({0, 1, 2, · · · , 2n} , 0, +). We can do this since

|Cj| ≥ 5 > 3, and we note that |Cj| ≥ 3 would be sufficient to do this since if one of −1, 1

appears in Cj, then the other must appear in −Cj.

Let us partition E = {0,−1, 1} ∪ {2, 3, 4, · · · , 2n− 1, A,B} .
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From restriction (∗ ∗ ∗∗) and from step 1 in the construction of (E, ·) in problem 1, we

know that (−1) · (1) = − (−1) − 1 = 0 in (E, ·). This implies that {0,−1, 1} is one of the

tripleton sets making up (E, ·) .

Let us call −A = B,−B = A. Using (C, 0, +) = ({0, 1, 2, · · · , 2n} , 0, +), we now write

{1, 2, 3, 4, · · · , 2n} = {1, 2, 3, · · · , n} ∪ {n + 1, n + 2, · · · , 2n}
= {1, 2, 3, · · · , n} ∪ {−1,−2,−3, · · · ,−n}
= {1,−1} ∪ {2,−2} ∪ {3,−3} ∪ · · · {n,−n} .

Since each |Cj| = |−Cj| ≥ 5 in Fig. 4-b, it follows from step 1 in the construction of (E, ·)
in problem 1 that if n is even then at least

n

2
+1 of the doubleton sets {i,−i} , i = 1, 2, · · · , n,

must have the property that i · (−i) = 0 in (E, ·). Therefore, if n is even then at least
n

2
+ 1

of the tripleton sets {−i, i, 0} , i = 1, 2, 3, · · · , n, are used in (E, ·) .

Recall that {A, B, 0} is a tripleton set used in (E, ·). Since {A,−A} = {B,−B} =

{A, B}, if we substitute {A,−A} for {−1, 1} then when n is even it follows that at least
n
2

+ 1 of the tripleton sets {−i, i, 0} , i = 2, 3, 4, · · · , n, A, are used in (E, ·) .

For the (E, ·) that we have now specified, let us define a = −1, b = 1. Therefore, from

lemma 7, C0 = {−1, 1, 0} since the tripleton set {−1, 1, 0} is used in (E, ·) .

In Figures 6 and 7 we have drawn two cases that we must carefully study. In Fig. 6, n

is even, and we call this case 1. In Fig. 7, n is odd, and we call this case 2.

Fig. 6. Case 1, n is even. Fig. 7. Case 2, n is odd.

In both Figs. 6, 7 we temporarily consider x, y, z, v to be unknown, but we soon show

that x ∈ {A, B} y ∈ {A, B} , z ∈ {A, B} , V ∈ {A, B}
In both Figs. 6, 7 we observe that E = C ∪ {A, B} where C = {0, 1, 2, · · · , 2n} =

{0,−1, 1} ∪ {2, 3, · · · , n} ∪ {−2,−3, · · · ,−n}. From step 1 in the problem 1 construction

of (E, ·) = (C ∪ {A, B} , ·), we recall that ∀x, y ∈ C, if x 6= y, x 6= −2y and y 6= −2x in

(C, 0, +), then x · y is computed inside the cyclic group (C, 0, +) by x · y = −x − y with

one exception. In each Cj ∪ (−Cj) in Fig. 4-b, the two tripleton sets {0, xj1,−xj1} and

{0, xjk,−xjk} were not used in (E, ·). This exception can occur only if 0 is a member of the

tripleton set which allows us to easily keep track of possible exceptions.

In both cases 1, 2, the following is true. As we know, the tripleton set {−1, 1, 0} is used

in (E, ·) since {−1, 1} ∩ {xj1,−xj1, xjk,−xjk} = φ is true for each Cj ∪ (−Cj) in Fig. 4-b.

