Whittaker models and unipotent representations of p-adic groups

Mark Reeder

University of Oklahoma, Department of Mathematics, Norman, OK 73019, USA (e-mail: mreeder@uoknor.edu)

Received: 1 August 1995

Mathematics Subject Classification (1991): 22E50, 22E35, 20G25

Introduction

Let G(F) be the rational points of a connected reductive group over a nonarchimedean local field F. An irreducible admissible representation V of G(F)is said to be unipotent if there is a parahoric subgroup H in G(F) with prounipotent radical U such that the U-invariants in V contain a cuspidal unipotent representation (in the sense of Deligne-Lusztig theory) of the finite reductive group H/U. Lusztig has recently proven his own conjecture made over a decade ago, on the parametrization of unipotent representations, assuming G to be split of adjoint type. This goes as follows. Let \hat{G} be the Langlands dual of G, and let q denote the cardinality of the residue field of F. Then the unipotent representations of G(F) are in bijective correspondence with \hat{G} conjugacy classes of triples (τ, n, ρ) , where $\tau \in \hat{G}$ is semisimple, n belongs to the q^{-1} -eigenspace $Y_{\tau,q}$ of $Ad(\tau)$ in the Lie algebra of \hat{G} , and ρ is the isomorphism class of an irreducible representation of the component group of the mutual centralizer in \hat{G} of τ and n, such that ρ is trivial on the center of \hat{G} . Let $V_{\tau,n,\rho}$ be the irreducible G(F)module corresponding to the indicated triple. Kazhdan and Lusztig had earlier proved [KL] that the corresponding parahoric subgroup is minimal (an Iwahori subgroup) if and only if ρ appears in the homology of the mutual fixed points of τ and $\exp(n)$ on the flag manifold of \hat{G} . They showed moreover that if $V_{\tau,n,\rho}$ is tempered, then n must lie in the unique dense orbit of \hat{G}_{τ} acting on $Y_{\tau,q}$, where \hat{G}_{τ} is the centralizer of τ in \hat{G} . In [R1], it was shown that if $V_{\tau,n,\rho}$ is Iwahori spherical, then it is generic (i.e. it has a Whittaker model, as defined below) if and only if n belongs to the dense \hat{G}_{τ} -orbit in $Y_{\tau,q}$ and ρ is trivial. The purpose of this note is to extend this to the entire L-packet (defined as the collection

588 M. Reeder

of unipotent representations with fixed (τ, n) , in accordance with the following general expectations.

Pairs (τ, n) correspond to admissible homomorphisms ϕ from the Weil-Deligne group of F into \hat{G} , and Lusztig's theorem is a special case of Langlands' conjectural parametrization of the L-packet of ϕ by representations of the component group of the centralizer of the image of ϕ [La]. Among many expected properties of the Langlands parametrization, it is believed that the G(F) representation corresponding to $\phi = 1$ for a tempered L-packet should be the unique generic member of the packet. For unipotent representations, we prove the following stronger result, conjectured in [R2].

Theorem. The unipotent representation $V_{\tau,n,\rho}$ of G(F) is generic if and only if n belongs to the unique dense \hat{G}_{τ} -orbit in $Y_{\tau,q}$ and ρ is trivial.

Considering known results, we must only prove that if a G(F) representation is both generic and unipotent, then the corresponding parahoric subgroup must be an Iwahori subgroup. This statement makes sense at least for unramified groups. Its proof in Lemma 4 below was inspired by the proof in [CS] of Rodier's theorem [Ro] on Whittaker models of parabolically induced representations. We rely on the fact that a cuspidal unipotent representation of a finite reductive group M is generic only if M is a torus, in which case the representation is trivial. If the parahoric H is maximal special, one can use the Iwasawa decomposition to lift this nonexistence to the p-adic group, as mentioned in [R2] (although the argument given there needs Lemma 3 below to be complete). An arbitrary parahoric takes a bit more work.

