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1. Introduction

Among the finite dimensional representations of PG L, (C), those whose highest
weight is a partition of n enjoy special properties. For example, the zero weight
space in such a representation is the irreducible representation of the symmetric
group corresponding to the dual partition. This was generalized in [R] to the
other simply laced groups, as follows. Let g be a simple complex Lie algebra of
type A, D or E, with adjoint group G. A finite dimensional representation V' of
G is small if twice a root is not a weight of V. The small modules of PGL,,(C)
are, up to contragredient, exactly those whose highest weight is a partition of n.
In [R] we found a bijection from small irreducible representations of G, modulo
contragredients, to those nilpotent G-orbits in g lying in the complement of the
closure of the unique maximal non-special orbit (which exists). Let us call such
orbits and their elements big. In type A all orbits are big. In D,, and Eg 7 g there
are n + 1,6, 6,5 big orbits respectively.

The bijection is determined by zero-weight spaces and the Springer correspon-
dence, as follows. For any nilpotent element u € g, let B, be the variety of Borel
subalgebras of g containing u. Let V' be an irreducible small module. Then the
zero-weight space V7 is isomorphic, as a Weyl group representation, to the Springer
action on the entire top non-vanishing cohomology group of B, (which may be re-
ducible), for some nilpotent element u = u(V'). The orbits of the u(V')’s are exactly
the big nilpotent orbits, and u(V') = u(V”’) for different small modules V, V' if and
only if V' is the linear dual of V.

The main purpose of the present paper is to give another connection between V'
and u(V), in terms of polynomial functions on the “subdual orbit” of u(V).

To explain “subdual”, we first recall that the big nilpotent orbits are special. Let
O — Oy be the order-reversing duality on the special orbits. The boundary 0O of
a nilpotent orbit O is defined as the complement of @ in its closure O. Given a
big nilpotent orbit O, the subdual orbit Oy is defined as follows. If every maximal
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orbit in 00y is special, we define Osg = O4. Otherwise, inspection of cases (§5,6)
shows there is exactly one nonspecial maximal orbit in 00,4, and then we take Qg4
to be this nonspecial maximal orbit.

It turns out that Oy = Oy exactly when the centralizer of a point in Oy is
connected, and the centralizers for O,y are always connected. Let us call a nilpo-
tent orbit small if it is the subdual of a big orbit. Distinct big orbits have distinct
subduals. Thus we also have a bijection between small modules, modulo contra-
gredients, and small orbits. For Er, Eg and Ds,,_1, the union of the small orbits is
closed in the null-cone, but it is not closed in Eg or Ds,,.

Main Theorem. Assume G is adjoint of type ADE. Let V be an irreducible
small G-module whose zero-weight space is the Springer representation on the big
nilpotent orbit O. Let d(u) = dim B,,, for u € O. Then V appears with multiplicity
one in the space R¥ ™ (0,4) of regular functions of degree d(u) on the subdual orbit

of ©. Moreover, V' can appear in R*™)(O") for another nilpotent orbit O’ only if
O, <O

For PGL(n), a stronger version of this result follows easily from results of Borho,
Kraft and Procesi (see §4). This was mentioned in the announcement [B2], which
overlaps with our theorem for PGL(n), since here all orbits are of Richardson type.
In other groups small orbits are usually not Richardson.

In type D most, but not all, small orbits have normal closures, and the theorem
can be sharpened in those cases, since, when Qg4 is normal, we actually have V) C
R¥®)(Q,4). This might be true in general, since we always have V) C R¥®) (N,
where N is the variety of nilpotent elements in g (see 3.3).

The theorem was already known for the adjoint representation, where u = u(V)
is subregular, and B, is a union of rank G projective lines (in the simply-laced
case). The dual of the subregular orbit is the minimal orbit O, and the G-
module R(O,ir) of regular functions on O,y is Ve, in degree d, where oy is the
highest root and V) denotes the irreducible module with highest weight A\. Thus
g = V,, occurs once in R(Opin), in degree equal to the dimension of B, and does
not occur in the boundary of Opip (which is just the zero orbit).

The proof of the main theorem is based on the following preliminary result,
which may be of independent interest, since it extends to arbitrary nilpotent orbits
certain results of Kostant on the regular orbit.

Let G be any simple complex Lie group, and take any nilpotent orbit O in g.
Let (f, h,e) be the sl(2)- triple attached to O. We choose h in a Cartan subalgebra
t, such that a fixed set of positive roots are non-negative on h. Let G, be the
centralizer of e € O, let L = GG}, be the centralizer of h, and let M = L. be the
centralizer of e in L. Let U be the unipotent group generated by root-groups for
roots taking positive values on h. If X is a weight of ¢, let £, be the corresponding
character of the maximal torus T' = expt, let V) be the simple G-module with
highest weight A, and let V) be the linear dual of Vj.



