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Abstract. Let X be a graph, with corresponding simply-laced Coxeter group W .

Then W acts naturally on the lattice L spanned by the vertices of X, preserving a
quadratic form. We give conditions on X for the form to be nonsingular modulo two,

and study the images of W −→ O(L/2kL).

Introduction — This paper investigates the tower of 2-power congruence sub-
groups in a simply-laced Coxeter group, but the story begins with a puzzle for
children. We have a pile of stones, and a graph X with n vertices. At most one
stone may be placed on a vertex, so a vertex has one of two states: stoned or un-
stoned. We move by selecting a vertex v having an odd number of stoned neighbors,
and then change the state of v. Given an initial configuration of stones on X, we
try to reduce the total number of stones as much as possible. How to determine
this minimal number of stones from the initial configuration?

A configuration of stones is an element in the F2-vector space V spanned by
the vertices of X. For v ∈ V , let q(v) be the number of vertices plus the number
of edges in the support of v, modulo two. Then q is a quadratic form on V (see
section 1), and we let O(F2) denote the subgroup of GLn(F2) preserving q.

The moves are linear maps on V preserving q, and are the images of simple
reflections under the natural homomorphism

ρ : W −→ O(F2),

where W is the (simply-laced) Coxeter group having X as Coxeter diagram. Our
puzzle can, and henceforth will be rephrased as follows: Find the orbits of W on
V , determinine the orbit of a given vector, and find a vector in each orbit which is
minimal, in the sense of having the fewest number of nonzero coefficients in terms
of the vertex basis.
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We see at once that there are at least two nonzero minimal vectors, namely a
single stoned vertex (contained in an orbit with q = 1) or two non-adjacent stoned
vertices (contained in an orbit with q = 0). If q separates the nonzero W -orbits on
V , then the puzzle is solved: there are two nonzero orbits, determined by q = 0
or q = 1, and a minimal vector can be determined by evaluating q on the initial
vector. So, when does q separate the nonzero W -orbits on V ?

Suppose that q is nonsingular and ρ is surjective. Results of Arf-Witt and
Dieudonné (see section 2) imply the following: If n is even, then q separates orbits.
If n is odd there is just one additional orbit, consisting of a single W -invariant
vector which is easy to spot. This leads us to the main question addressed in the
first part of this paper: For which graphs X is q nonsingular and ρ surjective?

If W is a finite irreducible Weyl group, that is, if X is a Dynkin diagram of
type ADE, the answer is easily checked in each case (and also follows from the
results herein). We find that q is nonsingular and ρ is surjective exactly for types
A1, A2, A4, A5, E6, E7, E8. In fact, it is well-known that the map ρ gives isomor-
phisms

S2/± 1 −→ O1(F2), S3 −→ O−
2 (F2), S5 −→ O−

4 (F2), S6 −→ O5(F2),

W (E6) −→ O−
6 (F2), W (E7)/± 1 −→ O7(F2), W (E8)/± 1 −→ O+

8 (F2).

Here, On(F2) or O±
n (F2) denotes the orthogonal group of a nonsingular quadratic

form on Fn
2 which for n even is split (+) or nonsplit (−).

The inverses of the three nontrivial type A isomorphisms are given by the per-
mutation action of the orthogonal group on, respectively, the vectors with q = 1,
vectors with q = 0 and − type hyperplanes in F5

2. Counting arguments (see [B, pp.
242-3]) show that ρ is surjective in type E.

In the finite case, the W -orbits on V have several interpretations; we mention
two. First, if we identify vertices in X with simple co-roots in the corresponding
simply-connected Lie group G, then a configuration of stones is an involution in a
maximal torus of G, and the moves are conjugation by simple reflections in the Weyl
group W of G. Our puzzle amounts, for finite W , to determining the conjugacy
class of a given involution. Thus, in the seven cases above, we have two conjugacy
classes of involutions given by q = 1 and q = 0, and an additional central involution
in A5, E7. We remark that the conjugacy classes of all finite order elements in G
were classified by Kac, in terms of coefficients in the highest root (see [H, chapter
10]), but it is not always easy to determine the class of a given element.

The second interpretation arises from recent work on the local Langlands corre-
spondence [DR, section 13]. Here, the vectors in V parametrize certain finite sets of
irreducible representations of a p-adic group G, and the W -orbits in V correspond
to certain rational classes of tori in G. The present paper arose in this context,
while trying to understand the particularly nice example of E8 in terms of its graph,
without resorting to counting.

In this paper we consider, in places, an arbitrary graph X, but we mostly restrict
to the case where X is a tree. We say the graph X is nonsingular if the quadratic
form q is nonsingular on V .

In section 4, we give simple graph-theoretic conditions for X to be nonsingular,
and nonsingular trees are characterized in terms of “sprouting” and “pruning”.
Then in section 7, we prove:

2



Theorem 1. If X is a non-singular tree, not of type An, then the map ρ : W −→
O(F2) is surjective.

Thus, we find that E6, E7, E8 are rather the norms than the exceptions, for
nonsingular trees; unlike A1, A2, A4, A5, they are not “low dimensional accidents”.
The branch node makes all the difference.

Theorem 1 leads us to consider the kernel of ρ, which is only interesting for
infinite W . More generally, we consider the congruence subgroups

Wk = ker[W −→ O(Z/2kZ)].

For k > 1 the groups Wk are torsion-free. It follows easily from properties of the
Tits cone that the torsion in W1 consists of a finite number of conjugacy classes of
involutions, corresponding to subgraphs of type E8, and certain subgraphs of type
E7 (see section 8).

The quotients Wk/Wk+1 are elementary abelian 2-groups, and we show, for
“most” even nonsingular trees, that the rank is as large as possible. (Our arguments
apply only to even graphs.) To state the result, let O′(Z2) denote the kernel of the
2-adic spinor norm

δQ2 : O(Z2) −→ Q×
2 /Q×2

2 .

Then W ⊂ O′(Z2) for every nonsingular graph X, since δQ2 = 1 on the simple
reflections.

In sections 9-12, we prove our second main result:

Theorem 2. Assume X is a nonsingular even tree containing a non-singular even
hyperbolic subtree. Then W is 2-adically dense in O′(Z2). Equivalently,

Wk/Wk+1 '
{

so′(F2) if k = 1, 2
so(F2) if k ≥ 3,

where so(F2) is the Lie algebra of O(F2) and so′(F2) is the commutator subalgebra.

Here, a tree is hyperbolic if its Coxeter group is infinite, and every proper sub-
tree has finite or affine Coxeter group. In fact, there are only two nonsingular
even hyperbolic trees, namely E10 and T3,3,4 (see section 4). To prove Theorem 2
we use Kac’s result that ±Aut(X)W = O(Z) when X is hyperbolic, along with
strong approximation, Theorem 1, and the structure of the adjoint representation
of O(F2).

1. Graphs and quadratic forms — In this paper, a graph X has a finite
vertex set S = S(X), and edges are two-element subsets of S. Our graphs have no
loops, or multiple edges. If {i, j} is an edge we say vertices i, j are adjacent, or are
neighbors, and write i—j. The degree of a vertex is the number of edges containing
it. Given an ordering on S, let A = [aij ] be the adjacency matrix of X, defined by

aij =
{

1 if i—j

0 otherwise.

If X and Y are two graphs, then X + Y denotes the disjoint union of X and Y .
If J ⊂ S, the full subgraph on J is the graph [J ] with vertex set J and all edges in
X between vertices in J .
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Given a graph X with vertex set S, let L be a lattice of rank n with basis
{αi : i ∈ S}, and let 〈 , 〉 be the symmetric bilinear pairing on L with matrix
2I − A (for some ordering of the basis {αi}). Note that 〈λ, λ〉 ⊂ 2Z for all λ ∈ L.
Let q be the quadratic form on L defined by q(λ) = 1

2 〈λ, λ〉. We also write q for
the base extension of q to R⊗ L, for any commutative ring R.

Many coefficient rings appear later in the paper, but until further notice we take
R = F2.

