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ABsTRACT. The space of elliptic virtual representations of a p-adic group is endowed
with a natural inner product EP( , ), defined analytically by Kazhdan and homolog-
ically by Schneider-Stuhler. Arthur has computed EP in terms of analytic R-groups.
For Iwahori spherical representations, we show that EP can also be expressed in
terms of a corresponding inner product on space of elliptic virtual representations
of Weyl groups. This leads to an explicit description of both elliptic representation
theories, in terms of the Kazhdan-Lusztig and Springer correspondences.

1. Introduction

Let G be a connected split adjoint group over a non-archimedean local field F
of arbitrary characteristic. Schneider and Stuhler have defined a pairing EP(V, V")
between admissible representations of G(F) by the formula

EP(V,V') =) (-1)"dimExt"(V, V"),
n>0

where Ext is taken in the category of smooth representations of G(F'), and they
prove that EP(V,V’) is the trace on V' of a certain function fy on G(F). They
also show, assuming the characteristic of F' is zero, that EP(V,V’) equals the
elliptic inner product of the characters of V, V'. (See [K] for background on elliptic
representation theory.)

On the other hand, Arthur [A] has calculated the elliptic inner product in terms
of elliptic characters of the analytic R-group R,, (“analytic” because it is defined
by zeros of Plancherel measures). Arthur then suggests that his formula “... might
also play a role in the general character theory of Weyl groups”. One purpose of
this paper is to confirm this prediction: We show that the Iwahori-spherical elliptic
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representation theory of G(F') is equivalent to the elliptic representation theory of
the Weyl groups of endoscopic groups of G.
In addition, this paper contains the following.

1. We describe explicitly the elliptic virtual representations of a Weyl group W, in
terms of Springer representations, using a Weyl group analogue of the pairing EP.

2. We describe explicitly the elliptic Iwahori-spherical virtual representations of
G(F), in terms of Kazhdan-Lusztig parameters. This is in the same spirit as the
classification of tempered and discrete series representations in [KL].

3. For Iwahori spherical representations, Arthur’s formula now holds in any char-
acteristic, provided we use the homological definition of E P, instead of the elliptic
inner product of characters.

4. In order to apply Arthur’s formula to the Kazhdan-Lusztig correspondence,
we describe the analytic R-group R,,, and the cocycle 7,, (arising in Harish-
Chandra’s theory of intertwining operators) in terms of a geometric R-group and
cocycle attached to the Kazhdan-Lusztig parameter.

To give a more precise exposition, we begin with Weyl groups. Let G be a
simply-connected Lie group with Weyl group W. Then W has an elliptic repre-
sentation theory, in which proper Levi subgroups are stabilizers of nonzero vectors
in the reflection representation E of W. Let R(W) be the span of the irreducible
representations of W, and let R(W) be the quotient of R(W) by the span of all
induced representations from proper Levi subgroups. We define an analogue of the
pairing EP on R(W) as follows:

ew (X, X') = »_(—1)" dimHomw (A"E & x, X')-
n>0

This pairing is initially defined on R(W), but its radical is exactly the kernel of the
map R(W) — R(W), hence ey is a non-degenerate pairing on R(W).

For x € G, let A, be the component group of the centralizer of x in the adjoint
group of G. The groups A, also have “Levi” subgroups, hence their own elliptic
representation theories, hence pairings e, analogous to ey .

Let Ug be the set of unipotent elements in &, modulo conjugacy. Combining
results of Borho-MacPherson, Lusztig and Springer, we have a decomposition

RW) = P Ru(W),

uEUg

together with an isomorphism
Hy, :Ro(Ay) — Ry (W)

where H,(p) is the Springer representation of W on Homy  (p, H(B")), B* denotes
the fixed points of u in the flag manifold B of G’, H(B") is the cohomology of B,
with grading ignored, and R,(A,) is the span of the irreducible representations of
A, which appear in the natural action of A, on H(B"). The representations H, (p)
have been calculated explicitly in [BS], [Shol] for W of exceptional type, but are
only given by a recursive algorithm in classical cases. See [Sho2] and references
therein.



We have
RW) = ) Ru(W), (1a)
uEUg
where R, (W) is the image of R, (W) in R(W).

Say that a unipotent element v in a reductive group H is quasi-distinguished in H
if there is a semisimple element ¢ € H commuting with u such that tu centralizes no
nontrivial torus in H. This forces H to be semisimple. Note that u is distinguished,
in the usual sense, if it is quasi-distinguished with ¢ = 1.

Proposition.

(1) The sum in (1a) is orthogonal with respect to the pairing ew, and is in
particular a direct sum.

(2) The Springer map H, induces a bijective isometry Ro(Ay) — Ry (W).

(3) The space R, (W) is nonzero if and only if u is quasi-distinguished in G.

(4) If u is in fact distinguished in G’, then H, maps the irreducible representa-
tions in Ro(Ay) to an ew -orthonormal basis of R, (W).

Corollary. Assume that u is a non-reqular unipotent element in G. Then

Z(—l)” dim Homy, (A"E, H,(p)) = 0

Jor every p € Ro(Ay).

The above results are deduced from corresponding results for p-adic groups.
Let Z be an Iwahori subgroup of G(F'). Let Riemp(G,Z) be the C-vector space
spanned by the irreducible tempered Z-spherical representations of G(F'). Let T
be the set of conjugacy classes of elements z € G whose semisimple part lies in a
compact subgroup of G. The Kazhdan-Lusztig classification may be interpreted as
a decomposition

Riemp(G,T) = @D Ra(G,T),
z€Ta

together with an isomorphism
Vw : RO(Am) — Rz(GaI)a

where R, (A;) is the span of the representations of A, appearing in the cohomology
H(B").

Let R(G,T) be the quotient of Riemp (G, Z) by the subspace spanned by induced
representations from proper Levi subgroups, and let R:(G,Z) be the image of
R:(G,T) in R(G,T). Tt is easy to see that

R(G,I) = P R.(G,T),

z€Ta

and that the sum is orthogonal with respect to the pairing EP.
Let = € Tg have Jordan decomposition x = su. Let G5 be the centralizer of s,
and let W, be the Weyl group of G;.
3



Main Theorem. We have a diagram of vector space isomorphisms, commuting
up to the sign (—1)2kG

Ro(As) —Vs Ro(G,T)

| I

which preserve the elliptic pairings EP on R4 (G,I), ew, on R,(W,), and e, on
Ro(Az). Moreover, these spaces are nonzero if and only if u is quasi-distinguished
mn és.

The map V,, is induced by the Kazhdan-Lusztig correspondence, the map H, is
induced by the Springer correspondence, and r, is a kind of restriction map.

The fact that all these maps are well-defined on the elliptic spaces R( ), and
commute up to sign, follows from results of Lusztig and Kazhdan-Lusztig, together
with analysis of the connected components of certain fixed point varieties in B,
given in §10. The fact that V, is an isometry follows from Arthur’s formula and
the comparison of analytic and geometric R-groups, along with their twisted group
algebras, see §9. In §5, we prove that r, is an isometry for s = 1 by a direct
calculation of the trace of Schneider-Stuhler’s function fy,. This involves a reduction
to Hecke algebras, then to affine Weyl groups, in the spirit of [R1]. Then for arbitary
s, where our calculation fails, we reduce to s = 1 by categorical equivalences, using
[BaM], see §7.

The first part of the paper, sections 2 and 3, contains our results on Weyl groups,
and can be read by those who are not familiar with p-adic groups. However, the
proofs of several results here require the extra structure contained in the p-adic
theory.

This paper can be viewed as evidence for the idea, based on Arthur’s formula,
that the conjectural Langlands parametrization of tempered L-packets should in-
duce an isometry between elliptic representation spaces. Here we have tested the
two simplest cases: Weyl groups and Iwahori-spherical representations of p-adic
groups. The same pattern of argument should work whenever we can describe rep-
resentations of G(F') using Hecke algebra isomorphisms. For example, much of this
paper could have been written in the more natural context of unipotent represen-
tations [L1]. At the moment, however, there are several technical obstacles that
make our results in the unipotent case less complete than the Iwahori-spherical case
considered here. Nevertheless, the comparison of analytic and geometric R-groups
in §8§8-10 is presented in a wider context, assuming when necessary a Langlands cor-
respondence with certain naturality properties. These properties are either known,
or are verified here, for Iwahori spherical representations.

