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1. Introduction

(i) Let G be a simple, adjoint algebraic group over C, with maximal torus T and
Weyl group W. Let V), be an irreducible representation of the simply-connected
cover G*¢ of G with highest weight . Assume V), is minuscule, that is, the weights
of V, form a single W-orbit. Kumar [Ku] has found the decomposition of tensor
products where one factor is a minuscule V,,. Specialized to the case End(V,) =
V,.®V,;, which is now a representation of G, Kumar’s results give a bijection between
the irreducible constituents of End(V),) and double cosets W,\W/W,,, where W, is
the stabilizer of p in W. Namely, to W, wW, corresponds the representation with
extreme weight y — wy.

(ii) An irreducible representation V) of G is called small if twice a root is not
a weight in V). Small representations are distinguished by having remarkable re-
lations, some proven, some conjectural, between the multiplicities of V) in certain
natural G-representations, and the multiplicities of the zero weight space VY in
certain natural W-representations. See for example, [B1-3], [K,$5], [R1-3], [So],
[ST].

For minuscule V),, it is easy to see (§2 below) that any constituent of End(V),) is
small, and that the zero weight space Endz(V),) is isomorphic to the permutation
module Ind%p C, whose constituents are in bijection with double cosets W,\W/W,,.

(iii) Let G’, T, be the dual groups of G and T'. Then the weight ; may be viewed
as a dominant co-weight of the adjoint group G of G. Let ﬁ be the centralizer
of 1 in G (under the conjugation action of G on G4) and 1et P, = 1,0, be a
parabolic subgroup of G with Levi L Let R, be the Richardson class of P in G.

This is the unique unipotent class in G containing a dense subset of U;r Richardson,
Rohrle and Steinberg [RRS] made a detailed study of the classes contained in the

closure R,,, and obtained, among others, the following results. Let W be the Weyl
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group of T in é, and let VAV,L be the centralizer of u. Then the orbits in Rn are in
bijection with the double cosets W,\W /W,. In fact, the orbits and double coset
representatives may be constructed in parallel ways, as follows [RRS Thm 1.2].
Let {,@1, .. ,,31«} be a maximal orthogonal set of long roots of T in U. Such sets are
unique up to W -conjugacy. Let wg € W be the reflection for ,8 Then

Wp, * - wWg,, , kZl,...T

is a complete system of nontrivial double coset representatives for W,,\W/ VAVH. On
the other hand, for each ¢, let ug, be a non-trivial element in the (3;-root group in
U,. Then

Up, -~ -uUg,, ]{121,...7‘

is a complete system of representatives for the nontrivial G-orbits in Ru-

(iv) Let u be a unipotent element of G, and let B, denote the variety of Borel
subgroups of G containing u. It is known that every irreducible component of
B, has the same dimension d(u). Let H*(B,) denote the singular cohomology of
B, with complex coefficients. The cohomology is zero in odd degrees [CLP], and
the highest nonvanishing degree is 2d(u). Springer has defined an action of W
on H*(B,) [Spr]. If u is regular in L,, then by a result of Lusztig we have an
isomorphism of W-modules

x ~ TnaW
In particular there is a geometrically defined W-grading on the permutation repre-
sentation Ind% C.

u
The first main result in this paper gives some connections between the facts
recalled in (i-iv).
The central theme is the attachment of a representation of G to a unipotent class
C in G. Given C, let @ :SLy — G be a homomorphism mapping the nontrivial

unipotent elements of SLs into C. Let A(t) = ¢ ((t) tgl), for t € C*. After

possibly conjugating ¢, we may assume that A is a dominant co-weight of T. View
A as a weight of the dual torus T' in G, and let V) be the irreducible G-module
with highest weight \. We say that V), is attached to C. For example, the adjoint
representation of GG is attached to the orbit of a short root element in G.

Two natural Weyl-group representations arise. On the one hand, we have the
W-action on the zero-weight space V). On the other, we have the Springer rep-
resentations x,,, of W associated to u € C. Here p is an irreducible represen-
tation of the component group A, of the centralizer of u in G“d, and xu,, =
Hom 4, (p, H>¥ ™) (B,)).

