FORMAL DEGREES AND L-PACKETS OF
UNIPOTENT DISCRETE SERIES REPRESENTATIONS
OF EXCEPTIONAL p-ADIC GROUPS.
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ABSTRACT. We calculate the formal degrees of square-integrable unipotent represen-
tations of exceptional Chevalley groups over p-adic fields. The representations can
be uniquely partitioned into L-packets, so as to have the degrees proportional within
a packet. The main ingredient is a theorem of Schneider and Stuhler, which gives
the degree as a value of an Euler-Poincaré function. The latter is expressed in terms
of restriction to parahoric subgroups, which we compute using Green polynomials,
branching of Weyl group representations, and weight diagrams of modules over affine
Hecke algebras. The computer program CHEVIE was involved in the more difficult
cases.

0. Introduction and Statement of Results

Let F' be a nonarchimedean local field of residue cardinality ¢q. Let G be the
F-rational points of a connected split simple group of adjoint type over F. An
irreducible admissible representation V' of G is unipotent if there is a parahoric
subgroup P < G, with pro-unipotent radical U, such that the invariants of U in
V contain a cuspidal unipotent representation o of the finite reductive group P/U.
Let Irruth(G) denote the set of isomorphism classes of square-integrable unipotent
representations of G.

Let G be the complex dual group of G. The conjugacy class [2] of an element
zeGis ellzptzc if it meets no proper Levi subgroup of G. Let G, be the centralizer
of £ in G, let G; be its identity component, and let Z be the center of G. Consider
the finite group

Ay = (A}’m/Zé;

Then A, is a subgroup of one of S3, Ss, Sy, S5, the latter three cases occuring only
in exceptional groups. Let ¥(G) be the set of G-conjugacy classes of pairs (z, p),
where [z] is elliptic in G and p is an irreducible character of A,.

Assuming G is of exceptional type, we define, for each (z,p) € ¥(G), a rep-
resentation V, , € Irrupt2(G), in terms of an explicitly described module over an
appropriate affine Hecke algebra, and we calculate the formal degree of V, ,. These
are tabulated in sections 10-13.
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The degree has a general form, but before writing it, we make four remarks
about the correspondence
(.’E, p) = Vw,p (01)

(i) For G = G4, Fy, Eg, E7, we prove that the map (0.1) is a bijection
U(G) > Trryp*(G),

and hence is a possible Langlands correspondence for square-integrable unipotent
representations (cf. [B2,810]). For Eg, I can at the moment only show that (0.1) is
injective, though I believe it is bijective in this case as well. Without the adjective
“square-integrable”, and allowing non-elliptic conjugacy classes, such a bijection
has been found for all split adjoint groups, by Lusztig [L1]. It is not known if
Lusztig’s bijection restricts to a square-integrable Langlands correspondence. If
this were known for Fjg, it would prove that (0.1) is bijective in that case as well,
and then presumably (0.1) would be the restriction of Lusztig’s bijection. For the
other exceptional groups we can avoid this difficulty. (Added in proof: it has now
been proved that (0.1) is bijective for Eg. Details will appear in joint work with
Heckman and Opdam.)

(ii) The representation V; , contains invariants under an Iwahori subgroup if and
only if p appears in the action of A, on the homology of the variety B” of Borel
subgroups of G containing z. The correspondence (0.1) for these representations
was given by Kazhdan-Lusztig in [KL].

(iii) The formal degrees satisfy the relation

deg(Vz,p) = p(1) - deg(Vz.1). (0.2)

This was conjectured in [R2] and verified for small groups in [R2] and [R7]. In
[Sh, 9.3], Shahidi shows how proportionality of formal degrees should follow from
expected stability properties of L-packets.

(iv) The representation V, , admits a Whittaker model if and only if p = 1 [R3].
In this case, V1 contains a nice matrix coefficient coming from the Steinberg
representation of the hyperspecial maximal compact subgroup. This coefficient
was used by Heckman and Opdam [HO, Thm 5.1] to give a general formula for
deg(Vz,1) up to a constant independent of ¢ (more on this below). One can deduce
from [HO] that, at least for exceptional G, the degrees of V, , and V, i are not
proportional if [x] # [y]. It follows then from (0.2) that if we define “L-packets” as

I, ={Vzp: p€ flw},

then this is the unique way to partition the set of all of the V;, , so as to have formal
degrees being proportional within a packet.

Additional properties of the correspondence (0.1) appear later in the introduc-
tion, and in section 14. These are sufficient to characterize the parametrization
within a packet, i.e., the map p — V; ,, for fixed z.

We turn now to the explicit degree formula, for which we need more notation.
Let x = su be the Jordan decomposition. By the Jacobson-Morozov theorem, there
is a homomorphism X

Qbu : SLZ((C) — Gs
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1 1
0 1

torus 7 containing s. Set

such that u = ¢, ( ) Then ¢, maps the diagonal matrices into a maximal

—-1/2 0
T = 8hy (qo q1/2>.

For a root a of T' in G we let eq denote the corresponding rational character of T.
Choose Haar measure to give unit mass to an Iwahori subgroup. The following is
our main result.

Theorem. Suppose G is of type Ga, Fy, Fg 7 8. Then

p(1)q” Hla ea(7) — 1
|Az||Z| TT,, qea(r) = 1’

deg Va:,p = (03)

. L, . A /
where v is the Anumber of positive roots of G, and [], denotes the product of over
those roots of G whose corresponding term is nonzero.

This is also known for classical groups of rank< 4 (and in those cases is easy to
verify using the results herein). It has already been checked for G in [R2].

Our formulation of (0.3) was inspired by the Heckman and Opdam formula [HO],
valid for any split G, in the case p = 1. They assert that

v H; eq(T) — 1
T gealr) 1

where C' is a nonzero rational number, independent of ¢, but otherwise unknown.
Because we want to prove (0.2), we cannot use (0.4) directly, so we have computed
deg(Vy,1) in the same manner as the other V, ,’s. Formula (0.3) shows, in the cases
for which it is proved, that

deg(Vz1) =

(0.4)

1
Aol 2]

In (7.2) we show that, as a power series in ¢, the right side of (0.3) is

PV M| 4im B .
q + higher powers of q.
Azl Z]

C (0.5)

Here M, is the identity component of the centralizer of the image of ¢,. Since
x = su is elliptic in G’, it follows that M, is a torus on which s acts by conjugation
with finite fixed point set M2 (see (7.1)).

For exceptional groups, those u which are the unipotent parts of elliptic classes
are determined by their dim B“. Thus, the formal degree of V', as a rational function
in g, determines the unipotent part of the Langlands parameter of V. A similar
phenomenon was observed for finite Hecke algebras by Lusztig [L3], and predicted
by him for affine Hecke algebras with equal parameters. Lusztig has mentioned to
me that, assuming V' is Iwahori-spherical, and also = u, the formula (0.5) would
follow, for all G, from his conjecture in [L6, (10.5)].

We verify (0.3) by computing each formal degree separately. The main tool is a
special case of a theorem of Schneider and Stuhler [SS,84], stating that if V has a
3



nonzero invariant under the pro-unipotent radical of a special parahoric subgroup,
then
dim Ve

vol(P)’ (06)

degV = z:(—l)dimc
c

where the sum is over G-orbits of facets in the building, P} is the stabilizer of facet
¢, and U, is the pro-unipotent radical of P}. Actually, Schneider and Stuhler require
char F' = 0 in their general theorem, but at least for unipotent representations,
formal degrees can be expressed in terms of Hecke algebra formal degrees, and for a
given G, P, o, the Hecke algebra depends only on the residue cardinality g. It follows
that (0.6) holds for any F'. Formula (0.6) applies to all unipotent representations of
split exceptional groups, and to Iwahori-spherical representations of any reductive
group.

There are about 2! terms in the sum (0.6), where £ is the rank of G. However,
using the duality theory for finite reductive groups developed by Alvis, Curtis and
Kawanaka, (cf. [A2]) one can reduce to a sum of about £+ 1 terms (essentially a
sum over vertices). Moreover, the “associativity of types” proved by Moy-Prasad
[MP1] implies that if V' contains some cuspidal unipotent (P, o), then we only get
a contribution from facets ¢ containing the facet of P in their closure.

Thus, the main problem is to compute dim VY. We in fact compute VU as a
P.-module. In effect, we are computing Schneider-Stuhler’s formula for a pseudo-
coefficient of V' whose value at 1 is the right side of (0.6). The constituents of Ve
are unipotent representations of P,/U, whose dimensions are tabulated in [C], for
example.

There are two cases. First, let Z be an Iwahori subgroup of G, and assume V7
is nonzero. Here all facets contribute to the formal degree, but there are additional
results at our disposal, that lead to a recipe for computing V'V, valid for any split
adjoint G. It is enough to let ¢ — 1 and determine [VZ],_; as a module over the
atfine Weyl group W. Then VU is determined by the restriction of [VI]qzl to the
parahoric subgroup of W corresponding to P,. s

The next proposition follows from results of Lusztig and Kato. Let Wy be the
full inverse image in W of the stabilizer W of s in W. We can view s as a character
of Wy. Let BY be the fixed points of w in the flag manifold of G,. The group A,
acts naturally on BY. Let H(BY)? be the p-isotypic component in homology, with
grading ignored, viewed as the Springer representation of Wy, pulled back to WS.
The trivial representation of Wy corresponds to u regular in és.

Proposition. Assume V, , has Iwahori fized vectors. Then, up to semisimplifica-
tion we have .
Vi plo=1 = € ® Indiy; [s ® H(B})"], (0.7)

where € is the sign character of W, pulled back to W.

By induction, (0.7) reduces the Iwahori-spherical degree calculation to two prob-
lems.

(i) Calculate the W-modules H(B*).

(ii) Determine the branching from affine Weyl groups to finite parahoric subgroups.
Via Mackey theory, this boils down to branching from finite Weyl groups to sub-
groups arising as centralizers of elements in 7.
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Given this information, it is in principal straightforward to compute dim V'Ve,
hence the formal degree of V', using (0.6). For G # FEg, I used the tables of [BS],
[Sho], [Al], and naive computer algebra to compute the degrees. This was quite
tedious, indeed unfeasible for some cases in Fg. However, these big calculations, and
verification of the smaller ones, were easily performed with the computer program
CHEVIE by Frank Liibeck, who describes his work in an appendix to this paper.

Assume now that V' is not Iwahori spherical. This means V' contains (P, o), where
P is not an Iwahori subgroup. Then V7 := Homp(o, V) is a module over a certain
affine Hecke algebra #(G/P), usually having unequal parameters, which renders
the previous proposition inapplicable. (The structure of this algebra depends only
on P, not on o, as one checks from the tables in [L1].) There is an intrinsic notion
of square-integrable H(G/P) modules. We classify these (for G exceptional, P non-
Iwahori) using the method of weight diagrams, developed in [R1],[R6], except that
we have not proved that every square-integrable module of H(Eg/Dy) is one of the
18 modules on our list for that algebra. See (i) above.

The weight diagrams are given in tables, after the degrees. Given the diagram,
it is a simple matter to calculate the branching, as in the Iwahori-spherical case,
and find the degree using (0.6). Since the rank of H(G/P) is at most four (for
exceptional G and non-Iwahori P), the computational difficulties of the Iwahori
spherical case do not arise here.

Since there is no intrinsic definition for it, any alleged L-packet can only be
convicted upon circumstantial evidence, of which the formal degrees are one piece.
However, our tables also indicate a relation between Langlands parameters, and
Lusztig’s families of unipotent representations of finite groups, via the notion of
“leading K-type”. The rough idea is that a certain representation of K appearing
in V should belong to a family attached to the Langlands parameter. We defer a
more precise discussion until §14.

I thank Dick Gross for asking felicitous questions about restrictions to parahoric
subgroups in G, and for helpful discussions thereafter. Part of this work was
done at the University of Toronto in the summer of 1996. I am grateful to Fiona
Murnaghan, who arranged support for this enjoyable visit.

I am especially obliged to Frank Liibeck, who saved the game at the end.



1. Preliminaries

(1.1) Throughout the paper, F' denotes a non-archimedean field, with residue field
isomorphic to IF,, and G is the group of F-rational points of a split connected simple
group over F.

Let Z be an Iwahori subgroup of G. The double cosets of Z in G have the
structure of a group W, which is an extension of a Coxeter group W by a finite
abelian group 2. Fix a set ¥ of Coxeter generators of YW. Then Q may be viewed
as the group of permutations of Y induced by conjugation in W, and also as the
center of the Langlands dual group G.

(1.2) For each facet ¢ in the building of G, let P be the stabilizer of ¢ in G. We
have an exact sequence

1—U,— Pf— MMH—1,

'+, and M} is the group of k-rational
points in a (possibly disconnected) reductive group MF over k. The parahoric
subgroup P, is, by definition, the inverse image in P of the group M, of k-
rational points of the identity component M, of M. We sometimes call “parahoric
subgroup” the whole triple (P, U., M.). If ¢ is open in the building, then P, is an

Iwahori subgroup. All Iwahori subgroups are conjugate in G.

where U, is the pro-unipotent radical of P

(1.3) The G-orbits of facets in the building are in one-to-one correspondence with
G-conjugacy classes of parahoric subgroups, which are in turn bijective with the
Q-orbits of proper subsets of . If the facet ¢ corresponds to J C 3, then

PC-I_/PCZQJ,

where Q; is the stabilizer of J in Q, and (P,., U, M,) is conjugate to the parahoric
subgroup (Py,Uy, My), where Py is generated by Z and J.

