SUPERCUSPIDAL L-PACKETS OF POSITIVE DEPTH AND
TWISTED COXETER ELEMENTS

MARK REEDER

1. INTRODUCTION

The local Langlands correspondence is a conjectural connection between
representations of groups G/(k) for connected reductive groups G over a p-
adic field k£ and certain homomorphisms (Langlands parameters) from the
Galois (or Weil-Deligne group) of k into a complex Lie group G which is
dual, in a certain sense, to (G and which encodes the splitting structure of GG
over k. More introductory remarks on the local Langlands correspondence
can be found in [21].

When G = (GL; this correspondence should reduce to local abelian class
field theory. For G = GL,, the Langlands correspondence is uniquely
determined by local factors [24] and was shown to exist in [23] and [25].
So far this correspondence is not completely explicit, but much progress has
been made in this direction; see [9], [10], for example.

For groups other than GL,, or PG L,,, the theory is much less advanced;
new phenomena appear, arising on the arithmetic side from the difference
between conjugacy and stable conjugacy and on the dual side from nontriv-
ial monodromy of Langlands parameters. This means that a single Lang-
lands parameter ¢ should determine not just one, but a finite set of repre-
sentations II(¢); these are the “L-packets” of the title.

However, since local factors have not been defined in general, there is
no precise characterization of an L-packet for general groups. One can, at
present, only hope to define finite sets of representations I1(y) attached to
Langlands parameters ¢, and show that they have properties expected (or
perhaps unexpected) of L-packets. (See [14, chap. 3] for some of these
properties.) One is thereby proposing a definition of local factors for the
representations in the sets I1(¢) (cf. [4, chap.3]).

This paper is a sequel to [14]. The aim of both papers is to verify, in
an explicit and natural way, the local Langlands correspondence for the
simplest kinds of non-abelian extensions of k, and the simplest kinds of
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supercuspidal representations of G(k), where G is a fairly general reductive
group.

In [14], we gave a construction of L-packets of supercuspidal represen-
tations of unramified p-adic groups and their pure inner forms, for certain
tamely ramified Langlands parameters. (See also [27].) The present pa-
per has two parts: The first part extends the construction of [14] to cer-
tain wildly ramified Langlands parameters and positive-depth supercuspidal
representations. As in [14], the formal degrees (with respect to canonical
Haar measures) are constant on these L-packets. There is also a new ob-
servation here: the internal parametrization of our packets (including those
of [14]) has an equivariance property with respect to a natural Weyl group
action which has not been considered previously. The second part of this
paper investigates the canonical example of L-packets (including those of
[14]) associated to twisted Coxeter elements, building on work of Springer
[38].

One expected property of L-packets is stability. The L-packets of [14]
have this property (assuming some restrictions on k). The positive-depth
L-packets in this paper are constructed in an analogous way, from stable
classes of data, but it does not yet seem possible to prove stability of the
sum of characters in these L-packets.

Another expected property is a precise description of the generic rep-
resentations in a tempered L-packet. The generic representations in our
positive-depth packets are parameterized in the same way as those in [14].
DeBacker and I prove this in [15].

The construction of L-packets in this paper can be outlined as follows.
We start with extensions of k£ which are abelian over their maximal unram-
ified subextension. Thus, the number-theoretic side of this paper pertains
to the Galois group of K% /k, where K is a maximal unramified exten-
sion of k£ and K is the maximal abelian extension of /. The extension
K% /k was described concretely by Lubin and Tate in [30], in a manner
analogous to the Kronecker-Weber construction of abelian extensions of Q.
The Langlands correspondence for unramified tori is then reproved using
the Lubin-Tate theory, because this route seems to me more explicit than
the original proof in [29] and because it is an efficient way to ensure that
the correspondence is natural and preserves depth.

Via the Langlands correspondence for tori, these Lubin-Tate extensions
determine pairs (7, x) where 7' is an elliptic unramified torus over k and
X is a character of T'(k). If we have a k-embedding of 7" into an inner
form of GG, under which y is sufficiently regular, then a construction of
Adler [1], building on earlier work of Howe [26], Carayol [11], Gerardin
[18] and others, produces a “very cuspidal” representation 7 (7', x) of G(k).
(Adler’s construction was later generalized by Yu [42]. We hope that the



SUPERCUSPIDAL L-PACKETS OF POSITIVE DEPTH AND TWISTED COXETER ELEMENTS

methods in this paper will eventually extend to construct L-packets from
Yu’s representations.)

In brief, our L-packets consist of all possible very cuspidal representa-
tions one can make from a fixed character y by varying the embedding of
T into all pure inner forms of (G. These embeddings are controlled by the
monodromy group C,, of the corresponding Langlands parameter ¢. Thus,
we get L-packets parameterized in the expected way.

The image of Frobenius under a Langlands parameter of the above type
determines an elliptic element w in the Weyl group of the (possibly discon-
nected) L-group “G. Various classes of Weyl group elements arise from
supercuspidal L-packets, depending on G, but one case is common to all
groups, namely when w is a (possibly twisted) Coxeter element. In the sec-
ond part of this paper we describe these Coxeter L-packets in more detail.
The results are cleanest if we assume G is adjoint and absolutely simple.

For G = PGL,, all of our L-packets are of Coxeter type. Here C, ~
Z/nZ is the center of “G = SL,(C). If p is a character of C, of order
d, where n = dm, then 7(yp, p) is a representation of PGL,,(D), where
D is a division algebra of degree d over k. The representation 7 (i, p) is
presumably the one associated to 7(¢, 1) in [3], but I have not checked this.

For a general unramified adjoint group G, the monodromy C,, for a Cox-
eter L-packet II(¢) is always the center of “G. This means that Coxeter
L-packets are as small as possible: just as for PGL,, there is exactly one
representation in the L-packet for each inner form of G. Each represen-
tation is induced from a parahoric subgroup, so our Langlands correspon-
dence picks out a canonical parahoric subgroup of each inner form of G. In
the last three sections we determine these parahoric subgroups, along with
the inducing data for each representation in a Coxeter L- packet I1(¢). We
also use the Coxeter case to illustrate other aspects of L-packets, such as
stable classes of tori and their characters.

Clearly this paper owes much to my previous collaboration with Stephen
DeBacker. The idea of extending [14] to the positive-depth case arose in
conversations with Benedict Gross, in the course of our work on [21]. I am
grateful to have worked with both of these mathematicians.

2. BASIC NOTATION AND STRUCTURE

2.1. Fields and groups. Let p be an odd rational prime, let k£ be a finite
extension of Q,, and let 0,p,f = o/p denote the ring of integers, prime
ideal, and residue field of k, respectively. Fix an algebraic closure k of k,
and let K be the maximal unramified extension of k in k. Let O,9,§ =
O /P denote the ring of integers, prime ideal, and residue field of K. We
fix @ € p such that p = wo. Then P = wO. Set ¢ = |f|. Then f ~ F, and
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§ ~ [, is an algebraic closure of F,. Let val : K* — Z be the valuation
on K, normalized so that val(cw) = 1. Then val restricts to the valuation of
k. Let Frob € Gal(k/k) be a geometric Frobenius element; for all z € O,
we have Frob(z)? =z mod ‘B.

We use the following notational conventions for algebraic groups and
their rational points. For any algebraic k-group H which is defined over
k, we let H = H(K). The action of Frob on H, arising from the given k-
structure on H, is given by an endomorphism F of H such that H(k) = H*".
If T is an algebraic torus, then X*(T) = Hom(T,GL;) and X,(T) =
Hom(GLj, T) denote the algebraic character and co-character groups of
T, respectively.

Throughout this paper, G is a connected reductive k-group which is de-
fined over & and split over K. Let Z denote the identity component of the
center of G, and let G, denote the adjoint group of G. If T is a torus in
G, then T, is the image of T in Gg.

The Bruhat-Tits building of G4 = Gu4(K) is the “reduced” building of
G; we denote it by B(G). The Frobenius endomorphism /' of G induces an
F-action on B(G) and B(G*') = B(G)* is the Bruhat-Tits building of GZ,.
To any maximal torus T C G such that T is defined over k£ and K -split,
there corresponds an F'-stable apartment A(7") C B((G), which is an affine
space under a transitive action of the vector group X, (T) ® R. This action
factors through X, (T,4) ® R, which now acts simply-transitively on A(7).

We denote by G, the parahoric subgroup of G at a point x € B(G). If «
is F-stable, then G is the parahoric subgroup of GI" at .

The set of equivalence classes of irreducible admissible representations
of G* is denoted by Irr(G*). If T is a finite or compact group then Irr(T)
is the set of equivalence classes of irreducible representations of I'.

2.2. Affine root groups. For more details in this section see [40]. Fix a
K-split maximal k-torus T in G, and let ® and ¥ denote the roots and
affine roots, respectively, of G with respect to T. The elements of ¥ are
affine functions on A(7"). For later calculations of formal degrees, it is
convenient to index the affine roots as follows. Choosing a hyperspecial
point 0 € A(T') allows us to identify A(7T") = X,.(T.s) ® R, so that roots
a € ® become affine functions on .A(7") vanishing at 0 and we can uniquely
write each ¢ € U as 1) = o + n, where @ € ® and n = 1)(0). For each root
a € ¢ we fix a root group u,, : KT — G such that u, (D) = uy(K) N G,.

Then for each affine root v = « + n, we have a bounded subgroup
Up = Unsn = uo(P") of the root group u,(K). The group Uy, can also
be defined as the subgroup of u, (K) fixing a point in the hyperplane {z €
A(T) : (x) = 0}. In particular, Uy is independent of the choice of
hyperspecial point o.
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The action of the Frobenius /' on B(G) preserves A(7) and acts on A(7")
via an affine transformation. This induces an action of F' on the set of
affine functions on A(7"), which preserves the set ¥ of affine roots, and
correspondingly permutes the groups Uy, 1 € V.