The root datum defining G in terms of G gives a canonical isomorphism ¢ :
W —W sending short reflections in W to long reflections in W, and vice-versa.
Let +* denote the pull-back map sending representations of W to those of W.
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Theorem 1. Let V), be an irreducible minuscule representation of G*¢ with highest
weight p. Let L, be the centralizer of p in G, let P, be a parabolic subgroup of G
with Levi factor L, and let R,, be the Richardson class of P,. Then the following
hold.

(a) End(V,) is multiplicity-free, and its constituents are exactly those represen-
tations of G which are attached to the orbits in the closure of R,. More
precisely, we may, in (iii) above, choose the maximal orthogonal set of long
roots {,@1, .. .,BT} in such a way that B1 + -+ + By is dominant for each
k=1,...,r. Let B; be the corresponding co-roots, and set A\, = B1+- -+ Ok,
viewed as a weight of T, and put A9 = 0. Then

End(VM) =V, ®V\, ®---d V),

and Vy, s attached to the class of ug := ug, - -ug
(b) FEach Vy, is self-dual and small.
(c) The zero weight space V) of each constituent of End(V,) is irreducible
under W, and Endr(V),) ~ Ind%ﬂ C. Thus, we have the irreducible decom-
position

k-

Indyy, C=Vy @VY @---@Vy.

(d) In terms of Springer representations, we have
V)f)k ® € 2 1" Xup .15

where € is the sign character of W, and uy, is the unipotent element in (a).

(e) Assume G is simply-laced. Then the grading in (c) is isomorphic to the
grading on H*(B,) for x regular unipotent in IA/,L. That s, we have W -
module isomorphisms

V)?k ~ *H?**(B,), k=0,...,r.
(This is false if G is not simply-laced.)

The original motivation behind Theorem 1 was to use the theory of minuscule
representations to give more uniform proofs of certain facts about small representa-
tions for simply-laced groups observed in [R1,2], and to extend these results to the
non-simply-laced case. This was partly successful, though item (e) in Theorem 1 is
proved case-by-case here. More serious, however, is the unfortunate fact that not all
small representations occur in some End(V),). The rest of the paper therefore puts
End(V,) aside, to study all small representations for all groups. In particular, we
reduce the classification of small representations for non-simply laced groups to the
simply-laced case, using graph automorphisms and Langlands functorality, and we
describe their zero-weight spaces in terms of Springer representations. The results,
which are partial generalizations of those in Theorem 1, have uniform statements,
but some of the proofs, mainly those involving the Springer correspondence, still
rely on case-by-case calculations.

The basic relation between smallness and being attached to a unipotent class is
as follows.



Proposition 2. A small representation Vy of G is attached to a unipotent class
C C G if and only if V) is self-dual.

The small representations and their zero weight spaces were analyzed for simply-
laced groups in [R1,2]. To handle multiply-laced groups, we assume, for the rest
of this introduction, that G is simply-laced, and that ¢ is an automorphism of G
induced by a symmetry of the Dynkin diagram of G (see section 4). Let éa denote
the group of fixed points under o, and let GG, be the dual group of G.. Each non-
simply-laced adjoint simple group is uniquely a G,. The individual cases are given
as follows.

A A

G G G, G,
PGLsy, SLay, Span SO02p41
PSOs Spins G2 G2

Eg B F Fy

(Note that the case G = SLopy1, G’U = S0y, +1 is excluded by the requirement
that G, be simply-connected.)

We say V) is o-stable if A\, viewed as a co-weight of é, has image contained in
G,
Theorem 3. Let G be a simply-laced adjoint group, and let G, be the adjoint group
arising from an automorphism o ofé as above. Then the following hold.

(a) Each o-stable small representation Vy of G is self-dual, hence is attached to
a unipotent class C'y C G.

(b) The intersection C{ = Cy N G, is a single class in G’m and the G-
representation VY attached to C5 is small.

(c) The correspondence Vy — VY is a bijection between the isomorphism classes
of small o-stable G-representations and isomorphism classes of small G,
representations.

One may think of V) as the “functorial lift” of V)7, under the inclusion Gy, = G.

The zero weight spaces V) and [V{]° are related to C' by means of the Springer
correspondence, although this relation is in general less obvious than it was for the
small representations appearing in Theorem 1.

Recall that, given a unipotent class C' in a reductive group, the “associated
special class” is the unipotent class C uniquely characterized as follows [Spl]. First,
Cis special, and contains C' in its closure. Second, there are no special classes other
than C whose closures contain C' and which are contained in the closure of C.

