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1 Introduction

The centralizerC(w) of an elementw in a Weyl groupW plays an important role
in the structure and representation theory of split reductive groupsG over finite
andp-adic fieldsk, whereW is the absolute Weyl group ofG.

If k is finite, this is well-known: the elementw determines a maximalk-
torus Tw ⊂ G and C(w) may be identified with thek-rational points in the
Weyl groupW (Tw, G) of Tw in G. For every characterχ of Tw(k), the Deligne-
Lusztig construction [12] gives a virtual representationRG

Tw
(χ) of G(k) whose

self-intertwining number is the order of the stabilizer ofχ in C(w).
If k is p-adic thenw determines an unramified maximalk-torusTw, which

now can be embedded as a maximal torus inG in several ways. AssumeG is
simply-connected. Each class in the Galois cohomology groupH1(k, Tw) deter-
mines an embeddingTw ↪→ G and two classes inH1(k, Tw) giveG(k)-conjugate
embeddings iff they are conjugate under the natural action ofC(w) onH1(k, Tw).
Let C(w, ρ) be the stabilizer of the classρ ∈ H1(k, Tw). If Tw

∼→ T ρ
w ⊂ G is an

embedding belonging to the classρ ∈ H1(Tw, G), thenC(w) is isomorphic to the
big Weyl group ofk-rational elements inW (T ρ

w, G) andC(w, ρ) is isomorphic
to the small Weyl group of elements inW (T ρ

w, G) which have representatives in
G(k).

On the representation theory side, supposew is elliptic (i.e.Tw is anisotropic)
andχ is a sufficiently regular character ofTw(k). Then, in accordance with the
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local Langlands conjecture, one can construct (cf. [11], [19] ) a finite set of repre-
sentationsΠw(χ) = {π(χ, ρ) : ρ ∈ H1(k, Tw)}, with the equivariance property:

π(χy, ρ) ' π(χ, y · ρ) for y ∈ C(w),

which implies thatπ(χ, ρ) andπ(χ, y · ρ) are induced from the same maximal
compact subgroup ofG(k) and that their characters agree near the identity, at
least in certain cases [11, 12.4.3]. Similar results hold for nonsplit unramified
groupsG, wherew is now an element of the groupA of automorphisms of the
absolute root system ofG, such that the coset ofw in A/W corresponds to the
splitting data ofG overk.

Thus we are led to study the action ofC(w) on H1(k, Tw), for w ∈ A. This
is a problem in basic Lie theory which arises in diverse contexts. It can be stated
in elementary terms: ifX = Hom(GL1, Tw) denotes the cocharacter group ofTw

then Tate-Nakayama duality gives a natural isomorphism

H1(k, Tw) ' Xw,

whereXw := X/(1−w)X is the group of coinvariants ofw in X. The groupXw

is finite becausew is elliptic. Equivalently, the numberm := M(1) is nonzero,
whereM(t) is the minimal polynomial ofw on X. It is easy to show (see sec-
tion 4.1 below) thatmXw = 0 and that there is a naturalZ/mZ-valued skew-
symmetric pairing〈 , 〉w on Xw, preserved by the natural action ofC(w) on Xw.
Thus, we have a natural homomorphism

%w : C(w) −→ Sp(Xw),

whereSp(Xw) is the group of automorphisms ofXw preserving〈 , 〉w, and our
problem reduces to studying the image of%w.

For classical groups, this is straightforward (cf. [14, chap.14]). Exceptional
groups, especiallyE8, encourage the search for uniform, Lie theoretic methods
for determining the image of%w.

Two cases appear already in Bourbaki [2]. Ifw is a Coxeter element, then
C(w) is generated byw, Xw is isomorphic to the fundamental group of the dual
group ofG, the form〈 , 〉w is identically zero, and%w is trivial. (This case is not
without interest forp-adic groups, see [19].) The other case is whereW has type
En andw = −1. HereC(w) = W andXw = X/2X. The form〈 , 〉w arises from
a quadratic formq on X/2X. Using methods that apply only to this case ([2] or
[18]), one can show that the image of%w is the orthogonal group ofq.
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We will see that forw 6= −1 we often have〈 , 〉w nondegenerate andim %w =
Sp(Xw). The implication for the correspondingL-packetsΠw(χ) is that all the
nongeneric representations in the packet are induced from the same maximal com-
pact subgroup and, in certain cases, behave the same near the identity ofG(k).