Let V = F2 ⊗ L. It has a basis {ei = 1⊗ αi}. If x =
∑

xiei ∈ V , then

q(x) =
∑

i

x2
i +

∑
i<j
i—j

xixj ∈ F2.

This yields the description of q given in the introduction. We can visualize x as a
binary coloring of the vertices of X, where i is colored • if xi = 1, and colored ◦
if xi = 0. If [x] denotes the full subgraph of X on the • vertices, then q(x) is the
Euler characteristic of the 1-complex [x], modulo two. If [x] has no cycles, then

q(x) ≡ c(x) mod 2,

where c(x) is the number of connected components of [x].
The associated symplectic form f : V ⊗ V −→ F2 is given by

f(x, y) = q(x + y) + q(x) + q(y).

The bilinear form f has matrix [f(ei, ej)] ≡ A mod 2. We write

ker2 X = {x ∈ V : f(x, V ) = 0},

ker2 q = {x ∈ ker2 X : q(x) = 0}.

Note that ker2 X = kerA|V . We can visualize ker2 X as the set of binary vertex
colorings of X in which every vertex has an even number of • neighbors. Since f
induces a non-degenerate symplectic form on V/ ker2 X, we have

dim ker2 X ≡ dim V mod 2.

A vector x ∈ V for which q(x) = 0 is called q-isotropic. We define

V (0) := {x ∈ V : x 6= 0, q(x) = 0}, V (1) := {x ∈ V : q(x) = 1}.

The form q and the graph X are called nonsingular if ker2 q = 0.

2. Orthogonal groups over F2 — Let O(V ) denote the automorphism group
of the quadratic F2 vector space V . Many arguments in this paper depend on the
parity of n. We collect some known facts needed in each case.

Lemma 2.1. Suppose n = 2m + 1 is odd. Then the form q is nonsingular if and
only if ker2 X = {0, u} has two elements, and q(u) 6= 0. In this case, we have

(1) V (1) = u + V (0).
(2) The group O(V ) has four orbits in V , namely,

{0}, {u}, V (0), V (1).
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Proof. The restriction of q to ker2 X is a linear functional from ker2 X to F2. By
definition, this functional is injective if and only if q is nonsingular. Since dim ker2 X
is odd, the first assertion is immediate.

Suppose q is nonsingular, and let u be the nonzero element of ker2 X. For each
coset {x, x+u} ∈ V/ ker2 X, we have q(x+u) = q(x)+1, hence (1) holds. Assertion
(2) follows from the Arf-Witt theorem [D,p.41]. �

If n = 2m, there are two equivalence classes of quadratic forms on V , according
to the maximal dimension of a subspace on which both q and f vanish identically.
This dimension is m− d, where d ∈ {0, 1} is called the defect of q.

Lemma 2.2. Suppose n = 2m is even. Then q is nonsingular iff ker2 X = 0, that
is, iff det A is odd. In this case, the following hold.

(1) The defect is given by

d ≡ D2 − 1
8

mod 2,

where D = det[2I −A].
(2) The group O(V ) has three orbits in V , namely,

{0}, V (0), V (1).

Proof. Since dim ker2 X is even, the linear functional q : ker2 X → F2 is injective
iff ker2 X = 0, hence the first assertion.

From the classification of quadratic forms over Z2 [Ki, 5.2.5,6] it follows that

Z2 ⊗ L ' (m− d)
[

0 1
1 0

]
⊥ d

[
2 1
1 2

]
,

as quadratic spaces. This implies (1). Assertion (2) again follows from the Arf-Witt
theorem. �

Return now to arbitrary n. A transvection is an element of O(V ) of the form
x 7→ x+f(x, y)y for some y ∈ V (1). It follows from Lemmas 2.1(2) and 2.2(2) that
the transvections form a single conjugacy class in O(V ).

The next result is our main tool in proving surjectivity.

Lemma 2.3. Suppose X is a nonsingular graph, not isomorphic to A2 + A2. Let
G be a subgroup of O(V ) containing a transvection. Then G = O(V ) if and only if
G is transitive on V (1).

Proof. If G contains one transvection, and is transitive on V (1), then G contains
all transvections. We will have G = O(V ) if the transvections generate O(V ). It is
known [D, Prop. 14] that, for nonsingular q, the transvections do indeed generate
O(V ), except if n = 4 and d = 0.

There are four nonsingular graphs with four vertices, having D = −27,−3, 5, 9.
From Lemma 2.2(1), the respective defects are d = 1, 1, 1, 0, the latter coming from
D = 9 for A2 + A2. �

3. Nonsingularity conditions for graphs — Let X be a graph with vertex
set S = {1, . . . , n}, and quadratic form q on V = F2 ⊗ L, as above. In this section
we translate the nonsingularity of q into conditions on the graph X.
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Let
det(X) := detA =

∑
σ∈Sn

ε(σ)a1,σ1a2,σ2 · · · an,σn ∈ Z,

where ε(σ) is the sign of the permutation σ ∈ Sn. The σ-term is nonzero iff σ
belongs to the set A(X) of those permutations that move every vertex to one of its
neighbors, so

det(X) =
∑

σ∈A(X)

ε(σ).

Let Z(X) be the set of n-vertex subgraphs U ⊂ X whose components are either
segments ◦—◦ or cycles. Let z(U) be the number of components of U which are
cycles. The orbits of σ ∈ A(X) on S define an element U(σ) ∈ Z(X), and U(σ) =
U(σ′) iff σ′ is obtained from σ by inverting some k-cycles in σ, for k ≥ 3. This
implies that ε(σ) = ε(σ′), and that

det(X) =
∑

U∈Z(X)

ε(U)2z(U), (3a)

where ε(U) is the sign of any permutation σ ∈ A(X) with U(σ) = U .
An n-vertex subgraph Y of X is called a maximal matching if Y contains bn

2 c
connected components each of which is a segment, and if n is odd, one additional
isolated vertex, denoted j(Y ). Let M(X) be the set of all maximal matchings in
X.

3.1 Lemma. If n = 2m then X is nonsingular if and only if X has an odd number
of maximal matchings.

Proof. If n = 2m, then a maximal matching is an element Y ∈ Z(X) with z(Y ) = 0,
so the claim follows from (3a). �

For any j ∈ S, let Xj be the full subgraph of X supported on S − {j}. If n
is odd, the segments in a maximal matching Y of X form a maximal matching in
Xj(Y ). Consider the vector

u :=
∑
j∈S

det(Xj)ej =
∑

Y ∈M(X)

ej(Y ). (3b)

3.2 Lemma. If n = 2m + 1, then the following hold.
(1) u ∈ ker2 X.
(2) u 6= 0 if and only if ker2 X = {0, u}.
(3) X is nonsingular if and only if q(u) = 1.

Proof. We first show that u ∈ ker2 X. We must show that every i ∈ S has an
even number of neighbors j with det Xj odd. Let M(i) be the set of all maximal
matchings Y in X such that j(Y )—i. Then M(i) is the disjoint union of the sets
of maximal matchings in Xj , for j—i. From the even case just proved, we get

|M(i)| ≡
∑
j—i

det(Xj) mod 2.

Hence it suffices to show that |M(i)| is even. To this end we construct a fixed-point
free involution on M(i). Let Y ∈ M(i), and let j = j(Y ). Since i 6= j, there is a
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unique edge in Y meeting i, say {i, j′}. Replace this edge by {i, j}, and keep the
remaining edges in Y . This gives a new maximal matching Y ′ which again belongs
to M(i), since j(Y ′) = j′—i. Clearly Y ′ 6= Y . Repeating the procedure with Y ′

will give Y again. This completes the proof of (1).
For (2), note that each det Xi is a minor of X. Hence u 6= 0 iff dim ker2 X = 1.

Finally, if q(u) = 1, then (2) holds, so X is nonsingular. The converse is clear. �

3.3 Definition. We call the vector u defined in (3b) the kernel vector of an odd
graph X, and the vertices i in the support of u (i.e., those with det Xi 6= 0) the
kernel vertices of X.

3.4 Example. If X is a Dynkin diagram of finite type, then the kernel vector
corresponds to a central involution (see the Introduction).

