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1 Introduction

This paper was motivated by the following restriction problem for representations
of finite orthogonal groups.

Let § be an algebraic closure of a finite fieldf cardinality ¢, a power of
a primep > 2. LetG = SO(V) be the special orthogonal group oka + 1-
dimensionalg-spacel with nondegenerate quadratic foxth Assumel and@
are defined ovey, and letF’ denote the corresponding Frobenius endomorphisms
of V andG. Fix v € VI with Q(v) # 0 and letH be the stabilizer of in G.

Letm € Irr(GF),0 € Trr(HY) be complex irreducible cuspidal representa-
tions of the respective grougs’” and H* of j-rational points. The problem is to
compute the multiplicity

(m,0)gr = dim Hompyr (7, 0)

of ¢ in the restriction ofr to H*'.
Using unpublished work of Bernstein and Rallis (independentlyp-@alic
orthogonal groups, it can be shown that

(m,o)gr =0 or 1.
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In this paper, we computer, o) ;= exactly, whenr ande are irreducible cuspidal
Deligne-Lusztig representations [8]. We do not rely on the above-mentioned
work of Bernstein and Rallis. Our calculation follows from a qualitative study of
restrictions of Deligne-Lusztig characters for general simple algebraic groups, to
be described later in this introduction.

To state our multiplicity result for orthogonal groups, we first recall the induc-
ing data. Letl’ C GG, S C H be F-stable anisotropic tori i and H. There are
unique partitions\ = (%), u = (j%) of n (here);, u; are the number of parts
equal toj) such that

A8 (N | (A2

where, foranyl > 1, f; = ng is the extension of in § of degreel, andféj is the
kernel of the norm mapping; — f;. The number of partgj w; is even ifH is
split, and odd ifH is nonsplit.

Let y € Irr(TF) andn € Irr(S*) be irreducible characters @ and S*
which areregular in the sense that andn have trivial stabilizers in the respective
Weyl groupsiWe (7)) andWy (S)!. We may write

X = ®;Xjs n = ®;n;,
where
X5 = X1 ®@ -+ ® Xy, € Irr ((f3,)™)
eachy is a character ogj, and likewise fom. LetI'y; ~ Z/2;Z be the Galois
group offy; /.

Definition 1.1 We say thak andn intertwine if n;; is al's;-conjugate ofy ; for
somel <j<n,1<k<\, 1<K <p;.

Note thaty andn can intertwine even if"  S. However, if A and»n have no
common parts, that is, X;..; = 0 for all j, theny andn do not intertwine.

By Deligne-Lusztig induction, we have virtual representatid?%‘x of GF
anngfﬂ7 of HY', respectively. By the regularity assumptionsyoands, these are
actually irreducible characters, up to sign. In fact, we have

(—1)rkGR%X € Irr(GF), (—1)“‘HR§77 € Irr(HY).

These two irreducible characters are cuspidal, sinemd.S are anisotropic. We
prove:



Theorem 1.2 Let T" and S be anisotropicF'-stable maximal tori inG and H,
respectively, and let € Irr(TF), n € Irr(S*) be regular characters. Then

0 if n,yintertwine

-1 rk G+rk H RG ,RH —
(=1) W Bsplur =31 1, x do not intertwine

If T"andS are arbitraryF'-stable maximal tori, but andn are still regular, then
the multiplicity is either zero or a power of two; see (60) below.

The multiplicity result 1.2 is used in [12] to verify some cases of the con-
jectures of [11] describing restrictions fropradic SO,,, .1 to SO,,, in terms of
symplectic local root numbers and the parametrization of depth-zero supercuspi-
dal L-packets given in [7].

As already mentioned, Theorem 1.2 follows from a qualitative result, in a
general setting, on multiplicities of Deligne-Lusztig representations.

Let G be a a connected simple algebraic group defined fivand letH be
a connected reductivesubgroup ofG. Fix F-stable maximal tori” ¢ G and
S C H, along with arbitrary charactesse Irr(TF) andn € Irr(ST).

From this data Deligne and Lusztig [8] construct virtual charac}@ and
RY 5, 0N GT andH”, respectively. Let , )z~ be the canonical pairing on virtual
characters of/ . We are interested in the multiplicity

<Rgx’ Rgn>HF

WhereRG is viewed as a virtual character &f", by restriction.

Let B and By be Borel subgroups off and H, respectively, and lei be
the minimum codimension of &-orbit in G/B. The invariant) is called the
complexity of the H-variety G/ B. The theory of complexity was first studied for
reductive groups over fields of characteristic zero (cf. [1] and references therein).
In that setting, it is proved in [1] that governs the growth of multiplicities in
restrictions of algebraic representations. We will show thatso governs the
growth of multiplicities in restrictions of Deligne-Lusztig representations.

Because we are in nonzero characteristic, we need to make an assumption. Let
g, h be the Lie algebras af and H.

Assumption 1.3 There is anAd(H )-stable decompositiop = h @& m, and a
non-degenerate symmetric bilinear fodshon m, invariant underAd(H).

This assumption holds if is a good prime forg and the Killing form ofg is
nondegenerate ol [24, 1.5.3]. ForG = SOyny1, H = SOy, Our assumption
holds forp > 2.



For aninteger > 1, let NI : " — T* be the norm map, and let
X =xoNy, ¥ =noNy.

v

Under Assumption 1.3, we prove the following.
Theorem 1.4 There is a polynomial of degree at mast
M(t) = At° +--- € Q[t],
whose coefficients depend grandn, and an integern > 1 such that
<R§,X<u)a R§n<u> Y = M(q")

for all positive integersy = 1 mod m. The degreé is optimal: ifq is sufficiently
large, there exisy, n such that the leading coefficieAtis nonzero.

We also give an explicit formula for the leading tevnn Theorem 1.4 (see
Proposition 7.4). Fo = SOy1, H = SOy, we haved = 0, and our explicit
formula for A leads to Theorem 1.2 (see Section 9). Evet if 0 one can
sometimes use Theorem 1.4 to compute exact multiplicities, by exploiting the
polynomial nature of\/(¢). In Section 10 we illustrate this fa¥ = SO;, H =
G9, Whered = 1.

Our formula for A also allows us to show, for gener@l and H, and “very
regular’y (see section 8), that the multiplicity

<R¥,X’ StH>HF

of the Steinberg representatiéiny is a monic polynomial iy of degree), while
the multiplicity of the trivial representation

<R%X7 1H>HF

is a polynomial ing of degree strictly less than In particular, forG = SOs, 11
andH = SO, we have

(RE., Styyyr =1, (RE,,1g)pr =0,
for very regulary.

To prove Theorem 1.4 we use a method introduced by Thoma [27] for the
study of the restriction of irreducible representations fr@,,(f) to GL,,_1(f)
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(where agaid = 0). In that situation, the Green'’s functions giving the character
on unipotent elements were explicitly known. Hagedorn [13], in his 1994 PhD
thesis, showed how some of Thoma’s methods could be generalized to Deligne-
Lusztig characters for other pairs of classical groups, where the Green'’s functions
are less explicit. The abstract results of Hagedorn gave me the courage to attempt
such calculations for general groups, and to obtain closed multiplicity formulas
for orthogonal groups.

It is a pleasure to thank Dick Gross for initiating the work in [12] which led to
this paper, for helpful remarks on an earlier version, and for aquainting me with
Hagedorn’s thesis.

The referee read the original version of this paper with care and insight, made
valuable comments and simplified some of the arguments. In particular, the proof
of Lemma 3.1 given below is due to the referee, and is much shorter than the
original one.

Some general notation: The cardinality of a finite &eis denoted by X|.
Equivalence classes are generally denotefl hysometimes with ornamentation.
If g is an element of a grou@, we write Ad(g) for the conjugation map.d(g) :

x +— grg~t, and also writ¢T := ¢T'¢g~! for a subgrou@” C G. The center of
is denoted” () and the centralizer of € G is denoted”(g).

