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1. Introduction. Let GG be the rational points of a connected split group of adjoint
type over a p-adic field F'. A representation V of GG is unipotent if there is a parahoric
subgroup P < G, such that the restriction of V' to P contains a cuspidal unipotent
representation o of the reductive quotient P. By results of Moy and Prasad [MP],
the pair (P, o) is essentially unique. (Recall from Deligne-Lusztig theory that a
representation of a finite reductive group M = M(F,)"™ is unipotent if it appears
in one of the virtual M-modules R,, := El(—l)’Hé (Buw, Qr), where B, is the variety

of Borel subgroups B of M(F,) in relative position w, for some w in the Weyl group
of M(F,). See [Car] for more details.)

In this talk we consider, for certain groups G, those unipotent representations
which are square integrable, and we describe the structure of their L-packets in
terms of formal degrees and K-types. The basic goal is to understand what prop-

erties are shared by representations in a single L-packet.

2. Unramified Langlands correspondence. We begin with Lusztig’s recent clas-
sification of unipotent representations. Roughly speaking, it says that the unipotent
representations of GG are precisely those whose Langlands parameters are trivial on
the inertia subgroup of the Weil group of F. Such a parameter amounts to an
element x € é’, the dual group of G, taken up to conjugacy. The precise statement
of Lusztig’s classification is

Theorem[Lusztig, [L1]]. The set Irrypnip(G) of irreducible unipotent representa-
tions of G s partitioned as

Irrynip(G) = H I1,,
¢ €G [conj
where the disjoint union 1s over conjugacy classes in G, and we have a parametriza-

tion
e —

Hx — {Vx,p tre A(l’)},
where 1?(:1;\) is the set of irreducible characters of the finite group A(x) := é’x/ZGé’;

Here G, is the centralizer in G of x, é’; is its identity component, and Z, is the

center of Gi. The group A(x) is either ST, S5, 54, S5, the latter three cases occuring
only in exceptional groups.
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We have
1, = [ T.(P.o),

(P,o)

where II,(P, o) consists of those representations in II, containing (P, o). Repre-
sentations in II, may belong to different parabolically induced representations.

To describe properties of I1,., it is helpful to give names to some objects attached
to x. Let © = su be the Jordan decomposition. By the Jacobson-Morozov theorem,
there is a homomorphism

bu: SLy(C) — G

1 1
0 1

into a maximal torus T' containing s. Set

—1/2 0
T:8¢u (qo q1/2>.

By the definition of the dual group, we may view T as the set of unramified charac-
ters of a Borel subgroup B of the p-adic group G. Thus we have the (normalized)

such that u = ¢, ( ) We can arrange that ¢, maps the diagonal matrices

induced representation Indg(r). Some of the constituents of Indg(T) will appear
in II,.. More precisely, we have

Property 1. The following are equivalent
(1) Vi, is a subquotient of Indg T.
(2) Vi, € I.(Z,17), where T is an Iwahori subgroup and 17 is its trivial rep-
resentation.
(3) p appears in the natural action of A(x) on the homology H(B™ NB™), where
B is the flag variety of G. (Here superscripts denote fized points. )

The equivalence of (1) and (2) was proved by Borel [B] in the 70’s, and that of
(2) and (3) by Kazhdan-Lusztig [KL] in the 80’s.

Property 2. The following are equivalent

(1) Vi, has a Whittaker model

(2) Vi, contains the Steinberg representation of G(F, ), pulled back to a hyper-
special mazimal compact subgroup of G.

(3) p =1 and u belongs to the dense Gr-orbit on the set of v € G satisfying
Tor~l =4,

The second condition in (3) is automatic if it is known in advance that V, , is
tempered. The fact that V ; is then the unique generic representation in II, is an
expected feature of any tempered L-packet.

The equivalence (1)=(2) was proved for Z-spherical representations by Barbasch-
Moy [BM], Li [Li], and myself [R4], and [R3] contains the equivalence with (3). The
validity of Property (3) for all unipotent representations was established recently,
[R5], by showing that II,(P,o) contains no generic representation unless (P, o) =
(Z,17). This is well-known for the reductive quotients, and a little Bruhat-Tits
theory is used to lift non-genericity to the p-adic group.



Let Irrimp(G) be the set of square integrable unipotent representations of G, up

to isomorphism.