Proposition 1. Let O be a nilpotent orbit, and Vy a simple G-module, with nota-
tion as above. Then
(1) Homg (Vy, RH(0)) ~ V/\Ge (2d), where V3¢ (2d) is the 2d-eigenspace of h on
the invariants of G. in V. In particular, Vy cannot appear in R4(O) when
2d > A(h).
(2) If A(h) = 2d, then Homg (Vy, R*(©)) is isomorphic to the M -invariants in
the simple L-module V)\U.
(3) Suppose &y extends to L, and A(h) = 2d. Then the multiplicity of Vy in
RY(0O) is at most one, with equality if and only if &5 is trivial on M.

When O is the regular-orbit, we have L =T, M = 1, and these are well-known
results due to Kostant [K]. In general, M is reductive, but sometimes disconnected.
Proposition 1 is proved in section 2 of this paper.

We prove one more result about multiplicities of small modules. To introduce
it, we return to the adjoint representation. G is still simply-laced. Let A be the
nilpotent cone in g, and let R? be the regular functions on A of degree d. For a G
module V', we have the multiplicity polynomial

P(V,R,q) =) dimHomg(V, R%)q".
d>0

Kostant proved that
P(g7R7Q) :qml ++qml,

where the m;’s are the exponents of the Weyl group.

Let F, be a finite field with ¢ elements, where the prime divisor p of ¢ does
not divide the coefficients of the highest root. Let G be the split simply-connected
group over I, having root datum dual to that of G, with Frobenius F. Let p(t) be
the reflection representation of G¥. It was observed by Kilmoyer that, for simply
laced G, we have

dimp(t) = ¢"™* +--- 4+ ¢™.

We generalize this to small modules as follows. Let V' be a small module for a
simply-laced group G with Weyl group W. Let II be the representation of G¥
induced from trivial on a Borel subgroup. The endomorphism ring of II is isomor-
phic to the group algebra of W. Hence the W-module V7T corresponds to a G¥
representation p(V7T) whose constituents occur in II. We prove

P(V,R,q) = dimp(V").

This could be checked case-by-case, but we give a uniform proof, based on
Lusztig’s theory of families of unipotent representations. In fact, we have a more
general equality of characters:

Proposition 2. For small V and g € G, we have
tr(g, p(V")) = tr(F, [H(By) @ VT]").

Here H(B,) is the £-adic cohomology of the fixed points of g in the flag variety
B of G. The W-action on H (Bg) was constructed by Lusztig, generalizing that
3



of Springer, and the right side of proposition 2 is a linear combination of Green
polynomials.

Inspired by Gan’s formula for the trace of a semisimple element on p(t) [Ga], we
reformulate the right side of Proposition 2 in terms of the motive of G, defined by
Gross [G]. Actually, we need to generalize Gross’ motive, to make the connection
with Green polynomials. See §8. I am grateful to Gan and Gross for instruction
on motives.

For interesting interpretations of multiplicities of small modules in other orbits,
see [B2], [B3], [Ri] and [ST].

Lusztig has shown me how the result in [R] may have an intersection cohomo-
logical proof, based on the last sentence of [L4], and the method of [L2]. Though
there remain some obstructions to carrying this out, it seems likely that such ideas
may also be applied to this paper. I thank Lusztig for these insights, along with
Gross and Kostant for their comments on an earlier version of this paper.

2. Functions on nilpotent orbits

Fix a Borel subgroup and maximal torus b D t, with corresponding roots, positive
roots and simple roots A D AT D X. Let W be the Weyl group of t.

(2.1)
Let e € g be nilpotent, and let O be the adjoint orbit of e. There is a homo-

morphism ¢ : sl(2) — g, with ¢ (g (1)) =e,and h := ¢ ((1) _01> € t, such that
a(h) € {0,1,2} for all simple roots a.. Let s be the image of ¢.
Set
gi={zeg: [hz] =iz}, and  g>m = @ 9
>m

for any m. Then g = ®;g; and the subalgebras

p=g>0, u=g>1, [=go
are respectively parabolic, nilradical therein, and Levi component. We let P,U, L
be the corresponding subgroups.
Let M = L. be the centralizer of e in L. Then M is also the centralizer in G of
s. In particular, the identity component of M is reductive. We have [BV]
G. = MU,, (semidirect)

and U, is the unipotent radical of G..
The centralizer G is contained in the normalizer of e, defined by

N={geG: Ad(g)e e C*e}.
We have an exact sequence
155G - NX5C* -1,
where Ad(n)e = x(n)e, for n € N.

(2.2) For any variety X, let R(X) be the ring of everywhere-defined rational func-
tions on X. When X has a C*-action, we let R%(X) denote functions of degree
d.