We write ( , )y for the pairing on the space of class functions on a finite
group H, for which the irreducible characters éf are an orthonormal basis.
If G,G" D H are finite overgroups off and, ¢’ are class functions o', G’
respectively, therw), /') ; is understood to mea) |y, 1’| ) , where| ; denotes
restriction toH.
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2 Remarks on Maximal Tori

Let G be a connected reductive algebrgigroup. We assumé' is defined over
f and has Frobenius. If 7" is a maximal torus i we denote its normalizer in
G by N¢(T') and writeW(T') = Ng(T')/T for the Weyl group of"in G. If T'is
F-stable, we have

W(T)" = Ng(T)¥ /T*,

by the Lang-Steinberg theorem.

The reduction formula for Deligne-Lusztig characters (recalled in section 4
below) involves a sum over the following kind of subset®f. Fix an F'-stable
maximal torusI’ C G, and lets be a semisimple element @". We must sum
over the set

Neg(s, ) :={yeG": s €T}

Note thatNg (s, T')", if non-empty, is a union of:’" x N¢(T)"-double cosets,
whereG, := Cg(s)° is the identity component of the centralizé(s) of s in G.

To say that” € T'is to say thatT' C G, so determining thé& x Ng(T)*-
double cosets itNg (s, T')*" amounts to determining th&’-conjugacy classes of
F-stable maximal tori irG; which are contained in a give@’ -conjugacy class.
Such classes of tori are parameterized by twisted conjugacy classes in Weyl groups
of G, and@.

The aim of this section is to parameterize g x N (7T)"-double cosets
in Ng(s,T)" in terms of the fiber of a natural map between twisted conjugacy
classes in the Weyl groups 6f, andG. This parameterization will be fundamen-
tal to our later calculations with Deligne-Lusztig characters.

We begin by recalling the classification bfstable maximal tori irG. See [5,
chap. 3] for more details in what follows. Fix dnistable maximal toru&y in
G contained in arf’-stable Borel subgroup @¥, and abbreviatéV; = N¢(T),

WG = Wg(T())

Let 7(G) denote the set of alf’-stable maximal tori inG. Then7 (G) is a

finite union of G''-orbits. For anyl” € 7(G), let

[Tl ={"T:v€G"}

denote theZ* -orbit of T'. There isg € G such thafl’ = 97;. SinceT is F-stable,
we haveg~!'F(g) € Ng. This gives an element

w = g_lF(g)TO S Wg.



The mapAd(g)t = gtg~! is aj-isomorphism
Ad(g) : (To,'UJF) - (T7 F)v

where the second component denotes the action of Frobenius undstraciure.
For any finite groupA with F-action, we leti/!(F, A) denote the set of -
conjugacy classes id. These are the orbits of the action df on itself via
(a,b) — abF(a)~'. Let[b] € H'(F,A) denote theF-conjugacy class of an
element € A.
Forg, T, w as above, thé'-conjugacy class ab is independent of the choice
of g. Hence we have a well-defined class

(T, G) = [w] € H'(F,Wg).
For eachv € HY(F, W), the set
1,(G) ={T € T(G): l(T,G) =w}

is a singleGF-orbit in 7 (&), and allG* -orbits are of this form. Thus, the partition
of the set ofF-stable maximal tori intd@-" -orbits is given by

7= ]I 7).

weHY(F,We)

Let s € G be semisimple, and |éf, be anF-stable maximal torus of,
contained in arf’-stable Borel subgroup @f, and letiV;, be the Weyl group of
T, in G,. The partition of7 (G,) into G% -orbits is given, as above, by

TG)= [ TG

veHY(F,Wg,)

If T € T(G), the set ofF-stable maximal tori irG; which areG*'-conjugate
to T is a finite union (possibly empty) af-orbits. We want to describe this
union in terms ofF’-conjugacy classes i,. Thatis, givenw € H'(F, W),
we have

T(G)NT(Gy) = [] TGy (1)

’UEMw

for some subset/,, C H'(F,W¢,), and our task is to find/,,.



The first point is thaf’; is generally not contained in afi-stable Borel sub-
group ofG. Letg € G be such thatT, = T,, and lety, := gF(g)~! have image
ys € Wg. Then

AT, G) = [y.] € H'(F, W),

andAd(g) is anf-isomorphism
Ad(g) : (To, F) — (T, g F).
Now Tj is also a maximal torus iAd(g)G, whose Weyl group
We, = Ad(g)We,
is a subgroup ofVs, stable undeAd(y;) o F.
Definejq, : H'(F,Wg,) — H'(F, W) to be the composition of maps

ja, t HY(F, We,) "9 1Y (4, F,Wh) 2 HY (4 F, W) 25 HY(F,We), (2)

where the middle map is induced by the inclusiéff, — W andr7,, is the
twisting bijection given byr, [z] = [zys].

Now letT" be an arbitrary’-stable maximal torus if,. Write T' = "T,, with
h € Gy, so thath"'F(h) € cl(T,G,). Forg € G as above, we havg = "9"'T;,.
Since

gh™'F(hg™') = g(h"'F(h))g~" - gF(g)™",
it follows that

(T, G) = ja. (c(T,Gy)) . (3)
This proves:

Lemma 2.1 For eachw € H'(F,W¢) andT € T,(G,), we have
TANT(G) = ] T(Gy.
vEjgl(w)
We can also parameterize thg -orbits in[T'|c N 7 (G,) via the mapping
Ne(s, T)F ={yeGF: s T} — [T|a NT(G,), v T, (4)
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Note thatG% acts onN¢ (s, T')* by left multiplication, and that (4) factors through
the quotient
Ne(s, T)" = GF\Ng(s, T)F. (5)
The action ofNg(T')¥ on Ng (s, T)* by right multiplication commutes with
the GF-action, hence factors through an action ®a(s, )", whereT* acts
trivially. This gives an action ofV(T)¥ on Ng(s, T)¥, whose orbits are the
GI x N(T)¥-double cosets iV (s, T')".

Lemma 2.2 The mappind4), sendingy — T, induces a bijection
Na(s, T)" /We(T)" — GI\([Tle NT(GY))

with the property that the stabilizer i (T)" of the classy € N(s,T)F is
isomorphic, viaAd(y), to We, ("T)*.

Proof: The bijectivity is straightforward and left to the reader. ket W (T)7,
and letw € Ng(T)* be a representative af. Then

yow=7 & GF’yu'):G'f’y & Ad(’)/)wENGS(VT)'

s

This implies the assertion about the stabiliZir.
Combining Lemmas 2.1 and 2.2, we get an explicit formuld fas (s, T')7|.

Corollary 2.3 Letw € HY(F,Wg) andT € T,(G). Then the selNg (s, T)" is
non-empty if and only if the fib@'gs1 (w) is non-empty, in which case, we have

G We(T)"|
N, ™| = E |—
’ G<57 ) ’ : |IIIGS(T’U)F|7

’UGjG;(UJ)

where, for each ¢ jgj (w), the torusT,, is chosen arbitrarily in7,(Gy).

3 Onthe centralizer of a semisimple element.

Let s € GF be semisimple. In the previous section we parameterized the set
of G'-conjugacy-classes maximal tori {#, which are contained in a give@’'-
conjugacy class, in terms of fibers of the map : H'(F,Wg,) — H'(F,Wg).

To compute this mapg, concretely, we must find an elemente W such that
cl(Ts, G) = [ys], whereT; € T(G,) is contained in a’-stable Borel subgroup of
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G,. This amounts to finding thiisomorphism class of the connected centralizer
Gs.

An elegant formula fory, was given by Carter [6], using the Brauer com-
plex. Here we explain a different method that is suited to our later computations;
namely we show how the clasg,] can be determined from the effect 8fon
a “diagonalized’G-conjugate ofs. Unfortunately, both the present method, as
well as that of [6] require that's(s) be connected. That is, we must assume that
Gs = Cg(s). This holds for any semisimple € G if G has simply-connected
derived group. Our method generalizes that of Gross [10], who deterrbined
when this group is a torus (over an arbitrary field).