3.5 Example. Consider the complete graph Kn. By induction, we find there are
1·3 · · · (2m−1) maximal matchings in K2m, and 1·3 · · · (2m+1) maximal matchings
in K2m+1. Thus, K2m is nonsingular for all m, by 3.1. For X = K2m+1, we have
Xj ' K2m for all j, so

u =
2m+1∑
j=1

ej ,

and

q(u) ≡ 2m + 1 +
(

2m + 1
2

)
= (m + 1)(2m + 1) ≡ m + 1 mod 2.

Thus, 3.2 shows that K4m+1 is nonsingular, while K4m+3 is singular.

3.6 Example. We indicate the kernel vector in the following graphs by using • for
the kernel vertices. It shows that the first is singular, and the second is nonsingular.

• — ◦ — • — ◦ — • — ◦ — •
|
◦
|
◦

,

• — ◦ — • — ◦ — •
|
◦
|
•
|
◦
|
•

If the nonsingular graphs with 2m vertices are known, one can use 3.2 to deter-
mine the nonsingular graphs with 2m + 1 vertices, by determining whether each
Xj is singular or not, thereby constructing the kernel vector u, and then evaluating
q(u).

For example, there are four nonsingular graphs with four vertices, and 21 con-
nected graphs with five vertices. Examining the Xj ’s in each of the latter, one finds
exactly six nonsingular connected graphs with five vertices. We leave this as an
exercise.

This method does not seem practical for larger graphs. For trees, one can do
better. Lemma 4.8 below contains a much simpler constructive procedure for finding
all nonsingular trees.

7



4. Trees — In the previous section we have seen that odd complete graphs can
have an odd number of maximal matchings and still be singular. In this section, we
find that this cannot happen if X is a tree. This is a by-product of the construction
of all nonsingular trees by “sprouting”, as will be explained.

We adopt the standard terminology: A tree is a connected graph without cycles.
A leaf in a graph X is a vertex contained in a unique edge of X. A branch node is
a vertex of degree at least three.

The first step is a variation on the well-known result “trees have leaves”.

4.1 Lemma. If X is a tree then at least one of the following holds.

(1) X consists of a single vertex.
(2) There is a vertex in X adjacent to two or more leaves.
(3) There is a leaf in X adjacent to a vertex of degree two.

Proof. Suppose (1-3) all fail to hold. Then every vertex is adjacent to at most one
leaf, and every leaf is adjacent to a branch node. We will get a contradiction by
constructing a cycle in X. Pick a leaf v0, and let v1 be a branch node adjacent to
v0. Proceed away from v1 on an edge other than v0, v1. The next vertex cannot be
a leaf, since v1 is already adjacent to the leaf v0. If the next vertex has degree 2
then proceed on a new edge. Since no leaf is adjacent to a degree two vertex, we
eventually arrive at new branch node v2. Since deg v2 ≥ 3, and v2 is adjacent to at
most one leaf, we can exit v2 on a new edge which does not end in a leaf. In this
way we visit an unlimited number of branch nodes, so we eventually visit the same
branch node twice. �

Note that if X is any nonsingular tree, then 4.1(2) cannot hold, for if i, j are
leaves adjacent to the same vertex, then ei + ej ∈ ker2 X and q(ei + ej) = 0. This
can also be seen from (3a), since Z(X) is empty.

4.2 Definition. If the tree X is obtained by attaching i—j— to some vertex k
in a tree X ′, we say X is obtained from X ′ by sprouting at k, and X ′ is obtained
from X by pruning at k.

Our eventual aim is to show how all nonsingular trees may be obtained by
sprouting. We begin with even trees.

4.3 Lemma. A tree X with 2m vertices is nonsingular if and only if it has a
maximal matching, in which case the maximal matching is unique, and det(X) =
(−1)m. The set of nonsingular even trees is preserved under sprouting and pruning.
All such trees are obtained by starting with the segment ◦—◦ and sprouting at
arbitrary vertices.

Proof. If X has no maximal matchings, then it is singular by 3.1. Suppose X has a
maximal matching. Then 4.1(1,2) cannot hold, so X has a subgraph i—j—k with
no other edges in X meeting i or j. Prune at k to obtain a new graph X ′. Since
any maximal matching in X must contain {i, j}, we have

det(X) = −det(X ′).

The lemma follows by induction. �
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4.4 Example. The nonsingular even trees with n ≤ 8 are A2, A4, A6, E6, E8,

T3,3,4 :=

◦ — ◦ — ◦ — ◦ — ◦
|
◦
|
◦
|
◦

,

◦
|

◦ — ◦ — ◦ — ◦ — ◦
|
◦
|
◦

,

◦ ◦
| |
◦ — ◦
| |
◦ ◦
| |
◦ ◦

.

To prepare for odd trees, we first consider the support of vectors in ker2 X.
Recall from section 1 that ker2 X consists of those binary vertex colorings of X in
which every vertex has an even number of • neighbors.

4.5 Lemma. Suppose X is any tree, and 0 6= x ∈ ker2 X. Then the connected
components of [x] are single vertices. At least one vertex in [x] is a leaf in X.

Proof. Any component c of [x] is a tree. If c has more than one vertex, then c has
a leaf i, adjacent to a unique vertex j in c. Hence j is the only • neighbor of i,
which contradicts x ∈ ker2 X.

For the second assertion suppose X has n vertices, and the assertion is true for
trees with fewer than n vertices. Write x =

∑n
i=1 xiei. Choose any leaf i in X,

and let j be the neighbor of i. If xi = 1 we have found the desired leaf. If xi = 0,
remove the vertex i and the edge {i, j} to obtain the tree Xi. We have x ∈ ker2 Xi.
Note that xj = 0 since i had an even number of (hence zero) • neighbors in x. By
induction, there is a leaf ` in Xi with x` 6= 0. Since xj 6= x`, we must have j 6= `,
so ` is also a leaf in X. �

For X odd, we can apply 4.5 to the kernel vector

u =
n∑

j=1

det(Xj)ej ∈ ker2 X

and find that q(u) is the number of nonsingular Xj ’s modulo two. By the uniqueness
in 4.3, this implies the following uniform nonsingularity condition for trees with any
number of vertices.

4.6 Lemma. Let X be a tree. Then X is nonsingular if and only if X contains
an odd number of maximal matchings.

The construction of odd nonsingular trees by sprouting has an extra wrinkle,
because one must also consider singular trees with | ker2 X| = 2.

4.7 Lemma. If X is an odd tree, then the following are equivalent:
(1) | ker2 X| = 2.
(2) The kernel vector u is nonzero.
(3) There exists a maximal matching in X.

Proof. We have seen in 3.2 that (1) and (2) are equivalent for any odd graph.
If u 6= 0, then some Xi is nonsingular, so has a maximal matching Yi, by 4.3.
Adding the vertex i to Yi gives a maximal matching in X. Conversely, if Y is
a maximal matching in X, then removing the isolated vertex j = j(Y ) gives a
maximal matching in Xj , so det(Xj) 6= 0, so u 6= 0. �
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4.8 Lemma. The set of odd trees X with | ker2 X| = 2 is preserved under sprouting
and pruning. Every such tree is obtained by a sequence of sproutings, starting with
a single vertex. Suppose X is obtained from X ′ by sprouting i—j— at the vertex k.
Then i is a kernel vertex in X if and only if k is a kernel vertex in X ′. If this holds
then X is nonsingular if and only if X ′ is singular, and u = u′ + ei. Otherwise
(i.e., if k is not a kernel vertex in X ′), X is singular if and only if X ′ is singular,
and u = u′. (Here u and u′ are the kernel vectors of X, X ′.)

Proof. We first claim that if n > 1 and | ker2 X| = 2 then 4.1(3) holds. For if not,
then by 4.1(2) there are at least three distinct leaves i, i′, j with i, i′ adjacent to the
same vertex, and a leaf j′ (which may be one of i, i′) adjacent the same vertex as
j. Then ei + ei′ and ej + ej′ are two linearly independent vectors in ker2 X.