The hyperspecial point o is not necessarily fixed by F'. However, if G is
k-quasisplit and T is contained in a Borel subgroup of G defined over £,
then we can choose the hyperspecial point o € A(T) so that F'- 0 = o.

2.3. Filtration subgroups. The parahoric subgroups in G have various fil-
trations. These were defined in [6] and [33] and applied to representation
theory in [32]. See also [2].

Recall that we have fixed a K -split maximal k-torus T in G. For s > 0,
define filtration subgroups of 7' by

Ts:={teT: val(x(t)—1) >s forall xe X*(T)}
Tep :={teT: val(x(t) — 1) >s forall e X*(T)}.

Since val(K) = Z, we have Ty, = Ty, if s € Z and Ty, = T, otherwise.
The subgroup 7 is the maximal bounded subgroup of 7.
For each point = € A(T) and real number s > 0, we define the subgroup

2) Gos = (Ts, Uy 2 h(x) > 5)

We have G,y = G, and G, C G, if r > 5. We also define G, 5+ =
U,~s Gz, The groups G, 5, G . are bounded open subgroups of ;. The
commutator relation [G,,,G.s] C Gy 45 [1, 1.4.2] implies that G, is
normal in G, s for r > s. Finally, it is shown in [42, chap. 1] that the
groups G, s and G, ¢, are independent of the choice of /K -split maximal
k-torus T, subject to the condition x € A(T).

)

Note that the presentations of G, s and G, .+ above involve infinitely
many groups Uy, almost all of which are redundant. For later computations,
it will be helpful to replace these with finite presentations, using our choice
of hyperspecial point o, as follows.

We fix a point x € A(T). For each (linear) root o € D, let n(«, s) be the
largest integer such that n(«, s) < a(x) — s and let n(«, s+) be the largest
integer such that n(«, s+) < a(xz) — s. We have n(«, s+) = n(a, s) — 1 if
a(x) —s € Z and n(a, s+) = n(a, s) otherwise. These integers depend on
x, which is fixed and suppressed in the notation.

Forvy =a —n € ¥, witha € ® and n € Z, we have

P(x)>s & n<nla,s) & Uy CUsnias):

Likewise, 1)(z) > s < Uy C Us—p(a,s+). Hence we have finite presenta-
tions Gy s = (Ts, Uy : ¢ € V) and Gy 54 = (Ts, Uy ¢ € Uy, ), where
U, ={a—n(a,s): a€ P}and ¥, = {a —n(a,s+): a € d}.
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2.4. Filtrations on Lie algebras. Let g and t be the Lie algebras of G and
T, respectively, and let g = g(K), t = t(K). Since T splits over K, we
have g =t + > .4 8o, Where g, is the a-eigenspace for 7" in g.

The Lie algebras g and t have analogous filtrations, namely

t,:={H € t: val(dx(H)) > s forall y € X*(T)},

©) to ={H et: val(dy(H)) >s forall x € X*(T)},

and for x € A(T"), we have O-lattices

gx,s::ts+ Z u¢:ts@@uwy

-
P(x)>s
4)
Brst = oy + Z Uy =t & EB Uy
wE‘I’ w€\1’5+
P(xz)>s

Here U, and W are as in 2.3, and u,, = du,(P"), where p = o +n € V.
If 2s > r > s > 0, we have canonical group isomorphisms

(5) Ga:,s/G:c,r = gx,s/gxﬂ"a TS/TT’ = tS/tT7
along with similar isomorphisms where 7 is replaced by s+-. Note that
(6) gx,S/gx,er = tS/ter D @ uw/uwl,

PYeEV,

P(x)=s

and dimg (uy /uy41) = 1 for each summand on the right side of (6).

3. VERY CUSPIDAL REPRESENTATIONS

In this section we recall Adler’s construction of supercuspidal represen-
tations [1], along with some refinements by Yu [42].

3.1. Minisotropic tori. Let T be a maximal torus in G such that T is
defined over k£ and K-split. Such a torus T is called F-minisotropic if any
of the following equivalent conditions holds:

(2) T*/Z¥ is compact;

(3) The group T has a unique fixed-point x € B(G)*".

If these hold, then T* ¢ ZF'GE .
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3.2. The inducing subgroups. We will apply the filtrations of section 2 to
a point x € A(T)", where T is an F-minisotropic maximal torus in G.
Since z is fixed from now on, we suppress it from the notation, and write

Gs = Gz,s’ Gs+ = Gw,s—i—a (S > O)
9s ‘= Yz,s, Os+ ‘= Pa,5+) (3 € R)'
In particular, we now write Gy := G, . We also set

(7) mg = @ Uy, Mgy = @ Uy
VIS YeV
so that gs/gs = ts/tsy ® my/mg,. Since F -z = z, the sets ¥, and ¥
are preserved by F', so all the groups and vector spaces above are F'-stable.
We set
Vei=m/ml .

Since Tt c ZFGY, and the latter normalizes G¥, it follows that we have
an open subgroup K, := TY'G! of G¥, and K, is compact modulo Z*'. Our
eventual supercuspidal representations of G¥ will be compactly induced
from K. We have a chain of normal subgroups of K : J,, < J, < K,
where J; := (Ty,, Uy = ¢ € V), and Jo == (Tys, Uy = o € U ).
From (7) we have J;/Js, ~ V. Since K, = T* J,, the multiplication map
gives an exact sequence

(8) 1 — A(T) —T'x J, — K, =T"J, — 1,

where A(T) = {t x t 71 € TE x J, : t € TL}. The inducing representa-
tions of K; will come from representations of TQ}E X J which are trivial on
A(TE).

Let x : TF — C* be a character of T'*" which is nontrivial on 7" and
trivial on T, |, for some integer » > 0. In the previous constructions, we
take s = 7 € 3Z0. As in [1], x gives rise to a nontrivial homomorphism
) XSy — T,

which agrees with x on 77" and is trivial on (Uy : ¢ € Wy )F.
The commutator [J,, J, | is contained in ker x [42, 4.2] and we have a
nondegenerate symplectic pairing

‘/5 X V; - FP) <U,’U> = X([avﬁ])a

where u, v are lifts of u, v in J.
Let V! = V x [, with multiplication

(v,a) - (u,0) = (v +u,a+b+ 3{v,u)).
(Recall that p > 2.) Asin [42, chap. 10] we can extend Y to an isomorphism
(10) X :Jg/kery = VE
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The adjoint action of T gives a homomorphism f : T — Sp(V) which
1s trivial on T(ﬂ, and y is TF -equivariant, so we have a homomorphism

(11) fxx:TF % J, — Sp(V) x VE.

Let ¢, be the representation of T* x J, obtained as the pullback, via (11),
of the Weil representation of Sp(V) x V* with central character Y. Since
(11) maps J; surjectively onto V¥, the representation ¢, is irreducible on
Js, hence is irreducible on TF x J;.

Inflate the original character x € Irr(T'F) to a character of T x .J, via the
natural quotient 7% x J; — T'*'. The tensor product x, := x ® ¢, is trivial
on A(TF), hence gives an irreducible representation of K, of dimension

(12) dim (k) = dim(¢y) = [V5|V/? = ¢™/2,

wherem = [{a € & : a(x) € s+ Z}.
The compactly-induced representation

(13) m(T, x) = ind$ sy

will be irreducible (hence supercuspidal) when x satisfies a certain regu-
larity condition. To state this condition, we must interpret characters as
functionals on lattices. Fix henceforth an additive character A : k¥ — C*,
whose kernel is o.

Suppose V' is a K-vector space, defined over k, with Frobenius F'. Then
F acts naturally on the dual space V = Homg(V, K), and we identify
VF = Homy (V¥ k), via restriction. For any integer n, define

t, ;== {\ € Homg(t, K) : (\ t,) C O}.
Then we have a bijection
(14 UL ), Ao o,

where x\ (X + ) = A((\, X)). Under the isomorphism T/ /T% | ~
tr/tE, |, we have x = x,, for some \ € t£, ;.

Let N(T') be the normalizer of 7" in G, and let W (T') = N(T')/T be the
absolute Weyl group. Then W (T') acts on on t,,;/t,. We say that Y =
is regular if the stabilizer of A + t, in W (T') is trivial. In [1], Adler proved
the following

Theorem 3.1. If x is regular, then w(T, ) is an irreducible supercuspidal
representation of GT'.
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4. FORMAL DEGREES

In this chapter we compute the formal degree of (7, ). With appro-
priate normalizations of Haar measures, we will see that this formal degree
depends only on the k-torus T and the depth of x € Irr(7T*). In particular,
we will see that the normalized formal degree is independent of the embed-
ding of T in G, as well as the fixed-point x of T in B(G)". To make this
clear, we restore x to the notation.

For any connected reductive k-group H, there exists a unique Haar mea-
sure dh on H* such that for any € B(H)* we have

(15) vol(HY, dh) = |H| - o571/,

where H, = H,/H,.,b, = b./b... We call dh the canonical Haar
measure on H 7.

We choose the canonical Haar measures dg on G, dt on T and dz
on Z¥. Let Deg(-) denote the formal degree with respect to the quotient
measure dg/dz. Then the formal degree Deg(St¢ ) of the Steinberg rep-
resentation of G is the same for all inner twistings of G (see [14, 5.2]).

Now let x be a regular character of 7" which is nontrivial on 77" and
trivial on T,ﬂl for some integer > 0, and set s = r/2.

Proposition 4.1. With respect to canonical Haar measures, we have
g*?!