2. Euler-Poincaré functions

Our calculations of formal degrees rely on an alternating sum formula, due
Schneider and Stuhler [SS], which reduces the problem to counting invariants under
certain compact open subgroups of G.

(2.1) Let V be an admissible representation of G. In particular, for any compact
open subgroup U of G, the space of invariants V'V is finite dimensional. For any
facet c, let x. be the character of P; afforded by the P} module VY (this might
be zero), and let e, : P — +1 be the orientation character of P} on c¢. We
extend all functions on P to be zero on the rest of G. With then define a function

fv on G by
i € >_Cc
— -1 dimec_“~CAC ’
fv Z( ) vol (Ph)
Cc
where the sum runs over all G-orbits of facets in the building, and volume is com-
puted with respect to some fixed Haar measure dg on GG. This paper is based on
the following theorem of Schneider and Stuhler, especially part (1).
6



Theorem [SS]. Assume that VUe # 0 for some special facet c. Then

(1) If V is square-integrable, then fy (1) is the formal degree of V with respect
to dg.

(2) If V is tempered but not square-integrable, then fy (1) = 0.

(3) If V is induced from discrete series on a proper parabolic subgroup, then

fv(1) =0.

Thus, when VU £ 0 for a special facet ¢ and V is square-integrable, the formal
degree is given by
dim Ve

7vol(Pc+) . (2.1a)

deg(V) = 3 (~1)dme

C

(2.2) Normalize dg so that Iwahori subgroups have volume one. We prefer to sum
over subsets of simple affine roots instead of facets. Let

qm+1 -1

Wi(q) = H Ty—1

m

where product is over the exponents m of the (finite) Coxeter subgroup of W
generated by J. Then W;(q) = vol(Py), and it follows from (2.1a) that

im VUs
deg(V) = ﬁ ;(—1)3—“'%, (2.22)

where the sum is over all subsets J C 5.

3. Duality

At first glance, there are 21 — 1 terms in the sum (2.2a), where £ is the rank of
G. We can reduce this to about £+ 1 terms, using results of Alvis [A2], as follows.

(8.1) Let H be a finite reductive group. Given a finite dimensional complex rep-
resentation y of H, we consider the virtual representation

X" = (17T @ mdf (),
Q

where ) runs over the conjugacy classes of parabolic subgroups of H, r( - ) denotes
semisimple rank, Ug is the unipotent radical of ), and xY< is the space of Ug-fixed
vectors in y, viewed as a representation of (). When yx is irreducible, then x* is
again an irreducible representation of H, up to sign, and x** = x. Applying the
definition to H = My, x = VU7, we get

Lemma 1. Fiz a subset J C . Then

Z(_l)mdimVUf _ dim [VUJ]*.

= Wi T W

Now suppose that J = J; U Js, where each root of .J; is orthogonal to each root
in Jy. Then Mj is a commuting product My = Mj Mj,, and for each irreducible
7



representation x of M, appearing in VU7, there is a representation (possibly re-
ducible) x2 of My, such that

VY = EBX®X2-
X

Abusing notation, we write

VJ1 ®V;2 = ®X®X;7
X

where the duality involution is applied only on the Js-factor. Applying Lemma 1
to Js, it is straightforward to prove

Lemma 2. With notation as above, we have

im VU
> (cpyndmVE

JLCICJ Wi(a)

gy dim(Vy, ® V)
WJ1 (Q)Wh (q) ‘

Lemma 2 can be used to successively halve the number of terms in formula (2.2a),
until about £+ 1 terms remain.

(3.2)Example: Let G = Spy,(F'), and number the affine diagram of G as
0=1-2—-—(n—-1)<n.

Since G is simply-connected, we have 2 = 1, so G-orbits of facets in the building
correspond bijectively to proper subsets of [0,n]. Each i € [0,n] corresponds to a a
maximal parahoric subgroup (P;, U;, M;), with reductive quotient

M; = Sp2i(Fy) X Span—i)(Fy)-

Write VUi = @x! ® x4 corresponding to the factorization of M;, where x* runs over
irreducible representations of Spy;(F,), so V' @ V3* = ®&x* ® x4".
From Lemma 2, the sum over those subsets J with [0, — 1] C J, but ¢ ¢ J is

dim[V? @ VF*
vol(P;)

So we have _ '
i dim[V* ® Vi*]
deg(V) = Z vol(P)

1=0

The same sort of formula holds for Fy (section 10). For branched diagrams we
cannot halve all the way to the end, and there will be a few more terms in the
degree formula (see sections 11-13).

4. Reduction to Hecke algebras

The main task arising from the Schneider-Stuhler formula (2.2a) is calculating
the dimension of each VY7. We in fact compute VY’ as a P; module, and thus
8



determine the Euler-Poincaré function fy,. This can be reduced to a problem about
affine Hecke algebras, as follows.

(4.1) Fix a standard parahoric subgroup (P,U, M) with Z C P, and a cuspidal
representation o of M, not required to be unipotent at this stage. Let & be the
contragredient representation. Let H(G/P) be the algebra, under convolution,
consisting of all locally constant compactly supported functions f on G taking
values in End(d), transforming as f(pgp’) = &(p)f(g9)a(p’), for g € G, p,p’ € P.

Let Py be a parahoric subgroup containing P, and let H(Py/P) be the subalgebra
of H(G/P) consisting of functions supported on P;. Note that

H(Py/P) ~ Endp, (Ind5’ o).

If x is a representation of P;, we have an associated H(P;/P)-module
x° := Homp(o, x) = Homp, (Indllij a,X),
and a decomposition as H(Py/P) x P;-modules
IndIIZJ o~ @XU R X,
X

where x runs over all irreducible Py-modules xy with x? # 0. Note that

Homy(p, /P (IndIIZJ o,X°) ~ X
as Py-modules.

(4.2) Likewise, if V' is any admissible representation of G, we have an associated
H(G/P)-module
V? := Homp(o,V).

Now since Uy C U, we have (letting ( , ) denote multiplicities)

V? = Homp(o,V) = Homp(o, VY’) ~ Homp, (Ind}’ o, VU7)

~ EB(X, VU7 p, Homp, (Ind}’ 7, x)
X

~ P V)p, X7
X

This proves
Lemma. The multiplicity of the simple Py-module x in VY7 is given by

06V e, = (X, V) up, p)-

5. Unipotent representations

What has been said so far applies to any admissible representation with vectors
fixed under the pro-unipotent radical of some parahoric subgroup. Among these
are the unipotent representations, for which we have further simplifications.

(5.1) We say an irreducible representation V' of G is unipotent if there is a parahoric
subgroup (P,U, M) such that VY contains a cuspidal unipotent representation of
M.

We can reduce number of terms in the degree formula further using “associativity
of types” proved in [MP]. A similar result holds for non-unipotent representations,
but it is more complicated.
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Lemma. Suppose I C EL and that VU! contains the cuspidal unipotent represen-
tation o of My. If J C X, with VY7 # 0, and J is minimal with respect to this
property, then there is w € Q such that I = wJ, and VU’ consists of copies of o*.
Moreover, if G is exceptional, then J = I.

Proof. The minimality of J forces VU7 to consist of irreducible cuspidal represen-
tations of Mj. Let ¢’ be one of them. By the proof of [MP2,6.2], there is an
isomorphism between the algebraic groups underlying M; and M; under which o
corresponds to ¢’. In particular, ¢’ is unipotent. The classification of unipotent
representations drastically restricts the possibilities for J, and considering each sim-
ple group, together with the action of Q on the affine diagram [IM, 1.8], we find
w sending J to I. For exceptional groups, each I for which M; admits a cuspidal
unipotent representation is the unique subdiagram of its type, so J = I in those
cases. The fact that VU7 is isotypic is a special case of [MP1, 5.2]. O

(5.2) Let (P,U,M) be a standard parahoric subgroup, say P = P, and let o
be a cuspidal unipotent representation of M. The Hecke algebra #H(G/P) has
the following structure [L1],[M]. There is a semisimple complex Lie group G, with
maximal torus T, character group X = Hom(T,C*), Weyl group W, and affine
Weyl group W = W x X, such that H(G/P) has a linear basis {Ty, : w € W}
The multiplication is as follows. The group W acts on X by affine motions, and
the subgroup of 7% generated by affine reflections is a Coxeter group W' whose
generators may be identified with S :=3% — I, and we have W ~Q 1 X W', where
Q7 is the stabilizer of I in Q (see (1.1)). Extend the length function on W’ trivially
across {27. Then T, T, = T, if the length of zy is the sum of those of z and y, and
for r € S, we have
(T + (T, - qc(r)) =0,

where ¢(r) is a certain positive integer. The groups G and parameters c(r) are
tabulated in [Ll] They depend only on P and not on o.
IfI CJCZ3X, let WJ be the subgroup of 1% generated by J — I. Then the

subalgebra H(PJ/P) is the span of {T, : w € Wy}.
More details on the structure of #(G/P) will be given in (9.1) as they are needed.
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6. Reduction to Weyl groups

In (4.2) we have reduced the calculation of VU to a similar problem for Hecke
algebras. In this section, we reduce this further to standard problems about Weyl
group representations.

(6.1) Let v be an indeterminate, and let R be the ring of rational functions f €
C(v,v~") which are holomorphic on the set of positive real numbers. Let H(G/P),
be the Hecke algebra defined over R, with the same generators and relations as
H(G/P), but g replaced by v2. By evaluating v we have specializations

H(G/P) q=H(G/P), H(G/P)=CW,

this last being the group algebra of w.

For any simple #(G/P)-module E considered in this paper, there exists an
H(G/P),-module E, such that £ ~ E, ®g C, where f € R acts on C by f(,/q).
This holds for P an Iwahori subgroup, by the construction of simple tempered
‘H(G/P)- modules given in [KL]. It also holds for the square-integrable H(G/P)-
modules considered in this paper, by the matrix formulas in [R6], applied to the
diagrams given in §9-13. A similar assertion holds for all simple modules over
H(Py/P), for any I C J C X (cf. [C,10.11.4)).

It follows that we have an operation “g = 1”7, taking simple modules over Hecke
algebras to modules over the corresponding Weyl groups, obtained by setting v =
1 in all matrix coefficients of the generic module. It is clear that this process
commutes with restriction. That is,

[EH(PJ/P)]q=1 = [qul]WJ-

It also follows from [C,10.11.4] that the map

H(P;/P) — Mods =L W, — Mods
is an isometry, i.e., for any irreducible P; module y, we have

<XU7 VJ)’H(PJ/P) = <XZ=17 ‘/:10:1>W : (613’)

J

By Lemma (4.2), the decomposition of the M ;-module VU7 is therefore determined
by decomposing the restriction of the W-module V,Z, to W. It is enough to replace

V,Z1 by its semisimplification, since WJ is a finite group.

(6.2) The irreducible representations of W have the form

Ind%s s® X,

where s € T, Ws is the stabilizer of s in W, s is extended to a character of WS
by s(zw) = s(x) for z € X,w € W, and x is an irreducible representation of Wi,
extended trivially to X. Moreover, by Mackey theory, The restriction of such an
irreducible representation to Wy is given by

[Ind%s s X”WJ s @ Ind%{”ﬂAWJJ s¥ ® wa
wEW\W/W °
11



where W is the image of W] in W under the natural projection W — W.

7. Elliptic Conjugacy Classes in the Dual Group

The calculation of the preceeding Weyl group representations (at least in the
Iwahori-spherical case), along with subsequent connections between formal degrees
and Langlands parameters, are based upon the Springer correspondence and the
properties of elliptic conjugacy classes in the dual group. We summarize the latter,
and relate them to the Heckman-Opdam formula for generic formal degrees.

(7.1) Let G be a simply-connected complex semisimple Lie group, with center 7,
and Lie algebra g. Fix a maximal torus T in G. Let A denote the roots of T in
G‘, and let e, be the rational character of T corresponding to oo € A. Denote the
centralizer of any element g € G by @g.

Following [A, §7], we say that an element z € G or its conjugacy class is elliptic
if x is contained in no proper Levi subgroup of G. Equivalently, if x = su is the
Jordan decomposition, then G, is semisimple, and the unipotent u belongs to no
proper Levi subgroup of Gs. There are only finitely many elliptic conjugacy classes
in G.

Let ¢ : SLy(C) — G, be a homomorphism with qﬁ((l) 1) = u. We can arrange
that ¢ maps the diagonal matrices into T. Let M be the centralizer of the image of
¢, with identity component My, and let m be the Lie algebra of M. Let A, denote
the component group of the centralizer of u in G /Z. The inclusion M < G
induces an isomorphism M/Z M, ~ A,, and we identify these two groups.

Lemma. Assume that x = su is elliptic in G. Then

(1) My is a torus, hence the adjoint action of M on m factors through A,.

(2) There are no nonzero invariants of Ad(s) in m. Hence, s has nontrivial
image in A, unlessm=0 and s € Z.

(3) Taking fixed points under conjugation by s, we have M*®/(My)® ~ (M /My)*.

(4) det(1 — Ad(s)m) = |M§|= the number of fized points of s in M.

