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Abstract. At a Davidson College lecture in 1972, Dr. Howard Eves defined an equihoop
as a binary operator (F,-) that satisfies the central, idempotent and medial properties with
the commutative equihoop (CEH) also satisfying ab = ba for all a,b € E. We show the
reader how to easily prove for himself that all finite CEH’s (E,-) have |E| = 3 elements,
and all CEH’s (E,-) of order |E| = 3" are isomorphic to the direct product of k copies of
the basic CEH ({0,1,2,},-). In 1974 Marsha Jean Falco, see [1], invented an 81 card game
called SET which is mathematically identical to a CEH (E,-) with |E| = 81. Three distinct
cards {a,b, c} form a SET if ¢ = ab which is also equivalent to either a = bc or b = ac.

Given a finite CEH (F,-), a common problem, which is called the SET problem, is to
find a subset S C E of the highest possible cardinality such that Va,b € S, if a # b, then
ab € E\S. Such a set S is said to be maximum SET-free and we would like to compute |S|
for such S as |E| ranges over 3F k=1,2,3,--- .

To our knowledge nobody has come even remotely close to giving a complete solution
to the SET problem for the CEH, [3]. However, in this paper we precisely define and give
a complete solution to the SET problem if we drop the medial property. We call such a
structure Abstract SET, and it is also identical to the various collections of Steiner triples
on E. Our solution will use the theory of round-robins, and those readers interested only in
a short treatment can stop at the end of Case 1 in Section 2.4. The paper has two sections.
The first section presents known results on Commutative Equihoops. The second section
discusses Abstract SET and the Abstract SET Problem. Only knowledge of cyclic groups is
needed for reading this paper.

1 Commutative Equihoops

Definition 1 (Eves-Davidson College, 1972). An equihoop is a non-empty set E of
elements a,b,c,d,--- and a binary operation (E,-) that satisfies the following:



P1. a(ba) =b for all a,b € E. (left central property of x).
P2. aa = a for all a € E. (idempotent property of x).

P3. (ab) (cd) = (ac) (bd) for all a,b,c,d € E. (medial property of x).
(Eves). A commutative equihoop (E,-) is an equihoop that satisfies Pj.

Pj. ab=ba for all a,b € E.

Definition 2 (Quasigroups). A quasigroup is a binary operator (E,-) that satisfies P5.
See [6].

P5. For all a,b € E,ax = b and ya = b have unique solutions x and y in E.
Definition 3 (Eves). A hoop is a quasigroup that also satisfies P2 and PS3.

Definition 4 (medial Quasigroups). A medial quasigroup is a quasigroup that also sat-
isfies P3. D.C. Murdoch, [4], used the term Abelian quasigroup.

Note 1. In 1939 D.C. Murdoch, [4}], classified all medial quasigroups (E,-) that have at
least one idempotent element O € E. That is, 0-0 = 0.

Definition 5 (Knuth). Donald Knuth in 1968 defined an extremely primitive binary op-
erator (E,-) that satisfies only P1. Note that P1 is equivalent to P1*. (ab)a = b for all
a,b € E. He called (E,-) a grope because it was used to “grope” for results.

Theorem 1 Suppose (E,0,-) is a CEH where 0 € E is arbitrary but fived. Va,b € E
define a + b = 0(ab). Then (F,0,4+) is an Abelian group with identity 0 that satisfies
3a=a+a+a=0,Yae k.

Using this (F,0,+), we can reverse ourselves and define (E,-) by Ya,b € E a-b =
—a—b=(a+a)+ (b+0).

Proof. We let the reader prove this easy theorem. m
Corollary 1 If (E,-) is a finite CEH, then |E| = 3. Also if (E,-) is a CEH and |E| = 3*,
then (E,-) is isomorphic to the direct product of k copies of the basic CEH ({0,1,2} ,-) where
0-1=1-0=2,1-2=2-1=0,0-0=0, etc.

Proof. Follows immediately from Abelian group theory. =



2 Abstract SET and the Abstract SET Problem

In light of Marsha Jean Falco’s 81 card game SET, we call the structure of the following defi-
nition 7 an Abstract SET. An Abstract SET,(F, -), is also identical to the various collections
of Steiner triples on E. This definition was also given by Kirkman.

Definition 6 An Abstract SET (E,-) is a binary operator that satisfies P1, P2 and Pj.
P1. a(ba) =b for all a,b € E.
P2. aa =a for all a € F.

Pj. ab=ba, for all a,b € E.

Note 2. Thus, an Abstract SET (FE,-) is a commutative, idempotent grope. However,
in light of Falco’s SET, we ourselves prefer to think of (E,-) as a CEH in which the medial
property P8 has been dropped. In this paper, we abbreviate an Abstract SET (E,-) by ASET.

We now develop the most basic properties of the ASET where in some lemmas we consider
E to be finite.

Lemma 1 Suppose (E,-) is an ASET. Then Va,b € E, if a # b then ab ¢ {a,b} .
Proof. Suppose ab = a. Then (ab)a = b= a-a = a, a contradiction. m

Corollary 2 Va,b € E, the set {a,b,ab} is either a tripleton set or a singleton set.

Lemma 2 Suppose (E,-) is an ASET. Then (E,-) is a commutative quasigroup.

Proof. Since (F,-) is commutative, we must show that Va,b € E,3 a unique = € F such
that ax = b.
First, suppose ax = b. Then (ax)a = x = ab. Also, a(ab) =b. =

Corollary 3 Va,b € E, if{a,b, ab} is tripleton, then the product of any two distinct elements
equals the third element. Thus, Ya,b,a,b € E,{a,b,ab} N {6, l_),%} can never be a doubleton
set.

Observations 1. Since the idempotent property is trivial to add, an ASET (E,-) can
be viewed as a collection of distinct tripleton subsets of E (also called Steiner triples), which
we denote as {Ay, Ay, -+, A} or {ly,1s,- -+, 1}, that has the following properties:

1. Each [; = A; = {a, b, c} where a,b, ¢ are three distinct members of E.
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2. Vi# j,l; = A; # Aj =1;. That is, our collection is a true set.

3. Ya,b € E, if a # b then 3 a unique [; = A, such that {a,b} C I, = A,.

It is sometimes convenient to think of a Steiner triple as being either a triangle A; or a line
l;. If we are given a collection of Steiner triples {A;, Ay, -+, Ay} on E, the corresponding
ASET (E,-) is defined as follows: Va € F,a-a = a. Ya,b € E if a # b then ab is the 3rd
member of A; where A; is the unique member of {A;, Ay, --- A} satisfying {a,b} C A;.
Of course, if {a, b, c} is any Steiner triple, then ab = ¢, ac = b and bc = a.

Fig. 1. 7 points, £(]) = 7 lines.

Lemma 3 Suppose (E,-) is an ASET. If |E| is finite, then |E| must be odd.

Proof. Single out a € E. Vz € E\ {a} let us pair {z,azx} together where we note that
ar € E\{a},z # ax and (ax)a = z. It follows from this that |E\ {a}| is even and |E| is
odd. m

Lemma 4 Suppose (E,-) is a finite ASET. Then 3| |E| - (|[E| — 1), which is equivalent to
31|E| —2.