For u € G, let Ag, By, Xa.ps €0 be the analogues for G, of Ay, Bu, Xu,py €-

We again denote by ¢ : W, — W, the canonical isomorphism between the Weyl
groups of G, and G, .

Theorem 4. Let V) be a o-stable small representation of G, attached to the unipo-
tent class C as in Theorem 3. Let CA be the speczal class associated to Cy. Then
CA N G(, 1 a single class in Gg, and for u € C’A N GJ, we have

VY ®e= @ L X, ps Vi’ ®er = @ L X,
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where the sum for V) runs over all irreducible representations p of Ay, and the
sum for [VY1° runs over just those irreducible representations p of AS which factor
through the natural homomorphism A — A,,.

Remarks: The description of V) in Theorem 4 is essentially contained in [R2]; for
self-dual V) (and simply-laced G) the class C turns out to be the “small orbit”
associated to Vy in [R2]. It is known [R4] that if any unipotent class C in G meets
GG, then the intersection is a single class. The content of the first assertion of
Theorem 4 is that C")\ ﬂG’O is non-empty. It is not always a special class in GU. For
the unipotent elements « in Theorem 4, we always have x, , 7 0, but there are a
few cases where x; , = 0, meaning that p does not appear in H 245 (v)(BY),

I thank B. Gross for giving me a preprint of his paper [G], which helped me to
understand the role of the dual group here. I was also influenced by discussions
about small representations with V. Toledano Laredo. Finally, hearty thanks go to
D. Vogan, for his comments an earlier version this paper.

2. Proof of Theorem 1

Since V), is minuscule, we have (u, B) € {-1,0,1} for all co-roots 8 of G, and
every weight in End(V),) is W-conjugate to p — wp for some w € W. Let (, ) be a
W -invariant inner product on the real vector space spanned by the weight lattice
of T, so that (u, B) =2(u,B)/(B, ). Now if § is a root of G and 20 is a weight in
End(V,), say 28 = p — wp as above, we have

(1, 1) = (wps, wp) = (p — 28, p — 26) = (p, p) — 4(, B) + 4(8, B),

SO

(1, 0)
6.5~

a contradiction. Hence every constituent of End(V),) is small.

For wW, € W/W,, let vy, v_.,, denote weight vectors, with the indicated
weights, in V), and V7. If w € W, then w is represented by an element  of the
derived group of the parabolic subgroup stabilizing the line through v,, and w fixes
vy, Now W acts on the zero weight space in V,, ® V', and w fixes v, ® v_,. The
set

(n, B) =2

{Vwp ® V_yy : wW, € W/W,}

is therefore a basis of the zero weight space in V), ® V};'. It follows that
Endr(V),) ~ Ind%ﬂ C.

Since W,\W/W, is represented by the involutions wg, ...wg, [RRS,Thm. 1.2],
it follows that Ind%ﬂ C is multiplicity-free, hence End(V},) is also multiplicity-free.
Both Endr(V),) and End(V,,) have the same number |W,\W/W,| of constituents, so
the zero weight space of each constituent of End(V),) must be irreducible. Since dual
representations have isomorphic zero weight spaces, each constituent of End(V),)
must be self-dual.
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We pass now to the dual group G. Every root 3 in U has the property (p, B) =
1. Let ,81, e ,BT be a maximal orthogonal set of long roots in U, let ,81 be the
corresponding co-roots, and let wg, be the corresponding reflections in W. Then
for w = wg, ... wg,, we have

p—wp=p1+: -+ B

Set Ak := 1+ - - -+ Bg. This is the extreme weight of a constituent Vj, of End(V),).