Proof. The Lie algebra m is reductive, and Ad(s) ‘m is a semisimple automorphism,
so the fixed point algebra m?® is also reductive. Suppose z € m?® is semisimple.
Then the centralizer in g of z is a proper Levi subgroup containing s and u, a
contradiction. It follows that m® = 0. Results of Steinberg [St, 10.13] imply that
a nonzero semisimple Lie algebra must have nonzero invariants under a semisimple
automorphism. Hence [m, m] = 0, proving (1). Assertion (2) follows from (1) and
its proof. By (2), there are only finitely many fixed points of s in Mj. This shows
that the map ¢ — tst~'s~! is an isogeny from the torus My to itself, which then
implies that (M/Mgy)® = M*/(My)®. Finally, since (My)® is a finite group, all fixed
points of s must lie in the maximal compact subgroup of My, to which we apply
the Lefschetz fixed point theorem to get (4). O

(7.2) In the next result, we investigate the main term in the formal degree formula.
According to Heckman and Opdam, the left side in Proposition (7.2) below is a
nonzero rational multiple (independent of ¢) of the formal degree of the generic
member of the L-packet. According to our conjecture, it should be similarly pro-
portional to all formal degrees in the packet. The point of Proposition (7.2) is to
show how the Langlands parameters appear in these formal degrees.

12



Set 1/2
a 0 7
Let A be the roots of T' in G, let v be the number of positive roots of G, and for
each a € A let e, be the corresponding character of T'. Let £ be the rank of G.
Proposition. Assume that z = su is elliptic in G. Then
HI ea(r) =1 dim B ¢
v a — im B, -1 M3 R ,
T gy =1 ¢ (¢ = 1) [Mg] R(q)

where R(q) is a rational function of ¢ with R(0) = 1, R(1) # 0, and [[,, denotes
product over the roots in G whose term is nonzero.

Proof. Let g; be the ¢~ -eigenspace of Adg( q_;/2 q10/2 ). The image of ¢ is iso-
morphic to PSLy(C) by [C,5.7.6], hence g; = 0 for odd i. Let p, respectively n,
be the sum of the g; for ¢+ > 0, respectively ¢ > 2. Then p is the Lie algebra of a
parabolic subgroup P, and n is the Lie algebra of the unipotent radical N of P.
Choose a Borel subgroup B D T such that N € B C P. Let O be the conjugacy
class of u in G, and let O be its closure. We have maps

wB:GxBN—>5, ﬂp:éXPN—)@,

induced by conjugation. The generic fibers of 7p (ie., over O) are naturally iso-
morphic to B*, and the generic fibers of wp are single points [H]. These two facts
give the dimension relations

dim(B*) + dim O = dim G — dim B + dim N,

dim O = dim G — dim P + dim N = 2dim N,

which imply v — dim B, = dim V.
For any root of unity € and integer %, set

Ale,)) ={a e A: eq(r) =eq™/?}.
Since u is elliptic in Gy, it follows (cf [C,5.7.4)]) that
L+ |A(1,0)] = |A(L, 2)]. (7.2a)
Thus
v—dim B, H’a ea(T) — 1
[T, gea(r) — 1

— qdimN H (6q—i/2 . 1)|A(€,'L)| . H (qu_i/2 _ 1)—|A(6,'L)|
(e,i);é(l,O) (677:)7&(172)

_ dimn (g7t = 1)IAE2) e =1 |80

=4 (g — 1)IATO) H (€q1—i/2 _ 1)
(,4)#(1,0),(1,2)

—(1- q)eqdimN_|A(1,2)| H ( eq/? — 1 )IA(e,i)I_

1-i/2 _
ezl 41
13
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In the last line, we used (7.2a) and the fact that |A(1,0)| is even.
Now take the limit as ¢ — 0. If i < 0, all (¢,4) terms in the product go to 1. For

i =0,€ # 1, the (e,i)-term goes to 1 — e. As for the remaining terms, we note that
dim NV is the sum of |A(e, )| over all ¢ > 2 and all e. Thus

. —i/2 _ 1 . _i)2 .
im N—|A(1, €q [A(e,d)] €—4q |A(e,5)]
qd N-la2)l 1>H2 (€q1—i/2 _ 1) - Z>1_I2 (6 _ qi/2—1)
(6,'i)¥(1,2) (6)i)¥(172)
€ [A(e,2)]
H(e - 1) (€,2) .
e#£1l

We have an M-equivariant exact sequence

0—m—go 4}ad(logu) go — 0,

which remains exact modulo Ad(s)-invariants. Since s belongs to the closed sub-
group of G with Lie algebra g, it follows that

[ 2 = det Ad(s),, = det Ad(s)g,/ det Ad(s)m = det Ad(s™")m,
e#£l

because Ad(s)g, = 1 since go is reductive, and s belongs to the corresponding Levi
subgroup of G. Likewise,

[ (e = 1)!AED=IAEDT < det[Ad(s)m — 1.
e£1

Thus,
—i2 : .
€q Ale, im . _
I1 (m)| @, (—1)dim(@0/82) det[1 — Ad(s™)]m.
(e)#(1,0),(1,2)

Note that dim(go/g§) is even, since g§ contains a Cartan subalgebra of gg, and
we can replace s—! by s, since the groups A, are products of symmetric groups, in
which every element is conjugate to its inverse. By Lemma (7.1) the determinant
expression is |[M§|. Finally, (7.2b) also implies that R(1) # 0. O
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8. The Iwahori-spherical case

In this section we assume that P = Z is an Iwahori subgroup, and o is the
trivial representation of Z. Let H = H(G/ZI) be the affine Hecke algebra. Since
G is split, we have constant parameters c¢(r) = 1 (see (5.2)). The results in this
section apply to any affine Hecke algebra with constant parameters and simply-
connected root datum. We describe a general method to explicitly calculate the
restrictions of tempered H-modules to parahoric subalgebras, as in §6. The basic
principles are difficult geometric results due to Lusztig, but these can be put into a
form suitable for effective computations, so that, armed with the Schneider-Stuhler
formula (2.2a), one can, in principle, calculate the formal degree of any Iwahori
spherical representation of a split adjoint p-adic group.

(8.1) The groups G, T of (5.2) are now the dual group G and its maximal torus
T respectively. Fix a Borel subgroup T C B. Then X is the character group of T
W is the Weyl group of T, and W = WX is the (extended) affine Weyl 1 group W
of (1.1). For A € X, we write ¢y when thinking of it as an element of W, and e
when viewing it as a character of T. Let ap be the highest short root of T in B,
let so be its corresponding reflection in W, and let 5o = t,,50. Let ai,...,ap be
the simple roots of T’ in B. Each J C {50, Say:-- -5 Sa, } generates a finite subgroup
W C W, which represents the Z-double cosets in the parahoric subgroup Pj (see

(1.3)).

Let z = su € G where s is semisimple, u is unipotent, and su = us. We
assume s € 7', and \ex(s)\ =1 for all A € X. The centralizer G is connected since
G is simply connected, and its Weyl group is Ws= stabilizer in W of s. We set
W WX C W. Let B and Bs be the flag varieties of G and GS, respectively. We

have o A
I[ GwB, B°= ][] (GswB)"
W A\W WA\W

and each G wB ~ B, as G -varieties. In particular, (ést)“ ~ BY; these are
the connected components of B*. According to Kato, the singular cohomology
spaces H(BY) and H(B”) afford actions of W, x A, and W x A, respectively,
where A, = éx/Zég (Note that G, C G,. ) This action extends the Lusztig-
Springer action of W, and W. For each irreducible representation p of A;, we have

a W-module (possibly zero)

H(B®)” = Homy, (p, H(B")),
and a similarly defined W,-module H (B¥)P. Kato proved
Proposition [K|. The restriction map H(B®)? — H(BY)? is W, -equivariant, and
induces an isomorphism of Wg-modules

H(B®)? ~ Indi; H(BY)", (8.1a)
where X acts on H(BY)P as s- I, and W acts by the Springer representation.

As in §7, let ¢ : SLy(C) — G’s be a homomorphism such that u = ¢ <(1) 1) )

—-1/2 .
and set 7 = s¢ (q 0 q10/2> € T'. Since this is the canonical polar decomposition
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of 7, we have W, C W,. We put
BT =BT NBY, B> =B, NnB*

Since A, = M*®/Z, we have natural actions of A, on B™* and BI"".

The simple tempered H-module V;;‘fp was constructed by Kazhdan-Lusztig in
[KL]. They defined an ‘H x Az-module action on K(B™*), where K stands for a
certain equivariant K-homology functor, whose precise definition is not important

here, and
VZ, = Homy, (p, K (B™Y)).

We abbreviate the right side as K(B7*)?. The action of X on K(B™"*) has the

following form: Each component of B™" meets G,wB for a unique w € W, \W,
and the action of A € X on the corresponding summand of K (B™") is by the scalar
ewx(T) times a unipotent transformation.

Now B]'" is a union of connected components of B™", corresponding to cosets
in W, \Wj, so we have an injection of X x Az-modules

K(BI") — K(B™), (8.1b)

by which we identify K (B7-*)? with an X-stable summand of K(B™%)".
Now let ¢ — 1, obtaining a W x A,-module

K(B'r,u)q=1 — @p@ K(BT,U)Zzl'

P

The X-action on the wt" summand of K(B™"),=1 is now by the scalar e, (s) =
s"()\), times a unipotent transformation.
The following description of the W-action was stated in [L.6] and proved in [L5].

Theorem [Lusztig]. We have a W-module isomorphism
K (B, ~ e H(B,

where the action of W on H(B®) is the Lusztig-Springer action recalled above, and
€ 18 the sign character of W .

Let V,!, be the semisimplification of the W-module K(B7*)"_;. Applying
Lusztig’s theorem to W, and K (B]")?, we see that V', has a W,-stable subspace
Us,p isomorphic to e ® H(BY)? as a W, module, on which X acts as s- Id. Since

Ind%s H(BY)? = H(B")?, it follows that the W-translates of Uy , span V! ,. Thus
we have

Corollary. After letting ¢ — 1 and then taking semisimplification, the simple H-
module sz,p becomes Kato’s W -module e ® H(B*).

(8.2) By (6.2), the restriction of V; , to Py can thus be computed as follows. Let
W; be the (finite) subgroup of W generated by the reflections from J. By the

previous corollary, it suffices to calculate the restriction
T\p| __
H(B*)|g -
16



We find it convenient to work inside W. Let W; C W be the image of Wy
under the natural projection of W to W. This map is injective on WJ, and we
let ¢y : W; — Wy be its inverse. Thus ¥j(sq) = sq if @ € J, @ # —ayp, and
Y 1(s0) = 8o = tayso if 50 € J. Let 9% be the pullback of representations of W to
those of W ;.

For ¢ in the W-orbit of s, we set W;. = W, N W; and define the character

X;] 3:X<O¢J:WJ,§_>CX-

Then by Proposition (8.1) and Mackey theory we have

YIHB |51~ @ Indy! |, xi. © [H(B). (8.2a)
weWN\W/W;

To avert possible confusion: The labellings of representations of W; will some-
times depend on a choice of which roots in J are to be “long”. The correct choice
of root-lengths in (8.2a) is made by viewing J as a subdiagram of the extended
Dynkin diagram of the p-adic group G. In particular, the reflection sq is regarded
as “long”.

(8.3) To make effective use of (8.2a), we must calculate the groups W, the
characters ng , and the W;c-action on the homology.

The Coxeter group Wy is the Weyl group of a connected reductive group G T,
defined as follows. Identify J with the corresponding subset of the simple affine
roots {— g, 1 - - - ,op}. Let J be the correspondlng co-roots, let &; = WJJ
b, = WJJ Let X be the co-root lattice of G. Then the root datum of G is
(X,X,05,0;). If G is simply-laced, then G is just the subgroup of G generated
by T and the roots in +.J.

By the theory of centralizers in reductive groups, we have a semidirect product

o
WJ7§ ~ WJ7< X RJ’C,

where W3 _ is generated by reflections about roots of Gy which are trivial on ¢, and
Ry is the stabilizer in W . of some system of p0s1t1ve roots for the centralizer of

¢in Gj. Let GSJC be the simply-connected cover of G 7, and let Z; be the kernel of
the covering map

éls]c — GJ.
Choose a lift ¢’ of ¢ in G%¢. If w € W, then (¢')* = ¢'¢7 (w), for some &/ (w) € Zj.
This defines a homomorphism

fg: WJ’§—>ZJ

whose kernel is exactly Wy, and whose image is therefore isomorphic to R.
This leads to an explicit formula for XgJ . We assume —ag € J, since otherwise
x? is trivial. Let Jo = J — {—ao}. Any w € W; may be expressed as

W = T150T250 " " " TnS0Tn+1,
17



where z; € Wy,. Then ¢ ;(w) = t,w, where ¢, € W is translation by
[ = T10 + T180T200 + -+ -+ (T180  * * S0y )Xo

Thus

€ay (§Wk), (83&)

X! (w) =

n
1=

where wy, = 15802 - - - SoLk-

This may be expressed canonically as follows. Let Ay be the fundamental domi-
nant weight of G%°, with respect to the basis J, of the simple root —ay € J. Then
one checks that (8 3a) may be written as

X! (w) = ex, 0 & (w). (8.3b)
In particular, we have the
Lemma. The character X;] is trivial on W3 . If the orders of s and Zj are rela-

tively prime, then XgJ is trivial on Wy for all ¢ € W \W/W ;.