The h-part of the s[(2)-triple (f, h, e) shows that any nilpotent orbit O is closed
under scalar multiplication by C* in g. Hence the same is true of the closure O, and
we may consider R4(0) and R%(0). The multiplicities in R%(O) can be computed,
in principal, from “graded Frobenius reciprocity”, as follows.
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Proposition. For any G-module V, we have
Homg (V, R4(0)) ~ Ve (2d),

where V is the linear dual of V., and VS« (2d) is the 2d eigenspace of h in the
invariants of Ge in V.

proof. We give two proofs. First, view R(O) as right G.-invariant functions on G.
The ungraded Frobenius reciprocity isomorphism is

V& — Homg(V, R(0)),

via v = ¢, and ¢, (€)(g) = €e(gv), for e € V, g € G.

Note that N normalizes G, and acts semisimply on V% . Also N has a right
action on O = G/G,, commuting with G, hence G x N acts on R(O), and the
Frobenius reciprocity isomorphism is /N-equivariant. It remains to check that
VG (2d) = {v € V: nv = x(n)%}, and RY(O0) = {f € R(O) : f(gn) = x(n)*f(9)}
are the corresponding N-eigenspaces.

The second proof is longer but perhaps more descriptive. For any character p
of N, let E, = G xn C, be the homogeneous line bundle over G/N on which
N acts by p on the fiber over the identity coset. So E, is the set of pairs [g, 2],
g € G, z € C, with identifications [gn, 2] = [g, u(n)z] for n € N. Let E be the
complement of the zero section. It admits a C*-action by multiplication in the
fibers: t[g, z] = [g,tz]. The map

E, — O, (g, 2] — zAd(g)e
is a G x C* equivariant isomorphism, so
RY(0) ~ RY(EY).
Let I'(E,-a) denote the global sections of the bundle E,-« — G/N, sections

viewed as regular functions s : G — C satisfying s(gn) = x(n)%s(g). If f €
RY(E3), we define the section sy € T'(Ey-a) by sf(g9) = f([g,1]), and if s is a
section, we define f, € RY(ES) by f,([g,2]) = z%s(g). Thus,

RY0O) ~T(E,-a)
as G-modules. By ordinary Frobenius reciprocity, we have
Homg (V,I'(E,,4)) = Homy (V, x~%) = Hompy (x%, V) = V(2d).
d

Corollary 1.
(1) If AM(h) < 2d then Vy does not appear in R*(O).
(2) RY(O) =0 ford<0.
(3) R°(O) contains only constant functions.

proof. Since the positive roots are non-negative on h, we have V) (2d) = 0, unless
A(h) > 2d. For (2), note that V& C V¢ and the h-eigenvalues in V¢ are > 0.
For (3) we have V% (0) C V¢(0) = V*. Hence V%(0) is killed by the subalgebra
generated by g¢ and s. This subalgebra is all of g, since any s-module is generated
by its highest weight vectors. [

Note that assertions (2) and (3) are false for general group actions (take G =
C* x C* acting on itself by multiplication, with diagonal C*-action).
We will later need the following consequence of Corollary 1.
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Corollary 2. Suppose A(h) < 2d and Vy appears in R*(O1) for some other nilpo-
tent orbit Oy with sl(2) triple (f1, h1,e1), with all positive roots non-negative on hy.
Then

A(h1) > 2d > A(h).

(2.3) At the borderline A(h) = 2d, we have

2d
Vi = @ Va()-

j=-—2d

Recall that G, = MU,. Since acting by u increases h-weight, u must kill V) (2d).
Hence V¥V D Vi (2d) # 0. But V¥ is an irreducible L-module, and L centralizes h,
S0

VY = Va(2d) 2 Vi7e(2d) = V1M,
We have proved

Corollary. If A(h) = 2d, then the multiplicity of Vy in R*(O) is the dimension of
M -invariants in the irreducible L-module VAU.

For example, if go embeds in VAU as M-modules, then e itself provides an M-
invariant in VU, so Vy appears in R*®/2(0).

(2.4) If X and h are related in a certain way, it is easy to find the M invariants in
VY.

Definition. We say A < h, if whenever « is a simple root with a(h) = 0, then
also (A, &) = 0. Equivalently, A < h if £\ extends to L.

Later, we shall find A < & in the following situation. G will be simply laced,
with Killing form normalized to give all roots squared-length two. Viewing A € t
via this inner product, we will have A = h, which implies A < h.

We now complete the proof of Proposition 1 in the introduction.

Proposition. Suppose A\(h) = 2d, and A\ < h. Then Vy has multiplicity at most
one in R*(O). The multiplicity is one if and only if the character &y is trivial on

M. Finally, Vy does not appear in Rd’(O) ford > d.

proof. The last assertion is a reformulation of (2.2), Corollary 1. Since A(h) = 2d,
we have Homg (V, R4(0)) ~ VUM by Corollary (2.3). Since A < h, the L-module
VU is one-dimensional, affording ¢,. O

Remark. It can happen that &, is nontrivial on M, though this can sometimes be
ruled out a priori. If it is known, for example, that M belongs to the derived group
L', or that M is itself connected semisimple, then &, is automatically trivial on M.