Each By extends, by Chevalley theory, to a homomorphism ¢g, : SLy — G and
since the (;’s are orthogonal, the images of the g, ’s commute with one another.
The sum 3y + --- + Bk is a co-weight which extends to the map g — ¢r(g) =

©p,(9) ..., (9), g € SLy. Thus, Vi is attached to the class of uy := ¢ (é 1)

The proof of parts (a)-(c) of Theorem 1 will be complete if we can ensure domi-
nance of A\ = 81 + - - - + Bx. The following construction appeared with a different
purpose in the proof of [RRS, (2.8)]. Fix a simple system S of the root system
R of T in G, so that S is the vertex set of the Dynkin graph D of G. For every
JC S, let R(J ) be the based subroot system of R, with basis J. There is a unique

“minuscule vertex” & € S such that (u, &) = 1, and x vanishes on the _remaining
roots in S. Let J; = S, and let 31 be the highest root with respect to R= R(Jl)
Let D; be the subgraph of D whose vertices are orthogonal to ,81. If (B1,4) = 0,
let J5 be the set of vertices in the component of D; containing &. Then & is again
a minuscule vertex with respect to Jy [loc.cit.], and we let 3> be the highest root
in R(J>). Repeat until (8,, &) # 0.

We must show that (\g,4) > 0 for all 4 € S. Suppose first that ¥ € S is not
orthogonal to the highest root ,81. Considering each Dynkin diagram, we find a
unique root § € Jo not orthogonal to 4. Moreover, $ is minuscule for J5 (hence has
coefficient =1 in ,32) and does not belong to J3. In all but one case, 6 and ﬂAl are
joined to 4 by single bonds, so that

(B2,7) = (0,9) = =1 = = (b1, 7).

The exception is C),, where -1 in the line above is replaced by -2.
Now if 7 € J3, we must have (v,4) = 0, else there would be a cycle in D,
involving 4, d, 7. Thus, in all cases, we have

(B1,9) >0, (Br+-+PBr,5) =0, fork>1.

Now let ¥ € S be arbitrary. We may suppose there is a minimal m such that
(Bm,%) # 0. Clearly (A\g,%) = 0 if & < m. It follows that 4 belongs to the &-
component of D,, 1, i.e., 4 € J,,. The previous paragraph applied to S = J,
shows that (Ag,%) > 0 if £ > m, so A is indeed dominant.

Part (d) of Theorem 1 is a special case of a general fact for all small repre-
sentations, to be proved later. It remains to prove (e), so we now assume G is
simply-laced. The small modules and their zero weight spaces were determined
in [R1]. For Es and Er, the assertion (e) is obtained by comparing [R1, p. 439]
with the tables in [BS]. If G = SOy, with 4 = wy, then z is regular in SOq,_o,
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and d(r) = 2 = 7. The calculation of H?(B,) follows from [Sp2], and H*(B,) is
given by the Springer correspondence (c.f. [Ca]). Using the notation of [R1] for
representations of W (D,,), we have

H°(B,) = x(n; —) = Vg,
H?*(B,) =x(n—1;1)=V?

w2 ?

H4(Bw) =x(n-1,1,—-) = V2w1.

Consider now the case SOs, with yy = w, or gp_ = wy_1. The corresponding Levi
subgroups are f’u + ~ GL,. If nis odd, then these Levi’s are conjugate, and the
element z is regular unipotent in GL,,, with partition [n,n|. If n = 2m is even, then
x = x4 are regular unipotent in f’u ., and represent distinct classes with partition
[n,n]. Part (e) amounts to the formulas

H?*(B,) = x(n — k,k) n odd
2 [ x(n—k,k) k<m (n=2m)
Hk(Bwj:)_{ X(m,m)s k=m (n=2m)

For fixed n, the representations on the right side are determined by their dimension,
and we know they all occur in H*(B,), by Lusztig’s result recalled in paragraph
(iii) of the introduction, and the fact that

md? C:{x(n;—)@x(n—1;1)@---@x(m+1;m—1), (n=2m+1)
x(n; =)@ x(n—1;1)@ - @ x(m+1;m—1) & x(m,m)+, (n=2m)

It suffices therefore to prove that the dimension h* of H2*(B,) is given by

(W ke
2

1™ ifk=2=m.

m

*) k=

n

For k = [%} = dim B,, this follows from the Springer correspondence.
For p < g, let B(p, g) be the variety of Borel subgroups of SOy 4) containing a
fixed unipotent element of partition [p, ¢]. Let

hi(p, q) = dim Hor(B(p, q)),

where H, denotes Borel-Moore homology. Recall that dim H,(X) = dim H*(X)
if X is compact. In particular, hy(n,n) = hE. We have hi(p,q) = 0 for k >
dim B(p, q) = [2]. We will also prove, for p < ¢ both odd, 2n = p+¢, and k < 251,
that

(**) hi(p, q) = (Z)