A general approach to%w must begin with a Lie-theoretic description ofC(w),
on which it seems that the only general results are due to Springer [22]. These ap-
ply whenw is regular (no eigenvector ofw lies on a root hyperplane), so we con-
fine ourselves to regularw. Then, by Springer, we know thatC(w) acts faithfully
on a regular eigenspace ofw as a (complex) reflection group whose degrees are
those degrees ofW which are divisible by the order ofw. This tells us the order
of C(w) and the number of reflections inC(w). However, this is not enough to
determine the image of%w, for Springer arrives at his results via invariant theory,
which does not actually produce any reflections inC(w), or give the order of the
reflections, or say ifC(w) is an irreducible reflection group. The degrees alone
do not answer these questions and they do not determine the isomorphism type of
the reflection groupC(w).

We can sharpen Springer’s results for certain regular elements. We say thatw
is cyclotomic if its minimal polynomialM(t) is irreducible overQ. For G2, F4

andE8 this is not an additional restriction: in these cases the elliptic regular ele-
ments inW are precisely the nonidentity cyclotomic elements.

Let V = Q ⊗ X be the rational reflection representation ofW . The Q-
subalgebra inEnd(V ) generated by a cyclotomic elementw of orderd is a cy-
clotomic fieldK = Q(ζd), andC(w) is the subgroup ofW actingK-linearly on
V . Cyclotomic structures on theE8-root lattice forK = Q(ζ3) andQ(ζ4) were
known in the 19th century [6]. Recent literature on lattice theory [1] mentions the
Q(ζ9)-structure onE6 and theQ(ζ15)-structure onE8. All of these cyclotomic
structures arise from cyclotomic elements inW . In the first part of this paper we
use the fieldK to find the reflections in the centralizer of a cyclotomic element.

More general fieldsK are also of interest. For example, inW (E8) there
is a cyclotomic elementw of order ten, such thatw + w−1 generates a field
K ' Q(

√
5) whose centralizer inW (E8) is the exceptional Coxeter groupW (H4)

(see section 3.4.2). This subgroup has been previously understood via auxilliary
structures such as icosians (cf. [17]).

So we take an arbitrary fieldK ⊂ End(V ) which is closed under the adjoint
involution onEnd(V ) arising from theW -invariant inner product onV . Let VK

be the groupV regarded as aK-vector space and consider the subgroupWK of
elements inW commuting withK. Say that two rootsα andβ areK-equivalent
if Kα = Kβ. Each equivalence classS is a subroot system ofR and gives rise
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to a cyclic subgroupWK(S) ⊂ WK whose nonidentity elements are reflections
on VK . We show that all reflections inWK are obtained in this way, and we give
an explicit formula for the canonicalWK-invariant hermitian form onVK , thereby
giving a formula for each reflection. Different types of root systemsS can occur
asK-equivalence classes, leading to reflections of different orders inWK . These
are worked out in the various cases forE8, in sections 3.3 and 3.4.

In general,WK is not generated by reflections. Indeed, forE8 there is a copy of
Q(
√

2) in End(V ) for whichWK is the extension ofW (F4) by its graph automor-
phism. (This subgroup ofW (E8) is not related to the standardW (F4) contained
in W (E6); it seems to have gone unnoticed till now.) However, forK = Q(

√
5)

as above, and forK = Q(w) by Springer’s theory, we know thatWK is gener-
ated by the subgroupsWK(S). We can show moreover thatWK is irreducible on
VK . This implies thatC(w) is actually an irreducible reflection group on every
w-eigenspace inC⊗ V , whenw is cyclotomic.

These results on reflections allow us to analyze the action ofC(w) on the
coinvariantsXw for w cyclotomic. It is easy to see thatXw = 0 unless the order
of w is a power of a primep, in which casem = p, so Xw is a vector space
overFp. In fact, we havep ∈ {2, 3, 5}. The image of%w is computed using the
reflections found above and reduction modulop. For R = E8 we find that%w is
surjective forw 6= −1.