(2.5) If we consider the orbit closure, we sometimes get vanishing in low degrees
as follows. The birthday of a simple module V) is the lowest degree d such that
Vy appears in the space RY = RY(N) of degree d functions on the null-cone N
This is a more subtle invariant than the deathday, which Kostant showed to be the
height of A, and which we have just found for smaller orbits and certain modules.
A combinatorial formula for the birthday of self-dual modules was independently
proved by Joseph [J, §4] and Kostant (unpublished). For small modules (self-dual
or not) there is a geometric interpretation of the birthday (see section 3 below).
Let O be the closure of a nilpotent orbit O, with s[(2) triple (f, h,e).
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Lemma. Let d be the birthday of a simple G-module V. Suppose
(1) A(h) =2d, and
(2) Vi has multiplicity one in its birthplace R4(N), and
(3) this incarnation of V) does not vanish on O.
Then Vy has multiplicity one in all of R(O). If Oy is another orbit with triple

(f1,h1,e1) such that Vy appears in R(O;), then A(h1) > A(h).

proof. Conditions (2) and (3) force V3 to have multiplicity one in R?(0). Suppose
d' is any degree and Vy — R% (0). Since R% (O) C R¥(0), proposition 1 says
2d' < A(h) = 2d. Since R (N) surjects onto R (O), we have 2d’ > 2d, by the
definition of birthday. Hence d' = d.

Now suppose Vy < R%(0;). Then with the same arguments, we have A(hy) >
2dy > 2d = A(h). O

The conditions of this lemma will be seen to hold for those small orbits in type
D and FE having normal closures.



3. Small modules

In this section we recall some results of Broer [B], combine them with [R] and
[BM], and determine the birthday of small modules in the simply laced case.

(3.1) Recall that R = R4(N) is the space of degree-d regular functions on the
nilpotent variety of G. Let H¢ be the W-harmonic polynomials on t of degree d.
We will need the following theorem of Broer.

Theorem [B]. V is small if and only if
Homg(V, R%) ~ Homy, (VT, HY).

One might ask if Broer’s theorem generalizes to say the multiplicity of a small V'
in R%(0) equals that of V7 in the scheme theoretic intersection R4(tN ). This at
least holds for PGL,, (see §4 below) and Broer’s theorem itself implies one direction
in general.

Corollary [B, p.388]. Assume V is small, and let O be any nilpotent orbit. Then
in each degree d, we have

dim Homg(V, R4(0)) > dim Homy (VT, R%(t N O)).

Another distinguishing feature of small modules is contained in Broer’s proof of
the previous corollary, but we give a more direct proof here.

Lemma. Let L be a Levi subgroup of G containing T. Let Wi, be the subgroup of
W generated by reflections from L. Then for small V, we have

VL — [VT] Wr .

proof. Clearly the left side is contained in the right, for any V. Since L is generated
by rank one Levi subgroups L, for simple roots a in L, we have VI = nVEe,
intersection over simple « in L. A similar intersection holds on the Weyl group
side, so we may assume L = L,. Let e, be a simple root vector for . Then
e2VT =0, since V is small. Thus the L, module V(L,) generated by V7T contains
only the trivial and adjoint representations of SL(2) C Ls. The reflection s, is +1
on the zero weight space of the trivial part of V(L,), and —1 on the zero weight
space in the adjoint part. [J

Remark. If O is a Richardson orbit in a parabolic with Levi L, then the lemma,
combined with Borho-Kraft [BK] or McGovern’s formula [M], says

dim Homg(V, R(0)) = dim VF = [vT]Wz,
Broer [B2] has conjectured a graded version of this.

(3.2) From now on, we consider only simply-laced groups. Let V' be an irreducible
small G-module. By [R], there is a big nilpotent element u = u(V) € g, unique
up to conjugacy, such that VT ~ H24(®)(B,) as W-modules, where d(u) = dim B,,.
Combining this with Broer’s theorem, we get, for any d,

Homg(V, R%) ~ Homy (H2*™ (B,), H%).

These multiplicities can be found in [C]. From this and [BM, cor. 4] we conclude
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Proposition. The birthday of the small module V is d(u) = dim By, and V appears
in R¥®) with multiplicity one.

4. Type A

In this section, G = PGL(n), and we show how a result stronger than the main
theorem follows from work of DeConcini and Procesi. It was already stated in [B2]
as evidence for a conjecture on multiplicities of small modules in functions on covers
of Richardson orbits. We give a proof here.

Let A = [A1 > Ay > -] be a partition of n, with dual partition A, and let
u be a nilpotent matrix with Jordan blocks of size \'. We write By, for B,, and
then d(u) = d()) = >.A? — n. The sub-dual (i.e. dual) orbit of u has blocks
of size A, and we write Q) = O4q. It is the Richardson orbit for the parabolic
subgroup P, whose Levi subgroup has blocks X'. The G-module V) has zero
weight space V)\T =H d(X)(B)\/), classically known as the irreducible representation
xx of W = S,, corresponding to \'.

