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1 Introduction

This paper was motivated by the following restriction problem for representations
of finite orthogonal groups.

Let F be an algebraic closure of a finite fieldf of cardinalityq, a power of
a primep > 2. Let G = SO(V ) be the special orthogonal group of a2n + 1-
dimensionalF-spaceV with nondegenerate quadratic formQ. AssumeV andQ
are defined overf, and letF denote the corresponding Frobenius endomorphisms
of V andG. Fix v ∈ V F with Q(v) 6= 0 and letH be the stabilizer ofv in G.

Let π ∈ Irr(GF ), σ ∈ Irr(HF ) be complex irreducible cuspidal representa-
tions of the respective groupsGF andHF of f-rational points. The problem is to
compute the multiplicity

〈π, σ〉HF = dim HomHF (π, σ)

of σ in the restriction ofπ toHF .
Using unpublished work of Bernstein and Rallis (independently) onp-adic

orthogonal groups, it can be shown that

〈π, σ〉HF = 0 or 1.
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In this paper, we compute〈π, σ〉HF exactly, whenπ andσ are irreducible cuspidal
Deligne-Lusztig representations [8]. We do not rely on the above-mentioned
work of Bernstein and Rallis. Our calculation follows from a qualitative study of
restrictions of Deligne-Lusztig characters for general simple algebraic groups, to
be described later in this introduction.

To state our multiplicity result for orthogonal groups, we first recall the induc-
ing data. LetT ⊂ G, S ⊂ H beF -stable anisotropic tori inG andH. There are
unique partitionsλ = (jλj), µ = (jµj) of n (hereλj, µj are the number of parts
equal toj) such that

T F '
∏
j

(f12j)
λj , SF '

∏
j

(f12j)
µj ,

where, for anyd > 1, fd = FF
d

is the extension off in F of degreed, andf12j is the
kernel of the norm mappingf×2j → f×j . The number of parts

∑
j µj is even ifH is

split, and odd ifH is nonsplit.

Let χ ∈ Irr(T F ) andη ∈ Irr(SF ) be irreducible characters ofT F andSF

which areregular in the sense thatχ andη have trivial stabilizers in the respective
Weyl groupsWG(T )F andWH(S)F . We may write

χ = ⊗jχj, η = ⊗jηj,

where
χj = χj1 ⊗ · · · ⊗ χjλj

∈ Irr
(
(f12j)

λj
)
,

eachχjk is a character off12j, and likewise forη. Let Γ2j ' Z/2jZ be the Galois
group off2j/f.

Definition 1.1 We say thatχ andη intertwine if ηjk′ is aΓ2j-conjugate ofχjk for
some1 ≤ j ≤ n, 1 ≤ k ≤ λj, 1 ≤ k′ ≤ µj.

Note thatχ andη can intertwine even ifT 6' S. However, ifλ andη have no
common parts, that is, ifλjµj = 0 for all j, thenχ andη do not intertwine.

By Deligne-Lusztig induction, we have virtual representationsRG
T,χ of GF

andRH
S,η of HF , respectively. By the regularity assumptions onχ andη, these are

actually irreducible characters, up to sign. In fact, we have

(−1)rkGRG
T,χ ∈ Irr(GF ), (−1)rkHRH

S,η ∈ Irr(HF ).

These two irreducible characters are cuspidal, sinceT andS are anisotropic. We
prove:
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Theorem 1.2 Let T and S be anisotropicF -stable maximal tori inG andH,
respectively, and letχ ∈ Irr(T F ), η ∈ Irr(SF ) be regular characters. Then

(−1)rkG+rkH〈RG
T,χ, R

H
S,η〉HF =

{
0 if η, χ intertwine

1 if η, χ do not intertwine.

If T andS are arbitraryF -stable maximal tori, butχ andη are still regular, then
the multiplicity is either zero or a power of two; see (60) below.

The multiplicity result 1.2 is used in [12] to verify some cases of the con-
jectures of [11] describing restrictions fromp-adicSO2n+1 to SO2n, in terms of
symplectic local root numbers and the parametrization of depth-zero supercuspi-
dalL-packets given in [7].

As already mentioned, Theorem 1.2 follows from a qualitative result, in a
general setting, on multiplicities of Deligne-Lusztig representations.

Let G be a a connected simple algebraic group defined overf, and letH be
a connected reductivef-subgroup ofG. Fix F -stable maximal toriT ⊂ G and
S ⊂ H, along with arbitrary charactersχ ∈ Irr(T F ) andη ∈ Irr(SF ).

From this data Deligne and Lusztig [8] construct virtual charactersRG
T,χ and

RH
S,η onGF andHF , respectively. Let〈 , 〉HF be the canonical pairing on virtual

characters ofHF . We are interested in the multiplicity

〈RG
T,χ, R

H
S,η〉HF ,

whereRG
T,χ is viewed as a virtual character ofHF , by restriction.

Let B andBH be Borel subgroups ofG andH, respectively, and letδ be
the minimum codimension of aBH-orbit in G/B. The invariantδ is called the
complexity of theH-varietyG/B. The theory of complexity was first studied for
reductive groups over fields of characteristic zero (cf. [1] and references therein).
In that setting, it is proved in [1] thatδ governs the growth of multiplicities in
restrictions of algebraic representations. We will show thatδ also governs the
growth of multiplicities in restrictions of Deligne-Lusztig representations.

Because we are in nonzero characteristic, we need to make an assumption. Let
g, h be the Lie algebras ofG andH.

Assumption 1.3 There is anAd(H)-stable decompositiong = h ⊕ m, and a
non-degenerate symmetric bilinear formB onm, invariant underAd(H).

This assumption holds ifp is a good prime forg and the Killing form ofg is
nondegenerate onh [24, I.5.3]. ForG = SON+1, H = SON , our assumption
holds forp > 2.
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For an integerν ≥ 1, letNT
ν : T F

ν → T F be the norm map, and let

χ(ν) = χ ◦NT
ν , η(ν) = η ◦NS

ν .

Under Assumption 1.3, we prove the following.

Theorem 1.4 There is a polynomial of degree at mostδ:

M(t) = Atδ + · · · ∈ Q[t],

whose coefficients depend onχ andη, and an integerm ≥ 1 such that

〈RG
T,χ(ν) , R

H
S,η(ν)〉HFν = M(qν)

for all positive integersν ≡ 1 mod m. The degreeδ is optimal: ifq is sufficiently
large, there existχ, η such that the leading coefficientA is nonzero.

We also give an explicit formula for the leading termA in Theorem 1.4 (see
Proposition 7.4). ForG = SON+1, H = SON , we haveδ = 0, and our explicit
formula forA leads to Theorem 1.2 (see Section 9). Even ifδ > 0 one can
sometimes use Theorem 1.4 to compute exact multiplicities, by exploiting the
polynomial nature ofM(t). In Section 10 we illustrate this forG = SO7, H =
G2, whereδ = 1.

Our formula forA also allows us to show, for generalG andH, and “very
regular”χ (see section 8), that the multiplicity

〈RG
T,χ, StH〉HF

of the Steinberg representationStH is a monic polynomial inq of degreeδ, while
the multiplicity of the trivial representation

〈RG
T,χ, 1H〉HF

is a polynomial inq of degree strictly less thanδ. In particular, forG = SO2n+1

andH = SO2n, we have

〈RG
T,χ, StH〉HF = 1, 〈RG

T,χ, 1H〉HF = 0,

for very regularχ.

To prove Theorem 1.4 we use a method introduced by Thoma [27] for the
study of the restriction of irreducible representations fromGLn(f) to GLn−1(f)
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(where againδ = 0). In that situation, the Green’s functions giving the character
on unipotent elements were explicitly known. Hagedorn [13], in his 1994 PhD
thesis, showed how some of Thoma’s methods could be generalized to Deligne-
Lusztig characters for other pairs of classical groups, where the Green’s functions
are less explicit. The abstract results of Hagedorn gave me the courage to attempt
such calculations for general groups, and to obtain closed multiplicity formulas
for orthogonal groups.

It is a pleasure to thank Dick Gross for initiating the work in [12] which led to
this paper, for helpful remarks on an earlier version, and for aquainting me with
Hagedorn’s thesis.

The referee read the original version of this paper with care and insight, made
valuable comments and simplified some of the arguments. In particular, the proof
of Lemma 3.1 given below is due to the referee, and is much shorter than the
original one.

Some general notation: The cardinality of a finite setX is denoted by|X|.
Equivalence classes are generally denoted by[ · ], sometimes with ornamentation.
If g is an element of a groupG, we writeAd(g) for the conjugation mapAd(g) :
x 7→ gxg−1, and also writegT := gTg−1 for a subgroupT ⊂ G. The center ofG
is denotedZ(G) and the centralizer ofg ∈ G is denotedCG(g).

We write 〈 , 〉H for the pairing on the space of class functions on a finite
groupH, for which the irreducible characters ofH are an orthonormal basis.
If G,G′ ⊃ H are finite overgroups ofH andψ, ψ′ are class functions onG,G′

respectively, then〈ψ, ψ′〉H is understood to mean〈ψ|H , ψ′|H〉H , where|H denotes
restriction toH.
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2 Remarks on Maximal Tori

LetG be a connected reductive algebraicF-group. We assumeG is defined over
f and has FrobeniusF . If T is a maximal torus inG we denote its normalizer in
G byNG(T ) and writeWG(T ) = NG(T )/T for the Weyl group ofT in G. If T is
F -stable, we have

W (T )F = NG(T )F/T F ,

by the Lang-Steinberg theorem.
The reduction formula for Deligne-Lusztig characters (recalled in section 4

below) involves a sum over the following kind of subset ofGF . Fix anF -stable
maximal torusT ⊂ G, and lets be a semisimple element inGF . We must sum
over the set

NG(s, T )F := {γ ∈ GF : sγ ∈ T}.

