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Introduction

The representation theory of a reductive p-adic group G seems to be locally
modeled on the representation theory of affine Hecke algebras, or closely related
algebras. More precisely, one can often find subcategories of the category of admis-
sible representations of (G, which are Morita equivalent to module categories over
various affine Hecke algebras, and the hope is that all admissible representations
may be thus described. See, for example, [BK]| and [HM] for GL,, [Ki] for other
classical groups, [L1] for unipotent and [M] for level zero representations, and [Ro]
for the ramified principal series. The advantages of this approach depend in part
on the possibility of explicit calculations in affine Hecke modules.

To describe the calculations we have in mind, recall that an affine Hecke algebra
‘H is generated by two subalgebras, Hg and A, where A is the coordinate ring of a
complex torus T, which is a maximal torus in a reductive Lie group G, and H, is
generated by operators T, where s runs over a fixed set X of simple reflections in
the Weyl group W of G, satisfying the usual braid relations along with the relation
(Ts — gs)(Ts + 1) = 0 for certain parameters g; > 0 (see §1 for more details). For
reasons that will become clear, we are especially interested in the case of “unequal
parameters”, that is, when the map s + ¢, is not constant.

Let E be a finite-dimensional H-module. Its restriction to the commutative
algebra A decomposes as

E=@E.,

T7€T

where the “weight space” E, consists of the vectors in E annihilated by some power
of the maximal ideal m, in A. The essential problem is to calculate the E,, at least
as vector spaces, ultimately as A-modules. For a wide class of simple H-modules F,
we give here an explicit algebro-geometric description of each weight space E,. Our
result is new for Hecke algebras with unequal parameters, and is also new when H
does not contain the trivial or sign characters of Hy. We also describe the action of
Ts on each sum of pairs E; @ F,, (the sum is preserved by Ts), which in principle
gives the complete structure of the H-module E.
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When E comes from a representation V of G by some categorical equivalences
as above, then the actions of A and Hg determine irreducibility of induced repre-
sentations, square-integrability /temperedness, restriction to maximal compact sub-
groups, and other essential features of an admissible representation. Some of these
deductions are illustrated in §7 below, for a particular square-integrable unipotent
representation of Eg arising in [R4]. The detailed treatment of this example was
deferred to the present paper, as it requires the results herein.

Of course, we need some information about the #-module E to begin such
computations. Every simple module E can be embedded in a principal series module
M, and we suppose the embedding of one weight space F, C M, is known. Then,
in principle, it suffices to describe the actions of A and Ts on M.

In [R1] we constructed an explicit basis for each weight space M, in M. Here,
in §2, we give the matrices for A and Ts on M in terms of this basis. Actually, we
work with certain operators Fy which map E, to F,, from which the action of T
is easily recovered.

We have twice hedged with “in principle”, inviting the suspicion that our explicit
formulas may contain practical difficulties. For arbitrary simple #-modules F, this
is so. The entries in our matrices share many properties with Kazhdan-Lusztig
polynomials, and in particular, are only defined recursively (see §6).

However, for certain simple H-modules E, we can refine these to give effective
formulas for the weight spaces E,, in terms of partial derivatives (cap-products, in
geometric terms).

These special E’s are those containing the following kind of weight. Say that
7 € T has “standard singularity of type J” if the stabilizer in W of the hyperbolic
part 7, of 7 is the subgroup W generated by a set of simple reflections J C X..
If this holds, there is a unique simple H-module F with E, # 0, and we say
E has standard singularity as well. Each principal series M (equivalently, each
category of H-modules with given central character) contains at least one irreducible
constituent F with standard singularity. For example, the constituents containing
the trivial and sign characters of Hy have standard singularity, and these are not
the only examples.

The main result in this paper is an explicit formula for the weight spaces in a
simple H-module with standard singularity. It is valid for any parameter set {g},
as long as the derived group of G is simply connected.

Suppose 7 € T has standard singularity of type J. Let W be the set of shortest
representatives for W/Wj;. Every w € W may be uniquely expressed as w = yz
with y € W7, z € Wj. For any x € W, let B,, be the flag variety of the centralizer
of x7 in G. Let H* and H, denote singular cohomology and homology with complex
coefficients. There is a natural surjective ring homomorphism

ja:‘r : -A — H*(BwT)a

by which H,(B,,) becomes an A-module under cap product. Now we can state our
main result.

Theorem. Suppose T has standard singularity of type J, and E is the unique
simple H-module with E,. # 0. Let w = yz as above.

(1) As A-modules, we have My, ~ H,(By;), which in turn is isomorphic to
the twist by y of the A-module H,(B,;).
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(2) The A-module E,; is isomorphic to the twist by y of the A-submodule of
H.(B,;) generated by the cap-product

J'ZT( I es- eﬁ(ZT)> N [B.r],

BER.-(y)

where R,;(y) is a certain set of roots depending on y, zT and the parameters
defining H (see (5.5¢)), and [B,;] is the fundamental class of B, .
(3) The dimension of Ey, equals that of the span of all partial derivatives of

the polynomial
( H aﬂ) Hz7'7
BER:+(y)

where I1,, is the harmonic polynomial corresponding to [B,,| and 0g is the
derivation on polynomials extending (3.

The proof is in §5. It is item (3) that solves our computational problem effec-
tively, for simple H-modules with standard singularity.

The theorem was already known for certain modules. If J has one element, it
was proved in [R1,(10.11)]. If A4 has equal parameters ¢; = ¢, then the simple #-
modules containing the trivial and sign characters of Hy have standard singularity.
For these modules, the theorem was proved in [R2,85] using Whittaker functions,
and can be deduced from the geometric view of Hecke algebras in [KL] (see also
[CG]). Moreover, if E contains the sign character of Hg, the the generator in (3)
is the harmonic polynomial corresponding to the fundamental class of a connected
component of the variety attached to E in [KL].

For unequal parameters, our theorem is incomplete on this last point, since it
gives no interpretation of the polynomial in (3) as a geometrically defined cycle.
However, as evidence for a larger geometric picture in the unequal parameter case,
we prove en route (see §4)

Proposition. Let 7 € T, and let M be a principal series module with M, # 0.
Then

(1) If E is any subquotient of M, then the A action on E. factors through j.,
so that E, is an H*(B;)-module.
(2) The A-module M is isomorphic to H.(B;) if and only if it is cyclic.