(8.4) We explicate (8.2a) in two extreme cases. First suppose s = 1. Then x/ is
always trivial, and we simply restrict from W to W:

YiH(B) |g7,1 = H(B) |y, . (8.42)

The other extreme is when z is regular in G. This means u is regular in G, so
the variety BY is a single point. Only p = 1 appears in the homology of this point,
and H(BY) is just the trivial representation of Wy. Thus,

V3 H(B") |1 = P may X/ (8.4b)
CEWS\W/WJ

(8.5) We digress to point out that (8.4b) may be interpreted as a restriction to
hyperspecial maximal compacts of endoscopic subgroups (no longer adjoint) as

follows. For ¢ € W, \W/Wj, let G Jc be the centralizer in G of ¢. Choose a
homomorphism )
¢¢ : SLa(C) — G

whose image contains a regular unipotent element of G Jc- Let

—1/2 0
= S ( q1/2) :

Then 7. may be viewed as an unramified character of a Borel subgroup B of the
p-adic group Gy whose dual is G ;. We form the normalized induced representation

I(7,) := Indgj (7).

Let Ny be the unipotent radical of By, and for a € J let z,, : ' — Nj be the
corresponding root group. Choose a character

I{:NJ—)CX
18



such that k o z, has conductor one if &« = —aq, and conductor zero for the other
roots in J. Then there is a unique irreducible constituent V;. of I(7,) having a
k-Whittaker model. Let K; be a hyperspecial maximal compact subgroup of G
and let K} be its pro-unipotent radical. Then W; may be viewed as the Weyl
group of K;/K}, so representations of W; may be identified with constituents of
the principal series of K ;/K}.

It follows from [R5, (7.4)] that the space of K} invariants in V¢ has correspond-
ing W -module

e® Indwic Xg,

which is the ¢-summand of (8.4b), tensored with € as in Corollary (8.1).

9. The unequal parameter case

The results in the preceding section do not apply to the Hecke algebras arising
from non-Iwahori parahoric subgroups. However, in the limited examples arising in
exceptional groups, we can construct square-integrable Hecke modules and deter-
mine their restrictions to parahoric subalgebras using the direct methods in [R1],
[R6].

Let (P,U, M) be a parahoric subgroup in G, and let o be a cuspidal unipotent
representation of M. At various points we use the fact that G is exceptional, to
simplify the discussion. In particular, P is contained in a hyperspecial maximal
compact subgroup K.

(9.1) We will need the theory of weight diagrams for Hecke modules (cf. [R1]).

Let H(K/P) be the subalgebra of H(G/P) consisting of functions supported on
K. Then H(K/P) is the span of {T}, : w € W} (see (5.2)) and is generated by T,
for r € S := SNW. Let C[T] be the affine coordinate ring of the torus T. Then
we have an isomorphismm [L4]

H(G/P) = H(K/P)&C|[T],

where ® denotes the tensor product of C-vector spaces with a twisted multiplication
between the factors, given by

(T, — ¢“)0 — 07 (T, — ¢°)) = (6" — 0)¢, € C[T],

where ¢, € (" — 0)~1C[T] is a rational function on T, defined as follows. Let 3 be
the root for r, and let eg be the corresponding character of T. In every case but
one, we have

- qc(r) —eg

T 1-— € )

The exception for exceptional groups occurs only for #(F4/Bs). Then G = SO5(C),
T = C* x C*, with simple roots

e, (21, 22) = 21/ 22, ep, (21, 22) = 22,
C :m C — (q2—€ﬁ2)(q—€g2)
= 1-— €3, ’ " 1-— €28, )
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(9.2) Let E be a finite dimensional H(G/P)-module. The weight diagram of E is
a labelled graph I'(E), defined as follows. The restriction of E to C[T] is a direct

sum
E‘(C[T]: @ E(r)
T7€T

where E(7) consists of those vectors in E killed by some power of the maximal ideal
of C[T] at 7. The vertices of I'(E) are the 7 € T for which E(7) # 0. The edges
of I'(E) are formed by connecting 7 to 7" if r € S is such that {.(7)¢.(771) # 0,
and we label such an edge by r. Let [7] be the connected component of I'(E)
containing 7. Note that [r] is simply an equivalence class in the W-orbit of T,
defined independently of E.

Lemmal[R1,(3.6)]. The function 7 — dim E(7) is constant on the components of
['(E).

Thus we define the multiplicity of a component [7] of I'(E) to be the dimension
of E(7). All of the simple Hecke modules that we consider are determined by their
labelled graphs I'(E), of which many examples occur in the following sections.

(9.3) There is a notion of “square integrability” of simple H(G/P)-modules [Mat],
which is compatible with the same notion for G. Namely, the G-module V' is square-
integrable if and only if the H(G/P)-module E = V7 is so. The square-integrability
of H(G/P)-modules is checked using the following “Casselman criteria”, proved for
arbitary Hecke algebras in [Mat].

Lemma. The H(G/P)-module E is square-integrable iff for every fundamental
dominant weight A\ of G, we have |ex(7)| < 1 for every vertex in I'(FE).

Here “dominant” refers to the set of simple roots ¥ — I.

To give a very simple example, we list the graphs of all of the square integrable
representations of the algebra H(Fy/B2), described in (9.1). The labels are Lang-
lands parameters, to be explained in (10.1).

[C341,—]: (—¢q
[C3(42) A1, —+]: (—q¢
[Ba,=]: (¢7° )
(@2 -~ (a7
(g~

' 2)—( 2471 2 (¢72,q)

[A1A3, —1] :

[B4(531),7] :

To prove exhaustion, note that if E is square integrable then one of E(7) and
E(7™77) is zero by the above Lemma, from which one easily works out the listed
possibilities. The existence of #(G/P)-modules with these weight diagrams follows
immediately from Lemma 1 in the next section.

(9.4) We recall some results from [R1], showing how simple H(G/P)-modules can
be classified by their weight diagrams if 7 has mild singularities. The first result
is due to Rodier [Ro] when all ¢(r) = 1, and proved for arbitrary parameters in
[R1,53].
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Lemma 1. Suppose 7 € T 1is regular, in the sense that ™ # 7 for all reflec-
tions v in W. Then there is exactly one simple H(G/P)-module E containing T
upon restriction to C[T]. Moreover, [T] is the unique component of I'(E), and its
multiplicity in E is one.

Next suppose we have a W-orbit O C T such that for each 7 € O there is a unique
positive root (8, such that (g, has a pole at 7. The corresponding reflection must
then fix 7. This was called rank-one singularity in [R1]. We say two components
¢, ¢ in O are adjacent if there is 7 € ¢, r € S such that 7" € ¢’ and 73, # (3,. Let
v(7) be the number of positive roots « such that sg_a < 0 and (4(7) = 0. The
function 7 — v(7) is constant on components in T. We say that [7] has type-0 if
v(7T) = 0 and type-2if v(7) > 2. If v(7) = 1, then it turns out that [7] is adjacent to
some type-0 component. If [7] is adjacent to exactly one type-0 component we say
it has type-1, otherwise [7] no type. The type-0 components are those containing a
vertex 7 for which £, is simple [R1,(10.8)].

Lemma 2. Suppose that [T] has type-0. Then there is a unique simple H(G/P)-
module E containing [7], and [T] is the unique component in T'(E) with multiplicity
two. The other components in E are exactly those which are adjacent to [T], and
these have multiplicity one in E.

We call the modules in Lemma 2 type-0 as well.

Lemma 3. Suppose [T] has type-1 or type-2. In either case, there is a unique
simple H(G/P)-module E with T'(E) = [r]. In type-2, E is the unique simple
module containing T. In type-1, the simple modules containing 7] are E and the
type-0 module Eg whose graph T'(Ey) contains the unique type-0 component adjacent
to [7].

All but two of the square-integrable H(G/P)-modules arising in exceptional
groups for non-minimal parahorics contain a 7 which is either regular or has rank-
one singularity, and are therefore classified by the above results.

The exceptions are the modules labelled [A; E7(as), —21] and [A1 E7(as), —3] in
section 13. The weights in the component for the former module are regular for
every rank-two parabolic subalgebra. Applying Lemma 1 to each rank two subsys-
tem shows there is a module having this as its unique component with multiplicity
one. (I learned this argument from A. Ram, [Ral]). For [A;E7(as5), —3] we need
extensions of [R1] found in [R6], to which we defer the detailed treatment of this
example.

(9.5) The graphs I'(E) can be used to determine the #H(K/P) action on E as
follows. Let J C S, and let wy be a Coxeter element of the parabolic subgroup
Wy C W. Let H;(K/P) be the subalgebra of H(K/P) supported on Wj. Erase
those edges of I'(E) whose label is not in J. The resulting graph is that of a
module over a parabolic subalgebra H;(G/P) generated by C[T] and H;(K/P),
whose # j(K/P) action is known by induction, so we can calculate the trace of w;
on E,—;. In practice, a small number of such traces determine the restriction of
E,—1 to W, hence the restriction of E to H(K/P).
For example, let J = {a} be a singleton, and let r = s,. Let

C={reT: |lex(1)| < 1}.
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Then
r(r,Eg—1) = Y _ dim E(r") — dim E(r). (9.5a)

This is seen as follows. The parabolic subalgebra H,(G/P) is generated by T,
and C[T]. Our erasing leaves either edges of the form 7—7" or isolated points. In
the former case, the graph is that of an H,, (G /P)-module whose composition factors
are irreducibly induced from C[T]. These restrict to the regular representation of
Ha(K/P), so these edges contribute zero to tr(r, E,—1). The isolated points may be
paired (by adding one member of the pair if it is not part of the graph) as {7, 7"},
with no edge, such that |a(7)| < 1. This pair contributes dim E(7") — dim E(7) to
tr(r, E4=1), because the module M = H,(G/P) @yt 7 has two T.-eigenvectors,

with eigenvalues —1 in M (7) and ¢°(") in M (7).

(9.6) We find additional information about the W-module E,—; by considering
induction from intermediate parabolics, as follows.

Suppose we have a vertex 7 € I'(E) with dim E(7) = 1, having a small number
of edges attached to it. Let J be the largest subset of ¥ such that H;(G/P) has
a one-dimensional representation with unique eigenvalue 7. The scarcity of edges
means there is a good chance of finding such an J which is rather large. Then
T extends to a character of H;(G/P) and E is a quotient of the induced module
H(G/P) @4 ;(@/p) T- In particular, F,—; is contained in a representation induced
from a one-dimensional character of XW .

(9.7) We illustrate all of this with some examples in the Hecke algebra
H(G/P): 1-1—-1=4-—4.

Refer to (13.2) for notation and graphs I'(E). We have, up to semisimplification,

Ey = ~ @Indw s® xl, (9.7a)
X

where x runs over irreducible W-representations and s is extended to WS as before.
Moreover, each summand is irreducible. To find the x’s, we play (9.7a) against the
W -action determined as in (9.5).

First consider the module with Langlands parameter [Dg(5,11), —1]. There is
only one component, with multiplicity one, and dim E = 15. Let 7 = [—6, 1,4, 4].
Then E(7) is one dimensional, and is preserved by H¢, (G/P), which acts on E(7)
via a twist of its Steinberg representation. Moreover, W, C Wy, so up to semisim-
plification,

Es—1 C Ind?wcs sS®e= Ind~ [s® IndW €].

C3

The inner induced module is Ind%so3 € with trivial X action. Now W has type By,

and
Indye, €= [—, 1%+ [1,1%] + [, 211],

so we have the irreducible decomposition

md¥yy,, s ® e =Md% 5@ ([~ 14+ [1,1%] + [, 211)).
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These constituents have dimensions 3,12, 9 respectively, so (9.7a) becomes
Eymy = Tndyy s® (=19 + [1,17)).
8s s

Note that this example only requires the trace of the identity element on FE,—;.

Next consider the module with Langlands parameter [Dg(1357),7]. The graph
has four components: One with multiplicity two, the others have multiplicity one,
and dim F = 66. The method described in (9.5) gives the following traces on Fj—:

tr(ry) = =10, tr(rq) = —18, tr(rire) =0, tr(rsgry) = —1.

Let 7 = [1,—4,4,4]. Then E(7) is a twist of Steinberg for # 4, 4,(G/P), and Wy is
again of type By (conjugate to the By in the previous example). We calculate

Indfl, = [=, 1%+ [, 211] + [1%, 1] + [1, 21] + [1, %] + [11,2] 4 [11, 11],
so the constituents of F,—; have multiplicity one, and are among the representations
w w
Indy (s® [—,1%), ---, Indg; (s ® [11,11]).
Calculating traces of 1,74, 7179, 7374 On the latter representations, we find

Eqr = Ind%s s® ([=, 14 + [=, 211] + [1,21] + [1, 1%] + [11, 11]).

(9.8) The algebras H(G/P) are part of a one parameter family ¢ of affine Hecke
algebras, where H! is the equal parameter algebra, discussed in §8. Some H(G/P)
modules F are also part of a one parameter family of H°-modules E°¢, such that
tr(Ty, E°) is continuous for some real c-interval containing 1, and the parameter for
H(G/P). In this case we say F is “obtained by deformation”. The most obvious
example is the one dimensional H¢-module on which T, = —1 for all » € S, and
Qg acts by an arbitrary character. New deformations may be obtained by inducing
this one, as in (8.4b).