Note thatNG(s, T )F , if non-empty, is a union ofGF
s × NG(T )F -double cosets,

whereGs := CG(s)◦ is the identity component of the centralizerCG(s) of s in G.
To say thatsγ ∈ T is to say thatγT ⊂ Gs, so determining theGF

s ×NG(T )F -
double cosets inNG(s, T )F amounts to determining theGF

s -conjugacy classes of
F -stable maximal tori inGs which are contained in a givenGF -conjugacy class.
Such classes of tori are parameterized by twisted conjugacy classes in Weyl groups
of Gs andG.

The aim of this section is to parameterize theGF
s × NG(T )F -double cosets

in NG(s, T )F in terms of the fiber of a natural map between twisted conjugacy
classes in the Weyl groups ofGs andG. This parameterization will be fundamen-
tal to our later calculations with Deligne-Lusztig characters.

We begin by recalling the classification ofF -stable maximal tori inG. See [5,
chap. 3] for more details in what follows. Fix anF -stable maximal torusT0 in
G contained in anF -stable Borel subgroup ofG, and abbreviateNG = NG(T0),
WG = WG(T0).

Let T (G) denote the set of allF -stable maximal tori inG. ThenT (G) is a
finite union ofGF -orbits. For anyT ∈ T (G), let

[T ]G := {γT : γ ∈ GF}

denote theGF -orbit of T . There isg ∈ G such thatT = gT0. SinceT isF -stable,
we haveg−1F (g) ∈ NG. This gives an element

w := g−1F (g)T0 ∈ WG.
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The mapAd(g)t = gtg−1 is af-isomorphism

Ad(g) : (T0, wF ) −→ (T, F ),

where the second component denotes the action of Frobenius under anf-structure.
For any finite groupA with F -action, we letH1(F,A) denote the set ofF -

conjugacy classes inA. These are the orbits of the action ofA on itself via
(a, b) 7→ abF (a)−1. Let [b] ∈ H1(F,A) denote theF -conjugacy class of an
elementb ∈ A.

For g, T, w as above, theF -conjugacy class ofw is independent of the choice
of g. Hence we have a well-defined class

cl(T,G) := [w] ∈ H1(F,WG).

For eachω ∈ H1(F,WG), the set

Tω(G) := {T ∈ T (G) : cl(T,G) = ω}

is a singleGF -orbit inT (G), and allGF -orbits are of this form. Thus, the partition
of the set ofF -stable maximal tori intoGF -orbits is given by

T (G) =
∐

ω∈H1(F,WG)

Tω(G).

Let s ∈ GF be semisimple, and letTs be anF -stable maximal torus ofGs

contained in anF -stable Borel subgroup ofGs, and letWGs be the Weyl group of
Ts in Gs. The partition ofT (Gs) intoGF

s -orbits is given, as above, by

T (Gs) =
∐

υ∈H1(F,WGs )

Tυ(Gs).

If T ∈ T (G), the set ofF -stable maximal tori inGs which areGF -conjugate
to T is a finite union (possibly empty) ofGF

s -orbits. We want to describe this
union in terms ofF -conjugacy classes inWGs . That is, givenω ∈ H1(F,WG),
we have

Tω(G) ∩ T (Gs) =
∐
υ∈Mω

Tυ(Gs) (1)

for some subsetMω ⊆ H1(F,WGs), and our task is to findMω.
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The first point is thatTs is generally not contained in anF -stable Borel sub-
group ofG. Let g ∈ G be such thatgTs = T0, and letẏs := gF (g)−1 have image
ys ∈ WG. Then

cl(Ts, G) = [ys] ∈ H1(F,WG),

andAd(g) is anf-isomorphism

Ad(g) : (Ts, F ) −→ (T0, ysF ).

Now T0 is also a maximal torus inAd(g)Gs, whose Weyl group

W ′
Gs

:= Ad(g)WGs

is a subgroup ofWG, stable underAd(ys) ◦ F .

DefinejGs : H1(F,WGs) → H1(F,WG) to be the composition of maps

jGs : H1(F,WGs)
Ad(g)−→ H1(ysF,W

′
Gs

)
incl−→ H1(ysF,WG)

τys−→ H1(F,WG), (2)

where the middle map is induced by the inclusionW ′
Gs

↪→ WG and τys is the
twisting bijection given byτys [x] = [xys].

Now letT be an arbitraryF -stable maximal torus inGs. WriteT = hTs, with
h ∈ Gs, so thath−1F (h) ∈ cl(T,Gs). Forg ∈ G as above, we haveT = hg−1

T0.
Since

gh−1F (hg−1) = g(h−1F (h))g−1 · gF (g)−1,

it follows that

cl(T,G) = jGs (cl(T,Gs)) . (3)

This proves:

Lemma 2.1 For eachω ∈ H1(F,WG) andT ∈ Tω(Gs), we have

Tω(G) ∩ T (Gs) =
∐

υ∈j−1
Gs

(ω)

Tυ(Gs).

We can also parameterize theGF
s -orbits in [T ]G ∩ T (Gs) via the mapping

NG(s, T )F := {γ ∈ GF : s ∈ γT} −→ [T ]G ∩ T (Gs), γ 7→ γT . (4)
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Note thatGF
s acts onNG(s, T )F by left multiplication, and that (4) factors through

the quotient
N̄G(s, T )F := GF

s \NG(s, T )F . (5)

The action ofNG(T )F onNG(s, T )F by right multiplication commutes with
the GF

s -action, hence factors through an action onN̄G(s, T )F , whereT F acts
trivially. This gives an action ofWG(T )F on N̄G(s, T )F , whose orbits are the
GF
s ×N(T )F -double cosets inN(s, T )F .

Lemma 2.2 The mapping(4), sendingγ 7→ γT , induces a bijection

N̄G(s, T )F/WG(T )F
∼−→ GF

s \
(
[T ]G ∩ T (Gs)

)
with the property that the stabilizer inWG(T )F of the class̄γ ∈ N̄(s, T )F is
isomorphic, viaAd(γ), toWGs(

γT )F .

Proof: The bijectivity is straightforward and left to the reader. Letw ∈ WG(T )F ,
and letẇ ∈ NG(T )F be a representative ofw. Then

γ̄ · w = γ̄ ⇔ GF
s γẇ = GF

s γ ⇔ Ad(γ)ẇ ∈ NGs(
γT ).

This implies the assertion about the stabilizer.�
Combining Lemmas 2.1 and 2.2, we get an explicit formula for|N̄G(s, T )F |.

Corollary 2.3 Let ω ∈ H1(F,WG) andT ∈ Tω(G). Then the setNG(s, T )F is
non-empty if and only if the fiberj−1

Gs
(ω) is non-empty, in which case, we have

|N̄G(s, T )F | =
∑

υ∈j−1
Gs

(ω)

|WG(T )F |
|WGs(Tυ)

F |
,

where, for eachυ ∈ j−1
Gs

(ω), the torusTυ is chosen arbitrarily inTυ(Gs).

3 On the centralizer of a semisimple element.

Let s ∈ GF be semisimple. In the previous section we parameterized the set
of GF

s -conjugacy-classes maximal tori inGs which are contained in a givenGF -
conjugacy class, in terms of fibers of the mapjGs : H1(F,WGs) → H1(F,WG).
To compute this mapjGs concretely, we must find an elementys ∈ WG such that
cl(Ts, G) = [ys], whereTs ∈ T (Gs) is contained in anF -stable Borel subgroup of
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Gs. This amounts to finding thef-isomorphism class of the connected centralizer
Gs.

An elegant formula forys was given by Carter [6], using the Brauer com-
plex. Here we explain a different method that is suited to our later computations;
namely we show how the class[ys] can be determined from the effect ofF on
a “diagonalized”G-conjugate ofs. Unfortunately, both the present method, as
well as that of [6] require thatCG(s) be connected. That is, we must assume that
Gs = CG(s). This holds for any semisimples ∈ G if G has simply-connected
derived group. Our method generalizes that of Gross [10], who determinedCG(s)
when this group is a torus (over an arbitrary field).

Let Φ denote the set of roots ofT0 in G. Let ϑ denote the automorphisms of
Φ andWG induced byF . Forα ∈ Φ with corresponding reflectionsα ∈ WG, we
have

α ◦ F = qϑ−1 · α, ϑ(sα) = sϑ·α.

Here is our recipe for findingcl(Ts, G). Let t ∈ T0 be aG-conjugate ofs, and
let

Φt = {α ∈ Φ : α(t) = 1}.

Sincet has a conjugate inGF , there isw ∈ W (not necessarily unique) such that

F (t) = tw. (6)

Choose such aw arbitrarily. From (6) it follows that

wϑ · Φt = Φt. (7)

Now choose any positive systemΦ+
t ⊂ Φt. Then (7) implies thatwϑ · Φ+

t is
another positive system inΦt. Being the Weyl group ofΦt, the groupWGt acts
simply transitively on positive systems inΦt, so there is a uniquex ∈ WGt such
that

wϑ · Φ+
t = x · Φ+

t . (8)

Settingy = x−1w, we see thatw can be factored uniquely as

w = xy, (9)

wherex ∈ WGt andyϑ · Φ+
t = Φ+

t .
SinceCG(t) is connected, the groupWGt is the full stabilizer oft in WG. This

means that a different choice ofw satisfying (6) will changex, but noty.

11



Lemma 3.1 Withy constructed as above, we have

cl(Ts, G) = [y] ∈ H1(F,WG).