Now, if X ′ is obtained by pruning the sprout i—j— from 4.1(3), then X has a
maximal matching if and only if X ′ does. This proves the first two sentences in the
lemma.

If k is a kernel vertex in X ′, there exists a maximal matching Y in X ′
k. When

we add the edge {j, k} to X we get an even tree X ′′ which is nonsingular, since
it contains the maximal matching Y ′′ = Y ∪ {j, k}. Hence i is a kernel vertex
in X. Conversely, if i is a kernel vertex in X, then X ′′ = Xi is nonsingular and
{j, k} belongs to the unique maximal matching in X ′′. Removing this edge gives a
maximal matching in Xk, hence k is a kernel vertex in X ′.

If k is a kernel vertex in X ′, the number of maximal matchings in X is, on
account of Y ′′, one more than the number of maximal matchings in X ′. Hence X
is nonsingular if and only if X ′ is singular.

If k is not a kernel vertex in X ′ then every maximal matching in X is obtained
by adding {i, j} to a maximal matching of X ′. Hence X and X ′ have the same
number of maximal matchings. �

4.9 Example: We illustrate the method of sprouting/pruning with the family
of graphs Tp,q,r. Here p, q, r ≥ 2 and Tp,q,r is the graph with n = p + q + r − 2
vertices consisting of subgraphs Ap, Aq, Ar each joined at one end in a vertex of
degree three. For example, E8 = T2,3,5, and T3,3,4 was shown in 4.4 above.

Assume first that n is even. If p, q, r are all even, we can prune Tp,q,r down
to T2,2,2 = D4, which is singular, hence Tp,q,r is singular. If, say p is even and
q, r are odd, we can prune down to T2,3,3 = E6 which is nonsingular, so Tp,q,r is
nonsingular.

Suppose now that n is odd. If p = 2k + 1, q = 2` + 1, r = 2m + 1, then Tp,q,r is
obtained from the singular graph T3,3,3 = Ẽ6 by k − 1 + ` − 1 + m − 1 sproutings
at kernel vertices, so T2k+1,2`+1,2m+1 is nonsingular if and only if k + ` + m is
even. If p = 2k, q = 2`, r = 2m + 1, then Tp,q,r is obtained from the singular
graph T2,2,r = Dr+2 by k− 1 + `− 1 sproutings at kernel vertices, so T2k,2`,2m+1 is
nonsingular if and only if k + ` is odd.

5. Coxeter groups — Given a graph X with vertex set S, let W = W (X) be
the group with generators {σi : i ∈ S}, and relations

σ2
i = 1,

σiσjσi = σjσiσj , if i—j

σiσj = σjσi, otherwise.
10



The group W acts linearly on L by

σi(λ) = λ− 〈λ, αi〉αi, (5a)

preserving the form 〈 , 〉.
5.1 Lemma. Let k be any field, let Vk = k ⊗ L, and let V 0

k be the radical of the
form on Vk induced by 〈 , 〉. Then V 0

k coincides with the space of invariants of W
in Vk. If X is connected then W acts irreducibly on Vk/V 0

k .

Proof. The first assertion is clear from (5a). Suppose x ∈ Vk−V 0
k . Then σi(x) 6= x

for some i. Hence (1− σi)(x) = cαi, for some c ∈ k×. If i—j then σiσj(αi) = 1αj .
If X is connected, this shows there are no proper subspaces of Vk/V 0

k . �

In the next two sections k = F2, and V is the quadratic space over F2 constructed
from a graph X, as in section 1. The induced action of W on V preserves q, and
gives a homomorphism

ρ : W −→ O(V ).
Each si := ρ(σi) is a transvection

si(x) = x + f(x, ei)ei.

Visually, if i has an odd number of • neighbors in x, then si(x) is obtained from
x by changing the state of i. If i has an even number of • neighbors in x, then
si(x) = x.

By 2.1, the homomorphism ρ is surjective if and only if W is transitive on V (1),
and X 6= A2 + A2. If i—j then sisj(ei) = ej , so all ei in a connected component of
X belong to the same W -orbit. Since each ei ∈ V (1), the surjectivity of ρ amounts
to having V (1) = Wei for some (any) i.

6. Surjectivity for complete graphs — The case X = Kn is particularly
simple. Recall from 3.4 that Kn is nonsingular when n is even or n ≡ 1 mod 4,
and u =

∑n
i=1 ei in the latter case. If 0 6= x ∈ V , then [x] ' Kr for some r ≤ n, so

q(x) ≡ r +
r

2
(r − 1) =

r

2
(r + 1) =

{
0 if r = 4j, 4j − 1
1 if r = 4j + 1, 4j + 2.

Every • vertex in x has r−1 • neighbors and every ◦ vertex in x has r • neighbors.
If r is even we can only alter the • vertices; in this case if i is a • vertex, we have
[si(x)] = Kr−1. Likewise if r is odd, we have [si(x)] = Kr+1. It follows that the
orbit decomposition of V (1) under W is

V (1) = U1 t U5 t · · · t U4`+1,

where Ur = {x ∈ V (1) : [x] ' Kr or Kr+1}, and ` = bn−2
4 c. By 2.1, this proves

6.1 Proposition. For nonsingular complete graphs Kn, the reduction map ρ :
W −→ O(V ) is surjective if and only if n = 1, 2, 4, 5.

7. Surjectivity for trees — In this section X is a tree. We abbreviate wx :=
ρ(w)x. The vector x =

∑n
i=1 ei belongs to V (1). As a first step toward surjectivity,

we note that x ∈ Wei for any i. Indeed, choose a leaf i, so that six = x − ei.
The tree X is replaced by the tree Xi, and x is replaced by its analogue x − ei.
Repeating, we find x ∈ Wei for any i.

Now let x ∈ V be arbitrary and nonzero. Recall that c(x) denotes the number
of components of [x]. Applying the previous argument to each component of [x]
proves the following.

11



7.1 Lemma. Let x ∈ V be nonzero. Then there is w ∈ W such that the components
of [wx] are isolated vertices. Moreover, c(wx) = c(x).

The key case for proving surjectivity is the tree Tp,q,r whose nonsingularity was
discussed in 4.9.

7.2 Lemma. Suppose X = Tp,q,r is nonsingular. Then ρ : W −→ O(V ) is surjec-
tive.

Proof. Let x ∈ V (1). By 7.1, we may assume that [x] consists of c(x) isolated
vertices, and c(x) is odd. It suffices to find w ∈ W so that c(wx) < c(x). For this,
it is enough to achieve the following “triad” configuration in the neighborhood of
the branch node.

. . . • — ◦ — • . . .∣∣
•
...

For, the branch reflection will then reduce the number of components by two.
Since sisj(ei) = ej if i—j, we can move stones along branches as follows

· · · •— ◦— ◦ · · · 7→ · · · ◦— •— ◦ · · · .

With these moves, we first “pack down” the stones in each branch. That is, if any
branch has stones, we move the stone closest to the leaf onto the leaf, the next
closest stone to the penultimate spot away from the leaf, and so on, until each
branch with stones looks like

•— ◦— •— ◦ · · ·

and no stones on any branch can be moved towards the leaf on that branch. These
moves do not change c(x).

If there is a stone on the branch vertex, and we cannot move it onto one of the
branches, our configuration is W -invariant, contradicting x ∈ V (1). Hence we can
ensure that the branch vertex has no stone, and this move also does not change
c(x).

If all three branches now have stones, we can move those stones closest to the
branch vertex and achieve the triad. If only one branch A has stones, then A has
at least three stones, and since X 6= Dn (by the nonsingularity assumption), some
other branch B has at least two vertices. We move one stone from A onto the leaf b
of B. Since b is not adjacent to the branch vertex, we can move another stone from
A onto the leaf of the third branch C. This takes us back to the previous case.

The remaining possibility is that some branch A has at least two stones, some
other branch B has at least one stone, and the third branch C has no stones. If
a stone in B prevents us from moving a stone from A onto C, then the branch
neighborhood looks as follows.