1. Localized Hecke algebras.

For more details in this section, see [R1, §1-6]. The main new result here is
(1.9) below, which describes multiplication in a localized Hecke algebra (which is
no longer an algebra), that will lead to our principal series matrices.

(1.1) We begin with a complex reductive Lie group G, with maximal torus T,
having roots, positive roots and simple roots A, AT, ¥, respectively, and Weyl
group W. We assume this root system is irreducible. For w € W, let £(w) be the
length of w, and let N(w) be the set of positive roots made negative by w. The
W-action on T is denoted (w, 7) — w7, and W, is the stabilizer in W of 7 € T.

Let A = C[T] be the ring of regular functions on T, and let £ = C(T) be the field
of rational functions on T. The Weyl group acts on A and K by f*(7) = f(w7).
Let X*(T) be the character lattice of T. For A € X*(T), we write ey € A for the
corresponding character. Then ey = e,,-1,.

For 7 € T, let m, be the maximal ideal of A at 7, and let A, C IC be the localiza-
tion of A at m,. So A, consists of those rational functions which are holomorphic
at 7, and m, := A,m; is the maximal ideal of A,.

(1.2) In this paper, an affine Hecke algebra # attached to G is defined by a
collection of positive real numbers

{QOaQﬂ : :6 € A}a

with g,p = qg for all w € W, as follows.

First let Ho be the Hecke algebra of W, with parameters {gg}. It has a C-basis
{Ty : w € W} with multiplication rules T, T, = Ty, if {(zy) = £(z) + £(y), and
(Ts,, — qa)(Ts, + 1) =0, for a simple root o € ¥. Let us write

Bs, =Ts, — qa; a €Y.

Next, for each 3 € A define the rational function (g € K, as follows. If G =
S05y,+1 and [ is a short root, then

1/2 1/2 1/2 —1/2
(Qﬁ/ QO/ - eﬂ)(‘lg/ q9 / + ep)
C,B = 1 . (1.2&)

Via the symmetry of the corresponding affine Dynkin diagram (of type C,), we
may assume ¢o < ¢g-.
In all other cases,
45 — €p
=== 1.2b
o= =" (1.2)

Then the affine Hecke algebra H is a twisted tensor product of two subalgebras
H = Ho®RcA,
where the cross multiplication is given, for a simple reflection s = s, by

0B, = B,0° + (0° — 0)Ca, 0 € A. (1.2¢)
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(1.3) Let 7 € T. Corresponding to A C A, C K, we have H C H, C Hx, where
HT:H®AAT:HO®CAT7 HK:H®AK:%O®C’C-

Note that Hx is an algebra over the W-invariants K", not over K, and H, is not
an algebra in general, only an H — A, bi-module.
We have an evaluation homomorphism

Fi—)F(T):rHT — Ho,

given on pure tensors by T ® 0 — 0(7)T, for T € Hy, 0 € A,.
Let
C,=A/m, =A,/m,,

identified with C via evaluation at 7. Define the principal series H-module
M) =H4C, =H, ®4._ C,.

The vector v, :=1® 1 € M(7) generates M (1) over H.

(1.4) For each simple reflection s = s4, let
Fy = Bs + (o € Hi.-
If w = sg---s1 is a reduced expression, we let
F,=F, ---F,,

product taken in Hx. By [R1, (4.3)], Fy, is independent of the reduced expression
chosen for w, and {F,, : w € W} is a (left and right) KC-basis of Hx. By (1.2¢) we
have

0F, = F, 0", 6ek, (1.4a)

which, along with [R1, (4.3)(2)], implies that
FacFy = Lgylz,y, (1'4b)

where

mey = |] ¢s¢p €k

BEN (y)
zyB>0

In particular, we have
FsFy = Fsyns,yv

where .
_ { [Cal—a]? ifsy<y
oY 1 if sy > .

If sz > z, then computing Fs;F, F, in two ways using (1.4b) shows that

Nseyley = Nszy (ST > T). (1.4c)
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(1.5) Let 79 € T be a common zero of all (,, for « € 3. All F,, belong to H,,,
and we define
Bw = Fw(T()).

Then {B,, : w € W} is a new basis of Hy, which we use from now on [R1,85].
From (1.4a,b) we get the multiplication rule

BB, = ns,w(TO)Bsw - C&” (TO)Bw- (1'53’)
(1.6) Define rational functions p,, € K by the expansion

Fy=> BuPay-
T

Then p; , = 1, and pg y # 0 = = < y, under the Bruhat order of W. From (1.5a)
we get the following recursive formula for p; -

Dz,sw = [Co — Co(T0)|Pz,w + Ns,52(T0)Psz,w for w < sw. (1.6a)
I do not know a closed form for p, ,, except in particular cases. For example [R1,85],
we have
Pe,w = H Cﬁ- (16b)
BEN (w)

We also have

Lemma(1.7). Suppose z <y are adjacent in the Bruhat order, so £(y) = £(x)+1
and there is a positive root 3 with y = xsg. Then

Dzy = Cﬁ - Cﬁ(TO)-

Proof. There are u,v € W, and a simple reflection s = s, such that r = uv, y =
usv, with additive lengths in these expressions. Note that v3 = a. We assume u
chosen to have minimal length. If u = 1, our assertion is immediate from (1.6a).
If u # 1, suppose t = s, is a simple reflection such that tu < u. By induction, we
have
Dtz ty = C,B - Cﬂ(TO)a

so we have to show that p,, = pizty. By (1.6a) it suffices to show that = £ ty.
Since both elements have the same length, it suffices to show x # ty. But z = ty
would contradict the minimality of u. [

For additional properties of p; ., see §6.