If E is obtained by deformation, the restriction of E,—; to WJ does not change
as the parameter ¢ varies, so we can apply the equal-parameter results from §8 to
calculate the restriction. Some interesting problems arise in this method, however.
Not all square-integrable modules are obtained by deformation, and those that
do may not have a deformation that remains square-integrable as ¢ varies. (The
equal-parameter F; module [C3(42)A1,++] is an example of the latter case.) For
example, we sometimes find that the H!'-module is contained in an induced from
a maximal parabolic, and the other constituent of this induced becomes square-
integrable after the deformation to the unequal parameter algebra H(G/P). This
phenomenon is detected by the Euler-Poincaré value fy (1), which is zero on any
properly induced representation (see (2.1)), hence is negative on the non-square-
integrable constituent of an induced representation of length two.

(9.9) Using (9.3,4), one may check that each of the graphs in (9.3), §12,13 is indeed
that of a unique square-integrable H(G/P)-module E. Though it is not logically
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necessary, we wish to give a rough idea of how these graphs were found, emphasizing
in particular some general methods distilled from many ad-hoc calculations.

Start with the modules over the equal parameter algebra H!, as in (9.8), and
calculate their restrictions to Wy’s, as in (8.2a). Use these to calculate the sum
in the Euler-Poincaré formula (2.1a), but now using the generic degrees for para-
horic subalgebras of the original unequal-parameter algebra H(G/P). If the answer
looks like a formal degree, then search for a deformation of the graph of the equal
parameter module as in (9.8). These searches were successful, in our examples. In
most cases one finds a 7 as in (9.6), deforms it so as to preserve J, and checks
if the component [7] satisfies the conditions of Lemmas 1,2 or 3 in (9.4). A few
deformations were found only after considerable trial and error.

If the sum (2.1a) cannot be a formal degree, because, for example, it is negative,
then there can be no square-integrable deformation. In this case, we find candidates
for I'(E), as follows. Take an elliptic z = su € G whose L-packet II, is suspected to

—1/2

have a representation containing (P, o), and let 7 = s¢ (q 0/ q10/2 ), as in (7.2).
Let L be the Levi subgroup of G of the same type as P, and let K, be a hyperspecial
parahoric in L. Let 7, be the analogue for 7 in the Langlands parameter of the
supercuspidal obtained by compact induction of o from K, to the derived group L'.
We may choose 17, € L'NT. On the other hand the torus T in the tensor product
decomposition of H(G/P) may be identified with the set of unramified characters
of L, and hence T is a subtorus of T, via restriction of characters from L to T'. We
then have the following heuristic principle:

For any vertex 1 € T'(E) we should have 1171, in the W-orbit of .

Thus, we expect a relation between 7, which a priori is only relevant to the
Iwahori-spherical part of the L-packet, to the central characters of modules over
other Hecke algebras appearing in the packet.

For 7 satisfying the above heuristic, the component of 7 belongs to some
H(G/P)-module E (possibly several E’s). For each fundamental dominant weight
A € X, we evaluate ey on each vertex in the component of 7. If one such value
is > 1 in absolute value, then no E containing [71] can be square-integrable, so
we choose a new 7 satisfying the heuristic, and repeat the process. Lemma (9.3)
provides a guide to making reasonable choices for 7.
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10. F,

In this section we give the degrees of all square integrable unipotent representa-
tions of the p-adic group G = Fy, and to each Langlands parameter (z, p) € ¥(Q)
we attach a representation V; , € Irrupt2(G) as in the main theorem in the intro-
duction. We also give the action of the hyperspecial parahoric K on the invariants
of its pro-unipotent radical in V. This indicates which parahoric has a cuspidal
unipotent in V', and also shows the “leading K-type” which will be discussed in
§14.

The affine diagram of G is labelled

0—1-2= 34

For each of the reflection subgroups of type J = Fy, A:C5, Ay Ay, AsAi, By,
(where ~denotes short roots), let J(g) be the corresponding Poincaré polynomial.
It is also the volume of the maximal parahoric corresponding to J. As in (3.2), the
simplified formal degree formula (with vol(Z) = 1) is

deg(V) =
dim[Vg] dim[Va, ® V]  dim[Va, @ V7 ] N dim[Va, ® Vi ] dim[Vg,]
Fi(q) A1Cs(q) Ay As(q) A3Ai(q) Ba(q)

where the subscripts on V indicate invariants under the pro-unipotent radical of
the corresponding parahoric subgroup, and * is the duality operation described in
§3.

We label Weyl group representations and K-types as in [C]. For Fy they are ¢4,
of dimension d and harmonic birthday b. Primes’ indicate different representations
with the same d,b. For the symmetric group S,, n > 3, the representations are
identified with partitions A of n. The trivial representation is n. For S; we write
the characters as +. For B,, = C,, they are |«, 8], where o and [ are partitions
whose union is a partition of n. The trivial representation is [n, —].

There are three relevant affine Hecke algebras: The Iwahori-spherical algebra
H(F4/I) of Fy (with 18 L%-representations), the algebra #(Fy/Bsz) described in §9
(with five L? representations), and the algebra H(Fy/Fy) = C, corresponding to the
7 cuspidal unipotent representations of Fy. The formal degrees for H were computed
using §8 and Shoji’s calculation [Sho] of Green polynomials for Fy, which gives the
restrictions to the hyperspecial parahoric. We give the restrictions to the other
maximal parahorics in another table after the degrees. For example, the entries 3,2
in the first column of the A,Cj3 table are the multiplicities of trivial4, ® Steinbergc,
and Steinberg4, ® Steinbergc,, respectively. The degrees for H(F4/Bs) are found
using §9, and those of last algebra are trivial to compute.

As in (7.2), the lowest power of ¢ in the formal degree is the dimension of B*, for
a unique v which is the unipotent part of an elliptic conjugacy class in G = Fy(C).
Therefore, we group the L-packets according to u (indicated by its label in [C]), one
packet for each possible semisimple part s, the pair being described by the label
of u, viewed in Gs. For example, the label C3(42)A; denotes the unipotent class
in subgroup of G = F4(C) isogenous to Spg(C) x SLy(C) which has partition 42
in the first factor, and is regular in the second. Thus, each representation is given
a name (Langlands parameter) of the form [u € Gy, p], where p is an irreducible
character of Ag,.

Finally, ®, is the d** cyclotomic polynomial evaluated at g.
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u=F,;, dimB,=0, A,=1

[u € Gy, p] K — types Degree
B1Ps D7 P,
[Fy,1] b(1,24) q>3q>§q>§«1>g<1>s<1>12

u = F4(a1), dlmBu = 1, Au = Sg
452
[Fu(a1), +] b(4,13) T P(1,24) %

4020
[Fi(a1), -] 1(2,16) 2<I>ZZ<I>§<I>§<I>§<I>S

4
1 q®1 2527 P10
[Bu, +] ¢(2,16) +b(1,20) 23187828:3D 1,

gD 8,
(B, ] Byle] 1677 Bs D13

u= F4(a2), dlmBu = 2, Au = Sz
2 54
[Fi(az), +] $(9,10) T P(4,13) T P(1,24) 2%%%
231
[Fa(az), -] I(,2,16) 2%35355

2345
[C3A1, +] P(9,10) + D(2.16) T P(1,24) 2«%3@131;3@812

2325 ®
[C3A17 _] B2 [6] 2;3@1‘21‘1%@812
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[Fa(as),4]
[Fi(as), 31]
[Fa(as),22]
[Fy(as), 211]
[Fu(as), 1]

[B4(531),1]
[B4(531),€"]
[B4(531), €]
[B4(531
[B4(531

),7]
), €]
[245,1]
[2A2, 0]
(245, 62]

[A1A35,1]
[A1A43, —1]
[A1As3,1]
[A1 A3, —i]

u = F4(a3),

b(12,4) ¢I(g,9) + ¢I('8’9) + P(9,10) T P(4,13) T P(1,24)
(0.6) T Ps,0) T (2,16)

D(16,57TB(s,9)TP(s,9)TP(9,10) 1P (4,137 102, 16T0(1,24)

(9 6) T Cb(s 9) T $(9,10) + Pa,13) T ¢(2 16) T b (1,24)

1(6,6) + qsl(g’g) + ¢l(1379) + ¢(9,10) + ¢(1,24)

(4 7) + ¢(s 9) + ¢(9 10) T ¢(2 16) + ¢(1 24)

dim B, =4

(6 6) + ¢(4 13)

(1,12)
F{1]

(T %s9
B, [E”]
Fy[—1]

P(a8) + ¢(2 16)

Ay

(1,12) T (2,16)

Bs[r] + Bale]
F{[1]

F4[0]
F4[0?]

Bsl€'] + Bale]
Fy[i]
Fy[—i]

27

=S4

q' @
24315232

4 x4

q (I)1
813252

q' @]
125222

q‘o]
8313252

q'®!
24313252

q‘o]
4<I>‘214<I(>I)§4<1>8

q' @]
8030307
4 x4
q P
8015257
4 x4
q
8@3@3@2
4 x4
q P
4<I>§<I>Z<I>g
4 x4
q
S{Jg@iq)g

q'@!
332828,,
q'®]
332328,
'@
35232,

q'®!
1523501,
q'®]
132855,
¢ ®!
1523551,
q@!
15235 d1,



IWAHORI-SPHERICAL A;C3-TYPES

\4 [_,13] [13a_] [1171] [1711] [217_] [_721] [271] [172] [_a3]
[F4,1] 1
[Fu(ar),4+] 1,1 il
[Fu(a1),-] 1
[Ba1,+] 1,1 1
[Fi(az),+] 1,2 1 11 1
[Fa(az2),—] 1 1
[C3Ay,+] 1,1 1 1 1,1
[Fi(as),4] 22 1 1,2 23 1,1 1 1,1
[Fy(as),31] 1,1 2,1 1,1 1,1 1
[F4((l3),22] 1 1,1 1
[Fy(as),211] 1
[C3(42)A1,4++] 22 1 1,2 23 1 22 1 1.1
[C3(42) A1 ,+—] 1 1 1,1 1
[B4(531),1] 32 1,2 1,2 272 1 1
[B4(531),¢" 1 11
[B4(531),¢'] 1 1,1
[242,1] 1,2 1 1,2 1,2 1,1 1,1
[A1 As,1] 22 1,2 1,2 1,1 1

IWAHORI-SPHERICAL A5 A5-TYPES

(u,s,p) [1%,1%] [12,21] [13,3] [21,1%] [21,21] [21,3] [3,1%] [3,21]
[F4,1] 1
[Fa(a1),+] 1 1 1
[Fa(a1),~] 1
[B4,+] 1 1
[Fu(as2),+] 2 2 2 1
[Fa(a2),~] 1
[C3A1,+] 2 2 1 1
[Fa(as3),4] 4 4 1 4 4 1 1 1
[Fa(as3),31] 1 1 2 3 2
[Fa(as3),22] 1 1 1 1 1
[Fy(as),211] 1
[C3(42)A1,++] 4 5 1 4 5 1 1 1
[C3(42)A1,+—] 1 2 1 1 1
[B4(531),1] 3 2 5 3 2 1
[B4(531),€'"] 1 1
[B4(531),¢'] 1 1
[242,1] 4 3 3 3 1 1
[A1 As,1] 3 1 4 2 1 1
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IWAHORI-SPHERICAL A3A1-TYPES

(u,5.p) [ [11] [22] (31 [4]
[F4,1] 1
[Fa(a1),+] 1,1 i
[F4(a1)7_] 171
[Ba,+] 1
[Fa(az),+] 1,2 1,2 1
[Fa(az),~] 1
[C3A1,+] 1,2 1,2
[F4(a3),4] 2,3 3,5 1,1 1,2
[F4(a3),31] 1 1,7 1,2 1
[F4(a3),22] 1 1,1 1
[Fi(as),211] 1
[C3(42)A1,++] 2,3 4,6 1,1 1,2
[C3(42) Ay ,+—] 2,2 1,1 1
[B4(531),1] 1 2,4 1 1,3
[B4(531),¢""] 1,1
[Ba(531),¢] i
[242,1] 1,3 2,4 1,1 1,1
[A1Ag,1] i 1,3 1 1,2

IWAHORI-SPHERICAL B4-TYPES

(u,s,p) [,1%] [,211] [-,22] [-,31] [-,4] [1%,:] [1,1%] [13,1] [1,21] [11,11] [11,2] [2,11] [2,2] [211,]
[Fy,1] 1
(Fa(a1),+] 1 1
[Fa(a1),—] 1 1
[B4,+] 1
[Fa(az2),+] 1 1 1 1
[Fa(az),—] 1
[C3A;,+] 1 1 1 1
[Fi(a3),4] 1 1 2 1 1 1 1 1
[Fyi(a3),31] 1 1 1 1
[F4(as3),22] 1 1
[Fy(as3),211] 1
[C3(42)A1,4++] 1 2 2 1 1 1 1 1 1
[C3(42)A;,4+—] 1 1 1 1
[B4(531),1] 2 1 1 1 1 1
[B4(531),¢e"] 1 1
[B4(531),€'] 1
[245,1] 1 1 1 1 1 1 1
[A1A435,1] 1 1 1 1 1
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11. Eg

In this section we give the degrees of all square integrable unipotent represen-
tations of the split adjoint p-adic group G = FEjg, the action of the hyperspecial
parahoric K on the invariants of its pro-unipotent radical (representations labeled
as in [C]), and to each representation we attach a Langlands parameter in the form
[u € Gy, pl, as in §10.