Let ® denote the set of roots @i, in G. Let ¢ denote the automorphisms of
® andWW induced byF'. Fora € ® with corresponding reflection, € W, we
have

aoF=qd ! q V(8a) = Sg.a-

Here is our recipe for findingl(Ts, G). Lett € T, be aG-conjugate of, and
let
O, ={acd: aft) =1}

Sincet has a conjugate i, there isw € W (not necessarily unique) such that
F(t) =t*. (6)
Choose such a arbitrarily. From (6) it follows that
w - P, = Py, (7)

Now choose any positive systefy” C ®,. Then (7) implies thatvy - &, is
another positive system ;. Being the Weyl group o®,, the groupi¥, acts
simply transitively on positive systems i, so there is a unique € W, such
that

w - OF =z - DF. (8)

Settingy = 2w, we see thaty can be factored uniquely as

w = zy, (9)
wherex € W, andyd - & = &

SinceC(t) is connected, the groufye, is the full stabilizer oft in W¢,. This
means that a different choice ofsatisfying (6) will change:, but noty.
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Lemma 3.1 Withy constructed as above, we have
Cl(Tst) = [y] € H1<F> WG)

Proof: The following proof was provided by the referee; it is shorter than the
original proof. Choos@ € G such thaty = g1 F(g) € Ng is a representative of
y. Then
yF(t) =t* =t,

which implies thatt € G'. SinceC(s) is connected, any element 6" which
is G-conjugate ofs is in fact G¥'-conjugate tos. Hence, by multiplyingy on the
left by an element of7"", we may assume that= 9t.

By definition ofy, there is am\d(y) F'-stable Borel subgroup, C G, contain-
ing Ty. Hence’ B, is an F'-stable Borel subgroup d@F,, containing thef’-stable
maximal torusT” := 9T,. SinceT” is GI'-conjugate tdl’, it follows that

ATy, G) =g~ F(g)] = [y,

as claimedn

4 Deligne-Lusztig characters

Let T € 7(G) be anF-stable maximal torus i, and lety € Irr(7*). The
Deligne-Lusztig characteR%X has the following reduction formula [8]: Far
unipotent inG", we have

RE (su)= Y x(v's7)Q% -.(u). (10)

WGNG(S’T)F

The summation is over the sét; (s, T)" defined in (5), and for any reductive
f-groupH, andS € T (H), theGreen function Q% on the unipotent set o " is
defined by
Qg (u) = Rg,(u).
In this section we describe the summation o%ef(s, ) in (10) in terms of
fibers of the map, studied in the previous two sections.
Breaking the sum (10) inttV/;(T)"-orbits, we have

RTX su) Z QTU Z x(vtsy), (11)

’UG]GS (w) ¥€Oy

12



wherew = cl(T,G), T, is any torus in7,(G,), andO, is the W (T')-orbit in
Ng(s,T)" corresponding to € j;'(w) as in Lemma 2.2.

By the stabilizer assertion in Lemma 2.2, the inner sum in (11) can be written
as follows. For anyy € Ng(s, )" andy’ € Irr(TF), the value ats of the
transported character

Y = x o Ad(y ) € r("TF)

depends only on the imagec Ng(s, 7). We have

> x(vtsy) = m > (), (12)

where~y on the right side of (12) is an arbitrary element/éf (s, T')" such that
7y € O,.

In our later computations WltHRG it will be useful to lets vary in G* in
such a way thats, is unchanged. LeZ(G ) denote the center af;. Forv €

H'(F,Wg,), the function
Xo = > X (13)
'7601)
is well-defined onZ(G,)*", and we have

RY (zu)= Y Qf it G.=0G,. (14)

UE]GS( )

5 Multiplicity as a polynomial

In this section we begin the proof of Theorem 1.4, and will show that the multiplic-
ity is given by a polynomial function. Lef be a connected reductive algebraic
group overj. Let H C G be a connected reductiyesubgroup of7, and letS be

an F'-stable maximal torus off .

5.1 Summation onH?”.

Suppose we are given a functign: ¥ — C, invariant under conjugation by
HT, with the property that ik € H* has Jordan decompositidn= su, then
f(h) = 0 unless the conjugacy clagsl(H") - s meetsS. Our first aim is to

13



express the sum gf over " as a sum of rational functions inover an index set
which does not depend a@n

Let H* and H"*" be the sets of semisimple and unipotent element#& of
Let S(H") andU(HT) be the sets ofAd(H™)-orbits in (F*)" and (H"*")F,
respectively.

By the vanishing assumption gf) we have

SEENE S S

h HF SE(HSS E([{upt

Z AT sl S~ Ad(m7) -l f(su).
yHF|  TAd(HT) 50 5], |

[u]eU(HE)

HY \

(15)
The mapy — s induces a bijection
Cr(s)"\Ny(s,8)F == Ad(H")-sn S,

so that N S)F|
AA(HF) - s §| = A 2) |
AU =0 3= e G

Recalling that B
Ni(s,S)" = H/\Ng (s, S)",

we get

1 1
2, 10 =2 mr SR 2 e ¢ @9

F
H | heHF [u]eU(HF)

5.2 A partition of S

To this point, the overgrou@ has not played a role. Now is used to partition the
sum overS* in (16), as follows. Lef' (S) be an index set for the set of subgroups

{Gs: se€ S}

Note that each element di.S) is determined by a subset of the roots®in
G, hencel(S) is finite. For. € I(S) let G, be the corresponding connected
centralizer, and let

S, ={seS: Gs =G}

14



Thus, S is finitely partitioned as

The F-action onS induces a permutation @£ S), and we let/ (S)* be theF'-fixed
points in(.S). Note that ifS is nonempty, them € 1(S)*".
For. € I(S), we set
H, =(HNG)®,

which is none other thaf/, for anys € S,.
Note that ifs € S,, thens € S N Cy(s), which implies that

se H,CG,. (17)

Returning to our sum (16), we now have

(s
2= 2 > o 57 g 9

heHF EI(S)F [w]eU(HF) seSF

IHFI

5.3 Restriction of Deligne-Lusztig characters

We now consider the functiofarising in our multiplicity formula. Le#, S be as
above, lefl” be anF-stable maximal torus af, and lety € Irr(TF), n € Irr(ST)
be arbitrary characters.

Using the functionf : H¥ — C given by

f(h) = RE, (h) - RS, (h), (19)
we have
R% ,R 20
Rz - 2 b (€0)
The map

ja.  HY(F,Wg,) — H'(F,Wg)
defined in (2) depends only @k, so we set

JjG, = Ja. forany seS,.
We have an analogous map

g, HY(F, Wy ) — HY(F,Wg).

15



Likewise, the setsVq(s, T)! and Ny (s, S)" depend only on, so we now
write
Ng(L,T)F = Ng(S,T)F, NH([,, S)F = NH(S,S)F,
for s € SF.
Using (14) forG and H, along with (18), our multiplicity formula becomes

ol = 3 z,NHLSﬁC P BEECIAONCE

eI(S seSF
[U]EU(HF)

where the middle sum runs overe j;'(cl(T, G)) ands € j;'(cl(S, H)). The
character sumg, andr, are as defined in (13).

5.4 Green functions

We digress from our multiplicity formula (21), to recall the polynomial nature of
Green functiong)$, defined on the unipotent setGf', for a connected reductive
f-groupG with FrobeniusF' and F'-stable maximal torug’ in G.

Foru = 1, we have

Q%(1) = eq(w)[GF : T, (22)

where[G : T*],, is the maximal divisor of the inde}z"" : T*] which is prime
top, w € cl(T,G) andes : Wg — {£1} is the sign character d¥. Note that
eq(w) = (—1)kGHkT [57 5 2],

Foru # 1, the Green function®$ (u) can be expressed as polynomials which
are known explicitly by tables for exceptional groups [3], [18] and for classical
groups by recursive formulas [19] which can be implemented on a computer [9].
It will suffice for us to know the leading terms of these Green polynomials, which
can be expressed in a uniform way.