• — ◦ — •∣∣
◦

Since no stones can be moved towards the leaves of A or B, this vector is again
W -invariant. This contradiction completes the proof. �

Now we can prove the more general result (Theorem 1 of the Introduction).
12



7.3 Theorem. Suppose X is a nonsingular tree, not of type An. Then ρ : W −→
O(V ) is surjective.

Proof. By 7.2 we may assume X is not of the form Tp,q,r. We first suppose X has
an even number n = 2m of vertices, and argue by induction on m.

By 4.2, X is obtained by sprouting i—j— at some vertex of a nonsingular tree
X ′ with n − 2 vertices. Let W ′ and V ′ be the analogues of W,V for X ′. Note
X ′ is not of type An−2, since X is not of type Tp,q,r. Hence ρ′ : W ′ −→ O(V ′) is
surjective, by the induction hypothesis.

Let x ∈ V (1), so that c(x) is odd; we assume c(x) ≥ 3. It suffices to find y ∈ Wx
such that c(y) < c(x).

We may assume, by 7.1, that the components of [x] are isolated vertices. If
[x] ⊂ X ′ we are done by induction. By moving a stone from j to i, if necessary, we
may assume that x = ei + x′, where [x′] ⊂ X ′, and x′ 6= 0.

Since X ′ 6= An−2, there is a vertex k in X ′ of degree ≥ 3. We choose k as
near as possible to j. Hence k is the branch node in a subgraph of type D4 with
neighboring vertices a, b, c, and a, say, is on the path from k to j. Now c(x′) is
even, so x′ ∈ V ′(0). Also eb + ec ∈ V ′(0), because X ′ is a tree. By surjectivity for
W ′, there is w′ ∈ W ′ such that w′(x′) = eb + ec, so w′(x) = ei + eb + ec. Hence
we can achieve the triad by moving the stone on i along the path toward k. This
completes the proof in the even case.

Now suppose X is an odd nonsingular tree, with kernel vector u =
∑

det(Xi)ei.
By 4.5 , there is a leaf i in X such that Xi is nonsingular. Note that Xi is an even
tree, not of type An−1.

Let x ∈ V (1), and assume the components of [x] are single vertices. If xi = 0
then [x] ⊂ Xi and we are reduced to the even case. Hence we may assume xi = 1
and xj = 0, where j is the neighbor of i. Note that q(x+ei) = 0. Since Xi 6= An−1,
there are at least two leaves a, b in Xi, other than j, and q(ea + eb) = 0. From the
surjectivity in the even case, there is w ∈ W (Xi) such that w(x + ei) = ea + eb, so
w(x) = ei + ea + eb. Now j cannot be adjacent in X to any leaf but i, since X is
nonsingular. Hence j is not adjacent to a or b. It follows that sisjw(x) = ej +ea+eb

and we are again reduced to the even case. This completes the proof in the odd
case. �

8. Involutions at level one — We turn now to the higher level congruence
subgroups Wk of W . These groups are torsion-free for k ≥ 2. Here, we analyze the
torsion in W1.

For any lattice L, and subgroup Γ ⊂ GL(L), define

Γk := ker[GL(L) −→ GL(L/2kL)], k ≥ 1.

The quotient Γk/Γk+1 has a Lie algebra structure over F2, induced by the commu-
tator, and the map

∂k : Γk/Γk+1 −→ End(L/2L), ∂k(γ) = 2−k(γ − I),

is a Lie algebra isomorphism. If γ ∈ Γk then γ2 ∈ Γk+1 and

∂k+1(γ2) =
{

∂k(γ) + ∂k(γ)2 if k = 1
∂k(γ) if k > 1.

(8a)
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8.1 Lemma. Γ2 is torsion-free, and the torsion elements of Γ1 are involutions.

Proof. If γ ∈ Γ1 has order ab, with a = 2c and b odd, then ∂k(γa) has odd order
in the abelian group End(L/2L), for all k ≥ 1. Hence γa ∈ Γk for all k, so γa = I
and b = 1. If γ ∈ Γk with k ≥ 2, then ∂k(γ) = ∂k+c(γa) = 0, so γ ∈ Γk+1, again
forcing γ = I. If γ ∈ Γ1, then γ2 is a torsion element in Γ2, hence γ2 = I. �

An involution γ ∈ Γ1 is of the form γ = I +2D, where D = ∂1(γ) and D2 = −D.
It gives a splitting

L = DL⊕ (I + D)L,

and DL, (I + D)L are the −1,+1 eigenspaces of γ, respectively.
Thus, for Γ = GL(L), taking the −1,+1 eigenspaces gives a bijection between

involutions in Γ1 and ordered pairs (L′, L′′) of sublattices of L such that L = L′⊕L′′.
If Γ = O(L) is the orthogonal group of a symmetric form 〈 , 〉 : L × L −→ Z,

the involutions in Γ1 correspond to orthogonal pairs (L′, L′′).
Suppose Γ = W is the Coxeter group obtained from a connected graph X, and L

is the associated root lattice, with symmetric form 〈 , 〉 as in section 1. For J ⊂ S,
let W (J) be the subgroup of W generated by {σj : j ∈ J}, and let LJ be the
Z-span of {αj : j ∈ J}. By a theorem of Tits (c.f. [K, Prop. 3.12]), every finite
subgroup of W can be conjugated into a finite subgroup W (J), for some J ⊂ S. It
is easy to see that

Wk ∩W (J) =
∏

i

Wk ∩W (Ji),

where [J1], . . . , [Jc] are the connected components of [J ].
To classify the level one involutions w ∈ W1, we may therefore assume w ∈

W1∩W (J), where [J ] is connected with W (J) finite, and moreover that w cannot be
conjugated into W (I), for I ( J . Then w must be the unique element wJ ∈ W (J)
acting by −1 on LJ . In particular, [J ] must have one of types A1, D2m, E7, E8. We
will see that the first two cases cannot occur in nonsingular trees.

If i /∈ J , we have

wJαi = αi +
∑
j∈J

nijαj ,

with all nij ≥ 0. It follows that LJ is the whole −1 eigenspace of wJ in L. Hence
we have an orthogonal splitting

L = LJ ⊕ L⊥J ,

and L⊥J = {λ ∈ L : wJλ = λ}. If J ⊂ K ⊂ S, then replacing W by W (K) shows
that LJ must be an orthogonal summand of LK . If X has more than one vertex,
then J cannot have type A1, since A1 is not an orthogonal summand of A2.

For any J ⊂ S such that 〈 , 〉 is nonsingular on Q ⊗ LJ , there exists, for each
k ∈ S \ J , a vector ωk ∈ Q⊗ LJ defined by

〈ωk, αj〉 = −〈αk, αj〉, for all j ∈ J.

For example, if k is not adjacent to any vertex in J then ωk = 0.
14



8.2 Lemma. Let J ⊂ S be such that 〈 , 〉 is nonsingular on Q⊗ LJ . Then LJ is
an orthogonal summand of L if and only if ωk ∈ LJ for all k ∈ S \ J .

Proof. If L = LJ ⊥ U , then for each k ∈ S \ J write αk as αk = λk + uk,
with λk ∈ LJ and uk ∈ U . Then −λk satisfies the equations defining ωk, so
ωk = −λk ∈ LJ . Conversely, if ωk ∈ LJ for all k ∈ S \ J , then set uk = αk + ωk,
and let U =

∑
k∈S\J Zuk. Clearly U ⊆ L⊥J , and it suffices to show equality. Since

αk = uk − ωk, we have L = LJ + U . Write λ ∈ L⊥J as λ = ω + u, with ω ∈ LJ and
u ∈ U . Then 0 = 〈αj , λ〉 = 〈αj , ω〉 for all j ∈ J , so ω ∈ LJ ∩ L⊥J = 0, since LJ is
nonsingular over Q. �

8.3 Lemma. If J ' E8, then LJ is an orthogonal summand of L, and wJ ∈ W1.

Proof. This is immediate from 8.2, since E8 is a unimodular lattice. �

8.4 Lemma. Suppose X is a nonsingular tree. If J ' D2m, m ≥ 2, then LJ is
not an orthogonal summand of L.

Proof. Number the vertices of J as

1—2—3 · · · (2m− 2)—(2m− 1)

|
2m .