Deg (7(T, x)) = vol(TF /ZF dt/dz)

Proof. We start with the basic formula (see [8, A.14], for example)

dim(k,)

vol(K/ZF dg/dz)

From (12) we have dim(x,) = [m%,/mZ |2 and from K, = T* G we
have K, /Z"GE, = TF /(T" N ZFGE,) = T /ZFTF . Using the normal-
ization (15), it is straightforward to check that

Deg (7(T' x)) =

16 WGF d FAES g5 |2
(16) vol( 7,87 9)—[gg:ggs]_[tF;tf].[me:mf,S].
It follows that
TF . ZFTF] RS
IKS ZF da/d — [ s . T
g vol(K,/Z" ,dg/dz) [t tE] - vol(ZF dz) [ml: mﬂs]
(17) m |/

= vol(T*/Z*  dt/dz) -

[mf: m ]’
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so we have
qD
18 D T =
where

D = 1dimg(m,/my ) — 3 dimg(m,) 4 dimg(m,/m, ).

Note that
dimg(m, s/m, ) = [{a € ®: a(zr) € s+ Z},
(19) dimg(m,) = [{a € ®: a(x) € Z}|,
dimg(m, /m,.) = Y _ [n(a,0) — n(a, s)].
acd
We partition the roots as ¢ = ¢ LI §y LI $3 LI §y, where
P ={a€d: a(x) € Z}, by ={aec®: afz) € (0,3)+Z},

Py={ac®: az)c(3,1)+2Z}, ®={acP: alz)ci+7Z}.
Note that sending o to —« preserves ®; and ¢4, and interchanges ®, and
3. Let 2A = |®,], B = |®y| = |®3],2C = |®,]. Then dimg(m,) = 24,
and
2A if seZ

20 di x,5 x,s = .
(20) (M, /M) {20 1f5€%+Z.

If s € Z, we have n(«, s) — n(a, 0) = s, so that dimg(m, /m, ;) = s|P|.
If s € 3 + Z, we have

if o€ ;U Dy

(21) n(a, s) —n(a,0) = { if o€ ®sUD,

which implies that dimg(m, /m, ) = s|®|+A—C. It follows that D = s|®|
in both cases. From (18) we get the formal degree claimed in 4.1. U

The following alternate viewpoint is suggestive. The inducing group K
is contained in ZF'GL, so we can also view 7(T, x) as induced from the

x°

finite-dimensional irreducible representation
22) R(T,y) := ndZ % x,

on ZFGE. Set G, = G,/G,., T = Ty/T,. Using the equations used to
compute D above, one finds that

(23) dim R(T, x) = ¢*!*! - [GF . TF),,
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where |- - -], is the largest factor of the index not divisible by p. In the
depth-zero case [14, chap.5], the inducing representation arises from a com-
pletely different, cohomological construction [16] and has dimension [G¥ :
TF),. Hence equation (23) reduces the proof of the constancy of formal
degrees to the depth-zero case, which was proved in [14, chap.5], and sug-
gests that R(T', x) should be a positive-depth analogue of a Deligne-Lusztig
representation (cf. [31]).

5. LUBIN-TATE EXTENSIONS AND TORI

The Langlands correspondence for tori is well known [29]. However, we
need two properties of it which do not seem to be in the literature: We re-
quire our correspondence to preserve depth, and to be natural with respect
to automorphisms. These requirements are easily seen to hold if we refor-
mulate the correspondence (for unramified tori only) in terms of Lubin and
Tate’s explicit form of abelian class field theory.

The method is essentially that used in [14, 4.3]. There, depth-zero char-
acters were parametrized using the Weil group of the maximal tame exten-
sion k;/k of k. Note that k; is abelian over K. Here, for arbitrary depth,
the relevant Weil group is that of K /k, where K is the maximal abelian
extension of K.

5.1. Lubin-Tate extensions. In this section we review some results in [30].
Recall that K is the maximal unramified extension of k contained in a fixed
algebraic closure k of k. For d > 1 an integer, let k; C K be the unramified
extension of k of degree d. We let 0, be the ring of integers of &, and let p,
be the prime ideal of 0.

Lubin and Tate construct the maximal abelian extension k%° of k4 in the
form of a tower

ki KK cKP - | K =k,
n>1

as follows. Fix a prime element w € k, and consider the polynomial f; =
wX + X" € 0[X]. Let A((j") C k be the set of zeros of the n-fold iteration
fcgn) = fy0---0 fy. Then Kfl”) =K (Agn)) is the field generated over K
by AU

It is easy to see that f(gn) (X) = Xhy(X) - h,(X) where each h;(X) is
an Eisenstein polynomial in 0,4[X]. This implies that the degree of K C(l") /K
is given by

(24) (K K] = g% (g - 1).
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According to Lubin-Tate, the Galois groups Gal(X C(l”) /K) can be de-
scribed in a manner analogous to those of cyclotomic extensions of Q, with
the group Q* replaced by the unique (one-dimensional commutative) for-
mal group G4(X,Y) € 04([X, Y]] admitting f; as an endomorphism. The
key fact is that for each o € 0,4, there is a unique power series [«], of the
form

[a]q = aT + (higher order terms) € To4[[T]]

commuting with f; under composition. Then [a]; € End(G,) and the
map « — [alq is a ring homomorphism [ |4 : 04 — End(G,), such that
[@"]q = fi" foralln > 1. )

Let p be the subring of k£ whose elements have (extended) norm < 1.
Since the series Gy(x, y) converges for x,y € p, we can put a new abelian
group structure on p via the addition rule z+y = Gg(z,y). Let Gy(p)
denote the group (p, +). It is an 04-module, via the endomorphisms [a],.
Since ™ = X7 mod p, it follows that AJ” C B. Since Al = ker £\ =
ker[w]”, the set Afln) is an o, - submodule of G4(p). By construction, the
annihilator of A" is p”, so we have A" ~ 0,4/p", as 0,-modules.

The action of Gal(K (" /K) on A commutes with the 04-action, so we
have an injection Gal(K " /K) < Aut,, (AY") = 0% /(1 + p?), and (24)
shows that this injection is also surjective. In this way, we get the reciprocity
isomorphism
(25) g+ Gal(K[" [K) == 03 /(1+pj),
characterized by the property that [ré") (7)]a =77 € Aut,, (AEI")) for any
~v € Gal(K{" /K).

Finally, Lubin and Tate show that field /& én) and the homomorphism rl(in)
are independent of the choice of prime element w used to define f; and that

Uns1 K C(l") is indeed the maximal abelian extension k3’ of k;. The maps

r&n) piece together to give an isomorphism

rg : Gal(k§’/K) = limo} /(1 +p}) = o.

In terms of inertia groups, the above reciprocity isomorphisms read as
follows. Let W(k,) be the absolute Weil group of k;. Note that Z =
Gal(k/K) is the inertia subgroup of W(k,) for every d. Let Z, := Gal(k/k2),
so that Z/Z; = Gal(k%/K). Pulling back via the quotient Z — Z/Z,, the
reciprocity map ry may be viewed a surjective homomorphism

(26) rg:Z —ZI/Ty= o)
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whose kernel is Z,;. If we set Ic(ln) = r;l(l + pl), for n > 1, then the
original isomorphism (25) now reads as

27) ' T 20X (1 ph).

5.2. The maximal abelian extension of K. We have so far considered d
as fixed; now we study the effect of varying d. If ¢ | d, we have [39]
re = Nejq © rq, where Ny : k; — k2 is the norm homomorphism. Since
kq/k is unramified, we have [36] Nc|d(1 + pl) = 1+ p2. Since I(S") =
(7' (1 + p2), we have ZU” < Z{" and K c K!". The natural quotient
map jeq: L /Ic(l") -7 /Ié") fits into a commutative diagram

(n) g
/1Y —— o5/(1+py)

jc|d J L Nc|d

(n)
/7 L ox /(1 +p).

Thus, if we set Z(" = 1 Zc(ln), the reciprocity maps r((in) fit together to
make an isomorphism -

28) LU s A O lim oy /(1 +pg),
d

where the transition functions in the projective limit are induced by the
norm maps N,q. The isomorphism r(™ intertwines the automorphism Ad(Frob)
on Z/Z™ (induced by conjugation by Frob on Z) with the automorphism
on the projective limit induced by the Galois action of Frob on each group
0.

For each d > 1, the canonical projection Z/Z™ — o} /(1 + p%) induces
an isomorphism

(29) [z ]Ad Frob?) — o0 /(1+p")

where [Z/Z(™")] Ad(Frobd) denotes the co-invariants of Ad(Frob%) in Z/T(™.
In terms of Galois groups, we have Z/Z(™ = Gal(K™/K), where
K™ = (U, K. The field KO = k, is the maximal tame extension

of k and is also the maximal tame abelian extension of K. The union
U, K (") is the maximal abelian extension K® of K. The intermedi-

ate fields k C L C K% are exactly those extensions L of k in k which
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are abelian over their unramified part, that is, those for which L/L N K is
abelian.

5.3. Langlands correspondence for unramified tori. Let T be a k-torus
splitting over K, let F' be the Frobenius endomorphism of 7' = T(K),
and abbreviate X := Hom(GL;,T),Y := Hom(T, GL;). Then F acts
on X via an automorphism ¢ of finite order, say d. Evaluation at w gives
an embedding X < 7', which allows us to identify 7" = X ® K* and
F = o @ Frob . Note that T splits over kg, so that T(k,) = T = X @ k.
Let

(30) Ny :TF' —TF,  N,(t) =tF(t) - F(t)

be the norm mapping.
The filtration groups 7, are F'-stable. For » > s > 0 and any d > 0, we
have

TYTE = (T)T)™, and  (To/T)™ = X @ (0 /1+p}).
Lemma 5.1. For every r > 0 we have an exact sequence
1 —TF — r 285 prt Neypl g

Proof. Exactness at the first two terms (reading from the left) is clear. Ex-
actness at the third term follows from the profinite version of Lang’s theo-
rem, which allows us to write any ¢ € T in the form s~'F(s) for some
s € T,. One checks that, if N, (¢) = 1, then s € T*".