We then focus on the case wherew ∈ W is elliptic of order three; such el-
ements are cyclotomic. ThenR has one of the typesA2, G2, D4, F4, E6, E8

andw is unique up toW -conjugacy in each case. If we enlargeC(w) to the cen-
tralizer ofw in the full automorphism group ofR, then%w is surjective. This is
proved in a uniform way, but the individual cases have various connections to:
elliptic curves and the 24 cell (forF4), hermitian curves and Weil representations
(for E6), and the27 lines on a cubic surface and unipotent representations (for
E8). A relation betweenE8 and the27 lines was found by Coxeter in the last two
sections of [8]; our remarks here amount to little more than a different approach
to Coxeter’s observations.

Finally, in the last chapter, we apply our results on cyclotomic elements to
L-packets of supercuspidal representations ofp-adic groups.
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2 Reflections

2.1 Hermitian forms

Let V be aQ-vector space of dimensionn and fix a nondegenerate symmetric
Q-bilinear form〈 , 〉 on V . We denote the corresponding adjoint involution on
End(V ) by f 7→ f ∗; it is defined by the equation〈fx, y〉 = 〈x, f ∗y〉 for f ∈
End(V ) andx, y ∈ V .

Next, letK be a number field with an automorphismσ ∈ Aut(K) such that
σ2 = 1. Fix a nonzeroQ-linear mapT : K → Q. EveryQ-linear functional
K → Q is of the formx 7→ T (ax) for a uniquea ∈ K.

If T is the trace, thenT (xσ) = T (x), but it will be more convenient to make
other choices ofT which are not necessarilyσ-invariant. In general, there is a
unique elementb ∈ K such thatT (xσ) = T (xb) for all x ∈ K. From the
calculation

T (x) = T (xσb) = T ((xbσ)σ) = T (xbσb),

we see thatbσb = 1. By Hilbert’s Theorem 90, there isc ∈ K× such that

b = cσc−1. (1)

We then haveT (xc) = T ((xc)σ) for all x ∈ K.
Assume we are given an embedding ofQ-algebras

j : K ↪→ End(V )

such thatj(aσ) = j(a)∗ for all a ∈ K. We writeVK to denote the abelian group
V considered as aK-vector space, via the embeddingj. The symmetric form〈 , 〉
onV gives rise to a hermitian formH onVK , as follows (cf. [23, IV.2]).

For every pair of elementsx, y ∈ VK , there ish(x, y) ∈ K such that

〈j(a)x, y〉 = T (a h(x, y)) , for all a ∈ K.

This defines a nondegenerateK-valued pairingh onVK which is hermitian up to
scalar. More precisely, ifc ∈ K× is an element satisfying (1) then the scaled form

H(x, y) := c h(x, y),
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characterized by the identity

T (a H(x, y)) = 〈j(ac)x, y〉, (2)

is σ-hermitian onVK : we haveH(y, x) = H(x, y)σ for all x, y ∈ VK . The
equationT (H(x, y)) = 〈j(c)x, y〉 shows thatH is nondegenerate and that any
K-subspaceU ⊂ VK has the same orthogonal complement, whether taken with
respect to〈 , 〉 or H.

2.2 An explicit formula for H

Let ζ ∈ K be a primitive element, so thatK = Q(ζ), and let

M(t) = a0 + a1t + · · ·+ an−1t
n−1 + tn

be the minimal polynomial ofζ overQ. Then{1, ζ, . . . , ζn−1} is aQ-basis ofK.
For ourQ-linear mapT : K → Q, let us take

T (c0 + c1ζ + · · ·+ cn−1ζ
n−1) = c0 (ci ∈ Q).

With these choices, we can give a more explicit formula forH, as follows. We
work with the unscaled formh = c−1H, writing it as

h =
n−1∑
i=0

hiζ
i,

where eachhi is aQ-bilinear form onV . From the relation

h(j(ζ)x, y) = ζh(x, y)

we get

n−1∑
i=0

hi(j(ζ)x, y)ζ i =
n∑

i=1

hi−1(x, y)ζ i

=
n−1∑
i=1

hi−1(x, y)ζ i − hn−1(x, y)[a0 + a1ζ + · · ·+ an−1ζ
n−1]

= −a0hn−1(x, y) +
n−1∑
i=1

[hi−1(x, y)− aihn−1(x, y)] ζ i.
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Comparing coefficients ofζ, we find by induction that

hi(x, y) = h0 (x, fi(z)y) ,

wherefi(t) = a−1
0 (ai + ai−1t + · · ·+ a1t

i−1 + a0t
i) andz = j(1/ζσ). But also

h0(x, y) = T (h(x, y)) = 〈x, y〉,

so we get the formula

h(x, y) =
n−1∑
i=0

〈x, fi(z)y〉ζ i. (3)

2.3 Root systems and an equivalence relation

Retain the set-up of section 2.1: we have a number fieldK with involution σ, an
orthogonal spaceV overQ, an embeddingj : K ↪→ End(V ) which intertwines
σ with the adjoint involution onV , andVK denotes the abelian groupV , regarded
as aK-vector space, viaj.