Proof. Suppose (E, ) is represented as the Steiner triples {A1, Ag, -+, Ar}. Now each
doubleton subset {a,b} of E is a subset of a unique A;. Also, each A; produces 3 distinct
doubleton subsets of E. Therefore, the total number of doubleton subsets of £ equals 37

El-(E-1)

Also, the number of doubleton subsets of E equals C’%E‘. Therefore, 3T = — 5 [ ]

Corollary 4 T = %C|2E|.

Lemma 5 Suppose (E,-) is a finite ASET. By combining lemmas 3, 4, we know that |E| =
6k + 1 or |E| = 6k + 3.

Remark 1 From the theory of Steiner triples, we know that if E is a finite set, then an
ASET (E,-) exists on E if and only if |E| is odd and 3 1 |E| — 2. However, in order to
solve the abstract SET Problem, we ourselves will be forced to prove this since we must find
very specialized (E,-)’s. In general if |E| is odd and 3 1 |E| — 2, to construct an ASET
(E,-) we must produce %C|2E| distinct tripleton subsets of E, call them 1y, 1o, 13, -+, such that
Vi # j,1; N 1; is either empty or singleton.



Definition 7 (F,-) is a finite ASET. Using terminology from Falco’s 81 card SET game,
if {a,b,c} is any tripleton subset of E, we say that {a,b,c} is a SET if and only if ab = ¢
which is also equivalent to either b = ac or a = be. If we view (E,-) as a collection of Steiner

triples {A1, Ag, -+ A}, we call these A;’s SETS.

Definition 8 (F,-) is a finite ASET and S C E. We say that S is SET-free if Va,b €
S, a #b= ab € E\S. In other words, if {a,b,c} C S is any tripleton subset of S, then
{a,b,c} is not a SET,

The Abstract SET Problem. Suppose F is a finite set such that |E| is odd and
3t|E| — 2. If |E| is fixed, find the positive integer f (| F|) such that (a) and (b) are true for

FAED -

1. If (F,-) isany ASET on F and S C FE is any subset of E, then [S is SET-free|= [| S| <
F(ED]

2. Jan asset (E,-) on E and a subset S C E such that S is SET-free and |S| = f (| E]) .

The following Main Theorem gives the complete solution to the abstract SET problem.
Main Theorem. Suppose E is a finite set. Then an ASET (F,-) exists on E if and
only if |E| is odd and 31 |E| — 2. If |E]| is odd and 31 |E| — 2, define

El+1 . [El+1 .
= if is even,

_ El—1 |E|+1
2. 7 (e = EL L 1B

Then f (|E|) = f (|E|) is the solution to the abstract SET problem.

L F(E])

is odd.

3. f(|E|) is the even integer that is closest to @

We prove the main theorem in the rest of this paper. Section 2.1 is the easiest part of the
proof.

2.1 Showing that f(|E|) < f(|E]).
The next step is the proof that f(|E|) < f(|E|).

Lemma 6 (F,-) is an ASET on a finite set E. Then ¥S C E, if S is SET-free, then |S| <
F(ED.



Proof. We will think of (£, -) as a collection of distinct lines {ly,1ls,---[l;} where each
line has 3 points and each pair of distinct points {a,b} in E lies on exactly one line.

Va € E\S, let a, be the number of distinct lines through z that intersect S in 2 points,
and let b, be the number of distinct lines through = that intersect S in a single point. Since
S is SET-free, we have (1).

S _
L S = OIS = SUSED.
From the definitions of a,, b, we have (2).
2. a. Vx € E\S,2a, + b, = |S| which implies
b. 23 cms e+ 2pemsbe =[S (|E] = 15]).
From (1) and (2) we have

|E|+1
5

3. Yvemsbe =[S (|E]+1—2|5]), which implies |S] <

o |E|+1 . .
Now if | |2+ is even, then lemma 6 is true.

Therefore, suppose ZL is odd. Now if [S| = L then |S| would be odd. Also, if

2 2
El+1
S| = 2] + , then from (3) 37, cpsbz = 0, and this implies Vo € E\S,b, = 0. But if

b, = 0, then from 2-a, 2a, = |S| is true, and this is impossible if |S| is odd. Therefore, if
El+1 El+1 El+1
|E] + is odd, we have |S| < IE] + and ]S\;«é’ |+

2
We now come to the hard part of actually finding an ASET (FE, ) and a SET-free subset

of E satisfying |S| = f (|E|). To do this, we will use the basic theory of round-robins.

which implies |S] < |E|T_1 n

2.2 The Basic Theory of Round-Robins

First, suppose we have an even number of teams which are numbered 1,2, 3, ---2n+2. Each
of these teams wishes to play every other team exactly one time. They also wish to play for
2n + 1 consecutive days with n 4+ 1 games being played on each day, and with each team
playing in exactly one game each day. The problem is to draw up a compatible schedule

The complete solution is to first define an arbitrary commutative quasigroup operator
({1,2,3,--+ ,2n+1},-). Thatis, Va,b € {1,2,3,--- ,2n + 1}, (1) ab = ba and (2) 3 a unique
x€{1,2,3,---,2n+ 1} such that ax = b.

The schedule for teams {1,2,3,---,2n+ 1} U {2n + 2} is defined as follows. Vz,y €
{1,2,3,--+ ,2n+ 1}, if * # y then teams z,y play each other on day = -y. Also, Vx €
{1,2,3,---,2n + 1}, team x plays team 2n + 2 on day z - z. We will show that the function
x-x:{1,2,3,--- 2n+ 1} — {1,2,3,--- ,2n + 1} is a bijection after we first give a graphical
definition of the round-robin.



Suppose you have a complete undirected graph on the vertices 1,2,3,---2n + 1 and each
vertex has a self-loop. Also, you have assigned one of the numbers 1,2,3,---,2n + 1 to
each edge of the graph in such a way that all of the numbers 1,2,3,--- ,2n + 1 are touching
each vertex. Suppose Va,b € {1,2,3,---,2n + 1} we define a - b to be the number on edge
(a,b) where edge (a, a) is the self-loop on a. Then ({1,2,3,---,2n + 1},-) is a commutative
quasigroup. Now if the function x - z is not a bijection on {1,2,3,---,2n + 1}, this means
that at least one of the numbers 1,2,3,--- ,2n+1, (call it y) is not assigned to any self-loop.
Now exactly one edge having the number y must be touching each vertex. Therefore, the
2n + 1 vertices must be paired off into doubleton sets by the edges assigned the number y.
But this is impossible since 2n 4+ 1 is odd.

Next, suppose the number of teams is odd, and they are numbered 1,2,3,--- 2n + 1.
Each team wishes to play every other team exactly one time. They also wish to play for 2n+1
consecutive days with n games being played on each day and with a different team sitting
out on each day. Using an arbitrary commutative quasigroup ({1,2,3,---,2n+ 1},), the
schedule is computed as follows. Vz,y € {1,2,3,---,2n + 1}, if z # y then teams z,y play
each other on day x -y. Also, Vx € {1,2,3,---,2n + 1}, team z sits out on day x - x. Of
course, this is the same as adding an imaginary team 2n + 2 and having team x play an
imaginary game on day x - x.