Some structure of *p*-adic groups

We give a brief summary of the required structure theory of G, taken from [T]. Let F be a non-archimedean local field with ring of integers \mathscr{O} and finite residue field k of cardinality q a power of the prime p. Let G be a connected semisimple algebraic group over F, with maximal F-split torus A. We assume that G is unramified (quasi-split and split over a finite unramified extension of F). Let A_0 be the subgroup of A(F) on which all rational characters of A have values in the unit group \mathscr{O}^{\times} . Let \mathscr{N} and Z and be the normalizer and centralizer of A in G, and let Z_0 be the analogue of A_0 for Z(F). As G is unramified, we may identify the lattices $A(F)/A_0 = Z(F)/Z_0 =: \Lambda$, and put $E = \mathbb{R} \otimes \Lambda$. The spherical Weyl group is $W_0 := \mathscr{N}(F)/Z_0$. The group $\mathscr{N}(F)$ acts on E by affine motions, with E_0 acting trivially, E_0 acting by translations. We may identify E_0 with the subgroup of E_0 for the element of E_0 which acts by translation by E_0 on E.

Let Δ be the roots of A in G, viewed as linear functionals on E, via the formula $\langle \lambda, \alpha \rangle = -val(\alpha(\tilde{\lambda}))$, where $\alpha \in \Delta$, $\tilde{\lambda} \in A$ and $\lambda = \tilde{\lambda} + A_0$. Let Δ_{aff} be the affine roots. These are affine functions on E of the form $a = \alpha + m$, where

 $\alpha \in \Delta$ (the "vector part" of a) and m runs through a certain discrete subset of \mathbb{R} (depending on α). For each affine root a, the group W contains an element s_a acting on E by reflection about the affine hyperplane where a vanishes.

Let P be a minimal parabolic F-subgroup of G containing A, with unipotent radical N. Let Δ^+ be the roots of A in N, and let $\Sigma \subseteq \Delta^+$ be the corresponding base of the spherical root system Δ . Let Σ_{aff} be the unique base of the affine root system Δ_{aff} containing Σ . Let C be the open subset of E defined by the conditions 0 < a < 1 for every $a \in \Sigma_{aff}$. The boundary of C is a disjoint union of facets, parametrized by subsets of Σ_{aff} . To $J \subset \Sigma_{aff}$ corresponds the facet C_J defined by the vanishing of the affine roots in J. The affine space underlying E is an apartment in the Bruhat-Tits building X. This building is a G(F)-simplicial complex whose simplices are the G(F)-translates of the facets C_J .

Each facet determines a parahoric subgroup as follows. We begin with minimal parahoric, otherwise known as Iwahori subgroups. If G is simply connected, Iwahori subgroups are the stabilizers in G(F) of open facets (translates of C) in X. In general, the Iwahori subgroup for C may be described as follows [T,3.7]. The facet $0 \in E$ corresponds to an \mathscr{O} -scheme \mathscr{G}_0 whose generic fiber is G(F) and whose group of \mathscr{O} -points is the stabilizer in G(F) of 0. Let $r: \mathscr{G}_0(\mathscr{O}) \longrightarrow \mathscr{G}_0(k)$ be the homomorphism induced by reduction modulo \mathscr{P} . Now $\mathscr{G}_0(k)$ is the fixed points of a Frobenius automorphism f of a connected reductive group $\overline{\mathscr{G}}_0$ defined over k, and the spherical building of $\mathscr{G}_0(k)$ may be identified with the link of 0 in X. Thus, open simplices of X having 0 in their closure are in canonical bijection, by taking stabilizers, with f-stable Borel subgroups of $\overline{\mathscr{G}}_0$. The Iwahori subgroup B corresponding to C is the inverse image $r^{-1}(\mathscr{P}^f)$, where \mathscr{P} is the f-stable Borel subgroup of $\overline{\mathscr{G}}_0$ corresponding to C.