I give warm thanks to Anne-Marie Aubert and the referee for their careful reading
of an earlier version of this paper. Their remarks have led to significant clarification.

General Notation: When a group I' acts on a set X, we let XT be the points in X

fixed by all of I', and let X7 be the points fixed by a single element v € I". The set

of irreducible representations of I', up to equivalence, is denoted Irr(T'), and R(T")

is the complex span of Irr(I'). The identity component of a Lie group H is denoted
4



H?, and the centralizer of x € H, resp. S C H is denoted H, resp. Hg. The Lie
algebra of H is denoted by the corresponding gothic bh.

2. Elliptic representations of finite groups

2.1 Let T" be a finite group, and let FE be a real representation of I'. We allow
E = 0. An element v € I' is elliptic if v has no nonzero fixed vectors in FE. Let
I'c;; be the set of elliptic elements in I'. We will define an “elliptic representation
theory” for the pair (I, E') which is dual to the set of conjugacy classes contained
in I'gy;. When E = 0, we get the usual relation between characters and conjugacy
classes. All constructions will depend on F, but we suppress it from the notation.

Let £ be the set of subgroups A C T' for which E2 # 0. For each A € £ we
have the induction map Indy : R(A) — R(T'), hence a subspace

Rina(l) = ) Indx[R(A)] € R(T).
AeLl

We set R(T') := R(T)/Rina(T).
Let A™E be the n*" exterior power of E. The following lemma is elementary.

(2.1.1)Lemma. Let AE =3 ,(—1)"A"E € R(I'). Then for v €T, we have
tr(v, AE) = det(l —v)g > 0,

with equality if and only if EY # 0. In particular, ey is the support of the character
of AE.

2.2 We define a pairing

er(,x) =Y _(-1)"dimHomr(A"E®@ x,x'),  x,x € R(I).
n>0

It follows from (2.1.1) that Ring(I") is contained in the radical of ép.

(2.2.1)Definition. The pairing er on R(T) induced by ér is called the elliptic
pairing on I'.

Let C¢y; be the set of conjugacy classes in I'¢j;, and let Sej; be the set of C-valued
functions on Cyy;, identified with class functions on I' which vanish off I'g;;. We
have a nondegenerate pairing on S¢;; defined by

(f,9)en=>_ flc)g(c) (CAE), f:9 € Seu,

o z(c)

where z(c) is the order of the centralizer in I" of an element in c.
Thf, characters of representations in Ri,q(I") vanish on Iy, so we have a map
rst : R(I') — Sy given by restriction of characters.
5



(2.2.2)Proposition. The map rst : R(I') — Sey is a bijective isometry. Hence
the radical of ér is exactly Rina('), the elliptic pairing er is nondegenerate on
R(T), and the dimension of R(I') equals the number of conjugacy classes in Tey.

Proof. Tt is clear that rst is a surjective isometry, and that its kernel is the radical
of ér. It suffices to prove that dim R(I') = dim S;;. We identify elements of R(T)
with their characters. If f € R(I"), then

x = tr(f, x) ‘F‘Zf ) tr (v, x)

y€T

is a linear functional on R(I'). Thus we have an isomorphism tr : R(I') —
R(T)*, under which R(T)* corresponds to the functions f € R(T) such that
tr(f, Ind£ (o)) = 0 for for each A € £, and ¢ € R(A). By Frobenius reciprocity,
this is equivalent to f vanishing on every A € L. In turn, this is equivalent to f
being in Sg;. Thus, R(I)* ~ Sei. O

3. Elliptic representation theory of Weyl groups

Let G be a semisimple complex Lie group, and choose a maximal torus T c G.
Let W denote the Weyl group of T, and let E be the real span of the coroots of T'.
Thus E affords the reflection representation of W. In this section we describe the
elliptic representation theory of the pair (W, E). More precisely, we want to cal-
culate the elliptic pairing ey on the space R(W) of elliptic virtual representations
of W, as defined in §2. This will be done by reducing to the elliptic representation
theory of the small groups A,, via Springer representations.

3.1 If L is a Levi subgroup of G, then some conjugate of L contains T, and the
Weyl group of this conjugate is a subgroup Wy C W, well-defined up to conjugacy
in W. The non-elliptic elements of W are those belonging to some Wiy, for La
proper Levi subgroup of G.

The number of elliptic elements in W is the product of the exponents of W [S].
They are partitioned into conjugacy classes as follows [C].

If W is the symmetric group S,,, then the n-cycles form the unique elliptic class.
If W has type B, = C,, then each elliptic class is represented by a product of
Coxeter elements in By, X --- x By, C By, one class for each partition A = (A; >
Ay > -+ > X\ > 0) of n. This class lies in D,, exactly when ¢ is even, and then
forms a single elliptic class in D,,. In the exceptional cases, the number of elliptic
classes is as follows:

G2: 3, F4: 9, EG: 5, E7: 12, Egl 30.

3.2 For any x € G, we have a finite group
Ay =Gy /Z5GS,

where Z4 is the center of G. The essential case is when z = u is unipotent. Let

1 1). Let M denote

¢ : SLy(C) — G be a homomorphism such that u = ¢ ( 0 1

6



the centralizer of the image of ¢ in G’, let SC B v be a maximal torus contained
in a Borel subgroup of M°, and let N (S' , Barr) be the subgroup of M normalizing
both § and Bys. The inclusions N (S, By) € M C Gy, induce isomorphisms
N(S,Bm)/ZaS — M/ZgM® — A,. (3.2a)
Let 5o denote the real span of the coroots of S. Via (3.2a), we have an action of
Ay on s, and we consider the elliptic representation theory of the pair (A, sp).

Let L, be the set of proper Levi subgroups of G containing u. The centralizer
of S in G is a minimal Levi subgroup il € L,. All minimal Levi subgroups in £,
are conjugate under G2.

For any L € L, let AL — L u/Z; AIAf’ Since L is the centralizer of a torus in
G°, and connectedness is preserved by taking centralizers of tori, it follows that
L° Ln G° so the inclusion L < G induces an injection AL < A, by which we
view AL as a subgroup of A,. In particular, A, has the canonical normal subgroup
AL Note that ALt is the kernel of the action of A, on s, so the group A, /AL
acts faithfully on sg.

(3.2.1)Lemma. The elliptic elements of A, are those lying outside Uy, A

Proof. Suppose a € AL for some LecL,. Conjugating by G’Z if necessary, we may
assume ¢(SLy(C)) C L. Let ' be the Lie algebra of the center of L. Conjugating
by M°, we may assume s’ C s. Then a fixes s, pointwise, so a is not elliptic.
Conversely, if 0 # h € s§, the centralizer of h is a proper Levi subgroup Le é, and
a € Aﬁ. O
(3.2.2)Lemma. The following are equivalent:

(1) A, is not the union of the AL for L € L,.

(2) There is a semisimple element t € G such that tu is not contained in any

proper Levi subgroup of G.

If these conditions hold, then m = s.

Proof. Suppose (2) fails. Let a € A,, and choose a semisimple representative
t € M, of a. Then tu € L for some L € L. Thus t € L,, so a € AL, so (1) fails.
The converse follows from (3.2.1). That m = s is proved in [R1, (7.1)]. O

We say that u is quasi-distinguished in G if either of the conditions in (3.2.2)
holds. Combining (3.2.1,2) and (2.2.2), we get

(3.2.3)Corollary. R(A,) # 0 if and only if u is quasi-distinguished in G.

3.3 Take a unipotent u € G, and L € L., and let B and By, denote the flag varieties
of G and L respectively. Let Ro(Ay) be the span of the irreducible representations p
of A, which appear in the natural action of A, on the cohomology H(B*) (grading
ignored) of the fixed point variety B*, and likewise define R,(AL) with respect to
BY. Springer has constructed a natural action of W on H(B"), commuting with
Ay. We refer to the version of this construction given in [BM]. Thus, for each
irreducible representation in p € R,(A,) we have a W-module

H,(p) := Homa, (p, H(B")).

These representations are generally reducible, since W preserves the grading on
H(B"). However, we have the following paraphrased result of Borho and MacPher-
son [BM].
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(3.3.1)Lemma. The representations Hy(p), for u € Ug, p € Trr(Ay) N Ro(Aq),
form a basis of R(W).

