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1. INTRODUCTION

The local Langlands correspondence is a conjectural connection between
representations of groups G(k) for connected reductive groups G over a p-
adic field k and certain homomorphisms (Langlands parameters) from the
Galois (or Weil-Deligne group) of k into a complex Lie group LG which is
dual, in a certain sense, to G and which encodes the splitting structure of G
over k. More introductory remarks on the local Langlands correspondence
can be found in [21].

When G = GL1 this correspondence should reduce to local abelian class
field theory. For G = GLn, the Langlands correspondence is uniquely
determined by local factors [24] and was shown to exist in [23] and [25].
So far this correspondence is not completely explicit, but much progress has
been made in this direction; see [9], [10], for example.

For groups other than GLn or PGLn, the theory is much less advanced;
new phenomena appear, arising on the arithmetic side from the difference
between conjugacy and stable conjugacy and on the dual side from nontriv-
ial monodromy of Langlands parameters. This means that a single Lang-
lands parameter ϕ should determine not just one, but a finite set of repre-
sentations Π(ϕ); these are the “L-packets” of the title.

However, since local factors have not been defined in general, there is
no precise characterization of an L-packet for general groups. One can, at
present, only hope to define finite sets of representations Π(ϕ) attached to
Langlands parameters ϕ, and show that they have properties expected (or
perhaps unexpected) of L-packets. (See [14, chap. 3] for some of these
properties.) One is thereby proposing a definition of local factors for the
representations in the sets Π(ϕ) (cf. [4, chap.3]).

This paper is a sequel to [14]. The aim of both papers is to verify, in
an explicit and natural way, the local Langlands correspondence for the
simplest kinds of non-abelian extensions of k, and the simplest kinds of
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supercuspidal representations ofG(k), whereG is a fairly general reductive
group.

In [14], we gave a construction of L-packets of supercuspidal represen-
tations of unramified p-adic groups and their pure inner forms, for certain
tamely ramified Langlands parameters. (See also [27].) The present pa-
per has two parts: The first part extends the construction of [14] to cer-
tain wildly ramified Langlands parameters and positive-depth supercuspidal
representations. As in [14], the formal degrees (with respect to canonical
Haar measures) are constant on these L-packets. There is also a new ob-
servation here: the internal parametrization of our packets (including those
of [14]) has an equivariance property with respect to a natural Weyl group
action which has not been considered previously. The second part of this
paper investigates the canonical example of L-packets (including those of
[14]) associated to twisted Coxeter elements, building on work of Springer
[38].

One expected property of L-packets is stability. The L-packets of [14]
have this property (assuming some restrictions on k). The positive-depth
L-packets in this paper are constructed in an analogous way, from stable
classes of data, but it does not yet seem possible to prove stability of the
sum of characters in these L-packets.

Another expected property is a precise description of the generic rep-
resentations in a tempered L-packet. The generic representations in our
positive-depth packets are parameterized in the same way as those in [14].
DeBacker and I prove this in [15].

The construction of L-packets in this paper can be outlined as follows.
We start with extensions of k which are abelian over their maximal unram-
ified subextension. Thus, the number-theoretic side of this paper pertains
to the Galois group of Kab/k, where K is a maximal unramified exten-
sion of k and Kab is the maximal abelian extension of K. The extension
Kab/k was described concretely by Lubin and Tate in [30], in a manner
analogous to the Kronecker-Weber construction of abelian extensions of Q.
The Langlands correspondence for unramified tori is then reproved using
the Lubin-Tate theory, because this route seems to me more explicit than
the original proof in [29] and because it is an efficient way to ensure that
the correspondence is natural and preserves depth.

Via the Langlands correspondence for tori, these Lubin-Tate extensions
determine pairs (T, χ) where T is an elliptic unramified torus over k and
χ is a character of T (k). If we have a k-embedding of T into an inner
form of G, under which χ is sufficiently regular, then a construction of
Adler [1], building on earlier work of Howe [26], Carayol [11], Gerardin
[18] and others, produces a “very cuspidal” representation π(T, χ) of G(k).
(Adler’s construction was later generalized by Yu [42]. We hope that the
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methods in this paper will eventually extend to construct L-packets from
Yu’s representations.)

In brief, our L-packets consist of all possible very cuspidal representa-
tions one can make from a fixed character χ by varying the embedding of
T into all pure inner forms of G. These embeddings are controlled by the
monodromy group Cϕ of the corresponding Langlands parameter ϕ. Thus,
we get L-packets parameterized in the expected way.

The image of Frobenius under a Langlands parameter of the above type
determines an elliptic element w in the Weyl group of the (possibly discon-
nected) L-group LG. Various classes of Weyl group elements arise from
supercuspidal L-packets, depending on G, but one case is common to all
groups, namely when w is a (possibly twisted) Coxeter element. In the sec-
ond part of this paper we describe these Coxeter L-packets in more detail.
The results are cleanest if we assume G is adjoint and absolutely simple.

For G = PGLn all of our L-packets are of Coxeter type. Here Cϕ '
Z/nZ is the center of LG = SLn(C). If ρ is a character of Cϕ of order
d, where n = dm, then π(ϕ, ρ) is a representation of PGLm(D), where
D is a division algebra of degree d over k. The representation π(ϕ, ρ) is
presumably the one associated to π(ϕ, 1) in [3], but I have not checked this.

For a general unramified adjoint group G, the monodromy Cϕ for a Cox-
eter L-packet Π(ϕ) is always the center of LG. This means that Coxeter
L-packets are as small as possible: just as for PGLn there is exactly one
representation in the L-packet for each inner form of G. Each represen-
tation is induced from a parahoric subgroup, so our Langlands correspon-
dence picks out a canonical parahoric subgroup of each inner form of G. In
the last three sections we determine these parahoric subgroups, along with
the inducing data for each representation in a Coxeter L- packet Π(ϕ). We
also use the Coxeter case to illustrate other aspects of L-packets, such as
stable classes of tori and their characters.

Clearly this paper owes much to my previous collaboration with Stephen
DeBacker. The idea of extending [14] to the positive-depth case arose in
conversations with Benedict Gross, in the course of our work on [21]. I am
grateful to have worked with both of these mathematicians.

2. BASIC NOTATION AND STRUCTURE

2.1. Fields and groups. Let p be an odd rational prime, let k be a finite
extension of Qp, and let o, p, f = o/p denote the ring of integers, prime
ideal, and residue field of k, respectively. Fix an algebraic closure k̄ of k,
and let K be the maximal unramified extension of k in k̄. Let O,P,F =
O/P denote the ring of integers, prime ideal, and residue field of K. We
fix $ ∈ p such that p = $o. Then P = $O. Set q = |f|. Then f ' Fq and
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F ' F̄q is an algebraic closure of Fq. Let val : K× → Z be the valuation
on K, normalized so that val($) = 1. Then val restricts to the valuation of
k. Let Frob ∈ Gal(k̄/k) be a geometric Frobenius element; for all x ∈ O,
we have Frob(x)q ≡ x mod P.

We use the following notational conventions for algebraic groups and
their rational points. For any algebraic k̄-group H which is defined over
k, we let H = H(K). The action of Frob on H , arising from the given k-
structure on H, is given by an endomorphism F ofH such that H(k) = HF .
If T is an algebraic torus, then X∗(T) = Hom(T,GL1) and X∗(T) =
Hom(GL1,T) denote the algebraic character and co-character groups of
T, respectively.

Throughout this paper, G is a connected reductive k̄-group which is de-
fined over k and split over K. Let Z denote the identity component of the
center of G, and let Gad denote the adjoint group of G. If T is a torus in
G, then Tad is the image of T in Gad.

The Bruhat-Tits building of Gad = Gad(K) is the “reduced” building of
G; we denote it by B(G). The Frobenius endomorphism F of G induces an
F -action on B(G) and B(GF ) = B(G)F is the Bruhat-Tits building of GF

ad.
To any maximal torus T ⊂ G such that T is defined over k and K-split,
there corresponds an F -stable apartment A(T ) ⊂ B(G), which is an affine
space under a transitive action of the vector group X∗(T)⊗ R. This action
factors through X∗(Tad)⊗R, which now acts simply-transitively on A(T ).

We denote by Gx the parahoric subgroup of G at a point x ∈ B(G). If x
is F -stable, then GF

x is the parahoric subgroup of GF at x.
The set of equivalence classes of irreducible admissible representations

of GF is denoted by Irr(GF ). If Γ is a finite or compact group then Irr(Γ)
is the set of equivalence classes of irreducible representations of Γ.

2.2. Affine root groups. For more details in this section see [40]. Fix a
K-split maximal k-torus T in G, and let Φ and Ψ denote the roots and
affine roots, respectively, of G with respect to T. The elements of Ψ are
affine functions on A(T ). For later calculations of formal degrees, it is
convenient to index the affine roots as follows. Choosing a hyperspecial
point o ∈ A(T ) allows us to identify A(T ) = X∗(Tad) ⊗ R, so that roots
α ∈ Φ become affine functions onA(T ) vanishing at o and we can uniquely
write each ψ ∈ Ψ as ψ = α+ n, where α ∈ Φ and n = ψ(o). For each root
α ∈ Φ we fix a root group uα : K+ → G such that uα(O) = uα(K) ∩Go.

Then for each affine root ψ = α + n, we have a bounded subgroup
Uψ = Uα+n := uα(P

n) of the root group uα(K). The group Uψ can also
be defined as the subgroup of uα(K) fixing a point in the hyperplane {x ∈
A(T ) : ψ(x) = 0}. In particular, Uψ is independent of the choice of
hyperspecial point o.
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The action of the Frobenius F on B(G) preservesA(T ) and acts onA(T )
via an affine transformation. This induces an action of F on the set of
affine functions on A(T ), which preserves the set Ψ of affine roots, and
correspondingly permutes the groups Uψ, ψ ∈ Ψ.

The hyperspecial point o is not necessarily fixed by F . However, if G is
k-quasisplit and T is contained in a Borel subgroup of G defined over k,
then we can choose the hyperspecial point o ∈ A(T ) so that F · o = o.

2.3. Filtration subgroups. The parahoric subgroups in G have various fil-
trations. These were defined in [6] and [33] and applied to representation
theory in [32]. See also [2].

Recall that we have fixed a K-split maximal k-torus T in G. For s ≥ 0,
define filtration subgroups of T by

Ts := {t ∈ T : val(χ(t)− 1) ≥ s for all χ ∈ X∗(T)}
Ts+ := {t ∈ T : val(χ(t)− 1) > s for all χ ∈ X∗(T)}.

(1)

Since val(K) = Z, we have Ts+ = Ts+1 if s ∈ Z and Ts+ = Ts otherwise.
The subgroup T0 is the maximal bounded subgroup of T .

For each point x ∈ A(T ) and real number s ≥ 0, we define the subgroup

(2) Gx,s := 〈Ts, Uψ : ψ(x) ≥ s〉
We have Gx,0 = Gx, and Gx,r ⊆ Gx,s if r > s. We also define Gx,s+ :=⋃
r>sGx,r. The groups Gx,s, Gx,s+ are bounded open subgroups of G. The

commutator relation [Gx,r, Gx,s] ⊆ Gx,r+s [1, 1.4.2] implies that Gx,r is
normal in Gx,s for r > s. Finally, it is shown in [42, chap. 1] that the
groups Gx,s and Gx,s+ are independent of the choice of K-split maximal
k-torus T, subject to the condition x ∈ A(T ).