For general parahoric subgroups, take a proper subset $J \subset \Sigma_{aff}$, and let W_J be the subgroup of W generated by the reflections s_a , for $a \in J$. The set $H = H_J = BW_JB$ is a subgroup of G and is, in this paper, the parahoric subgroup corresponding to J. Note that H stabilizes the facet C_J . It is the full stabilizer if G is simply connected, or if $J = \Sigma$. As in the previous paragraph, but now with simpler notation, we have an exact sequence via reduction mod \mathscr{P}

$$1 \longrightarrow U \longrightarrow H \longrightarrow M \longrightarrow 1$$
,

where M is the k rational points of a connected (assured by the definition of H) reductive group defined over k, and U is pro-unipotent and characteristic in H. The relative roots of M are the vector parts of the affine roots vanishing on C_J . If α is a root in M, the root group corresponding to α is $\bar{X}_{\alpha} := X_a/X_{a+}$, where $a = \alpha + m \in \Delta_{aff}$ vanishes on C_J , X_a is the corresponding valuated root group, and X_{a+} is the union of all $X_{a+\epsilon}$ for $\epsilon > 0$. We can also describe X_a as $H \cap N_{\alpha}$, where N_{α} is the (spherical) root subgroup of N on whose Lie algebra A acts by positive powers of α .

Let \bar{J} be the vector parts of the roots in J. Then the subgroup U_1 of M generated by \bar{X}_{α} for $\alpha \in \bar{J}$ is a Sylow p-subgroup of M. Morover, \bar{J} is the base of a sub-root system $\Delta_J \subseteq \Delta$, whose Weyl group $W_{0,J} \subseteq W_0$ is generated by the reflections about the kernels of the roots in \bar{J} . Let Δ_I^+ be the unique positive

590 M. Reeder

system of Δ_J containing \bar{J} . Note that Δ_J^+ is not generally contained in Δ^+ . Let $w \mapsto \bar{w}$ be the natural map from W to W_0 . If $a = \alpha + m$ is an affine root vanishing on C_J , then $\bar{s}_a = s_\alpha$, so $W_{0,J} = \{\bar{w} : w \in W_J\}$. Now let

$$W_0^J = \{ w \in W_0 : w^{-1}\bar{J} \subset \Delta^+ \}.$$

It is a standard fact about sub-root systems that W_0^J meets every coset $W_{0,J}x$ for $x \in W_0$.

Lemma 1. The set $W_0^J \Lambda \subset W$ meets all cosets $W_J x$ for $x \in W$.

Proof. Say $x = wt_{\lambda}$, with $w \in W_0$, $\lambda \in \Lambda$. Write w = yz, with $y \in W_{0,J}$, $z \in W_0^J$. Then $y = \bar{u}$ for some $u \in W_J$, so $y = ut_{\nu}$ for some $\nu \in \Lambda$. Hence $x = ut_{\nu}zt_{\lambda} = uzt_{z^{-1}\nu+\lambda}$, so $zt_{z^{-1}\nu+\lambda} = u^{-1}x \in W_0^J \Lambda \cap W_J x$. \square

Lemma 2. For any $x \in \mathcal{N}(F)$, the image of $H \cap^x N$ in M is a Sylow p-subgroup of M.

Proof. The pre-image of W_J in $\mathscr{N}(F)$ is contained in H, so we can suppose that, modulo Z_0 , $x = wt_\lambda$, with $w \in W_0^J$, by Lemma 1. Thus $H \cap {}^xN = H \cap {}^wN$ (with no ambiguity caused by the abuse of notation). Let $\alpha \in \overline{J}$, and consider the root group $\overline{X}_\alpha = X_a/X_{a+}$ as above. Our choice of w implies that $w^{-1}X_aw \subset N$, and it follows that \overline{X}_α is in the reduction modulo \mathscr{P} of $H \cap {}^wN$, so the image of $H \cap {}^wN$ in M contains the Sylow p-subgroup U_1 . Being a finite subquotient of a pro-unipotent group, the image is itself a p-group, hence cannot exceed U_1 . \square

Generic representations

A complex valued character of U_1 is called "generic" if it is nontrivial on \bar{X}_{α} for every $\alpha \in \bar{J}$, and trivial on \bar{X}_{α} for $\alpha \in \Delta_J^+ - \bar{J}$. The last condition is superfluous if q > 3 [DM, p.129], as the subgroup $U_1^* \subset U_1$ generated by the nonsimple root groups is then also the commutator subgroup of U_1 . An irreducible complex representation of M (hence of H) is "generic" if its restriction to U_1 contains a generic character of the latter, and "nongeneric" otherwise.