Proof: The following proof was provided by the referee; it is shorter than the
original proof. Chooseg ∈ G such thatẏ = g−1F (g) ∈ NG is a representative of
y. Then

yF (t) = tx = t,

which implies thatgt ∈ GF . SinceCG(s) is connected, any element ofGF which
isG-conjugate ofs is in factGF -conjugate tos. Hence, by multiplyingg on the
left by an element ofGF , we may assume thats = gt.

By definition ofy, there is anAd(ẏ)F -stable Borel subgroupBt ⊂ Gt contain-
ing T0. HencegBt is anF -stable Borel subgroup ofGs, containing theF -stable
maximal torusT ′

s := gT0. SinceT ′
s isGF

s -conjugate toTs, it follows that

cl(Ts, G) = [g−1F (g)] = [y],

as claimed.�

4 Deligne-Lusztig characters

Let T ∈ T (G) be anF -stable maximal torus inG, and letχ ∈ Irr(T F ). The
Deligne-Lusztig characterRG

T,χ has the following reduction formula [8]: Foru
unipotent inGF

s , we have

RG
T,χ(su) =

∑
γ̄∈N̄G(s,T )F

χ(γ−1sγ)QGs

γTγ−1(u). (10)

The summation is over the set̄NG(s, T )F defined in (5), and for any reductive
f-groupH, andS ∈ T (H), theGreen functionQH

S on the unipotent set ofHF is
defined by

QH
S (u) = RH

S,1(u).

In this section we describe the summation overN̄G(s, T )F in (10) in terms of
fibers of the mapjGs studied in the previous two sections.

Breaking the sum (10) intoWG(T )F -orbits, we have

RG
T,χ(su) =

∑
υ∈j−1

Gs
(ω)

QGs
Tυ

(u)
∑
γ̄∈Oυ

χ(γ−1sγ), (11)
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whereω = cl(T,G), Tυ is any torus inTυ(Gs), andOυ is theWG(T )F -orbit in
N̄G(s, T )F corresponding toυ ∈ j−1

Gs
(ω) as in Lemma 2.2.

By the stabilizer assertion in Lemma 2.2, the inner sum in (11) can be written
as follows. For anyγ ∈ NG(s, T )F andχ′ ∈ Irr(T F ), the value ats of the
transported character

γχ′ := χ′ ◦ Ad(γ−1) ∈ Irr(γT F )

depends only on the imagēγ ∈ N̄G(s, T )F . We have∑
γ̄∈Oυ

χ(γ−1sγ) =
1

|WGs(Tυ)
F |

∑
x∈WG(T )F

γxχ(s), (12)

whereγ on the right side of (12) is an arbitrary element ofNG(s, T )F such that
γ̄ ∈ Oυ.

In our later computations withRG
T,χ it will be useful to lets vary in GF in

such a way thatGs is unchanged. LetZ(Gs) denote the center ofGs. For υ ∈
H1(F,WGs), the function

χυ :=
∑
γ̄∈Oυ

γχ (13)

is well-defined onZ(Gs)
F , and we have

RG
T,χ(zu) =

∑
υ∈j−1

Gs
(ω)

QGs
Tυ

(u)χυ(z), if Gz = Gs. (14)

5 Multiplicity as a polynomial

In this section we begin the proof of Theorem 1.4, and will show that the multiplic-
ity is given by a polynomial function. LetG be a connected reductive algebraic
group overf. LetH ⊂ G be a connected reductivef-subgroup ofG, and letS be
anF -stable maximal torus ofH.

5.1 Summation onHF .

Suppose we are given a functionf : HF → C, invariant under conjugation by
HF , with the property that ifh ∈ HF has Jordan decompositionh = su, then
f(h) = 0 unless the conjugacy classAd(HF ) · s meetsS. Our first aim is to
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express the sum off overHF as a sum of rational functions inq over an index set
which does not depend onq.

Let Hss andHupt be the sets of semisimple and unipotent elements ofH.
Let S(HF ) andU(HF ) be the sets ofAd(HF )-orbits in (Hss)F and (Hupt)F ,
respectively.

By the vanishing assumption onf , we have

1

|HF |
∑
h∈HF

f(h) =
1

|HF |
∑

s∈(Hss)F

∑
u∈(Hupt

s )F

f(su)

=
1

|HF |
∑
s∈SF

|Ad(HF ) · s|
|Ad(HF ) · s ∩ S|

∑
[u]∈U(HF

s )

|Ad(HF
s ) · u|f(su).

(15)

The mapγ 7→ sγ induces a bijection

CH(s)F\NH(s, S)F
∼−→ Ad(HF ) · s ∩ S,

so that

|Ad(HF ) · s ∩ S| = |NH(s, S)F |
|CH(s)F |

.

Recalling that
N̄H(s, S)F = HF

s \NH(s, S)F ,

we get

1

|HF |
∑
h∈HF

f(h) =
∑
s∈SF

1

|N̄H(s, S)F |
∑

[u]∈U(HF
s )

1

|CHs(u)
F |
f(su). (16)

5.2 A partition of S

To this point, the overgroupG has not played a role. NowG is used to partition the
sum overSF in (16), as follows. LetI(S) be an index set for the set of subgroups

{Gs : s ∈ S}.

Note that each element ofI(S) is determined by a subset of the roots ofS in
G, henceI(S) is finite. For ι ∈ I(S) let Gι be the corresponding connected
centralizer, and let

Sι := {s ∈ S : Gs = Gι}.
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Thus,S is finitely partitioned as

S =
∐
ι∈I(S)

Sι.

TheF -action onS induces a permutation ofI(S), and we letI(S)F be theF -fixed
points inI(S). Note that ifSFι is nonempty, thenι ∈ I(S)F .

For ι ∈ I(S), we set
Hι := (H ∩Gι)

◦,

which is none other thanHs for anys ∈ Sι.
Note that ifs ∈ Sι, thens ∈ S ∩ CH(s), which implies that

s ∈ Hι ⊂ Gι. (17)

Returning to our sum (16), we now have

1

|HF |
∑
h∈HF

f(h) =
∑

ι∈I(S)F

∑
[u]∈U(HF

ι )

∑
s∈SF

ι

1

|N̄H(s, S)F |
f(su)

|CHι(u)
F |
. (18)

5.3 Restriction of Deligne-Lusztig characters

We now consider the functionf arising in our multiplicity formula. LetH, S be as
above, letT be anF -stable maximal torus ofG, and letχ ∈ Irr(T F ), η ∈ Irr(SF )
be arbitrary characters.

Using the functionf : HF → C given by

f(h) = RG
T,χ(h) ·R

H
S,η(h), (19)

we have

〈RG
T,χ, R

H
S,η〉HF =

1

|HF |
∑
h∈HF

f(h). (20)

The map
jGs : H1(F,WGs) −→ H1(F,WG)

defined in (2) depends only onGs, so we set

jGι := jGs , for any s ∈ Sι.

We have an analogous map

jHι : H1(F,WHι) −→ H1(F,WH).

15



Likewise, the setsN̄G(s, T )F and N̄H(s, S)F depend only onι, so we now
write

N̄G(ι, T )F := N̄G(s, T )F , N̄H(ι, S)F := N̄H(s, S)F ,

for s ∈ SFι .
Using (14) forG andH, along with (18), our multiplicity formula becomes

〈RG
T,χ, R

H
S,η〉HF =

∑
ι∈I(S)F

[u]∈U(HF
ι )

∑
υ, ς

QGι
Tυ

(u)QHι
Sς

(u)

|N̄H(ι, S)F ||CHι(u)
F |

∑
s∈SF

ι

χυ(s)ης(s), (21)

where the middle sum runs overυ ∈ j−1
Gι

(cl(T,G)) andς ∈ j−1
Hι

(cl(S,H)). The
character sumsχυ andης are as defined in (13).

5.4 Green functions

We digress from our multiplicity formula (21), to recall the polynomial nature of
Green functionsQG

T , defined on the unipotent set ofGF , for a connected reductive
f-groupG with FrobeniusF andF -stable maximal torusT in G.

Foru = 1, we have

QG
T (1) = εG(w)[GF : T F ]p′ , (22)

where[GF : T F ]p′ is the maximal divisor of the index[GF : T F ] which is prime
to p, w ∈ cl(T,G) andεG : WG → {±1} is the sign character ofWG. Note that
εG(w) = (−1)rkG+rkT [5, 7.5.2].

Foru 6= 1, the Green functionsQG
T (u) can be expressed as polynomials which

are known explicitly by tables for exceptional groups [3], [18] and for classical
groups by recursive formulas [19] which can be implemented on a computer [9].
It will suffice for us to know the leading terms of these Green polynomials, which
can be expressed in a uniform way.

Let BG be the variety of Borel subgroups ofG, and letBuG be the variety
of u-fixed points inBG. The irreducible components ofBuG all have the same
dimension, and we set

dG(u) := dimBuG.

Steinberg proved that

2dG(u) = dimCG(u)− rkG, (23)
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whererkG is the absolute rank ofG.
Assume thatp is a good prime forG. For each unipotent class[u] ∈ U(GF )

and twisted conjugacy class[w] = ς ∈ H1(F,WG), there is a polynomial

Qw,u(t) = Qς,u(t) ∈ Z[t],

of degree at mostdG(u), such that

QG
T (u) = Qw,u(q)

if cl(T,G) = [w] (see [20] and references therein).
The coefficient oftdG(u) in Qw,u(t) is

tr[w,H2dG(u)(BuG)],

wherew acts on thè -adic cohomology ofBuG via the Springer construction (see
[21], [14], [16]).