There are three relevant affine Hecke algebras: The Iwahori-spherical algebra of
Eg (with 6 L%-representations, up to twists by unramified characters), the Hecke
algebra H(Eg/D,) of type As with constant parameter ¢g* (one L2-representation,
up to twists), and the algebra C, corresponding to the 2 cuspidal unipotent rep-
resentations of Fg. The group of unramified characters of G has order three; its
twists permute the L-packets, preserving formal degrees. Those packets where u
is elliptic in G have three distinct twists, and we just list one of each. There is
one more packet, with u = D4(a1), whose members are invariant under unramified
twists.

As in §3 but with a few extra terms due to branching in the affine diagram, the
simplified degree formula (with vol(Z) = 1) is

dim[V7 ] dim[Vp ] - dim[Vp ] dim[Va, ® V3 ]

2V =3"g ) Vi) T Dalw) A A5(0)
dim[Va, ® V},] dim[V4, ® V1 ] dim[Va4, ® V.|
A1A4(q) A1A3(q) A1 A1 As(q)
dim[Voa, ® Vi, ] dim[Vza, ® Vi ]  dim[V34,]
A1A1As(q) A1A1A1A(q) AyAzA5(q) '

The rest of the notation is as in §10.

u=Eg, dimB,=0, A,=1

[u € és, ) K — types Degree
%%,
[Fe,1] é(1,36) W

u= Eﬁ(al), dlmBu = 1, Au =1

6350
[Es(a1), 1] b(6,25) T P(1,36) @%
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u = E6 (a3), dll’Il;B’u = 3, Au = Sz

3&6
[Es(as), +] ?(30,15) T P(20,20) T P(6,25) T P(1,36) @%W
3@6
[Es(as), ] b@15,17) + P(6,25) @q?ﬁ
q° @5
[A1 A5, +] b(15,16) T P(20,20) T P(1,36) 6979;90915
3@6
[A145, -] Dy(111) m&%
u = D4(a1), dlmBu = 7, Asu = Z3
756
[342,1] ?(10,0) +2P(60,11) T P(24,12) +P(30,15) TP (15,16) +2¢(20,20) +P(1,36) ?&%;gﬁ
756
[345,6] Eg|6] s@g;gﬁ
[3A42,67] Es[6?] _ d"2f
2, 6 3230229 P12
IWAHORI-SPHERICAL A;As-TYPES
1% [16] [21% [221%] [222] [313] [321] [333]
[Ee, 1] 1
[Bo(ar),1] 1,1 1 )
iEG(a’3)7+i 272 371 171 1 1
[Es(a,g), —] 1 i, 1 1
Aids,+] 2,1 2 1,1 1
[3A5,1] 1,4 2,5 3,6 1,4 1,1 2,2 1,1
[WAHORI-SPHERICAL A3AsAs-TYPES
(multiplicities are invariant under permutation of factors)
V [ece] [eer] [eel] [err] [erl] [ell] [rrr] [rrl] [rll]
[Eg, 1] 1
[E’G(al), 1] 1 1
[Es(ag), —i—] 4 3 1 2 1
[Es(as), —] 1 1 1
[A1 A5, +] 4 2 1 1
[3A,1] 12 7 7 1 9 1 1



12. E;

In this section we give the degrees of all square integrable unipotent represen-
tations of the split adjoint p-adic group G = E7, and to each representation we
attach a Langlands parameter in the form [u € G, pl, as in §10. We also indicate
the action of the hyperspecial parahoric K on the invariants of its pro-unipotent
radical (in some cases, just the leading K-type, see §14). We do not include the
restrictions to non-hyperspecial parahorics of Iwahori spherical representations, as
these are quite lengthy to tabulate.

(12.1) The restrictions to K are described by representations of the Weyl group
of FEr, for which d denotes the unique d-dimensional representation with harmonic
birthday b. The group of unramified characters of G' has order two. If the repre-
sentations are distinct from their twists, we write the name as [fu € G, p]. No +
means the representation is isomorphic to its twist.

There are four relevant affine Hecke algebras: The Iwahori-spherical algebra
H(E/T) (with 15 L?-representations, up to twists by characters), the Hecke algebra
H(E/D,) (with five L?-representations, up to twists, classified in (12.2)), the alge-
bra H(E7/Eg) with G = SLo(C) with equal parameters ¢° (one L2-representation
for each of the two cuspidal unipotent representations of Fg) and the algebra C,
corresponding to the 2 cuspidal unipotent representations of E7. For the first alge-
bra, we used the Green polynomial calculations of Beynon-Spaltenstein [BS], and
the induce/restrict tables of Alvis [Al], as discussed in §8. The second algebra
requires §9, and we give the weight diagrams of its square-integrable modules in
(12.2) below.

The simplified degree formula (with vol(Z) = 1) is

_ dim[Vg, & Vg | N dim[Va, @ Vi & Vi & V]

2deg(V) = E7(q) A1Dg(q)
dim[Va, @V @ Vi @ Va,] dim[Va, @ Vi ] dim[Va, @ V] ]
A3 A5(q)  AAe) AsAi(g)
dim[Va, @ Vi @ Vi ] dim[Va, dim[Va,]
A12A3(q) A7(9)  Aes(e)

The rest of the notation is as in §10.“ Same” means equal to the degree directly
above.

u=E;, dimB,=0, A,=1

[u e Gy, pl K — types Degree

BT P11 B3Py

[+E7,1] L3 2BTBIBIDI B D10B12 51418

u=Er(a;), dimB,=1, A,=1

7
g2 P5P11 P13
[+£E7(a1),1] 746 + les 207 P2D2P3D10P12P14
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u=Eyr(az), dimB,=2, A,=1

2H/5TH2
q q>1(I)7(I)11
[IlIE7(G,2), 1] 2737 + 746 + 163 2@’5@%,1)‘21@%@8{)10(1)12

u= E7(a3), dlmBu = 3, Au = S2

[£E7(as),1] 5630 + 2737 + Tag + 1 ¢ 2} By 27
7 a3 9 30 37 46 63 4¢;¢§¢Zq>gq>sq>lo
[£E7(as), —1] 2133 + 746 same
BT BB, DD
[:l:AlDe, 1] 3531 + 2737 + 163 4@5'@3&)2{5)8;109@1124@18
[£A1Dg, —1] Dy(—,111) same

u= Ee(al), dlmBu = 4, Asu = S2

4 57
[A7,1] 1528 + 3531 + 2136 + 13 2£;§£f£i$18
[A7,—1] D4(111,—)+D4(—,111) sSame

u = E7(a4), dlmBu = 5, Au = Sz

5572
[£E7(a4),1]  18925+12025+5630+3531+2136+2757+746+1es 4%‘;3 a2 ;6%
[£E7(a4),—1] 1528 same
+A1Dg(39),1] 18955+10526+5630+3551+2136+2737+Tas+1 a° @] @587%10
[ 1D6(39),1] 22+ 26+95630+3531+2136+2737+746+163 4(};@2@%@8@12@14
[iA1D6(39),—1] D4(111,—) same
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u = E7(a5), dlmBu = 7, Au = Sg

Ts7
[£Br(as5),3] 3151610521 +1681 +21051+10526+5630+2757+[Br (a4),1]  morerlyy
23476
[+ B (as),21] 28015+21051 412025 +10526-+5630+2133+2757+ 716 A
6<I>2<I>3<I>4<I>6
q7¢1
[£E7(as5),111] 3522+2133 28]e2a383
B ToTo
[iA1D6(57)’1] IndAiD(s(_)®([167']+[1571]+[14711D = 28017‘|"" B%
[£A1 D6 (57),—1] D4(1,11)4+Dy4(—,111) same
7T
[£A2A5,1] 7018410521 +1682141892245630+3531+2136+2737+ 163 qu%q@m
[:‘:A2A5,9] EG [9](—) same
[+A5A5,0%] Es[6%](-) same
u= A4A1, CllIIlB,_l = 11, Asu = Z4
1157
2 ... q @
[AlAs, 1] 21013 + 207 @3210P14P1s
[A1A2,—1]  D4(1,11) 4+ Dy(—, 21) + Dy(—, 111) same
[A1 A2, i) Eq[£¢] same
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(12.2) Here we classify the square integrable representations of the Hecke algebra
H(E7/D4)I 1=4—-4«1

according to their weight diagrams, as discussed in §9, and we give the restrictions
to maximal parahorics needed to compute the formal degrees as shown in 12.1.
The relevant representations of E7 are those with K-types of the form Dy()\, u),
[C,13.9].

We have G = Spin;(C). Weights are points in a maximal torus T of G, with
simple roots 1, s, a3, az being short, and r; is the reflection corresponding to «;.
We explain our notation for elements of T by an example: [—3,4, 0] is the unique
7 € T satisfying eq, (T) = —¢3, €a,(T) = ¢7%, ea,(T7) = —1, ey, (1) > 0, where
A3 is the fundamental weight dual to ag. The weight diagrams of square integrable
representations of H(Fr/D4) and corresponding Langlands parameters of Er are
as follows.

1% T(V°)

[:l:AlDﬁ, —1] H [4, 4, ]_]j:
[A7,—1]: [4,4,0)4[4,4,0]_
[£A1D6(39), —1]: [=2,4, 1]4—[2,2,1]4[4, -2, 3]o—[4, 4, 3]+

[+£A4,D6(57),—1] :  [4,4, —1]4

[A1A3As, —1]:  [-3,4,0y — [B,L0s — [4,-11]4
3 ‘3
[-3,4,0. — [3,1,0_- > [4,-1,1_

We now verify, using the results recalled in (9.3) and (9.4), that these exhaust
all square-integrable representations of the algebra H(FE7/Dy4). It causes no harm,
and is convenient to change to slightly abusive notation for the calculation. We
now write 7 = (x,y, z) in a maximal torus of SO7(C), with roots x/y,y/z, z, and
dominant weights z, xy, xyz. The L? condition (9.3) for an H(E7/D,)-module E
is that 7 € I'(F) must have |z|, |zy|, |zyz| < 1.

Suppose (1): |z| < 1 for all 7 € I'(E). Then in fact all z = ¢~!. Suppose
(1.1): yq # g** for some (z,y,q" ') € T'(E). Then (z,q7%,y) € ['(E),soy =g~ %
Then (z,y,2) = (z,q7 1, ¢~ !) has type-0, and we can apply 73, to get (z,q7,q) €
['(E), a contradiction. Suppose (1.2): (z,¢%,¢~') € T'(E). Then |z| < ¢73, so
lzq™3| # ¢** s0 (¢3,x,q7 ) € T(E), contradicting L2. Thus, in case (1) all weights
must be of the form (z,¢7% ¢~1). We cannot have z = ¢=°, lest (¢7°,¢7%,¢7°)
appear in I'(E) by (9.4), Lemma 3. Hence z¢® = ¢™*. The same Lemma 3 says
the weight (¢~ !,¢7°,¢~') appears in exactly two modules E1, E5. These have
rank-one singularities and contain the type-0 weights (¢°,¢71,¢"!) € I'(E;) and
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(¢ t,q71,¢7%) € I'(Ey). Using Lemma (9.2), one finds weights (¢,¢7°,¢7 ') € F;
and (¢°,¢71,¢q7 1) € T'(F3), that violate the L? condition. Hence z = ¢=2, and we
have only one square-integrable module in case (1) (up to twists by Z), namely
E =[A1Dg,—1]. This concludes case (1).

In the remaining cases, we choose 7 = (z,y,2) € I'(E) with |2| > 1. For any
such 7, note that 77" = (z,z,y) ¢ T'(E).

Suppose (2): 77 = (z,2,y) € I'(E). Then z = ¢z, and |z| < ¢. Suppose
(2.1): |y| > 1. Then 77 = (772)™2" ¢ I'(E), so z = yq® or z = y. The former
contradicts L2, the latter forces (z,q7*,2) € I'(E) by Lemma 3 and again con-
tradicts L2. Suppose (2.2): z # y~! # q. Then one finds (y~!,q %z, 2) € ['(E),
contradicting L2. Suppose (2.3): z = y~! # ¢q. Then we find (2,97 *2,2) € T'(E),
contradicting L?. So we must have y = ¢~ !. Suppose (2.4): z # ¢q,—1. Then
get (z71,¢*271,¢q7t) € T'(E), contradicting L2. Suppose (2.5): z = —1. Then
E =[A;A3A3,—1]. Suppose (2.6): z = g. The weight (¢=3,¢71, ¢q) belongs to two
non-L? modules as in case (1). This concludes case (2).

Suppose (3): For any 7 € I'(E) with |z| > 1, we have 7™ = (z, z,y) ¢ ['(E).
Then z = ¢*y > 1, and 7 = (z,y,q*). Suppose (3.1): zy~! # ¢**. Then
(y,z,q*y) € T(E), so ¢*y = ¢*z, leading to (z,z7 !, ¢*r) € I'(E), contradicting L2.
Suppose (3.2): zy~! = ¢*. Then |z| = |¢*y| > 1, contradicting L2. So zy~! = ¢~*
and 7 = (z, ¢z, ¢8r). Then

prareriranars _ (g=8,=1 o ~4p=1 ;1) & (),

soz € {qg77,£q7 8, +¢75,¢75%}. Of these, r = ¢~® and x = +¢q~° contradict L2,
x=q 7 gives E = [A1Dg(5,7),—1], z = ¢~ 8 gives E = [A7, —1], and z = ¢~° gives
E =[A1Dg(39), —1], completing the proof of exhaustion.