2.3 The Two Cases

Suppose F is a finite set with |E| odd and 3 1 |E| — 2.
We now consider the two cases that occur in defining f (|E|). Case 1 is very easy, but
case 2 is rather difficult.

Case 1. |E|2+1 is even. We partition £ = S U E where |S| = |E|T+l, |E| = ‘E|271. Of course, |5
is even, |E| is odd and |S| = [E| + 1. We will soon find an ASET (SUE,-) = (E,")

such that S is SET-free, which will solve the problem.

Case 2. |E|2+1 is odd. We partition £ = S U E where |S| = lE'%, |E| = ‘ELH. Of course, |S|

is even, (E) is odd and |S| = |E| — 1. We will later find an ASET (SUE,-) = (E,")
such that S is SET-free, which will solve the problem.

We can take care of Case 1 almost immediately.

2.4 Casel

We first show that 34 |E| — 2. Now 2 (|E| —2) =2|E| -4 =|E|-1—-4=(|E| -2) - 3.
Therefore, 3 1 |E| — 2 implies 31 |E| — 2.



Since |E‘ is odd and 3¢ E| — 2, from the theory of Steiner Triples (which we ourselves
prove later), 3 an ASET (E, ) on E .

Let us call £ = {1’,2’,3’,~~ ,|E‘/}. Also, let us call S = {1,2,3, e ,}E‘ + 1} where
we look at S as being an even set of teams.

Let (E, ) be any arbitrary ASET on E. Also, let (S,-) be any arbitrary round-robin on
S where we interpret (S, -) as follows. Vx,y € S, if x # y then teams x,y play each other on
day x -y where x -y € {1, 2,3, }E‘} Also, x - z is not defined and is not needed.

From the definition of round-robin, we have the following equality of sets. For all z €
S, {x~1,x~2,--- - (e—=1),z-(z+1),--+,x- (‘E|+1)} = {1,2,3,--- ,|E‘}

From the definition of round-robin, we know that Vi € {1,2,3, e ,{E}}, the teams
E|+1

1,2,3,---, |E‘ + 1 can be paired together into pairs so that each pair of teams will

play each other on day 1.

Fig. 2. ‘E’Tﬂ pairs playing each other on day 1.
We now define the ASET (S UE, ) = (E, ) as follows where we define the tripleton sets

making up (S UE, ) =(E,").

(1) If {z,y, 2} C E is any tripleton subset of E, then {z,y, z} is a member of (E, ) if and
only if {z,y, 2z} is a member of (E, ) .

(2) If {x,y} C S is any doubleton subset of S, define x - y = 7 using the operator (.5, -).
In other words, teams x,y play each other on day i.

We define the tripleton set {z,y,i'} to be a member of (S UE, ) = (F,-). Note that
|B|+1

(1) and (2) together define a total of C’%Sl + %C‘QEl =Cy° + %C’;El? = %C’éEl tripleton sets
which is all the tripleton sets that we need. If {a,b} is a doubleton subset of E = SU E,
then the 3 cases are (1) a,b€ S, (2) a€ S, b€ E, (3) a,b € E.

From the definition of the ASET (E,-) and from the definition of the round-robin (S, )
and considering Fig. 2, it is easy to consider these 3 cases to show that each doubleton

subset {a,b} of SUE = F is a subset of exactly one of the tripleton sets making up (E, ).
Also, it is obvious that S is a SET-free subset of E and |S| = f (|E|).
The rest of the paper deals with case 2 which is the hard part.

2.5 Plan to solve case 2

Recall that |E| is odd, 31 |FE|—2, and in case 2, |E|T+1 is odd. We partition £ = SUFE where
|S| = W%, |E| = |E‘TH Therefore, |S| is even, |E| is odd and |S| = |E| — 1. We first prove
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that 31 |E|. Now 2 |E| = |E| + 1 = |E| — 2 + 3. Therefore, 31|E| — 2 implies 31 |E| .
Since ‘F| +2is odd and 3 ¢ ({F} + 2) — 2, this will allow us later to find a very specialized
ASET on EU{A, B}. In case 2, we proceed in a way that is roughly analogous to case 1. To
solve case 2, we define a hybrid round-robin on S and an incomplete ASET on E. Analogous
to case 1, we then use these two structures to define an ASET on SU E = E such that S
is SET-free. Since |S| = f (|E|) this will solve the problem. However, in case 2 no matter
how we define the hybrid round-robin on S and the incomplete ASET on E there is always
a complicated compatibility condition that must be satisfied between these two structures.
Using the simplest structures that we can find, we will proceed in the following 4 steps.

(1) We define the hybrid round-robin on S,
(2) We conjecture an incomplete ASET on E that will satisfy the compatibility condition,
(3) We solve the problem,

)
(4) We show that our conjectured incomplete ASET on FE is realizable.

Step 4 is the hardest part of the paper, and some readers might wish to just grant us (4).

2.6 The first 3 steps in case 2

It is convenient to call |S| = 2n,|E| = 2n 4+ 1 where 3 { 2n + 1. We also call S =
{1,2,3,--- ,2n} , E={0,1,2,3,--- ,(2n)'}.

Of course, |E| = 4n + 1. Now |E| is odd. Also, 31 |E| — 2 since |E| —2=6n— (2n+ 1)
and 312n + 1.

Step 1. We now define the hybrid round-robin on S = {1,2,3,--- ,2n} which we denote
(S,) = ({1,2,---2n},-). This hybrid round-robin on {1,2,---,2n} was obtained by first
using a cyclic group to define a regular round-robin on {0, 1,2, ---2n + 1}. We then removed
the two vertices 0, 1 and then renamed the vertex 2n + 1 vertex 1.

Let {1,2,3,---,2n} denote the team numbers of 2n teams. Also, the days that they play
are numbered 0,1,2,---2n. (C,0,+) = ({0,1,2,---2n},0,+) is the cyclic group defined by
r+y=x+y, (mod 2n+ 1). The hybrid round-robin on {1,2,--- ,2n} is defined as follows.

(1) Va,y € {1,2,--- ,2n}, if x # 1,y # 1 and & # y, then teams z,y play each other on
day z-y=x+y=2x+y, (mod 2n + 1). Note that -y € {0,1,2,---2n}.

(2) Vx € {1,2,--- ,2n}, if x # 1 then teams 1, x play each other on day 1 -z = 2z = 2z,
(mod 2n + 1),



(3) As always, x - z is not defined.
Using « + y and 2z = x + z, from (C,0+), we know the following.

(a) Team 1 plays the teams {2,3,4,--- ,2n} onthedays {1 -x:2=2,3,4,--- ,2n} =
{20:2=2,34,--- 2n} ={2x:2=0,1,2,3,--- ,.2n}\{0,2} ={0,1,2,3,--- ,2n}\ {0, 2},
since 2n + 1 is odd. Thus, team 1 sits out on days 0, 2.