If we takeu = 1 thendG(1) = N is the number of positive roots ofG and

QG
w,1(t) = εG(w)tN + lower powers oft, (24)

which is easily seen to be consistent with (22).

Suppose now that we replaceF byF ν for someν ≥ 1. TheGF ν
-class ofT is

then represented by
(wϑ)ν · ϑ−ν ∈ WG,

whereϑ is the automorphism ofWG induced byF . Supposeν ≡ 1 mod m,
wherem is a positive integer divisible by the exponent of the finite group
WG o 〈ϑ〉. This implies thatF ν = F onWG and that(wϑ)ν · ϑ−ν = w for all
w ∈ WG. It follows thatH1(F,WG) = H1(F ν ,WG) and that the classcl(T,G) is
the same with respect toF or F ν .

Likewise, the class ofu in GF orGF ν
is determined by theG-conjugacy class

C ⊂ G containingu, together with a class inH1(F,AG(C)) orH1(F ν , AG(C)),
whereAG(C) is the component group the centralizer of someF -fixed element in
C. As in the preceding paragraph, we may takem sufficiently divisible so that
F ν = F onAG(C) and that the class ofu in GF orGF ν

corresponds to the same
class inH1(F,AG(C)). We may choosem so that this holds for everyC, since
there are finitely many unipotent classes.
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LetQG
T,ν be the Green function forT onGF ν

. Form sufficiently divisible as
in the previous two paragraphs andν ≡ 1 mod m we have

QG
T,ν(u) = Qw,u(q

ν).

(Note the difficulty with the exceptional class inE8 is avoided since our conditions
onm imply thatν is odd, see [20, Remark 6.2].)

5.5 A progression of powers of Frobenius

The indices of and terms of the summations in (21) depend onF , and we wish to
remove this dependence for infinitely many powers ofF , in order to represent the
sum in (21) as the value of a rational function.

There is a positive integerm such thatFm acts trivially on the finite setI(S)
and the divisibility conditions onm from the previous section hold whenG is
replaced byGι orHι for everyι ∈ I(S).

In particular,m is divisible by the orders of the component groupsAι(u) of
the centralizers inHι of all unipotent elementsu ∈ HF

ι for everyι ∈ I(S)F and
thatFm is the identity automorphism onAι(u) for all suchι andu. This implies
that for eachι ∈ I(S)F and[u] ∈ U(HF

ι ), there is a polynomialPι,u(t) ∈ Z[t], of
degree equal todimCHι(u), such that

|CHι(u)
F ν | = Pι,u(q

ν) (25)

for all ν ≡ 1 mod m. Moreover, each polynomialPι,u(t) is of the form|Aι(u)|
times a monic polynomial inZ[t].

The above conditions onm also ensure that the indices in the outer two sum-
mations in (21), as well as the quantity|N̄H(ι, S)F | are unchanged ifF is replaced
by F ν for ν ≡ 1 mod m.

To handle the inner sum, we add more conditions: in the next section we
will define certain subgroupsZJ of S, indexed by subsetsJ ⊂ I(S)F . We also
insist thatm be divisible by|ZJ/Z◦

J | and thatFm acts trivially onZJ/Z◦
J for each

J ⊂ I(S)F .

5.6 Character sums

In order to interpret the inner sum of (21) as a rational function, we shall replace
each summandSFι by the groupZF

ι , where

Zι := Z(Gι) ∩ S. (26)
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It is easy to check that

Zι ⊂ Z(Hι),

Sι ⊂ Zι ⊂ S,

Gι = CG(Zι)
◦.

(27)

Let χυ andης be the character sums appearing in (21). Our aim is to express
the sum

1

|ZF
ι |

∑
s∈SF

ι

χυ(s)ης(s) (28)

as the value of a rational function.
Define a partial ordering onI(S) by

ι′ ≤ ι ⇔ Gι ⊆ Gι′ .

Equivalently, we have

ι′ ≤ ι ⇔ Zι′ ⊆ Zι.

Let
Yι := Zι − Sι

be the complement ofSι in Zι.

Lemma 5.1 For everyι ∈ I(S) we have

Yι =
⋃
ι′<ι

Zι′ .

Proof: Let s ∈ Yι. Thens ∈ Sι′ for someι′ ∈ I(S), with ι′ 6= ι, sos ∈ Zι′.
SinceYι ⊂ Zι, we have

Gι = C◦
G(Zι) ⊂ C◦

G(Yι) ⊆ Gs = Gι′ ,

soι′ < ι.
Conversely, lets ∈ Zι′, with ι′ < ι. Note thats ∈ Zι. If s /∈ Yι, thens ∈ Sι.

This implies that
Gι′ = CG(Zι′)

◦ ⊂ Gs = Gι,

contradictingι′ < ι. This proves the lemma.�
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For a subsetJ ⊆ I(S), let

ZJ =
⋂
ι′∈J

Zι′ .

There is a polynomialfJ ∈ C[t] of degreedimZJ , such that

fJ(q
ν) = |ZF ν

J |, for all ν ≡ 1 mod m.

Forν ≥ 1, let

NTυ
ν : T F

ν

υ −→ T Fυ , NSς
ν : SF

ν

ς −→ SFς

be the norm mappings. These are surjective. Set

χ(ν)
υ := χυ ◦NTυ

ν , η(ν)
ς := ης ◦NSς

ν .

Assume thatι ∈ J ⊂ I(S)F . ThenZJ is F -stable and

ZF
J ⊂ ZF

ι ⊂ Z(Gι)
F ∩ Z(Hι)

F .

Bothχυ andης are defined on the latter group (see (13)), so we may restrict them
to ZF

J . Our conditions onm at the end of section 5.5 ensure that the restricted
norm mapping

NSς
ν : ZF ν

J −→ ZF
J

is also surjective. This implies, for all integersν ≡ 1 mod m, that

〈χ(ν)
υ , η(ν)

ς 〉ZFν
J

= 〈χυ, ης〉ZF
J
.

Hence for eachJ , we have∑
z∈ZFν

J

χ
(ν)
υ (z)η(ν)

ς (z) = 〈χυ, ης〉ZF
J
· fJ(qν). (29)

Let I(ι, S) := {ι′ ∈ I(S) : ι′ < ι}. It now follows from Möbius inversion
that the rational function

Θι,υ,ς(t) := 〈χυ, ης〉ZF
ι

+
∑

J⊆I(ι,S)F

(−1)|J |〈χυ, ης〉ZF
J

fJ(t)

fι(t)
(30)

has the property that

Θι,υ,ς(q
ν) =

1

|ZF ν

ι |
∑
s∈SFν

ι

χ
(ν)
υ (s)η(ν)

ς (s),

for all ν ≡ 1 mod m. SincedimZJ ≤ dimZι for all J ⊆ I(ι, S)F , we have

deg Θι,υ,ς ≤ 0. (31)
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5.7 Multiplicity as a polynomial

We return to our multiplicity formula (21). We have shown that

〈RG
T,χ, R

H
S,η〉HF =

∑
α

Ψα(q)Θα(q), (32)

whereα runs over quadruplesα = (ι, u, υ, ς), with

ι ∈ I(S)F , [u] ∈ U(HF
ι ), υ ∈ j−1

Gι
(cl(T,G)), ς ∈ j−1

Hι
(cl(S,H)), (33)

Θα(t) = Θι,υ,ς(t) is the rational function defined in (30) andΨα(t) is the rational
function defined by

Ψα(t) = fι(t) ·
QGι
υ,u(t)Q

Hι
ς,u(t)

|N̄H(ι, S)F ||Pι,u(t)|
. (34)

HereQGι
υ,u(t) andQHι

ς,u(t) are the Green polynomials from section 5.4 andPι,u(t)
is the polynomial from (25).

If F is replaced byF ν with ν ≡ 1 mod m, wherem is as in section 5.5, the
summation indicesα are unchanged, so that the rational function

M(t) :=
∑
α

Ψα(t)Θα(t) (35)

has the property that

〈RG
T,χ(ν) , R

H
S,η(ν)〉HFν = M(qν), (36)

for all ν ≡ 1 mod m. In particular,M(qν) is an integer for allν ≡ 1 mod m.
We next observe that the numerator of each term inM(t) belongs toZ[t], and

the denominator of each term inM(t) is an integer times a monic polynomial in
Z[t]. Hence there isa ∈ Z such that

aM(t) =
f(t)

g(t)
,

wheref(t) andg(t) are inZ[t] andg(t) is monic. We can therefore write

aM(t) = p(t) + r(t),
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wherep(t) ∈ Z[t] andr(t) is a rational function of negative degree. On the other
hand,

r(qν) = aM(qν)− p(qν) = a〈RG
T,χ(ν) , R

H
S,η(ν)〉HFν − p(qν) ∈ Z

for all ν ≡ 1 mod m. Sincer(qν) → 0 asν →∞, we must haver(t) ≡ 0, so

M(t) =
1

a
p(t).

This shows thatM(t) is a polynomial, as claimed.

6 Complexity and the degree of M(t)

From now on, the algebraic groupG is simple. That is, the centerZ(G) is finite
and contains every normal subgroup ofG. Recall that the complexityδ is the
minimum codimension of aBH-orbit in G/B. In this section we will complete
the proof of the first assertion of Theorem 1.4 by showing thatδ is an upper bound
on the degree of the multiplicity polynomialM(t) defined in (35).

6.1 A formula for the complexity

In this section we show thatδ has the simplest conceivable formula. Letg andh

be the Lie algebras ofG andH. We are assuming thatg is simple. We also invoke
1.3. That is, we assume thatg = h ⊕ m, stable underAd(H), and that there is a
nondegenerateAd(H)-invariant symmetric formB onm. HenceAd restricts to a
homomorphism

Ad : H −→ SO(m).