Proof. Choose representatives ui, us, ..., u, for the conjugacy classes of unipotent
elements in G, such that if u; is contained in the closure of the class of u; then
i < j. Let d; = dim B*, and for an irreducible representation p € R(Ay,), set

Xui,p = Hg?z (p)

By Springer’s theory, the x,, ,’s are a complete list of the irreducible representations
of W. By [BM, Cor.2|, we have

dimHomW(Xuj,p’ Huz‘<pl)) #0=1<j,
and it follows immediately from [BM,Cor. 1] that
dim Homp (XUi,P’ Hui(pl)) =1

if p = p’ and is zero otherwise. This proves the lemma. O

An analogous fact holds for the Wp-representations

HL(o):= Homy: (o, H(BE)).

Ru(W) :={Hu(p): p€Ro(Au)},  Ru(Wi):={H;(0): o€ Ro(Ay)},

RW)= P Ru(W), R(WL)= P Ru(Wr),

u€EUg u€Ur,

and we have vector space isomorphisms
H, :Ro(A,) — Ry (W), HE R (ALY — R, (W).

(3.3.2)Lemma. The induction map Indﬁz sends Ro(AL) to Ro(Ay)-

Proof. See section 10.

The next result is due to Lusztig. It was stated in [AL], and follows from (5.11.1)
and (6.2a) below.

(3.3.3)Proposition. If L € £, and 0 € Ro(AL) then
H,(Ind4: o) = Indyy, HE (o).

In particular, we have
Indyy, (Ru(W1)) C Ry (W).

3.4 We can now explain how the elliptic theories of W and A, are compatible with
the Springer maps H,. Some of the proofs are deferred to later sections.
Let Ro(Ay) be the image of R,(A,) in R(A,), and let R, (W) be the image of
Ry (W) in R(W).
8



(3.4.1)Proposition. The Springer isomorphism H,, : Ro(Ay) — Ry (W) induces
a vector space isomorphism

H, : Ro(Ay) — Ru(W).

These spaces are nonzero if and only if u is quasi-distinguished in G.
Proof. By (3.3.2) and (3.3.3), we have a commutative diagram

Ro(Ay) — —2y Ra(W)

] ]

©H,;
Brec, Ro(Ay) —= Drec, Ru(Wi),

where 14, Iy are the respective induction maps. It suffices to show that
imlg =R, (Au) N Rind(Au); im Iy = RU(W) N Rind(W).

In both equations, the left side is contained in the right side. The diagram shows
that H, maps im I, isomorphically onto im Iy, so we need only verify the second
equation. We have

Rina(W) = ) Indyy, R(WL)
Lca

=Y ) Indy, Ro(Wr)

f,gé vEUL

= Y > Indy, R (Wp).

wellc Le,
The term for a given u € Ug belongs to the direct summand R, (W), so
Rina(W) MRy (W) = > Indyy, Ru(Wr) = im I,
LeL,
as we wished to show. The last assertion of (3.4.1) now follows from (3.2.3). O
The next two results will be proved in §8§5,9, using p-adic groups.

(_3.4.2)Propgsiti0n. If u and v are non-conjugate unipotent elements in CAT’_, then
Ru(W) and R, (W) are orthogonal with respect to the elliptic pairing ew on R(W).

Proof. See 5.11.

(3.4.3)Proposition. The isomorphism H, of (3.4.1) is an isometry with respect
to the elliptic pairings on Ro(Ay) and R, (W).

Proof. See (5.10.1) and (9.2.3).

Now suppose u is distinguished in G, that is, u centralizes no nontrivial torus
in G. Then Ry (W) = Ry (W). Moreover s, = 0, so the elliptic theory of (A, so)
is the ordinary representation theory of A,, and Ro(A4,) = Ro(A,). Again using
p-adic groups we will prove

9



(3.4.4)Proposition. If u is distinguished in G, then the set

{Hu(p): p€Ro(Au)}
is an orthonormal basis of R, (W), with respect to the elliptic pairing ey .

Proof. See 5.11.

If u, is regular in G, then R, (W) is spanned by the trivial representation of
W. In this case (3.4.2) implies

(3.4.5)Corollary. If u is a nonregular unipotent element in G and p € Ro(Ay),
then

) (~1)" dim Homy (A" E, H,(p)) = 0.

n>0

This was already known in certain cases. For example if G is simply-laced
and u is subregular, then B* is the “Dynkin curve” (c.f. [St]) and H,(1) = C &
E. 1 understand that for G classical and u regular in a Levi subgroup, Lehrer
(unpublished) has calculated the multiplicity of A"E in H(p) for each n,i, using
the theory of hyperplane arrangements.

4. p-adic groups

In this section we review some of the structure of p-adic groups. See [IM], [T] for
additional details.

Let F' be a non-archimedean local field with integers O, units O* and residue
field of cardinality ¢q. Let G be a connected, split, semisimple, algebraic group over
F. In G we choose a maximal torus 7" and Borel subgroup B containing 7T'. Let
> C A C Y denote the corresponding simple roots, roots, and rational characters
of T. We assume the group G considered in section 3 is the Langlands dual of G.

Let

TO)={teT(F): x(t) e O, for all x € Y}.
Let N be the normalizer of 7' in G. Then we have the Weyl group and affine Weyl
group
W =N(F)/T(F), W =NF)/T(O),
and a natural split surjection
W—Ww

whose kernel is the free abelian group X = T(F)/T(0), and W = WX (semidirect
product) acts by affine motions on the vector space E = R® X. Let W° be the
subgroup of 1% generated by affine reflections. Then E has a simplicial structure
given by the hyperplanes corresponding to the reflections in W", and the open
facets are permuted simply transitively by We. For any facet b C E, the stabilizer

Wy of bin W is a finite group.
The groups X, Y are in duality via the pairing

XxY —Z, (Ax)— —valp(x(N))-

Thus we view roots in A as linear functionals on E. There is a unique open facet
co C E which contains 0 in its closure, on which roots in X take positive values.
10



Let S be the set of reflections in W about the hyperplanes bounding ¢y, and let
W° be the subgroup of w generated by S. Then W° is a Coxeter group, and we
is normal in W. Let Q be the stabilizer of ¢y in W. It permutes the elements of S,

and we have . .
W=Qx W°.

Let B denote the building of G(F'). It is a simplicial complex containing F as a
subcomplex, on which G(F') acts via simplicial maps, and every facet in B may be
translated by G(F') into E. Let Gy be the stabilizer in G(F') of a facet b C B. It is
a compact open subgroup of G(F) described by the exact sequence

1 —>Ub —>Gb —)Mb(]Fq) — 1,

where U, is pro-unipotent, and M, is a reductive group (possibly disconnected)
over the residue field F,. Let M, be the identity component of Mj, and let G be
the full pre-image of My (F,) in Gp.

Assume that b is contained in the closure of the facet ¢y described above. Let
) be the stabilizer of b in 2. Then

Gb/Gz >~ Qb.

If b’ is another facet in the closure of cg, then b is G(F')-conjugate to b’ if and only
if b is Q-conjugate to . Thus, the G-orbits of facets in B are in bijection with
Q-orbits on S.
If b = ¢g, then we write
T :=Gg,.

For any facet b contained in the closure of ¢y we have
Gy = IW,T.
This makes sense because T(O) C Z.

5. Calculation of EP for real central character

5.1 Let A(G,Z) be the category of smooth G(F') representations which are gen-
erated by their Z-invariants, and let R(G,Z) be the Grothendieck group of repre-
sentations of finite length in A(G,Z). For each Levi subgroup L in G we have a
natural induction map

16 : R(L,Ir) — R(G,T).

Here Z;, is an Iwahori subgroup of L. Let Rinq(G,Z) be the span of the images of
If as L ranges over Levi subgroups # G, and let

R(G,T) = R(G,T)/Rina(G, T).
Our aim is to calculate the pairing FP defined on R(G,Z) by

EP(V,V') =) (-1)" dimExt(V, V"),
n>0
11



where Ext is taken in A(G,Z). Note this category is a direct summand of the
category of all smooth G(F') representations, so the definition above coincides with
that of [SS]. The space Rinda(G,Z) belongs to the radical of EP [SS, Lemma 18],
and we again write EP for the induced pairing on R(G,T).