Let B be the variety of Borel subgroups of, and letB¢ be the variety
of u-fixed points inB;. The irreducible components &, all have the same
dimension, and we set

de(u) = dim Bg.

Steinberg proved that

2dc(u) = dim Cg(u) — 1k G, (23)
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whererk G is the absolute rank af.
Assume thap is a good prime foG. For each unipotent class] € U(GF)
and twisted conjugacy clags] = ¢ € H'(F, W), there is a polynomial

Qw,u(t) = Qg,u(t) € Z[t],

of degree at most;(u), such that

QF (1) = Qu.u(q)

if (T, G) = [w] (see [20] and references therein).
The coefficient ot?c™) in Q,, . () is

trfw, H** (Bg)],

wherew acts on th¢-adic cohomology o3}, via the Springer construction (see
[21], [14], [16]).
If we takeu = 1 thendg(1) = N is the number of positive roots 6f and

G

w,1

(t) = eq(w)tY + lower powers of, (24)
which is easily seen to be consistent with (22).

Suppose now that we replaéeby £ for somev > 1. TheG* " -class ofI’ is
then represented by
(w)” - 97" € W,

whered is the automorphism of; induced byF. Supposer = 1 mod m,
wherem is a positive integer divisible by the exponent of the finite group
We x (9). This implies thatF"” = F on W and that(wd)” - ¥~ = w for all
w € Wg. Itfollows thatH'!(F, W) = H'(F”, W) and that the clasd(T, G) is
the same with respect 6 or F".

Likewise, the class of in G or G is determined by thé&'-conjugacy class
C C G containingu, together with a class il (F, A¢(C)) or H(F¥, Ag(C)),
whereAq(C) is the component group the centralizer of sofivéixed element in
C. As in the preceding paragraph, we may takesufficiently divisible so that
F¥ = F on A¢(C) and that the class of in G or G corresponds to the same
class inH'(F, A¢(C)). We may choosen so that this holds for everg, since
there are finitely many unipotent classes.
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Let QF, be the Green function faF on G*". Form sufficiently divisible as
in the previous two paragraphs amé= 1 mod m we have

Q%y(u) = Qw,u(qy)'

(Note the difficulty with the exceptional classiy is avoided since our conditions
onm imply thatv is odd, see [20, Remark 6.2].)

5.5 A progression of powers of Frobenius

The indices of and terms of the summations in (21) depen#,aand we wish to
remove this dependence for infinitely many power$'ofn order to represent the
sum in (21) as the value of a rational function.

There is a positive integen such thatF™ acts trivially on the finite sef(.S)
and the divisibility conditions omn from the previous section hold whe® is
replaced by, or H, for every. € 1(S).

In particular,m is divisible by the orders of the component groupgu) of
the centralizers irf, of all unipotent elements € H! for every. € I(S)" and
that £ is the identity automorphism oA, (u) for all such: andwu. This implies
that for each € 1(S)" and[u] € U(HT), there is a polynomiaP, ,(t) € Z[t], of
degree equal tdim C'y, (u), such that

Ch, (U)FV’ = Pb,u(qy) (25)

forallv =1 mod m. Moreover, each polynomid?, ,(¢) is of the form|A,(u)|
times a monic polynomial if[t].

The above conditions om also ensure that the indices in the outer two sum-
mations in (21), as well as the quantify; (¢, S)¥'| are unchanged iF is replaced
by F” forv =1 mod m.

To handle the inner sum, we add more conditions: in the next section we
will define certain subgroupg; of S, indexed by subset$ C 7(S5)". We also
insist thatm be divisible by|Z,/Z5| and thatF"™ acts trivially onZ;/Z¢ for each
J c I(S)T.

5.6 Character sums

In order to interpret the inner sum of (21) as a rational function, we shall replace
each summand?’ by the groupZ, where

Z, = 7Z(G,) N S. (26)
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It is easy to check that

Z, C Z(HL),
S, CZ C8, (27)
G, = Co(Z,)°.

Let x, andr. be the character sums appearing in (21). Our aim is to express

the sum
1

1ZF]

> xo(s)n(s) (28)

seSk

as the value of a rational function.
Define a partial ordering of(S) by

< & G, C G,.

Equivalently, we have

Let

be the complement &, in Z,.

Lemma 5.1 For every. € I(S) we have
v.=U2.
U<

Proof: Lets € Y,. Thens € S, for some/ € I(S), with /' # «, sos € Z,.
SinceY, C Z,, we have

G, =Cg(Z,) C Cg(Y)) € G = G,

sol < t.
Conversely, let € Z,,, with /' < .. Note thats € Z,. If s ¢ Y}, thens € §,.
This implies that
GL/ = CG(ZL’)O C Gs = GL)

contradicting’ < ¢. This proves the lemmdl
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For a subset C I(S), let
Zy=() 2.
veJ
There is a polynomiaf; € C[t| of degreelim Z,, such that
fr(q") =125, forall v=1 mod m.
Forv > 1, let
NP TF —1F NS 8F — §F
be the norm mappings. These are surjective. Set
X = xwo N, ) =m0 N
Assume that € J c I(S)¥. ThenZ, is F-stable and
z5hczF cz2(G)' nZz(H)F.

Both y,, andr. are defined on the latter group (see (13)), so we may restrict them
to Z". Our conditions onn at the end of section 5.5 ensure that the restricted
norm mapping

N .z — 727
is also surjective. This implies, for all integers= 1 mod m, that

<X1(; )7 77211)>Z§” = <XU7 77§>Z§‘
Hence for eacly, we have
S @ (2) = (o) e - £1(d). (29)
ZEZFV

Let I(¢,S) := {// € I(S) : < }. It now follows from Mobius inversion
that the rational function

Orne®) = oz + 3 () e 28 (30)

JCI(1,S)F

has the property that

@L,’U S Q

’ZF” Z X(V)

SF”
forally =1 mod m. Sincedim Z; < dim Z, forall J C I(:, S)¥, we have
deg©,, . <0. (31)
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5.7 Multiplicity as a polynomial

We return to our multiplicity formula (21). We have shown that

(RY RY, ) ur = Z W, ( (32)

wherea runs over quadruples = (¢, u, v, ), with
ve I(S)F, [u] eUH)), wvejgl(T,G), <& jg(c(S, H)), (33)

O,(t) = O,,(t) is the rational function defined in (30) arq,(¢) is the rational
function defined by

QDO
Vol = 0 [, 0 S P @ 54

HereQS:,(t) andQ. (¢) are the Green polynomials from section 5.4 a@d(t)
is the polynomial from (25).

If F'is replaced by with v =1 mod m, wherem is as in section 5.5, the
summation indicea are unchanged, so that the rational function

= W (H)Oa(t) (35)

has the property that
(RS s RS o) ee = M ("), (36)

forally =1 mod m. In particular,M (¢”) is an integer for alb =1 mod m.

We next observe that the numerator of each ter@vift) belongs tdz[t|, and
the denominator of each term ¥ (¢) is an integer times a monic polynomial in
Z[t]. Hence there is € Z such that

wheref(t) andg(t) are inZ[t] andg(t) is monic. We can therefore write

aM(t) = p(t) 4+ r(t),
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wherep(t) € Z[t] andr(t) is a rational function of negative degree. On the other
hand,

r(q”) = aM(q") = p(¢") = a(RE o), RY o)) ure —p(d”) € Z

forallv =1 mod m. Sincer(¢”) — 0 asv — oo, we must have(t) = 0, so

This shows thafl/(¢) is a polynomial, as claimed.

6 Complexity and the degree of M(t)

From now on, the algebraic groupis simple. That is, the centéf(G) is finite
and contains every normal subgroup@®@f Recall that the complexity is the
minimum codimension of @&y -orbit in G/B. In this section we will complete
the proof of the first assertion of Theorem 1.4 by showingdhsatin upper bound
on the degree of the multiplicity polynomiaf (¢) defined in (35).