Note that the presentations of Gx,s and Gx,s+ above involve infinitely
many groups Uψ, almost all of which are redundant. For later computations,
it will be helpful to replace these with finite presentations, using our choice
of hyperspecial point o, as follows.

We fix a point x ∈ A(T ). For each (linear) root α ∈ Φ, let n(α, s) be the
largest integer such that n(α, s) ≤ α(x)− s and let n(α, s+) be the largest
integer such that n(α, s+) < α(x)− s. We have n(α, s+) = n(α, s)− 1 if
α(x)− s ∈ Z and n(α, s+) = n(α, s) otherwise. These integers depend on
x, which is fixed and suppressed in the notation.

For ψ = α− n ∈ Ψ, with α ∈ Φ and n ∈ Z, we have

ψ(x) ≥ s ⇔ n ≤ n(α, s) ⇔ Uψ ⊆ Uα−n(α,s).

Likewise, ψ(x) > s ⇔ Uψ ⊆ Uα−n(α,s+). Hence we have finite presenta-
tions Gx,s = 〈Ts, Uψ : ψ ∈ Ψs〉 and Gx,s+ = 〈Ts, Uψ : ψ ∈ Ψs+〉, where
Ψs = {α− n(α, s) : α ∈ Φ} and Ψs+ = {α− n(α, s+) : α ∈ Φ}.
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2.4. Filtrations on Lie algebras. Let g and t be the Lie algebras of G and
T, respectively, and let g = g(K), t = t(K). Since T splits over K, we
have g = t +

∑
α∈Φ gα, where gα is the α-eigenspace for T in g.

The Lie algebras g and t have analogous filtrations, namely

ts := {H ∈ t : val(dχ(H)) ≥ s for all χ ∈ X∗(T)},
ts+ := {H ∈ t : val(dχ(H)) > s for all χ ∈ X∗(T)},

(3)

and for x ∈ A(T ), we have O-lattices

gx,s := ts +
∑
ψ∈Ψ
ψ(x)≥s

uψ = ts ⊕
⊕
ψ∈Ψs

uψ,

gx,s+ := ts+ +
∑
ψ∈Ψ
ψ(x)>s

uψ = ts+ ⊕
⊕
ψ∈Ψs+

uψ.
(4)

Here Ψs and Ψ+
s are as in 2.3, and uψ = duα(P

n), where ψ = α+ n ∈ Ψ.
If 2s ≥ r ≥ s > 0, we have canonical group isomorphisms

(5) Gx,s/Gx,r ' gx,s/gx,r, Ts/Tr ' ts/tr,

along with similar isomorphisms where r is replaced by s+. Note that

(6) gx,s/gx,s+ = ts/ts+ ⊕
⊕
ψ∈Ψs

ψ(x)=s

uψ/uψ+1,

and dimF (uψ/uψ+1) = 1 for each summand on the right side of (6).

3. VERY CUSPIDAL REPRESENTATIONS

In this section we recall Adler’s construction of supercuspidal represen-
tations [1], along with some refinements by Yu [42].

3.1. Minisotropic tori. Let T be a maximal torus in G such that T is
defined over k and K-split. Such a torus T is called F -minisotropic if any
of the following equivalent conditions holds:

(1) X∗(T)F = X∗(Z)F ;
(2) T F/ZF is compact;
(3) The group T F has a unique fixed-point x ∈ B(G)F .

If these hold, then T F ⊂ ZFGF
x .
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3.2. The inducing subgroups. We will apply the filtrations of section 2 to
a point x ∈ A(T )F , where T is an F -minisotropic maximal torus in G.

Since x is fixed from now on, we suppress it from the notation, and write

Gs := Gx,s, Gs+ := Gx,s+, (s ≥ 0)

gs := gx,s, gs+ := gx,s+, (s ∈ R).

In particular, we now write G0 := Gx,0. We also set

(7) ms :=
⊕
ψ∈Ψs

uψ, ms+ :=
⊕
ψ∈Ψs+

uψ.

so that gs/gs+ = ts/ts+ ⊕ ms/ms+. Since F · x = x, the sets Ψs and Ψ+
s

are preserved by F , so all the groups and vector spaces above are F -stable.
We set

Vs := mF
s /m

F
s+.

Since T F ⊂ ZFGF
0 , and the latter normalizesGF

s , it follows that we have
an open subgroupKs := T FGF

s ofGF , andKs is compact modulo ZF . Our
eventual supercuspidal representations of GF will be compactly induced
from Ks. We have a chain of normal subgroups of Ks: Js+ E Js E Ks,
where Js := 〈T2s, Uψ : ψ ∈ Ψs〉F , and Js+ := 〈T2s, Uψ : ψ ∈ Ψs+〉F .
From (7) we have Js/Js+ ' Vs. Since Ks = T FJs, the multiplication map
gives an exact sequence

(8) 1 −→ ∆(T F2s) −→ T F n Js −→ Ks = T FJs −→ 1,

where ∆(T F2s) = {tn t−1 ∈ T F2s n Js : t ∈ T F2s}. The inducing representa-
tions of Ks will come from representations of T F2s n Js which are trivial on
∆(T F2s).

Let χ : T F → C× be a character of T F which is nontrivial on T Fr and
trivial on T Fr+1, for some integer r > 0. In the previous constructions, we
take s = 1

2
r ∈ 1

2
Z>0. As in [1], χ gives rise to a nontrivial homomorphism

(9) χ̂ : Js+ −→ Fp
which agrees with χ on T Fr and is trivial on 〈Uψ : ψ ∈ Ψs+〉F .

The commutator [Js, Js+] is contained in ker χ̂ [42, 4.2] and we have a
nondegenerate symplectic pairing

Vs × Vs −→ Fp, 〈u, v〉 := χ̂([ũ, ṽ]),

where ũ, ṽ are lifts of u, v in Js.
Let V ]

s = V × Fp, with multiplication

(v, a) · (u, b) = (v + u, a+ b+ 1
2
〈v, u〉).

(Recall that p > 2.) As in [42, chap. 10] we can extend χ̂ to an isomorphism

(10) χ̃ : Js/ ker χ̂
∼−→ V ]

s .
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The adjoint action of T F gives a homomorphism f : T F → Sp(V ) which
is trivial on T F0+, and χ̃ is T F -equivariant, so we have a homomorphism

(11) f n χ̃ : T F n Js −→ Sp(V ) n V ].

Let φχ be the representation of T F n Js obtained as the pullback, via (11),
of the Weil representation of Sp(V ) n V ] with central character χ̂. Since
(11) maps Js surjectively onto V ], the representation φχ is irreducible on
Js, hence is irreducible on T F n Js.

Inflate the original character χ ∈ Irr(T F ) to a character of T FnJs via the
natural quotient T F n Js → T F . The tensor product κχ := χ⊗ φχ is trivial
on ∆(T Fr ), hence gives an irreducible representation of Ks, of dimension

(12) dim(κχ) = dim(φχ) = |Vs|1/2 = qm/2,

where m = |{α ∈ Φ : α(x) ∈ s+ Z}|.
The compactly-induced representation

(13) π(T, χ) := indG
F

Ks
κχ

will be irreducible (hence supercuspidal) when χ satisfies a certain regu-
larity condition. To state this condition, we must interpret characters as
functionals on lattices. Fix henceforth an additive character Λ : k+ → C×,
whose kernel is o.

Suppose V is a K-vector space, defined over k, with Frobenius F . Then
F acts naturally on the dual space V̌ = HomK(V,K), and we identify
V̌ F = Homk(V

F , k), via restriction. For any integer n, define

ťn := {λ ∈ HomK(t, K) : 〈λ, tn〉 ⊆ O}.

Then we have a bijection

(14) ťFr+1/̌t
F
r
∼−→ Irr(tFr /t

F
r+1), λ 7→ χλ,

where χλ(X + ťFr ) = Λ(〈λ,X〉). Under the isomorphism T Fr /T
F
r+1 '

tFr /t
F
r+1, we have χ = χλ, for some λ ∈ ťFr+1.

Let N(T ) be the normalizer of T in G, and let W (T ) = N(T )/T be the
absolute Weyl group. Then W (T ) acts on on ťr+1/̌tr. We say that χ = χλ
is regular if the stabilizer of λ+ ťr in W (T ) is trivial. In [1], Adler proved
the following

Theorem 3.1. If χ is regular, then π(T, χ) is an irreducible supercuspidal
representation of GF .
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4. FORMAL DEGREES

In this chapter we compute the formal degree of π(T, χ). With appro-
priate normalizations of Haar measures, we will see that this formal degree
depends only on the k-torus T and the depth of χ ∈ Irr(T F ). In particular,
we will see that the normalized formal degree is independent of the embed-
ding of T in G, as well as the fixed-point x of T F in B(G)F . To make this
clear, we restore x to the notation.

For any connected reductive k-group H, there exists a unique Haar mea-
sure dh on HF such that for any x ∈ B(H)F we have

(15) vol(HF
x , dh) = |H̄F

x | · |h̄Fx |−1/2,

where H̄x = Hx/Hx,+, h̄x = hx/hx,+. We call dh the canonical Haar
measure on HF .

We choose the canonical Haar measures dg on GF , dt on T F and dz
on ZF . Let Deg(·) denote the formal degree with respect to the quotient
measure dg/dz. Then the formal degree Deg(StG,F ) of the Steinberg rep-
resentation of GF is the same for all inner twistings of G (see [14, 5.2]).

Now let χ be a regular character of T F which is nontrivial on T Fr and
trivial on T Fr+1 for some integer r > 0, and set s = r/2.

Proposition 4.1. With respect to canonical Haar measures, we have

Deg (π(T, χ)) =
qs|Φ|

vol(T F/ZF , dt/dz)
.

Proof. We start with the basic formula (see [8, A.14], for example)

Deg (π(T, χ)) =
dim(κχ)

vol(Ks/ZF , dg/dz)
.

From (12) we have dim(κχ) = |mF
x,s/m

F
x,s+|1/2 and from Ks = T FGF

x,s we
have Ks/Z

FGF
x,s = T F/(T F ∩ ZFGF

x,s) = T F/ZFT Fs . Using the normal-
ization (15), it is straightforward to check that

(16) vol(GF
x,s, dg) =

|ḡFx |1/2

[gFx : gFx,s]
=

|ḡFx |1/2

[tF : tFs ] · [mF
x : mF

x,s]
.

It follows that

vol(Ks/Z
F , dg/dz) =

[T F : ZFT Fs ]

[tF : tFs ] · vol(ZF
s , dz)

· |ḡFx |1/2

[mF
x : mF

x,s]

= vol(T F/ZF , dt/dz) · |m̄F
x |1/2

[mF
x : mF

x,s]
,

(17)
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so we have

(18) Deg (π(T, χ)) =
qD

vol(T F/ZF , dt/dz)
,

where

D = 1
2
dimF(mx,s/mx,s+)− 1

2
dimF(m̄x) + dimF(mx/mx,s).

Note that
dimF(mx,s/mx,s+) = |{α ∈ Φ : α(x) ∈ s+ Z}|,

dimF(m̄x) = |{α ∈ Φ : α(x) ∈ Z}|,

dimF(mx/mx,s) =
∑
α∈Φ

[n(α, 0)− n(α, s)] .
(19)

We partition the roots as Φ = Φ1 t Φ2 t Φ3 t Φ4, where

Φ1 = {α ∈ Φ : α(x) ∈ Z}, Φ2 = {α ∈ Φ : α(x) ∈ (0, 1
2
) + Z},

Φ3 = {α ∈ Φ : α(x) ∈ (1
2
, 1) + Z}, Φ4 = {α ∈ Φ : α(x) ∈ 1

2
+ Z}.