It remains to show that NV, is surjective. Replacing 7, by T,./T, .1, we
get a sequence

1 (T4 To)" — (T Toy) ™ = (1) To) P 5 (1T ) — 1

Taking the Euler characteristic, we see that the image of | V| has cardinality
that of (T, /T,,1)%, so N, is surjective. It follows [37] that N, is surjective.
U

Let « — & : Aut(X) — Aut(Y') be the anti-automorphism given by
duality. Then ¢ = & ® Id acts on the dual torus T :=Y @ C*, and we can
form the semidirect product 27 := (5) x 7.

Now we consider the group of characters of T¢" which are trivial on
TE .. Given automorphisms «, 5 of abelian groups A, B, respectively, let
Hom, 3(A, B) denote the set of homomorphisms f : A — B such that
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foa= (o f. Wehave
F 5.1 Fd ) mFd
Hom(T{' /T, C) 2 Hompya (T /TS, ©)
= HOH]FJd ( ( /1 + pT+1> , (CX)
- HomFI‘ObO' <0d /1 + pH_l ) )

= HOHlAdFrob,a (I/Ié’““) ) T) )

(D

the last isomorphism coming from abelian reciprocity (27). Since ¢ has
order d, the latter group consists exactly of the restrictions to Z/Z("+1) of
continuous homomorphisms

A

(32) 0 W(E)/IY — (5) x T

for which ¢(Frob) € 6 x T

The 7- conjugacy class of those ¢ with a given restriction to 7 /I (r+1) js
determined by the o-twisted T- -conjugacy class of the element 7 € T, where
©(Frob) = & x 7. In turn, the -twisted conjugacy class of 7 is nothing but
a character of X?. Since T is a direct product 7" = X7 x T, we have
shown that the characters of 7% which are trivial on T)%, | are in bijection
with 7- conjugacy classes of Langlands parameters ¢, as 1n (32).

To summarize the bijection: the character y,, : 7% /T, — C* corre-
sponding to the parameter ¢ in (32) is determined by the two equations:

(33)  xeoNo(A@ra(x)) = Alp(z)) and  x,(p) = p(7)

forall A € X, u € X7, © € Z, where r, is the reciprocity map (26), N, is
the norm mapping (30), and 7 € T is given by p(Frob) = 6 x 7.

This correspondence ¢ — x,, has the following naturality property. Let
a be a k-automorphism of T. Then o € Aut(X) commutes with o and & €
Aut(Y) commutes with 6. We can therefore extend & to an automorphism
of £T'. A computation identical to that of [14, 4.3.1] shows that

(34) Xe © O = Xaop-

6. L-PACKETS

In this section we construct our L-packets. The elements of these packets
are certain equivalence classes that generalize the notion of representation.
We briefly explain this first, before embarking on the construction.
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6.1. Galois cohomology and representations. For more details in this
section, see [14, chaps. 2,3]. Let G be a connected reductive k-group with
Frobenius automorphism /' on G := G(K). Each element

ue Z' (F,G)={ueG: u-Flu)--- F" '(u) =1, forsomen > 1}.

arises from a k-structure on G with Frobenius Ad(u) o F' on G. Denoting
G with this new k-structure by G,,, we have

Gu(k,) — GAd(u)oF.

The group G acts on Z'(F,G) by g x u = guF'(g)~"; the set of G-orbits
in Z'(F,G) is denoted H'(F,G). Evaluating cocycles at Frob gives a bi-
jection H*(k,G) = H'(F,G), where H'(k,G) denotes the first Galois
cohomology set of G.

Foreachu € Z'(F, G), the map Ad(g) intertwines Ad(u)o F and Ad(gx*
u) o F. It follows that Ad(g) sends G, (k) to G, (k) and hence induces a
bijection

It (G (k) — Tt (Gguu(k)), by w97 =moAd(g)™".
Hence G acts on the set of pairs
R(F,G) = {(u,7): ue€ Z'(F,G), © € Irr (G, (k))},

by the rule g - (u, ) := (g % u,97). We let [u, 7] € R(F,G)/G denote the
G-orbit of (u, 7). Projecting onto Z'(F, G) gives a partition

R(F,G)/G= ][ R(FGw)/G,

WwEHL(F,G)

where for each class w € H'(F,G), the set R(F,G,w) consists of those
pairs (u, m) € R(F,G) for which u € w.

6.2. Unramified groups. We now adopt our previous set-up. That is, we
assume that G is a connected reductive k-group which is K-split and k-
quasisplit. We write F' for the corresponding Frobenius endomorphism of
G = G(K). (The change from F to F signifies that F arises from a quasis-
plit k-structure on G.) Let B be a Borel subgroup of G defined over k, and
let T be a maximal torus of B. Then T is defined over k£ and split over K.
(Note: This torus is different from the minisotropic torus used in chapter
3. We will eventually apply the construction of chapter 3 to minisotropic
twists of the present T.) Let N be the normalizer of T in G, and write
X = Hom(GL;,T),Y = Hom(T, GL;) as before. Let W = N/Tj be the
affine Weyl group of G. For A € X, let ¢, be the image of A(z) in W. Thus
we view X as a subgroup of W.

The Frobenius F acts on X and W via an automorphism % of finite or-
der. Moreover, U preserves a hyperspecial vertex o € A(T), since G is
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k-quasisplit. The affine Weyl group decomposes as W = X x W,. By du-
ality we have ¥ € Aut(Y) and a J-stable subgroup W, C Aut(Y). The
action of the group () x T, on Y extends to the dual torus 7' = Y’ @ C*,
acting trivially on C*. We identify X = Hom(T Cx).

Let G be the dual group of G, so that T is a maximal torus of G. We
1dent1fy W, with the Weyl group of TinG. Fix a pinning in G containing
T. There is a unique extension of J to an automorphism of G preservmg
the pinning. Set “G := (J) x &, and let Z¥ denote the fixed-points of ¥ in
the center Z of (3. In fact, 77 is the center of LG.

6.3. Langlands parameters. Let YV = W (k) be the Weil group of k. We
consider Langlands parameters ¢ : YW — LG satisfying the following three
conditions:

(1) The map ¢ is trivial on Z' (*+1) and nontrivial on Z("), for some inte-
gerr > 0.
(2) The centralizer of x(Z(") in G is a maximal torus of G.
(3) ¢(Frob) € 1 x G, and the centralizer of o(W) in  is finite, modulo
Zﬁ
These are the conditions of [14] except that here ¢ is not required to
be trivial on the wild inertia group Z(!). Condition 1 implies that ((Z)
is abelian. Condition 2 is the regularity condition and Condition 3 is the
ellipticity condition. We may and shall always choose ¢ in its @—Conjugacy
class so that the torus of Condition 2 is 7. That implies in particular that
go(I ) C T. Since Frob normalizes Z, Condition 3 implies that cp(Frob)
U x i, for some 7, € N (T) which projects to an element w € W,. We say
that the dual element w € W, is associated to . N
The G-centralizer of ( is given by Cp () = T#Freb) — Tixw — Jud,
hence, if C, denotes the component group of C(¢), we have an isomor-
phism
[X/(1 = wd) X],,, — Trr(Cy),

given by restriction, where |- - - |, denotes torsion subgroup. Let X, be the
set of elements of X whose cosetin X /(1—w1)X belongs to [X/(1 — wd)]
(Note that X, = X if G* has compact center, or equivalently, if 7V is fi-
nite.) For A € X, we let p, € Irr(C,,) be the restriction of A to Cl,.

tor*

6.4. Vertices and pure inner forms. Let ¢ be a Langlands parameter sat-
isfying the conditions of section 6.3, with associated w € W,. Let A € X,,.
To this data we associate, as in [14], a point z, € A(T") which will play the
role of z in the earlier chapters, along with a cocycle uy € Z'(F, G). This
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goes as follows. By Condition 3, the element ¢t\wi¥ € W+ has a unique
fixed-point x, € A(T), given by =) = (1 — wd) "ty - 0.

Choose an alcove C) in A(T") containing z, in its closure. We can
uniquely write

(35) t,\w"ﬁ = U))\y)\ﬁ,

where w), belongs to the subgroup W, of W generated by reflections about
the affine root hyperplanes in A(7") containing z, and y, € W is such that
y)\19 -C A= C)\.

From [14, 2.6] the element y, has a lift uy € NNZ'(F, N). Asin section
6.1, this gives a twisted k-group G, = G,, (no longer k-quasisplit, in
general) with Frobenius Fy := Ad(uy) oF. We have G, (K) = G(K) =G
and G, (k) = G™.

By construction, we have Fy -z, = ), and in fact x,, is a vertex in B(G )™
(though x, is not always a vertex in B(G)). Let G, be the parahoric sub-
group of G at z). There is an element py € G,, such that p)_\1 Fx(py) be-
longs to N and is a lift of w,. Let T, := pATpxl. Then Ad(p,) : T — T,
is a k-isomorphism which intertwines w F on 7" with F on 7). The torus T
is an F-minisotropic maximal torus in G, and x, is the unique fixed-point
of T} in B(G)™

6.5. Invoking the abelian Langlands correspondence. Let ¢ be a Lang-
lands parameter satisfying the conditions of section 6.3, with associated
w € W, and set 0 = wi). We will construct from ¢ a T—conjugacy class of
Langlands parameters ¢ : W — LT such that w1 = @ onZ, and such that
¢r(Frob) and ¢(Frob) have the same action on 7T". Since T is not a sub-
group of G, this is not quite immediate. We will have ¢ (Frob) = 6 x T
for some 7 € T, which is only defined up to o-twisted conjugacy The
coset of 7 in T/(l — J)T is defined as in [14], as follows. Let G’ be the
derived group of G, let 7/ = TN G’ and let Gy = G / (. Condition 2
implies that the map 7 — 76(7)~" has finite kernel on 7", which means
that (1 — 6)T" = T". Hence the inclusion T — ( induces a bijection
T/(1 —6)T" = Gy. It follows that T — ( induces a bijection

(36) T/(1=6)T = Gap/(1 = D) G-

Now, if ¢(Frob) = 9 x 7, we take any 7 € T whose class in T'/(1 — 6)T
corresponds under (36) to the image of 7 in éab/ (1 —f@)@ab. This procedure
gives the desired Langlands parameter ¢.