(1.8) Let 7 € T, and w € W. Let H¥" denote the K-span (left or right, it is the
same) of {F, : 7 = wt}. Define

Hopr = Ho N HET

Then [R1, §6] we have a decomposition

He= P Huor, (1.8a)

weW /W,
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and M, . is a free right A,-module. An A.-basis {H, : x7 = wr} of H, , is
constructed as follows. By (1.6), there are unique rational functions r; , € K such

that
Z DzyTy,z = 5z,a:a
YT=wT

where 0, ., =1if z =z, 0, , = 0 if 2 # . Then the basis elements H, are given by

Hy= Y Fyrya. (1.8b)
YT=wWT
We also have
Fp= Y Hypya. (1.8¢c)
YT=wT

Finally, the expansion of H, in terms of B,’s has the form

Hy=B,+ Y Byhys,  hys€A. (1.8d)

YyTFWT

Proposition(1.9). The left multiplication of H on H., r is given in terms of the
basis {H, : xT = wt} as follows.

(1) We have AyrHwr = Huw r, with multiplication formula

0H, = Y H[ Y prytryel,  0€ Aur

2T=wWT YT=wT

In particular, the term in brackets belongs to A .

(2) We have m} Hy r € Hoyy My, where n = |W,|.

(3) If s = sq is a simple reflection such that swt # wr, then FsHy » C Hsw. 7,
with multiplication formula

F.H, = Z Hsz[ Z psz,sy'r]s,yry,m]-

ZT=wWT YT=wT
(4) If swt = wr, then BsHy r = Huw,r, with multiplication formula

B5H$ = ns,a:(TO)Hsa: - Cg(TO)Hw-

Proof. We have AH, = H, by definition, and AHZ™ = H¥™ by (1.4a), so at least
AN+ = Hu . For any 6 € K, the formula in (1.9)(1) follows from relation (1.4a).
By (1.8d), the coefficient

Z D2y0VTy 2 (1.9a)

YT=wT

in (1.9)(1) is also the coefficient of B, in §H,, hence belongs to A,, at least if
g e A.
If, moreover, # € A is holomorphic and nonzero at w7, then the coefficients
(1.9a) form an upper triangular matrix (for an appropriate ordering on wW., ) whose
7



diagonal entries are units in A;, and whose entries above the diagonal are in A,.
Hence the inverse matrix has entries in A, so

Z H, Z Pey(0 )y 2] € Huyr,

2T=wT YT=wT

proving (1).

By [R1, (6.8)], the vectors H,v,, for z7 = wT, form a basis of the space M (7)yr
of vectors in M (7) annihilated by some power of m,,,. From [R1, (6.2)] we in fact
have

my M (7)yr = 0.

wT

Let 8 € m}_. For 7 = wT, we have

9H$: Z Hzez,:m

ZT=wWT

for some 0, , € A;, by (1). Since 0, ,v, = 0, ,(7)v,, we have

0=0Hv, =Y H.0,,()v,.

Since the vectors H,v, are linearly independent, this shows 6, , € m, for all z, 2,

so (2) holds.
As for (3), it is clear that

FoHY™ = 12T and ByH, = H,.

If swr # wr, then (o € Ay, so we have (o Hoyy r € Hay,r, by (1). Since Fy = Bs+(q,
it then follows that
FSH’LU,T C HS’U},T'

The formula in (3) follows from (1.8b,c).
If swr = wr, then F,HE™ = HR", and ((HET = HE™ by (1.4a), so ByHE™ =
HE". Since also ByH, = H,, we have ByH,y » = Ha,». Therefore

BsHa:: Z szz,za

ZT=wWT

for some b, , € A,. Now (1.8d) implies that b, ; is also the coefficient of B, in
B,H,, and that

H, = B; + Z Byhy,z; hy,a; € -Awr-

YTFWT

By (1.5a) we then have

Bst = Bst + Z [ns,y(TO)BS’y - Cg(To)By]hy,x-

YTAWT

Comparing coeflicients of B,, we find that b, , is in fact the coefficient of B, in
BBy, so (4) follows from (1.5a). O
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2. Matrices for the principal series

Let 7 € T, and let M = M(7). Recall that the vectors H,v, = H, ® 1, for
xT = wT, form a basis of the space M,,, of vectors in M annihilated by some power
of my,,.

Choose a numbering wW, = {wy, ..., w,}, and form the matrix

Pw‘r = [pwi,wj]-

Let D(64,...,0,) be the diagonal matrix with diagonal entries 64, ...,0, € K. From
(1.9)(2), we have

Proposition (2.1). The matriz of 0 € Ay, acting on M,,., with respect to the
basis {Hy,v, : 1 <0< ny, is

[PurD(0™,...,0")P (7).

Here each entry of the matriz P, D(0%,...,0"")P is evaluated at T.

wT

(2.2) If s = s, is a simple reflection such that swr # wr, then (1.9)(3) gives the
matrix of the map
Fs : MUJT — Msza

in terms of the bases {Hy,; v}, {Hsw,;vr}, as

[PSWTD(nS,W17 Tt nS,’U)l)P’uT']:'[](T) (2'23’)

Since (1.9)(1) gives the matrix of {, on both M,,, and Mj,,,, one can recover
from (2.2a) the matrix of T, acting on My, & Mgy

More generally, if w7, sjw7, ... , Sy, ...s1w7 are distinct, then at each step we
are in the situation of (1.9)(3). Using (1.4c) we get

Proposition (2.3). Suppose y = Sy, ...s1 is a reduced expression, and that the
points wt, S1Wy, ... , Sy ...51wWT are distinct. Then the map Fy : My,; — My,
is given in terms of the bases {Hy,vr }, {Hyw,v:} by the matriz

[PyWTD(ny,wu sy ny,wn)Pu;—l](T)-

For 7 € T, define
S, ={B e A*: (o¢p(r) =0}, (2.32)

Corollary(2.4). Fory,w as in (2.3), the map Fy : My,; — My, is an isomor-
phism of vector spaces if and only if N(y) " N(z™ )N Sy, = @ for all x € wW,.

Proof. The stated conditions are equivalent to each 7, ,, being a unit in A,. O
Now consider the case essentially opposite to (2.4). That is, assume that N(y)N
Swr € N(z71) for every z € wW,.
Since
Ny ) NNy~ N Sywr = —y[N(y) N =y "N(z" 'y~ ") N Sur]

C—y[NzHn—-y Ny =g,
9



we know from (2.3,4) that the map

F

-1 : Myur — My,

is an isomorphism, with matrix [PuyrD(Ny—1 yuy s - - - My=1 yw, ) Pyer] (T). Let
F:,;11 : My, — Mwa

be the inverse map.
We have ny,u,; * y-1 yw;, = ty*, where

2

py= ] ¢sls

BEN (y)

Hence, by (2.3), the matrix of Fy, : M,,; — My, is the evaluation at 7 of

PyUITD(T’y,HH? ct T’y,wn)Pfuj;l
= [Pyuwr D12y -1y ) P | - [Puwr D(py" -+ ™) Py .