Note that sending α to −α preserves Φ1 and Φ4, and interchanges Φ2 and
Φ3. Let 2A = |Φ1|, B = |Φ2| = |Φ3|, 2C = |Φ4|. Then dimF(m̄x) = 2A,
and

(20) dimF(mx,s/mx,s+) =

{
2A if s ∈ Z
2C if s ∈ 1

2
+ Z.

If s ∈ Z, we have n(α, s)− n(α, 0) = s, so that dimF(mx/mx,s) = s|Φ|.
If s ∈ 1

2
+ Z, we have

(21) n(α, s)− n(α, 0) =

{
s+ 1

2
if α ∈ Φ1 ∪ Φ2

s− 1
2

if α ∈ Φ3 ∪ Φ4,

which implies that dimF(mx/mx,s) = s|Φ|+A−C. It follows thatD = s|Φ|
in both cases. From (18) we get the formal degree claimed in 4.1. �

The following alternate viewpoint is suggestive. The inducing group Ks

is contained in ZFGF
x , so we can also view π(T, χ) as induced from the

finite-dimensional irreducible representation

(22) R(T, χ) := Ind
ZFGF

x
Ks

κχ

on ZFGF
x . Set Ḡx = Gx/Gx+, T̄ = T0/T1. Using the equations used to

compute D above, one finds that

(23) dimR(T, χ) = qs|Φ| · [ḠF
x : T̄ F ]p′ ,
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where [· · · ]p′ is the largest factor of the index not divisible by p. In the
depth-zero case [14, chap.5], the inducing representation arises from a com-
pletely different, cohomological construction [16] and has dimension [ḠF

x :
T̄ F ]p′ . Hence equation (23) reduces the proof of the constancy of formal
degrees to the depth-zero case, which was proved in [14, chap.5], and sug-
gests thatR(T, χ) should be a positive-depth analogue of a Deligne-Lusztig
representation (cf. [31]).

5. LUBIN-TATE EXTENSIONS AND TORI

The Langlands correspondence for tori is well known [29]. However, we
need two properties of it which do not seem to be in the literature: We re-
quire our correspondence to preserve depth, and to be natural with respect
to automorphisms. These requirements are easily seen to hold if we refor-
mulate the correspondence (for unramified tori only) in terms of Lubin and
Tate’s explicit form of abelian class field theory.

The method is essentially that used in [14, 4.3]. There, depth-zero char-
acters were parametrized using the Weil group of the maximal tame exten-
sion kt/k of k. Note that kt is abelian over K. Here, for arbitrary depth,
the relevant Weil group is that of Kab/k, where Kab is the maximal abelian
extension of K.

5.1. Lubin-Tate extensions. In this section we review some results in [30].
Recall that K is the maximal unramified extension of k contained in a fixed
algebraic closure k̄ of k. For d ≥ 1 an integer, let kd ⊂ K be the unramified
extension of k of degree d. We let od be the ring of integers of kd and let pd
be the prime ideal of od.

Lubin and Tate construct the maximal abelian extension kabd of kd in the
form of a tower

kd ⊂ K ⊂ K
(1)
d ⊂ K

(2)
d ⊂ · · ·

⋃
n≥1

K
(n)
d = kabd ,

as follows. Fix a prime element $ ∈ k, and consider the polynomial fd =

$X +Xqd ∈ o[X]. Let Λ
(n)
d ⊂ k̄ be the set of zeros of the n-fold iteration

f
(n)
d := fd ◦ · · · ◦ fd. Then K(n)

d = K(Λ
(n)
d ) is the field generated over K

by Λ
(n)
d .

It is easy to see that f (n)
d (X) = Xh1(X) · · ·hn(X) where each hi(X) is

an Eisenstein polynomial in od[X]. This implies that the degree of K(n)
d /K

is given by

(24) [K
(n)
d : K] = qd(n−1)(qd − 1).
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According to Lubin-Tate, the Galois groups Gal(K
(n)
d /K) can be de-

scribed in a manner analogous to those of cyclotomic extensions of Q, with
the group Q̄× replaced by the unique (one-dimensional commutative) for-
mal group Gd(X, Y ) ∈ od[[X, Y ]] admitting fd as an endomorphism. The
key fact is that for each α ∈ od, there is a unique power series [α]d of the
form

[α]d = αT + (higher order terms) ∈ Tod[[T ]]

commuting with fd under composition. Then [α]d ∈ End(Gd) and the
map α 7→ [α]d is a ring homomorphism [ ]d : od → End(Gd), such that
[$n]d = f

(n)
d for all n ≥ 1.

Let p̄ be the subring of k̄ whose elements have (extended) norm < 1.
Since the series Gd(x, y) converges for x, y ∈ p̄, we can put a new abelian
group structure on p̄ via the addition rule x+̇y = Gd(x, y). Let Gd(p̄)
denote the group (p̄, +̇). It is an od-module, via the endomorphisms [α]d.
Since f (n)

d ≡ Xqnd
mod p, it follows that Λ(n)

d ⊂ p̄. Since Λ
(n)
d = ker f

(n)
d =

ker[$]nd , the set Λ
(n)
d is an od - submodule of Gd(p̄). By construction, the

annihilator of Λ
(n)
d is pnd , so we have Λ

(n)
d ' od/p

n
d , as od-modules.

The action of Gal(K
(n)
d /K) on Λ

(n)
d commutes with the od-action, so we

have an injection Gal(K
(n)
d /K) ↪→ Autod

(Λ
(n)
d ) = o×d /(1 + pnd), and (24)

shows that this injection is also surjective. In this way, we get the reciprocity
isomorphism

(25) r
(n)
d : Gal(K

(n)
d /K)

∼−→ o×d /(1 + pnd),

characterized by the property that [r
(n)
d (γ)]d = γ−1 ∈ Autod

(Λ
(n)
d ) for any

γ ∈ Gal(K
(n)
d /K).

Finally, Lubin and Tate show that field K(n)
d and the homomorphism r

(n)
d

are independent of the choice of prime element $ used to define fd and that⋃
n≥1K

(n)
d is indeed the maximal abelian extension kabd of kd. The maps

r
(n)
d piece together to give an isomorphism

rd : Gal(kabd /K)
∼→ lim

←
n

o×d /(1 + pnd) = o×d .

In terms of inertia groups, the above reciprocity isomorphisms read as
follows. Let W(kd) be the absolute Weil group of kd. Note that I =
Gal(k̄/K) is the inertia subgroup ofW(kd) for every d. Let Id := Gal(k̄/kabd ),
so that I/Id = Gal(kabd /K). Pulling back via the quotient I → I/Id, the
reciprocity map rd may be viewed a surjective homomorphism

(26) rd : I → I/Id
∼→ o×d
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whose kernel is Id. If we set I(n)
d := r−1

d (1 + pnd), for n ≥ 1, then the
original isomorphism (25) now reads as

(27) r
(n)
d : I/I(n)

d

∼−→ o×d /(1 + pnd).

5.2. The maximal abelian extension of K. We have so far considered d
as fixed; now we study the effect of varying d. If c | d, we have [39]
rc = Nc|d ◦ rd, where Nc|d : k×d → k×c is the norm homomorphism. Since
kd/k is unramified, we have [36] Nc|d(1 + pnd) = 1 + pnc . Since I(n)

d =

r−1
d (1 + pnd), we have I(n)

d ⊂ I(n)
c and K(n)

c ⊂ K
(n)
d . The natural quotient

map jc|d : I/I(n)
d → I/I(n)

c fits into a commutative diagram

??

-

-

r
(n)
c

Nc|djc|d

r
(n)
d

I/I(n)
c o×c /(1 + pnc ).

o×d /(1 + pnd)I/I(n)
d

Thus, if we set I(n) =
⋂
d≥1 I

(n)
d , the reciprocity maps r

(n)
d fit together to

make an isomorphism

(28) r(n) : I/I(n) ∼−→ lim←
d

o×d /(1 + pnd),

where the transition functions in the projective limit are induced by the
norm mapsNc|d. The isomorphism r(n) intertwines the automorphism Ad(Frob)

on I/I(n) (induced by conjugation by Frob on I) with the automorphism
on the projective limit induced by the Galois action of Frob on each group
o×d .

For each d ≥ 1, the canonical projection I/I(n) → o×d /(1 + pnd) induces
an isomorphism

(29) [I/I(n)]Ad(Frobd)
∼−→ o×d /(1 + pn)

where [I/I(n)]Ad(Frobd) denotes the co-invariants of Ad(Frobd) in I/I(n).
In terms of Galois groups, we have I/I(n) = Gal(K(n)/K), where

K(n) =
⋃
d≥1K

(n)
d . The field K(1) = kt is the maximal tame extension

of k and is also the maximal tame abelian extension of K. The union⋃
n≥1K

(n) is the maximal abelian extension Kab of K. The intermedi-
ate fields k ⊂ L ⊂ Kab are exactly those extensions L of k in k̄ which
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are abelian over their unramified part, that is, those for which L/L ∩ K is
abelian.

5.3. Langlands correspondence for unramified tori. Let T be a k-torus
splitting over K, let F be the Frobenius endomorphism of T = T(K),
and abbreviate X := Hom(GL1,T), Y := Hom(T,GL1). Then F acts
on X via an automorphism σ of finite order, say d. Evaluation at $ gives
an embedding X ↪→ T , which allows us to identify T = X ⊗ K× and
F = σ⊗Frob . Note that T splits over kd, so that T(kd) = T F

d
= X⊗k×d .

Let

(30) Nσ : T F
d −→ T F , Nσ(t) = tF (t) · · ·F d−1(t)

be the norm mapping.
The filtration groups Tr are F -stable. For r > s > 0 and any d ≥ 0, we

have

T F
d

r /T F
d

s = (Tr/Ts)
F d

, and (T0/Tr)
F d

= X ⊗ (o×d /1 + prd).

Lemma 5.1. For every r ≥ 0 we have an exact sequence

1 −→ T Fr −→ T F
d

r
1−F−→ T F

d

r
Nσ−→ T Fr −→ 1.

Proof. Exactness at the first two terms (reading from the left) is clear. Ex-
actness at the third term follows from the profinite version of Lang’s theo-
rem, which allows us to write any t ∈ T F

d

r in the form s−1F (s) for some
s ∈ Tr. One checks that, if Nσ(t) = 1, then s ∈ T F d .

It remains to show that Nσ is surjective. Replacing Tr by Tr/Tr+1, we
get a sequence

1 → (Tr/Tr+1)
F → (Tr/Tr+1)

F d 1−F→ (Tr/Tr+1)
F d N̄σ→ (Tr/Tr+1)

F → 1.

Taking the Euler characteristic, we see that the image of |N̄σ| has cardinality
that of (Tr/Tr+1)

F , so N̄σ is surjective. It follows [37] that Nσ is surjective.
�

Let α 7→ α̂ : Aut(X) → Aut(Y ) be the anti-automorphism given by
duality. Then σ̂ = σ̂ ⊗ Id acts on the dual torus T̂ := Y ⊗C×, and we can
form the semidirect product LT := 〈σ̂〉n T̂ .