For j ∈ J , define λj ∈ Q⊗ LJ by

〈λj , αi〉 =
{ −1 if i = j

0 if i 6= j,

and let L+
J be the Z-lattice spanned by {λj : j ∈ J}. Then L+

J contains LJ and
L+

J /LJ ' Z/2Z× Z/2Z. In the latter quotient, we have the relations

λ1 = λ3 = · · · = λ2m−3 = λ2m−1 + λ2m, λ2 = λ4 = · · · = λ2m−2 = 0.

For any k ∈ S \ J , we have
ωk =

∑
j∈Jk

λj ,

where Jk = {j ∈ J : k—j}.
Since X is nonsingular, the vertices 2m − 1, 2m cannot both be leaves in X,

by the remark prior to 4.2. Hence there exists k ∈ S \ J such that at least one
of {2m − 1, 2m} belongs to Jk. But if ωk ∈ LJ , the above relations then force
both 2m − 1 and 2m to be in Jk. Hence there is a 4-cycle in X, with vertices
{2m− 2, 2m− 1, k, 2m}. This contradicts our assumption that X is a tree. �

I do not know if it is necessary to assume that X is a tree in Lemma 8.4.

Now take J ' E7, and let uJ ∈ V be the kernel vector of [J ]. Visually,

uJ = ◦— ◦ — ◦— • — ◦ — •
|
•

.

Let J0 be the set of • vertices in the above subgraph. These are the kernel vertices
in J . If n is odd we can compare uJ with the kernel vector u =

∑
det(Xi)ei of X.

15



8.5 Lemma. If J ' E7 then LJ is an orthogonal summand of L if and only if
uJ ∈ ker2 X. If this holds and X is nonsingular then n is odd and uJ = u.

Proof. Let λj ∈ Q ⊗ LJ , j ∈ J , and Jk be as in the proof of 8.4. Viewed as an
involution, uJ generates the center of the simply connected Lie group E7, so we
have

∑
cjλj ∈ LJ if and only if

∑
j∈J0

cj is even. Hence ωk ∈ LJ exactly when
|Jk ∩ J0| is even. This holds for all k ∈ S \ J iff uJ ∈ ker2 X. The last assertion is
an immediate consequence. �

Now 8.1-5 yield the following.

8.6 Proposition. Suppose X is a nonsingular tree. Then every conjugacy class
of involutions in W1 contains a commuting product w =

∏
J wJ , where J runs over

full subgraphs of X of type E7 or E8. If some factor of type E7 occurs then n is
odd and there are three vertices i, j, k in X such u = ei + ej + ek and J0 = {i, j, k}
for every factor wJ of type E7 occuring in an involution w ∈ W1.

We illustrate 8.6 with X = T2,4,5 , labelled as shown.

1—2—3—4—5
|
—6—7—8

9

This graph is nonsingular, with u = e6 + e8 + e9. One involution in W1 comes from
the unique E8 subdiagram. There are two E7 subdiagrams, but only J = S−{1, 2}
gives an involution. Explicitly, the vectors

θ7 = α2 + 2α3 + 3α4 + 4α5 + 3α6 + 2α7 + α8 + 2α9,

θ8 = 2α1 + 4α2 + 6α3 + 8α4 + 10α5 + 7α6 + 4α7 + α8 + 5α9

belong to L⊥J and L⊥E8
, respectively. Since α2 has coefficient=1 in θ7 and α8 has

coefficient=1 in θ8, we have orthogonal decompositions

L = LJ ⊕ Z{α1, θ7} = LE8 ⊕ Z{θ8}

and wJ , wE8 represent the two conjugacy classes of involutions in W1.

9. Density in orthogonal groups — This is the only section where it is not
essential to have p = 2. We aim to prove a version of p-adic density for certain
hyperbolic Coxeter groups. This is a combination of known results, and will be
applied in the 2-adic case to more general Coxeter groups. This section takes place
in characteristic zero, and we will recycle some of our earlier notation.

We begin a free Z-module L of rank n, and a symmetric bilinear map f : L ×
L −→ Z such that f(x, x) ∈ 2Z for all x ∈ L. Let D = det f , and set q(x) =
1
2f(x, x). We assume n ≥ 5 and that f is nondegenerate over Q and indefinite over
R.

For any integral domain R, let GL(R) denote the group of R-linear automor-
phisms of R ⊗ L, O(R) the subgroup of GL(R) preserving the extension of q to
R ⊗ L, and let SO(R) = {g ∈ O(R) : det g = 1}. Any ring homomorphism
R −→ R′ induces natural group homomorphisms

GL(R) −→ GL(R′), O(R) −→ O(R′), SO(R) −→ SO(R′).
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If x ∈ R ⊗ L and q(x) is a unit in R, we have the “reflection” rx ∈ O(R), defined
by

rx(y) = y − q(x)−1f(x, y)x.

Let F be the quotient field of R, and assume F has characteristic zero. Then
O(F ) is generated by reflections [D, Prop. 8], and the spinor norm

δF : O(F ) −→ F×/F×2

is a group homomorphism determined by the rule δF (rx) = q(x). More generally,
if g ∈ O(F ) is an involution and Eg is the −1-eigenspace of g in F ⊗L, then δF (g)
is the discriminant of the restriction of f to Eg.

We set

O′(R) = O(R) ∩ ker δF , SO′(R) = SO(R) ∩ ker δF .

The group SO′(F ) is the image of Spin(F ) under the two-fold cover Spin(F ) −→
SO(F ). If F = Qp, the spinor norm is surjective, and we have an exact sequence
[S,III.3.2]

1 −→ {±1} −→ Spin(F ) −→ SO(F ) δF−→ F×/F×2 −→ 1.

From the commutative diagram

O(Q) −−−−→ O(Qp)

δQ

y yδQp

Q×/Q×2 −−−−→ Q×
p /Q×2

p

(9a)

it follows that
O′(Q) ⊂ O′(Qp), O′(Z) ⊂ O′(Zp).

Fix a prime p such that q is nonsingular on Fp ⊗ L.

9.1 Lemma. The image of SO(Zp) under δQp is Z×p /Z×2
p .

Proof. This follows from the results in [Ki, 5.5]. �

Let Q̂ denote the finite adeles of Q, and let

SO′(Q̂) = {g = (gp) ∈ SO(Q̂) : gp ∈ SO′(Qp) for all p}.

From strong approximation for Spin /Q, it follows that the diagonal embedding of
SO′(Q) ↪→ SO′(Q̂) has dense image [Kn]. Hence, for any prime p, and integer
k ≥ 1, we have

SO′(Q̂) = SO′(Q)U ′
kKp,

where U ′
k = ker[SO′(Zp) −→ SO(Z/pkZ)], and

Kp =
∏
` 6=p

SO′(Z`).

17



It follows easily that
SO′(Zp) = SO′(Z)U ′

k. (9b)

(Write g ∈ SO′(Zp) in the form g = γuκ, with γ ∈ SO′(Q), u ∈ U ′
k, κ ∈ Kp. Then

γ is integral at all primes, hence belongs to SO′(Z), and γκ` = 1 for all ` 6= p, so
g = γu. )

Since q is not identically zero on Fp⊗L, there is λ ∈ Zp⊗L such that q(λ) ∈ Z×p .
From this and (9b), it follows that

O′(Zp) = O′(Z)U ′
k ⇔ O′(Z) det−−→ {±1} is surjective. (9c)

This holds if there is λ ∈ L with q(λ) = 1.

Suppose now that (L, q) arises from a graph X, as in section 1. Let Ω be the
subgroup of O(Z) generated by Aut(X) and −I. Then Ω normalizes W , and we
have the subgroup

ΩW ⊆ O(Z).

In fact, W ⊂ O′(Z) since δQ(σi) = 1, so

Ω′W ⊆ O′(Z),

where Ω′ = ker δQ ∩ Ω.
The graph X is called hyperbolic if W (J) is finite or affine for every proper subset

J ⊂ S, but W is not itself finite or affine. This implies that the quadratic form q
on R⊗ L has signature (n− 1, 1) [B,p.141].