The first matrix on the right side is that of Fy_}l, and by (2.1), the second is that
of p, € A,y acting on M,,,.

Let R, (y) be the set of all roots 8 € A such that 8 and y3 have opposite signs,
and (g(wr) = 0. Then

py=¢ [ les —ep(wr)),

BER-(y)

where £ is a unit in A,,,. We have proved

Proposition (2.5). Suppose y,w are as in (2.3), and that N(y) N Syr € N(z71)
for every x € wW,. Then there is a unit £ € Ay, such that the map Fyy : My,r —

My, 15 given by

Floto [ [ep—es(wr)).

BER-(y)

In particular, the kernel and image of Fy : My, — My,,» are isomorphic to those
of lger,. (les — es(w)] acting on M,,.
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3. Weight spaces in more general H-modules

(3.1) For any finite dimensional #-module E, and 7 € T, let E, be the space of
vectors in F which are killed by some power of the maximal ideal m,. The action of
A on E, extends to the localization A,, inducing a left H-module homomorphism

H, QFE, — FE,
denoted H @ v — Hwv. As recalled in (1.8a), we have a decomposition of right
A, -modules
HT = @ Hw,T;
weW/W,
and (1.9)(2) shows that
HuwrEr C Eyr, (3.1a)

with equality if E is generated by E., over H.
We note that Nakayama’s Lemma extends to ...

Lemma(3.2). Let H € H,, and suppose HE. = 0 for all finite dimensional H-
modules E. Then H = 0.

Proof. For each positive integer v, define a “higher jet” principal series by
M¥(1) =H, ®a, (A;/m7).

Now H., is right-free over A, with basis {H, : = € W}, so M"Y (7) is right-free
over A, /m¥, with basis {H, ®1: x € W}. Write H =}y, Hy0,, with 0, € A;.
Then in MY (1) we have

0=H®l=)» H,®0,.
zeW

It follows that each 6, belongs to mY for every v, hence 6, = 0 for all z, so
H=0. O

(3.3) We shall give another basis of #,, , depending on choices of reduced ex-
pressions of elements in wW,, but having the advantage of being in simple closed
form.

For 7 € T, let A} denote the set of positive roots 3 for which (s is not holo-
morphic at 7. Let s = s, be a simple reflection. Define

[ Fs ifag¢g AT
*T | By ifaeAf.

Since Bs; = H; if « € A, we see that
FS,T = g, s7 S 7'Ls,‘r N HS,ST'

By (3.1a), we have
F,,E, C E,, (3.3a)



for any finite dimensional H-module F.
Let w = (sg,...,s1) be a sequence of simple reflections in W such that w :=
Sk - - s1 has length £(w) = k. For 1 < i <k, let ; = s;8;_1---517, and define

F

Fw,r = F; sh_1,mh1 """ Fs1,m1-

ksTk

If N(w) N A} = @, then Fy , = F,, and is therefore independent of the reduced
expression for w. However, if G = GL3(C), 7 = (1,¢,1) with t # 1, w = (s, S2, 51),
then

FW,T = (BS1 + COL1)BS2 (BS1 + Coq)
= F813281 - Ca1C—a1 Ca1+a2-

The first term in the last line is symmetric in 1, 2, but the second is not. Thus, in
general, Iy, , depends on the reduced expression w, not just on w.
Lemma(3.4).
(1) In Hx we have
7'[11)7'P1w,‘r g 7'[‘r-

In particular, Fy € H.
(2) If E is a finite dimensional H-module, we have

FW,TET g E’LUT'

Proof. By induction on £(w), it suffices to prove (1) for w = s, a simple reflection.
Since both sides are closed under left multiplication by Hg, it suffices to check that
As:Fs + CH,. Let 0 € Ag,. We have

e { F,0° if o ¢ AF
T ByfP +Ca(0°—0)  ifae AL

In both cases, the right side belongs to H,. Assertion (2) follows from (3.3a). O

Proposition (3.5).

(1) For every x with x € wW,, we have Fx ; € Hyy 1.
(2) If we choose one reduced expression x for each x € wW.,, then the collection
{Fxr} is a right A -basis of Hy -

Proof. By (3.4)(1), we know Fy, , € H,, so there are h, € H, , such that

Far=hw+ Y hy

YTEWT

By (1.9)(2), we have hyE,; C E,, for every finite dimensional H-module E, and
every y. But then (3.4)(2) implies that hyE, = 0, if y7 # w7. Then (3.2) forces
these h, = 0. This proves (1).

Since we insist that x be a reduced expression, (1.5a) shows that Fx , — B,
belongs to the right A.-span of {B, : y < z}. Now (2) follows from (1.8d). O
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Corollary(3.6). If E is a finite dimensional H-module which is generated by E.,
then
E’UJT = Z Fx,TET-
TT=wWT
Thus, if F; is a known subspace of a principal series module M, then the matrices
in (2.1) and (2.3) can be used to calculate the remaining weight spaces F,,,. In the
next two sections we simplify this procedure in a special case.

4. Weight spaces and cohomology

From now on, we assume the derived group of G is simply connected. Let 7 € T.
The centralizer G, is connected, so W, is generated by the reflections about roots
in AT. Let B, be the Borel subgroup of G, corresponding to Af. In this section we

review some well-known facts about the cohomology of the flag variety B, = G, /B
(c.f. [BGG]).

(4.1) Recall that m;, is the maximal ideal in A at 7. The action of W, on A
preserves m,, and we let I, be the ideal in A generated by the W, -invariants in m..
The quotient A/l is naturally isomorphic to the cohomology ring H*(B,). More
precisely, H*(B,) is commutative, and we have a natural ring isomorphism

jr + AL, = H*(B;) (4.1a)
such that .
j’r(e)\) = 6)\<T) eXp(C)\) = e)\(T)[l +c)\ + gci + .. .]7

where c) is the first Chern class of the line bundle L) on B, induced by e). The
isomorphism j, is also W, -equivariant, both sides being isomorphic to the regular
represention of W,.