Now we consider the group of characters of T F0 which are trivial on
T Fr+1. Given automorphisms α, β of abelian groups A,B, respectively, let
Homα,β(A,B) denote the set of homomorphisms f : A → B such that
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f ◦ α = β ◦ f . We have

Hom(T F0 /T
F
r+1,C×)

5.1
= HomF,Id (T F

d

0 /T F
d

r+1 , C×)

= HomF,Id

(
X ⊗ (o×d /1 + pr+1

d ) , C×
)

= HomFrob,σ̂

(
o×d /1 + pr+1

d , T̂
)

' HomAdFrob,σ̂

(
I/I(r+1)

d , T̂
)
,

(31)

the last isomorphism coming from abelian reciprocity (27). Since σ̂ has
order d, the latter group consists exactly of the restrictions to I/I(r+1) of
continuous homomorphisms

(32) ϕ : W(k)/I(r+1) −→ 〈σ̂〉n T̂

for which ϕ(Frob) ∈ σ̂ n T̂ .
The T̂ -conjugacy class of those ϕ with a given restriction to I/I(r+1) is

determined by the σ̂-twisted T̂ -conjugacy class of the element τ ∈ T̂ , where
ϕ(Frob) = σ̂n τ . In turn, the σ̂-twisted conjugacy class of τ is nothing but
a character of Xσ. Since T F is a direct product T F = Xσ × T F0 , we have
shown that the characters of T F which are trivial on T Fr+1 are in bijection
with T̂ -conjugacy classes of Langlands parameters ϕ, as in (32).

To summarize the bijection: the character χϕ : T F/T Fr+1 −→ C× corre-
sponding to the parameter ϕ in (32) is determined by the two equations:

(33) χϕ ◦Nσ (λ⊗ rd(x)) = λ (ϕ(x)) and χϕ(µ) = µ(τ)

for all λ ∈ X, µ ∈ Xσ, x ∈ I, where rd is the reciprocity map (26), Nσ is
the norm mapping (30), and τ ∈ T̂ is given by ϕ(Frob) = σ̂ n τ .

This correspondence ϕ 7→ χϕ has the following naturality property. Let
α be a k-automorphism of T. Then α ∈ Aut(X) commutes with σ and α̂ ∈
Aut(Y ) commutes with σ̂. We can therefore extend α̂ to an automorphism
of LT . A computation identical to that of [14, 4.3.1] shows that

(34) χϕ ◦ α = χα̂◦ϕ.

6. L-PACKETS

In this section we construct our L-packets. The elements of these packets
are certain equivalence classes that generalize the notion of representation.
We briefly explain this first, before embarking on the construction.
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6.1. Galois cohomology and representations. For more details in this
section, see [14, chaps. 2,3]. Let G be a connected reductive k-group with
Frobenius automorphism F on G := G(K). Each element

u ∈ Z1(F,G) = {u ∈ G : u · F (u) · · ·F n−1(u) = 1, for some n ≥ 1}.
arises from a k-structure on G with Frobenius Ad(u) ◦ F on G. Denoting
G with this new k-structure by Gu, we have

Gu(k) = GAd(u)◦F .

The group G acts on Z1(F,G) by g ∗ u = guF (g)−1; the set of G-orbits
in Z1(F,G) is denoted H1(F,G). Evaluating cocycles at Frob gives a bi-
jection H1(k,G)

∼→ H1(F,G), where H1(k,G) denotes the first Galois
cohomology set of G.

For each u ∈ Z1(F,G), the map Ad(g) intertwines Ad(u)◦F and Ad(g∗
u) ◦ F . It follows that Ad(g) sends Gu(k) to Gg∗u(k) and hence induces a
bijection

Irr (Gu(k)) −→ Irr (Gg∗u(k)) , by π 7→ gπ = π ◦ Ad(g)−1.

Hence G acts on the set of pairs

R(F,G) := {(u, π) : u ∈ Z1(F,G), π ∈ Irr (Gu(k))},
by the rule g · (u, π) := (g ∗ u, gπ). We let [u, π] ∈ R(F,G)/G denote the
G-orbit of (u, π). Projecting onto Z1(F,G) gives a partition

R(F,G)/G =
∐

ω∈H1(F,G)

R(F,G, ω)/G,

where for each class ω ∈ H1(F,G), the set R(F,G, ω) consists of those
pairs (u, π) ∈ R(F,G) for which u ∈ ω.

6.2. Unramified groups. We now adopt our previous set-up. That is, we
assume that G is a connected reductive k-group which is K-split and k-
quasisplit. We write F for the corresponding Frobenius endomorphism of
G = G(K). (The change from F to F signifies that F arises from a quasis-
plit k-structure on G.) Let B be a Borel subgroup of G defined over k, and
let T be a maximal torus of B. Then T is defined over k and split over K.
(Note: This torus is different from the minisotropic torus used in chapter
3. We will eventually apply the construction of chapter 3 to minisotropic
twists of the present T.) Let N be the normalizer of T in G, and write
X = Hom(GL1,T), Y = Hom(T,GL1) as before. Let W = N/T0 be the
affine Weyl group ofG. For λ ∈ X , let tλ be the image of λ($) inW . Thus
we view X as a subgroup of W .

The Frobenius F acts on X and W via an automorphism ϑ of finite or-
der. Moreover, ϑ preserves a hyperspecial vertex o ∈ A(T ), since G is
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k-quasisplit. The affine Weyl group decomposes as W = X oWo. By du-
ality we have ϑ̂ ∈ Aut(Y ) and a ϑ̂-stable subgroup Ŵo ⊂ Aut(Y ). The
action of the group 〈ϑ̂〉n Ŵo on Y extends to the dual torus T̂ = Y ⊗ C×,
acting trivially on C×. We identify X = Hom(T̂ ,C×).

Let Ĝ be the dual group of G, so that T̂ is a maximal torus of Ĝ. We
identify Ŵo with the Weyl group of T̂ in Ĝ. Fix a pinning in Ĝ containing
T̂ . There is a unique extension of ϑ̂ to an automorphism of Ĝ preserving
the pinning. Set LG := 〈ϑ̂〉n Ĝ, and let Ẑ ϑ̂ denote the fixed-points of ϑ̂ in
the center Ẑ of Ĝ. In fact, Ẑ ϑ̂ is the center of LG.

6.3. Langlands parameters. Let W = W(k) be the Weil group of k. We
consider Langlands parameters ϕ : W → LG satisfying the following three
conditions:

(1) The map ϕ is trivial on I(r+1) and nontrivial on I(r), for some inte-
ger r > 0.

(2) The centralizer of ϕ(I(r)) in Ĝ is a maximal torus of Ĝ.
(3) ϕ(Frob) ∈ ϑ̂nĜ, and the centralizer of ϕ(W) in Ĝ is finite, modulo

Ẑ ϑ̂.

These are the conditions of [14] except that here ϕ is not required to
be trivial on the wild inertia group I(1). Condition 1 implies that ϕ(I)
is abelian. Condition 2 is the regularity condition and Condition 3 is the
ellipticity condition. We may and shall always choose ϕ in its Ĝ-conjugacy
class so that the torus of Condition 2 is T̂ . That implies in particular that
ϕ(I) ⊂ T̂ . Since Frob normalizes I, Condition 3 implies that ϕ(Frob) =

ϑ̂n n̂, for some n̂ ∈ NĜ(T̂ ) which projects to an element ŵ ∈ Ŵo. We say
that the dual element w ∈ Wo is associated to ϕ.

The Ĝ-centralizer of ϕ is given by CĜ(ϕ) = T̂ϕ(Frob) = T̂ ϑ̂nŵ = T̂
cwϑ,

hence, if Cϕ denotes the component group of CĜ(ϕ), we have an isomor-
phism

[X/(1− wϑ)X]tor
∼−→ Irr(Cϕ),

given by restriction, where [· · · ]tor denotes torsion subgroup. Let Xϕ be the
set of elements ofX whose coset inX/(1−wϑ)X belongs to [X/(1− wϑ)]tor.
(Note that Xϕ = X if GF has compact center, or equivalently, if Ẑ ϑ̂ is fi-
nite.) For λ ∈ Xϕ, we let ρλ ∈ Irr(Cϕ) be the restriction of λ to Cϕ.

6.4. Vertices and pure inner forms. Let ϕ be a Langlands parameter sat-
isfying the conditions of section 6.3, with associated w ∈ Wo. Let λ ∈ Xϕ.
To this data we associate, as in [14], a point xλ ∈ A(T ) which will play the
role of x in the earlier chapters, along with a cocycle uλ ∈ Z1(F, G). This
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goes as follows. By Condition 3, the element tλwϑ ∈ Wϑ has a unique
fixed-point xλ ∈ A(T ), given by xλ = (1− wϑ)−1tλ · o.

Choose an alcove Cλ in A(T ) containing xλ in its closure. We can
uniquely write

(35) tλwϑ = wλyλϑ,

where wλ belongs to the subgroupWxλ
ofW generated by reflections about

the affine root hyperplanes in A(T ) containing xλ, and yλ ∈ W is such that
yλϑ · Cλ = Cλ.

From [14, 2.6] the element yλ has a lift uλ ∈ N∩Z1(F, N). As in section
6.1, this gives a twisted k-group Gλ = Guλ

(no longer k-quasisplit, in
general) with Frobenius Fλ := Ad(uλ) ◦F. We have Gλ(K) = G(K) = G
and Gλ(k) = GFλ .

By construction, we have Fλ ·xλ = xλ, and in fact xλ is a vertex inB(G)Fλ

(though xλ is not always a vertex in B(G)). Let Gxλ
be the parahoric sub-

group of G at xλ. There is an element pλ ∈ Gxλ
such that p−1

λ Fλ(pλ) be-
longs to N and is a lift of wλ. Let Tλ := pλTp

−1
λ . Then Ad(pλ) : T → Tλ

is a k-isomorphism which intertwinesw F on T with Fλ on Tλ. The torus Tλ

is an Fλ-minisotropic maximal torus in Gλ, and xλ is the unique fixed-point
of TFλ

λ in B(G)Fλ .

6.5. Invoking the abelian Langlands correspondence. Let ϕ be a Lang-
lands parameter satisfying the conditions of section 6.3, with associated
w ∈ Wo and set σ = wϑ. We will construct from ϕ a T̂ -conjugacy class of
Langlands parameters ϕT : W → LT̂ , such that ϕT = ϕ on I, and such that
ϕT (Frob) and ϕ(Frob) have the same action on T̂ . Since LT is not a sub-
group of LG, this is not quite immediate. We will have ϕT (Frob) = σ̂ n τ

for some τ ∈ T̂ , which is only defined up to σ̂-twisted conjugacy. The
coset of τ in T̂ /(1 − σ̂)T̂ is defined as in [14], as follows. Let Ĝ′ be the
derived group of Ĝ, let T̂ ′ = T̂ ∩ Ĝ′ and let Ĝab = Ĝ/Ĝ′. Condition 2
implies that the map τ 7→ τ σ̂(τ)−1 has finite kernel on T̂ ′, which means
that (1 − σ̂)T̂ ′ = T̂ ′. Hence the inclusion T̂ ↪→ Ĝ induces a bijection
T̂ /(1− σ̂)T̂ ′

∼→ Ĝab. It follows that T̂ ↪→ Ĝ induces a bijection

(36) T̂ /(1− σ̂)T̂
∼−→ Ĝab/(1− ϑ̂)Ĝab.