The proofs of (*) and (**) use induction on n. If n = 2, then B, ~ P! x point,
so (x) is true. The only possibility for (xx) is B(1,3) = point, and hg(1,3) = 1, so
(#x) is true.
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Assume n > 2, let V = C?” and let @ be the symmetric bilinear form on V
defining SO, = SO(V). Then B is a connected component of the variety X (V)
of Q-isotropic flags E = (Eqy C Ep C ---Ey) in V with dimE; = d. Let P be
the variety of isotropic lines in the projective space P(V). We have a fibration
n : B — P sending F to E;. For any line L € P, let L+ be the @ ortho-
complement of L. Then @ induces a non-degenerate form on L1/L. We identify
7~ Y(L) = BN X(L1/L) = variety of Borel subgroups of SO(L1/L).

Let m, be the restriction to z-fixed points,

Ty 2 By — Py

Since x has partition [n, n], we have P, = P(V,) ~ P!, and 7 }(L) = B,NX (L*/L)
for L € P,, so we consider the action of z on L*/L.

Write V' as a direct sum V = V; @& V5 of z-stable isotropic subspaces V;, on
each of which z has a single Jordan block of size n, and let N = z — I. There
are bases {v1,...,vp} of Vi and {v_, ,...,v_1} of V5 such that Q(v;,v_;) = &;j,
and Nv; = v;_q for 2 <4 < n, Nv_j; = —v_j_; for 1 < j < n—1 and ker NV
is spanned by {v1,v_,}. Then L is spanned by a vector £ = avy + bv_,, and
we choose ¢/ = cv,, + dv_1 nonzero such that Q(¢,¢') = 0. One checks that the
kernel [L+/L]y of the map N on L1/L induced by N is spanned by the images
of {v1,v_y, avy — bv;_,}, hence dim[L+ /L] = 2, so N has Jordan partition [p, q],
with p < ¢ < n and p+q = 2n — 2. Moreover, N*~ ¢/ = ce; + (—1)""'de_,,, which
belongs to L iff n is even or ab = 0.

Thus, the map 7, : B, — P, has the following structure: If n is even, and
T = r4, then 7, : B, — P! is a fibration with fiber B(n —1,n—1). It follows that

(A) hg(n,n) =hg(n —1,n—1)+ hg_1(n —1,n — 1) (n even).

If n is odd, let Ly, L_,, denote the lines through vy, v_,,, so that P* —{L,,L_,} =
C*. Define

7 =r; Y (L) un; (L y), U=B,—7Z=mn,(C*).

Then Z consists of two disjoint copies of B(n —1,n — 1), and 7, : U — C* is a
fibration with fiber B(n — 2,n), so

dim Hox (U) = hg—1(n — 2,n), dim Hog1(U) = hg(n — 2,n).

Since Ho,qq4(B(p,q)) = 0, the long exact sequence arising from the inclusion Z <
B(n,n) gives an exact sequence

0— H2k+1(U) — Hgk(Z) — Hgk(B(n, ’I’L)) — sz(U) — 0.
It follows that
(B)  hg(n,n) =2hgx(n —1,n—1)+hg_1(n—2,n) — hx(n — 2,n) (n odd).

Suppose y € SOy(pq) is unipotent with partition [p, ¢, and p < g are both odd.
We again have P, = P(V,) = P!, and a similar calculation shows that the map
my : B(p,q) — P! (restriction of 7) is a fibration above C with fiber B(p — 2, q),
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while 7' (c0) = B(p, ¢ — 2) (where oo € P! is the kernel of y — 1 in the g-block).
The long exact sequence now gives

(®) hi(p,q) = hx(p,q —2) + h(p — 2,q) (p < g both odd).

Finally, assuming (%) and (*x) hold for all n’ < n, formulas (A-C) show that (x)

and (xx) hold for n, using the identity (Z) = (”;1) + (Z:})

The proof of Theorem 1(e) for SL,, goes along the same lines, using an analogue
of formula (C). We omit these details.



3. Representations attached to unipotent orbits.

Let V) be a representation of G of highest weight A, and let C' be a unipotent
class in G.

3.1 Definition. We say that V) is attached to C if the co-weight X : C* —
G is of the form A(t) = go(é t91>’ t € C%, where ¢ : SLy — G is a
homomorphism mapping the nontrivial unipotent elements of SLo into C.