6.1 A formula for the complexity

In this section we show thathas the simplest conceivable formula. lgeindb
be the Lie algebras @i and H. We are assuming thgtis simple. We also invoke
1.3. That is, we assume that= h & m, stable undeAd(H ), and that there is a
nondegeneratad(H )-invariant symmetric fornB onm. HenceAd restricts to a
homomorphism

Ad: H — SO(m).

Lemma 6.1 Assume that! # G. Then
ker[Ad : H — SO(m)] = Z(G) N H.
Proof: Containment D" is clear. We prove containment:”. Set
N :=ker[Ad : H — SO(m)]
and letn be the Lie algebra oV. We have

n = ker[ad : h — so(m)],
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son is an ideal inh. But [n,m] = 0, sonis in fact an ideal irg. Sinceg is simple
and not equal tg, we haven = 0. HenceN is a finite normal algebraic subgroup
of H. By [4, 22.1],N is central inH, henceAd(N) acts trivially onb, as well as
onm. It follows that NV is central inG. This completes the prool

Let B and By be Borel subgroups a& and H, respectively. LeV andV be
their respective unipotent radicals. After conjugating, we may assume that

By=SV, B=TU

with
ScT, VcU.

Proposition 6.2 The complexity is given by

5— dim G/B — dim By if H#G
o if H=QaG.

Proof: If H = G, the fact thaty = 0 is clear from the Bruhat decomposition.
Assume from now on thal # G. We must show thaBy has an orbit inG/B
with finite stabilizers. Letw be the element of;(T') such thatt BN B = T.
Then every element dfwB/B can be uniquely expressed @s B for u € U.
Forv eV, s € S, we have

vs - uwB = v(sus™HwB.

By uniqueness of expressions fixes uwB if and only if v = usu='s7!. It
follows that the projectio3;; — S gives an isomorphism from th, -stabilizer
of uwB to the S-stabilizer ofu~'V in the quotient variety//V. We will show
there exists: € U such that the latter stabilizer is finite.
Denote the Lie algebras &f, V, T, S by u, v, t,s. The tangent space 6/V
ateV isu/v. We have
g/h=t/sPu/vdu/v,

whereu = Ad(w)u is the opposite nilradical af andbv is the opposite nilradical
of v.

Sinceker[Ad : S — GL(g/h)] is finite by Lemma 6.1, it follows that
ker[Ad : S — GL(u/v)]is finite. This latter kernel is the set of common zeros of
the rootsd(S,U/V) of S'in u/v (see [4, 8.17]). We have

u/o=(/o)e > (uo).

a€d(S,U/V)
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A vector inu/v whosea-component is nonzero for evety € ®(S,U/V') will
therefore have finite stabilizer ii. Proposition 6.2 now follows from a basic
result:

Lemma 6.3 Letk be an algebraically closed field. Supposk-torus.S acts on a
smooth irreducible affing-variety X, fixing a pointz € X, so thatS acts on the
tangent spacé, X at z. If there exists € T, X having finite stabilizelS, C S,
then there existg € X having finite stabilizeS, C S.

This lemma can be proved as follows. Since the tofrasts completely reducibly
on the coordinate ring[X |, the argument of Lemme 1 in [15] shows that there
is an S-equivariant morphisnp : X — T,X such thatp(z) = 0, and whose
differential dp, : T, X — T,X is bijective. The set/ of points in7, X with
finite stabilizers is open, and non-empty by hypothesis. Sinsedominant, the
preimagep ' (i) is nonempty. Ify € ¢~'(U), thenS, C S,,), and the latter
stabilizer is finite.

Lemma 6.3 can also be proved using'aquivariant embedding oX in a
linear representation af.

6.2 Degree ofl,(t)

We return now to our rational function

QS (HQL()

Yall) =10 15 SR PO

We have
deg | P, ,(t)| = dim Cp, (u), deg|f.(t)| = dim Z,. (37)
From section 5.4, and equation (23) we find that

deg ¥, (t) < dim Z, + dg,(u) + dp, (u) — dim Cpg, (u)

: e : = = (38)
= dim Z, + 1 [dim Cg, (v) — dim Cy, (u) — 1k G — 1k H] .

The fixed point spaceg’, h*, m*® are the same for anye S,; we denote them
by g.,b,, m,. Thus we have and(H )-stable decomposition

QL:bL@mL
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and
dim Cg, (u) — dim Cg, (u) = dimm}'
< dimm, (39)
= dim Cg, (1) — dim Cy, (1).
Define

0, :=dim Z, + dim Bg, — dim By, — dim S

_ dim Z, + Ldimm, — TG — K H). (40)
For example, i, is the minimal element af (.S), then
G,=G, Z,=ZG)NS andm, =m. (41)
SinceZ(G) is finite, Proposition 6.2 implies that
8, = t{dimm — 1k G — 1k H] = 4, if H+#G. (42)

Lemma 6.4 We haveleg VU, (t) < §,, with equality only ifu = 1.

Proof: The inequality follows from (38) and (39), and the last assertion follows
from section 6.1H

We now seek a bound ateg ¥, which is independent af We will show that
0, < ¢4, and that equality holds only in rather special circumstances.

Letm/ be the sum of the eigenspacesiaf(s) in m with eigenvaluest 1, for
anys € S,. Sincedet Ad(H) = 1 onm, the dimensionlim m/ is even. We have
m = m,®m/, the formB is nondegenerate an/, andAd : H — SO(m) restricts
to a homomorphismd, : H, — SO(m)).

Lemma 6.5 For every. € I(S) we havey, < §. Moreover, ifH # G then the
following are equivalent.

1.6,=0
2. dim(Z,) = 5 dimm)
3. Ad,(Z,) is a maximal torus ir6O(m.).

When these hold, the derived groupMfacts trivially onm/.
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Proof: If H = G thend = 0 and
0, =dim Z, —dim S < 0.
From now on assum# # G. From (40) and (42), we have
§—06,=5dimm, —dim Z,. (43)

Now, the group
N, :=ker[Ad, : Z, — SO(m])]

is finite. Indeed, sinc&, C Z(G,), it follows that NV, centralizean,, as well as
m/. Hence we have

N, Cker[Ad: H — SO(m)] = Z(G)N H,

the latter equality from Lemma 6.1. Henéé C Z(G), and the latter is finite
sinced is simple.

SinceAd(Z;) is a torus inSO(m) and dim m/ is the dimension of a maxi-
mal torus inSO(m)), this proves that both sides of (43) are) and that (1-3) are
equivalent.

For the last assertion, recall that ¢ Z(H,). If (1-3) hold thenAd,(H,)
centralizes a maximal torus 0 (m/), hence is contained in that torul.

With this lemma, the first assertion of Theorem 1.4 has been proved.

6.3 A remark on the multiplicity formula

The formula (35), as written, contains more terms than are necessary. For, if we
write
\Ija(t)@a(t) = Pa<t) + Ra(t)>

whereP,(t) is a polynomial andleg R, (t) < 0, then
M(t)=> P.(t) and Y R4(t)=0,

since M (t) is a polynomial. From (31) and Lemma 6.4 we hakg P, < ¢,
wherea = (¢, u, v, ). It follows that

(Rf. s R, )i = M(q) =Y Pala), (44)
where the sum is over just those= (¢, u, v, ) such that, > 0.
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7 The leading term of M(t)

We have shown that the multiplicity polynomi&! (¢) has the form
M(t) = At’ + (lower powers of).

In this section we find an explicit and effective formula for the leading tdrof
M (t). Recall from (35) that

= U, ()0
wherea runs over quadruples, u, v, <) as in (33),

QGMRUA(
IS

Wo(t) = f(t) -

and

fa(t)
21 f(t)

By Lemmas 6.4 and 6.5, only quadruplesvith « = 1 andé, = § contribute
to the leading term; henceforth we assumis of this form. As a power series in
t, we then have

© (t) Xv>77§ ZF+ Z lJl Xvy 1] <>

JCI(1,8)F

W, (t) = Aut’ + (lower degree terms

where
( 1)rk(GL)+rk(T)+rk(HL)+rk(S)

|NH(L7 S)F|
At first glance, each functio®,,(t) could contribute many terms té, coming

from various:) < ¢ with dim Z,, = dim Z,, sinceZ, may be disconnected. We
now show that in fac®,,(¢) contributes only one term.