Let r be the largest integer such that ¢ is nontrivial on Z("). By the
Langlands correspondence for tori, as given in section 5.3, the parameter
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o gives a character x,, € Irr(7") which is nontrivial on 7 and trivial
on T%; we say x,, has depth 7.
Conjugating by Ad(p,), we get a character

(37) XA = X 0 Ad(py) ! € Irr(T™).

Since p) € G, it follows that y also has depth r. By the naturality property
(34), the regularity Condition 2 on ¢ implies that x satisfies the regularity
condition of Theorem 3.1.

6.6. Supercuspidal L-packets. Let ¢ be a Langlands parameter satisfying
the conditions of section 6.3. We can now apply the construction of chapter
3 to the group G, with Frobenius F), the F)-minisotropic torus T with
unique fixed-point 2, of 73> in B(G)™, and the character y of T}*; this
gives an irreducible supercuspidal representation 7y, := (T}, x») of G™.

Lemma 4.4.2 of [14], which does not depend on the depth of represen-
tations, shows that, for fixed ¢ and A, the isomorphism class of 7, is inde-
pendent of the choices made in the construction.

We thus have infinitely many groups G™ and representations 7. How-
ever, these form only finitely many equivalence classes, in the sense of sec-
tion 6.1.

Lemma 6.1. Let ¢ be a Langlands parameter satisfying the conditions of
section 6.3 and let A\, u € X,. Then we have

[ux, T = [umﬂu] <~ Px= Py
Proof. If py = p,, then the first half of the proof of [14, 4.5.2], which
does not depend on depth, shows that there is g € G such that g x u) =
Uy, g+ T\ =T, and
Ad(g) - (Tx, xa) = (T Xp)-
This implies that Ad(g). - kKx = K, so that g - (ux, 7\) = (u,, 7,). Hence
we have [uy, m)] = [uy, m,], as claimed.

Conversely, suppose there is ¢ € G such that g - (uy,m) = (uy, 7).
Then 97y and 7, are equivalent representations of G*».

Thus, we have two pairs (9T),9x») and (7}, x,.) in G giving rise, via
Adler’s construction, to equivalent representations of G+, The two pairs
must then be conjugate in G, as follows from a character calculation
[13] or more general results on distinguished representations [22, Cor. 6.9].
Hence, modifying ¢ by an element of G**, we may assume that

(gTAa gXA> = (Tw Xu)‘

Recall that 7,™ and 7;* have unique fixed-points x, and z, in B(G)™ and
B(G)Fx. Since g * uy = u,, it follows that g - zy = x,,. The last paragraph
of the proof of [14, 4.5.2], repeated verbatim, now shows that p) = p,. U
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Lemma 6.1 allows us to define

71—(%07 p) = [U)\, 7T>\]7
for any A € X, such that py = p. Our supercuspidal L-packet is then

() == {m(p,p) : p € Irx(Cy)}.

From 4.1, it follows that all representations in II(¢) have the same formal
degree, with respect to canonical Haar measures.

6.7. A simple case. The L-packets I1() simplify greatly G is k-split and
simply-connected. In this case, ¥ = 1 and X is the co-root lattice of T
in G. For any A € X, we have w, = tyw and y, = 1 so we may take
uy = 1 and F\, = F. It follows that for each p € X/(1 — w)X, we may
identify the class 7 (¢, p) with the G¥-isomorphism class of representations
7, for A € p. Thus, the L-packet I1() consists of isomorphism classes of
representations of the single group G¥'.

6.8. A useful complement. The construction of 7, involves several choices,
among which is a choice of alcove C, whose closure contains x. The vari-
ability of C'y can be inconvenient when working out particular cases of our
L-packets. One might hope to fix an alcove C, and that for each p € Irr(C,,)
one can find A € X, such that py = p and C\ = C. Unfortunately, this is
not always possible. Recall, however, that the pair (¢, p) is only taken up

to conjugacy by G. This extra freedom allows us to fix C.

Lemma 6.2. Let C be an alcove in A(T). Then any pair (@, p), where ¢
satisfies the conditions of 6.3 and p € Irr(C,), may be chosen in its G-

conjugacy class so that () C T, and so that there exists w € X, with
pp=pand C,, = C.

Proof. We already know we can arrange that o(Z) C 7. Choose any A €
X, such that p) = p, and choose any alcove C'y containing x in its closure
Cy. Let W € N be a representative of w.

Now choose n € N such that n - Cy = C. Let v € W be the image
of n, and let v, be the projection of v to W,. Then nw F(n)~! projects to
w' = vwd(v)~' € W,. The action of v, on X gives an isomorphism
(38) [(X/(1 —wd)X],, —= [X/(1—w)X]

tor tor

such that v,p) = p! , is the image of v, in the right side of (38).
Conjugating both sides of the equation ¢t wid = wyy ¥ by v, we get an
analogous equation

(39) toaw'd = w, \yi 0,
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where the unique fixed-point in A(7") of both sides of (39)is 2/, ‘= v-x) €
C. Moreover, we have i/, 0 - C' = C.

Let 6, € W, correspond to v, under duality, and let . € NG(T ) be a lift
of 0,. Conjugating (¢, p) by 7 gives a new pair (¢, p’) such that p’ = p/
and C!, = C. Replacing (g, p) by (¢, p') and taking ;. = v\ satisfies the

v
conclusion of the lemma. ]

A warning: If one fixes the alcove C, and uses Lemma 6.2 to construct an
L-packet with all inducing data on points in C, then the element w will vary
for each representation. However, w will only vary within its 1/-conjugacy
class in W,,.

6.9. Stable classes of tori and their characters. The results in [14] on
stable classes of tori and their characters do not depend on the depth of the
characters. In this section we recall these results and show how they apply
to our positive-depth L-packets II(¢).

Let F' be a Frobenius endomorphism of GG arising from a given K-split
k-structure on G. We denote the set of ['-stable K -split maximal tori in G
by T(G, F') and we say that two tori S;, Sy € T(G, F) are (G, F')-stably
conjugate if there is g € G such that 9(S¥") = SI'. This is an equivalence
relation on T(G, F') whose classes we call (G, F')-stable classes. We write
[T(G, F)]s for the set of (G, F')-stable classes in T(G, F).

Any S € T(G,F) is of the form S = 97 for some g € G, and the
element n = g~ 'F(g) belongs to N. By [12], two such tori S; and So,
corresponding to n; and ns, are (G, F')-stably conjugate if and only if n,T
and nyT belong to the same F-twisted conjugacy-class in N/T" . This gives
an injective mapping

(40) [T(G, F)]st — H'(F,N/T).

Suppose F' = F,,, where F is the Frobenius for a quasisplit k-structure on
G,and u € Z'(F, N). The map z — zu induces a bijection

(41) HY(F,,N/T) = HY(F,N/T).

Since F is a quasisplit Frobenius, there is an F-stable hyperspecial vertex
o € A(T), and we may identify N/T = W, as F-groups. Let ¥ be the
automorphism of W induced by F. Then ¥ preserves IW,, and the map
w +— wd identifies the cohomology set H'(F, W,) with the set of W,-
orbits, via ordinary conjugation, on W,4. An element wi € W, is called
elliptic if it has no fixed-points in the root lattice of T in G.

Combining (40) and (41), we get an injective mapping

(42) U, : [Z(G,Ey)]se — W,0/W,
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which sends each F,-minisotropic class in T(G, F,) to an elliptic class in
W,9. If u # 1, the map ¥, is not necessarily surjective, but we have the
following immediate consequence of [14, 9.6.1].

Lemma 6.3. If w) € W0 is elliptic, and v € Z*(F,N), then there is a
G-stable class T,,,, C T(G,F,) such that V,(7,.,) is the W,-orbit of wv.

We now construct a “covering” of T(G, F') by adding an extra piece of
data. Let

(G, F) :={(5,0): Se%(G,F) and 6 e Irr(ST)}.
We say two pairs (Sy,0;), (Ss,0,) in $(G, F) are (G, F)-stably conjugate
if there is g € G such that 9(S{') = SI" and 90, = 0.

Suppose [ = F,, let ¢ be a Langlands parameter satisfying the condi-
tions of section 6.3 with associated w € W, and let x = x,, € Irr(T"F).
We define

Twux = 1{(5,0) € (G,F,) : 3g € G such that S™ = 9(T"F)and § = 9y}.

Then G* acts by conjugation on ’ZA;WX with a finite number of orbits.
These orbits can be parametrized as follows. First, Kottwitz’ isomorphism
Irr(C,) — H*(F, G) (see [28]) factors as

43) Tir(C,) = [X/(1 — wd) X]ior —= [Q/(1 = 9)Q)ior = H'(F, G),

where Q = Irr(Z) and r, is induced by the restriction from 7" to Z.
Now, in [14, 9.6.1] it is shown (via a proof that does not depend on the
depth of characters) that the map A — (7}, x,) induces a bijection

(44) rit[u] =5 Topun /G,

w

where [u] € H'(F, Q) is the class of the cocycle u.

It follows that the classes in our L-packet I1(y) which contain represen-
tations on a given pure inner form G are constructed from a complete set
of representatives of GT-orbits in the stable class ’fw%w corresponding to
the fiber over [u] of the natural map Irr(C,) — H'(F,G).

6.10. An equivariance property. Let ¢ be a Langlands parameter satisfy-
ing the conditions of section 6.3, with associated w € W,,.