Assume now that the orthogonal spaceV is definite and thatR is a finite
root system inV whose Weyl groupW = W (R) preserves the form〈 , 〉. Let
A = A(R) be the group of orthogonal automorphisms ofV which preserveR. In
this section we study the subgroup

WK := W ∩GL(VK)

consisting of the elements inW which centralize the imagej(K) of K in End(V ).
Each rootα ∈ R may be regarded as a vector in theK-vector spaceVK . We

say that two rootsα, β ∈ R areK-equivalent if Kα = Kβ.
For eachK-equivalence classS ⊂ R, let V (S) be theQ-subspace ofV gen-

erated byS. ThenV (S) = Kα for anyα ∈ S. We have

S = R ∩ V (S). (4)

To see this, letα ∈ R ∩ V (S) and writeα = c1α1 + · · · + csαs with ci ∈ Q
andαi ∈ S. By the definition ofK-equivalence, there arefi ∈ j(K) such that
αi = fiα1, so

α = (c1 + c2f2 + · · ·+ csfs)α1 ∈ Kα1,

henceα ∈ S. The other containment in (4) is clear.
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Equation (4) implies thatS is a root subsystem inR, of rank equal to the
degree ofK over Q. Let A(S) andW (S) denote the automorphism and Weyl
groups ofS, respectively. ThenW (S), being generated by reflections fromS, is
a subgroup ofW (R). However, the groupA(S) need not be contained inA(R).

Consider the group
WK(S) := WK ∩W (S),

consisting of theK-linear elements ofW (S). If we fix α ∈ S, we have a homo-
morphism

ηS : WK(S) −→ K×, such that wα = ηS(w)α (5)

for all w ∈ WK(S). One checks thatηS is independent of the choice ofα ∈ S and
thatηS is injective. It follows that the groupWK(S) is cyclic, of order dividing
the number of roots of unity inK×.

A K-reflection onVK is an elementg ∈ GL(VK) of finite order whose fixed-
point set is aK-hyperplane. AK-reflection has exactly one eigenvalueη 6= 1
andη = det(w) is a root of unity inK×. Any nonidentity elementr ∈ WK(S)
is aK-reflection with nontrivial eigenvalueη = ηS(r), fixing theK-hyperplane
orthogonal toV (S) (with respect toH or 〈 , 〉, recall it is the same). We have the
formula

r(x) = x− (1− η)
h(x, α)

h(α, α)
α (6)

for anyα ∈ S.
For example, ifK = Q then each equivalence class is a pairS = {±α},

forming a root system of typeA1, andK-reflections are the usual reflections in
W . At the other extreme, if[K : Q] = dim V , thenR itself is the uniqueK-
equivalence class, andWK is cyclic.

Lemma 2.1 EveryK-reflectionr ∈ WK is contained inWK(S) for a unique
K-equivalence classS ⊂ R.

Proof: Let L be the nontrivialK-eigenline ofr. Then the fixed-point set of
r in VK is the orthogonal complementL′ of L. The subgroupW ′ of W fixing
L′ pointwise is generated by reflections about the roots orthogonal toL′ [2, V.3
Prop.2]. The setS of these roots is nonempty, since1 6= r ∈ W ′. HenceS is a
K-equivalence class andr ∈ WK(S). Uniqueness follows from equation (4).�
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3 The cyclotomic case

There are many fieldsK ⊂ End(V ); “usually” one hasWK ⊆ {±1}. In this sec-
tion we will show that ifj(K) is generated by an automorphism of the irreducible
root systemR thenWK is irreducible onVK , the groupsWK(S) are all non-trivial,
and they generateWK . Along the way, we give a classification of possible root
systemsS which arise, which facilitates our later calculations.