(b) Also, Vi € {2,3,---2n}, team i plays the teams {1,2,3,---i—1,i+1,--- ,2n} on
thedays{i- 1}U{i-z:2=2,3,---,i—1,i+1,--- 2n} = {2i}U{i+z:2=2,3,--- ;i —1,i+
(ita:0=0123,-,200\{i,i +1} = {0,1,2,3,-- ,2n}\ {i,i + 1}. Thus,
team ¢ sits out on days 7,7 + 1.

Note that each team sits out two days, and the two days that each of the teams
1,2,3,---,2n do not play is given in Fig. 3. We observe that each team plays on day
1. However, two teams sit out on each of the other days 0, 2, 3,4, --- , 2n. Also, observe
that the 2n teams sit out 2 days according to one big 2n-cycle, and this is as simple
as we have been able to make compatibility problem.

Fig. 3. Welatercall 0 =1",1=0,i=14,i=2,3,---,2n.

Thus on day 1 the 2n teams are paired into n pairs so that each pair plays each other
on day 1.

Also, on each of the other days i € {0,2,3,4,---,2n} the 2n teams are paired into
n — 1 pairs so that each pair plays each other on day ¢ and the remaining two teams
sit out on day 1.

Step 2. Next, we will conjecture an incomplete ASET on F = {O’, 1,2, -+, (2n)'} which
we call (F, ) that has the following properties. As always, we can define (F, ) as a collection
of distinct tripleton subsets of E.

First, we agree that none of the 2n doubleton sets in (x) will be a subset of any tripleton

set in (E, )

(+){1,2'},{2,3},{3, 4} {n—1),(2n)'} , {(2n)" , 1"} .

For compatibility between (S, ) and (E, -), we note that the 2n doubleton sets in (x) are
arranged in a 2n-cycle. Also, note that we are left with C3"™' —2n = (2n +1) (n) — 2n =
n (2n — 1) doubleton subsets of E that we have to deal with.
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Since 3 1 2n + 1 we know that 3| (2n) (2n — 1) which implies 3|n (2n — 1). Therefore,

in step 4, we will be able to specify % tripleton sets that make up the incomplete
ASET (FE,-) so that (1) and (2) are true.

(1) None of the 2n doubleton sets in (x) is a subset of any tripleton set in (E,-).

(2) Each of the n(2n — 1) remaining doubleton subsets of E is a subset of exactly one
tripleton set in (E, )

Note that (1), (2) implies that each doubleton subset {0',4'} of E is a subset of exactly
one tripleton set in (E, ) since (' does not appear in (k).

Step 3. Before we specify the tripleton sets that make up (S UE, ) = (E,-), we must

do the following. In the hybrid round-robin (S,-) = ({1,2,3,---,2n},-) defined in step 1,

the teams are numbered 1,2,--- ,2n and they play on days 0,1,2,3,---,2n. However, for

compatibility between (5, -) and (E, -), let us now rename the days that they play as follows.

011|234 [5|6 ] - |2n

vio 23456 ]---]@n) ]

From Fig. 3 this means that on day 0" all of the teams play, but on each of the other

days 1/,2/, -+, (2n)/, two teams sit out, and this pattern defines one big 2n-cycle.
The tripleton sets of (S UE, ) = (FE,-) are defined as follows.

(1) If {x,y, 2} C E is any tripleton subset of E, then {z,y, 2} is a member of (SUE, ) =
(E,-) if and only if {x,y, 2z} is a member of (E, ) Of course, this gives a total of
n(2n—1) .
——= tripleton sets.

(2") If {z,y} C S is any doubleton subset of S, define = - y = i’ using the operator (5, -).
In other words, teams x,y play each other on day i where we call 0 = 1',1 = 0',i =
i';i = 2,3,---,2n. We define {x,y,i'} to be a member of (SUF, ) = (F,-). This
gives a total of 0\25\ =n(2n — 1) tripleton sets.

(3') From the definition of (E, -), we know that none of the 2n doubleton sets () {1/,2'} {2/, 3}, {3/,4'} ,--

is a member of any tripleton set {x,y, z} that makes up (E, ) Also, from Fig. 3 (af-
ter calling 0 = 1,1 =0, =4,i = 2,3,--- ,2n) we know that none of the following
doubleton sets is a subset of any tripleton set that we have defined in step (1) and
step (2): {1,1'},{1,2'} and {2,2'},{2,3'} and {3,3'},{3,4’} and {4,4'} ,{4,5'} and
-+, and {2n, (2n)'},{2n,1'}. This gives a total of 2n + 2 - 2n = 6n doubleton subsets
of S U E that we have not dealt with. We now put the following tripleton sets in
(SUE,") = (EB,-) - {1,2/,1} {2, 3,2} ,{3/,4,3} ,{4,5,4},--- {(2n)", ", 2n}. This
gives a total of 2n tripleton sets, and this takes care of the remaining 6n doubleton
sets.
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The total number of tripleton sets from (1'), (2') (3') equals @ +n(2n—1)+2n =

w. Since |E| = |S|+ |E| = 4n+1, the number of tripleton sets making up (SUE,-) =
(E,-) must equal 1C5"! = w.

If {a,b} is any doubleton subset of £ = S U E, then the 3 cases are (1) a,b € S, (2)
a€S,beE, (3)abec E. From the definitions of (S,-), (E, ) and (S UFE, ) = (F,-) that
we have used, it is easy to consider these 3 cases to show that each doubleton subset {a, b}
of SUE = E is a subset of exactly one of the tripleton sets making up (E,-). Also, it is
obvious that S is SET-free and |S| = f (| E]).

The rest of this paper deals with step 4 in which we show that the conjectured incomplete
ASET (E, ) that we specified in step 2 actually exists. Showing this is the hardest part of

the paper.

2.7 Finishing the solution (step 4)

We finish the solution by solving two problems.

In problem 1 we show that an ASET (F,-) exists on £ when |E| =2n+3 and 31 2n+ 1.
We represent E by £ ={0,1,2,--- ,2n} U{A, B}.

In problem 2 we use the solution to problem 1 to construct a very specialized ASET
(E,-) on E when |E| =2n+3 31 2n+ 1. Immediately after stating problem 2, we show how
the solution, (F,-), to problem 2 can easily be used to show that the conjectured incomplete
ASET (F, ) of step 2, section 2.6 actually exists.

Problem 1
Suppose E is a finite set, |E| is odd and 3 1 |E| — 2. Show that an ASET (F,-) exists on E.

Solution
Since |E| € {1,3} is trivial, let us assume that |F| > 7. Therefore, since |E| > 7, we can
write |E| = (2n+ 1) + 2 where 3t2n+ 1 and 2n+ 1 > 5.

Let us represent £ as E ={0,1,2,--- ,2n} U{A, B}. What we now wish to do is define
1C3" distinct tripleton subsets {z,y, 2} of E such that (xx) is true. (sx). Each distinct
doubleton subset {a,b} of F is a subset of exactly one {z,y,z}. However, if we define a
collection of tripleton subsets {z,y, z} of E that has this property (xx), we do not need to

prove that the number of these will be —~C3"*3. This will be automatic.