Now, if ϕ(Frob) = ϑ̂ n n̂, we take any τ ∈ T̂ whose class in T̂ /(1 − σ̂)T̂

corresponds under (36) to the image of n̂ in Ĝab/(1−ϑ̂)Ĝab. This procedure
gives the desired Langlands parameter ϕT .

Let r be the largest integer such that ϕ is nontrivial on I(r). By the
Langlands correspondence for tori, as given in section 5.3, the parameter
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ϕT gives a character χϕ ∈ Irr(TwF) which is nontrivial on TwF
r and trivial

on TwF
r+1; we say χϕ has depth r.

Conjugating by Ad(pλ), we get a character

(37) χλ := χϕ ◦ Ad(pλ)
−1 ∈ Irr(TFλ).

Since pλ ∈ G, it follows that χλ also has depth r. By the naturality property
(34), the regularity Condition 2 on ϕ implies that χλ satisfies the regularity
condition of Theorem 3.1.

6.6. Supercuspidal L-packets. Let ϕ be a Langlands parameter satisfying
the conditions of section 6.3. We can now apply the construction of chapter
3 to the group Gλ with Frobenius Fλ, the Fλ-minisotropic torus Tλ with
unique fixed-point xλ of TFλ

λ in B(G)Fλ , and the character χλ of TFλ
λ ; this

gives an irreducible supercuspidal representation πλ := π(Tλ, χλ) of GFλ .
Lemma 4.4.2 of [14], which does not depend on the depth of represen-

tations, shows that, for fixed ϕ and λ, the isomorphism class of πλ is inde-
pendent of the choices made in the construction.

We thus have infinitely many groups GFλ and representations πλ. How-
ever, these form only finitely many equivalence classes, in the sense of sec-
tion 6.1.

Lemma 6.1. Let ϕ be a Langlands parameter satisfying the conditions of
section 6.3 and let λ, µ ∈ Xϕ. Then we have

[uλ, πλ] = [uµ, πµ] ⇔ ρλ = ρµ.

Proof. If ρλ = ρµ, then the first half of the proof of [14, 4.5.2], which
does not depend on depth, shows that there is g ∈ G such that g ∗ uλ =
uµ, g · xλ = xµ and

Ad(g) · (Tλ, χλ) = (Tµ, χµ).

This implies that Ad(g)∗ · κλ = κµ, so that g · (uλ, πλ) = (uµ, πµ). Hence
we have [uλ, πλ] = [uµ, πµ], as claimed.

Conversely, suppose there is g ∈ G such that g · (uλ, πλ) = (uµ, πµ).
Then gπλ and πµ are equivalent representations of GFµ .

Thus, we have two pairs (gTλ,
gχλ) and (Tµ, χµ) in GFµ giving rise, via

Adler’s construction, to equivalent representations of GFµ . The two pairs
must then be conjugate in GFµ , as follows from a character calculation
[13] or more general results on distinguished representations [22, Cor. 6.9].
Hence, modifying g by an element of GFµ , we may assume that

(gTλ,
gχλ) = (Tµ, χµ).

Recall that TλFλ and TFµ
µ have unique fixed-points xλ and xµ in B(G)Fλ and

B(G)Fµ . Since g ∗ uλ = uµ, it follows that g · xλ = xµ. The last paragraph
of the proof of [14, 4.5.2], repeated verbatim, now shows that ρλ = ρµ. �
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Lemma 6.1 allows us to define

π(ϕ, ρ) := [uλ, πλ],

for any λ ∈ Xϕ such that ρλ = ρ. Our supercuspidal L-packet is then

Π(ϕ) := {π(ϕ, ρ) : ρ ∈ Irr(Cϕ)}.

From 4.1, it follows that all representations in Π(ϕ) have the same formal
degree, with respect to canonical Haar measures.

6.7. A simple case. The L-packets Π(ϕ) simplify greatly G is k-split and
simply-connected. In this case, ϑ = 1 and X is the co-root lattice of T
in G. For any λ ∈ X , we have wλ = tλw and yλ = 1 so we may take
uλ = 1 and Fλ = F. It follows that for each ρ ∈ X/(1 − w)X , we may
identify the class π(ϕ, ρ) with the GF-isomorphism class of representations
πλ, for λ ∈ ρ. Thus, the L-packet Π(ϕ) consists of isomorphism classes of
representations of the single group GF.

6.8. A useful complement. The construction of πλ involves several choices,
among which is a choice of alcove Cλ whose closure contains xλ. The vari-
ability of Cλ can be inconvenient when working out particular cases of our
L-packets. One might hope to fix an alcoveC, and that for each ρ ∈ Irr(Cϕ)
one can find λ ∈ Xϕ such that ρλ = ρ and Cλ = C. Unfortunately, this is
not always possible. Recall, however, that the pair (ϕ, ρ) is only taken up
to conjugacy by Ĝ. This extra freedom allows us to fix C.

Lemma 6.2. Let C be an alcove in A(T ). Then any pair (ϕ, ρ), where ϕ
satisfies the conditions of 6.3 and ρ ∈ Irr(Cϕ), may be chosen in its Ĝ-
conjugacy class so that ϕ(I) ⊂ T̂ , and so that there exists µ ∈ Xϕ with
ρµ = ρ and Cµ = C.

Proof. We already know we can arrange that ϕ(I) ⊂ T̂ . Choose any λ ∈
Xϕ such that ρλ = ρ, and choose any alcove Cλ containing xλ in its closure
C̄λ. Let ẇ ∈ N be a representative of w.

Now choose n ∈ N such that n · Cλ = C. Let v ∈ W be the image
of n, and let vo be the projection of v to Wo. Then nẇ F(n)−1 projects to
w′ := vwϑ(v)−1 ∈ Wo. The action of vo on X gives an isomorphism

(38) [X/(1− wϑ)X]tor

v∗−→ [X/(1− w′ϑ)X]tor

such that v∗ρλ = ρ′vλ is the image of voλ in the right side of (38).
Conjugating both sides of the equation tλwϑ = wλyλϑ by v, we get an

analogous equation

(39) tvλw
′ϑ = w′vλy

′
vλϑ,
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where the unique fixed-point inA(T ) of both sides of (39) is x′vλ := v ·xλ ∈
C̄. Moreover, we have y′vλϑ · C = C.

Let v̂o ∈ Ŵo correspond to vo under duality, and let n̂ ∈ NĜ(T̂ ) be a lift
of v̂o. Conjugating (ϕ, ρ) by n̂ gives a new pair (ϕ′, ρ′) such that ρ′ = ρ′vλ
and C ′vλ = C. Replacing (ϕ, ρ) by (ϕ′, ρ′) and taking µ = vλ satisfies the
conclusion of the lemma. �

A warning: If one fixes the alcove C, and uses Lemma 6.2 to construct an
L-packet with all inducing data on points in C̄, then the element w will vary
for each representation. However, w will only vary within its ϑ-conjugacy
class in Wo.

6.9. Stable classes of tori and their characters. The results in [14] on
stable classes of tori and their characters do not depend on the depth of the
characters. In this section we recall these results and show how they apply
to our positive-depth L-packets Π(ϕ).

Let F be a Frobenius endomorphism of G arising from a given K-split
k-structure on G. We denote the set of F -stable K-split maximal tori in G
by T(G,F ) and we say that two tori S1, S2 ∈ T(G,F ) are (G,F )-stably
conjugate if there is g ∈ G such that g(SF1 ) = SF2 . This is an equivalence
relation on T(G,F ) whose classes we call (G,F )-stable classes. We write
[T(G,F )]st for the set of (G,F )-stable classes in T(G,F ).

Any S ∈ T(G,F ) is of the form S = gT for some g ∈ G, and the
element n = g−1F (g) belongs to N . By [12], two such tori S1 and S2,
corresponding to n1 and n2, are (G,F )-stably conjugate if and only if n1T
and n2T belong to the same F -twisted conjugacy-class in N/T . This gives
an injective mapping

(40) [T(G,F )]st ↪→ H1(F,N/T ).

Suppose F = Fu, where F is the Frobenius for a quasisplit k-structure on
G, and u ∈ Z1(F,N). The map z 7→ zu induces a bijection

(41) H1(Fu, N/T )
∼−→ H1(F, N/T ).

Since F is a quasisplit Frobenius, there is an F-stable hyperspecial vertex
o ∈ A(T ), and we may identify N/T = Wo as F-groups. Let ϑ be the
automorphism of W induced by F. Then ϑ preserves Wo, and the map
w 7→ wϑ identifies the cohomology set H1(F,Wo) with the set of Wo-
orbits, via ordinary conjugation, on Woϑ. An element wϑ ∈ Woϑ is called
elliptic if it has no fixed-points in the root lattice of T in G.

Combining (40) and (41), we get an injective mapping

(42) Ψu : [T(G,Fu)]st ↪→ Woϑ/Wo
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which sends each Fu-minisotropic class in T(G,Fu) to an elliptic class in
Woϑ. If u 6= 1, the map Ψu is not necessarily surjective, but we have the
following immediate consequence of [14, 9.6.1].

Lemma 6.3. If wϑ ∈ Woϑ is elliptic, and u ∈ Z1(F, N), then there is a
G-stable class Tw,u ⊂ T(G,Fu) such that Ψu(Tw,u) is the Wo-orbit of wϑ.

We now construct a “covering” of T(G,F ) by adding an extra piece of
data. Let

T̂(G,F ) := {(S, θ) : S ∈ T(G,F ) and θ ∈ Irr(SF )}.

We say two pairs (S1, θ1), (S2, θ2) in T̂(G,F ) are (G,F )-stably conjugate
if there is g ∈ G such that g(SF1 ) = SF2 and gθ1 = θ2.

Suppose F = Fu, let ϕ be a Langlands parameter satisfying the condi-
tions of section 6.3 with associated w ∈ Wo, and let χ = χϕ ∈ Irr(TwF).
We define

T̂w,u,χ := {(S, θ) ∈ T̂(G,Fu) : ∃g ∈ G such that SFu = g(TwF) and θ = gχ}.

Then GFu acts by conjugation on T̂w,u,χ, with a finite number of orbits.
These orbits can be parametrized as follows. First, Kottwitz’ isomorphism
Irr(Cϕ) → H1(F, G) (see [28]) factors as

(43) Irr(Cϕ) = [X/(1− wϑ)X]tor
rw−→ [Ω/(1− ϑ)Ω]tor = H1(F, G),

where Ω = Irr(Ẑ) and rw is induced by the restriction from T̂ to Ẑ.
Now, in [14, 9.6.1] it is shown (via a proof that does not depend on the

depth of characters) that the map λ 7→ (Tλ, χλ) induces a bijection

(44) r−1
w [u]

∼−→ T̂w,u,χ/GFu ,

where [u] ∈ H1(F, G) is the class of the cocycle u.
It follows that the classes in our L-packet Π(ϕ) which contain represen-

tations on a given pure inner form GFu are constructed from a complete set
of representatives of GFu-orbits in the stable class T̂w,u,χϕ corresponding to
the fiber over [u] of the natural map Irr(Cϕ) −→ H1(F, G).

6.10. An equivariance property. Let ϕ be a Langlands parameter satisfy-
ing the conditions of section 6.3, with associated w ∈ Wo.