5.2 Let dg be the Haar measure on G(F') assigning volume one to Z. Let # be the
convolution algebra of compactly-supported functions on G(F') which are left and
right invariant under Z. It is known [B] that A(G,Z) is equivalent to the category
of unital #-modules, via the functor V — VZ og-invariants.

The algebra H has a linear basis {T}, : w € W}, where T, is the characteristic
function of ZwZ. For p € Q, w € W", we have

Ty = TpyTiy = Tprp1 T (5.2a)

Let Ho be the span of {T}, : w € W}, and let C[T'] be the affine coordinate ring of
the complex torus T = Hom(X, C*). There is an embedding of algebras

j:C[T]—H

(see 5.7 below) by means of which we view C[T] as a subalgebra of H. As vector
spaces we have
H=Ho®C[T].

The center of H is Z = C[T]"W. Thus Spec(Z) = T'/W, and points in T /W are
characters of Z, i.e., central characters of H-modules.

Except in the proof of (5.3.1) below, we will confound points in T with their
images in T/W. Let R(H,7) be the span of the finite-dimensional simple H-
modules with central character 7 € T.

5.3 The real central characters are those belonging to
T(R) := Hom(X,R%,).

We want to show that R(H, 7) is invariant under isogeny when 7 is real.

Suppose we have an isogeny G — G’. This induces an isogeny 7' — T and an
embedding of algebras # < ' such that Ho = H/, and C[T] < C[T"] corresponds
to 7" — T.

The induced map

T /W — T/W (5.3a)
corresponds to restriction of central characters from H’ to . On real points, (5.3a)
is bijective.

Lemma(5.3.1). Let 7’ be a real central character of H', and let T be its restriction
to Z. Then the restriction map

R(H , 7)) — R(H,T)
is bijective, and irreducible H'-modules restrict to irreducible H-modules.

Proof. Let C be the kernel of our isogeny T' —s T. We have corresponding max-
imal ideals m,» C C[T"], m, C C[T]. Our isogeny is an isomorphism on tangent
spaces, SO
my =m, +m2,. (5.3a)
12



Now C acts by multiplication on T” commuting with the W-action, so C' acts on the
branched covering 77/W — T /W. A real central character of H' is an example of
a C-unramified point in 7"/W. We must be a little more precise about our notation

for W-orbits. Let o’ € 77/W be any C-unramified point, and let o € T/W be its
image. Then any 7 € 0 has a unique lift 7’ € o’.
Let U be a simple H'-module with central character o’. Restricting to C[T"'] we

have
v= P v,
T'€o’

where W, is the subspace of ¥ killed by some power of m,,. Restricting further to
C[T], we have
\IJT’ = \117'7

for each 7' € o/, since o’ is C-unramified. Let U1, (resp. ¥1) be the subspace of ¥
killed by m,+ (resp. m;). From (5.3a) it follows that

Ul = vl (5.3b)

for all 7/ € o’. Let ® C ¥ be a nonzero simple H-submodule, and choose 0 # u € ®L.
Then u € U1 =¥, so

& =Hu=Hou=Hu=19,

so U restricts irreducibly to H.
Now let W be a simple H-module with central character 0. Then there is 71 € o
such that ¥ is a submodule of the principal series M = H®(C[T] 71. Then M extends

to H' by lifting 71. As in (5.3b), we have M, = M}, for all 7/ € o/, which implies
m, UL Cm, M} =0.
Hence C[T"]UL = UL, so
H' UL = HoUl = HTL =T,

showing that ¥ is stable under H’. This completes the proof of the lemma. [

Remark. The restriction from H' to H for arbitrary central character is described
in the recent preprints [RR], [R4].

5.4 The functor V — V7 induces an isomorphism
Extg(V, V') = Ext3,(VE, V'F).

Since there are no extensions between H-modules with different central characters,
it follows that we have an E P-orthogonal direct sum

R(G,I)= @ R(G.I,7),
rel /W
13



where R(G,Z, 7) is the span of the irreducible representations V' € R(G,Z) such
that Z acts via the character 7 on VZ. Letting R(G,Z,7) denote the image of
R(G,Z,7) in R(G,T), we have

R(G,I)= @ R(G.I,7),
rel /W

again F P-orthogonal.

5.5 We recall here the formula for EP(V, V') given by Schneider and Stuhler [SS,§4].
For V € A(G,Z) of finite length, define a function fy on G(F') by

o = Yy

= vol(Gp)

where F is a set of representatives of G(F') orbits of facets in the building B,
vol(GYy) is the volume of Gy with respect to dg,

Gb:Gb—>:|:1

is the orientation character of G} acting on b (thus, €,(g) = 1 iff g preserves orien-
tation on b), and Y is the character of Gy on the invariants VU, extended by zero
to all of G(F).

(5.5.1) Theorem [SS, §4, Prop.1]. We have
EP(V, V") =tr(fv, V'),

where the trace is taken with respect to the Haar measure used to define fy .

Over the next few sections, we will calculate tr(fy,V’) in terms of Weyl group
representations. To begin with, it is clear that

tr(fy, V') =Y (=1)%™b dim Homg, (e ® Vb, V), (5.5a)
beF

where we have abbreviated V, = Vs,

We choose F to consist of Q2-orbits of facets b which lie in the closure of ¢g. Then
Uy C T C Gy for each b € F. Let Hp be subalgebra of functions in ‘H supported on
Gy, and let ‘H; be the functions in ‘H;, supported on Gp. Then

Hy = CQ,,@’HE,
with cross multiplication as in (5.2a). The character ¢, : G, — +1 is trivial on

G hence may be viewed as a character of {2, by which we can twist H;-modules
via tensor product. We have then

[er @ B)F ~ e ® ¢F (5.5b)

for any Gp-representation ¢.
14



We may also view H; as an intertwining algebra:
Hp, = Endg, (Ind$* C),

and

Indg” C= @1ﬁ ® 7,
P

where 1) runs over the irreducible G} representations that contain nonzero Z-
invariants. If ¢1, @2 are Gy representations, then

Homg, (¢1,d2) =~ Homy,, (¢{7 ¢:2[) (5.5¢)

Combining (5.5a,b,c), and recalling that U, C Z, we find that

tr(fy, V') = Y (=1)%™ dim Homy, (e ® VZ, V') (5.5d)
beF

5.6 Let v be an indeterminate, and let H(v) be the generic affine Hecke algebra. It
is the algebra over Clv,v~!] with the same generators as H, but now ¢ is replaced
by v? in the relations. We have analogous subalgebras Hp(v) C H(v).

Let V € R(G,Z) be irreducible and tempered. When G has connected center,
the construction of VZ in [KL] shows that there is an #(v)-module ¥(v) such that

VI = \Il(q) = Cq ®C[U,v—1] \I/(’U),
where C; = C and Clv, v~ '] acts by evaluating v + /g. If G is arbitrary (split) and
V has real central character, then by (5.3.1) we have an analogous H'(v)- module

¥ (v) obtained by restriction from an isogenous group G’ with connected center.
If we instead specialize to v = 1, then ¥(1) is a module over the group algebra

(1) = CW.
Since Hp(1) = CW;, and Wb is a finite group, we have
dim Homy, (¢, ® V7, V’I) = dim Homg; (&, ® ¥(1), T'(1)),
so that
tr(fy, V') = Z(—l)dimb dim Homg; (e, ® ¥(1), ¥'(1)). (5.6a)
beF

5.7 We may identify C[T'] with the group algebra CX of X, and the embedding
(C[T] — H is a specialization of a generic embedding of algebras

Jv i CX <= H(v)
of the form

Jo(N) = "I\ T, A€ X,
15



where n()) is an integer, and \; are dominant with respect to X, such that A =

A1 — Ag. Note that, under the identification H(1) = CW, we have j (A) = A We
have, as vector spaces,

H(v) = Ho(v) ® j, (CX).

Assume that U is a simple tempered #H-module with real central character, so it
is obtained by specialization from the H(v)-module ¥(v) as described in (5.6). The
eigenvalues of j,(A) on ¥(v) are of the form v™®) with m(\) € Z, so A = j1()\)
acts on ¥(1) by unipotent transformations.

5.8 We therefore consider representations of W on which X acts by unipotent
transformations. Let 7 : W — W be the natural projection. If b is a facet in E,
then Wb is finite, hence projects isomorphically onto a subgroup W, = wa CcCW.
On representations, we then have an isometry

™ R(Wy) — R(Wp).