Lemma 3. If M is not a torus, a cuspidal nongeneric representation of M contains no character of U_1 which is trivial on U_1^* .

Proof. Let θ be the character afforded by a U_1 -invariant line in a cuspidal nongeneric representation of M. Being nongeneric and trivial on U_1^* , θ must be trivial on \bar{X}_{α} for some $\alpha \in \bar{J}$. But then θ is trivial on the unipotent radical of the maximal parabolic subgroup of M whose Levi subgroup has simple roots $\bar{J} - \{\alpha\}$. This contradicts cuspidality. \square

We turn now to generic representations of G(F). Let N^* be the product of those spherical root groups N_{α} with $\alpha \in \Delta^+ - \Sigma$. A character of N(F) is "generic" if it is nontrivial on each simple root group and trivial on $N^*(F)$. This last condition may be superfluous, and certainly is for split groups by [H, Lemma

7], since the p-adic field F is infinite. An irreducible admissible representation of G(F) is "generic" if it may be realized as a submodule of $\operatorname{Ind}_{N(F)}^{G(F)}\psi$ for some generic character ψ of N(F). Here Ind denotes smooth induction on which G(F) acts by right translations, and later ind will mean compact induction. We have now arrived at the main point.

Lemma 4. Suppose $V \subset \operatorname{Ind}_{N(F)}^{G(F)} \psi$ is a generic representation of G(F), and the parahoric H is not an Iwahori subgroup. Then the U-invariants in V contain no cuspidal nongeneric representation σ of M.

Proof. In this proof, let us abbreviate G = G(F), N = N(F), $\mathcal{N} = \mathcal{N}(F)$. Suppose the U-invariants in V contain such a σ . Then

$$0 \neq \operatorname{Hom}_{H}(\sigma, V) = \operatorname{Hom}_{G}(\operatorname{ind}_{H}^{G}\sigma, V) \subseteq \operatorname{Hom}_{G}(\operatorname{ind}_{H}^{G}\sigma, \operatorname{Ind}_{N}^{G}\psi),$$

so there is a nonzero linear functional $T:\operatorname{ind}_H^G\sigma\longrightarrow\mathbb{C}$ satisfying $T(R_nf)=\psi(n)T(f)$, for every $f\in\operatorname{ind}_H^G\sigma$ and $n\in N$, where $R_nf(g)=f(gn)$ for $g\in G$. Let $K=\mathcal{G}_0(\mathcal{O})$ be the parahoric subgroup stabilizing $0\in E$, as above. We have an Iwasawa decomposition G=KAN, hence G=BWN, hence G=HWN, since $B\subseteq H$. Let $x\in \mathcal{N}$ represent $wt_\lambda\in W$ with $w\in W_0^J$ as in Lemma 1. Let I_x be the space of functions in $\operatorname{ind}_H^G\sigma$ which are supported on HxN. As an N-module,

$$I_x \simeq \operatorname{ind}_{H^x \cap N}^N \sigma^x$$

via the map $f \mapsto f_x$, $f_x(n) = f(xn)$. Suppose T is nonzero on I_x . Taking contragredients, there is a nonzero function $f \in \check{I}_x = \operatorname{Ind}_{H^x \cap N}^N \check{\sigma}^x$ transforming under N by ψ^{-1} . The nonzero vector $v = f(1) \in \check{\sigma}$ therefore satisfies, for every $h \in H \cap {}^xN$, the relation

$$\psi^{-1}(x^{-1}hx)v = f(x^{-1}hx) = \check{\sigma}^x(x^{-1}hx)v = \check{\sigma}(h)v.$$

So the restriction of $\check{\sigma}$ to $H \cap {}^x\!N$ contains the character ${}^x\!\psi^{-1}$. In particular, ${}^x\!\psi^{-1}$ is trivial on $U \cap {}^x\!N$, and is therefore the inflation of a character θ on U_1 .