Proposition [B2].
HOIIlG(V)\, Rd(éu)) >~ HOIHW (X/\r, sz(Bﬂl)).

This immediately shows that Vy has multiplicity one in R¥*)(D,). By [Kr], we
have

H(B“r) = qu’v

where 1), is the induction to S, of the trivial representation on the Young subgroup
of type p. It is well-known that v, contains x,» with multiplicity one, and contains
Xy only if v/ > /. This last is equivalent to O, > O,, so the proposition says V)
can only appear in functions on orbits whose closure contains (0. This proves the
main theorem in type A.

proof of the proposition. de Concini and Procesi [CP] found an isomorphism of
graded rings o
R*(tn0,) ~ H?>*(B,),

so by lemma (3.2), we have
dim Homg (V, R*(0,,)) > dim Homy (VT, R4(tn0,,)) = dim Homy, (VT H?4(B,/)).
It suffices to prove equality after summing over all d. By [BK] (see remark (3.2)),

we have

~ — L,
Homg(V)\, R(ON)) ~ V>\ m

The latter space is [V,]%+" by lemma (3.1), and
(V{15 = Homw (VT ¢pr) = Homw (V7", H(B)).

O

5. Type D



In this section, V = C?*, n > 4, is a nondegenerate orthogonal space, and
G = PSO(2n) is the adjoint group of the special orthogonal group of V. We work
in SO(2n), and expect the reader to divide by the center when necessary. Let m
be the greatest integer < 7. For 0 < ¢ < m, we define nilpotent orbits 4, ¥4, 24
by their partitions of elementary divisors as follows.

T, =[229,1""%] 0<qg<m

Yq = [3, 224-2, 12”_4q+1] 1<g<m

Zg = [32’ 22q—4’ 12n—4q+2] ) < q < m.
For n = 2m even we define z,,, y,, by the same formulas, but z,, is a union of two
SO(2n)-orbits. When n is odd there is no z,, or y,,. The union of these orbits is

a closed subvariety of the nilpotent variety of GG, and the closure relations are as
shown

n even n odd
Zm Zm
Ym Zm—1
Zm—1 Tm Ym—1
Ym—1 Zm—2 Tm—1
Zm—2 Typ—1 Ym—2
Ym—2 Zm—3 Tm—2
29 T3 Z2 Z3
Y2 Y2
N Z2 U1 T2
1 Z1
To Zo

The classes z, and z, are special. They are the duals of the big nilpotent orbits,
which are

ug=1[2n—-2¢—1,2¢+1] for 0<g<m
Um = [n,n] for n=2m
vg=1[2n—-2¢—-1,2¢—1,1,1] for 1<g<m

and under the duality involution on special orbits, we have

Tq = (ug)d, Zq = (Vg)a-
10



When n = 2m, each orbit in x,, is the dual of an orbit in u,, = [n,n]. The classes
Y4 are not special. From the above closure relations, we see that y, is the subdual
of vy and x4 is the subdual of u,. Thus, the small orbits are x4, y, when defined,
and also z,, when n = 2m — 1. Using the criterion given in [KP,16.2)], we find that
all small orbits have normal closures except zp,, (n = 2m) and z,,, (n =2m —1).

We now list the h-part of an s((2) triple (f, k, e) for each nilpotent orbit, z4, ¥4, 24,
identifying the Cartan subalgebra of g with C”.

he, =(1,...,1,0,...,0) (0<gq<m)
hy, = (2,1,...,1,0,...,0) (1<qg<m)
N N —
2q—2 n—2q+1
hi =(1,---,%1) (n=2m)

Tm

hy, =(2,2,1,...,1,0,...,0) (2<q<m).
—— ——

2q—4 n—2q+2

q

q

The small modules, with their highest weights A are as follows.

‘/Zq—l A=261+62+"'+62q_1 1<g<m
AV A=¢€+--+e€,_1 Len n=2m
Vo,+ A=2¢1+e3+---+e€_1te, n=2m-—1

Here V54_1 is the kernel of the map
V@A"YV — A2V @ A2972Y

given by wedging into the first component, contracting into the second. V,, 4 are the
two irreducible components of V;, when n is odd, and A"V are the two irreducible
components of A™V when n = 2m.

For each big orbit O, we give the small module V) whose zero weight space is
H?)(B,) for v € O, the value A(h) for the h attached to e € Q4 as listed above,
the group L = (G}, its module gy, and the generic stabilizer M = L.

e Vi Ah) L a2 M
Zq A%y 2q GL2gXS02p_4q A2C2e SpagXSOan_4aq
Yq Vag—1 2q+2 GL1xXGL2g 2X802,_aqr2 A2C29720C2"~49F2  Spo. oxOap_agt1
Tm ATV n GL, AC" Spn

Zm Vn,+ n+3 GL3yxGLp_3x50(2) Moy ®A2C" 3 SO(2)XSpn_3.