Lemma(5.8.1). Let ¢ be a finite dimensional representation of W on which all
elements of X act by unipotent transformations. Let 1y, o be the restrictions of
1 to Wy and W, respectively. Then as Wy-modules, we have

b
Tothy = Yolw,,

this last being the restriction of g to Wy, C W.

Proof. Since X acts on ¢ via a finitely generated abelian unipotent group, normal-
ized by the action of W, there is a W-stable filtration on the space of 1) such that
X acts trivially on each quotient. Let griy) be the associated graded space. It is a

W-module on which X acts trivially, and upon restriction to any finite subgroup
Wi of W, we have gry ~ ¢ as Wi-modules.

Let w € Wy, and let wA € Wb, with A € X, be the unique lift of w in Wb. Taking
traces, we have

tI‘(’LU, ngﬁb) = tI'(’LU)\, ¢) = tI‘(U})\, grd}) = tI’(U), gr?ﬁ) = tr(w, IlpO)

The lemma is proved. [

Now suppose we have two W-modules 1,1’, on which X acts by unipotent
transformations. Let (, )r denote multiplicities between virtual representations of
a group I'. By Frobenius reciprocity and (5.8.1) we have

(¥ ® &, Yp)g, = (3 (Y ® &), TY)w,
= ((vo|w,) ® 7szeba ¢6|Wb)Wb

= (¢ ® Indyy, 7eb, ¥0)w- (5.82)

5.9 The representations Ind%b nley, also appear in the following expression for AE =

S nso(~1)"A”E.
16



(5.9.1)Lemma. As virtual W-modules, we have

AFE = Z(— dlmbInde mlep.
beF

Proof. The character of AE is the Lefschetz character of W on the cohomology of
the compact torus E/X. Now E/X has a W-simplicial structure induced by the

W—simplicial decomposition of E. As W-modules, the oriented co-chain groups are
n ~ W X
C™(E/X)~ d-EbD [Indg €)™,

sum over facets in F of dimension n. Restriction of functions induces an isomor-
phism
W _1X W b
[Inde )" =~ Indy, me

as W-modules. The lemma follows. O

Let ey be the elliptic pairing on R(W), described in §3. Combining (5.8a) and
(5.9.1) we have

(5.9.2)Proposition. Let 9,1’ be representations of W on which all elements of
X act by unipotent transformations. Then

Z(_l)dimb(eb Y 1/)1)7 1/);))@/6 =ew (¢Oa ¢())

beF

5.10 Let Riemp (G, Z, R) be the span of the irreducible tempered representations in
R(G,T) with real central character. We have a map

7 Rtemp(G, Z,R) — R(W), r(V)=¥(1)|w,
where ¥ (v) is the #(v)-module such that ¥(\/g) = VZ.

Combining (5.6a) and (5.9.2) we have proved

(5.10.1)Theorem. The map r : Riemp(G,Z,R) — R(W) is an isometry between
the pairing EP on Riemp(G,Z,R) and the pairing ewr on R(W).

(5.10.2)Corollary. Let G — G’ be an isogeny. Then the restriction map
7-\)f‘cemp (Gla Ila R) — Rtemp (G, I, R),

in (5.8.1) is an isometry for the respective EP pairings.

Proof. Since Hy = My, the restriction commutes with the respective maps r defined
above, and the pairing eyy on R(W) is independent of isogeny class. [

5.11 According to [KL,8.2], the irreducible representations in Riemp(G,Z,R) are

parametrized by G conjugacy classes of pairs (u, p) where u € G is unipotent and p

is an irreducible representation Ro(A,,). This is proved in [KL] for G with connected

center. By (5.10.2) it holds as well for any semisimple G, since we have real central
17



character. The central character of the corresponding representation V,(p) is given
as follows. We may choose u in its conjugacy class so that there is a homomorphism
¢:SLy(C) — G mapping the diagonal matrices into T, such that v = ¢ (é 1 )
Then the central character of V,(p) is the W-orbit of

q1/2 0
Tu:90< 0 q—1/2)-

It is known that 7, is W-conjugate to 7, if and only if u is é—conjugate to u'.
Therefore if we define

RU(sz) = {Vu(p) tpcE RO(AU)},
then
R.(G,T) = 'Rtemp(G,I, R) NR(G,Z, 1)

and we have an F P-orthogonal direct sum

Riemp (G, T,R) = @ Ru(G, ). (5.11a)
uEUg

On the Weyl group side, recall from §3 that
- @R

and that R, (W) has the basis {H,(p) : p € Ro(A4u)}-
Now Lusztig has calculated the map 7 : Riemp (G, Z, R) — R(W) as follows.

(5.11.1) Theorem [L2],[L3]. We have
r(Vu(p)) = € @ Hu(p),

where € is the sign character of W.

This, combined with (5.9.1) proves the orthogonality of the sum @, R, (W), as
claimed in (3.4.2).

The representation V,,(p) is square-integrable if and only if u is distinguished in G
[KL, 8.3]. Then the elliptic pairing on R,(A4,,) coincides with the ordinary pairing.
By [SS,Thm 6] we know that {V,,(p) : p € Ro(Ay)} is then an EP-orthonormal
basis of R, (G,Z). This proves (3.4.4).

6. Elliptic theory for real central characters.

We now apply the results of §5 to the elliptic theory of G(F'). Let R(G,Z,R) be
the image of R(G,Z,R) in R(G).

6.1 Let u be a unipotent element in G, let L be a Levi subgroup containing u, and
let L be the corresponding Levi subgroup of G. Let Z; be an Iwahori subgroup of
L(F). Let
VE:R.(AL) — R(L,T1)
18



be the Kazhdan-Lusztig isomorphism for L. It follows from [KL,6.2] (a result whose
hypotheses are verified for our situation in the last paragraph of [KL,p.213]) that

17 oVl =V, 0Ind%: . (6.1a)

As in (3.4.1), V,, induces an isomorphism

Vit Ro(Ay) — RW(G,T),
where the right side is the image of R, (G,Z) in R(G).
6.2 From §5, we have bijective isometries
r:Ru(G,I) — R,(W), rp:Ru(L,Ir) — Ru(WL).
From [J, 2.1.2] it follows that
rol¥ =1Indyy, o rg. (6.2a)
Hence r induces a bijective isometry

7Ry (G, I) — Ru(W).

From (3.4.1) we conclude that the space R,(G,Z) is nonzero if and only if u is
quasi-distinguished in G.
Finally, Lusztig’s theorem (5.11.1) implies that

FoV,=e®H, = (-1)*H,,
where H, is the elliptic Springer isomorphism from (3.4.1).
We summarize all of this in the following theorem.
(6.2.1)Theorem. The following diagram of vector space isomorphisms commutes

up to the sign (—1)%.

D, Ro(4,) 225 R(G,T,R) = P

| 5

D. Ro(Ay) ——  R(W) = ®D. Ru(W).

©H,

R.(G,T)

u

Moreover, the sums on the right side are orthogonal for the pairings EP and ew,
the map T is an isometry, and the nonzero summands are precisely those for which
u 18 quasi-distinguished in G.

7. Arbitrary central character.

We now assume that G has adjoint type. We want to generalize (6.2.1) to arbi-
trary central characters. The calculations of sections (5.7-11) don’t work because X
no longer acts by unipotent transformations. Instead, we will reduce to real central
character on a smaller group, using results of [BaM].
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Let Riemp(G,Z) be the span of the irreducible tempered Z-spherical represen-
tations of G(F'), without restriction on central character. By [KL, 8.2] we have a
direct sum

Riemp (G5 T) = P R (G, T),
X
together with an isomorphism
ViII : RO(ACE) — Rw(GaI)a

where x runs over conjugacy classes of elements in G with compact semisimple part,
and R, (G,T) is the span of irreducible representations V,(p), p € Ro(A,). Here
Ro(Az) is the span of the irreducible representations of A, appearing in H(B”).
Let £ = su be the Jordan decomposition of such an z, and let G, be the cen-
tralizer of s in G. We may choose ¢ : SLy(C) — Gy, as in (3.2). Let 7 = s7,. By
[KL, 8.2] we have
Rz(G.Z) = Rtemp (G, Z) " R(G,Z, 7).