The centralizer C(wϑ) of wϑ inWo acts naturally on the parameter space
[X/(1 − wϑ)]tor of the L-packet Π(ϕ). Moreover, for any λ ∈ Xϕ, the
group C(wϑ) may be identified with the Fλ-rational points in the Weyl
group W (Tλ) of Tλ in G. In this picture, the subgroup C(wϑ, λ) stabi-
lizing the class of λ in X/(1− wϑ)X consists of those elements of W (Tλ)
which can be represented by elements inGFλ . These facts are proved in [14,
2.11.2].
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It follows thatC(wϑ) acts on the characters of TFλ
λ , so for any h ∈ C(wϑ)

we can compare the representation π(Tλ, χ) with its “twist” π(Tλ, χ
h). By

the remarks above, these representations will be equivalent if h ∈ C(wϑ, λ).
Thus we expect a relation between the twisting action of C(wϑ) on repre-
sentations and the natural action of C(wϑ) on [X/(1− wϑ)X]tor.

This relation can be expressed as an equivariance property for the pairing
(ϕ, ρ) 7→ π(ϕ, ρ), where ϕ is a Langlands parameter as considered above,
and ρ ∈ Irr(Cϕ). Indeed, if we view Wo as the Weyl group of the dual torus
T̂ , we have a natural action of C(wϑ) on the set of Langlands parameters
ϕ satisfying conditions of section 6.3. Namely, given h ∈ C(wϑ), we can
form the twisted parameter ϕh, defined by

ϕh(Frob) = ϕ(Frob), ϕh(γ) = ϕ(γ)h, for γ ∈ I.

The action of C(wϑ) on T̂ also preserves Cϕ = T̂
cwϑ, hence C(wϑ) acts

on Irr(Cϕ); we denote this action by ρ 7→ hρ = ρ ◦ h−1. The equivariance
property can then be stated as follows:

Proposition 6.4. Let ϕ be a Langlands parameter satisfying the conditions
of section 6.3, with associated w ∈ Wo. Then for ρ ∈ Irr(Cϕ) and h ∈
C(wϑ) we have π(ϕh, ρ) = π(ϕ, hρ).

Proof. We are asserting an equality ofG-orbits of pairs (u, π). We calculate
this G-action as follows.

Let n ∈ N be a lift of h ∈ C(wϑ) and let λ ∈ Xϕ. As in equation (35),
we have two expressions for the elements

(45) tλwϑ = wλyλϑ and thλwϑ = whλyhλϑ

in Wϑ. Let uλ ∈ Z1(F, N) be a lift of yλ, as in section 6.4. I first claim that
the element n ∗uλ = nuλ F(n)−1 ∈ N is a lift of yhλ. Since h ∈ C(wϑ) we
have

(46) thλwϑ = htλwϑh
−1.

The left side of (46) has unique fixed-point xhλ in A(T ), while the right
side has unique fixed-point h · xλ, so we have xhλ = h · xλ. Using the first
equation in (45), we get

htλwϑh
−1 = h · wλyλϑ · h−1 = hwλ · hyλ(ϑh

−1
) · ϑ.

This must be the corresponding factorization of thλwϑ, by equation (46).
Therefore, we have whλ = hwλ and yhλ = hyλ(

ϑh
−1

). Since hyλ(ϑh
−1

) is
the image of n ∗ uλ = nuλ F(n)−1 in W , the claim is proved. Therefore we
can take uhλ := n ∗ uλ and define Fhλ := Ad(uhλ) ◦ F.

Let pλ ∈ Gxλ
be as in section 6.4, so that p−1

λ Fλ(pλ) ∈ N ∩ Gxλ
is a

lift of wλ. It is straightforward to check that the element npλ−1 · Fhλ(npλ)
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is a lift of hwλ = whλ, so we may take phλ = npλn
−1 ∈ N ∩ Gxhλ

. By
definition, Thλ = Ad(phλ)T , so we have Ad(n)Tλ = Thλ.

Let χ = χϕ ∈ Irr(TwF). The naturality property (34) implies that χh =
χϕh . By definition, we have

(χh)λ = (χh)◦Ad(pλ)
−1 = χ◦Ad(np−1

λ ) = χ◦Ad(p−1
hλn) = (χhλ)◦Ad(n).

We have shown that Ad(n) · (Tλ, (χh)λ) = (Thλ, χhλ). Putting everything
together, we have

π(ϕh, ρ) =
[
uλ, π(Tλ, (χ

h)λ)
]

=
[
n ∗ uλ, nπ(Tλ, (χ

h)λ)
]

= [uhλ, π(Thλ, χhλ)] = π(ϕ, ρhλ) = π(ϕ, hρ),
(47)

as claimed. �

6.11. An example in E8. Take G of type E8. Up to conjugacy, the Weyl
group Wo contains a unique elliptic element w of order three. We consider
L-packets Π(ϕ) where ϕ(Frob) ∈ N(T̂ ) is a lift of ŵ. The lattice X is the
E8-root lattice, on which we normalize the Wo-invariant Euclidean metric
〈 , 〉 such that 〈α, α〉 = 2 for each root α. It can be shown that the finite
groupX/(1−w)X is a four-dimensional vector space over the field of three
elements; we set Vw := X/(1− w)X . The pairing (x, y) 7→ 〈(1− w)x, y〉
induces a nondegenerate symplectic form on Vw, which is preserved by the
centralizer C(w). The resulting map C(w) −→ Sp(Vw) is surjective, with
kernel of order three, generated by w. These facts are proved in [34]. It
follows that C(w) is transitive on non-zero vectors in Vw.

The class π(ϕ, 1) is supported on hyperspecial vertices. By Proposition
6.4, the remaining 80 classes in Π(ϕ) all contain representations of GF

arising from twists of the character χϕ on a single minisotropic torus in GF

stabilizing a non-hyperspecial vertex x. Since x must have the property that
Wx contains elliptic elements tλw of order three, we see that x has type
A2 + E6.

7. TWISTED COXETER ELEMENTS

This section is preparation for studying a canonical example of supercus-
pidalL-packets, wherewϑ is a ϑ-Coxeter element (see section 7.1 below for
definitions). We will describe the L-packets, the classes of tori, and corre-
sponding inducing data which arise in this case. As part of this calculation,
we must determine the factorizations

(48) tλwϑ = wλyλϑ

and the vertices xλ from section 6.4. We will show that the element in (48)
is in fact a yλϑ-Coxeter element in Wxλ

yλϑ, and that this fact determines
xλ.
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The passage from a ϑ-Coxeter element to a yλϑ-Coxeter element is a
property of Coxeter elements that might be of independent interest; it can
be explained purely in the context of affine Weyl groups, so this chapter is
independent of what has gone before. We begin with some background, fol-
lowing Springer [38], on twisted Coxeter elements. Springer only treats the
case of irreducible root systems, whereas we must allow our root systems
to have finitely many components, which are permuted transitively by the
twisting automorphism. Springer’s proofs can be adapted with only minor
modifications, which we leave to the reader.

7.1. Definition and basic properties of twisted Coxeter elements. Let
W be a finite Weyl group with root system Φ, let V = Hom(ZΦ,C) be the
complexified reflection representation of W and set n = dimV . We view
W as a subgroup of GL(V ).

Let σ ∈ GL(V ) be a linear transformation of finite order which preserves
some base Π of Φ. Hence σ preserves Φ itself and normalizes W , so W
acts by conjugation on the coset Wσ. The W -orbits in Wσ are called σ-
conjugacy classes.

Let Π1, . . .Πnσ be the orbits of 〈σ〉 in Π. For each i, choose αi ∈ Πi

arbitrarily, and let ri ∈ W denote the corresponding reflection. Let w be the
product of r1, . . . , rnσ in any order. The element wσ ∈ Wσ thus obtained
is called a σ-Coxeter element. If σ = 1 we omit the prefix “σ−”.

It follows from the simple transitivity of W on bases that two σ-stable
bases are conjugate by the group W σ of σ-fixed-points in W . Using also
[38, 7.5], we see that theW -orbit ofwσ inWσ is independent of the choices
of the base Π, the representatives αi, or their ordering. Hence the σ-Coxeter
elements form a single σ-conjugacy class in Wσ.

This definition of σ-Coxeter elements is a bit unsatisfactory, since it de-
pends on a particular base Π. One can give a more intrinsic characterization
of σ-Coxeter elements, as follows. We first need two definitions. Let

V reg := V −
⋃
α∈Φ

kerα

be the complement of the root hyperplanes in V . An element wσ ∈ Wσ
is regular if wσ has an eigenvector in V reg. We call the corresponding
eigenvalue “regular” as well. Next, we say that wσ ∈ Wσ is elliptic if
V wσ = 0.

We assume from now on that the group 〈σ〉 generated by σ acts tran-
sitively on the irreducible components Φ1, . . . ,Φk of Φ. We have W =
W1 × · · · × Wk, accordingly. Let hσ be the maximal order of an eigen-
value of an element of Wiσ (it is the same for any i), and recall that nσ is
the number of orbits of 〈σ〉 in the given σ-stable base Π of Φ. The basic
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properties of σ-Coxeter elements are collected in the following proposition,
whose proof is an easy reduction to the irreducible case treated in [38, chap.
7] and will be omitted here.

Proposition 7.1. Letwσ ∈ Wσ be a σ-Coxeter element. Then the following
hold.

(1) wσ is elliptic and regular, and has order hσ.
(2) wσ has a regular eigenvalue of order hσ, with multiplicity one.
(3) Each orbit of 〈wσ〉 in Φ has cardinality hσ, and |Φ| = nσhσ.
(4) There is an ordering Φ = Φ+ t Φ− such that each 〈wσ〉-orbit in Φ

contains exactly one root α ∈ Φ+ for which wσα ∈ Φ−.
(5) The centralizer of wσ in W is cyclic, generated by (wσ)s, where s

is the order of σ.
(6) The σ-Coxeter elements in Wσ are precisely those elliptic regular

elements of Wσ having a regular eigenvalue of order hσ.

The last item is of particular importance, as it allows us to recognize
σ-Coxeter elements by intrinsic properties.

7.2. The long root example. Several examples of twisted Coxeter groups
W occur naturally as long root subgroups in larger Weyl groups W̃ . In this
section we show that such twisted Coxeter elements in W are actually ordi-
nary Coxeter elements in W̃ . This hereditary property of Coxeter elements
will also appear in our study of L-packets. One could check this property
case-by-case, but we can give a uniform treatment, illustrating the use of
7.1. (Note, however, that the proof of 7.1 in [38] relies on some checking
of cases.)

Let W̃ be a Weyl group of type Bn, Cn, G2, F4. The root system Φ̃ for
W̃ is irreducible, with two root lengths. Let Φ be the set of long roots in
Φ̃. Let Π̃ be a base of Φ̃, and write Π̃ = Πl t Πs, where Πl and Πs are the
sets of long and short roots in Π̃, respectively. Let Ws be the subgroup of
W̃ generated by the reflections from Πs, and let W be the subgroup of W̃
generated by the reflections from Φ. Then W is normal in W̃ , and the latter
is a semidirect product

(49) W̃ = W oWs.

Moreover, the groupWs, being simply-laced, irreducible and without branch
node, is of type Am, where m = |Πs|, see [19, chap. 5]. In this section,
we show that the decomposition (49) also produces natural examples of
σ-Coxeter elements.