Concretely, this means that if « is a simple root in G, then the integer attached
to the a-node in the weighted Dynkin diagram of C is equal to (), &), where ¢ is
the corresponding co-root of G.

Assume for the time being that G is simply-laced. Then we can identify unipotent
classes in G and G having the same weighted Dynkin diagram. For every small G-
module V), there is a unique unipotent class Cy C G and an integer d(\) such that
C) is minimal among all orbits whose ring of functions contains V) in degree d()).
Moreover, if u belongs to the dual of the special class C, associated to C, then
d(\) = dim B, and V{? ~ H?4®)(B,). All of this is proved in [R2].

3.2 Proposition. Assume G is simply-laced, and Vy is small. Then V) is attached
to some unipotent class C, in the sense of 3.1, if and only if Vy is self-dual. In this
case, C = C,.

Proof. We make some remarks on the individual groups, ignoring the trivial repre-
sentation, and complete the proof with a table.

G = PGL,: The weighted Dynkin diagram D(C') of a unipotent class C is invariant
under the graph automorphism, so V) can only be attached to a unipotent class if
it is self-dual. Now every small module, or its contragredient, has highest weight a
partition A of n, and V) ~ V}* if and only if A = [2k17=2k] for 1 < k < %. In terms
of fundamental weights, we have A = A + A\,_g. On the other hand, X is also the
partition giving the Jordan blocks of elements in C.

G = SO, : All representations are self-dual if n is even. The classes C) are
determined by their partitions except Cy = [2™]4, which are the Richardson classes
in P,, (section 2). If n is odd, the only small modules which are not self-dual are
Va4, and its dual. For these A, the element & of the sl-triple for C is given in
[R2, 5], and we do not have a(h) = (A, &) for all simple roots «.

G = E, : The non-self-dual small modules occur only in Eg, where all diagrams
D(C,) are invariant under the graph automorphism, so these modules are not
attached to unipotent classes. The self-dual small-modules V) are listed below,
along with orbit C to which they are attached.
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G

PGL,
PGL,

PSSO,

PSOs,

PSSO,
PSO4m
PSOu4p,

>\q+)\n—q: (1 <g< %)

2\, (n = 2m)

)\2qa (1 Sq< %)

A1+ A2¢—1, (1<g< 3)

21
2)\2m
2)\2m,—1

A3
A1+ A5
A6

A6 + A7
2)6

A2

A1

Cx

[291724]
[2™]

[22q14m—4q]

[322q—2 14m—4q+1]

[314m—3]
[22™]

[22m] _

3A;
24,
Ay

4A,
(341)"
(341)'

24,

4A,4
34,
244

11

00100
0
10001
0

00000

000001
1

000002
0

010000
0

000010
0

100000
0

0000000
1

0000010
0

1000000
0

0000001
0



4. Multiply-laced groups

In this section we prove Theorem 3. We continue to assume G simply-laced,
simple, and adjoint. The dual group G is simply-connected. A “graph automor-
phism” of G is defined as follows [S, §8]. Fix a maximal torus and Borel subgroup
T C B and non-trivial root elements u, € B for each simple root « of T in B.
Any symmetry o of the Dynkin diagram of G extends to a unique automorphism
of G‘, again denoted by o, which preserves T and B , and permutes the elements u,,
according to the original diagram symmetry.

Let R C Y denote the co-roots and co-weights of T. Then ¢ permutes the
elements of R and Y, as well as the set S C R of simple co-roots. We have Y = ZS,
since G is simply-connected.

Now assume that o is chosen so that the fixed point group G, is also simply-
connected. For any co-root o € R, let @ = a+ oa + - -+ be the sum of the distinct
o-translates of . Our assumption implies that distinct o-translates are orthogonal
to one another. Hence, if (, ) is a W-invariant inner product on Y, we have

(o, @) = m(a, ),

where m € {1,2,3} is the number of distinct o-translates of a.

Let S’ be a set of representatives of the o-orbits in S, and let S, = {a: a € 5'}.
The short elements of S, are those for which @ = a.

The fixed point group T, is a max1mal torus of G,. Its co-weight lattice is Y,
and S, is a set of simple co-roots of T,. Since G, is simply-connected, we have
Y, = ZS,, and moreover Y, NZ>oS = Z>0S,-.