As always, let (C,0,+) = ({0,1,2,---2n},0,4) be the cyclic group defined by Va,b €
{0,1,2,--+ ,2n},a+ b= a+ b(mod 2n + 1). We now define an incomplete binary operator
(C,®) as follows.

(1) VeeCiz 0z =x.
(2) Yo,y € C,if ¢ # y and {z,y, —x — y} is a tripleton set, then we define zOy =yoOx =
—r —y.
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(3) Va,y € C, if x # y and {z,y, —x — y} is not a tripleton set, then x ® y and y ® = are
left undefined.

Of course, (C,®) is idempotent everywhere, and it is commutative when it is defined.
Also, Vz,y € C, if x # y and x ® y is defined, then the ® product of any two members of
the tripleton set {z,y,x ® y = —x — y} is defined and equals the third member of the set.

For example, z ® (z Qy) = -2 — (zQy)=—2x— (—x —y) =y.

Vz,y € C' we observe that {x,y, —z — y} is a tripleton set if and only if (1) x # y, (2)
y # —2x and (3) x # —2y. Of course, by symmetry the three conditions (1), (2) and (3) are
equivalent to the three conditions z # —x —y, —x —y # —2x and © # —2(—x — y) .

Also, by symmetry (1), (2) and (3) are equivalent to the three conditions y # —x —
y,—r—y# —2yand y # =2 (~r —y).

We also observe that if z = 0 and y # 0 then {z,y,—x —y} = {0,y, —y} is always a
tripleton set since y # 0, —y # 0 and since y = —y implies 2y = 0(mod 2n + 1) which is
impossible. Therefore, we know that Vx € C,z ©® x and 0 ® x are always defined. Also,
Vae,y € C,if x # 0,y # 0 then x ® y is not defined if and only if (1)  # y and y = —2z or
(2) © # y and x = —2y.

Perhaps a better way of looking at what we have done is as follows. First, we de-
fine all distinct tripleton subsets {x,y,z} of C that satisfy = +y + 2z = 0(mod 2n + 1).
Thus if {z,y, z},{Z,7,Z} are any two such distinct tripleton subsets of C, then {z,y, z} N
{Z,9,z} is either empty or singleton. Also, if {a,b} is any doubleton subset of C' sat-
isfying a # —2b and b # —2a, then {a,b} is a subset of exactly one {x,y,z} namely
{z,y,2} ={a,b,a © b= —a — b}.

Since F = C U {A, B}, we observe that up to now we have not defined any tripleton
sets {z,y, z} that contain either A or B. Therefore, all doubleton subsets of F containing A
and/or B must be worked in. Also, if {a, b} is any doubleton subset of C' we have not defined
a tripleton set {x,y, z} having {a, b} as a subset when either a = —2b or b = —2a. With this
in mind, we now plan to extend the incomplete binary operator (C, ®) to define the remaining
tripleton subsets of £ = C' U{A, B}. This will give us the ASET (E,-) = (CU{A, B},")
that we wish to find.

Let us now define the function f : C\ {0} — C\ {0} as follows.

Ve e C\{0}, f(z) = —z—2x = —2z,(mod 2n+1). Since 2n+1 is odd, we see that f is a
bijection on C\ {0} = {1,2,3,---,2n}. This means that f can be partitioned into the union
of pairwise disjoint cycles C; U Cy U C3 U - - - U C}y where each C; = {xil, iy Tig, " ,xi,k(i)}
with =2z = ;941 when 0 = 1,2,--- k(i) — 1 and —2x;4) = x;1. For convenience,
we are going to call k(i) = k since this omission of ¢ will cause no confusion. Of course,
—C; = {—mi1, —Tio, — T3, -+ — Ty} 18 also a cycle since (—2) (—x49) = —xi 941 is true if and
only if —2x;9 = ;941. This implies Vi € {1,2,--- ,t},C; = —C; or C; N (—=C;) = ¢. Since
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Ve € C\{0},—z # z and — (—x) = z, we see that if C; = —C}, then |C;| must be even.
Therefore, if |C;] is odd then C; N (—=C;) = ¢.

We now show that Va € C\ {0}, all four elements of the set {z, —2z, (—=2)%xz, (—2)° v} =
{z, —2x,4x, -8z} are distinct.

This is true if and only if x # —2z, x # 4z, x # —8x, —2x # 4x, —2x = —8x and
4x # —8x which is equivalent to the four conditions 3z #0(mod 2n + 1), 9z #0(mod 2n +
1), 6z #0(mod 2n + 1) and 12z #(mod 2n + 1).

Since 21 2n + 1 and 3 1 2n + 1, these 4 conditions are obviously true since z € C'\ {0}.
This implies Vi € {1,2,--- ,t},|C;| > 4. In Fig. 4-a we have drawn a cycle C; to illustrate
the case where |C;| is even. In Fig. 4-b, we have drawn two cycles C;, —C; to illustrate the
case where |C}| is odd which implies C; N (—C};) = ¢. Given such a pair {C}, —C;} we have
arbitrarily chosen one of {C;, —C;}, namely C;, to be the top cycle and the other, namely
—C;, to be the bottom cycle in the drawing.

In drawing (b) we know that |C;| = |—C}| > 5 since |C}| is odd and |C}| > 4.

In Fig. 4 we have also drawn the three elements 0, A, B. Technically we should use
k = k(i) in (a), which gives |C;| = k (i), and use k = k(j) in (b), which gives |C;| =

|—C;| =k (j). But again this technical omission should cause no confusion.

Fig. 4. |Cy| even, |C}| = |-C}| odd, x4 € C;,xj1 € C} fixed.

Of course, in Fig. 4, x;; € C;,z;; € C; can be arbitrarily chosen. However, we assume
that we have chosen a fixed z;; € C; for each C; such that |C;| is even. Also, for each
pair {C;, —C;} where |C;| = |=C}| is odd and Cj is chosen to be the top cycle and —Cj is
chosen to be the bottom cycle, we assume that we have chosen a fixed z;; € C;. In Fig.
4, it is convenient to define z; ;41 = ;1 and xj,41 = xj1. VC; and VC; U (—C}) illustrated
in Fig. 4, we note that none of the doubleton sets {z, zip+1},0 = 1,2,3,--- and none
of the doubleton sets {zjg, zjo+1},{—2jo, —%jo11},0 = 1,2,3,--- are subsets of any of the
tripleton sets that we have defined up to now. This is because —2z;9 = x; 611, —2%j9 = ;941
and —2 (—zj9) = ;941

We now see the incomplete binary operator (C,®) = ({0,1,2,---,2n},®) to define the
ASET (E,-) = (CU{A, B},") in the steps 1, 2, 3,4, 5, 6 that follow.

(1) Ve,y e C ={0,1,2,---2n},z-y = z @y if x ®y is defined in (C, ®) with the following
exceptions. Suppose {C;, —C;} is any pair satisfying |C;| = |—-C}| is odd with C; the
top cycle and —C); the bottom cycle of such a pair as illustrated in Fig. 4-b.