It follows from (4.1a) that the homology H,(B;) is a module over A/I,, via
cap-product. This can be made more explicit: Let ¥, be the base of AT, and let
S be the ring of polynomials in variables hg, for 8 € ¥;. For an arbitrary positive

root § € A}, we define hg as follows. If B = > acs, Cal, then hg =3 cohq.
For A € X*(T), let 0y be the derivation of S determined by the condition

O(hp) = (X, B)-
Then S is a locally finite .A-module on which ey acts by the operator
1
ex(1) exp(0x) = ex(T)[1 + O\ + 58'% 4o

Let H C S be the space of polynomials annihilated by the W -invariants in m..
Dual to (4.1a), we have a W -equivariant isomorphism

H,(B;) — H,
sending the fundamental class [B;] to the polynomial

.= [] ks

peat
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such that cap product by ¢y on H,(B;) corresponds to the operator d\ on H.
In view of (2.5), we are interested in the kernels and images of the following
kinds of elements of m, acting on H. Let R C A be a set of roots. Put

mpr = H[eg—eg(T)], 8[-3: Hag

BER BER

As operators on H we have
mp=cop+---,

where c is a nonzero constant, and - - - indicates operators of order larger than #R.
It follows that the kernel and image of mp, after grading according to the filtration
of H by increasing degree, become isomorphic to those of 0r. In particular, the
nullity and rank of mpg are equal to those of Og.

(4.2) Now suppose E is an H-module which can be realized as a sub-quotient of
some principal series module M (7').

Proposition(4.3). In this situation, the ideal I, annihilates E,. Hence E; is a
module over H*(B;), via the isomorphism (4.1a).

Proof. We may assume E, # 0. Since FE is a subquotient of M ('), we have wr’ = 7
for some w € W, and moreover it suffices to prove the result for £ = M(7').
Suppose 6 € m, is fixed by W,. Then 0% € (m,)W+'. Let

[am,z]z,zEMWT/

be the matrix of 6 acting on M(7'),, as in (2.1). So 6, , is the evaluation at 7’ of

w — w —_ w
E pa;,wy9 yTwy,z =0 E pm,wyrwy,z =0 6:1:,27
yeEW yeEW

where [0z .| is the identity matrix. Hence 0, , = 6“(7')0; , = 0. O

Proposition(4.4). Let M = M(7) be a principal series module, and let w € W.
Then the A-module M., is isomorphic to H.(By:) if and only if it is cyclic.

Proof. By (4.1) and Poincaré duality, the A-module H,(B,,,) is cyclic, generated
by the fundamental class of B,,. Conversely, suppose we have a surjective A-
homomorphism A — M,,,. By (4.3) we then have a surjection

A/ Ly — M.

By (4.1), the dimension of A/I,. is |W.|, and the same is true of M, (cf.
[R1, (2.2)]). Finally, I, is the annihilator of [B,.]|, so A/I,; ~ H.(By:) as
A-modules. O

5. Standard Singularities

Each 7 € T has a canonical polar decomposition 7 = 7.7, such that for all
A € X*(T), we have |ex(7e)| = 1, ex(mn) > 0. For any subset J C 3, let W; be the
corresponding standard parabolic subgroup of W, generated by reflections from J.
The centralizer W, of 7, in W is conjugate to W for some J.
14



Definition(5.1). We say 7 has standard singularity of type J, for J C X, if
W, =Wj.

Every W-orbit in T contains an element with standard singularity. For example,
we can choose 7 in its W-orbit so that eg(7) < 1 for all 8 > 0. Then 7 has standard
singularity.

If 7 has standard singularity, we will show that all weight spaces in M(7) are

W -twists of one another, in the following sense: If we have an A-module

m: A— End(N),

and w € W, then 6 € A acts on the twisted module wN via 7(6").

Proposition(5.2). Suppose T has standard singularity, and M = M(r). If 7’ €
W, then there exists w € W such that 7/ = wr and M, ~ wM,, as A-modules

Remarks. Note that M, depends only on w7, and we will see later that the iso-
morphism class of the A-module wM,; is also independent of the choice of w in its
W, -coset. At this stage, however, we choose a suitable w, and the isomorphism in
(5.2) will then be given by F,,.

The result is false without the hypothesis of standard singularity, as seen from
the example in G = GL3(C), where 7 = (1,¢,1). Then M, splits into two one-
dimensional A-modules, whereas M, 1,1y and M(1,1,4) are indecomposable (c.f. [R1,

(4.6), (15.5)]).

Proof. By [R1,(10.13)], we can choose a sequence of simple reflections s1, s, . . ., Sk
such that the points
T, 81Ty «vv , Sk ...81T =T

are distinct, and the expression sg ... sy is reduced. It follows that

Fsk...sl :Fsk"'Fsl E%T'

By induction on k, we show that F, s, gives the desired isomorphism. Let w; =
Sk—1--S1, and let s = s = s,. Assume that

Fy, : My — My, »
is bijective. We want to show that
Fs . MwlT — MSH}]_T

is also bijective. By (2.4), it suffices to assume (,(_o(w17) = 0, and then show
that sx > z for every x € wW,.

Note that W, C W, since the polar decomposition of 7 is canonical. Let
W' ={yeW: yJ C At}. Write z = yz, where y € W’ and z € W;. Since
Cal—a(wiT) =0, we have

1 # leq(unT)| = |ea(z7)| = ea(zh) = ea(yTh).

It follows that y~'ar does not belong to the span of J, so sy € W”/. Now from
swy > wq it follows (c.f. [J, 2.22b]) that sy > y. Since

N(z ') =Ny "HUyN(z™"),

and N(z7!) is contained in the span of J, we cannot have o € N(z™1), so sz > =
as desired. [

15



Proposition(5.3). Assume that the derived group of G is simply connected, and
T has standard singularity. Let M = M (7). Then every weight space M., is cyclic
over A, hence, by (4.4), is isomorphic to Hy(By:)-

Proof. Suppose 7 has standard singularity of type J. By (5.2), it suffices to prove
that M. is cyclic. Let
M;= @ M., (5.3a)
zEW /W,

Let Hjo C Ho be the subalgebra generated by T, for o € J, and let H; denote
the subalgebra
Hy = HJ70®A CH.