Lemma 6.1 Assume thatH 6= G. Then

ker[Ad : H → SO(m)] = Z(G) ∩H.

Proof: Containment “⊇” is clear. We prove containment “⊆”. Set

N := ker[Ad : H → SO(m)]

and letn be the Lie algebra ofN . We have

n = ker[ad : h → so(m)],
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son is an ideal inh. But [n,m] = 0, son is in fact an ideal ing. Sinceg is simple
and not equal toh, we haven = 0. HenceN is a finite normal algebraic subgroup
of H. By [4, 22.1],N is central inH, henceAd(N) acts trivially onh, as well as
onm. It follows thatN is central inG. This completes the proof.�

LetB andBH be Borel subgroups ofG andH, respectively. LetU andV be
their respective unipotent radicals. After conjugating, we may assume that

BH = SV, B = TU

with
S ⊂ T, V ⊂ U.

Proposition 6.2 The complexityδ is given by

δ =

{
dimG/B − dimBH if H 6= G

0 if H = G.

Proof: If H = G, the fact thatδ = 0 is clear from the Bruhat decomposition.
Assume from now on thatH 6= G. We must show thatBH has an orbit inG/B
with finite stabilizers. Letw be the element ofWG(T ) such thatwB ∩ B = T .
Then every element ofUwB/B can be uniquely expressed asuwB for u ∈ U .
Forv ∈ V, s ∈ S, we have

vs · uwB = v(sus−1)wB.

By uniqueness of expression,vs fixes uwB if and only if v = usu−1s−1. It
follows that the projectionBH → S gives an isomorphism from theBH-stabilizer
of uwB to theS-stabilizer ofu−1V in the quotient varietyU/V . We will show
there existsu ∈ U such that the latter stabilizer is finite.

Denote the Lie algebras ofU, V, T, S by u, v, t, s. The tangent space toU/V
at eV is u/v. We have

g/h = t/s⊕ u/v⊕ ū/v̄,

whereū = Ad(w)u is the opposite nilradical ofu andv̄ is the opposite nilradical
of v.

Sinceker[Ad : S → GL(g/h)] is finite by Lemma 6.1, it follows that
ker[Ad : S → GL(u/v)] is finite. This latter kernel is the set of common zeros of
the rootsΦ(S, U/V ) of S in u/v (see [4, 8.17]). We have

u/v = (u/v)S ⊕
∑

α∈Φ(S,U/V )

(u/v)α.
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A vector in u/v whoseα-component is nonzero for everyα ∈ Φ(S, U/V ) will
therefore have finite stabilizer inS. Proposition 6.2 now follows from a basic
result:

Lemma 6.3 Letk be an algebraically closed field. Suppose ak-torusS acts on a
smooth irreducible affinek-varietyX, fixing a pointx ∈ X, so thatS acts on the
tangent spaceTxX at x. If there existsv ∈ TxX having finite stabilizerSv ⊂ S,
then there existsy ∈ X having finite stabilizerSy ⊂ S.

This lemma can be proved as follows. Since the torusS acts completely reducibly
on the coordinate ringk[X], the argument of Lemme 1 in [15] shows that there
is anS-equivariant morphismϕ : X → TxX such thatϕ(x) = 0, and whose
differential dϕx : TxX → TxX is bijective. The setU of points inTxX with
finite stabilizers is open, and non-empty by hypothesis. Sinceϕ is dominant, the
preimageϕ−1(U) is nonempty. Ify ∈ ϕ−1(U), thenSy ⊆ Sϕ(y), and the latter
stabilizer is finite.

Lemma 6.3 can also be proved using aT -equivariant embedding ofX in a
linear representation ofT .

6.2 Degree ofΨα(t)

We return now to our rational function

Ψα(t) = fι(t) ·
QGι
υ,u(t)Q

Hι
ς,u(t)

|N̄H(ι, S)F ||Pι,u(t)|
.

We have

deg |Pι,u(t)| = dimCHι(u), deg |fι(t)| = dimZι. (37)

From section 5.4, and equation (23) we find that

deg Ψα(t) ≤ dimZι + dGι(u) + dHι(u)− dimCHι(u)

= dimZι +
1
2

[
dimCGι(u)− dimCHι(u)− rkG− rkH

]
.

(38)

The fixed point spacesgs, hs,ms are the same for anys ∈ Sι; we denote them
by gι, hι,mι. Thus we have anAd(H)-stable decomposition

gι = hι ⊕mι
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and

dimCGι(u)− dimCHι(u) = dim mu
ι

≤ dim mι

= dimCGι(1)− dimCHι(1).

(39)

Define

δι := dimZι + dimBGι − dimBHι − dimS

= dimZι +
1
2
[dim mι − rkG− rkH].

(40)

For example, ifι0 is the minimal element ofI(S), then

Gι0 = G, Zι0 = Z(G) ∩ S andmι0 = m. (41)

SinceZ(G) is finite, Proposition 6.2 implies that

δι0 = 1
2
[dim m− rkG− rkH] = δ, if H 6= G. (42)

Lemma 6.4 We havedeg Ψα(t) ≤ δι, with equality only ifu = 1.

Proof: The inequality follows from (38) and (39), and the last assertion follows
from section 6.1.�

We now seek a bound ondeg Ψα which is independent ofι. We will show that
δι ≤ δ, and that equality holds only in rather special circumstances.

Let m′
ι be the sum of the eigenspaces ofAd(s) in m with eigenvalues6= 1, for

anys ∈ Sι. Sincedet Ad(H) = 1 on m, the dimensiondim m′
ι is even. We have

m = mι⊕m′
ι, the formB is nondegenerate onm′

ι, andAd : H → SO(m) restricts
to a homomorphismAdι : Hι → SO(m′

ι).

Lemma 6.5 For everyι ∈ I(S) we haveδι ≤ δ. Moreover, ifH 6= G then the
following are equivalent.

1. δι = δ

2. dim(Zι) = 1
2
dim m′

ι

3. Adι(Zι) is a maximal torus inSO(m′
ι).

When these hold, the derived group ofHι acts trivially onm′
ι.
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Proof: If H = G thenδ = 0 and

δι = dimZι − dimS ≤ 0.

From now on assumeH 6= G. From (40) and (42), we have

δ − δι = 1
2
dim m′

ι − dimZι. (43)

Now, the group
Nι := ker[Adι : Zι −→ SO(m′

ι)]

is finite. Indeed, sinceZι ⊂ Z(Gι), it follows thatNι centralizesmι, as well as
m′
ι. Hence we have

Nι ⊆ ker[Ad : H −→ SO(m)] = Z(G) ∩H,

the latter equality from Lemma 6.1. HenceNι ⊂ Z(G), and the latter is finite
sinceG is simple.

SinceAd(Z◦
ι ) is a torus inSO(m′

ι) and 1
2
dim m′

ι is the dimension of a maxi-
mal torus inSO(m′

ι), this proves that both sides of (43) are≥ 0 and that (1-3) are
equivalent.

For the last assertion, recall thatZι ⊂ Z(Hι). If (1-3) hold thenAdι(Hι)
centralizes a maximal torus inSO(m′

ι), hence is contained in that torus.�

With this lemma, the first assertion of Theorem 1.4 has been proved.

6.3 A remark on the multiplicity formula

The formula (35), as written, contains more terms than are necessary. For, if we
write

Ψα(t)Θα(t) = Pα(t) +Rα(t),

wherePα(t) is a polynomial anddegRα(t) < 0, then

M(t) =
∑
α

Pα(t) and
∑
α

Rα(t) = 0,

sinceM(t) is a polynomial. From (31) and Lemma 6.4 we havedegPα ≤ δι,
whereα = (ι, u, υ, ς). It follows that

〈RG
T,χ, R

H
S,η〉HF = M(q) =

∑
α

Pα(q), (44)

where the sum is over just thoseα = (ι, u, υ, ς) such thatδι ≥ 0.
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7 The leading term of M(t)

We have shown that the multiplicity polynomialM(t) has the form

M(t) = Atδ + (lower powers oft).

In this section we find an explicit and effective formula for the leading termA of
M(t). Recall from (35) that

M(t) =
∑
α

Ψα(t)Θα(t),

whereα runs over quadruples(ι, u, υ, ς) as in (33),

Ψα(t) = fι(t) ·
QGι
υ,u(t)Q

Hι
ς,u(t)

|N̄H(ι, S)F ||Pι,u(t)|

and

Θα(t) = 〈χυ, ης〉ZF
ι

+
∑

J⊆I(ι,S)F

(−1)|J |〈χυ, ης〉ZF
J

fJ(t)

fι(t)

By Lemmas 6.4 and 6.5, only quadruplesα with u = 1 andδι = δ contribute
to the leading term; henceforth we assumeα is of this form. As a power series in
t, we then have

Ψα(t) = Aαt
δ + (lower degree terms),

where

Aα = [ZF
ι : Z◦F

ι ] · (−1)rk(Gι)+rk(T )+rk(Hι)+rk(S)

|N̄H(ι, S)F |
. (45)

At first glance, each functionΘα(t) could contribute many terms toA, coming
from variousι′ < ι with dimZι′ = dimZι, sinceZι may be disconnected. We
now show that in factΘα(t) contributes only one term.

Lemma 7.1 If δι = δ andι′ < ι thendimZι′ < dimZι.

Proof: If H = G, we haveδι = dimZι − dimS ≤ 0 = δ with equality iff
Zι = S. The lemma holds sinceS is connected.