Let $\alpha\in\Delta_J^+-ar J$, that is, α is a nonsimple root in U_1 . The sub-root system $w^{-1}\Delta_J$ has the base $w^{-1}ar J$, and $w^{-1}\alpha$ is not simple with respect to this base. Since $w\in W_0^J$, we have $w^{-1}ar J\subseteq\Delta^+$, so $w^{-1}\alpha$ is a nontrivial sum of at least two roots in Δ^+ . Thus $w^{-1}\alpha\in\Delta^+-\Sigma$. The character ${}^\lambda\psi^{-1}$ (which does not depend on the representative chosen for λ) is also generic, hence is trivial on $N_{w^{-1}\alpha}$. Therefore ${}^x\psi^{-1}$ is trivial on N_α , implying that θ is trivial on $\bar X_\alpha$.

We have found in $\check{\sigma}$ a character θ of U_1 which is trivial on U_1^* . The properties of being cuspidal and nongeneric are preserved by taking contragredients, so we have a contradiction by Lemma 3. \square

We now prove the theorem as stated in the introduction. The only unipotent generic representation of M is the Steinberg representation. If the algebraic group underlying M has connected center, this is spelled out in [Car, p.379]. In general, it follows immediately from [DM 14.49]. The Steinberg representation is cuspidal if and only if it is trivial, if and only if M is a torus, so by Lemma 4, any unipotent

592 M. Reeder

generic G(F)-module V contains a vector fixed under an Iwahori subgroup and thus is a subquotient of an unramified principal series representation $I(\tau)$ of G(F). If G is adjoint, there is only one generic subquotient of $I(\tau)$. This follows from the uniqueness theorem of Rodier [Ro] and the fact that for adjoint G there is only one orbit of generic characters under A(F). If G is moreover split, it is shown in [R,10.1] that this generic subquotient is none other than $V_{\tau,n,1}$, where n belongs to the dense \hat{G}_{τ} -orbit in $Y_{\tau,q}$.

References

- [Car] R. Carter: Finite groups of Lie type: Conjugacy classes and characters, Wiley, 1985.
- [CS] W. Casselman, J. Shalika: The unramified principal series of p-adic groups II. Comp. Math. 41 (1980) 207–231.
- [DM] F. Digne, J. Michel: Representations of inite groups of Lie type, vol. LMS student texts 21, Cambridge Press, 1991.
- [H] R. Howlett: On the degrees of Steinberg characters of Chevalley groups, Math. Z. 135 (1974) 125–135.
- [KL] D. Kazhdan, G. Lusztig: Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987) 153–215.
- [La] R. Langlands: Les débuts d'une formule des traces stables, vol. 13, Publ. Math. Univ. Paris VII. 1983.
- [L1] G. Lusztig: Some examples of square integrable representations of semisimple *p*-adic groups, Trans. A.M.S **277** (1983) 623–653.
- [L2] G. Lusztig: Classification of unipotent representations of simple *p*-adic groups, preprint (1995).
- [R1] M. Reeder: Whittaker functions, prehomogeneous vector spaces and standard representations of p-adic groups, J. Reine. Angew. Math. 450 (1994) 83–121.
- [R2] M. Reeder: On the Iwahori spherical discrete series of p-adic Chevalley groups; formal degrees and L-packets, Ann. Sci. Ec. Norm. Sup. 27 (1994), 463–491.
- [Ro] F. Rodier: Whittaker models for admissible representations of reductive p-adic split groups, Harmonic Analysis on Homogeneous Spaces, vol. xxvi, Proc. Symp. Pure Math., 1973.
- [T] J. Tits: Reductive groups over local fields, Automorphic forms, representations and L-functions, vol. xxxiii, Proc. Symp. Pure Math., 1979.