Expected Property 3. The following are equivalent.
(1) M, C Irrl,;0(G)

unip

(2) Voa € Trr? (G)

unip
3) x 18 not contained in a proper Levi subgroup of G.
prop qroup

There are only finitely many conjugacy classes of = € G satisfying (3). The
equivalence of (2) and (3) was proved by Kazhdan-Lusztig. I have not traced

through the bijection (z, p) — V5, explicitly enough to verify (1)=(2) in general.
2

unip
integrable representations of the Hecke algebras H(P, o) for each parahoric P and
cuspidal unipotent o on P. Then other properties of square integrable L-packets, to

be discussed shortly, enable one to assign an (z, p) to a representation in Irrimp(G),
in such a way that Property 3 holds. This bijection (now between finite sets) is no

doubt the restriction of Lusztig’s bijection.

However, for specific groups G, one can enumerate Irr;, ; (G) by counting the square

Example: Take G = Eg. We have # Irrimp(G) = 98, partitioned into 31 L-packets
II,. We will describe one of them. Take P with P having derived group of type Eg.
The finite group Eg(F,) has two cuspidal unipotent representations, oy = Eg[6]
(notation as in Carter), where 6 is one of the two nontrivial cube roots of unity.

Consider the Hecke algebra H(P, o), consisting of locally constant compactly
supported functions f : G — End(o) satisfying f(pi1gp2) = d(p1)f(g)5(p2), with
convolution multiplication. The structure of H(P,o) was determined by Morris
[M], and in this case H(P, og) is an affine Hecke algebra of type G, with generators
Ts,T,, Ty, the usual braid relations for affine Weyl group G2, and the additional
relations (T, — ¢“(“) (T, +1) = 0, where a € {s,7,0}, ¢(s) = 9, ¢(r) = ¢(0) = 1. This
is not the Hecke algebra of Iwahori-spherical functions on any p-adic group.

Given an admissible G-module V' containing ¢ upon restriction to P, we consider
the H(P,o)-module V7 := Homp (o, V). This is a functor which induces a bijection
between irreducible V’s containing (P, o) and irreducible H(P, o)-modules. There
is a notion of square-integrability for abstract Hecke modules [Mat] and this bi-
jection preserves square-integrability. In the present case, H(P,op) has exactly
four L? modules, hence Eg has exactly four L? representations containing oy upon
restriction to the Eg-parahoric. We describe one of them. The H(P,og)-module
is one-dimensional, and each of the generators Tj, acts by —1. Let V, s denote

the corresponding Fg-module, where » = su € Eg(C) = G is given as follows.
The unipotent element u is Eg(bs) according to the Bala-Carter classification. The
centralizer of ¢, is S3, and s is a three-cycle! in S3. The promised L-packet is

Hl’ = {Vl’,lv Vl’,@v Vx,é}'



2. Formal degrees. The following is our

Main Result. For G = G2, Fy, Eg or classical of rank < 4, there 1s a bijection
(unique up to choosing roots of unity)

(x,p) = Va,: {(z,p) 1 © & proper Levi of G, pe z?(l'\)} — Ire? . (G),

unip

such that the formal degree, with volume of Iwahori equal to one, 1s given by

ey ¢"TTa(r)—1
(1) deg VJHP - #A(J})#ZG H/(]OK(T) . 1 9

where v is the number of positive roots of G, and H/ denotes the product of nonzero
terms over all roots of G.

Remarks

i) We have degV, , = p(1)V; ,. Assuming certain conjectures about L-packets
and stable distributions, Shahidi has shown that the formal degrees in an L-packet
should be proportional. Our formula indicates that the proportionality constant

should be p(1).

ii) Let B" be the variety of Borel subgroups of G containing u. One can show that,
as a power series in ¢, the right side of (1) is

p(1)det(I — Ads|m, ) Sim Bu
#A(X)#Z

where m,, is the Lie algebra of the centralizer of the image of ¢,. The determinant

deg Vs, , = + higher powers,

is nonzero when su is not in a proper Levi subgroup of G. For exceptional groups,
those u which are part of L? Langlands parameters are determined by their dim B*.
Thus, the formal degree of a L?-module V, as a rational function in ¢, determines
the unipotent part of the Langlands parameter of V. A similar phenomenon was
observed for finite Hecke algebras by Lusztig [L4], and predicted by him for affine
Hecke algebras with equal parameters.

Recall that the value at 0 of the L-function L(x) of the Langlands parameter
corresponding to z is

L(z,0) = det(I — Ad(7)|q) "
If we grade g* = go+g1 +. .., we see that det(I — Ads|y,, )" is the factor of L(z,0)

coming from gg.

iii) Our formulation of (1) was inspired by the following result of Heckman and
Opdam [HO], valid for any split G. They assert that

where ¢ is a nonzero rational number, independent of ¢, but otherwise unknown.
As with previous formal degree calculations by Shalika, Borel and myself, this relies
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on the existence of a nice K-type, namely the Steinberg, which exists for p = 1 by
property 2. Formula (1) indicates (and shows, in the cases for which (1) is proved)

that
1

c= ————.
#A(w)#Z¢

iv) Since the conference, formula (1) has been verified for all non-Iwahori-spherical
unipotent L? representations of Fg.