Now the highest co-root (8 of G (with respect to S) is unique, hence is fixed by
o, and (3 is the highest short co-root of ég. If A €Y,, then A\—283 € Y,, so we have

(4&) A— 2/3 € ZZ()S -~ A— 2/3 € ZZOSO"

Let G, be the adjoint group whose dual is éa. Then G, has a maximal torus
T, whose character group is identified with Y,, and S, is a set of simple roots of
T, in G,. Note that G, is not necessarily a subgroup of G.

We say the irreducible G-representation V) is o-stable, if A € Y,. If X is dominant
with respect to S, then X is also dominant with respect to S,, and is the highest
weight of an irreducible G, representation V.

A representation of an adjoint group is small exactly when twice the highest
short root /3 is not a weight, which by saturation of weights is equivalent to 26 £ A,
in the usual partial order on weights. from (4a), we see that V) is small for G if
and only if V7 is small for G, .

If G has type A, Dam+1, Eg, then V) being o-stable is equivalent to its being
self-dual, and if G has type Ds,, then V) is always self-dual. By 3.2, every o-stable
small Vj is therefore attached to a unipotent class C C G. Since ) is fixed by o,
we can choose ¢ : SL2 — G to have image in Ga, hence VY is attached to the
unipotent class C§ C G containing the image under ¢ of the nontrivial unipotent
elements in SLy. By [R4, Cor. 4.3] we in fact have CJ = G, N Cy. This proves
Theorem 3.

We tabulate the bijection of Theorem 3 below. For G = SLo, the relevant
unipotent classes are
— [2k12n—2k]
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each of which meets Gy = Spon in a single class, denoted wuj.
For G = Spiny,, , 5, the relevant unipotent classes are given by their partitions in
S032y,+2 as follows

zp = [22P12P P2 (0 < 2p <m), yg =[3220721%" M3 (1< 29— 1< n).

Each of these classes meets Spin,,, , ; in a single class, denoted z7, yg, respectively,
whose partition is obtained by removing a 1 from the corresponding partition in
Spiny,, ; 5-

For the exceptional groups unipotent classes are denoted as in [Ca]. In the table
below, the columns are respectively G, the highest weight of the small module Vj,
the Dynkin diagram D(C) ), the Dynkin diagram of D(CY), the name or partition
of the class C§ C Gy, the highest weight of the G,-module VY, and the group
G,. We denote by A; the fundamental weights of G*¢, and by w; the fundamental
weights of G2, using the indexing given in section 3, along with 1 = 2 for G, = G2
and 12 = 34 for G, = Fj.

G Vi Cx D(Cx) D(CY) cx VY G,
k k
PGLQn )‘k+)‘2n—k U 0---010---010---0 0---010---0«<=0 ’U,Z W SOzn+1
PGLs, 2\ Unp 0..-020---0 0---0<2 u; 2wnp  SO2p41
J J
PSO2n42 Xj x5 0010+ 00  0.-010--0=0 =5, wj  PSpan
0
(7 even,<n)
0---0 01 .
PSO4m+2 An+An41 Tm 1 0---0=1 T, Wn PSpan
(n=2m)
k k
PSOQn+2 A1+ Ak Y41 1---010-- 00 10..--010---0=0 y‘z 1 witwg PSpan,
2 0 =
(k odd,<n)
14001 v
PSOum AFAn+An41 Ym 1 10.--0=1 Y witw, PSpa,
(n=2m—1)
PSOS >\2 ] 0 (]i 0 Oel A]_ w2 G2
101 ~
PSOg A1+Az+Ag Y2 1 1&0 Ay w1 G2
Es As 34, 00 (1) 00 00<10  Aj4+A;  ws Fy
Es AL+ As 24, 1o g 01 10400 i, w1 Fi
Eq X6 A, 00000 0001 A, wa Fy
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5. Zero Weight Spaces

In this section we prove Theorem 4. Recall that G is simply-laced. Let V) be a
small o-stable G-module, attached to the unipotent class Cy. Let C be the special
class attached to Cy by Spaltenstein. By [R1,2] we have

VW®e= @L*Xu’p

for u € C.'A, summing over all characters p of A,. We verify an analogue of this for
the G,-module VY, using case-by-case calculations. The zero-weight spaces of the
non-simply laced small representations are calculated as in [R1], and we omit these
details. We refer to [Cal for the Springer correspondence.