The centralizer C'(w?)) of wv) in W, acts naturally on the parameter space
[X/(1 — w?)]sor of the L-packet I1(p). Moreover, for any A € X, the
group C'(wi) may be identified with the F\-rational points in the Weyl
group W(Ty) of Ty in G. In this picture, the subgroup C(wd), \) stabi-
lizing the class of A in X /(1 — wd)X consists of those elements of W (7))
which can be represented by elements in G*™. These facts are proved in [14,
2.11.2].
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It follows that C'(w) acts on the characters of T} *, so for any h € C(w?)
we can compare the representation (7Y, x) with its “twist” w(Ty, x"). By
the remarks above, these representations will be equivalentif & € C'(wd, ).
Thus we expect a relation between the twisting action of C'(wd) on repre-
sentations and the natural action of C'(wd) on [X /(1 — w) X]ter-

This relation can be expressed as an equivariance property for the pairing
(p, p) — 7(p, p), where ¢ is a Langlands parameter as considered above,
and p € Irr(C,,). Indeed, if we view I, as the Weyl group of the dual torus
T, we have a natural action of C (w?) on the set of Langlands parameters
¢ satisfying conditions of section 6.3. Namely, given h € C(w?), we can
form the twisted parameter ", defined by

" (Frob) = p(Frob),  ¢"(y) =¢(7)", for yeT.

The action of C'(wd)) on T' also preserves C,, = 7%, hence C (w?) acts
on Irr(C,); we denote this action by p — "p = p o h™'. The equivariance
property can then be stated as follows:

Proposition 6.4. Let p be a Langlands parameter satisfying the conditions
of section 6.3, with associated w € W,. Then for p € Irr(C,) and h €
C(wd) we have (", p) = 7(p,"p).

Proof. We are asserting an equality of G-orbits of pairs (u, 7). We calculate
this G-action as follows.

Let n € N be alift of h € C(wd) and let A € X,,. As in equation (35),
we have two expressions for the elements

(45) t,\wﬂ = w,\y,\ﬁ and th,\wﬁ = wh)\yh)\’ﬁ

in W4. Letuy € Z'(F, N) be alift of y,, as in section 6.4. I first claim that
the element n xuy = nuy F(n)~! € N is alift of yp. Since h € C'(wd}) we
have

(46) th,\wﬁ = ht)\’wﬁhil.
The left side of (46) has unique fixed-point z) in A(7"), while the right

side has unique fixed-point h - x), so we have x,) = h - x). Using the first
equation in (45), we get

htaxwdh™" = h-wyyad - b1 = "wy - hya(Ph) - 0.

This must be the corresponding factorization of ¢, w, by equation (46).
Therefore, we have wy,y = "w, and y,\ = hyA(ﬁh_l). Since hyA(ﬁh_l) is
the image of n * uy = nuy F(n)~! in W, the claim is proved. Therefore we
can take uyy := n * uy and define Fy,, := Ad(up,) o F.

Let py € G, be as in section 6.4, so that p;' Fy(py) € N N G,, is a
lift of wy. It is straightforward to check that the element "py,~! - Fj, ("pa)

-1
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is a lift of Mwy = wyy, so we may take pyy = npyn~' € NNG
definition, Tj,» = Ad(ppr)T, so we have Ad(n)T\ = Tha.

Let x = X, € Irr(7T™"). The naturality property (34) implies that y" =
X, By definition, we have
(X")a = (X")eAd(p) ™! = xoAd(npy ") = xoAd(p;an) = (xmr)oAd(n).
We have shown that Ad(n) - (Ty, (x")x) = (Thx, Xny). Putting everything
together, we have

h _ h _ n h
(", p) = [wr, 7(Th, (X")x)] = [n*wn, "7 (T, (X")5)]
= [unx, T(Tha, Xnn)] = 7(@, pra) = W(SD,hP)7

as claimed. U

By

Thx*

(47)

6.11. An example in Fs. Take G of type Es. Up to conjugacy, the Weyl
group W, contains a unique elliptic element w of order three. We consider
L-packets II() where o(Frob) € N(T) is a lift of <. The lattice X is the
FEg-root lattice, on which we normalize the W, -invariant Euclidean metric
(', ) such that (o, «) = 2 for each root a.. It can be shown that the finite
group X /(1—w)X is a four-dimensional vector space over the field of three
elements; we set V,, := X/(1 — w)X. The pairing (z,y) — ((1 — w)z,y)
induces a nondegenerate symplectic form on V,,, which is preserved by the
centralizer C'(w). The resulting map C'(w) — Sp(V,,) is surjective, with
kernel of order three, generated by w. These facts are proved in [34]. It
follows that C'(w) is transitive on non-zero vectors in V.

The class 7(ip, 1) is supported on hyperspecial vertices. By Proposition
6.4, the remaining 80 classes in II(y) all contain representations of G¥
arising from twists of the character x, on a single minisotropic torus in G*
stabilizing a non-hyperspecial vertex z. Since = must have the property that
W, contains elliptic elements ¢ \w of order three, we see that = has type
A2 + EG.

7. TWISTED COXETER ELEMENTS

This section is preparation for studying a canonical example of supercus-
pidal L-packets, where w1 is a 1-Coxeter element (see section 7.1 below for
definitions). We will describe the L-packets, the classes of tori, and corre-
sponding inducing data which arise in this case. As part of this calculation,
we must determine the factorizations

(48) t>\w19 = ZU)\y)\ﬁ

and the vertices x from section 6.4. We will show that the element in (48)
is in fact a y,v-Coxeter element in W,, y»¥, and that this fact determines
Ty
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The passage from a 1-Coxeter element to a y,U-Coxeter element is a
property of Coxeter elements that might be of independent interest; it can
be explained purely in the context of affine Weyl groups, so this chapter is
independent of what has gone before. We begin with some background, fol-
lowing Springer [38], on twisted Coxeter elements. Springer only treats the
case of irreducible root systems, whereas we must allow our root systems
to have finitely many components, which are permuted transitively by the
twisting automorphism. Springer’s proofs can be adapted with only minor
modifications, which we leave to the reader.

7.1. Definition and basic properties of twisted Coxeter elements. Let
W be a finite Weyl group with root system ®, let V' = Hom(Z®, C) be the
complexified reflection representation of I/ and set n = dim V. We view
W as a subgroup of GL(V').

Let o € GL(V') be a linear transformation of finite order which preserves
some base II of ®. Hence o preserves @ itself and normalizes W, so W
acts by conjugation on the coset Wo. The W-orbits in Wo are called o-
conjugacy classes.

Let Iy, ...II,, be the orbits of (o) in II. For each i, choose a; € II;
arbitrarily, and let ; € W denote the corresponding reflection. Let w be the
product of 74, ...,7,, in any order. The element wo € Wo thus obtained
is called a o-Coxeter element. If 0 = 1 we omit the prefix “o—"

It follows from the simple transitivity of W on bases that two o-stable
bases are conjugate by the group W of o-fixed-points in I¥. Using also
[38, 7.5], we see that the W -orbit of wo in W o is independent of the choices
of the base 11, the representatives «;, or their ordering. Hence the o-Coxeter
elements form a single o-conjugacy class in Wo.

This definition of o-Coxeter elements is a bit unsatisfactory, since it de-
pends on a particular base II. One can give a more intrinsic characterization
of o-Coxeter elements, as follows. We first need two definitions. Let

Ve .=V — U ker v

be the complement of the root hyperplanes in V. An element wo € Wo
is regular if wo has an eigenvector in V"8, We call the corresponding
eigenvalue “regular” as well. Next, we say that wo € Wo is elliptic if
Vo =0.

We assume from now on that the group (o) generated by o acts tran-
sitively on the irreducible components @4, ..., P, of &. We have W =
Wy x -+ x Wy, accordingly. Let h, be the maximal order of an eigen-
value of an element of W;o (it is the same for any ¢), and recall that n, is
the number of orbits of (o) in the given o-stable base IT of ®. The basic
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properties of o-Coxeter elements are collected in the following proposition,
whose proof is an easy reduction to the irreducible case treated in [38, chap.
7] and will be omitted here.

Proposition 7.1. Let wo € W be a o-Coxeter element. Then the following
hold.

(1) wo is elliptic and regular, and has order h,,.

(2) wo has a regular eigenvalue of order h,, with multiplicity one.

(3) Each orbit of (wo) in ® has cardinality h,, and |®| = n,h,

(4) There is an ordering ® = ®* L &~ such that each (wo)-orbit in ®
contains exactly one root o € ®* for which woa € ™.

(5) The centralizer of wo in W is cyclic, generated by (wo)®, where s
is the order of 0.

(6) The o-Coxeter elements in W o are precisely those elliptic regular
elements of W o having a regular eigenvalue of order h,,.

The last item is of particular importance, as it allows us to recognize
o-Coxeter elements by intrinsic properties.

7.2. The long root example. Several examples of twisted Coxeter groups
W occur naturally as long root subgroups in larger Weyl groups W. In this
section we show that such twisted Coxeter elements in IV are actually ordi-
nary Coxeter elements in . This hereditary property of Coxeter elements
will also appear in our study of L-packets. One could check this property
case-by-case, but we can give a uniform treatment, illustrating the use of
7.1. (Note, however, that the proof of 7.1 in [38] relies on some checking
of cases.)

Let W be a Weyl group of type B,,, C,, Gs, Fy. The root system & for
W is irreducible, with two root lengths. Let ¢ be the set of long roots in
®. Let II be a base of <I> and write II = II; U 11, where 1I; and II, are the
sets of long and short roots in 11, respectively. Let IV, be the subgroup of
W generated by the reflections from II,, and let TV be the subgroup of TV
generated by the reflections from ®. Then W is normal in W, and the latter
is a semidirect product

(49) W =W x W,

Moreover, the group Wy, being simply-laced, irreducible and without branch
node, is of type A,,, where m = |II;|, see [19, chap. 5]. In this section,
we show that the decomposition (49) also produces natural examples of
o-Coxeter elements.

First, we need another fact about the decomposition in (49). The choice
of II determines a base II of . Namely, if we let d be the positive system
in ® containing IT, then ®* := d N d* isa positive system in @, and II is
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the unique base contained in ®*. If ¢ € W, then o is a product of short
reflections, so c®+ = ®T, hence oIl = II.