4. How to compute formal degrees We verify (1) by computing each formal
degree separately. The main tool, that avoids the dependence on nice K-types,
is a theorem of Schneider and Stithler, which says, when applied to unipotent
representations, that

- dim VU
2 deg V § -1 dim ¢ 7
2) 8 . (=1) vol (PH)

where the sum is over G-orbits of facets in the building, P\ is the stabilizer of facet
¢, and U, is the pro-unipotent radical of PF. There are about 2/*! such facets,
where ¢ is the rank of G. Using the duality theory for finite reductive groups
developed by Alvis, Curtis and Kawanaka, one can reduce to a sum of about ¢+ 1
terms (essentially a sum over vertices). Moreover, if V' contains some cuspidal
unipotent (o, P), then we only get a contribution from facets ¢ containing the facet
of P in their closure. (Note: Schneider and Stiihler require charF = 0 in their
general formula, but at least for unipotent representations, formal degrees can be
expressed in terms of Hecke algebra formal degrees. It follows that formula (2)
holds for any F.)

Thus, the main problem is to compute V'V¢. First assume V is Iwahori-spherical.
Here all facets contribute to the formal degree, but there are additional tools from
algebraic geometry at our disposal. It is enough to let ¢ — 1 and determine [V],=;

as a module over the affine Weyl group W. Then VU

is found by restricting to the
appropriate parahoric subgroup of W.

The following result was proved by Lusztig for s = 1, and without the tildes, but
is easily extended to the version stated here. Some notation: Let WS be the full
inverse image in W of the stabilizer W, of s in W. We can view s as a character of
WS. Let B! be the fixed points of v in the flag manifold of G,. And let H(B!), be
the p-isotypic component in homology, with grading ignored, viewed as the Springer
representation of W, and with translations acting by cap-product with the Chern
classes of their corresponding line bundles.

Proposition. Assume V, , has Iwahori fized vectors. Then

(Vi plg=1 = sgn @ Ind%s (3 @ H(B;f)p>-

The Ws-modules H(BY), were determined by the Green polynomial calculations
of Beynon-Spaltenstein [BS] and Shoji [Sh], and the decomposition of the induced
representations is greatly facilitated by the tables of Alvis [A].



This result does not apply to non-Iwahori spherical representations, but in com-
pensation, these involve smaller Hecke algebras (at most rank 4, for exceptional G),
and we can use the elementary theory of weight diagrams, as developed in [R2].

5. Leading K-types. The above calculations lead to the following (as yet impre-
cise) observation, namely a relation between Langlands parameters, and Lusztig’s
families of unipotent representations.

First, some recollections on truncation (see [L3]). Let Wy be a finite Coxeter
group, and let R denote its reflection representation. Let H = @H,; denote the
Wo-harmonic polynomials on R. For any Wy module U, let b(U) be the minimum
d for which (U, Hg) # 0. Define

Jo(U):= > (U
TZJEWO
b(¥)=b(U)

Now suppose V' is a unipotent representation of our p-adic group G, containing
the cuspidal unipotent pair (P, o). Let Wy be the finite Coxeter group underlying
H(P, o). Then we define

J(V) = Jo([V7]g=1),

where [V7],=1 is viewed as a Wy-module by restricting from the affine Weyl group
underlying H(P, o). We call J(V) the “leading K-type” of V, even though it could,
at first glance, be reducible.

However, we have observed: For the groups and representations mentioned above,
J(V') is irreducible, and almost determines the L-packet of V.

To explain this, recall that Lusztig has partitioned the unipotent representations
of G(F,) into families F,, one family for each special unipotent class [u] in G.
Furthermore, he showed there is a canonical quotient I', of A(u), with the following
property: Let M(u) be the set of conjugate pairs (s, p), where s € I', and p is a
representation of the centralizer of s. Then we have a parametrization

Fu = {Xg,p : (87p) € M(u)}v

with certain nice properties, and which Lusztig has explicitly calculated [L3].

The connection with leading K-types is as follows. It is only verified in the
examples for which (1) is proved, E8, and a few others. To keep things simple,
assume

(i) The canonical quotient A(u) — T, is an isomorphism (this rarely fails, for
exceptional groups). Identify A(u) = T'(u).

(ii) The unipotent element u does not live in a proper Levi subgroup of G.
(Again, this holds with few exceptions, if u is part of an L? parameter). Then we
can identify A(su) with the centralizer of s in T',,.

Then we have

T (Veu,p) = X,

Thus, the Langlands parameter can often be read off from Lusztig’s parameter
for the leading K-type.
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