We observe that with one exception, we have A < h, and M is contained in the
derived group of L. In fact, except for h = h,  with n =2m — 1 , we have

(A, &) = a(h)

for all simple roots «a.
11



Ignoring z,, for the moment, Proposition 1 in the introduction implies that V)
appears once in R%(0,4), where 2d = A(h), and does not appear in R(QO) in any
higher degree. The same conclusion holds for z,,, using corollary (2.3). Indeed, M
sits in L as

M:{(<g 091)’B’(8 a(—)l))i a€C*, Be Sp,—3(C)},

and a direct check shows that Vn[{i is two dimensional in each case, and contains a
unique M-invariant, up to scalar.

We next show, for each small orbit Og4, that V) cannot appear in R(0,) for
another orbit Oy, if O1 # Ogq. All such Oy are among the z4,y4, z,. By lemma
(2.5), it suffices to see that A(hy) < A(h), where h; is attached to O;. For fixed
A, the values A(h;) increase as we move up the partial order in one of the families
z,y, z. It thus suffices to check only maximal 07 # Osq. We do this in the following

table.
Oqa O4 A(h1)  A(h)

Ty  Zg—1 2q9—2 2q

Yq  Zg—1 2q 2q + 2
Yg Tg+1 29 29+2
Zm  Zm—-1 n+1 n+3

Next we calculate, using the formulas in [C], the dimensions d(u) of the fixed
point varieties B, for u = uy, v4. We find , remarkably, that in all cases we have

2d(u) = A(h).

This finishes the proof of the main theorem for D,,.

If we exclude the non-normal orbits x,,, zm,, we can say more. Recall that d(u)
is also the birthday of V) in the harmonic polynomials R. The favorable conditions
(1) and (2) of lemma (2.5) are satisfied, so for type D we have proved

Theorem. Let Oz be any small D,, orbit, except x,,, (n = 2m) or z,, (n =
2m —1). Let V be the corresponding small D,,-module. Then
(1) V appears with multiplicity one in R(O4q), in degree d(u), for u € O.
(2) Let Oy be another nilpotent orbit. Then V appears in R(O1) if and only if
O < Oy, and the occurrence can only be in degrees dy > d(u). In particular,
the functions in V. C RY ™) (O,4) all vanish on the boundary of Oq.

12



6. Type E
In this section we prove the Main Theorem for type E,,. Number the diagrams

1234 (n-1)
. .

(6.1) We list the duals of the big orbits, their subduals, and the closure relations,
pointing out the small orbits in bold print.

G = FEg G =E; G = FEs

2A, ArAq As Ay
AsA, 4A,

4A, A,

Ay (3A,)" Ay

3A, (3A4) 3A,

2A, 2A, 2A4

A, A, A,

0 0 0

13



(6.2) For each nonzero small orbit Ogq we list its h, the type of M, the highest
weight of the corresponding small G-module, written both in terms of fundamental
weights and as a linear combination of roots, the value A(h), and the dimension

d(v) = dim B,, where V,I = H?¥(")(B,) for v € O.

Eg¢
Osa h M A A(h)  d(v)
24, 20002 G, 3w, Sws = 24§54 12 6
AgAy 10901 Ay x C* wytwy, wygtws=24§53 8 4
34, 00100 4,4, wy = 24642 6 3
24, 10001 By (CX Wi +ws = 23432 4 9
A, 00000 As we= 12321 9 1
E;
Osa h M A A(h)  d(v)
44, 000001 Oy o4, =369753 g 4
(34;)" 000002 Qg = 246543 6 3
(3A;)" 018000 (Cu4, Wy = 368642 6 3
24, 008010 B4 Wy = 246542 4 9
Ay 100000 P w = 234321 9 1

14



Osd h M A A(h)  d(v)
44, 0000000 () =15101512963 g 4
34; 0090010 F 4, (= 481210863 6 3
24, 1090000 B wy = 47108642 4 9
A; 0000001 R, = 12465432 9 1

These tables, combined with Proposition 1 of the introduction say that Vy ap-
pears in R4(O) with multiplicity one and in no higher degree. By Kempf’s criterion
[Ke], the classes A; and 2A; are normal in each group, along with (34,)" in E7,
since g2 = g>2. The classes 24, and A3 A; in Fg are not normal [Ri], and normality
does not seem to be known for the other classes.

(6.3) As with D,,, we finish the proof of the Main Theorem by checking the condi-
tions of (2.2) Corollary 2: For each small orbit Og4, we list the orbits @7 which do
not contain Ogq, and compute A(h1) and A(h). One finds in all but one case that
A(R) > A(h1), so Vi does not appear in R4 €)(0;).

The exception is the orbit Ozq = 245 in Eg, with @01 = A3. But Aj is Richardson
in the A4-parabolic, and Alvis’ tables [A] show that ViI', which is 24, in Frame’s
notation, does not have an invariant under Wy,,. Hence both V)’s cannot appear
in R(O1) in any degree.