If V is one of the five square integrable representations of E(F') containing the
Dy cuspidal unipotent, then the Euler-Poincaré formula simplifies, by Lemma (5.1)

to
2 deg(V) = 1dim[Vg, @ V] n 1dim[Vy, @ Vp, @ Vi ® VDG]’
2 E7(q) 2 A1Dg(q)

where the numerators are dimensions of invariants under pro-unipotent radicals of
the indicated parahorics, and the denominators are Poincaré polynomials of the
indicated Weyl groups. The terms Vg, are given in the degree tables (12.1). The
A1 Dg terms are expressed as representations of the Weyl group A; Bs as follows.

H(E7/Ds4), A1Dg-TYPES

4 [_all] [115_] [151] [1131] [_a2]
[+A,Dg, —1] 1
[A7, 1] 1 1
[+ A1 D5 (39), —1] 1
[+A4,D6(57),—1] 1,1 i
[ArAsAs,—1] 1,1 1 1 1
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13. Ej

Here G = Eg(F). For each Langlands parameter (z,p) € ¥(G) of G = FEg(C),
we describe a square integrable unipotent representation V, , of G = Eg. We give
formal degree of V; , and the action of the hyperspecial parahoric K (in some cases
just the leading K-type) on the invariants of its pro-unipotent radical.

(13.1) There are five relevant affine Hecke algebras: The Iwahori-spherical algebra
of Eg (with 53 L2-representations), H(FEs/E-) (with two L?-representations m,,
for each of the two cuspidal unipotents for E7), H(Es/FE¢) (five L2-representations
for each of the two cuspidal unipotent representations of Fg), H(Es/D4) (at least,
and we expect, exactly 18 L? representations) and the algebra C, for the 13 cus-
pidal unipotent representations of Fg. For the first algebra, we used (8.1a), the
calculations of Beynon-Spaltenstein [BS], the induce/restrict tables of Alvis [A1],
and (9.5). For the algebras H(Fs/Eg) and H(Fs/D4) we used §9, and we give the
weight diagrams of their square-integrable modules in (13.2) below.
The simplified degree formula (with vol(Z) = 1) is

dog(v) — Vi) | dimlVa, © Vs | dim{Va, © V] | dim{Va, © V3,
FEs(q) A1E4(q) A2Fs(q) A3Ds(q)
dim[Va, ® V3] dim[Va, @V ® V3]  dim[Va, ® V3 ]
AgA4(q) A1A3A5(q) A7 A1(q)
Cdim[Va, ® Vi) dim[Va,]  dim[Vy,] | dim[Vp,]

AgA1(q) As(q) Ax(q) Ds(q)

u=Eg, dimB,=0, A,=1

[ue Gy, p] K — types Degree

(B, 1] 1 P11 P13P17 P19 P23 Pa0
8, 120 @g@g@ﬁ@g@é@gégqﬁo@%?‘@14@15@18‘1>20‘1>24‘I>30

u:Eg(al), dimBuzl, Au:1

8
qPIP7 P11 P13P17 P19 P23
[Es(a1), 1] L120 + 891 BDIDIBZDIB2D7 B2, B 15P15DooPaa
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u = Eg(az), dlIIlBu = 2, Au =1

258 2
080,92 13817819
[Es(az),1] 3574 + 891 + l1go PEBIDIB2DL Dy B2, B2, P15P1s P20

u = Es (a3), dlmBu = 3, Au = Sz

(13{’?‘:511{’%3‘1)17

[Es(a’g)’ +] 11263 + 3574 + 891 + 1120 2@3@3@?@2@%0(»12@14@15@18
[Es(as), —] 2868 + 891 same

D1 B13P 16D D
[A1Er, +] 8464 + 3574 + l120 2<1>g<1>g@3%33@0%23314;18?20%0
[A1E7, -] Dy(1,24) same

u= Es (84), dim Bu = 4, Au = S2

%Dy 2. B
[Fg(aa) 4] 2105 +[Fis(as). +]  sgmmarereiezes,enen
[Eg(aq), —] 16055 + 285 + 3574 + 891 same

4 £8
q ‘I>1<I’7<I’9’1>11’1>13‘1>22‘1>28
[D87 +] 5056 + 8464 + 1120 2{,3@3@%@%@%04)%2@20@24@30

[Dsg, -] D4(2,16)" + Dy4(1,24) same

u = Eg(b4), dlmBu =5 Au = Sz

[Eg(bs),+] 56047 + 8464 + [Es(aq, +)] ke
) ’ 285D D PE PP, P14
[ES(b4)7 _] 5056 Same
558
[A1E7(a1),+]  [Bs(ba), 1] = 21053 + 16055 rarphprggaio
[A1E7(ay), —] Dy4(2,16)" same
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u = Es (a5), dlmBu = 6, Au = Sz

6 583
®38333,3,

Eg(as),+ 70042+[Eg(ba),+ 1
[Bs (as),+] [Bs (ba),+] et
[Es(as),—] 30044+16055+3574 same

658

g P P57 PPy Py0
[Ds(3,13),+] 40043+56047+5056+11263+8464+891+1120 20801010202, B3P0y
[Dg(3,13),—] D4 (1,12)"+Dy4(2,16)" same

u = Es(b5), dlmBu = 7, Au = S3

38330
[Eg(bs),3] 140037430044+56746+16055+11263+3574+[Eg(as),+] 6(1)3@;4)?;%;9;1%0%2
q7<1>§‘1>?7’<1>11
[Es (bs),21] 100839 +56746-+21052+112¢3+[Es (a4),—] o5e 275 557 51
2%3%5% 10
75843
7a8edag,
[Es(bs),111] 56.40+28¢s T Eaar
[A1Er(as),+] 134455 — 11263 +8464— 3574+ [Fs (bs),3] ot G L R VL T
1E7(a2), 38 —112g3 64—3574 8(bs5), 23807090832, 82, 515930
[A1E7(a2),—] D4(4,13)+D4(1,24) same
758
Q' 2727 P11P21
[A2Eg,1] 44839+56047+11263+70042+30044+8464+3574+1120 3‘1)34)%4’3;9(}12(}15‘1’18‘}30
[AQEG,G] E6[9](1,6) same
[A2 Eg,07] E¢[0%](1,6) same
u= Eg (aﬁ), dlmBu = 8, Au = Sg
dafalag

[Es (ae),3] 140032+140037+40043+56746+11263+[E8 (0,5),+] W

8585
[Es(as),21] 157534456047 +[Es (bs),21] —sﬂf;ffi
2 4 5 8 10
83805
[Es(ag),111] 35035 +5649+16055+2868 T TS E ELCY N
27475 8 10
[Ds(5,11),4]  Ind=8 ([18,-]4[17,1]+[1%,11]) = 105034+ B a8 el e, 9g® ;o
SASE Il Ndpg ’ ’ ’ - 34 208020287 14®20
[Ds(5,11),—] D4(8,9)"+D4(4,13)+D4(2,16)""+D4(1,24) same
8458
"2 P9 Po7
[As,1] 17536+448394700424400434112634-846441120 34)%‘}%‘?%12‘?15@24@30
[As,8] Es[6](1,3)" +Es[6](1,6) same
[A43,6°] Eg[6%](1,3)"" +Es[6°](1,6) same

u=Dr(a;), dimB,=9, A, =53
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9980, 32
[A1 Bz (as),++] 324031 +134435+40043+56047+844+[Es (bs),3] Mgggq,g@gi,gm
[A1E'7(a3),——|—] 157534+35038+56746+[A1E'7(a1),1]—[A1E7,1] same
[A1E'7(a3),—|——] D4(1,12), same
[A1E7(a3),—+] D4(8,9)"+D4(2,16)" same
u = Eg(bg), dlIIlBu = 10, Au = S3
q'%s8a3a,
[Es(bs),3] 224028+324031+1344353+44839+70042+56047+8464+[Fs(as),3] W‘?ﬁﬁ—w
2346 8
1058535
Es(bs),21 175 S W -t A
[Es (bs),21] 36 se8elaialiala,
Vafeie,
[Es(bes),111] 84031+35038+30044+16055 W
1038025,
[Ds(7,9),+] Ind 28 ([1°,1+[17, 1J-+{1%,11]-+{17,111]) = 140029+ EeTeTaTe 015
[Ds(7,9),—1] D4 (4,7)"+D4(8,9)" +D4(1,12)" +D4(2,16)" same
q'0080;0, @5
[A2Es (a1),1] 224028+ 30201020502, 21390
[A2Eg(a1),6] Es[0](1,3)" same
[A2E¢(a1),6%] Es[6%](1,3)" same
u = A1E6(a1), dlmBu = 11, Asu = Z4
[A A 1] 140090 + - - - ' 8D, By D6
1437, 29 2383252 314D 1530
[A1A7,—1] D4(4,7)" + D4(8,9)" + D4(9,10) same
+D4(2,16)" + Dy(1,24)
[A1 A7, +i] E;[+£](-) same
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u=Dr(az), dimBy =12, Ay =Z4

12 48
q P72
[A3D5, 1] 84026 + o 2@3@%@%;@15;4)30
[A3Ds,—1] D4(9,10) + D4(2,16)" 4+ D4(1,24) same
[A3Ds, £i] E,[££](-) same
u=DsA;, dimB, =13, A, =S3
13 58 52
qg e]d
[A1E7(as), ++] 453653 + - - - 3F5T2TDIT, 1y
[A1E7(a4), —+] 140029 + 40043 same
[A1E7(a4),+—] Da(4,7)" 4+ Dyg(1,12)" same
/
[A1E7(a4), ——] D4(2,16) same
u = Eg(a7), dlmBu = 16, Au = S5
[Es(ar),5] 448016+ it
s(av), 16+ T2008%0%040203
120@3@%@3@%@%
1638
[Es(ar),41] 567018 +:-- W
1648
[Es(az),32] 453615 +560051 +280025+210028+-- m;‘?g?ﬁﬁ
16 48
q " %7
[Es(a7),311] 168052+240023+210028+2-129633+--- 204’3%“1"?‘%
1648
q °®
[Es(a7),221] 140020+280025+226830+100839+21052 W
1608
[Es(a7),2111] 7032+564g W
16458
[Es (ar),1°] B{'N1] SosfeiateTaT
8 120<I>g<1>3<1>4<1>§<1>6
ALE 3 7168 aoe]
[A1E7(as),3] 17t 128807030222 &,
41658
[A1E7(as5),21] 560019+ 6¢g¢§¢g¢§;§0¢12
41658
[A1E7(a5),111]  240023+44925+129635+157534++- 1z¢g¢g¢g¢§¢§0«>n
' " q16¢§
[A1E7(as),—3] D4(12,4)+D4(8,9)'+D4(8,9) Tele1a3e7 o1
+D4(9,10)+D4(4,13)+D4(1,24)
" ‘116<I>§
[A1E7(a5),—21] D4(6,6) +D4(4,13) GQSQg’@gng’%oq’l?
AL B 111 Bs[-1 aloe]
[A1E7(as),—111] s[—1] 123832823232 31,
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u = Eg(ar) continued

[Ds(1357),1] 420018+ 1608
838040132 a2 _
2746 10 12
[Ds(1357),¢"] 268820+ Tk
838043492 32
24 6 10 12
[Dg(1357),¢'] 16824+... 8 1608
558573102 37
Da(1l 27476 10 12
[Dg(1357),r] D4(16,5)+D4(8,9)'+D4(8,9)"'+2D4(9,10) s S
1080400 2
+D4(4,13)+D4(9,6)" +D4(2,16)" +D4(1,24) 3%4%6¥10%12
[Ds (1357),¢] Eg[1] __ e
sefejege] o,
[A2Eg(as),1] 315018+ ¢'028
[A2Eg(as),—1] 113404 652G RT, P15P18
A same
[A2 B (az).6] B [0)(2,1)+Fo[6](1,6)
[A2E6(a3) 2] ] E 2 2 same
' s[6°1(2,1)+Es[6%](1,6)
[A2Es(as),—0)] Es[6] same
[A2E6(a3),—02] E'3[62] same
same
[A1A245,1] 201610+ q1008
A _ 623203 D 1o 1gPos®
[[XAZA,:’ 6}] D4(6,6)'+Da (8,9) +Da(8,9)" +Da(9,10)+Da (1,24) “ame
1 Az As, Fe[0](2,2)+Es[6](1,6 ’
[A1A2A5,92] Eg [92](2’2)+E2E9]2(](1 ()3) same
[A1 A5 A5,—6] s [ 6] ) same
[A1A2A5,—67) B[ 67] same
8 same
[45 D5 (37),1] 13449+ __ %}
1949232 o
[AsDs (37), 1] D4(9,6)"+D4(4,8)+D4(9,10)+D4(2,16)' 478 7122002
[A3 D5 7:|:Z] ES [:l:'b] ’ same
Ssame
[A4A4,1] 42090+--- q164>21;
[AsA4,¢7] Es[¢7] BPEP 0715720 %0
8 same
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(13.2) Here discuss the square integrable representations of the Hecke algebras
arising in Eg from non-Iwahori parahoric subgroups. according to their weight dia-
grams, as discussed in §9. We omit the restrictions to non-hyperspecial parahorics,
which are easy to find, as in the examples in (9.7).

HECKE ALGEBRA H(Eg/E;) : 1—15

Here G = PSLy(C) and we identify T = C* via the positive root «. There
are two square integrable H(Eg/FE7)-modules, both one dimensional, with weight
diagrams as follows.