9.2 Lemma. If X is hyperbolic, then O′(Z) = Ω′W .

Proof. This follows from [K, Cor. 5.10b] and the fact that W ⊂ O′(Z). �

Since det(W ) = {±1}, 9.2 and (9c) yield the following.

9.3 Corollary. Suppose n ≥ 5, and X is hyperbolic. Then O′(Zp) = Ω′WU ′
k for

every k ≥ 1.

Actually, we will only need two examples of 9.3.
9.4 Example. Let X = E10(= T2,3,7). Then L is the unique even unimodular
hyperbolic lattice in dimension 10. There are no diagram symmetries, so Ω = {±I}.
The discriminant is −1, so δQ(−I) = −1, so Ω′ = 1, and O′(Z) = W . Hence for all
k ≥ 1, we have O′(Zp) = WU ′

k.

9.5 Example. Let X = T3,3,4. Here Ω = {±I,±ω}, where ω is the nontrivial
diagram symmetry. The -1 eigenspace of ω in Q⊗ L is a hyperbolic plane, so

δQ(−I) = −3, δQ(ω) = −1.

Again Ω′ = 1, so O′(Zp) = WU ′
k for all k ≥ 1.

10. Adjoint representation over F2 — This section has nothing to do with
graphs, and its assertions are surely known. For lack of an adequate reference,
we recall here the structure of the adjoint representation of orthogonal groups in
characteristic 2. We assume from now on that n is even.
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Let F be a field of characteristic 2, with dual numbers F [ε] = F [x]/(x2). Let V
be a vector space over F of dimension n = 2m, and let q be a nonsingular quadratic
form on V , with associated bilinear form f(x, y) = q(x + y) + q(x) + q(y).

For A ∈ End(V ), we have I + εA ∈ O(F [ε]) iff

q(v) = q(v + εAv) = q(v) + ε2q(Av) + εf(v,Av) = q(v) + εf(v,Av),

so the scheme-theoretic Lie algebra of O(F ) is

so(F ) := {A ∈ End(V ) : f(v,Av) = 0 for all v ∈ V }. (10a)

In particular, the Lie algebra depends only on f , not on q. Choose a basis for V

such that the matrix of f has the form
[

0 Q
Q 0

]
for some symmetric matrix Q ∈

GLm(F ). (It will be convenient to avoid a specific choice for Q.) For M ∈ glm(F ),
let M∗ = Q−1(M t)Q, and let

m(F ) = {M ∈ glm(F ) : M∗ = M, (QM)ii = 0 for i = 1, . . . ,m}.

In other words, m(F ) is the set of m×m matrices M such that QM is symmetric
with zero diagonal. Then a matrix calculation with (10a) shows that

so(F ) = {A =
[

A1 A2

A3 A∗
1

]
: A1 ∈ glm(F ), A2, A3 ∈ m(F )}.

Define the half-trace τ : so(F ) −→ F by τ(A) = tr(A1), and set

so′(F ) := ker τ = {A =
[

A1 A2

A3 A∗
1

]
: A1 ∈ slm(F ), A2, A3 ∈ m(F )}.

10.1 Lemma. so′(F ) is the commutator subalgebra of so(F ).

Proof. If S, S′ are symmetric matrices over F , and all diagonal entries of S are
zero, then tr(SS′) = 0. If M,N ∈ m(F ), we can take S = QM, S′ = NQ−1, so
that tr(MN) = tr(QMNQ−1) = 0. For A,B ∈ so(F ), we find

τ([A,B]) = tr([A1, B1] + A2B3 + A3B2) = tr(A2B3) + tr(A3B2) = 0.

Conversely, since slm(F ) is the commutator subalgebra of glm(F ), it suffices to

prove that
[

0 0
M 0

]
∈ [so(F ), so(F )] for all M ∈ m(F ). Since

[
[

0 0
Y 0

]
,

[
X 0
0 X∗

]
] =

[
0 0

Y X + X∗Y 0

]
,

it suffices to find Y ∈ m(F ) making the map

φY : glm(F ) −→ m(F ), φY (X) = Y X + X∗Y

surjective. Now X ∈ ker φY iff (QY )X + (Xt)(QY ) = 0.
If m = 2` is even, we can choose Y ∈ m(F ) of rank m, so that QY is the matrix

of a nondegenerate symplectic form on F 2`. Then kerφY = sp2`(F ) has dimension
2`2 + `. Since dim m(F ) = (m/2)(m− 1), this shows that φY surjective.

If m = 2`+1, we can take Y of rank m− 1. Then kerφY ' sp2`(F )⊕Fm, again
implying that φY is surjective. �
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10.2 Lemma. If F is a subfield of an algebraic closure F̄2, then F · I and so′(F )
are the only proper O(F )-invariant subspaces of so(F ). Hence, if m is odd, we have
the irreducible O(F )-decomposition so(F ) = F · I ⊕ so′(F ), and if m is even, we
have F · I ⊂ so′(F ) ⊂ so(F ) indecomposable.

Proof. It is clear from 10.1 that so′(F ) is indeed an O(F ) invariant subspace
of so(F ). For the moment, let F = F̄2. Then we can choose a basis of V
so that q(x) =

∑
xixm+i. The diagonal matrices in O(F ) have the form t =

diag(t1, . . . , tm, t−1
1 , . . . , t−1

m ) and comprise a maximal torus T , which acts diagonal-
izably on any O(F )-invariant subspace U ⊆ so(F ). Since n is even and ≥ 6, the
roots of T in so(F ) form a single orbit under the Weyl group of T . Hence if U does
not consist of diagonal matrices, then all roots must appear in U . The calculation[

1 1
0 1

] [
0 0
1 0

] [
1 1
0 1

]
=

[
1 1
1 1

]

shows that U contains all matrices of the form
[

D 0
0 D

]
, where D ∈ glm(F ) is a

diagonal matrix of trace zero. Hence so′(F ) ⊂ U .
If U consists of diagonal matrices, then the calculation[

1 1
0 1

] [
s 0
0 t

] [
1 1
0 1

]
=

[
s s + t
0 t

]
implies that U = F · I. This proves the lemma for F = F̄2, and shows that the
highest weights of the composition factors of so(F̄2) take values 0, 1 on the simple
co-roots of O(F̄2). By Steinberg’s theorem [St, 1.3] each composition factor of
so(F̄2) remains irreducible under O(F ) for any subfield F ⊂ F̄2. Since any O(F )-
invariant subspace of so(F ) remains invariant after extending scalars, the lemma is
proved. �

11. Higher Levels — In this section we assume L has even rank n = 2m and
q is nonsingular on F2 ⊗ L. As a quadratic space over Z2, we have (see section 2)

Z2 ⊗ L ' (m− d)
[

0 1
1 0

]
⊥ d

[
2 1
1 2

]
(11a)

where d ∈ {0, 1} is the defect of q.
Let Uk = ker[SO(Z2) −→ SO(Z/2kZ)]. The map ∂k(u) = 2−k(u−I) (see section

8) is an injection
∂k : Uk/Uk+1 ↪→ so(F2) (11b)

whose image is an O(F2)-invariant subspace of so(F2).

11.1 Lemma. The map (11b) is surjective for all k ≥ 1.

Proof. First suppose m = 1, so that so(F2) = {0, I}. If d = 0, let

u =
[

s 0
0 s−1

]
, s = 1 + 2kz, z ∈ Z×2 .
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Then u ∈ Uk and ∂k(u) = I. If d = 1, let

u =
1

s2 − s + 1

[
1− s2 2s− s2

s2 − 2s 1− 2s

]
, s = 2kz, z ∈ Z×2 .

Then u ∈ Uk and ∂k(u) = I.
For m > 1, the splitting (11a) shows that the image of ∂k contains non-scalar

diagonal matrices in so(F2) \ so′(F2). The lemma now follows from 10.2. �

11.2 Lemma. The spinor norm δQ2 is trivial on U3.

Proof. If k ≥ 2 and u ∈ Uk, then u2 ∈ Uk+1, and from (8a) we have

∂k+1(u2) = ∂k(u). (11c)

From 11.1 it follows that the squaring map

Uk/Uk+1 −→ Uk+1/Uk+2

is surjective for k ≥ 2. Hence, given u ∈ U3, there are elements uk ∈ Uk, k ≥ 2,
such that

u = u2
2u4 = u2

2u
2
3u5 = · · · .