First, we need another fact about the decomposition in (49). The choice
of Π̃ determines a base Π of Φ. Namely, if we let Φ̃+ be the positive system
in Φ̃ containing Π̃, then Φ+ := Φ ∩ Φ̃+ is a positive system in Φ, and Π is
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the unique base contained in Φ+. If σ ∈ Ws, then σ is a product of short
reflections, so σΦ+ = Φ+, hence σΠ = Π.

Lemma 7.2. If σ is a Coxeter element in Ws, then Πl is a set of representa-
tives for the σ-orbits on Π.

Proof. First note that Πl ⊂ Π. For otherwise, some α ∈ Πl could be written
α =

∑
i ciαi, with αi ∈ Π, all ci ∈ Z≥0, and

∑
ci > 1. But since Π ⊂ Φ̃+

and Πl ⊂ Π̃, this means α /∈ Πl, a contradiction.
Now let σ be a Coxeter element in Ws ' Sm+1. Let β ∈ Πl be the

unique root not orthogonal to Πs, and let α ∈ Πs be the unique root not
orthogonal to Πl. The functional 〈·, β̌〉 is a dominant weight for Πs. Hence
the stabilizer of β in Ws is generated by the reflections from Πs \ {α}, so is
isomorphic to Sm. This subgroup contains no nontrivial power of an m+1-
cycle, so the stabilizer of β in 〈σ〉 is trivial. Hence the σ-orbit of β has
exactly m+ 1 elements.

Let Π′l = Πl \ {β}. We must show that

(50) Π = Π′l t {β, σβ, . . . , σmβ}.
The two sets on the right are disjoint, since σ fixes each root in Π′l. It
suffices, then, to show that |Π| = |Π′l| + m + 1. But |Π| = |Π̃| = |Πl| +
|Πs| = 1 + |Π′l|+m. The lemma is proved. �

Let w be the product of the reflections from Πl, and let σ be the product
of the reflections in Πs, both products taken in any order. Then wσ is a
Coxeter element of W̃ . By Lemma 7.2, wσ is also a σ-Coxeter element of
Wσ. Since the Coxeter graph of Πl is a tree, it follows from equation (50)
that Φ is σ-irreducible, so the σ-Coxeter number hσ of Wσ is defined, and
in fact hσ is also the Coxeter number of W̃ .

This element wσ is a carefully chosen Coxeter element in W̃ . The next
result shows that this is immaterial.

Lemma 7.3. Let w̃ be any Coxeter element of W̃ . Write w̃ = w′σ′ as in
(49), with w′ ∈ W and σ′ ∈ Ws. Then σ′ is a Coxeter element of Ws and
w′σ′ is a σ′-Coxeter element of Wσ′.

Proof. There is x̃ ∈ W̃ such that x̃w̃x̃−1 = wσ, where wσ is the carefully
chosen Coxeter element defined above. Projecting to Ws, we see that σ′ is
Ws-conjugate to σ. This implies that σ′ is a Coxeter element in Ws, that
Φ is σ′-irreducible, and that the maximal orders of a regular eigenvalue of
Wσ and Wσ′ are the same. Hence hσ = hσ′ is also the σ′-Coxeter number
of Wσ′.

Being Coxeter in W̃ , the element w̃ is elliptic, and is regular with respect
to Φ̃. Hence w̃ is also regular with respect to Φ. Since w̃ has a regular
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eigenvalue of order hσ = hσ′ , Proposition 7.1 implies that w̃ is a σ′-Coxeter
element of Wσ′. �

7.3. Affine Weyl groups. In this section we describe another hereditary
property of twisted Coxeter elements, arising from finite reflection sub-
groups of affine Weyl groups.

We now denote the (finite) Weyl group and (spherical) root system con-
sidered in the two previous sections by Wo and Ψo, respectively. We set
X := Hom(ZΨo,Z), A := Hom(ZΨo,R), Vo := Hom(ZΨo,C), and now
write ϑ for the automorphism σ ∈ GL(Vo) considered above. Here, o is the
zero element of A. Assume that Ψo is irreducible (not just ϑ-irreducible).
Then X is a lattice in A, and Wo and ϑ preserve X . The affine Weyl group
is the semi-direct product W := X o Wo. and is contained in the larger
group W o 〈ϑ〉. The latter group acts on A by affine transformations: an
element λ ∈ X acts via the translation tλ : x 7→ λ+ x on A.

Let Ψ be the set of affine functions α −m, for α ∈ Ψo and m ∈ Z. Let
Hα,m be the hyperplane in A defined by the vanishing of α−m. These hy-
perplanes partition A into a disjoint union of facets (see [5, V.1]). A vertex
is a facet consisting of a single point. An alcove is a facet which is open in
A. The alcoves are also the connected components of the complement in A
of all affine root hyperplanesHα,m. The orthogonal reflection aboutHα,m is
the element sα,m = tmα̌sα ∈ W , where α̌ ∈ X is the co-root corresponding
to α. These reflections generate a subgroup W ◦ ⊂ W which acts simply
transitively on the set of alcoves.

For each x ∈ A, let Ψx be the set of affine roots in Ψ which vanish at x,
and let mx be the ideal of polynomial functions on V which vanish at x. We
identify Ψx with its image in the cotangent space mx/m

2
x. Thus, the affine

roots Ψx are linear functionals on the tangent space Vx := (mx/m
2
x)̌.

For f ∈ mx, v ∈ Vo and t a variable, let 〈v, dx(f)〉 denote the coefficient
of t in f(x + tv). Then dx induces the local differential mapping dx :
mx/m

2
x → V̌o on the dual spaces. If α−m ∈ Ψx, then dx(α−m) = α.

Let W ?
x be the stabilizer of x in the group W 〈ϑ〉, and let Wx be the

subgroup of W ?
x generated by the reflections sα,m for α −m ∈ Ψx. Then

W ?
x acts on Vx and the normal subgroup Wx of W ?

x is a reflection group on
Vx with root system Ψx ⊂ V̌x.

Let V reg
x denote the set of vectors in Vx on which no root in Ψx vanishes.

Since dx(Ψx) ⊂ Ψo, it follows that the adjoint δx : Vo −→ Vx of dx satisfies

(51) δx(V
reg
o ) ⊂ V reg

x .

The set of connected components of V reg
x is in bijection with the set of

alcoves in A having x in their closure (each of the former contains a unique
one of the latter). Hence Wx acts simply transitively on this set of alcoves.
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It follows that if we fix an alcove Cx with x ∈ C̄x, then we can express W ?
x

as a semidirect product

(52) W ?
x = Wx o Σx,

where Σx := {σ ∈ W ?
x : σ · Cx = Cx}. The set Ψ+

x := {α −m ∈ Ψx :
α(y) > m for all y ∈ Cx} is a positive system of Ψx, containing a unique
base Πx. Both Ψx and Πx are preserved by Σx.

Now suppose we have λ ∈ X and w ∈ Wo such that tλwϑ fixes a point
xλ ∈ A. It is easy to check that

(53) tλwϑ ◦ δxλ
= δxλ

◦ wϑ.
Choose an alcove Cxλ

⊂ A containing xλ in its closure. According to (52),
we have a unique factorization

(54) tλwϑ = wλσλ,

with wλ ∈ Wxλ
, and σλ ∈ Σxλ

. Note that both wλ and σλ fix xλ. In
particular, σλ acts on Ψxλ

as well as on the tangent space Vxλ
.

From property (51) and equation (53) it follows that if wϑ is regular on
Vo then wλσλ is regular on Vx. Moreover, the eigenvalues of wϑ on Vo are
the same as the eigenvalues of wλσλ on Vx. Using part 6 of Proposition 7.1,
this proves:

Proposition 7.4. Let wϑ be a ϑ-Coxeter element in Woϑ. For λ ∈ X , write
tλwϑ = wλσλ as in (54), and let xλ ∈ A be the unique fixed-point of tλwϑ.
Assume that Ψxλ

is σλ-irreducible. Then wλσλ is a σλ-Coxeter element in
Wxλ

σλ.

We will see in the next section that the irreducibility assumption in 7.4
always holds, although I do not have a uniform argument for this.

7.4. Coxeter facets. In this section we determine the points xλ ∈ A arising
as the fixed-points of lifted ϑ-Coxeter elements, as in Proposition 7.4.

Let C be a fixed ϑ-stable alcove containing o in its closure C̄, and let
Ω = {y ∈ W : y · C = C}, so that W = W ◦ o Ω.

Let σ ∈ Ωϑ. The fixed-point set Aσ inherits a simplicial structure from
A, whose facets are of the form Jσ, where J is a σ-stable facet in A. The
alcove C is σ-stable and Cσ is an alcove in Aσ. A point x ∈ Aσ is vertex
exactly when {x} = Jσ, for some σ-stable facet J in A.

A σ-Coxeter facet is a σ-stable facet J ⊂ C̄ for which there exists a σ-
Coxeter element of WJσ projecting to a ϑ-Coxeter element in Woϑ, under
the natural projection Wϑ→ Woϑ. From [14, 4.4.1] it follows that if J is a
σ-Coxeter facet then Jσ is a vertex in Aσ.

For x ∈ A, the objects Wx, Ψx, Πx depend only on the facet J in A
containing x. We now write WJ , ΨJ , ΠJ , respectively, where ΠJ is the
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base of ΨJ determined by C. We also say that a σ-stable facet J ⊂ C̄ is
σ-irreducible if σ · J = J and the root system ΨJ is σ-irreducible.

If J ⊂ C̄ is a σ-irreducible facet, the σ-Coxeter number hσ(J) is defined
for WJσ. Recall that hϑ is the ϑ-Coxeter number for Woϑ.

Proposition 7.5. Let σ ∈ Ωϑ. Then the following hold.
(1) σ-Coxeter facets J ⊂ C̄ exist, and form a single orbit under Ωϑ-

conjugacy.
(2) Each σ-Coxeter facet J is σ-irreducible.
(3) The vertex x = Jσ is special in Aσ ([5, V.3.10]).
(4) If σ = ϑ, then J is a hyperspecial vertex in A.

Proof. First, note that Ωϑ = Ωσ, since Ω is abelian, so the uniqueness as-
sertion in item 1 makes sense.

Since ker[W → Wo] = X is torsion free, an element of Wσ of finite
order projects to an element of the same order in Woϑ. By Proposition 7.4,
the proofs of item 2 and the existence part of item 1 amount to finding a
minimal σ-stable, σ-irreducible facet J for which hσ(J) = hσ. We have

hσ(J) =
|ΨJ |
nσ(J)

, hϑ =
|Ψo|
nϑ

,

where nσ(J) is the number of σ-orbits on ΠJ .
First suppose that σ = ϑ (the “quasi-split” case). Then we may take J

to be a ϑ-stable hyperspecial vertex in A. Let us prove uniqueness in this
case. Let J be any ϑ-irreducible facet in C̄ such that Jϑ is a vertex in Aϑ.
Then nϑ(J) = nϑ and |ΨJ | ≤ |Ψo|. Hence hϑ(J) = hϑ if and only if
|ΨJ | = |Ψo|. The latter condition implies that Jϑ is special. If ϑ = 1,
then Ω is transitive on special vertices, proving uniqueness. There are four
cases where ϑ 6= 1, namely where (W,ϑ) has type 2An,

2Dn,
3D4,

2E6.
One checks in each case that if Jϑ is special and |ΨJ | = |Ψo|, then J is a
ϑ-stable hyperspecial vertex in A. These vertices are permuted transitively
by Ωϑ, completing the uniqueness proof for σ = ϑ.