4.1 Theorem. The class C.’A meets G’U i a single unipotent class CK of G‘U. For
u € Cf, we have

[V)\U]O b € = @ L*Xu,pa

where p runs over those irreducible representations of AS which factor through the
natural map A — A,.

Proof. In the table below, we denote representations of a Weyl group of type B,
by a pair (o, 3) of partitions with sum |a| + |3| = n. For exceptional Weyl groups
we use the notation of [Ca]. For the class y, = [32297212"749+3] in SOy, 2, the
associated special class is z; = [3222¢74127~44H] and 27 = [3%220~ 412"~ 4a+3] iy
S02n+1- .

For u € C§ we give the Springer representation x, ,, with x, 1 listed first.
This is a representation of the Weyl group of Gy. In the next column we give the
representation of the Weyl group of G, on [VY]°®e€,. An entry < means that entry
is the same as the one immediately to the left (+* is the identity in the standard
partition notation for classical Weyl groups).
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G A Cx A, AS CY H?do (W) (B7) VY1°®eo vy Go

PGL4, Ar+Aon_k up 1 1 ug (1p,1n—p) (k:2p) — Wi 502n+1
(2An (1" 7P ,1P) (k=2p+1) — (2wn,
if k=n) if k=n)
P302n+2 AQP T, 1 1 wg (_72p1n—2p) — w2p PSpoy
(2p<n)
P502n+2 A1+>\2q_1 Zq Sz SQ zg (1,2q—11n—2q+1) < w1+w2q_1 PSan
(1<2g—1<n) ) @
(-,327721n—2a+1 —
PSO2p 42 21 Y1 1 Sy yi’ (l,ln_l) — 2w1 PSpan
PSOum Mi+An+Ant1 z2m S2 S22 zp, (1,21 — witwn_—1 PSpan
(n=2m—1) ® ®
(-,32m72) «—
PSOS )\2 X1 1 1 Al ¢;_’13 (}5;_13 w2 GQ
PSOg  Ai+A3+A43 22 S2 S3 Ga(a1) P21 @ ¢'1,3 $2,1 w1 G2
Eg A3 Ay S S2 A P50 ® ¢ 12 Pro @ b112  ws Fy
Eg A1+As 24, 1 1 Ay ¢4,13 D ¢'2,16 b4,13 w1 Fy
Eg A6 A 11 Ay ¢’2’,16 ¢’2,16 w4 Fy

Theorem 4 is clear from the table in those cases where A, = 1. For u = 2, in
SOg2p+2 the map A — A, is induced by the inclusion Og,—4q+3 = O2p—1q+4
which is an isomorphism on component groups.

Suppose u = z9 in PSOg. We have A? = S5, and d, (u) = 1. The sign character
sgn of S3 does not appear in H?(BY), S0 Xuy,sgn = 0. The reflection representation
of S3 does not factor through any map S3 — S2, so Theorem 4 is verified in this
case.

Suppose that u has type Ay in Fg. Let W be the Weyl group of Fg. Let wq, aq
denote the longest element of W and the highest root in Fg, respectively. Then
we may take u = exp(eqs + €ag—as ), Where eg is the root vector for a root 3. Let
W = WoSa, € W. Then w switches ag and ag — ag. Let T be a o-stable maximal
torus in G, with normalizer N. Since w is o-invariant, we may, by [S, (8.2)], choose
a representative n for w in N Multiplying n by an element of TU if necessary, we
may assume n switches en, and eq,_qq, 50 1 belongs to the centralizer of v in G.,.
It remains to see that n represents the non-trivial class in A, = Sa. Let {e, h, f}
be an slp-triple for e = eqy + €ag—aq, and let g; be the i-eigenspace of ad(h) on
g = ¢¢. Then gy = glz and e belongs to the dense orbit of GLg on gy = /\3 CS. In
terms of a basis {v; } of CS, we have e = vy Avy Avs +v4 Avs Avg, where one wedge
product corresponds to e, the other to ey, _q,- The connected centralizer of e is
the obvious SL3z x SL3, and the component group of the centralizer is generated
by the element of GLg which switches the two wedge products in e. This proves
the claim, and completes the proof of Theorem 4.
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