A, =128 . 7°F]. (45)

Lemma7.11f §, =0 and/ < thendim Z, < dim Z,.
Proof: If H = G, we have), = dim Z, — dimS < 0 = ¢ with equality iff
Z, = S. The lemma holds sinc& is connected.

Now assuméd{ # G. Supposeé, = ¢ and/’ < ¢, yetdim Z,, = dim Z,. Then

Z°C Z, C Z,. (46)
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From Lemma 6.5, the imag&d,(Z,) is a maximal torus ir6O(m!). It follows
that
Ad,(Z7) = Ad(Z).

Thus, for each € Z, there iszy € Z?° such that
21 1= 22, " € ker[Ad, : Z, — SO(m))].
By Lemma 6.1, we have, € Z(G) N H. Hence
2=z €2 - (Z(G)NH). 47)
We have shown that
Z,=27°-(Z(G)NH). (48)

Now S, is stable under multiplication b (G) N H. Moreover,S, is open inZ,,
s0.S, meets some connected componentpin an open dense set. But then (48)
implies thatS, meetsevery connected component &f in an open dense set.
Likewise, S, meets some component 4f in an open dense set. By (46),
every such component &f; is also a component df,. ThereforeS, andS,, meet
a common component df, in a dense open set. This implies thtatn S, is
nonempty, hence= ./, contradicting’ < . B
As an aside, we mention the following consequence of (48) which simplifies
our eventual formula fod whend is adjoint.

Lemma 7.2 Supposé- is simple adjoint. I, = ¢ thenZ, is connected.

Return now too,(t). For eachJ C I(.,S), the subgroug, is contained in
someZ, with ./ < «. Lemma 7.1 implies that

deg f,(t) < deg f.(¢),
which shows that the leading term®f,(¢) has the following simple form.

Corollary 7.3 Leta = (¢, 1, v, <) be a quadruple appearing if/ (¢) with 6, = 6.
Then
@a(oo) = <Xva 77§>ZLF-

From (45) and 7.3 we get the following expression for the leading t&rm
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Proposition 7.4 The leading termd of M (¢) in 1.4 is givenbyd = ) A,, where
. runs over those € 1(S) with §, = §, and

A = (_1)rk(GL)+rk(T)+rk(HL)+rk(5’) . |%LF‘/ZI?F| . Z(X 77> .
L [Nu (e, 5)] R

In the last summation; ands run over;j;;' (cl(T, G)) and ;' (cl(S, H)), respec-
tively.

As a simple illustration of 7.4, we show how it reduces to the Deligne-Lusztig
inner-product formula [8, thm. 6.8], whe® = H. For. € I(S), we have then

J, =dimZ(G,) —dimS <0=9§

with equality iff G, = S = H,. This means is the maximal element af(S)*,
andM(t) = A = A, is the inner productR{ , RS, )cr.

By 7.4, if T is not G* conjugate toS thenj;' (cl(T,G)) = @, s0A = 0.
Otherwise we may tak& = 7', and the fiber ofj;, overcl(S, G) is the singleton
{v} corresponding to the class 6fin itself. We have

o= Y. "X m= Y. “n  Na(t,9)"=Ws(9)"

’LUEWG(S)F wEWG(S)F

and the result:

4= D)
[We(5)F]
is the original Deligne-Lusztig formula fqiRS  , RS, )¢

8 Optimality

Recall that’ is simple. In this section we show that the deg¥ee optimal. We
may assume thal # G. LetT C G andS C H be arbitraryF'-stable maximal
tori. We will show that for sufficiently large, there are charactess € Irr(T%)
andn € Irr(ST) such that the leading coefficiert is nonzero. In fact, we can
taken to be the trivial character.

For each. € I1(S)" with A, # 0, the fiberj;'(cI(T', G)) is non-empty. This
means thatZ, is GF-conjugate to a subgroup, ¢ 7. There are only finitely
many of these subgroups. Recall from (41) thai, € I(S)F is the minimal
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element, for whichz,, = Z(G) N S. If dim Z, = 0 andd, = ¢ then Lemma 7.1
implies that. = «,. Hence, if. # ¢, the torusl’/Z? has strictly smaller dimension

than that ofl’, so that‘ Irr <TF/ZfF> ‘ is a polynomial ing of degree strictly less
thandim 7'. Hence for sufficiently large there are charactefse Irr(77) which

are trivial onZ!" and non-trivial on everyZ” for . # 1,. We call thesey very
regular. For very regulary and. such that4, # 0, we have

1 if =
v, ) pr = . 49
(Xv: 1)z {0 it L 0. (49)

It follows that fory very regular, and = 1, the coefficientd of t° in M (t) is

given by
A =eq(z)en(y), (50)
wherez € cl(T,G) andy € cl(S, H).

Let ¢ be the automorphism d¥'y; induced byF and lety) be the character of
an irreducible representation @f) x 1Wy. For eachy € Wy, choose ari'-stable
torusS, in H such thaty € cl(S,, H). We have then a class functid?]] of #"
defined by

1
Rl = —— )" 4(Wy)RY ,.
v Wyl yEZWH
For example, the triviall() and sign ;) characters ofV; extend to(d) x Wy
(trivially on ). Itis known (cf. [5, 7.6]) thatR{’ = 1, and R = Sty are the
trivial and Steinberg characters &f, respectively. For very regulay, (50)
implies that

(RE . R gr = ea(x)(em, ¥)w, - ¢ + (lower powers ofy).  (51)
In particular, we have

(ea(x)RE.,. Stu)ur = ¢’ + (lower powers of),

while (eq(z)R% ., 1) yr has degreec 4. This last result is to be expected, in
view of the results in [2] and [17].

9 Restriction from SOy,1 t0 SO»,,.

We return to the situation at the beginning of the introduction.pSe 2 and
(V,Q) is a2n + 1-dimensional quadratig-space, defined ovérwith Frobenius
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F. Fixv € VE with Q(v) # 0, and letU be the orthogonal space ofin V. We
take
G = SO(V), H=G,=50U),

with f-structure on both groups induced from thatlon Assumption 1.3 holds:
we may identify the quadratic spaces, B) = (U, Q).

Let 7', S be F-stable maximal tori inG and H respectively, and lex €
Irr(TH), n € Irr(ST) be characters, which for the moment are arbitrary.

We have

§ = dim Bg — dim By — dimtk H = n® — (n*> —n) —n = 0.

From now on, we only considerc 1(S)" with §, = 0. SinceG is adjoint, each
suchZ, is connected, by 7.2. Proposition 7.4 gives the multiplicity formula

tkT+rk S/ G H <_1)rk(Gb)+rk(Hb)
(_1) <RT,X7 RS,r]>HF = Z |NH(L S)‘ . Z(Xva 77§>ny (52)

LGI(S)F U,6
6,=0

wherev ands run overj;' (cl(T, G)) and;;' (cl(S, H)), respectively.

The connectedness af implies that—1 is not an eigenvalue of any € S,.
The last assertion of 6.5 implies that S, has distinct eigenvalues dryV=. It
follows that

G, =SO(V?®) x Z, H,=SO(U?) x Z,. (53)

Note thatdim V* is odd, saylim V* = 2a + 1.

The decompositions (53) imply that if twB-stable maximal tori inG!" are
G*'-conjugate, then they a@!"-conjugate, and likewise faf. In other words,
we have

. (U(T, )| - |jg, (cl(S, H))| < 1.

Hence the inner sum of (52) has at most one term.

To make this precise, we recall that tori in orthogonal groups are described
by pairs (A, \') of partitions. We write partitions a8 = (j%), meaning that
A has); parts equal tgj, and set{A| = > .j\;. We have pairs of partitions
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(v, "), (A, N), (u, 1) such that

NH )77 ( fQJ , lv|+ V]| =n—-a
=~ H N ox fzj ) AL+ X =mn, (54)
~ H ) x (Fa), |ul + || = n.