For σ 6= ϑ, we argue case-by-case, as follows. It is easy to see that if
J is a σ-Coxeter facet, then there is I ⊆ J̄ such that ΨI is a σ-irreducible
factor of ΨJ and hI(σ) = hϑ. We compute hϑ, and hσ(I) for each σ-
irreducible facet I ⊂ C̄. We find in each case a unique such facet J , up
to Ωϑ conjugacy, such that hσ(J) = hϑ. Moreover, this J is in each case a
minimal σ-stable facet, as claimed.

The results are given in the table below. In the first column, we indicate
the type of W and σ using the “name” of [40]. Since σ 6= ϑ, we list only
those names which are those of non-quasisplit groups. The second column
shows a subdiagram of the affine Dynkin diagram, namely the one whose
vertices are the simple affine roots vanishing on J , and for which hσ(J) =
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hϑ. If J is the product of k copies of an irreducible type J1, permuted
transitively by σ, we write J (k)

1 .

Name J hσ(J) = hϑ
dAdm−1 A

(m)
d dm

2A′′2m−1
2A2m−2 4m− 2

2Bn
2Dn 2n

2C2m C
(2)
m 4m

2C2m+1
2A2m 4m+ 2

2D′n
2Dn−1 2n− 2

2D′′2m
2A2m−1 4m− 2

2D′′2m+1
2A2m 4m+ 2

4D2m
2D

(2)
m 4m

4D2m+1
2D

(2)
m 4m

3E6
3D4 12

2E7
2E6 18

This completes the proof of Proposition 7.5. �

8. COXETER TORI

We return now to p-adic groups, and consider first the stable class of tori
(see section 6.9) corresponding to a ϑ-Coxeter element in Woϑ. We now
assume that G is simple, of adjoint type. The latter condition means that
X = X∗(T) = Hom(ZΦ,Z).

Let u ∈ Z1(F, G) be a cocycle, giving the twisted Frobenius Fu =
Ad(u) ◦ F. We define an Fu-Coxeter torus in G to be a torus in T(G,Fu)
whose (G,Fu)-stable class corresponds, via the map Ψu in (42), to the class
of ϑ-Coxeter elements in Woϑ. Since ϑ-Coxeter elements are elliptic, such
tori exist by Lemma 6.3. Let Tcox ⊂ T(G,Fu) be the (G,Fu)-stable class of
Fu-Coxeter tori in G.

Proposition 8.1. For u ∈ Z1(F, N), the following hold.
(1) The Fu-Coxeter tori in G form a single conjugacy class under GFu .
(2) If S is an Fu-Coxeter torus in G, then the natural map

H1(Fu, S) → H1(Fu, G)

is a bijection; both groups are isomorphic to Ω/(1− ϑ)Ω.
(3) If S is an Fu-Coxeter torus in G, with normalizer NG(S), then the

natural map

NG(S)Fu/SFu → (NG(S)/S)Fu
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is a bijection; both groups are cyclic of order hϑ/t, where t is the
order of ϑ.

Proof. Part 3 follows from [14, 10.2] and part 5 of 7.1.
Let ω ∈ Ω/(1 − ϑ)Ω correspond to the class of u under Kottwitz’ iso-

morphism

(55) Ω/(1− ϑ)Ω ' H1(F, G);

see [28] and [14, chap.2]. Let C(wϑ) denote the centralizer of wϑ in Wo.
From (44), the GFu-orbits in Tcox are in bijection with the C(wϑ)-orbits in
the fiber r−1

w (ω) of the map X/(1−wϑ)X
rw−→ Ω/(1− ϑ)Ω in (43). Under

Kottwitz’ isomorphism (55), the map rw may be identified with the map in
part 2; see [14, 2.6.1]. Thus, parts 1 and 2 of Proposition 8.1 both amount
to the claim that rw is bijective.

It is clear that rw is surjective. If ϑ = 1, injectivity is equivalent to the
fact, due to Steinberg (see exercise 22 in [5, chap. 6]), that (1−w)X is the
co-root lattice of T in G.

For ϑ 6= 1 we compute | det(1 − wϑ)|, in the following table. In the top
row, the upper-left superscript is the order of ϑ.

(Wo, ϑ) : 2A2m
2A2m−1

2D2m
2D2m+1

3D4
2E6

Ω : µ2m+1 µ2m µ2 × µ2 µ4 µ2 × µ2 µ3

| det(1− wϑ)| : 1 2 2 2 1 1

In this table, when Ω is cyclic, the action of ϑ is inversion. For 2D2m the
action of ϑ switches the factors in Ω, and for 3D4, the action of ϑ cyclically
permutes the nontrivial elements of Ω. It follows that in each case, we have
| det(1− wϑ)| = |Ω/(1− ϑ)Ω|. �

8.1. Remarks on H1(F, G). We have seen that if wϑ is a ϑ-Coxeter ele-
ment in Woϑ, then

H1(F, G) ' Ω/(1− ϑ)Ω ' X/(1− wϑ)X.

Let us take a closer look at the group Ω/(1− ϑ)Ω.
The map ω 7→ ω · o is a bijection from Ω to the set of hyperspecial

vertices in the closure of C. This bijection is given explicitly as follows.
Let µ2, . . . , µf ∈ X be the minuscule co-weights [5, p.240], and let Wi be
the stabilizer of µi in Wo. The points

o, xi := tµi
· o, 2 ≤ i ≤ f

are the hyperspecial vertices in C̄. Set ωi := tµi
wowi, where wo and wi are

the longest elements (with respect to Π) of Wo and Wi, respectively. Then
[5, p. 189] we have Ω = {1, ω2, . . . , ωf}, and it is clear that ωi · o = xi. It
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follows that ϑ acts on Ω according to the way ϑ permutes the minuscule co-
weights. The latter is easily determined from the action of ϑ on the Dynkin
diagram of G.

For ϑ 6= 1 one can choose representatives for Ω/(1 − ϑ)Ω as follows.
Note that Ω/(1 − ϑ)Ω is nontrivial only in types 2A2m−1 and 2Dn, where
the dual group of G is SL2m(C) and Spin2n(C), respectively. The non-
trivial element of Ω/(1 − ϑ)Ω is represented by the highest weight µ of
the standard representation of SL2m(C) and either spin representation of
Spin2n(C), respectively.

9. COXETER L-PACKETS

We continue to assume, as in the previous section, that G is simple, of
adjoint type. As above, let F be the Frobenius endomorphism ofG = G(K)
arising from a quasi-split k-structure on G, fixing the hyperspecial vertex
o ∈ A(T), and let ϑ be the automorphism of X induced by F. Recall the
construction of L-packets from section 6: Given a Langlands parameter ϕ :
W → LG satisfying the conditions in section 6.3, the image of Frobenius
ϕ(Frob) determines an elliptic element wϑ ∈ Woϑ. For each λ ∈ X we
have a twisted Frobenius endomorphism Fλ = Ad(uλ)◦F and an irreducible
supercuspidal representation πλ = π(Tλ, χλ) ∈ Irr(GFλ). The pair (uλ, πλ)
determines a G-equivalence class π(ϕ, ρ) = [uλ, πλ] which depends only
on the image ρ of λ in X/(1− wϑ)X . These classes form the L-packet

Π(ϕ) = {[uλ, πλ] : λ ∈ X/(1− wϑ)X}.

In this chapter we explicate these L-packets when wϑ is a ϑ-Coxeter el-
ement in Woϑ. Since G is adjoint, the classes in H1(F, G) parametrize
the inner forms of G. Using Proposition 8.1, it follows that |Π(ϕ)| =
|H1(F, G)|, and for each class ω ∈ H1(F, G), there is exactly one class
[uλ, πλ] in Π(ϕ) with uλ ∈ ω.

From section 8.1 we see that if G is split (ϑ = 1), then

Π(ϕ) = {[1, π0], [u2, πµ2 ], . . . , [uf , πµf
]},

where ui = uµi
, and the µi are the minuscule weights as in Section 8.1. If

G is not split then Π(ϕ) = {[1, π0]} is a singleton, except when G has type
2A2m−1 or 2Dn, in which case Π(ϕ) = {[1, π0], [uµ, πµ]}.

The inducing data for the representations πλ is given as follows. By
Lemma 6.2 we may choose our ϑ-Coxeter element wϑ ∈ Woϑ and λ ∈ X
that xλ ∈ C̄.

Proposition 9.1. With the set-up as just described, the following hold.

(1) The element tλwϑ = wλσλ is a σλ-Coxeter element in Wλσλ.
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(2) The facet Jλ containing xλ is a σλ-Coxeter facet in A, and xλ =
Jσλ
λ .

(3) The torus Tλ is an Fλ-Coxeter torus in G.

Proof. Item 1 is immediate from Proposition 7.4. Item 2, along with the
classification of the various facets Jλ, follows from section 7.4. The con-
struction of Tλ shows that the (G,Fλ)-stable class of Tλ corresponds, under
the map Ψuλ

of Section 8, to the Wo-orbit of wϑ in Woϑ. This proves item
3. �

9.1. An example inE6. To illustrate, we consider the split adjoint group G
of type E6. Then LG = Ĝ is the simply-connected form of E6(C). Suppose
w ∈ Wo = W (E6) is a Coxeter element. Then Cϕ = Z(Ĝ) ' Z/3Z and
the two nontrivial characters of Cϕ are the restrictions of the two minuscule
weights µ, µ′ ∈ X of T̂ . The groups GFµ and GFµ′ are isomorphic, of type
3E6.

Fix an alcove C ⊂ A(T ) and number the simple roots Π corresponding
to C as follows.

1 2 3 4 5

6

Let ri be the corresponding simple reflections, and let r0 be the reflection
about the highest root. Then µ, µ′ are the fundamental weights correspond-
ing to α1, α5 respectively. As Coxeter element for which xµ, xµ′ ∈ C̄
(see Lemma 6.2), we take w = (r0r6r3r2)(r1r3r5r2r4r6)(r2r3r6r0). Here
we have written w in non-reduced form to show that it is indeed a Coxeter
element in E6. One checks that wµ = −µ + µ′, wµ′ = −µ. It follows
that xµ = xµ′ = 1

3
(o + µ + µ′). This point is the barycenter of the trian-

gle J ⊂ C̄ whose vertices are the three hyperspecial vertices o, µ, µ′ ∈ C̄.
Hence Wxµ = Wxµ′

= WJ is the pointwise stablizer of J in W , and has
type D4.

The L-packet Π(ϕ) has the form Π(ϕ) = {π0, πµ, πµ′}, (suppressing
the cocycles) where π0 is induced from the hyperspecial parahoric GF

o in
the split form of G and πµ is induced from the special parahoric GFµ

xµ in
the non-split inner form of G, and πµ′ is the “same” representation on the
isomorphic group GFµ′ .

The decomposition tµw = wµyµ of (35) is obtained as follows. The ele-
ment yµ must be a nontrivial rotation of C. Since wµ fixes J pointwise, it
follows that yµ is the rotation of J sending o 7→ µ, and yµ′ is the opposite
rotation. This means yµ and yµ′ act on WJ = W (D4) by triality automor-
phisms, so the reductive quotient of ḠJ has rational type 3D4 over f. From
Proposition 9.1 it follows that wµ is a twisted Coxeter element in WJyµ,
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and likewise for wµ′ . One can also show this directly, but the computation
is tedious.
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