A sharper theorem analogous to that for D, in §5 also holds for those small
FE,,-orbits with normal closures.

7. Characters

Our results so far are valid over the algebraic closure Q; of the -adic numbers, £
a prime. As in the introduction, let G be the simply connected split group over qu,
where ¢ is a power of a good prime for G, ¢ 1 q, such that the group G considered
till now is the group over Q; with root datum dual to that of G. All cohomology
is £-adic. Let F be the Frobenius of G, let W be the Weyl group of G and G, and
let B be the flag variety of G.

(7.1) Let II be the principal series representation GF . induced from trivial on a
Borel subgroup of G¥. The Hecke algebra H = Endg(II) is semisimple, and its
virtual modules are in canonical bijection with those of W, so we will not distinguish
between them. For any irreducible W-module F we define

p(E) = Homy (E, 1),
15



and extend to virtual modules by linearity. For example, if £ = t is the reflection
representation of W, the representation p(t), called the “reflection representation”
of GF, has dimension > q™i, where the m; are the exponents of W.

On the other hand, to E also corresponds a virtual representation Ry of GF,
defined as follows [L]. For any w € W, let R,, be the Lefschetz character on the
cohomology of the variety of Borel subgroups in B in relative position w with respect
to F, and define the virtual G¥-module

Rg = 1 Z tr(w, E)R,,.
|$¢f‘1u€PV

In general, p(F) # Rg. However, we have
Proposition. If V is a small G-module, then

P(VT) = Ryr.

This will follow from more general considerations. The irreducible unipotent
representations of G¥, among which are the constituents of II, can be partitioned
into families, one family F(v) for each special unipotent orbit of v € G. Let A(v)
be the component group of G,. For each F(v) we have a finite group I" = I'(v),
which is a quotient of A(v), such that the irreducible representations in F(v) are
in bijection with I'-conjugacy classes of pairs (z,0), where z € I' and o is an
irreducible character of the centralizer I'; of x in I'. Let x;, be the irreducible
GT representation in F(v) corresponding to (z,0). If X, , C II, then there is also
a corresponding W-module E, , such that x,, = p(Ez,»), as described above.

The virtual character Rg, , is orthogonal to all irreducible G representations
outside F(v), and if x, » € F(v), then we have

1

= T T(zzz" Yo (27 1yz).
zllly

<REm,o- 9 Xyﬂ')
zel'
zwz_lelb

Lemma. Fiz z € I', and assume that x . C 11 for all irreducible characters o of
I';, so we can define the virtual W-module

Ey= Y 0(z)Ey,.

aef;

Then

proof.

oel’,
1 _
= AT Z Z o(2)m(zzz" o (27 1yz)
z vy zel’
zxz_lery
1 1 1 —
= — Z T(2227 ") = Za(aj)a(z yz)
‘IL| zel’ |1}J o
zwz_lelb



Since x is in the center of I, the inner sum is |I7| if 27 1yz = x, zero otherwise.
Thus,

1 _
(RE,, Xy,r) = T Z T(zxzt) = 7(y),
‘ y| zel

z_lyzzw

if y is conjugate to = in I', zero otherwise.
By definition, this also holds with Rg, replaced by p(E;). Since p(E;) and Rg,
are orthogonal to all characters outside F(u), the lemma is proved. O

Now let V be a small G-module, with zero weight space VI ~ HZ?4")(B,).
Inspection of cases [R] shows that group A(v) has order one or two, is always
isomorphic to I'(v), and all representations of A(v) appear in H24¥)(B,). Thus,
we have VT = Ey, for the family F(v), so the proposition follows from the lemma.

(7.2) For any g € GF, Lusatig has generalized the Springer construction to an

~

action of W on H(B,), and we have the following formula, known as the “Springer
hypothesis”.

Theorem ([Kaz],[L],[Sp]). For any virtual W-module E, and g € G¥', we have
Rp(g) = tr(F,[H(By) ® E]").

The usual statement of (7.2) is Ry, (u) = Y, (=1)¢tr(Fw, H¥(B,)), for u unipotent
in GF. This formula extends to any ¢ by applying it to the semisimple part of g
(c.f. 8.2), and H*(B,) = 0 for odd i by [CLP], whence the formulation given above.
From this and proposition (7.1) we have

Proposition. IfV is a small G-module and g € GF', then
tr(g, p(V")) = tr(F, [H(B,) ® E]Y).

When g = 1, the only eigenvalue of F on H??(B) is ¢q%, and H¢ = H?*4(B) as
W -modules, hence

Corollary. dimp(Vy) = P(VT,H,q).

17



8. Motives

We can give a motivic version of the formula for the character of p(Vr). Our
discussion here is more general than our present needs, but may be useful elsewhere.