As always, we wrote C; = {x1, %2, - ,;1} where z;; has been chosen and where
technically we should call £ = & (j). Also, —C; = {—xj1, —xj2, -+ , —x;,}. Of course,
Zjo41 = —2xj9 when 0 =1,2,--- k.
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For all such pairs {C;, —C;} with z;; € C; chosen for each pair, we now agree that
none of the following have been defined in (E,-) : 0- ;1,0 (—z;1) and xj; - (—x;1). In
other words, we assume that the tripleton set {0, z;1, —z;1} is not used in (E,-).

Of course, without this agreement, we would have 0 - z;; = —xj;, 0- (—2z;1) = zj; and
xj1-(—xj;) =0in (E,-).

By symmetry we also agree that none of the following have been defined in (E,-) :
02k, 0 (—z;) and ;i - (—zj). In other words, we assume that the tripleton set
{0, zx, —z;1} is not used in (E, ).

Steps 2-6 will come after the following discussion.

Let C; be any cycle such that |C;] is even. Of course, |C;| > 4. In Fig. 4-a, we have
drawn the directed edges of C; which are x;1 — x;0 — x;3 — -+ Tj — x;1 where k > 4
and k is even. Since k is even, we are now able to alternate coloring these directed
edges dark and light as we have illustrated in Fig. 4-a. Of course, this can be done in
two different ways, and we choose one of these 2 ways for each cycle that satisfies |C;]
is even.

Let C} be the top cycle and —C}; be the bottom cycle in Fig. 4-b of any pair {C;, —C};}
such that |C;| = |-C}| is odd. Also, z;; € C; has been chosen.

In Fig. 4-b, we have drawn the following directed edges where some are backwards in
(* * %) which is of no concern:

(* % *) le — I'JQ — x]?) —> e e —> x],k—l — x]k — _xjk < _xj,k—l «— _xj,k—Q — e —

—X43 < —Tjo < —Tj1 — Tj1.

Note that the two directed edges x;; < z;; and —z;, — —x;; have been X’ed out in
Fig. 4-b and are not used.

The number of directed edges in (x * %) is even so we are now able to alternate coloring
these directed edges dark and light as we have illustrated in Fig. 4-b. This also can
be done in two different ways, and we choose one of these 2 ways for each {C;, —C;}
that satisfies |C;| = |—C}| is odd. Again we emphasize that the edges zj; < zj; and
—2j, — —;; have not been colored. Step 1 started our definition of (E,-). In steps
2, 3, ..., 6, we complete the definition of (E,-) by defining the additional tripleton
sets that we need. We use Fig. 4 to do this where in Fig. 4 C; is any arbitrary
cycle satisfying |C;| is even and {C;, —C;} is any arbitrary pair of cycles satisfying
|C;| = |—C}] is odd and where one of {C}, —C;} is chosen to be the top cycle. Also,
i € Cj, x5 € C are fixed.

(2) We use (0,A,B) in (E,-). Thus,0- A=B,0-B=A,A-B=0.
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(3) From each C; U (—C};) we use the tripleton sets {0,z;1,z;,} and {0, —z;1, —z;} in
(E, ) ThIlS, 0- Tj1 = Tjk, etc.

Recall in step (1) that the tripleton sets {0, x;1, —x;1 } and {0, z;,, —x,,} were not to
be used in (F,-).

(4) In the C; drawing of Fig. 4-a of an arbitrary C; with |C;| even, if the directed edge x;9 —
Tig+1 is colored dark, where = 1,2, --- | k, we use the tripleton set {x;g, z; 911, B} in
(E,-). Of course, this applies to x;; — x;; since we are calling x; y+1 = 2.

If the directed edge ;9 — x; 941 is colored light, we use the tripleton set {xig, z; 911, A}
in (F,-).

(5) In the C;U(—C;) drawing in Fig. 4-b of an arbitrary C; U (—C};) with |C}| odd, we use
the alternating dark and light coloring for the edges in the sequence (x * %) that was
defined earlier. Suppose xg, x4 € C; U (—C};) and xyp — x4 or xp < T, in the sequence

If this directed edge xp — x4 (or 9 < z,) is colored dark, we use the tripleton set
{zg,24,B} in (E,-).

If this directed edge xp — x4 (or 9 < x,) is colored light, we use the tripleton set

{zg, x4, A} in (E,-).
(6) Finally, for completeness, Vo € E, we specify that x -z = x.

Steps 1-6 give the complete definition of all tripleton sets that make up (E,-) as well as
T-xr =1

To show that this collection of tripleton sets (£, -) is indeed an ASET, we need to show
that if {a, b} is any doubleton subset of E = C' U {A, B}, then {a,b} is a subset of exactly
one of the tripleton subsets {x,y, z} that we have defined.

To see this we go through the construction that we have given for {a,b,a - b} when the
doubleton subset {a,b} of E lies in each of the following 5 cases.

Case 1. {a,b} C C\ {0} with a % — 2b(mod 2n + 1) and b =% — 2a(mod 2n + 1). This
uses step 1 and the part of step 5 that fills in the gap caused by the omitted tripleton sets
in step 1.

Case 2. {a,b} C C\ {0} with a = —2b(mod 2n+ 1) or b = —2a(mod 2n + 1). This uses
steps 3-5.

Case 3. {a,b} = {0,b} with b € C\ {0}. This uses step 1 and step 3 to fill in the gap
caused by the omitted tripleton sets in step 1.

Case 4. {a,b} = {A,b} with b € C\ {0} or {a,b} = {B,b} with b € C\ {0}. This uses
steps 4, 5.
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Case 5. {a,b} = {0, A} or {a,b} = {0, B} or {a,b} = {A, B}. This uses step 2. m
We will soon tamper with the ASET (E,-) that we just constructed to create a more
specialized ASET (F,-) that satisfies the conditions required in Problem 2.

Lemma 7 Suppose (E,-) is a finite ASET. Ya,b € E, if a # b then we can partition E into
pairwise disjoint sets E = CoUC;UCyU---UC, such that Cy, Cy,- -+ ,C, have the following
properties.

(1) Cy ={a,b,ab}.

(2) Vi € {1,2,---t}, we can write C; = {x“,xig, . ,xi,gk(i)} where 2k (i) > 4 and where
VO € {1,2,--- ,2k (i)}, the following is true.

(a) If 0 is odd, xip - x;941 = b.

(b) If 0 is even, xig - T; 941 = a where we define T; op)41 = Ta.

Fig. 5. }60‘ =3 and Vi > 1, ’UZ‘ >4 and even.

Proof. First consider E\Uo. Choose any x1, € E\UO. Define 219 = 211 - b, x13 =
Tio-Q, Ty 4 =7T13-b, T15=2x14-a---. Using the properties of (E,-) it is fairly easy to see
that C; forms a cycle, |61| is even and ‘61‘ > 4.