Then M}y is a principal series module over H y, generated by v,, and is irreducible
by Kato’s criterion [K, Thm. 2.2], since (,(7) # 0 for all & € Ay, as noted in the
proof of (5.2). (Note, condition (ii) in Kato’s theorem holds automatically, since G,
is connected.) since G, is connected.) Therefore the vector By = B,,,v, generates
My over Hj.
For oo € J we have
BsaBJ = _(1 + Qa)BJa

by (1.5a). Thus, By is the unique vector in M; up to scalar, which affords the
sign character of Hjo, so ABy = M;. Let Bj, be the projection of By to M,
according to decomposition (5.3a). Then M, = AB;,. O

Corollary(5.4). If T has standard singularity, and w € W, the isomorphism class
of the A-module wM, depends only on wT.

Proof. Let A x W, be the tensor product of A and the group algebra of W, with
multiplication rule
0-w=w-0".

By naturality of Chern classes, the actions of A and W, on H,(B;) combine to
make the latter an A x W, module. Thus for any x € W, we have zM, ~ M, as
A-modules, by (5.3). The corollary follows. O

(5.5) We are ready to complete the proof of the theorem stated in the introduction.
Suppose 7 € T has standard singularity of type J.

Let w” be the longest element of W7, and set 7 := w’/7. Then 7 has standard
singularity of type J := w’J. Let M = M(7). As in the proof of (5.3), the sum of
weight spaces

is an irreducible principal series module over H ;. It follows that there is a unique-
up-to-isomorphism simple H-module E = E(7) such that E, # 0, namely, E is the
unique simple quotient of M (7). By [R1,(3.8)], E is also the unique submodule of
M. In fact, E is the submodule of M generated by M., and E,, = M,, for all
zeWjy.

Examples: If eg(7,) > 1 for all > 0, then E(7) has standard singularity, and
by [K,Thm. 2.4], E(7) is the unique constituent of M (7) containing the trivial
character of Ho. (This requires go < ¢gg in (1.2a).) Likewise, if eg(m;,) < 1 for
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all B8 > 0, then E(7) has standard singularity, is the unique constituent of M ()
containing the sign character of Hy. If G = GL4(C) and 7 = (q,q,1,4¢?), then 7
has standard singularity and E(7) is the full induced module from trivial xsign on
the A; x A; parabolic, hence E(7) contains neither the trivial nor sign characters
of Ho.

We want to compute the weight space E,,,, for w € W. We may and shall choose
w to have minimal length in its W, -coset. Write w = yz with y € W7, z € W.
By (3.6), we have

Eyr = Z Fx,TE7'7

TT=WT

for fixed choices of reduced expressions x. Now z7 = w7 means x = yzu for some
u € W, C Wy, and associating zu to = gives a bijection

{zeW: zr=wr} > {veWy: vr =27}
We may choose reduced expressions y, v, such that

x=(y,v)
is also reduced. Moreover, Fy, . = F,, since N(y) N A} C N(y) N AT = @. Thus
Eyr= Y Fy,E.=F, Y F,E =FFE, =FM,,. (5.5a)

We want to verify the hypotheses of (2.5). The data (7, w,wT,y) of (2.5) are here
(7, 2(w?) 71, 27, y).

Let y = sk ...s1 be a reduced expression. By the minimality of £(w), the points
2T, S12T, ... , Sk...s127 are distinct. It will suffice to show that

N(y) C N(z™1) (5.5b)

for all
r € z(w!) Wi

This last is z2W, (w/)~t C Wy(w’)7, so 27t € w/ Wy = Wyw’. Write 27! = tw’
with t € W7.
Now
N(y) ={s1...8i—10;: 1 <i<k}.

If y # w”’, one checks, by downward induction on the length of ¥, that there are
simple reflections sgy1,..., Sy such that

Y < Spr1¥Y < Sk4285k+1Y < < Sy - . . Sg11Y = w’.
Then w’ = s;,,8m_1 .- .51 is reduced and
{$msm—1...5i0;: 1<i<m}=—-N(w’)™)= —[A+\A}].
For 1 <3 < k we have

T8y sim10y = tSmSm_1-- - Si0; € —t[A+\A}'] C —AT,
17



since t € Wj. Hence (5.5b) holds, and we can apply (2.5). Recalling (5.5a), this
tells us that the A-module E,, is the twist by y of the image of

H eg —ep(zT) € my, (5.5¢)
BER:-(y)

acting on M,,, where R,,(y) is the set of roots § € A for which 8 and y3 have
opposite signs, and (g(z7) = 0.

Recalling (5.3) and the remarks at the end of (4.1), we have proved our main
result:

Theorem(5.6). Suppose T has standard singularity of type J, and let E be the
unique simple H-module such that E. # 0. Then the weight space E,, may be
computed as follows. Choose w to have minimal length in its W,.-coset. Write
w=yz withy € W’, 2z € Wy. Then E,, is isomorphic to the twist by y of the
A-submodule of H,(B,.) generated by

j27< H eg — eg(z7)> N [B,r]-
BER: ()
Moreover, the dimension of E., equals the dimension of the A-submodule of S

generated by
( 11 ag>nz7.

BER - (y)

Remark(5.7) When computing (Hﬂe R.. (1) 9p)11,,, it is often convenient to re-
place R,,(y) by a set of positive roots, namely

[R.-(y)| :={B € N(y): (a(21)(_p(z7) = 0} = N(y) N S,

For, if 8 € R, (y), then exactly one of +(3 belongs to |R,,(y)| and vice-versa, so

II o=+ J[ os

BER-(y) BE|R.+(y)]

6. Remarks on the matrix P,

We give here two formulas involving the matrix

P'r = [pu,v]u,vEW.,y

reminiscent of identities between Kazhdan-Lusztig polynomials.

Proposition(6.1). Assume W, C Wy, for some J C X. Let w € W, and write
w=yz withy e W/, 2z € W;. Then P,, = P,,.