3.1 Reflections in the cyclotomic case

We say that an elementw ∈ A(R) is cyclotomic if the minimal polynomialM(t)
of w on V is irreducible overQ. Let d be the order ofw. ThenM(t) = Φd(t) is
the cyclotomic polynomial, whose roots are the elements of orderd in Q̄×. Fix a
root ζ of Φd(t) and letK = Q(ζ), with involution ζσ = ζ−1. Then we have an
embeddingj : K → End(V ) given byj(ζ) = w, such thatj(ζσ) = w−1 = w∗.
The imagej(K), hence the groupWK , is independent of the choice ofζ. Indeed,
WK is just the centralizerC(w) of w in W .

Proposition 3.1 In the situation just described, the groupWK is generated by the
cyclic subgroupsWK(S), with S ranging over theK-equivalence classes inR.

Proof: The Galois groupΓ = Gal(Q̄/Q) is transitive on the eigenvalues ofw.
This Galois action extends tōV = Q̄⊗V , acting trivially onV , so as to commute
with theA(R)-action. Thus,Γ permutes the eigenspaces ofw transitively.

Each rootα ∈ R may be viewed as a functional on̄V , via the pairing〈 , 〉. In
this guise, the mapα : V̄ → Q̄ commutes with theΓ-action onV̄ andQ̄. Hence if
α vanishes on one eigenspace ofw, it must vanish on all eigenspaces, so thatα =
0, a contradiction. Therefore every rootα ∈ R restricts to a nonzero functional on
everyw-eigenspace. This means that everyw-eigenspace in̄V contains a regular
vector. The stabilizer inW of a regular vector is trivial.

The groupWK = C(w) preserves each eigenspace ofw in V̄ . Hence we have
a representation

πζ : C(w) −→ GL(V̄ (w, ζ))

on theζ-eigenspacēV (w, ζ) of w in V̄ . SinceV̄ (w, ζ) contains a regular vector,
the mapπζ is injective. By Springer’s results [22, 4.2,6.4] we have that the image
of πζ is generated by reflections.
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The eigenspacēV (w, ζ) is defined overK, hence every reflection in the image
of πζ has its nontrivial eigenvalue inK. We have aC(w)-equivariant isomorphism

Q̄⊗K VK
∼−→ V̄ (w, ζ)

sendingv ∈ VK to
∑d

k=1 ζ−kwkv. Henceπζ maps theK-reflections inWK bijec-
tively onto the reflections inπζ (WK). The result follows.�

We now examine the groupsWK(S) in more detail. LetS be aK-equivalence
class inR. Thenw acts onS via an automorphismwS ∈ A(S) having character-
istic polynomialΦd(t) onV (S). This implies that the group generated bywS acts
transitively on the irreducible componentsS1, · · · , Sc of S, that c | d, and that
wc

S = (w1, · · · , wc), where eachwi ∈ A(Si) has ordere := d/c.
OnV (S), viewed as aQ-vector space, the elementwc

S has characteristic poly-
nomial

det(tIV (S) − wc
S) = Φe(t)

φ(d)/φ(e) =
c∏

i=1

det(tIV (Si) − wi). (7)

By the transitivity ofwS on theSi, each polynomialdet(tIV (Si)−wi) has the same
degree. Hence there is an integerm ≥ 1 such that

det(tIV (Si) − wi) = Φe(t)
m

for all i. Comparing degrees in (7), we find that

φ(d) = m · c · φ(e). (8)

The following lemma is an elementary consequence of (8); its proof is left to the
reader.

Lemma 3.2 We havem = 1 and that every prime dividingd must dividee. In
particular, we havee > 1.

HenceS = cS1, whereS1 is an irreducible root system of rankφ(e) admitting
an automorphismw1 with characteristic polynomial

det(tIV (S1) − w1) = Φe(t).

We have the numerical constraints

φ(d) = c · φ(e) and d divides both|S| and|A(S)|. (9)
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The first item has been shown above and the last two are forced by allw-orbits
havingd elements andA(S) containing the elementwS of orderd, respectively.

The possibilities forS1 are given in the table below, using the notation of
[4] for conjugacy-classes in Weyl groups, extended toA(R) in the obvious way.
Recall thate is the order ofw1 in A(S1). In the last column we give the order` of
w1 in the quotient groupA(S1)/W (S1). In the second rowp is a prime≥ 3.