(8.1) In this section we do not assume G to be split. Being defined over a finite
field, it is automatically quasi-split. Let I" be the Galois group of ]Fq over F,. For
present purposes, a motive is just a graded I'-module.

Gross has defined “the motive of G” as follows [G]. Fix a I'-stable maximal torus
and Borel subgroup 7' C B. Recall that t is a Cartan subalgebra in g = Lie(G). We
may identify t = X*(T) ® Q, where X*( ) denotes rational character group. Let
t be the dual space of t. Let I, be the W-invariant polynomials of positive degree
on t. The cotangent space I/ I? has dimension equal to that of t. It is naturally
a I-module, via the action on the root datum of G, with grading I, /I? ~ &V,
inherited from that of I,. The motive M(G) is by definition the graded I'-module
Q¢ (—1) := H?(P'). The Galois action on the latter is induced by the natural action
on P!

In fact, this motive belongs to a family of motives M (G, E, g), parametrized by
pairs (E,g) of W-representations E and rational points g € G¥. To define these,
we first need

Lemma. Let I'g be the stabilizer of E in I'. Then the W action on E extends to
the semidirect product W x I'g.

proof. Without loss E and t are irreducible W-modules. Consider the birthday
occurrence of E in R(t). If this occurrence has multiplicity one, then the extension
is clear. Otherwise, the multiplicity can be at most two, and either G = Er g (but
then T' acts trivially on t so there is nothing to prove) or G = D,, and E is the
restriction of two distinct representations of W (B,,). But in that case the action of
I’ passes through W (B,,) as well, so the extension is automatic. [

Thus, from E we get the WTI-module Ind%ll:E E. On the other hand, given
a rational point ¢ € G¥, we have a natural action of I' on B’g, as well as the

Lusztig action of W on cohomology, whence a WTI'-module H(B,). This cohomology
is only nonzero in even degrees, as recalled in (8.2). We now define the motive
M(G,E,g)=&M*G, E,g) by

Md(éa E7 g) = [H2d(Bg) ® Ind%FE E]W

For example, when G is split, the T-action on t and W is trivial, hence it is also
trivial on FE, so

M%G,E,g) = [H**(B,) ® E]Y (G split).

Proposition. We have M (G) ~ M(G, t,1), as graded T'-modules.

proof. We may assume W acts irreducibly on t. Recall that Jy is the ideal in R(t)
generated by I,. The differential

R(t) — R() ®t
is WT'- equivariant, and induces a map

§:1, — [RY)/Jw 047,
18



which has I? in its kernel. By Solomon’s theorem [S], the right side has a basis
0F;, where the F;’s are homogeneous generators of I,. It follows that
L /15 ~ [R®)/Jw @47

as WTI-modules. 3

As graded W-algebras, we have R*(t)/Jw ~ H?*(B) induced via the map t —
H?(B) sending x € X*(T') to the first Chern class of the line bundle on B determined
by x. Since all of I' stabilizes t, we have

[H24(B) @ ¥ = M4(G, t,1).
It remains to check that
(R (D) /Jw](1 — d) = H*7*(B)

as I'-modules. Botvh sides are generated by terms with d = 2, so it suffices to see
that t(—1) ~ H%(B).

Let Bi,..., B, be the one dimensional Schubert varietigs in B, corresponding to
the conjugacy classes of minimal parabolic subgroups in G. The restriction map

H2(8) — @) H*(B)

is a ['-equivariant isomorphism. I claim the right side is t(—1), as I'-modules. We
have t = ®t;, where each t; is the line through the simple root «; corresponding to
B;, and I' permutes the ;s just as it permutes the B;’s. Considering orbits, we may
assume the action is transitive. Let I'y be the stabilizer of a;. The corresponding
Levi subgroup L, of G is split over the fixed field of I'y, and H?(B;) ~ t;(—1)
as I'y modules, by definition of the twist. The claim, and proposition, follow by
inducing this isomorphism from I'y to I'. O

(8.2) The motive can be reduced to g unipotent as follows. Let g = su be the
Jordan decomposition of g € GF'. Let B® be the flag variety for the centralizer G,.
Then it is known (cf [Ka, 3.2]) that

H*(8,) = Indj, H*(B).
Clearly
[Indwr, Elly, r = Indy'r, E,
SO
M(G,E,g) = [H(B,) ® Ind}y1., E]W

= [H(B}) @ Indyy°r., E]™

= M(G,, E, u).
If G is split, then the Springer hypothesis (7.2) says

Rg(g9) = tr(F,M(G, E,g)) = tr(F, M(G,, E,u)).

Taking E = {, u = 1, and using Proposition (8.1), we recover Gan’s formula [Ga]
for the character of the reflection representation on a semisimple element.

More generally, taking E = V7T for a small G-module V, we can express the
harmonic multiplicity polynomial for V in terms of the motive M (G, VT, 1) by the
identity

P(V,R(N),q) = tr(F,M(G,VT,1)).
19
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