Proof. Replacing 7 by z7, we may assume z = 1 and w € W”. Suppose sw < w.

Then sw € W as well. It suffices to show that

Pswu,swv = Pwu,wv

18



for all u,v € W,. Since w € W”, u € Wy, we have
N(w™") C N((wu)™),
so swu < wu for all w € W,.. Using the recursion (1.6) we have

Pwu,wv = [ngv - Cgu(TO)]pwu,swv + Pswu,swov-

It suffices to show that wu ﬁ swv. But if wu < swv, then w < wu < sww, and since
w € WY, no reduced expression for w can end in a root from .J, hence w < sw,
contradiction. [

The second formula is an inversion formula for P,, assuming the stronger con-
dition W, = W;. Then we may as well assume W, = W, and consider the matrix
P = [pz,w]z,a:GW-

Denote the inverse matrix coefficients by

P_l = [pz,w]z,wEW-
Proposition (6.2). We have

pz,:z: = e(xz)pw0$,woza

where € is the sign character of W and wy s the longest element of W.

Proof. Recalling the definition of p, ,, we have to prove the following identity in
Hy, for every xz € W:

B, = Z FLe(22)Pwozwoz- (6.2a)
zeW

By induction on length, we may assume (6.2a) holds for z, and let s = s, be a
simple reflection such that sz > z. Then by (1.5),

Bsw = Cg (TO)Bcc + Bst
- Cg (TO) Z er(mz)pwow,woz + Z (Fs - Ca)er(xz)pwow,woz

zeW zeW

= CZ (TO) Z er(xz)pwoz,woz + Z [Fsz'na,z - FZC;]G(xZ)pwom,sz
zeW zEW

= Z FZE(S.TZ) {[C; - Cg(TO)]pwow,woz + na,szpwoa:,wosz} )

zeW
so we must show the expression in { , } is pugse,wez- FOr sz < %z, this is obtained by
applying the recursion (1.6) t0 Puyz,wesz, then using the identity (g +(_g = 1+¢g.
Suppose sz > z. Applying (1.6) t0 Pugz,wez AN Pagsz,wez BiVES
Puwoz,woz = [Co — (Lo (T0)[Pwoz,wosz + Pwgsz,woszs
[Cczu - Cfu(TO)]pwosz,wosz = Pwosz,woz — [CaC—a]m(TO)pwoz,wosz-

The conclusion follows as in the previous case. [

Continue to assume that W, = Wj;. Let wy be the longest element of W;. Let

O = [0]zew,
be a diagonal matrix indexed by W, with diagonal entries 0, € A, and let
T = [Tp2loew, = PrOP.

We have seen that generators of A act on the principal series M (7) by matrices of
the form (7).
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Corollary(6.3).
(1)

Tz = E €(Y2)0yPz,yPw, 2,w,y-
s<y<z

(2)

Twrz,wjr — 6(.’EZ) (ﬂ-wJ)w,Za

where 7 is obtained from w by replacing © by %7 .
(3)
Tewy = E(?UJ)CWJ Z G(y)gy

yeW;

If 0, = e, where A € X*(T) is J-dominant, the sum in (3) is v,,, x.s(A), where
Uy, is the numerator of ¢, ,, and x () is the character of the representation of the
Levi subgroup Lj, with highest weight A. Since 7 belongs to the center of Ly, it
follows that the matrix coefficient 7 ., (7) is given by the Weyl dimension formula.

7. An example

Let G = F4(C), with simple roots labelled 1—2 < 3—4. For ¢ > 0, consider
the affine Hecke algebra H°¢ attached to G, with parameters ¢qo = ¢ = g2 =q > 1,
93 = qs = ¢°.

Let k be a nonarchimedean local field of residue cardinality ¢q. Let Z be an Iwahori
subgroup of the p-adic Chevalley group Fy(k). Then H! is the Z-spherical Hecke
algebra of Fy(k). The irreducible admissible representations of Fy(k) containing
a fixed vector under Z correspond bijectively to the finite dimensional irreducible
representations A, via the functor V ~— VZ | see [B].

Though it is useful to let the parameter ¢ vary continuously, we are most inter-
ested in H*, which arises as follows. Let P be the parahoric subgroup in Eg(k) of
type D4, and let o be the unique cuspidal unipotent representation of of the reduc-
tive quotient of P. We view ¢ as a representation of P. Then #* is isomorphic to
the algebra of smooth compactly supported functions f : Eg(k) — End(o), such
that f(pgp') = o(p)f(g)o(p’) for all g € G, p,p’ € P. The irreducible admissible
representations V' of Fg(k) containing o upon restriction to P correspond bijec-
tively to the finite dimensional irreducible representations of H*, via the functor
V = V? := Homp(o, V), see [L1], [M].

If VI £ 0 or V° # 0 respectively, then V is square integrable if and only if all
weights 7 in VZ,V° have the property |ex(7)| < 1 for every dominant weight A
of G = F4(C). From [KL] we know that Fy(k) has exactly 18 square integrable
representations of Fy(k) with VZ # 0. Likewise, in [R4], there are listed 18 square
integrable representations V' of Eg(k) with V7 # 0. (This list is now known to
be complete.) Most of the corresponding representations V' of H* have standard
singularity, in the sense of (5.1). One of these, labelled [A; E7, —3] in [R4], cannot be
analyzed by the results in [R1]. To describe its weights, we write 7 = [t1,t2, t3,14] €
T, a maximal torus of Fy(C), where e, (7) = ¢~% (all ¢; will be real, in this
example).

Suppose ¢ > 2. Consider the weights

7=100,1,0,c—2], 7' =[1-¢0,c0]€T.
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These have standard singularities of type J = {ay, as}, J' = {2, a4}, respectively.

Each W-orbit in T forms a graph, with an edge between 7, and 75 iff there is a
simple root « such that s, = 75 and (,(71)(—«(71) is finite nonzero. The weight
multiplicities are constant on the components of the graph [R1,3.6]. In this case, 7
and 7’ belong to the same component;:

7 =[0,1,0,c — 20, 1,¢ — 2,2 — ¢]-{0,c = 1,2 — ¢, 0] e — 1,1 — ¢, ¢, 0]—[1 — ¢,0,¢,0] = 7' .