Let R, (G,T) be the image of R, (G,T) in R(G).
(7.1.1)Lemma. If G, is not semisimple, then R4(G,T) = 0.

Proof. We are assuming G has adjoint type, in particular G is semisimple. If G,

is not semisimple, it must be contained in a proper Levi subgroup L of G. Then
AL = A, and R,(AL) = R.(A,). By [KL, bottom of p.213] we have

IZ(VE(p) = Valp),  p€Re(AL).

This proves the lemma. [J

Assume now that Gy is semisimple. Let G4 be the split group over F' whose root
datum is dual to that of G5. Let Z; be an Iwahori subgroup of G5. According to
[BaM] there is an isomorphism

L R(G,T,7) = R(Gs, Ty, 7). (7.1a)

This isomorphism is induced by an equivalence of categories, hence it preserves the
E P-pairing. This isomorphism also preserves tempered representations [BaM, 6.5],
so (7.1a) restricts to an isomorphism

R+(G,T) = R, (G, Ty). (7.1b)

Let G’ be the adjoint group of Gy, and let Z be the unique Iwahori subgroup
of G, containing the image of Z; under the isogeny Gy, — G%. Combining (7.1b)
with (5.10.2), we have a bijective F P-isometry

R+ (G, T) — R (G, T0), (7.1c)

where 7, corresponds to 7, as in (5.3.1). Lusztig’s theorem (5.11.1) applies to
R, (G,T) as well, and asserts that

roVy,=¢e¢Q® H,.
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The Weyl group of G, is the centralizer W of s in W. Let
st Ru(Gh, Ih) — Ru(Ws) (7.1d)

be the analogue of the map r defined in 5.10. It is an isometry, by (5.10.1). By
[BaM, Cor. 3.4], the isomorphism (7.1a) satisfies

r= Ind%s ors O L. (7.1e)

Finally, by [Ka] we have
H, =Indy, oH}, (7.1f)

where HE : Ro(Az) — Ry (Ws) is the Springer isomorphism for W,. A diagram
chase involving (7.1c-f) proves the following generalization of (6.2.1).

Theorem(7.1.2). The spaces R,(G,T), Ry (G,T) are orthogonal with respect to
EP unless x, ' are conjugate in G. If Reu(G,T) # 0 then G’s 15 semisimple, u is
quasi-distinguished in és, and we have a diagram of isomorphisms commuting up
to the sign (—1)*

Ro(Asa) —V Rou(G,T)

| [

Ro (Asu) _—> 7§’U(VVS)
Hz

The map 75 is an isomelry with respect to the pairings EP and ey, .

In the next few sections, we will see that the horizontal maps in (7.1.2) are
also isometries, and this will complete the proof of the Main Theorem as stated
in the introduction. We need Arthur’s formula, and a comparison of analytic and
geometric R-groups. We must also prove (3.3.2). These issues make sense for
arbitarary Langlands parameters. When necessary, we make assumptions (see 9.2)
about the conjectural Langlands correspondence. These assumptions are known to
hold in the Iwahori-spherical case (see 9.3). The results on the geometric side are,
of course, independent of these assumptions.

8. Analytic R-groups and Arthur’s formula

Let S be an F-split torus in G, with centralizer L. Let P = LU be a parabolic
subgroup, and let AT be the roots of S in the Lie algebra of U. Let 3 be a
reduced root in A*, and let Lg be the centralizer of the kernel of 3. Then L
is a maximal Levi subgroup of Lg. Let S’,g be the complex torus of unramified
characters of [S/ker B](F). Given a discrete series representation Vi, of L(F), the
corresponding Plancherel measure pg(t) is a rational function of ¢ € S’g. We set
A(VL) ={B €A™ : pg(l) =0}

Let W(S)=N(S)/Z(S) = N(L)/L, and let W(S,Vy) ={w e W(S): (Vp)¥ ~
V1 }. The analytic R-group is defined as

Ron (VL) ={r e W(S,Vz): rA(Vy) =A(Vg)}.
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Harish-Chandra proved that
Endg(r) (Ind 3 Vi) 2 C[Ran (Vi), Nan);

where 1), is a certain 2-cocycle on Ry, (VL) defined by the composition of standard
intertwining operators. We therefore have a decomposition

Ind3() Vi ~ P v @ V(y),
(

as C[Ran (VL), Nan] X G(F) modules, where ¢ runs over the irreducible representa-
tions of C[Ran (VL), Nan], and

V(¢) = Homqr,,, (vi.),n4n]) (¥ Indgg% Vp).

Assume that F' has characteristic zero. Let C¢; be the set of elliptic regular
conjugacy classes in G(F'). The Weyl integration formula may be viewed as a
measure dc on Cgy [K,§3]. Let V, V' be admissible representations of G(F), with
respective characters Oy, Oy/. Schneider and Stuhler [SS,Thm 21, Cor 17] proved
that

EP(V, V’) = / @ngr dc.
Cen

Let V =V (¢),V' =V (¢') be two constituents of Indggg VL, as above. Arthur

[A, Cor 6.3] has shown that

/ ®V(¢)§V(¢’)dc = €an ('@ba wl),

Ceu

where e, is the pairing on elliptic representations of R, (V1 ), defined with respect
to the real Lie algebra of S. Note that 1,1’ are only projective representations of
Ran(VL), but their common multiplier is a root of unity, so that if r € R4 (V1),
the quantity tr(r,)tr(r,4’), is well defined, hence so is the pairing eq,.

Thus, in characteristic zero, we have a calculation of F'P as follows:

EP(V (), V(4')) = ean(th,9"). (8.1a)

In some sense (8.1a) gives a calculation of EP that is far more general than the
Iwahori spherical case considered previously. However, the calculation of R, (V7)
depends on the zeros of Plancherel measures, which are quite subtle. See [S], for
VL generic. A few non-generic examples are calculated in [R2].

In contrast, the geometric R-group is very simple, but its connection to the
analytic R-group is based on expected properties of the conjectural Langlands cor-
respondence, as we shall describe.

9. Geometric R-groups

9.1 Let Wr be the Weil group of our non-archimedean local field F', and suppose
we have a homomorphism

A

& : Wp x SLy(C) — G
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mapping Wr to a bounded subgroup I' C G, generated by semisimple elements.

Let M be the centralizer of the image of ®. Then M is reductive, though possibly
disconnected. Let S be a maximal torus in the identity component M° of M, and
let L be the centralizer of 5. Then (Lr)° is a Levi subgroup of (Gp)° minimally
containing ®(SLy(C)). Set My, := M N L. Then Mg = S.

Choose a triangular decomposition of Lie algebras
g=udldu

That is, u and u are the nilradicals of opposite parabolic subalgebras of g with [ as
Levi subalgebra. Then
m={UNm&sd (unm) (9.1a)

and the subalgebra
b :=5® (uNm)

is a Borel subalgebra of m.
Let N (s, by, ) be the normalizer in M of the pair (s, by, ). The inclusion of N (s, by,)
in M induces an isomorphism

N(s,bm)/S ~ M/M°.
Generalizing the group A,, we define

A=Ap:=M|ZsM°.
Replacing G by L, we have the analogous group

Ap =My /(Z;M}) = ML /Z},
which is naturally identified with a normal subgroup of A. We set
R:=A/AyL.

Thus

R~ M/M°My ~ N(s,bw)/My.

Let R, be the stabilizer in R of o € Irr(Ar). We call R, the geometric R-group of
the pair (®,0).
We have
End 4 ( IndA o) @ Homy, (o,0").
reR,

A choice of nonzero T, € Homy, (0,0"), for each r € R,, determines a 2-cocycle n
on R, such that
Ta:Ty = 77(3% y)Twy

If C[R,,n] denotes the group algebra of R, twisted by 7, we have algebra isomor-
phisms
ClR,,n) ~ Ends(Ind}, (0)) ~ @5 Endc(t,), (9.1b)

pEIrr(A)
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where 1), = Homy (p, IndﬁL(o)).

9.2 This subsection contains some conjectural properties of the Langlands corre-
spondence, and consequences thereof. All of the properties are known to hold in
the Iwahori-spherical case, see (9.3). For the real case, where all the following
conjectures are proved, see [KZ].