But δQ2 takes values in the finite group Q×
2 /Q×2

2 , and is 2-adically continuous
[Ki,1.6.5], so δQ2 is trivial on squares and on Uk for some k. Hence δQ2(u) = 1. �

The values of δQ2 on U1,2 can be expressed in terms of the half-trace τ :
so(F2) −→ F2 (see section 10) and the isomorphism

ε1 × ε2 : Z×2 /Z×2
2 −→ F2 ×F2, ε1(x) ≡ x− 1

2
mod 2, ε2(x) ≡ x2 − 1

8
mod 2.

11.3 Lemma. For k = 1, 2 we have εk ◦ δQ2 = τ ◦ ∂k on Uk.

Proof. Again start with m = 1. For d = 0, we have

SO(Z2) = {
[

a 0
0 a−1

]
: a ∈ Z×2 }, δQ2(

[
a 0
0 a−1

]
) = a,

and the claim is immediate. For d = 1, one checks that

SO(Z2) = {
[

a −b
b a + b

]
: a, b ∈ Z2, a2+ab+b2 = 1}, δQ2(

[
a −b
b a + b

]
) = 2−a−2b.

Note that if
[

a −b
b a + b

]
∈ Uk, then b ∈ 2k+1Z2. The claim now follows from

straightforward calculations.
Now let m > 1. The group Uk has the triangular decomposition

Uk = U−
k TkU+

k ,

where the subgroups U±
k are generated by subgroups of root groups, or products

thereof. These root groups lift to Spin(Q2), hence U±
k ⊂ SO′(Z2). It remains to

verify 11.3 on Tk. But Tk is a product of orthogonal groups on two-dimensional
spaces, so the result follows from the case m = 1. �

Recall that U ′
k = Uk ∩ ker δQ2 .
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11.4 Lemma. We have

∂k(U ′
k/U ′

k+1) =
{

so′(F2) if 1 ≤ k ≤ 2
so(F2) if k ≥ 3.

Proof. If k ≥ 3 this is immediate from 11.1,2. Assume k = 1, 2. Then

∂k(U ′
k/U ′

k+1) ⊆ so′(F2)

by 11.3. If m = 1 the latter space is zero, so assume m > 1.
From 11.1, we have

[so′(F2) : ∂k(U ′
k)] =

1
2
[∂k(Uk) : ∂k(U ′

k)].

The map ∂k induces an exact sequence

1 −→ Uk+1/U ′
k+1 −→ Uk/U ′

k −→ ∂k(Uk)/∂k(U ′
k) −→ 1,

so

[so′(F2) : ∂k(U ′
k)] =

[Uk : U ′
k]

2[Uk+1 : U ′
k+1]

.

From 11.1,3, we find that

[Uk : U ′
k] =


4 if k = 1
2 if k = 2
1 if k ≥ 3

.

The result follows. �

Recall that O′(Z) = O(Z) ∩ ker δQ. From (9c), we have

O′(Z2) = O′(Z)U ′
k, for all k ≥ 1,

as long as 1 ∈ q(L). We can now prove the following density criterion for subgroups
of O′(Z).

11.5 Proposition. Assume 1 ∈ q(L), and n ≥ 6. Let H be a subgroup of O′(Z),
and set Hk = H ∩ U ′

k. Then H is dense in O′(Z2) (in the 2-adic topology) if and
only if the following three conditions hold.

(1) The composition H ↪→ O(Z) −→ O(F2) is surjective.
(2) The image ∂k(Hk) ⊆ so(F2) contains a nonscalar matrix for 1 ≤ k ≤ 3.
(3) The homomorphism τ ◦ ∂3 : U3 −→ F2 is nontrivial on H3.

Proof. The necessity of (1-3) is clear. We assume that (1-3) hold, and must show
that O′(Z2) = HU ′

k for all k ≥ 1. The latter is true for k = 1, by (1), so assume
k ≥ 2.

In view of (1), we have a containment of O(F2)-invariant subspaces

∂k(Hk) ⊆ ∂k(U ′
k). (11d)
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It suffices to show equality in (11d) for all k ≥ 2.
For 2 ≤ k ≤ 3, condition (2) and 10.2 imply that so′(F2) ⊂ ∂k(Hk). Now 11.4

implies equality in (11d), where for k = 3 we also invoke condition (3).
From (11c) we have ∂k(Hk) ⊆ ∂k+1(Hk+1) for k ≥ 2. We have already proved

that ∂3(H3) = so(F2), so we have equality in (11d) for all k ≥ 4. �

12. Density for W — Let X be a nonsingular even tree with n = 2m ver-
tices, and let L and (W,S) the associated quadratic lattice and Coxeter group, as
in section 1. Then 1 ∈ q(L), since, for example, q(α1) = 1. Let J ⊂ S be an
even subset, with corresponding sublattice LJ , such that [J ] is connected and non-
singular. We can label S = {1, . . . , n} so that no edge is contained in {1, . . . ,m}
or {m + 1, . . . , n}, and so that J = {j, . . . , m,m + 1, . . . , 2m − j + 1}, for some
1 ≤ j ≤ m. With respect to the basis {α1, . . . , αn}, the matrix of 〈 , 〉 on L has
the form

2In −


0 0 ∗ ∗
0 0 QJ ∗
∗ QJ 0 0
∗ ∗ 0 0

 ,

where
[

0 QJ

QJ 0

]
is the adjacency matrix of [J ]. Any w ∈ W (J) has matrix on L

of the form

w =

 I 0 0
∗ w1 ∗
0 0 I

 ,

where w1 is the matrix of w on LJ . If w ∈ Wk(J) for k ≥ 1, then ∂k(w) has the
form

∂k(w) =

 0 0 0
∗ ∂k(w1) ∗
0 0 0

 ,

and ∂k(w1) belongs to the Lie algebra soJ(F2) with respect to
[

0 QJ

QJ 0

]
. There-

fore
τ(∂k(w)) = τJ(∂k(w1)),

where τJ is the half-trace on soJ(F2).
It follows that if conditions (2,3) of 11.5 hold for H = W (J) and soJ(F2), then

they hold for H = W and so(F2) as well. We know that 11.5(2,3) hold if J has
type E10 or T3,3,4, by 9.4 and 9.5. In 7.3 we verified 11.5(1) for nonsingular X
containing a branch node. Thus, we have proved Theorem 2 of the introduction:

12.1 Theorem. Let X be a nonsingular even tree, containing a subtree of type
T3,3,4 or E10. Then W is dense in O′(Z2).

The nonsingular even trees to which 12.1 does not apply are few, in the sense
that they can be easily listed, by considering all possible sproutings on small trees.
The even nonsingular trees which do not contain T3,3,4 or E10 consist of the family
X2m obtained by m − 1 sproutings at a single vertex in A2 (so X2 = A2, X4 =
A4, X6 = E6, . . . ), and the seven trees
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◦ — ◦ — ◦ — ◦ — ◦ — ◦
| |
◦ ◦

,
◦ — ◦ — ◦ — ◦ — ◦ — ◦ — ◦ — ◦

| |
◦ ◦

◦ — ◦ — ◦ — ◦ — ◦ — ◦ — ◦
| | |
◦ ◦ ◦

,
◦ — ◦ — ◦ — ◦ — ◦ — ◦ — ◦ — ◦ — ◦

|
◦

◦ — ◦ — ◦ — ◦ — ◦ — ◦ — ◦ — ◦
| |
◦ ◦

,
◦ — ◦ — ◦ — ◦ — ◦ — ◦ — ◦ — ◦

| | | |
◦ ◦ ◦ ◦

◦ — ◦ — ◦ — ◦ — ◦ — ◦ — ◦ — ◦ — ◦ — ◦
| |
◦ ◦

.
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