Lemma 7.2. If o is a Coxeter element in W, then 11, is a set of representa-
tives for the o-orbits on 11.

Proof. First note that I1; C II. For otherwise, some « € II; could be written
a=) .ca;,witha; €11, all ¢; € Zsg, and ) ¢; > 1. But since II C ot
and II; C II, this means o ¢ 11, a contradiction.

Now let o be a Coxeter element in W, ~ S,,.4. Let 3 € II; be the
unique root not orthogonal to 11, and let o € II; be the unique root not
orthogonal to IT;. The functional (-, 3) is a dominant weight for IT,. Hence
the stabilizer of (3 in W is generated by the reflections from Il \ {a}, so is
isomorphic to S,,,. This subgroup contains no nontrivial power of an m + 1-
cycle, so the stabilizer of 3 in (o) is trivial. Hence the o-orbit of  has
exactly m + 1 elements.

Let IT) = II, \ {#}. We must show that

(50) H=1IU{B3,08,...,0"G}.
The two sets on the right are disjoint, since o fixes each root in IIj. Tt

suffices, then, to show that [IT| = |TT}| + m + 1. But |II| = [TI| = |IT;| +
IIL;| = 1 + |II}| + m. The lemma is proved. O

Let w be the product of the reflections from II;, and let o be the product
of the reflections in II;, both products taken in any order. Then wo is a
Coxeter element of . By Lemma 7.2, wo is also a o0-Coxeter element of
Wao. Since the Coxeter graph of II; is a tree, it follows from equation (50)
that @ is o-irreducible, so the o-Coxeter number h, of Wo is defined, and
in fact h,, is also the Coxeter number of . R

This element wo is a carefully chosen Coxeter element in WW. The next
result shows that this is immaterial.

Lemma 7.3. Let W be any Coxeter element of W. Write & = w'c’ as in
(49), with w' € W and o' € W,. Then o' is a Coxeter element of W, and
w'c’ is a o'-Coxeter element of Wo'.

Proof. There is & € W such that Zwi~! = wo, where wo is the carefully
chosen Coxeter element defined above. Projecting to W, we see that ¢’ is
W-conjugate to o. This implies that ¢’ is a Coxeter element in W, that
® is o’-irreducible, and that the maximal orders of a regular eigenvalue of
Wo and W' are the same. Hence h, = h,- is also the o’-Coxeter number
of Wo'. 3

Being Coxeter in 1V, the element w is elliptic, and is regular with respect
to ®. Hence o is also regular with respect to ®. Since w has a regular
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eigenvalue of order h, = h,, Proposition 7.1 implies that w is a o’-Coxeter
element of Wo'. O

7.3. Affine Weyl groups. In this section we describe another hereditary
property of twisted Coxeter elements, arising from finite reflection sub-
groups of affine Weyl groups.

We now denote the (finite) Weyl group and (spherical) root system con-
sidered in the two previous sections by W, and ¥, respectively. We set
X := Hom(ZVY,,Z), A := Hom(ZV¥,,R), V, :== Hom(ZV¥,, C), and now
write ¥ for the automorphism o € GL(V,) considered above. Here, o is the
zero element of A. Assume that U, is irreducible (not just J-irreducible).
Then X is a lattice in A, and W, and 9 preserve X. The affine Weyl group
is the semi-direct product W := X x W,. and is contained in the larger
group W x (). The latter group acts on .4 by affine transformations: an
element A € X acts via the translation ¢y : x — A + z on A.

Let W be the set of affine functions a — m, for &« € ¥, and m € Z. Let
H, ,,, be the hyperplane in .4 defined by the vanishing of & — m. These hy-
perplanes partition .4 into a disjoint union of facets (see [5, V.1]). A vertex
is a facet consisting of a single point. An alcove is a facet which is open in
A. The alcoves are also the connected components of the complement in .A
of all affine root hyperplanes H,, ,,,. The orthogonal reflection about H, ,, is
the element s, ,, = t;,a50 € W, where & € X is the co-root corresponding
to a.. These reflections generate a subgroup W° C W which acts simply
transitively on the set of alcoves.

For each xz € A, let ¥, be the set of affine roots in ¥ which vanish at z,
and let m, be the ideal of polynomial functions on V' which vanish at x. We
identify W, with its image in the cotangent space m,/m?2. Thus, the affine
roots W, are linear functionals on the tangent space V,, := (m,/m?2).

For f € m,, v € V, and t a variable, let (v, d,(f)) denote the coefficient
of t in f(x + tv). Then d, induces the local differential mapping d, :
m,/m2 — V, on the dual spaces. If « — m € ¥, then d,(a — m) = a.

Let W be the stabilizer of x in the group W (?J), and let W, be the
subgroup of W generated by the reflections s, ,, for « — m € W,. Then
W acts on V,, and the normal subgroup W, of W is a reflection group on
V. with root system ¥, C V..

Let V& denote the set of vectors in V,, on which no root in ¥, vanishes.
Since d,(V,) C V,, it follows that the adjoint §,. : V,, — V. of d,, satisfies

(51) 5,(V%€) C Ve,

The set of connected components of V*8 is in bijection with the set of
alcoves in A having x in their closure (each of the former contains a unique
one of the latter). Hence W, acts simply transitively on this set of alcoves.
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It follows that if we fix an alcove C, with z € C,, then we can express W
as a semidirect product

(52) Wr =W, x %,

where ¥, := {oc € W} : o-C, = C.}. Theset U} .= {aa—m € ¥, :
a(y) > m forall y € C,} is a positive system of W, containing a unique
base II,. Both ¥, and II, are preserved by >.,.

Now suppose we have A € X and w € W, such that ¢,w? fixes a point
x) € A. It is easy to check that

(53) thwd o 0, = 65, o w.

Choose an alcove C,, C A containing x) in its closure. According to (52),
we have a unique factorization

(54) t,\wﬁ = W)\O ),

with wy € W,,, and oy € X, . Note that both wy and o) fix z). In
particular, o acts on W, as well as on the tangent space V,, .

From property (51) and equation (53) it follows that if w) is regular on
V, then wy o) is regular on V.. Moreover, the eigenvalues of wv on V, are
the same as the eigenvalues of wyo ) on V,.. Using part 6 of Proposition 7.1,
this proves:

Proposition 7.4. Let wi be a J-Coxeter element in W, 0. For A € X, write
tawd = wyoy as in (54), and let x € A be the unique fixed-point of t\w?.
Assume that V,, is ox-irreducible. Then wyoy is a ox-Coxeter element in
I/Vm\ 0.

We will see in the next section that the irreducibility assumption in 7.4
always holds, although I do not have a uniform argument for this.

7.4. Coxeter facets. In this section we determine the points =, € A arising
as the fixed-points of lifted ¥-Coxeter elements, as in Proposition 7.4.

Let C be a fixed ¥J-stable alcove containing o in its closure C, and let
Q={yeW: y-C=C},sothat W =W° x Q.

Let 0 € (2. The fixed-point set .A” inherits a simplicial structure from
A, whose facets are of the form J¢, where J is a o-stable facet in .A. The
alcove C'is o-stable and C is an alcove in A?. A point z € A7 is vertex
exactly when {x} = J7, for some o-stable facet .J in A.

A o-Coxeter facet is a o-stable facet J C C for which there exists a o-
Coxeter element of W ;o projecting to a ¥-Coxeter element in W), under
the natural projection W — W,). From [14, 4.4.1] it follows that if .J is a
o-Coxeter facet then J7 is a vertex in .4°.

For x € A, the objects W,, ¥, II, depend only on the facet J in A
containing z. We now write W;, W; II;, respectively, where 11; is the
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base of U ; determined by C. We also say that a o-stable facet J C C is
o-irreducible if o - J = J and the root system V¥ ; is o-irreducible.

If J C C is a o-irreducible facet, the o-Coxeter number h,(.J) is defined
for WW;o. Recall that hy is the ¢-Coxeter number for W, ¢.

Proposition 7.5. Let o € Q). Then the following hold.

(1) o-Coxeter facets J C C' exist, and form a single orbit under Q°-
conjugacy.

(2) Each o-Coxeter facet J is o-irreducible.

(3) The vertex x = J° is special in A? ([5, V.3.10]).

4) If o = 9, then J is a hyperspecial vertex in A.

Proof. First, note that QY = Q7, since (2 is abelian, so the uniqueness as-
sertion in item 1 makes sense.

Since ker[W — W,] = X is torsion free, an element of W of finite
order projects to an element of the same order in W,?). By Proposition 7.4,
the proofs of item 2 and the existence part of item 1 amount to finding a
minimal o-stable, o-irreducible facet .J for which h,(J) = h,. We have
L I 7]

Ne(J) Ny
where n, (/) is the number of o-orbits on I1.

First suppose that 0 = ¢ (the “quasi-split” case). Then we may take J
to be a vJ-stable hyperspecial vertex in 4. Let us prove uniqueness in this
case. Let J be any ¥-irreducible facet in C' such that J? is a vertex in A”.
Then ny(J) = ny and |¥,;| < |V,|. Hence hy(J) = hy if and only if
|W;| = |¥,|. The latter condition implies that J? is special. If ¥ = 1,
then ) is transitive on special vertices, proving uniqueness. There are four
cases where ¥ # 1, namely where (W, ) has type 2A,,, D, 3Dy, *E.
One checks in each case that if J? is special and |¥ ;| = |¥,|, then J is a
1J-stable hyperspecial vertex in A. These vertices are permuted transitively
by €Y, completing the uniqueness proof for o = 1.

For o # ), we argue case-by-case, as follows. It is easy to see that if
J is a o-Coxeter facet, then there is I C .J such that U; is a o-irreducible
factor of W; and h;(0) = hy. We compute hy, and h,(I) for each o-
irreducible facet I C C. We find in each case a unique such facet .J, up
to 2V conjugacy, such that h,(.J) = hy. Moreover, this .J is in each case a
minimal o-stable facet, as claimed.