Next choose any x9; € E\ (60 U 61) and do the same thing, etc. m

Observation 2. (F,-) is a finite ASET. Choosing any a,b € E,a # b, let us par-
tition £ = CoUC; UCy U ---UC, as in Lemma 7. Let us now pick out a specific
62' = {%1, Ti2, - 75(7i,2k(i)} .

It follows from Lemma 7 that

A {xig, v 041,0},0 = 1,3,5,--- .2k (i) — 1 and {zi, x;041,a},0 = 2,4,6,--- ,2k (i) are
tripleton sets used in (E, ) where x; o(i)41 = i1
Suppose we interchange a and b in C;. That is, for the above tripleton sets A we
substitute in (F,-) the new tripleton sets given in B.

B. {zi, ®ig+1,a},0 =1,3,5,--- 2k (1) — 1 and {z9, Ti9+1,b},0 = 2,4,6,---, 2k ().

After we make this substitution and keep the other tripleton sets in (E,-) the same, it
is fairly obvious that the new collection of tripleton sets that results is also an ASET
on E. This follows since all of the doubleton subsets appearing in the tripleton sets in
A also appear in the tripleton sets in B.
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Problem 2 Suppose E is a finite set with |E] > 7. Also, |E| = 2n+ 3 and 3 1 2n + 1.
Therefore, 2n + 1 > 5.
We wish to construct an ASET (FE, -) that has the following properties. Ja,b € E, a # b,
such that the partition of E defined in lemma 7 for a, b has only two sets namely £ = CyUC].
Of course, ‘UO‘ =3, |€1} = 2n.
Step. 4. Before solving problem 2, we show that the solution (F,-) of problem 2 easily
solves the conjectured incomplete ASET (E, ) conjectured in step 2, section 2.6. Let us
define E = E\ {a,b} = {ab} UC = {ab} U {11, T12, 713, - T120} -
We define an incomplete ASET (E, ) on E as follows. If {z,y, 2} is any tripleton subset
of E, then {z,y, z} is a member of E if and only if {z,y, 2} is a member of (E,-). In other
words, (E, ) keeps those tripleton set {z,y, z} of (E,-) that satisfy {z,y,z} N{a,b} = ¢
and throws away those tripleton sets {z,y, z} of (F,-) that satisfy {z,y, z} N {a, b} # ¢.
Of course, from the notation of lemma 7, this means that {z11, x12, b}, {12, 713, a}, {713, T14, b} , {714, 71
have been thrown away. Also, if we now call 0/ = ab, 1’ = 21,,2' = 19,3 = 113,--- ,(2n) =
1,20, then it is obvious that none of the 2n doubleton sets (x). {1',2},{2/,3'},{3/,4'},--- . {(2n — 1)", (2n)
will be a subset of any tripleton set in (E, ) Also, all of the remaining doubleton subsets
{a,b} of E will be a subset of a unique tripleton set {x,y, 2z} in (E, ) .
Solution to Problem 2. The plan is to first construct an ASET (F,-) such that
Jda,b € E,a # b, such that the partition of E defined by lemma 7 for a, b satisfies (a) or (b).

1. £ :60 Ual with ‘60’ = 3,

61‘ =2n or

2. E=CyUC,UC, with |Co| = 3,[Cy| = |Ca| = n.

Of course (a) solves the problem. In (b) we show that we can slightly modify the con-
struction of (E,-) to obtain a final (E,-) such that the partition of E of lemma 7 for a,b is
E =CyUC, where ‘60| =3, ‘6?‘ = 2n. Of course, Cy, C; solves the problem.

To construct (E,-) we call £ = {0,1,2,--- ,2n} U {A, B} and then use the same con-
struction that was used to solve problem 1. In that construction, each |C;| of Fig. 4-a was
even with |C;| > 4. Also, each |C;| = |-C}| of Fig. 4-b was odd with |C;| = |-C}| > 5.
Also, for each pair {C}, —C;} we arbitrary chose C; to be the top and —C; to be the bottom
in Fig. 4-b.

In that construction, for each C; U(—C}) we need to place one restriction on the z;; € C|
that we choose. We agree to choose z;1 € C; so that (x % sx) {z;1, —z1, T, —2 J{—1,1} =
¢ where =1 = (2n+1)—1=2nin (C,0,+) = ({0,1,2,--- ,2n},0,4). We can do this since
|C;| > 5 > 3, and we note that |C;| > 3 would be sufficient to do this since if one of —1,1
appears in C;, then the other must appear in —Cj.

Let us partition £ = {0,-1,1} U{2,3,4,--- ,2n — 1, A, B} .
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From restriction (* * #%) and from step 1 in the construction of (£, -) in problem 1, we
know that (—1)- (1) = —(=1) =1 =0 in (£,-). This implies that {0,—1,1} is one of the
tripleton sets making up (F,-) .

Let us call —A = B,—B = A. Using (C,0,+) = ({0,1,2,---,2n},0,+), we now write

{1,2,3,4,--- ,2n} = {1,2,3,--- ,n}U{n+1,n+2,---,2n}
= {1,2,3,-- ,n}U{-1,-2,-3,---, —n}
= {1,-1}u{2, -2} U{3, -3} U---{n,—n}.

Since each |C;| = |-C}| > 5 in Fig. 4-b, it follows from step 1 in the construction of (£, -)

in problem 1 that if n is even then at least g—i-l of the doubleton sets {i, —i},i =1,2,--- ,n,

must have the property that i - (—i) = 0 in (£, -). Therefore, if n is even then at least g +1
of the tripleton sets {—i,7,0},i =1,2,3,--- ,n, are used in (E, ).

Recall that {A, B,0} is a tripleton set used in (FE,-). Since {A,—A} = {B,—B} =
{A, B}, if we substitute {A, —A} for {—1,1} then when n is even it follows that at least
5 + 1 of the tripleton sets {—4,4,0},7 = 2,3,4,--- ,n, A, are used in (£, ).

For the (E,-) that we have now specified, let us define a = —1,b = 1. Therefore, from
lemma 7, Cy = {—1,1,0} since the tripleton set {—1,1,0} is used in (E,-).

In Figures 6 and 7 we have drawn two cases that we must carefully study. In Fig. 6, n
is even, and we call this case 1. In Fig. 7, n is odd, and we call this case 2.

Fig. 6. Case 1, n is even. Fig. 7. Case 2, n is odd.

In both Figs. 6, 7 we temporarily consider z,y, z,v to be unknown, but we soon show
that v € {A,B}y € {A,B},2 € {A,B},V € {A, B}

In both Figs. 6, 7 we observe that £ = C' U {A, B} where C = {0,1,2,---,2n} =
{0,—1,1}u{2,3,--- ,n}U{-2,-3,--- ,—n}. From step 1 in the problem 1 construction
of (E,-) = (CU{A,B},.), we recall that Vz,y € C, if ¢ # y,z # —2y and y # —2x in
(C,0,4+), then x -y is computed inside the cyclic group (C,0,+) by = -y = —x — y with
one exception. In each C; U (—Cj) in Fig. 4-b, the two tripleton sets {0, x;;, —x;;1} and
{0, 2, —x ;1 } were not used in (£, ). This exception can occur only if 0 is a member of the
tripleton set which allows us to easily keep track of possible exceptions.