Also, ∀i = 2, 3, 4, · · · , n−1, i ·1 = −i−1 since 1 ∈ C, i ∈ C and since i 6= 1, i 6= −2 ·1, 1 6=
−2i in (C, 0, +) and since 0 /∈ {i, 1,−i− 1}. Also, ∀i = 2, 3, 4, · · · , n− 1, (−i) · (−1) = i + 1
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since -1 ∈ C,−i ∈ C and since −i 6= −1,−i 6= −2 (−1) ,−1 6= −2 (−i) in (C, 0, +) and since

0 /∈ {−i,−1, i + 1} .

In Figs. 6-7, let us now study 2 · (−1) = x, (−2) · (1) = z, n · 1 = y and (−n) · (−1) = v.

In computing 2 · (−1) we observe that 2 = −2 (−1). In computing (−2) · (1) we observe

that −2 = −2 (1) .

In computing n · 1 we observe that 1 = −2n since 2n+1 ≡ 0(mod 2n+1). In computing

(−n) · (−1) we observe that −1 = −2 (−n) since 2n + 1 ≡ 0(mod 2n + 1).

Since {−1, 1} ∩ {xj1,−xj1, xjk,−xjk} = φ for each Cj ∪ (−Cj) in Fig. 4-b, it follows

from steps 4, 5 in the problem 1 construction of (E, ·) that the following is true in both

cases 1 and 2: 2 · (−1) = x ∈ {A, B}, n · 1 = y ∈ {A, B}, (−2) · (1) = z ∈ {A, B} and

(−n) · (−1) = v ∈ {A, B}. Since x · (−1) = 2, v · (−1) = −n, y ·1 = n, z ·1 = −2, it is obvious

that x 6= v and y 6= z.

We now study cases 1, 2 separately.

Case 1. Since n · 1 = y ∈ {A, B}, by the symmetry in the way that {A, B} is used in the

construction of (E, ·), there is no loss of generality in assuming that n · 1 = y = A.

Therefore, z = B. This leaves 2 possibilities for (x, v) namely (a) x = B, v = A and

(b) x = A, v = B.

(a) x = B, y = A, z = B, v = A leads to E = C0∪C1, where
∣∣C0

∣∣ = 3,
∣∣C1

∣∣ = 2n and

this solves the problem.

(b) x = A, y = A, z = B, v = B leads to E = C0 ∪ C1 ∪ C2 where
∣∣C0

∣∣ = 3,
∣∣C1

∣∣ =∣∣C2

∣∣ = n. We will soon modify (b) to solve the problem.

Case 2. Again by symmetry there is no loss of generality in assuming that n · 1 = y = A.

Since y 6= z this implies z = B. There are two possibilities for (x, v) namely (a)

x = A, v = B or (b) x = B, v = A. In either (a) or (b) it is obvious that E = C0 ∪C1,

where
∣∣C0

∣∣ = 3,
∣∣C1

∣∣ = 2n which solves the problem.

Case 1-b. In case 1-b, n is even, x = y = A and z = v = B = −A.

For convenience, we will call C1 = {A, 2,−3, 4,−5, 6, · · · , n} = {x1, x2, · · · , xn} in that

order. That is, x1 = A, x2 = 2, x3 = −3, · · · .

Also, C2 = {B,−2, 3,−4, 5,−6, · · · ,−n} = {−x1,−x2, · · · , xn} in that order.

Also, xi · xi+1 = −1 if i is odd and xi · xi+1 = 1 if i is even where xn+1 = x1.

Also, (−xi) · (−xi+1) = 1 if i is odd and (−xi) · (−xi+1) = −1 if i is even where

−xn+1 = −x1.

20



Since n is even, let us define the
n

2
doubleton sets {x1, x2} , {x3, x4} , {x5, x6} , · · · , {xn−1, xn}

and the corresponding
n

2
doubleton sets {−x1,−x2} , {−x3,−x4} , {−x5,−x6} , · · · , {−xn−1,−xn} .

As we noted earlier, if n is even and we defined −A = B,−B = A, then at least
n

2
+ 1

of the tripleton sets {i,−i, 0} , i = A, 2, 3, · · · , n, must appear in (E, ·) .