Hence there is a unique simple H°module E€ containing 7, 7', and these weights
have multiplicity 4 = |W,| in E¢. Now, E* is our module [A; E7, —3]. We will use
theorem (5.6) to find the weights in E°€. This will show, among other things, that
E* is square integrable. Since 7 = 74,, we have z = 1 in (5.6).
We have
M, = hayhag, T = heyha,.

Since
8chl_IT = _hal - hag 7& 07 8a3HT’ = _2ha4 - ha2 # 07

we find that E° contains the components of so7 and s37’, namely,
3 4
[17 1; _2a 6]7[17 _17 2; c— 2]7[1a _17 c, 2 - C]

[c—1,1,—c, C]L[l —c,c, —c¢, c]i[l, —c, ¢, c,

and these weights have multiplicity two in E°.
Since |R;(s1s2)| = {a2, @1 + as}, and |R,(s4s3)| = {a3, a3 + a4}, we have

Oai+as0a, Il = —14+1=0, Oas+asOns Il = =2+ 2 =0,
so the weights s1s27 and s4s37' do not appear in E°. On the other hand,
|R;(s545352)| = {02, 202 + a3 + a4},

and
D2az+as+asOas Il = 3 # 0,

SO §48359T is a weight in ¢ with multiplicity one. Its component is

2 3 4
s182837'= [—1,1—c,c,c] — [—c,c—1,2—c,c] — [—¢,1,c—2,2] — [—c,1,c,—2]
1 1 1
3 4
[e,—1,2—c,c] — [¢,1—c,c—2,2] — [¢,1—c,c,—2]

2 2

4
[1,e—1,—¢,2] — [1,c—1,2—c,—2]

3

[1,1,c—2,—c] =s4s3527T

Continuing in this way, we find no more weights in E°. Writing each of the
fundamental dominant weights as linear combinations of simple roots, one verifies
the square-integrability condition for ¢ = 4.
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The weights provide additional information about the corresponding represen-
tation V' of Eg(k) that is needed in [R4]. The co-roots ¢; are naturally associated
to simple roots of Eg outside the Levi subgroup L of type D4, by means of the
diagram

@ — &2 — @3 — & — 6 — & — 4

Let L*® be the adjoint group of L. Since L has connected center, it follows from
[B2,15.7] that the natural homomorphism L — L%? is surjective on k-rational
points. Now ¢ may be viewed as a representation of a hyperspecial maximal com-
pact subgroup of L% (k). Via compact induction, we get an irreducible supercusp-
idal representation [o], of L2¢(k). We view [o] as a representation of L(k) via the
surjection L(k) — L%(k).

The torus T may be identified with the set of unramified characters of L(k). For

7 € T, with 7 as in (5.5), we have [R3, (6.1)]

(Indg V(o] @ )7~ M(7),

where M (7) is the principal series module for #* as in §1, and @ is the standard
parabolic subgroup of Eg with Levi L. Since E* is the unique irreducible submodule
of M(7) (see (5.5)), we know that V' is the unique irreducible subrepresentation of
Indg[o] ® 7. But the weights say more: The map Fy, : EX  , — E* _ has
one dimensional kernel U. Since Fy, and Fj, kill E§233T, this kernel is invariant
under the parabolic subalgebra Hi C H*, where I = {a1, a3, as}. Therefore E* is
a quotient of the smaller induced representation H ®4, U. It follows that V is a
quotient of a representation induced from the A; x Eg parabolic in Eg(k). Since
€a, (82837") = ¢~ 1, the inducing representation is Steinberg on the A; factor. Since
€as(5253T') = eq,(s2837') = q~*, the Eg-factor is the unique square integrable
representation of simply connected Eg(k) containing o (see [R4, §11], where there
are three such representations of adjoint Eg(k), differing by unramified twists, and
these become isomorphic on the isogenous image of simply connected Eg(k).) A
similar analysis can be made with the weight s4s3s27, to see that V is a quotient
of an induced from the Ay x Dy parabolic in Eg(k).

Next, we consider the restriction of V' to maximal compact subgroups of Eg(k).
This is equivalent to restricting E* to maximal parahoric subalgebras of H* [R4,
§4]. Since T = 7y, it suffices to restrict to the subalgebra #( (the other restrictions
then being obtained by restricting to reflection subgroups of W (Fy), see [R5,5.7]).

There are two methods. First, we have described E* as part of a one parameter
family of modules. Since the operators Ts on E° have continuous matrix entries for
¢ > 0, we can let ¢ — 1 without changing the restriction to the finite dimensional
semisimple subalgebra H. Fortunately, the representation E' comes from a square-
integrable representation of Fy(k). (It can happen that E* is square-integrable, but
E! is not even tempered.) Since E! is tempered, we can calculate the restriction
in E! using results of Lusztig, along with Shoji’s calculation of Green polynomials
(see [R4, §8]). We find that

E4|Ho = Q12,4) + ¢’(s,g) + ¢>I(ls,9) + G9,10) + P(4,13) T P(1,24)- (7.1)

These are representations of the Weyl group W (Fy), as in [C, 13.2], which corre-
spond to unipotent representations of Fg(F,), as tabulated in [C, 13.9].
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In the second method, we use the weights to arrive at (7.1) in another way, which
is more elementary and does not rely on a deformation ¢ — 1. Instead we deform
g — 1. The resulting representation E,—; is now a (reducible) representation of the

affine Weyl group W(F4). We want to determine its restriction to the finite Weyl
group W (Fy). From our previous observations on parabolic induction, we see that
E,—, is contained in both representations

md) e ], Indl Y e (11,

(51,53,54) (81,52,54)

where [17] is the sign character of S,,. Decomposing these using Alvis’ tables [A],
we find that

Eq=1 = ad2,4) + b(Cbl(s,g) + 451(18,9)) + ch(o,10) T dP(a,13) T €P(1,24) T f¢é§,6 + 9165,
with a,b,d,e, f,g <1, ¢ < 2. Now, from the weight multiplicities, we get
dim E,_; = 42,
and one easily calculates (see [R4, (9.5a)]) the trace of s to be
tr(s1, Eg1) = —10.

Using the character table of W (Fy) or [C, 11.3.6], we again obtain the decomposition
(7.1).
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