The results are given in the table below. In the first column, we indicate
the type of W and o using the “name” of [40]. Since o # 9, we list only
those names which are those of non-quasisplit groups. The second column
shows a subdiagram of the affine Dynkin diagram, namely the one whose
vertices are the simple affine roots vanishing on ./, and for which h,(J) =

he(J)
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hy. If J is the product of k£ copies of an irreducible type .J;, permuted
transitively by o, we write Jl(k).

| Name | J  [h,(J) =hy]

Agm_y | AT dm
2A/21m—1 2A2m—2 4dm — 2
’B, | 2D, on
2, | O Am

2Coma1 | 2Aom, dm + 2
D! 2Dn_1 2n — 2
2A2m71 dm — 2

2m
Dy, | 2D 4m
‘D 2m+1 2D7(73) 4m
3Eg 5D, 12
’F; 2Fs 18
This completes the proof of Proposition 7.5. U

8. COXETER TORI

We return now to p-adic groups, and consider first the stable class of tori
(see section 6.9) corresponding to a ¥-Coxeter element in W,). We now
assume that G is simple, of adjoint type. The latter condition means that
X = X,.(T) = Hom(Z®, Z).

Let u € Z'(F,G) be a cocycle, giving the twisted Frobenius F, =
Ad(u) o F. We define an F,-Coxeter torus in GG to be a torus in ¥(G, F,)
whose (G, F, )-stable class corresponds, via the map ¥, in (42), to the class
of 1¥-Coxeter elements in W,1J. Since 9-Coxeter elements are elliptic, such
tori exist by Lemma 6.3. Let 7, C T(G, F,) be the (G, F,)-stable class of
F,,-Coxeter tori in G.

Proposition 8.1. For u € Z'(F, N), the following hold.

(1) The F,-Coxeter tori in G form a single conjugacy class under G
(2) If S is an F,-Coxeter torus in G, then the natural map

HY(F,,S) — H'(F,,G)

is a bijection; both groups are isomorphic to /(1 — ).
(3) If S is an F,-Coxeter torus in G, with normalizer N¢(S), then the
natural map

Ne(8)™ /S — (Na(S)/89)™
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is a bijection; both groups are cyclic of order hy/t, where t is the
order of V).

Proof. Part 3 follows from [14, 10.2] and part 5 of 7.1.
Let w € /(1 — 9)2 correspond to the class of u under Kottwitz’ iso-
morphism

(55) Q/(1 -9~ H'F,G);

see [28] and [14, chap.2]. Let C'(wd) denote the centralizer of wd in W,,.
From (44), the G*-orbits in 7¢,, are in bijection with the C(w)-orbits in
the fiber 7' (w) of the map X /(1 — w) X % Q/(1 —9)Q in (43). Under
Kottwitz’ isomorphism (55), the map r,, may be identified with the map in
part 2; see [14, 2.6.1]. Thus, parts 1 and 2 of Proposition 8.1 both amount
to the claim that r,, is bijective.

It is clear that r,, is surjective. If ¥ = 1, injectivity is equivalent to the
fact, due to Steinberg (see exercise 22 in [5, chap. 6]), that (1 — w)X is the
co-root lattice of T in G.

For ¥ # 1 we compute | det(1 — w})|, in the following table. In the top
row, the upper-left superscript is the order of ¥.

(Wo,ﬁ) : 2A2m 2A2m—1 2DQm 2D2m+1 3D4 2E6
Q: Hoam+1 Ham M2 X g oy Mo X [ | U3
|det(1 — w19)| : 1 2 2 2 1 1

In this table, when € is cyclic, the action of ¥ is inversion. For 2D,,, the
action of ¥ switches the factors in €2, and for 3D, the action of 1 cyclically
permutes the nontrivial elements of €. It follows that in each case, we have
| det(1 —wd)| = |2/(1 —9)Q. O

8.1. Remarks on H'(F,G). We have seen that if wd is a J-Coxeter ele-
ment in W,4, then

HY(F,G) ~ Q/(1 - 0)Q ~ X/(1 — wd)X.

Let us take a closer look at the group £2/(1 — ¥){2.

The map w +— w - o is a bijection from ) to the set of hyperspecial
vertices in the closure of C. This bijection is given explicitly as follows.
Let po, ..., 1y € X be the minuscule co-weights [5, p.240], and let WW; be
the stabilizer of p; in W,. The points

0, x; =ty -0, 2<i<f

are the hyperspecial vertices in C. Set w; = 1, wow;, where w, and w; are
the longest elements (with respect to 1I) of W, and W, respectively. Then
[5, p. 189] we have © = {1,ws,...,ws}, and it is clear that w; - 0 = z;. It
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follows that ¥ acts on €2 according to the way v/ permutes the minuscule co-
weights. The latter is easily determined from the action of ¥/ on the Dynkin
diagram of G.

For ¢ # 1 one can choose representatives for {2/(1 — )2 as follows.
Note that /(1 — ) is nontrivial only in types ?As,,_; and 2D,,, where
the dual group of G is SLs,,(C) and Spin,, (C), respectively. The non-
trivial element of /(1 — )< is represented by the highest weight u of
the standard representation of SLs,,(C) and either spin representation of
Spin,,, (C), respectively.

9. COXETER L-PACKETS

We continue to assume, as in the previous section, that G is simple, of
adjoint type. As above, let F be the Frobenius endomorphism of G = G(K)
arising from a quasi-split k-structure on G, fixing the hyperspecial vertex
o € A(T), and let ¥ be the automorphism of X induced by F. Recall the
construction of L-packets from section 6: Given a Langlands parameter ¢ :
W — L@ satisfying the conditions in section 6.3, the image of Frobenius
¢(Frob) determines an elliptic element wy € W,1). For each A € X we
have a twisted Frobenius endomorphism F = Ad(u,)oF and an irreducible
supercuspidal representation ) = (T, xa) € [rr(G™). The pair (uy, 7))
determines a G-equivalence class 7(y, p) = [ux, 7] which depends only
on the image p of A in X/(1 — wv)X. These classes form the L-packet

(p) = {[ur,m] : A€ X/(1 —wd)X}.

In this chapter we explicate these L-packets when wv is a ¥-Coxeter el-
ement in W,9. Since G is adjoint, the classes in H'(F,G) parametrize
the inner forms of G. Using Proposition 8.1, it follows that |TI(p)| =
|H'(F, G)|, and for each class w € H'(F,G), there is exactly one class
[uy, ] in TI(p) with uy € w.

From section 8.1 we see that if G is split (J = 1), then

H(SO) = {[1’ 71—0]? [UQ’ 7r,u2]v SO [uf’ WHf]}?

where u; = u,,, and the y; are the minuscule weights as in Section 8.1. If
G is not split then I1(y) = {[1, 7o} is a singleton, except when G has type
2 Agm—1 o1 2D, in which case II(¢) = {[1, mo), [y, 7] }-

The inducing data for the representations ) is given as follows. By
Lemma 6.2 we may choose our ¥-Coxeter element wvt € W, and A € X
that z) € C.

Proposition 9.1. With the set-up as just described, the following hold.

(1) The element t\wv = wyoy is a o-Coxeter element in Wyo.
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(2) The facet Jy containing ) is a or-Coxeter facet in A, and x\ =
ag
J)\)\.
(3) The torus Ty, is an Fy-Coxeter torus in G.

Proof. Ttem 1 is immediate from Proposition 7.4. Item 2, along with the
classification of the various facets Jy, follows from section 7.4. The con-
struction of T shows that the (G, F))-stable class of T corresponds, under
the map V,,, of Section 8, to the W,-orbit of w1 in W,9. This proves item
3. O

9.1. Anexamplein Fg. To illustrate, we consider the split adjoint group G
of type Fg. Then G = G is the simply-connected form of E4(C). Suppose
w € W, = W(Es) is a Coxeter element. Then C, = Z(G) ~ Z/37 and
the two nontrivial characters of C, are the restrictions of the two minuscule
weights u, /' € X of T. The groups G'+ and G% are isomorphic, of type
3E6.

Fix an alcove C' C A(T') and number the simple roots II corresponding

to C' as follows.
1 2 3 4 5

6

Let r; be the corresponding simple reflections, and let 7y be the reflection
about the highest root. Then y, p’ are the fundamental weights correspond-
ing to oy, «j respectively. As Coxeter element for which z,, z,, € C
(see Lemma 6.2), we take w = (rorgrars)(rirsrsrarare)(rarsrery). Here
we have written w in non-reduced form to show that it is indeed a Coxeter
element in Fg. One checks that wy = —p + p/,  wp’ = —p. It follows
that x, = z,, = %(0 + u + /). This point is the barycenter of the trian-
gle J C C whose vertices are the three hyperspecial vertices o, ui, it/ € C.
Hence W,, = W%' = W; is the pointwise stablizer of J in W, and has
type Dy.

The L-packet I1(p) has the form II(¢) = {my, m,, 7}, (suppressing
the cocycles) where 7 is induced from the hyperspecial parahoric G in
the split form of G and 7, is induced from the special parahoric Gg‘; in
the non-split inner form of G, and 7, is the “same” representation on the
isomorphic group G .

The decomposition ¢, w = w,y, of (35) is obtained as follows. The ele-
ment y,, must be a nontrivial rotation of C'. Since w,, fixes J pointwise, it
follows that y,, is the rotation of J sending o — p, and y,, is the opposite
rotation. This means y,, and y,, act on W; = W (D) by triality automor-
phisms, so the reductive quotient of G'; has rational type D, over f. From
Proposition 9.1 it follows that w,, is a twisted Coxeter element in W;y,,
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and likewise for w,,. One can also show this directly, but the computation
is tedious.
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