Now assumeH 6= G. Supposeδι = δ andι′ < ι, yetdimZι′ = dimZι. Then

Z◦
ι ⊆ Zι′ ⊂ Zι. (46)
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From Lemma 6.5, the imageAdι(Zι) is a maximal torus inSO(m′
ι). It follows

that
Adι(Z

◦
ι ) = Ad(Zι).

Thus, for eachz ∈ Zι there isz0 ∈ Z◦
ι such that

z1 := zz−1
0 ∈ ker[Adι : Zι → SO(m′

ι)].

By Lemma 6.1, we havez1 ∈ Z(G) ∩H. Hence

z = z0z1 ∈ Z◦
ι · (Z(G) ∩H). (47)

We have shown that
Zι = Z◦

ι · (Z(G) ∩H). (48)

Now Sι is stable under multiplication byZ(G) ∩H. Moreover,Sι is open inZι,
soSι meets some connected component ofZι in an open dense set. But then (48)
implies thatSι meetsevery connected component ofZι in an open dense set.

Likewise,Sι′ meets some component ofZι′ in an open dense set. By (46),
every such component ofZι′ is also a component ofZι. ThereforeSι andSι′ meet
a common component ofZι in a dense open set. This implies thatSι ∩ Sι′ is
nonempty, henceι = ι′, contradictingι′ < ι. �

As an aside, we mention the following consequence of (48) which simplifies
our eventual formula forA whenG is adjoint.

Lemma 7.2 SupposeG is simple adjoint. Ifδι = δ thenZι is connected.

Return now toΘα(t). For eachJ ⊆ I(ι, S), the subgroupZJ is contained in
someZι′ with ι′ < ι. Lemma 7.1 implies that

deg fJ(t) < deg fι(t),

which shows that the leading term ofΘα(t) has the following simple form.

Corollary 7.3 Letα = (ι, 1, υ, ς) be a quadruple appearing inM(t) with δι = δ.
Then

Θα(∞) = 〈χυ, ης〉ZF
ι
.

From (45) and 7.3 we get the following expression for the leading termA.
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Proposition 7.4 The leading termA ofM(t) in 1.4 is given byA =
∑

ιAι, where
ι runs over thoseι ∈ I(S)F with δι = δ, and

Aι = (−1)rk(Gι)+rk(T )+rk(Hι)+rk(S) · |Z
F
ι /Z

◦F
ι |

|N̄H(ι, S)|
·
∑
υ,ς

〈χυ, ης〉ZF
ι
.

In the last summation,υ andς run overj−1
Gι

(cl(T,G)) andj−1
Hι

(cl(S,H)), respec-
tively.

As a simple illustration of 7.4, we show how it reduces to the Deligne-Lusztig
inner-product formula [8, thm. 6.8], whenG = H. For ι ∈ I(S), we have then

δι = dimZ(Gι)− dimS ≤ 0 = δ

with equality iff Gι = S = Hι. This meansι is the maximal element ofI(S)F ,
andM(t) = A = Aι is the inner product〈RG

T,χ, R
G
S,η〉GF .

By 7.4, if T is notGF conjugate toS thenj−1
Gι

(cl(T,G)) = ∅, soA = 0.
Otherwise we may takeS = T , and the fiber ofjGι overcl(S,G) is the singleton
{υ} corresponding to the class ofS in itself. We have

χυ =
∑

w∈WG(S)F

wχ, ηυ =
∑

w∈WG(S)F

wη, N̄G(ι, S)F = WG(S)F ,

and the result:

A =
〈χυ, ηυ〉SF

|WG(S)F |
is the original Deligne-Lusztig formula for〈RG

S,χ, R
G
S,η〉GF .

8 Optimality

Recall thatG is simple. In this section we show that the degreeδ is optimal. We
may assume thatH 6= G. Let T ⊂ G andS ⊂ H be arbitraryF -stable maximal
tori. We will show that for sufficiently largeq, there are charactersχ ∈ Irr(T F )
andη ∈ Irr(SF ) such that the leading coefficientA is nonzero. In fact, we can
takeη to be the trivial character.

For eachι ∈ I(S)F with Aι 6= 0, the fiberj−1
Gι

(cl(T,G)) is non-empty. This
means thatZι is GF -conjugate to a subgroup̃Zι ⊂ T . There are only finitely
many of these subgroups̃Zι. Recall from (41) thatι0 ∈ I(S)F is the minimal
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element, for whichZι0 = Z(G) ∩ S. If dimZι = 0 andδι = δ then Lemma 7.1
implies thatι = ι0. Hence, ifι 6= ι0, the torusT/Z̃◦

ι has strictly smaller dimension

than that ofT , so that
∣∣∣Irr (

T F/Z̃◦F
ι

)∣∣∣ is a polynomial inq of degree strictly less

thandimT . Hence for sufficiently largeq there are charactersχ ∈ Irr(T F ) which
are trivial onZF

ι0
and non-trivial on everỹZF

ι for ι 6= ι0. We call theseχ very
regular. For very regularχ andι such thatAι 6= 0, we have

〈χυ, 1〉ZF
ι

=

{
1 if ι = ι0

0 if ι 6= ι0.
(49)

It follows that forχ very regular, andη = 1, the coefficientA of tδ in M(t) is
given by

A = εG(x)εH(y), (50)

wherex ∈ cl(T,G) andy ∈ cl(S,H).
Let ϑ be the automorphism ofWH induced byF and letψ be the character of

an irreducible representation of〈ϑ〉nWH . For eachy ∈ WH , choose anF -stable
torusSy in H such thaty ∈ cl(Sy, H). We have then a class functionRH

ψ of HF

defined by

RH
ψ =

1

|WH |
∑
y∈WH

ψ(ϑy)RH
Sy ,1.

For example, the trivial (1) and sign (εH) characters ofWH extend to〈ϑ〉nWH

(trivially on ϑ). It is known (cf. [5, 7.6]) thatRH
1 = 1H andRH

εH
= StH are the

trivial and Steinberg characters ofHF , respectively. For very regularχ, (50)
implies that

〈RG
T,χ, R

H
ψ 〉HF = εG(x)〈εH , ψ〉WH

· qδ + (lower powers ofq). (51)

In particular, we have

〈εG(x)RG
T,χ, StH〉HF = qδ + (lower powers ofq),

while 〈εG(x)RG
T,χ, 1H〉HF has degree< δ. This last result is to be expected, in

view of the results in [2] and [17].

9 Restriction from SO2n+1 to SO2n.

We return to the situation at the beginning of the introduction. Sop > 2 and
(V,Q) is a2n + 1-dimensional quadraticF-space, defined overf, with Frobenius
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F . Fix v ∈ V F with Q(v) 6= 0, and letU be the orthogonal space ofv in V . We
take

G = SO(V ), H = Gv = SO(U),

with f-structure on both groups induced from that onV . Assumption 1.3 holds:
we may identify the quadratic spaces(m, B) = (U,Q).

Let T , S be F -stable maximal tori inG andH respectively, and letχ ∈
Irr(T F ), η ∈ Irr(SF ) be characters, which for the moment are arbitrary.

We have

δ = dimBG − dimBH − dim rkH = n2 − (n2 − n)− n = 0.

From now on, we only considerι ∈ I(S)F with δι = 0. SinceG is adjoint, each
suchZι is connected, by 7.2. Proposition 7.4 gives the multiplicity formula

(−1)rkT+rkS〈RG
T,χ, R

H
S,η〉HF =

∑
ι∈I(S)F

δι=0

(−1)rk(Gι)+rk(Hι)

|N̄H(ι, S)|
·
∑
υ,ς

〈χυ, ης〉ZF
ι
, (52)

whereυ andς run overj−1
Gι

(cl(T,G)) andj−1
Hι

(cl(S,H)), respectively.
The connectedness ofZι implies that−1 is not an eigenvalue of anys ∈ Sι.

The last assertion of 6.5 implies thats ∈ Sι has distinct eigenvalues onV/V s. It
follows that

Gι = SO(V s)× Zι, Hι = SO(U s)× Zι. (53)

Note thatdimV s is odd, saydimV s = 2a+ 1.
The decompositions (53) imply that if twoF -stable maximal tori inGF

ι are
GF -conjugate, then they areGF

ι -conjugate, and likewise forH. In other words,
we have

|j−1
Gι

(cl(T,G))| · |j−1
Hι

(cl(S,H))| ≤ 1.

Hence the inner sum of (52) has at most one term.
To make this precise, we recall that tori in orthogonal groups are described

by pairs(λ, λ′) of partitions. We write partitions asλ = (jλj), meaning that
λ hasλj parts equal toj, and set|λ| =

∑
j jλj. We have pairs of partitions
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(ν, ν ′), (λ, λ′), (µ, µ′) such that

ZF
ι '

∏
j

(f×j )νj × (f12j)
ν′j , |ν|+ |ν ′| = n− a

T F '
∏
j

(f×j )λj × (f12j)
λ′j , |λ|+ |λ′| = n,

SF '
∏
j

(f×j )µj × (f12j)
µ′j , |µ|+ |µ′| = n.

(54)

We have|j−1
Gι

(cl(T,G))| · |j−1
Hι

(cl(S,H))| = 1 precisely when

νj ≤ λj, µj and ν ′j ≤ λ′j, µ
′
j (55)

for all j. We assume (55) holds from now on. Note that ifT andS are anisotropic
thenλj = µj = νj = 0 for all j.

We count the number ofι in the sum (52) giving rise to a fixed pair of partitions
(ν, ν ′). Fors ∈ SFι , consider the components(sj1, . . . , sjµj

; s′j1, . . . , s
′
jµ′j

) of s in

thejth block
(f×j )µj × (f12j)

µ′j ⊂ SF .