We havelj;' (cI(T,G))| - iy (cl(S, H))| = 1 precisely when
v < Aj, 1 and v <\, ) (55)

for all . We assume (55) holds from now on. Note thal iind.S are anisotropic
then\; = pu; = v; = O forall 5.

We count the number afin the sum (52) giving rise to a fixed pair of partitions
(v,v/). Fors € SF, consider the components;, . . ., Sipii S of sin

(TP ju )
the j** block
() x () < 87
Then. is determined by the pair of subsets

{k € [L:u]} C Sk = 1}7 {k/ = [LM;] : S;’k’ = ]‘}
It follows that there are )
IAweL
v v

elements € I(S)* giving rise to(v, '), where

() =mm() () -10)
From equations (2.3) arigi; ' (cl(S, H))| = 1 we have

Wule, 5 = e = (4) (4) TTmbeme @i co

Using 3.1 forG, and H,, we find that
(_1)rka+rkHL _ (_1)rkG+rkH+Zy§. (57)
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(One can also arrive at (57) by decomposing into irreduciblefZ-modules,
and calculating discriminants.)

Finally, we must calculate the pairing.,, 7.) z». We may conjugaté’ and.S
to arrange thaf, C TN S. Then

Z, -

1 - B 1 Y
XUZW Z "Xz, Uc—w Z (“n)

z€We(T)F yeWn (S)F
We now assume that andn areregular, in the sense that they have trivial stabi-
lizers inWe(T)" andWg(S)*, respectively.
On the;*" block () x (f3,)"s of S¥, we have

n:nj1®"'®77juk®77;'1®"'®77;%~

Likewise, on thej® block (§)* x (f1,)% of T*, we have
X:Xj1®"'®Xj>\j®X;‘1®"‘®X;>\9~

Define

I ={kelul: nrel; {xj,x; '}, forsome (e [1,\]}, (58)
Ii={kK e[, ] : nj =To-xj, forsome (e [1,\]}.
For every pair of subsets

{kh”' 7kl/j}CIj7 {k/h 7k1//}CIj/7

each of the
() (w))N(25)7 (25)"
conjugates of the character

Njks &+ & Nk, ®77}k'1 Q- ®77;‘k{,j

contributes exactly once to the pairirig., 7.) ~~, by the regularity assumption
(1.3). It follows that

teondzr =TT (1) () oprgpi i, (59)

1\ v v,
J J J
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Set
e = (_1)rkG+rkT+rkH+rkS

Inserting (56), (57) and (59) into (52), and summing over(alJl") satisfying
(55), we get

e (RS RE Ve = SO (—)Z4 ] (Ii,l) (Iﬁ\)

v j J 7

I [(Z (1)) | (Z(l)(])” o)

/
v.=0
J

2" if I is empty for allj
0 otherwise

where

r=>Y_IIl.
j

If eitherT" or S is anisotropic, them = 0. This proves Theorem 1.2.

10 Restriction from SO~ to G+

The previous situation hadél = 0. We now consider a case whefe= 1. The
simplest such case 3 = G5, H = S L3, which we leave to the reader.

Here we takeG = SO,;, H = G,, embedded inG via the irreducible 7-
dimensional representationof GG,. We have

0=9-8=1.

We assume > 5.
We will calculate the multiplicitieg k7, , R{, )+, using the formula of sec-
tion 6.3. We do not need any detailed knowledge of Green functions, beyond the
general facts about their degrees and leading terms that we have already used.
Let o, B be simple roots of a maxim@lsplit torusSy, in H, with « short. The
nonzero weights off in V' are the short roots df,. We view the maximaj-split
tori T, and.S, as

To={(z,y,2) €F*: ayz #0},  So={(2,y,2) € F*: ayz =1},
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in such a way that the coordinate functionse,, e3 on Tj restrict to the roots
2c0+ 3, —a, —a — B on Sy. In this realization, the simple co-roots 8f in H are

alt) = (tt7%1), B = (Lt
and the corresponding simple reflections 3 in the Weyl groupiV/; act by
ro - (tita ts) = (G607, e (i ta, ts) = (i, ts, 1),

Since S, contains regular elements i, it follows that Wy is a subgroup
of Wq. If Wy is realized as the group of the cube, théfn; is the subgroup
preserving a diagonal of the cube; as coset representativésforl’; we may
take the identity and each coordinate sign change.

LetT, S be F'-stable maximal tori irG; and H, corresponding to the conjugacy
classes of: € W¢, andy € Wy, respectively. Ley € Irr(TF), n € Trr(ST).

We will use the refined multiplicity formula of section 6.3. We first tabulate
the pairs(¢, ) in H, with v € 1(Sy), andu € H,, for which

dim Z, + dg, (u) + dg, (u) — dim Cg, (u) > 0. (61)

We find four types as shown:

_type | : [ u |
a (1,1,1) 1, ug
b (1,t,¢7Y), t9=1t# +1 1
c | (Lt,t™), tr=t"r4£+1| 1
d regular 1

The middle column shows a typical elementinfor each type of. There can
be more than oneof the same type. Herg, € H* is a long root element, which
has Jordan partitiot®22 on V.

From equation (32), we have

M(q) = M,(q) + My(q) + M.(q) + Ma(q),

where each term on the right is the sum

Z 7,0,
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over thosey whoser component ig{-conjugate to am of the corresponding type
a, b, c, d in the table above. Taking the polynomial part of each sum, as in section
6.3, we have

M(q) = Fa(q) + Py(q) + Fe(q) + Fa(q). (62)

We now calculate each of the four terms on the right side of (62).

Type a: The mapsj, andjy, are the identity. The centralizersaf in G and H
are both connected. Lei;, ¢y be the Springer representationsl@f;, and Wy
corresponding tay, let p, pg be the reflection representations, and{gte; be
the sign representations.

From [5, 13.3], we find thad is the unique two dimensional representation
of Wg = S3 x {£1}3 which is irreducible ort; and nontrivial on{+1}3, and¢y
is the one-dimensional characteridf; given byoy (r,) = —1, ¢u(rs) = +1.

In the following calculation we writd?; ~ Rs, for rational functionsk; such
thatdeg(R; — Ry) < 0. We have

_ QF(MQEQA) | QF (u0)QF (uo)

Mal@) = =7 G o)

Theu, term has degree zero, so we may replace it by its leading term:

QF()QE)

M,(q) Ed

+ ¢c(x)du(y)

Since
1T = det(q — ) = ¢* — pa(x)* + -,
1S¥| =det(q—y) =" — puy)g+-- .
it follows that

G H F.mF  [gF.qF,
ey QEIQEQ) _ [GF 2 TF, - [HE : %),

|HF| | HF|
(=D =1)(¢* - 1)
¢®|TF[|SF|
~q+ pc(x) + pu(y).
We get
P.(q) = ec(r)en(y) [q + pa(x) + pu(y)] + da(x)ou(y). (63)

36



Type b: For. € 1(S9)* of typeb, the elements o are H-conjugate to elements
of the forms = (1,¢,t71) € S, for somet € {*, t* # 1. We have

G, = S03 x GLy, H, =GL,.
The stabilizedVy; of s in W is generated by the reflection
70 1= TaT8TaT8Ta € Wh.
The number of € 1(S)* of typeb is given by:
3 ify=1

w(y) =91 iy =[ro, (64)
0 otherwise

where[-] denotes a conjugacy-classliriy. We have

v Cw,
b(y) b()\ I

— =y
[N (e, S)F|

P, )] 2

fory e {1,70}.

The roots off; vanishing ons areey, e; + e3. The corresponding reflections
r1, 2 € We generate the stabilizé¥;, of sin Wq. Fors S, the elemeny,
of section 2ig/, = 1. Hence, the mapping

ja,  H(F,W(, ) — H'(F,Wg)

of (2) is induced by the inclusiol’;, — Wy; its image consists of the four
classes iV represented by elementsliry; , as shown in the following table.