The irreducible representations of A are supposed to parametrize an L-packet

g ={V(p): pe€lr(4)}

of irreducible representations V(p) of G(F). These representations should all be
tempered, since I' is bounded. Thus, we expect an isomorphism

V:R(A) — Ra(G),

where Rg(G) denotes the span of the representations in Ilg.
Likewise, the set Irr(Ar) of irreducible representations of Ay is supposed to
parametrize an L-packet

nL ={Vp(o): o €ir(AL)}

of irreducible representations V(o) of L(F'). Moreover, since the image of ® lies
in no proper Levi subgroup of ﬁ, the representations in Hé are supposed to be
square-integrable modulo the center of L(F).

Let A(u) denote the roots of S in u. Since the groups G and G are dual, we have
a canonical bijection 8 — £ : AT — A(u).

Our first assumption about the Langlands correspondence is that

A(Vi(0)) "= A(unm), (9.22)

the latter being the roots of S in uNm. Assumption (9.2a) would follow from Lang-
lands’ conjecture describing Plancherel measures in terms of Artin L-functions. For
generic Iwahori spherical representations, (9.2a) was proved by Shahidi [Sh,Thm.
3.5]. It will be verified for all Iwahori-spherical representations in section 9.3. For
real groups, (9.2a) was proved by Langlands [KZ,Thm. 3.3].

Let N(L), N(L) be the respective normalizers of L, L in G, G. Both N(L)/L
and N(L)/L are naturally isomorphic to a subgroup W (L) C W, and we identify
N(L)/JL=N(L)/L=W(L).

Our second assumption is that

VL(o)]" = Vi(no), ne€ N(L)/L (9.2b)
where no is the conjugated representation of n(Af)n™t = AL, _..

Assumptions (9.2a,b) imply that the analytic R-group R, (VL (o)) for the dis-
crete series representation Vi, (o) consists of those nL € N(L)/L such that

(1) o" ~ @
(2) nA(unNm) C A(u)
(3) no~o.
Now (1) says that n € M/Mp, and (2) says that n € N(s,b,,). Taking (3) into
account, we get equality of analytic and geometric R-groups:
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(9.2.1) Proposition. If assumptions (9.2a,b) hold, then Ry, (VL(0)) = R,.

The next assumption is about the relation between ® and ®;,. Namely, we should
have
g = I¢ 1%,

in the sense that Il consists of the constituents of the representations induced
from those in II%.
In fact, based on (6.1a), we expect a refinement of this. Namely, for each o €
R(AL), we should have
V(Ind4, o) = I Vi(o). (9.2¢)

Moreover, isomorphism (9.2¢) should have the following property: Let r € R,, and
let T, be an element of End 4 (Ind4 . o) supported on rAy. Invoking (9.2c), we have

a G(F)-endomorphism T of I¥ Vz (). On the other hand, by (9.2.1), we may view
r as an element of R, (Vz (o)), which corresponds to an intertwining operator A,
of I$ Vi (), given by the standard integral. The final refinement is the assumption

T! = ¢, A, (9.2d)

for some nonzero scalar ¢, € C.

By assumption (9.2c), the G(F)-endomorphism algebra of I¢ V() is

Endg(r)(V(Ind4, 0)) = @ Ender) (¥, ®V(p)= @ Endc(w,).
p€lrr(A) p€Elrr(A)

In view of (9.1a), this implies an analogue of the Harish-Chandra commuting algebra
theorem, but in terms of geometric R-groups instead of analytic ones.

(9.2.2)Proposition. If (9.2a-c) hold, then Endg(r) (Indggg Vi (0)) is isomorphic
to the twisted group algebra C[Ry,n|. If in addition (9.2d) holds, then this isomor-
phism sends r € R, to a scalar multiple of the standard intertwining operator A,..

Since the analytic cocycle 7, arises from the multiplication of the A,’s, (9.2.2)
implies that 7,, is cohomologous to 7. If e4 denotes the elliptic pairing on A, and
ean that on R, (VL (o)), then for two representations p, p’ of A which appear in
IndflL o, we have

ea(p, pl) = ean(wpa lpp’)-
Then by Arthur’s formula (8.1a), we have

ea(p,p') = EP(Va(p), Va(p'))-

In summary then, we have shown

(9.2.3)Proposition. If char(F)=0, and we have a Langlands correspondence p —
V(p) satisfying (9.2a-d) as above, then it induces an isometry between the elliptic
pairings e4 on R(A) and EP on Re(G).

In the next section we will see that (9.2a-d) hold for Iwahori-spherical repre-
sentations, if we restrict to Ro(Az). In this setting, EP can be computed in the
category of H-modules (see (5.4)), hence is independent of char(F'). This proves
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that the horizontal maps in (7.1.2) are also isometries, and this completes the proof
of the Main Theorem, as stated in the introduction, modulo the proof of (3.3.2),
which is given in section 10.

9.3 Suppose & : W x SLy(C) — L is unramified on Wr. We may choose dual
maximal tori T C G, T C é, such that ® maps Wpr and the diagonal matrices of
SLy(C) into 7.

Let s € T be the image of a Frobenius element under ®, and set

1 1 -
x-s‘b(o 1>€L.

Suppose that o is an irreducible representation of Aé = AL appearing in the
homology of B”.

To check (9.2a), we may assume that L is maximal in G, i.e., that G = Lg, as
in section 8. Proving (9.2a) then amounts to showing that pg(1) = 0 if and only if
unm=0.

Since ®(SLy(C)) C L, the space u® is an sly(C)-module. Let

1 0 0 1
=0 ) =6)

and let u®(4) be the 2i-eigenspace of h in u®. For i > 0, the map

e:u’(i) — u’(i + 1)
is surjective. Since uNm is the kernel of e on u®*(0), we see that uNm = 0 if and
only if

dimu®(0) = dimu®(1).

On the other hand, the Plancherel measure ug(t) is described in terms of inter-
twining operators as follows. To ease the notation, we write

m = V(o).
Let w be the element of W sending u to u. Let v : C* — S be a one-parameter
subgroup generating S. For each t € C*, we view ; as an unramified character of
L. The standard intertwining operator

Ay (m,t) IndIGDgg (T @) — Indggg (wm @ wyz)

is given by analytic continuation of the integral
Aulm0)f(9) = [ fug) du. (9.32)
U(F)

Here w is a representative of w, and du is a Haar measure on U (F'). The composition
Ay (wm,t71) o A, (m, t) is a scalar operator, given by a nonzero constant times

()~
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Since ® is unramified, the representation 7 is contained in an unramified principal
series for L(F'). More precisely, let

1/2 0
T=2s5P(1 x <q0 q—1/2>)a

viewed as an unramified character of T'(F'). There is a Borel subgroup By of L

containing 7', such that
L(F)
m— IndBL(F) T.
Thus,

G G
Iﬂdpg; (T @) — Iﬂngg (77¢)5 (9.3b)

where B = BpU is a Borel subgroup of G. Under the embedding (9.3b), the
intertwining operator A, (m,%) is the restriction of the operator

Ay (Tye) Indggg (Ty:) — Indggg (w(Ty)),

given by the same formula (9.3a).
Now from [Ca] we know, for generic ¢, that

A1 (w(Ty)) 0 Aw(Tv:) = Cu (T7) Cow (w(T11)),

where C,, is the rational function on 7' defined by

1-g "a(x) ;
Col)= ] Toa) X eT.
aceA(u)

It is straightforward to check that both C,,(7y;) and C,,(w(7v:)) have order
dimu®(1) — dimu?(0) <0

at ¢ = 1. Thus, they have poles exactly when uNm # 0. This completes the
verification of (9.2a) in the Iwahori spherical case.

We prove (9.2b) on the level of affine Hecke algebras. Let us replace L by G,
and suppose we have a rational automorphism n of G. The action of n on the root
datum of G induces an automorphism of #, so for any H-module M we have the
twisted % module M™. Let M, , be the Kazhdan-Lusztig standard module [KL)],
1 1
0 1
K(B™"), and the action of # is given by certain natural K-theoretic operations.
The automorphism n of G induces a linear isomorphism (pushforward map)

where u = ®(1 x )) The underlying space of M, , is the K-homology group

ny : K(B™Y) — K(B"™™™).