Thenι is determined by the pair of subsets

{k ∈ [1, µj] : sjk = 1}, {k′ ∈ [1, µ′j] : s′jk′ = 1}.

It follows that there are (
µ

ν

)(
µ′

ν ′

)
elementsι ∈ I(S)F giving rise to(ν, ν ′), where(

µ

ν

)
:=

∏
j

(
µj
νj

)
,

(
µ′

ν ′

)
:=

∏
j

(
µ′j
ν ′j

)
.

From equations (2.3) and|j−1
Hι

(cl(S,H))| = 1 we have

|N̄H(ι, S)F | = |WH(S)F |
|WHι(S)F |

=

(
µ

ν

)(
µ′

ν ′

) ∏
j

(νj!)(ν
′
j!)(2j)

νj(2j)ν
′
j . (56)

Using 3.1 forGι andHι, we find that

(−1)rkGι+rkHι = (−1)rkG+rkH+
P
ν′j . (57)
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(One can also arrive at (57) by decomposingUF into irreduciblefZF
ι -modules,

and calculating discriminants.)
Finally, we must calculate the pairing〈χυ, ης〉ZF

ι
. We may conjugateT andS

to arrange thatZι ⊂ T ∩ S. Then

χυ =
1

|WGι(T )F |
∑

x∈WG(T )F

(xχ)|Zι , ης =
1

|WHι(S)F |
∑

y∈WH(S)F

(yη)|Zι .

We now assume thatχ andη areregular, in the sense that they have trivial stabi-
lizers inWG(T )F andWH(S)F , respectively.

On thejth block (f×j )µj × (f12j)
µ′j of SF , we have

η = ηj1 ⊗ · · · ⊗ ηjµk
⊗ η′j1 ⊗ · · · ⊗ η′jµ′k .

Likewise, on thejth block (f×j )λj × (f12j)
λ′j of T F , we have

χ = χj1 ⊗ · · · ⊗ χjλj
⊗ χ′j1 ⊗ · · · ⊗ χ′jλ′j .

Define

Ij = {k ∈ [1, µj] : ηjk ∈ Γj · {χj`, χj`−1}, for some ` ∈ [1, λj]},
I ′j = {k′ ∈ [1, µ′j] : η′jk′ = Γ2j · χ′j`, for some ` ∈ [1, λ′j]}.

(58)

For every pair of subsets

{k1, · · · , kνj
} ⊂ Ij, {k′1, · · · , k′ν′j} ⊂ I ′j,

each of the
(νj)!(ν

′
j)!(2j)

νj(2j)ν
′
j

conjugates of the character

ηjk1 ⊗ · · · ⊗ ηjkνj
⊗ η′jk′1 ⊗ · · · ⊗ η′jk′νj

contributes exactly once to the pairing〈χυ, ης〉ZF
ι

, by the regularity assumption
(1.3). It follows that

〈χυ, ης〉ZF
ι

=
∏
j

(
|Ij|
νj

)(
|I ′j|
ν ′j

)
(νj)!(ν

′
j)!(2j)

νj(2j)ν
′
j . (59)
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Set
e := (−1)rkG+rkT+rkH+rkS.

Inserting (56), (57) and (59) into (52), and summing over all(ν, ν ′) satisfying
(55), we get

e · 〈RG
T,χ, R

H
S,η〉HF =

∑
ν,ν′

(−1)
P
ν′j

∏
j

(
|Ij|
νj

)(
|I ′j|
ν ′j

)

=
∏
j

 |Ij |∑
νj=0

(
|Ij|
νj

) ·

 |I′j |∑
ν′j=0

(−1)ν
′
j

(
|I ′j|
ν ′j

)
=

{
2r if I ′j is empty for allj

0 otherwise,

(60)

where
r =

∑
j

|Ij|.

If eitherT or S is anisotropic, thenr = 0. This proves Theorem 1.2.

10 Restriction from SO7 to G2

The previous situation hadδ = 0. We now consider a case whereδ = 1. The
simplest such case isG = G2,H = SL3, which we leave to the reader.

Here we takeG = SO7, H = G2, embedded inG via the irreducible 7-
dimensional representationV of G2. We have

δ = 9− 8 = 1.

We assumep ≥ 5.
We will calculate the multiplicities〈RG

T,χ, R
H
S,η〉HF , using the formula of sec-

tion 6.3. We do not need any detailed knowledge of Green functions, beyond the
general facts about their degrees and leading terms that we have already used.

Let α, β be simple roots of a maximalf-split torusS0 in H, with α short. The
nonzero weights ofH in V are the short roots ofS0. We view the maximalf-split
tori T0 andS0 as

T0 = {(x, y, z) ∈ F3 : xyz 6= 0}, S0 = {(x, y, z) ∈ F3 : xyz = 1},
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in such a way that the coordinate functionse1, e2, e3 on T0 restrict to the roots
2α+ β,−α,−α− β onS0. In this realization, the simple co-roots ofS0 in H are

α̌(t) = (t, t−2, t), β̌(t) = (1, t, t−1),

and the corresponding simple reflectionsrα, rβ in the Weyl groupWH act by

rα · (t1, t2, t3) = (t−1
3 , t−1

2 , t−1
1 ), rβ · (t1, t2, t3) = (t1, t3, t2).

SinceS0 contains regular elements inT0, it follows thatWH is a subgroup
of WG. If WG is realized as the group of the cube, thenWH is the subgroup
preserving a diagonal of the cube; as coset representatives forWG/WH we may
take the identity and each coordinate sign change.

LetT, S beF -stable maximal tori inG andH, corresponding to the conjugacy
classes ofx ∈ WG, andy ∈ WH , respectively. Letχ ∈ Irr(T F ), η ∈ Irr(SF ).

We will use the refined multiplicity formula of section 6.3. We first tabulate
the pairs(ι, u) in H, with ι ∈ I(S0), andu ∈ Hι, for which

dimZι + dGι(u) + dHι(u)− dimCHι(u) ≥ 0. (61)

We find four types as shown:

type ι u

a (1, 1, 1) 1, u0

b (1, t, t−1), tq = t 6= ±1 1
c (1, t, t−1), tq = t−1 6= ±1 1
d regular 1

The middle column shows a typical element inS0 for each type ofι. There can
be more than oneι of the same type. Hereu0 ∈ HF is a long root element, which
has Jordan partition1322 onV .

From equation (32), we have

M(q) = Ma(q) +Mb(q) +Mc(q) +Md(q),

where each term on the right is the sum∑
ΨαΘα
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over thoseα whoseι component isH-conjugate to anι of the corresponding type
a, b, c, d in the table above. Taking the polynomial part of each sum, as in section
6.3, we have

M(q) = Pa(q) + Pb(q) + Pc(q) + Pd(q). (62)

We now calculate each of the four terms on the right side of (62).

Type a: The mapsjGι andjHι are the identity. The centralizers ofu0 in G andH
are both connected. LetφG, φH be the Springer representations ofWG andWH

corresponding tou0, let ρG, ρH be the reflection representations, and letεG, εH be
the sign representations.

From [5, 13.3], we find thatφG is the unique two dimensional representation
ofWG = S3 n{±1}3 which is irreducible onS3 and nontrivial on{±1}3, andφH
is the one-dimensional character ofWH given byφH(rα) = −1, φH(rβ) = +1.

In the following calculation we writeR1 ∼ R2, for rational functionsRi such
thatdeg(R1 −R2) < 0. We have

Ma(q) =
QG
T (1)QH

S (1)

|HF |
+
QG
T (u0)Q

H
S (u0)

|CH(u0)F |
.

Theu0 term has degree zero, so we may replace it by its leading term:

Ma(q) ∼
QG
T (1)QH

S (1)

|HF |
+ φG(x)φH(y)

Since

|T F | = det(q − x) = q3 − ρG(x)q2 + · · · ,
|SF | = det(q − y) = q2 − ρH(y)q + · · · ,

it follows that

εG(x)εH(y)
QG
T (1)QH

S (1)

|HF |
=

[GF : T F ]p′ · [HF : SF ]p′

|HF |

=
(q6 − 1)(q4 − 1)(q2 − 1)

q6|T F ||SF |
∼ q + ρG(x) + ρH(y).

We get

Pa(q) = εG(x)εH(y) [q + ρG(x) + ρH(y)] + φG(x)φH(y). (63)
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Type b: For ι ∈ I(S)F of typeb, the elements ofSFι areH-conjugate to elements
of the forms = (1, t, t−1) ∈ S0 for somet ∈ f×, t2 6= 1. We have

Gι = SO3 ×GL2, Hι = GL2.

The stabilizerW ′
Hι

of s in WH is generated by the reflection

r0 := rαrβrαrβrα ∈ WH .

The number ofι ∈ I(S)F of typeb is given by:

νb(y) :=


3 if y = 1

1 if [y] = [r0]

0 otherwise

, (64)

where[·] denotes a conjugacy-class inWH . We have

νb(y)

|N̄H(ι, S)F |
= νb(y) ·

|CW ′
Hι

(y)|
|CWH

(y)|
=

1

2
,

for y ∈ {1, r0}.
The roots ofT0 vanishing ons aree1, e2 + e3. The corresponding reflections

r1, r2 ∈ WG generate the stabilizerW ′
Gι

of s in WG. For s ∈ SFι , the elementys
of section 2 isys = 1. Hence, the mapping

jGι : H1(F,W ′
Gι

) → H1(F,WG)

of (2) is induced by the inclusionW ′
Gι

↪→ WG; its image consists of the four
classes inWG represented by elements inW ′

Gι
, as shown in the following table.

H1(F,W ′
Gι

) 1 r1 r2 r1r2
H1(F,WG) [13,−] [12, 1] [12,−] [2, 1]

Set
Wb := W ′

Gι
×W ′

Hι
.