In both cases 1, 2, the following is true. As we know, the tripleton set {—1,1,0} is used
in (E,-) since {—1,1} N {zj1, —zj1, Tk, —T1} = ¢ is true for each C; U (—C;) in Fig. 4-b.

Also,Vi=2,3,4,--- ,n—1,i-1=—i—1sincel € C,i € C'andsincei # 1,1 # —2-1,1 #
—2¢ in (C,0,4) and since 0 ¢ {i,1,—i — 1}. Also, Vi =2,3,4,--- ,n—1,(—i)-(-1)=i+1
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since -1 € C,—i € C and since —i # —1,—i # —2(—1),—1 # —2(—i) in (C,0,4) and since
0¢{—i,—1,i+1}.

In Figs. 6-7, let us now study 2- (—1) =x,(-2)- (1) =z,n-1 =y and (—n) - (—1) = v.

In computing 2 - (—1) we observe that 2 = —2(—1). In computing (—2) - (1) we observe
that —2 = —2(1).

In computing n - 1 we observe that 1 = —2n since 2n+ 1 = 0(mod 2n+1). In computing
(—n) - (—=1) we observe that —1 = —2(—n) since 2n 4+ 1 = 0(mod 2n + 1).

Since {—1,1} N {xj1, —xj1, 8, —xj5} = ¢ for each C; U (—C;) in Fig. 4-b, it follows
from steps 4, 5 in the problem 1 construction of (F,-) that the following is true in both
cases 1 and 2 2-(—-1) =2z € {A,B},n-1 =y € {A,B},(-2)-(1) = z € {A,B} and
(—n)-(=1) =v € {A,B}. Sincex-(—1) =2,v-(—1) = —n,y-1 =n,z-1 = —2, it is obvious
that  # v and y # z.

We now study cases 1, 2 separately.

Case 1. Since n -1 = y € {A, B}, by the symmetry in the way that {A, B} is used in the
construction of (F,-), there is no loss of generality in assuming that n-1 =y = A.

Therefore, z = B. This leaves 2 possibilities for (z,v) namely (a) x = B,v = A and
(b) x = A,v=B.

(a) = B,y=A,z=B,v = Aleads to E = CyUC{, where |60‘ =3, !61| = 2n and
this solves the problem.

(b) x=Ay=A,z= B,v= Bleads to E = Cy UC; UC, where ‘60‘ =3, |61} =
|C| = n. We will soon modify (b) to solve the problem.

Case 2. Again by symmetry there is no loss of generality in assuming that n-1 =y = A.
Since y # z this implies z = B. There are two possibilities for (x,v) namely (a)
v =Av=DBor (b) z=B,v=A. In either (a) or (b) it is obvious that £ = C, U C},
where ‘60‘ =3, |€1‘ = 2n which solves the problem.

Case 1-b. In case 1-b, niseven, r =y = A and z =v= B = —A.

For convenience, we will call C; = {A,2,-3,4,—5,6,--- ,n} = {x1, 29, ,x,} in that
order. That is, xr1 = A, 29 =2, 23 = -3, --

Also, Cy = {B,—2,3,-4,5,—6,--- ,—n} = {—x, =, - -+ ,x,} in that order.

Also, x; - x;41 = —1if i is odd and x; - x;41 = 1 if 7 is even where z,,1 = ;.
Also, (—z;) - (—x441) = 1if ¢ is odd and (—z;) - (—z;41) = —1 if 7 is even where
—Tpi1 = —T71.
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Since n is even, let us define the g doubleton sets {z1, xo} , {x3, 24}, {x5, 26}, -, {Tn_1, 20}

and the corresponding g doubleton sets { —x1, —xao} , {—x3, —x4}, {—2x5, —26}, -+, {—2pn_1,—xn}.

As we noted earlier, if n is even and we defined —A = B, —B = A, then at least n +1
of the tripleton sets {i,—7,0},i = A,2,3,--- ,n, must appear in (E,-).

From this it follows that 30 € {1,3,5,--- ,n — 1} such that the doubleton set {zg, zo,1}
and the corresponding {—mz, —x¢,1} have the property that both of the tripleton sets
{9, —x,0} and {941, —xp4+1,0} appear in (£, ).

Since 6 is odd we know that zg - 2911 = —1 and (—xy) - (—zg41) = L.
Since x1 - w9 = —1,29 - x3 = 1,23 - 24 = —1,--- ,x, - 1 = 1, as in observation 2, let us
now interchange 1 and —1 in C; = {x1, 29, - ,7,} and then substitute the new tripleton

sets that we obtain for the old in (F,-). That is, for {x, 25, —1} we substitute {zy,xs,1},
for {xs, x3,1} we substitute {zs, 3, —1}, etc. This will give us a new modified ASET on F
which we call new (E,-) where x; - ;41 = 1 if i is odd and z; - x;4; = —1 if ¢ is even. Of
course, we still have (—z;) - (—x;41) = 1 if ¢ is odd and (—z;) - (—x;41) = —1 if @ is even.
This means that the following 4 tripleton sets appear in new (E, ) : {zg, xg11, 1}, {—x9, =911, 1}, {70, -
Together these 4 tripleton sets contain the following 12 doubleton sets: {xq, 2911}, {xs, 1}, {wo11,1},{—0,
We now interchange 0,1 in the above 4 tripleton sets to create the following 4 new
tripleton sets: {xg, zg4+1,0},{—zo, —x911,0}, {x9, =29, 1}, {T941, —T011, 1} .
Together these 4 new tripleton sets contain the same 12 doubleton sets as the 4 old
tripleton sets.
Therefore, if we now substitute these 4 new tripleton sets for the 4 old tripleton sets in
new (E,-), we will have created an ASET on E which we now call final (£, ).
Still using @ = —1,b = 1 in lemma 7 with this final (E, ), if the reader draws a picture
of how the two cycles C',Cy have been changed in going from (E,-) to new (E,-) to final
(E,-), it is obvious that the lemma 7 partition for final (E, -) now satisfies £ = C U@l(fmal)
where ‘UO‘ = 3, |61(final)| =2n.m
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Fig 1. Seven points, seven lines.

|E|+1

=5— pairs —

Fig. 2. @‘2“ pairs playing on day <.
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2n

1 2 3 4
0=1 2=92 2=9 3=3 3=3 4=4 4=4 5=5

2n=(2n) 0=1

Fig. 3. Welater call 0 =1",1=0,1=17,i=2,3,...,2n.
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Fig. 4a. |C;| > 4 and even

Flg 4. ’Cz‘ even, ‘Cj‘ = ’ - CJ‘ Odd, T € Ciale € Cj fixed

Fig. 4b. |C}| = | — C;] > 5 and odd
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b a
a Co b
Li2k(i)—1

Fig.5. |Cg| = 3 and Vi > 1, |C;| > 4 and even

0 T 9 3.4 =56 T 7n Y

Fig. 6. Case 1, n is even.
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Fig.

7. Case 2, n is odd.
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