One checks, using the naturality properties [KL,1.3|, that n, intertwines the #-
action so as to be an H-module isomorphism

M7, ~ My.rnou (9.3¢)
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The group Ag acts naturally on the space B™%, and the induced action on K(B™")
commutes with the H-action. Thus, for p € Irr(Ag), we have an H- module

Vo (p) = Homuy, (p, Mr.u),

which is the simple tempered H-module attached to (@, p) by Kazhdan-Lusztig.
Again using the properties [KL,1.3], one checks that (9.3c) induces an isomorphism

Va(p)" = Vaa(n-p),
and this proves (9.2b).

We have mentioned that (9.2c) in the Iwahori-spherical case is just (6.1a). Fi-
nally, for (9.2d), consider v ® V(o), where v € S is an unramified character of L,
chosen in general position. The analogous component group Ayr(7y) is unchanged,
but now A(y) = AL(7y), and both sides of (9.2d) are irreducible. By the construc-
tion in [KL], (9.2c) is the localization at + of a projective C[S] module, so that
T)(7y) is a polynomial function of v, which, by irreducibility, must be a scalar ¢, (7)
times A, (7). The latter is known to be analytic near v = 1, so (9.2d) follows by
taking v — 1.

10. On certain fixed point varieties

This section is purely on the geometric side, and does not rely on conjectures.
Retain the notation of 9.1, and suppose that I' is contained in a maximal torus of
G. In (3.3.2) we have the special case where I is generated by a semisimple element
s€ G. Let u, 7 =7, be as in (5.11).

Let B, B, be the respective varieties of Borel subgroups of G and L. We consider
the varieties BV 7%, Bg’T’“ of Borel subgroups normalized by I', 7, u. These varieties
are non-empty, by Borel’s fixed point theorem. We want to show that, if o € Irr(Ay)
occurs in the representation of Az on the cohomology H (BE’T’U), and p € Irr(A)
occurs in Indﬁ , 0, then p also occurs in the representation of A on the cohomology
H(B7%). We will prove a bit more:

(10.1.1)Proposition. There is an open and closed M -stable subvariety C C BY>7-%
such that
H(C) ~Tnd4, HB, "),

as A-modules.

Proof. Let H = CA}'p,T, Hp = f/[‘ﬂ— denote the respective centralizers of both I' and
7. Let X;, j in some index set J, denote the H-orbits in BY". By [R3, (2.3)]
each X; is a disjoint union of copies of the flag variety of H°. Let P =1LUbea
parabolic subgroup of G with Levi L, as in (9.1), and set Bp = {B'" € B: B' C 13}.
Projecting to L gives an isomorphism Bp ~ By. Let Y;, i € I, be the Hy-orbits in
B};’T, let Jp ={j€J: X;NBp # &}, and put

x, = X,
JEJL
There is a surjective map f : I — Jp with the properties that
HY; = X;, X;NBp= |J Y.

i€f=1(4)
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For each j € J, the variety X} := X; N B* is projective, smooth [DLP] and M-
stable. Likewise, each Y;* :=Y; N B% is smooth and Mp-stable.
The M-action defines, for each 7 € I, a map

o M XYY — Xtoy, ¢ (m,B") =mB'm™

Recall from 9.1 that By, = SU? is a Borel subgroup of M°. Note that By, acts
trivially on Bp. Hence % induces a map
Since My, normalizes B)s, there is a right action of My, on M/B)s commuting with
the left action of M, and the kernel of this action is exactly Z;. It follows that
Ay acts freely on M/Bjps. Meanwhile, the left action of My on Y* also restricts
trivially to Z;. It follows that Ap acts freely on (M/Bjys) x Y;*, commuting with
the left M-action. We write

(M/Bum) xa, Vi*

(2

for the quotient variety. It follows that v, induces a map
i M/Bpy xa, Y* —>Xf(z) (10.1a)

(10.1.2)Lemma. For every i € I, the map 1; in (10.1a) is an isomorphism of
M -varieties.

Before starting the proof, we note that (10.1.1) follows from (10.1.2). Indeed, the
left action of M on M/Bjs induces the regular representation of A on H(M/By),

H((M/Bur) xa, Yi*) = [H(M/By) ® H(Y;)["* =~ Ind}, H(Y"),

l"‘ru @HYU

i€l

and

as Ar-modules. Thus
¢=xt=Jxjq
iel
has the properties claimed in (10.1.1).

Fix i € I. The proof of (10.1.2) will be completed in three steps. First, 9;
is injective. Second, the connected components of M /By x4, Y* are smooth,
and all have the same dimension, equal to the (likewise common) dimension of
the components of X ;ﬁ(i). Third, MY meets every connected component of X }‘(i).
Then (10.1.2) follows from the theorem on invariance of domain, applied to each
component.

For step one, suppose B’ C P, and that 1’ (mBM, B') = ¢'(m1Bpy, 11 B'), for
some m, my € M, Iy € L. Then mT'm e MNP = (Mg)(M NU). Write m*m =
L, accordingly. Now, mi, .t = mi(lpuml,,!) € miBy. Moreover,

B' =17'm{'mB = YYpumB' =W B,
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since U acts trivially on Bp. Thus (mi B, 1B') = (ml,,! By, 1 B'), hence the
fibers of ¢, are Ap-orbits, and 1); is injective.

For the second step, we use the methods of [DLP], viewing Y;* and X* as generic
fibers of a collapsing of a vector bundle into a pre-homogeneous vector space.

Let q be the g-eigenspace of 7 in the centralizer subalgebra gr. It is known that
H° has finitely many Ad-orbits in ¢, in particular, there is a unique dense orbit
q*. Moreover, q* contains e := log(u). Now H/H® permutes the H°-orbits, but
q* is stable under H, by its uniqueness. Analogous statements hold for q N [, and
e€ (qnnx.

Choose By, € Y;*, and let B € B};’T’” be the corresponding Borel subgroup of G.
On the Lie algebra level we have b = by @ u. Let ng be the nilradical of by. Let
By = BN H°, BL = B N H°; these are Borel subgroups of H°, HS, respectively.

Now B € Xy(;). Let D be the component of Xy(;) containing B. Then D is
isomorphic to the flag variety of H® and the components of Xy are the H /H°
translates of D. Likewise D N Bp is a union of flag varieties for H;y. Let Dy, be the
component of D N Bp containing B.

We have two diagrams

H* X By (bﬂq) — q

pl (10.1b)
D

Hszg(bLﬂq)L)qﬂI
le (10.1c)
Dy,

given by w(h,z) = Ad(h)z, p(h,z) = hBh™Y, wp(h,z) = Ad(h)z, pr(h,z) =
hBph~!. For every = € q, resp. € qN [, we have

pr~(z) = D, tesp. pi7pl(x) = D%

where D* D7 are the fixed points of exp(x) in D, Dyr. For z € q*, the variety
D? is smooth, and all connected components have the same dimension [DLP,2.2].
If z € (qN[)*, an analogous statement holds for Df. Now e € q* N (qNI)*,
since T = 7,. Hence we can relate the dimension of D¢ to the dimension of D%, as
follows.

We will use three exact sequences, in each of which, the second map is ad(e).

0—m-—h—q—0, (10.1d)
0—s—bhNl—qnNl—0, (10.1e)
0 —unNm-—unh—ung—0. (10.1f)

In the following calculation, we write (V') instead of dim V, for a vector space V.
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dimD® = (h) — (q) — (bNh)+ (bNgq) by (10.1d)

m brNh)—(unh)+ (ngNg)+ (uNg) by (10.1d)
+(8) + (wnm)—(br Nb) = (uNh) + (L Nq)+ (uNq)
+(s) = (b Nh) + (nr.Nq) by (10.1f)
(bN0)—(anl)—(brNb)+ (br Ng) by (10.1e)
m(M/By) +dim D§, by (10.1¢)

j=d

fd

) —

nm
nm
Nm

f=q

(
(m) — (
(unm)
(N m)
@Nm)+

This completes the proof of the second step.

For the third and final step of the proof of (10.1.2), we let Dy,..., D, be the
components of X;;). These are permuted transitively by H. For each k let By be
the unique Borel subgroup in Dy, stabilized by By. By [DLP, 2.2iii)], M permutes
transitively the components of each Dy. Let Cj,C) be components in DY, Dy.
Choose h € H so that hD; = Dj. Since H preserves the dense H°-orbit q*
follows that H = M H®, so we may assume h € M. Now hC; is a component of

r, so there is m € M such that mhC; = C. Thus M permutes transitively the
components of X%, and the proofs of (10.1.2), and (3.3.2), are finished.
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