[A1A7, ﬂ:i] : q_s
[A3D5, :|:Z] : — q_7

HECKE ALGEBRA H(Es/Fgs) : 1—1 =9

Here G = G2(C), with simple roots a, s, and «y is short. Use (a1, as) to
identify T = (C*)2. The weight diagrams of square integrable representations
of H(P,o) and corresponding Langlands parameters of Eg are as follows (same
diagrams with 6?).

[A2F6,0] 1 (¢7%,q7°)
[As,0] = (0,47°)(6%q7°)
[A2Es(a1),0]: (¢,47°)
[A2Fo(as), 0] (¢*,a7%) (¢~ ¢*) " (a ".a7®)
[A14545,0]: (—g% —q %) (=a~% =¢*) (¢~ —¢"®)

Arguing as in (12.2), one checks that these exhaust all square-integrable modules
over H(ES/E(;)

HECKE ALGEBRA H(Fs/D4): 1—1—1 = 4—4

Here G = F4(C), with simple roots a1, s, as, as, and aq,as are short. Use
(Eays Cans Casy €ay) to identify T = (CX)%. We have ey, (T) = €;¢7% with |¢;] = 1,
and t; € R. If all ¢, = 1, then we write 7 = [tq,ta,t3,t4]. If some ¢; = —1, then
write £;. A parameter c in the weight diagram indicates that the module is obtained
by deformation from the parameter ¢ = 1 to ¢ = 4, remaining L? all the while.
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[A1E7,—]: [1,1,¢,]
[Ds,—1]: [=1,1,¢,c-[1,0,c,c>1,0,c,c]

[A1E7(a1),—]: [2,—1,¢ c[-2,1,c,c]

[Dg(3,13),—]: [1,—1,¢, c]i[—i,(_),c, c]i[—l,O,c, c]

[A1E7(a2), -] : [~ l,e,d el —c e, [le—1,2—¢,c "1, 1,¢ — 2, —2] “[1,1,¢,2]
[A1E7(as), +=]: [=1,—1,¢ ¢
[A1E7(a4), +-]

[—4,-1,4,4] " [4,-4—1,4,4] 2 [-1,4+ 1, -4 — 2,41 >[-1,-1,4+ 2,21 [-1,-1,4,2]

4
[A1E7(as),—]: [1,1,—c,2¢] —[1,1,c,—2c]

[A1A2A5,—1]: Deformation of [A2 A2, 1], graph omitted, see (9.8)

[A1E7(a3),—+] :
(The upper right component has multiplicity two, the others have multiplicity one.)

[—1,—1,4,4] [1,-2,4,4 = [-1,2,0,4]

2
[-7,1,4,4] —+ [7,-6,4,4 = [1,6,-8,4] — [1,-2,8,—-4] — [-1,2,4,—4]

[A1E7(as),—21] :
L,1,c—2—c> [Le—1,2-¢-2 > [el-cec—2] -~ [—c,1,¢,—2]
‘4 ‘4 4
Le—1,-¢2 > [el-ce—22 ~ [-¢lec—272]
‘3 3
[c,—1,2 — ¢, ] ES [—c,c— 1,2 —¢,C]
2
[-1,1—¢,c, (]

[A1E7(a5), —3]: (Weights in the first row have multiplicity four, those in the second have
multiplicity two, and those in the remaining component have multiplicity one.)

4 3 2 1
[0,1,0,e—2] — [0,1,e—2,2—¢] — [0,e—1,2—¢,0] — [¢—1,1—¢,¢,0] — [1—¢,0,¢,0]
3 4 1 2
[1717_276] - [17_17276_2] - [17_17072_6] [C—l,l,—C,C] - [1_6707_670] - [17_67676]

2 3 4
[-1,1—¢,c,c] — [—c,e—1,2—c,c] — [—¢,1,—2,2] — [—¢,1,¢,—2]

1 1 1
3
[e,—1,2—¢,c] — [¢,1—¢,e—2,2] — [¢,1—¢,c,—2]
2 2

4
[1,e—1,—¢,2] — [1,e—1,2—¢,—2]

[17170_27_6]
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[A3D5,—].] : [1)176’ -3 - ]

(deformation of [A1Cs,+]) 4
[1,1,-3,3+ ]
3
[1,_27376]
2
[-1,2,-1,¢ — [1,1,-1,¢ [1,1,-1,c]
3 ‘3 ‘3
[-1,1,1,c=1] = [1,0,1,c—1] = [1,0,1,c—1]
4 ‘4 ‘4
[-1,1,¢,1 =] 1 [1,0,¢,1—¢] 2 [1,0,¢,1—¢]
[Ds(5,11),—]:  [-3,0,4,4] = [-3,0,4,4]
1 1
[3,-3,4,4] [3,—3,4,4]
2 2
[0,3,-2,4] + [0,3,-2,4]
3 3
0,1,2,2] — 1[0,1,2,2] = [1,-1,4,2]
4 4 ‘4
[0,1,4,—2] + [0,1,4,-2] = [1,-1,6,-2]
‘3
[-6,1,4,4] + [6,-5,4,4 = [1,5,—6,4]
[Ds(7,9),~]:  [-5,0,4,4] = [-5,0,4,4]
1 1
[57_57474] [57_57474]
2 2
[0,5,—6,4] — [0,5,—6,4]
3 3
_ _ _ 2 _
[0,-1,6,—2] — [0,-1,6,—2] — [-1,1,4,—2]
4 4 ‘4

0,-1,4,2] —+ [0,-1,4,2] = [-1,1,2,2]

[_§7_]—>4>4] i [ia_g747 4] i [_1737_274]

. _38c+1

[A1A7,—1]: (Deformation of [A; A3,1]. Here, 7 = (¢~ 1,ig" 2 ,q~%q¢) € T, and the other
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vertices 7% are labelled by w. There is only one component.)

T
2
23 232
234 2342
21 232432 23243
321 2134 2324321 232431 23241 2321
23243212 2324312
21342 213421
213424 2134214
2134243 21342143 213421432
_ _ 2 R I _
[A3D5(377)7_1]: [_170747_2] - [_170a4a_2] - [17_1747_2]
4 4 4
_ 2 _ 3 _ 2 _ - _ _ 1 _ -
[17_27274] - [_1727_214] - [_1707272] - [_1707272] - [17_17272]
‘3 3 3
_ _ 2 _ _ 3 _ _ 2 _ 1 _ _
[1707_276] - [1707_276] - [17_27274‘] - [_1727_274] - [1717_274]
1 ‘1 2
_ _ _ _ _ __. 3 _ _ 2 _ _ 1 __
[170747 6] - [170747_6] [_1717_276] - [_17_17274] - [_2717074] [27_17074]
‘1 3 3
[_171747_6] [_2111671] l [27_17071]
4 4
_ 1 _
[_271747_4] - [27_1747_4]
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[Dg(1357),r] (There are four components, the upper right has weights of multiplicity two, the

other three components have multiplicity one.)

[_271747_4]
1
[27_1747_4]
2
[1,1,2,—4]
3
[1737_27_2]
2
[‘17_3747_2]
1
[_1v1v4v_2]

1 _ 2
- [37_37470] -

[—3,,4,0]
2
[=3,0,4,0] — [3,—3,4,0] —
[1,3,-4,2]
2

_ 3 _ _ 2
[4a_37272] - [47_17_274] -

1 1

[6737_270]
1
[6737_270]
[3717_454]

[671727_2]
1
[671727_2]
2
[11_1747_2]
[-3,3,—4,4]
2

_ 3 _ 2 _ 1 _ -
[_4717272] - [_4737_274] - [_17_37474] - [17_47474]

_ 3
[1717_274] -
1
[_iv27_274] -
2
[17_27274]
3
[17()747_6] - [1767_276]
‘2 2
4 _ 3
[170747_6] - [1707_276] -
1 1

_ 4 _ 3
[_171747_6] - [_1717_276] -

[17_17272]
1
[_1767272]
2
[17()7272]
3
[_17Q7_274]
2
[17_57274]
1
[_17_17274]

[17_1747_2]
1
[_176747_2]
2
[17()747_2]

- - 2 _ 1 _
[17_41414] - [_3747_474] - [3717_474]
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[6717072]
1
[0717072]
2
[17_1747_2]
3
[1717_274]
2
[2,~1,0,4]
1
[_2717074]



14. Leading K-types

The above calculations lead us to observe a relation between Langlands param-
eters and Lusztig’s families of unipotent representations.

(14.1) First, some remarks on truncated induction [C,11.2]. Let W be a finite Cox-
eter group, and let R denote its reflection representation. For any finite dimensional
W module y, let b(x) be the minimum degree in which some constituent of x ap-
pears in the symmetric algebra S*R. Let W be the set of irreducible representations
of W, let (, ),, denote multiplicities, and define

0= 3 @x0w.

peEW
b()=b(x)

Let W, be a subgroup of W generated by reflections. For simplicity, since it is the

case in our applications, assume that W, has the same rank as W. Then R is also
the reflection representation of Wy. Let ¢ be a representation of W,. Then

b(Indws @) = b(p). (14.1a)

Suppose ¢ = @y ® ¢/, where b = b(p) < b(¢). If ¢ € W has b(¢)) = b, then
(¢, 1)y, = 0. It follows that

j(Indly, ) = j(d, o) (14.1b)

If we suppose in addition that ¢y is irreducible and has multiplicity one in S°R, then
the right side of (14.1b) is irreducible for W, and has multiplicity one in Ind%s ©.

(14.2) Now suppose V is a square-integrable unipotent representation of our p-adic

group G, containing the cuspidal unipotent pair (P, o). Let W = W X be the affine
Weyl group underlying #(G/P), as in (5.2). Then we define

J(V) = 5([V7]g=1),

where [V7],=1 is viewed as a W-module by restricting from W. If P < K, then
the constituents of J(V) correspond to unipotent representations of K contained
in Indg o, and we call J(V), or its corresponding K-module, the “leading K-type”
of V.

From our tables, we observe the following

Proposition. If G is exceptional with V' unipotent square integrable, then the lead-
ing K -type is irreducible with multiplicity one in V. If VI # 0, so that W is the
Weyl group of G, then

J(V) = ](6 ® Qos,u,p)a

where V = Vg , and @5 4, s the Springer representation of W, on HtP(Bu)P.

(14.3) We must point out that Proposition (14.2) does not always hold for classical
groups. In the Iwahori-spherical case, it can fail only when Wy has a direct factor
of type Dy, n > 4, and then it does not always fail. Rather than try to sort this
out here, we merely observe that Proposition (14.2) is true for those representations
admitting a Whittaker model. In fact, we have the

48



Proposition. Suppose G is split adjoint, and V is a unipotent, square-integrable,
generic irreducible representation of G. Then V is Iwahori spherical, its leading
K -type is irreducible with multiplicity one in V', and

J(V) = j(ps,u1), (14.3a)

where u' belongs to the orbit dual to that of a unipotent u € G, such that su
1s elliptic in G. Moreover, V is the unique constituent of Indg(r) admitting a
Whittaker model, where T is constructed from x = su as in (7.2). In particular,
the conjugacy class of  in G is canonically determined by J(V'). Finally, we have
b[J(V)] = dim BY'

Proof. The first assertion is [R3]. Equation (14.3a) and the last assertion follow
from Lusztig’s theorem (8.1) along with [BM, 10.4 |, and the fact that an elliptic
u € G is special, and is thus subject to the duality involution on special unipotent

orbits in és, which the Springer correspondence translates to tensoring by the sign
character. The assertion about Ind$(7) is [R6,10.1]. O

The next section is a partial generalization of this to the other representations
occuring in Proposition (14.2).

(14.4) We now compare the leading K-types in the p-adic L-packets with Lusztig’s
classification of unipotent representations of the finite group K/K; = G(F;). The
latter are partitioned into families F,,, one family for each special unipotent class
[u] in G. According to [L3, (13.1)], there is a canonical quotient I, of A,, with the
following property: Let M, be the set of pairs (s, ¢), taken up to conjugacy in I,
where s € I, and p is a representation of the centralizer I'; of s in I',. Then we
have a family

Fu={Xs,: (5,0 € My},
of unipotent representations of G(Fy), such that the multiplicity of x¥ , in the

“almost characters” R, ¢ € W, (cf. [C, (12.3)]) is given by a natural pairing on the
set M, [L3, Thm 4.23]. Lusztig’s explicit calculations of the x§ , are summarized
in [C, §13].

Let v : A, — I, be the canonical quotient mapping. Suppose x = su is elliptic
in G. Then A, = M?#/Z (notation as in §7) and A, = M/ZM,, so we have a
natural map f : A, — A, whose image is contained in the centralizer A? of f(s)
in A,. Let § =v(f(s)), let 75 : Ay — I'J be the composition vs = yo f, and let
s : (L) — A, be the transposed map on irreducible representations. From our
tables, we observe the

Proposition. Assume G is exceptional and A, is not cyclic of order four. Then
the correspondence (x, p) — Vg, has the property

I (Vsurs0) = Xs,0 (14.42)

for all p € (T'5)™
Property (14.4a) fails in all three instances of A, ~ Z4, which occur for G = Ex
with u = A4A,, G = Eg with u = A1F¢(a1), and G = Eg with u = D7(a3). These
are precisely the cases where GG contains a parahoric P of type F7 and the packet
IT, has a representation containing a pair (P, E7[+£]).
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