H'(F,W(,) 1 ! T 1P
Hl (Fa WG) [137 _] [127 1] [127 _] [27 1]

Set
Wb = Wé«b X W;{L

Using section 7 and taking (64) into account, it follows that
Py(q) = %ﬁG(l’)EH(y)(X;mﬁy)Zf (65)

if (z,y) is Wg x Wy-conjugate to an element 6F,, and P,(¢) = 0 otherwise.
Here we have writtery, instead ofy,,, where{v} = j;'([z]), and likewise for

My-
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Type c: For. € I(S)" of typec, the elements of " are H-conjugate to elements
of the forms = (1,¢,t71) € S, for somet € {1, t* # 1. We have

GL:SO:), X UQ, HLIUQ.

The groups
W¢, = (ri,ma), Wy, = (ro)

are as in typé. The number of € I(S)" of typec is given by:
3 ify=—1
ve(y):=q1  if [y] =[-ro] . (66)
0 otherwise
As before, we have

[Cwy, W) 1

= oy, Wl 2

_ve(y)
[ Ni (e, S)T]

now fory € {—1, —r¢}.
Let r be the reflection about, — e3. Fors € SF', the elemeny, of section 2
isys = r. Hence, the mapping

Ja, - Hl(F, W(/;L) — Hl(F, We)
is induced by the map — zr, as shown in the following table.

HI(R Wé) 1 ! T2 172
H' (Fa WG) [127 _] [27 1] [17 12] [_7 13]

Set
We = Wgr x Wy r.

Using section 7 and taking (66) into account, it follows that

Pu(q) = 3ec(@)en(y)(Xar ny) zr (67)

if (z,y)is Wg x Wy-conjugate to an element &F,, and P.(¢) = 0 otherwise.
Again, we have writteny, instead ofy.,, where{v} = j;'([z]), and likewise for

Ty-

Type d: In this caseS, contains regular elements @, soH, = 7, = S, and
G, = Cg(S) is amaximal torus iii;. HenceP;(q) # 0 only if T is G¥'-conjugate
to Cx(S). The mappingS — Cq(S) is given, in terms of conjugacy-classes in
Wy andWg, in the following table.
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S 1 Tey T8 -1 (rars)? | Tars
OG(S) [137 _} [27 1] [127 _] [_7 13] [37 _] [_7 3]

Denote the embedding
Wp—We, by y—y.

Let
Wa={@,y): y € Wg} C Wg x Wg.

For (z,y) € W,, we may assume thdt = C(S). Then

Oalg) ~ D (“x."msr = Wa(S)| D (“xmse

weEWg(T)F weWe(T)F
’UEWH(S)F
Since )
U,(t) = ——,
O = o]
it follows that
Pig)= > (“X.m)sr = (Xa:)sr (68)
weWeg(T)F

if (x,y) is W x Wy-conjugate to an element of,;, and P;(¢q) = 0 otherwise.

10.1 Cuspidal Multiplicities

From now on we assume that our t@riS are anisotropic, and that the characters

x andn are regular. We will make the multiplicities computed above more precise.
The elliptic classes iV (B,,) are those of the form, \|, where\ is a parti-

tion of n. So inWW we have three elliptic classes:

[_73]7 [_712]7 [_713]'

The first of these is the Coxeter class and the la§tis}.
In Wy we also have three elliptic classes, represented by the powers

cox, cox?, cox®=—1

of a Coxeter elemendox = r,73. Via the embeddingV; — W, the elements
—1, cox of Wy are also the-1 and Coxeter elements oF,.
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L v\ [ [ =1 ([ 12 ] [=3) = [eox] |

lcox®| = [-1] [ ¢g—T+A(-1) | ¢—3 q—1
[cox?| qg—2 qg—2 qg—2
[cox] q—4 q q+2— A(cox)

Table 1:—(Rf ,R{ )grforq>7

L e [P =[] [[-12] [ [, 3] = [coq] |
[cox®] = [—1] - 2 4
[cox?] - 3 3
[cox] - 5 6or7

Table 2:—(R%,X, ngfmmp forg=>5

Letz € cl(T,G), y € cl(S, H). Note thatP,(¢) = 0. Combining formulas
(63), (67), (68), we get the multiplicity formula

—(R$. RY Yur = a+ pa(@) + pu(y) — d(x)dn(y) + alz,y)  (69)

where

s n)ze — (xcumze 0 a=y=-1
a(z,y) = —(Xeox 77>Z}j if ==y =cox (70)
0 otherwise

Here we have writtety,. for Z,, when. has typer, and likewise forZ; = S. The
numbers

(X—tn-1)zes  X—1n-1)zrs (Xeoo M zE

are calculated explicitly in (71), (73) and (76) below.

We calculaterg (z)+pn (y) —odc(x) oy (y) from the character tables @f; and
Wy and then setl(z) = a(x, z) for x € {—1, cox}, to arrive at the multiplicities
in Table 1.

Note thatS_; has regular characters only fer> 5 (which we have already
assumed), and_; has regular characters only ipt> 7. Forq = 5 we get Table 2,
where the dichotomy in th&ox, cox) entry arises from the fact that(cox) = 0
or 1, depending ory andn (see below).

40



The rest of this section is devoted to the explicit calculatiomof-1) and
A(cox).

A(-1): We identify
TF = (f)?, ST ={(x,y,2) €T, : xyz =1},

X=X1@X2®xs,  n=Resgr (m@m@ns),  with x;, n; € Irr(fy).

Recall that
A(_l) = %<X—1777—1>Zc - <X—17T]>Zd
We havez! = {(1,t,t71): t € f}} and

Xi 1
i< XiXj T2 73 m/ s

For . of typed, we haveZ,; = S_;. TheWg-orbit of x breaks up into four
W-orbits:

Oy = (X1 ® X2 ® Xx3)
(’:)1 =Wu - (X1 ® x2 ® X3) (72)
Oy =Wr - (X1 ® X2 ® X3)
O3 =Wg - (X1 ® X2 ® X3).

These restrict tdV-orbits Oy, ..., Os in Irr(SF,). Even though the orbité);
consist ofiW-regular characters, the character<Inneed not béVy-regular.
Moreover, it can happen th&, = O; for i # j. In any case, formula (68) gives

(X—1,mzr = {1 €10,3] : n € O} (73)

We illustrate withg = 7. The unique regulai-orbit in Trr(7F,) contains
the charactex = (®(?*®(?, where( is a faithful character of, ~ 5. There are
two Wy-orbits of regular characterg " in Trr(ST,), distinguished as follows:
1 belongs to the restrictiond;, = O3, andn’ = Resgr (¢ ® 1 ® (~?) does not
extend to a regular characterBf,. Formulas (71) and (73) give

(X-1,m-1)zr =12, (X=1,1-1) ¢ =2

(74)
(X-1,m_1)zr = 10, (X=1:m_1)zr = 0.
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From Table 1 we get

—(R§  RY Yur=T—-T+35-12-2=4, (75)
—(RY W R{ Iur=T—-T+3-10—-0=5.

A(cox): Here the only relevant type i& We identify

cox = fﬁ - ke [ A norm fS] Sfox = (ffli)qul )

W (Teox)" = W(Sox)! is cyclic of order six, and acts o2 and SE  via

Gal(fs/f). If x € Irr(TE)) andn € Trr(SE ) are both regular, angappears in the

restriction of some Galois conjugate pf then the restriction mapr (7% ) —
Irr(SE ) mapsiW - x bijectively ontolVy; - . Formula (68) gives

Ccox

1 if n = Res(*x) for somew € Gal(fs/f)

) (76)
0 otherwise

A(COX) = <Xcoxa 77>Z5 = {

Hence thgcox, cox) entry in Table 1 is made precise:

g+1 if 7 = Res(*x) for somew € Gal(fs/f)
q—+2 otherwise

_<R%OX7X’RgcoxJ]>HF = {
(77)
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