Using section 7 and taking (64) into account, it follows that

Pb(q) = 1
2
εG(x)εH(y)〈χx, ηy〉ZF

ι
(65)

if (x, y) is WG ×WH-conjugate to an element ofWb, andPb(q) = 0 otherwise.
Here we have writtenχx instead ofχυ, where{υ} = j−1

Gι
([x]), and likewise for

ηy.
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Type c: For ι ∈ I(S)F of typec, the elements ofSFι areH-conjugate to elements
of the forms = (1, t, t−1) ∈ S0 for somet ∈ f12, t

2 6= 1. We have

Gι = SO3 × U2, Hι = U2.

The groups
W ′
Gι

= 〈r1, r2〉, W ′
Hι

= 〈r0〉
are as in typeb. The number ofι ∈ I(S)F of typec is given by:

νc(y) :=


3 if y = −1

1 if [y] = [−r0]
0 otherwise.

. (66)

As before, we have

νc(y)

|N̄H(ι, S)F |
= νc(y) ·

|CW ′
Hι

(y)|
|CWH

(y)|
=

1

2
,

now fory ∈ {−1,−r0}.
Let r be the reflection aboute2 − e3. Fors ∈ SFι , the elementys of section 2

is ys = r. Hence, the mapping

jGι : H1(F,W ′
Gι

) → H1(F,WG)

is induced by the mapx 7→ xr, as shown in the following table.

H1(F,W ′
Gι

) 1 r1 r2 r1r2
H1(F,WG) [12,−] [2, 1] [1, 12] [−, 13]

Set
Wc := W ′

Gι
r ×W ′

Hι
r.

Using section 7 and taking (66) into account, it follows that

Pc(q) = 1
2
εG(x)εH(y)〈χx, ηy〉ZF

ι
(67)

if (x, y) is WG ×WH-conjugate to an element ofWc, andPc(q) = 0 otherwise.
Again, we have writtenχx instead ofχυ, where{υ} = j−1

Gι
([x]), and likewise for

ηy.

Type d: In this caseSι contains regular elements inG, soHι = Zι = S, and
Gι = CG(S) is a maximal torus inG. HencePd(q) 6= 0 only if T isGF -conjugate
to CG(S). The mappingS 7→ CG(S) is given, in terms of conjugacy-classes in
WH andWG, in the following table.
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S 1 rα rβ −1 (rαrβ)
2 rαrβ

CG(S) [13,−] [2, 1] [12,−] [−, 13] [3,−] [−, 3]

Denote the embedding

WH ↪→ WG, by y 7→ ỹ.

Let
Wd = {(ỹ, y) : y ∈ WH} ⊂ WG ×WH .

For (x, y) ∈ Wd, we may assume thatT = CG(S). Then

Θα(q) ∼
∑

w∈WG(T )F

v∈WH(S)F

〈wχ, vη〉SF = |WH(S)F |
∑

w∈WG(T )F

〈wχ, η〉SF .

Since

Ψα(t) =
1

|WH(S)F |
,

it follows that
Pd(q) =

∑
w∈WG(T )F

〈wχ, η〉SF = 〈χx, η〉SF (68)

if (x, y) isWG ×WH-conjugate to an element ofWd, andPd(q) = 0 otherwise.

10.1 Cuspidal Multiplicities

From now on we assume that our toriT, S are anisotropic, and that the characters
χ andη are regular. We will make the multiplicities computed above more precise.

The elliptic classes inW (Bn) are those of the form[−, λ], whereλ is a parti-
tion of n. So inWG we have three elliptic classes:

[−, 3], [−, 12], [−, 13].

The first of these is the Coxeter class and the last is{−1}.
In WH we also have three elliptic classes, represented by the powers

cox, cox2, cox3 = −1

of a Coxeter elementcox = rαrβ. Via the embeddingWH ↪→ WG, the elements
−1, cox of WH are also the−1 and Coxeter elements ofWG.
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y\x [−, 13] = [−1] [−, 12] [−, 3] = [cox]

[cox3] = [−1] q − 7 + A(−1) q − 3 q − 1
[cox2] q − 2 q − 2 q − 2
[cox] q − 4 q q + 2− A(cox)

Table 1:−〈RG
Tx,χ

, RH
Sy ,η

〉HF for q ≥ 7

y\x [−, 13] = [−1] [−, 12] [−, 3] = [cox]

[cox3] = [−1] - 2 4
[cox2] - 3 3
[cox] - 5 6 or 7

Table 2:−〈RG
Tx,χ

, RH
Sy ,η

〉HF for q = 5

Let x ∈ cl(T,G), y ∈ cl(S,H). Note thatPb(q) = 0. Combining formulas
(63), (67), (68), we get the multiplicity formula

−〈RG
T,χ, R

H
S,η〉HF = q + ρG(x) + ρH(y)− φG(x)φH(y) + a(x, y) (69)

where

a(x, y) =


1
2
〈χ−1, η−1〉ZF

c
− 〈χ−1, η〉ZF

d
if x = y = −1

−〈χcox, η〉ZF
d

if x = y = cox

0 otherwise.

(70)

Here we have writtenZc for Zι, whenι has typec, and likewise forZd = S. The
numbers

〈χ−1, η−1〉ZF
c
, 〈χ−1, η−1〉ZF

d
, 〈χcox, η〉ZF

d

are calculated explicitly in (71), (73) and (76) below.
We calculateρG(x)+ρH(y)−φG(x)φH(y) from the character tables ofWG and

WH and then setA(x) = a(x, x) for x ∈ {−1, cox}, to arrive at the multiplicities
in Table 1.

Note thatS−1 has regular characters only forq ≥ 5 (which we have already
assumed), andT−1 has regular characters only forq ≥ 7. Forq = 5 we get Table 2,
where the dichotomy in the(cox, cox) entry arises from the fact thatA(cox) = 0
or 1, depending onχ andη (see below).
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The rest of this section is devoted to the explicit calculation ofA(−1) and
A(cox).

A(-1): We identify

T F−1 = (f12)
3, SF−1 = {(x, y, z) ∈ T F−1 : xyz = 1},

χ = χ1 ⊗ χ2 ⊗ χ3, η = ResSF
−1

(η1 ⊗ η2 ⊗ η3), with χi, ηi ∈ Irr(f12).

Recall that
A(−1) = 1

2
〈χ−1, η−1〉Zc − 〈χ−1, η〉Zd

.

We haveZF
c = {(1, t, t−1) : t ∈ f12} and

〈χ−1, η−1〉ZF
c

= 2
∑
i<j

〈
χi
χj

+
χj
χi

+ χiχj +
1

χiχj
,
η1

η2

+
η2

η3

+
η3

η1

〉
f12

. (71)

For ι of typed, we haveZd = S−1. TheWG-orbit of χ breaks up into four
WH-orbits:

Õ0 = WH · (χ1 ⊗ χ2 ⊗ χ3)

Õ1 = WH · (χ̄1 ⊗ χ2 ⊗ χ3)

Õ2 = WH · (χ1 ⊗ χ̄2 ⊗ χ3)

Õ3 = WH · (χ1 ⊗ χ2 ⊗ χ̄3).

(72)

These restrict toWH-orbitsO0, . . . ,O3 in Irr(SF−1). Even though the orbits̃Oi

consist ofWG-regular characters, the characters inOi need not beWH-regular.
Moreover, it can happen thatOi = Oj for i 6= j. In any case, formula (68) gives

〈χ−1, η〉ZF
d

= |{i ∈ [0, 3] : η ∈ Oi}|. (73)

We illustrate withq = 7. The unique regularWG-orbit in Irr(T F−1) contains
the characterχ = ζ⊗ζ2⊗ζ3, whereζ is a faithful character off12 ' µ8. There are
two WH-orbits of regular charactersη, η′ in Irr(SF−1), distinguished as follows:
η belongs to the restrictionsO1 = O3, andη′ = ResSF

−1
(ζ ⊗ 1 ⊗ ζ−2) does not

extend to a regular character ofT F−1. Formulas (71) and (73) give

〈χ−1, η−1〉ZF
c

= 12, 〈χ−1, η−1〉ZF
d

= 2

〈χ−1, η
′
−1〉ZF

c
= 10, 〈χ−1, η

′
−1〉ZF

d
= 0.

(74)
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From Table 1 we get

−〈RG
T−1,χ

, RH
S−1,η

〉HF = 7− 7 + 1
2
· 12− 2 = 4,

−〈RG
T−1,χ

, RH
S−1,η′〉HF = 7− 7 + 1

2
· 10− 0 = 5.

(75)

A(cox): Here the only relevant type isd. We identify

T Fcox = f16 = ker[f×6
norm−→ f×3 ], SFcox =

(
f16

)q+1
,

W (Tcox)
F = W (Scox)

F is cyclic of order six, and acts onT Fcox and SFcox via
Gal(f6/f). If χ ∈ Irr(T Fcox) andη ∈ Irr(SFcox) are both regular, andη appears in the
restriction of some Galois conjugate ofχ, then the restriction mapIrr(T Fcox) −→
Irr(SFcox) mapsWG · χ bijectively ontoWH · η. Formula (68) gives

A(cox) = 〈χcox, η〉ZF
d

=

{
1 if η = Res(wχ) for somew ∈ Gal(f6/f)

0 otherwise.
(76)

Hence the(cox, cox) entry in Table 1 is made precise:

−〈RG
Tcox,χ, R

H
Scox,η〉HF =

{
q + 1 if η = Res(wχ) for somew ∈ Gal(f6/f)

q + 2 otherwise.
(77)
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