From this it follows that ∃θ ∈ {1, 3, 5, · · · , n− 1} such that the doubleton set {xθ, xθ+1}
and the corresponding {−xθ,−xθ+1} have the property that both of the tripleton sets

{xθ,−xθ, 0} and {xθ+1,−xθ+1, 0} appear in (E, ·) .

Since θ is odd we know that xθ · xθ+1 = −1 and (−xθ) · (−xθ+1) = 1.

Since x1 · x2 = −1, x2 · x3 = 1, x3 · x4 = −1, · · · , xn · x1 = 1, as in observation 2, let us

now interchange 1 and −1 in C1 = {x1, x2, · · · , xn} and then substitute the new tripleton

sets that we obtain for the old in (E, ·). That is, for {x1, x2,−1} we substitute {x1, x2, 1},
for {x2, x3, 1} we substitute {x2, x3,−1}, etc. This will give us a new modified ASET on E

which we call new (E, ·) where xi · xi+1 = 1 if i is odd and xi · xi+1 = −1 if i is even. Of

course, we still have (−xi) · (−xi+1) = 1 if i is odd and (−xi) · (−xi+1) = −1 if i is even.

This means that the following 4 tripleton sets appear in new (E, ·) : {xθ, xθ+1, 1} , {−xθ,−xθ+1, 1} , {xθ,−xθ, 0} , {xθ+1,−xθ+1, 0}.
Together these 4 tripleton sets contain the following 12 doubleton sets: {xθ, xθ+1} , {xθ, 1} , {xθ+1, 1} , {−xθ,−xθ+1} , {−xθ, 1} , {−xθ+1, 1} , {xθ,−xθ} , {xθ, 0} , {−xθ, 0} , {xθ+1,−xθ+1} , {xθ+1, 0} , {−xθ+1, 0}.

We now interchange 0, 1 in the above 4 tripleton sets to create the following 4 new

tripleton sets: {xθ, xθ+1, 0} , {−xθ,−xθ+1, 0} , {xθ,−xθ, 1} , {xθ+1,−xθ+1, 1} .

Together these 4 new tripleton sets contain the same 12 doubleton sets as the 4 old

tripleton sets.

Therefore, if we now substitute these 4 new tripleton sets for the 4 old tripleton sets in

new (E, ·), we will have created an ASET on E which we now call final (E, ·) .

Still using a = −1, b = 1 in lemma 7 with this final (E, ·), if the reader draws a picture

of how the two cycles C1, C2 have been changed in going from (E, ·) to new (E, ·) to final

(E, ·), it is obvious that the lemma 7 partition for final (E, ·) now satisfies E = C0∪C1(final)

where
∣∣C0

∣∣ = 3,
∣∣C1(final)

∣∣ = 2n.

21



..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
..................
....................................................................................................................................................................................................................................................................................................

..............................
..............................

..............................
..............................

..............................
..............................

..........................................................................................................................................................................................................................................................................................
......................
..................
................
................
................
.................
...................

.........................
............................................................................................................................................................................................................................................................................• ••

•

• •

•

Fig 1. Seven points, seven lines.

•

•

i i i i i

•

• •

• •

• •

· · ·

•

←− |E|+1
2

pairs −→

Fig. 2. |E|+1
2

pairs playing on day i.

22



.................
.................
.................
.................
.................
........................................................................................................... .................

.................
.................
.................
.................
........................................................................................................... .................

.................
.................
.................
.................
........................................................................................................... .................

.................
.................
.................
.................
........................................................................................................... .................

.................
.................
.................
.................
...........................................................................................................•

0 = 1′
•

2 = 2′
•

3 = 3′
•

4 = 4′
•

2 = 2′
•

3 = 3′
•

4 = 4′
•

5 = 5′
•

2n = (2n)′
•
0 = 1′

•
1

•
2

•
3

•
4

• • •

•
2n

Fig. 3. We later call 0 = 1′, 1 = 0′, i = i′, i = 2, 3, . . . , 2n.
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Fig. 4b. |Cj| = | − Cj| ≥ 5 and odd
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