S1 w1 e `

A1 A1 2 1
Ap−1 Ap−1, −Ap−1 p, 2p 1, 2

B2r , C2r B2r 2r+1 1
D2r , r ≥ 2 B2r 2r+1 2

D4 F4 12 3
E6 E6(a1), −E6(a1) 9, 18 1, 2
E8 E8, E8(a1), E8(a2), E8(a5) 30, 24, 20, 15 1
F4 F4, B4 12, 8 1
G2 G2, A2 6, 3 1

Lemma 3.3 For eachK-equivalence classS ⊂ R, the groupWK(S) is nontriv-
ial.

Proof: Recall thatwS ∈ A(S) is the automorphism ofS induced byw. If wν
S ∈

W (S) for someν ≥ 1 thenwν
S acts trivially on the orthogonal complement ofKS

and acts onS aswν . Hencewν
S commutes withw onV , so thatwν

S ∈ WK(S).
Therefore it suffices to show thatwc`

S 6= 1. If wc`
S = 1, thenw`

1 = 1, which
impliese | `. The table above shows this does not happen.�

Lemma 3.4 AssumeR is irreducible. ThenWK acts irreducibly onVK .

Proof: We use the following basic fact: Given any two rootsα, β ∈ R, there is a
sequence

α = α0, α1, . . . , αk = β (10)

of roots inR such that〈αi, αi+1〉 6= 0 for 0 ≤ i < k. This can be seen as follows.
By viewing β as part of a basis of simple roots, we see that there isγ ∈ R of the
same length asα, such that〈β, γ〉 6= 0. Hence we may suppose〈α, α〉 = 〈β, β〉.
The claim follows from transitivity ofW on roots of a given length [2, VI.1 Prop
11].
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The formh(x, y) from section 2.1 satisfiesT (h(x, y)) = 〈x, y〉. It follows the
sequence (10) also satisfiesh(αi, αi+1) 6= 0 for 0 ≤ i < k.

Now supposeU ⊂ VK is a nonzeroK-subspace preserved all the groups
WK(S). Take a nonzero elementx ∈ U . Chooseα ∈ R such that〈x, α〉 6= 0,
and letS be theK-equivalence class containingα. By Lemma 3.3, there is a
K-reflectionrS ∈ WK(S) of orderm > 1, having the formula

rS(x) = x− (1− η)
h(x, α)

h(α, α)
α,

whereη ∈ Q̄× has orderm. SinceT (h(x, α)) = 〈x, α〉 6= 0, this shows that
α ∈ U . Let β ∈ R be arbitrary, and choose a sequence as in (10). Repeating the
previous argument withx, α replaced byα, α1 shows thatα1 ∈ U . In this way,
we see thatβ ∈ U . HenceR ⊂ U , soU = V . �

Corollary 3.5 Supposew ∈ A(R) is cyclotomic with even square-free orderd.
Then one of the following holds.

1. w = −1;

2. R = G2 or E8 andw is a Coxeter element;

3. d = 2p, wherep ∈ {3, 5}. EachK-equivalence classS has typeAp−1,
WK(S) is generated by a Coxeter element inW (S) and there are|R|p−1

reflections inWK , each of orderp.

Proof: Sinced is square-free ande contains every prime divisor ofd, we must
havee = d, soc = 1 and eachS = S1 is irreducible. The third column of the
table above gives the asserted possibilities forS. �

3.2 Cyclotomic elements and exponents

One can characterize the cyclotomic elements in a Weyl groupW = W (R), in
terms of the exponents{m1, . . . ,mn} of W . With one exception, these are all
obtained as powers of elementsv ∈ W with irreducible characteristic polynomial.
The latter are characterized as follows.

Lemma 3.6 Let e ≥ 2 be an integer. Then the following are equivalent:

1. There existsv ∈ W with characteristic polynomialΦe(t).
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2. The exponents{m1, . . . ,mn} of W represent the cosets in(Z/eZ)×.

If these conditions hold, thenv is regular, unique up to conjugacy, and the cen-
tralizer C(v) = 〈v′〉 is cyclic of order equal to the unique degreedi = mi + 1 of
W which is divisible bye. Conditions 1,2 also hold with(e, v) replaced(di, v

′).

Proof: Assuming condition 1, regularity was proved by Springer in [22, 4.11] and
also follows from the proof of Lemma 3.1 above. Uniqueness now follows from
[22, 4.2], which also shows that the eigenvalues ofv areηmi, i = 1, . . . , n, where
η ∈ Q̄× has ordere. But these eigenvalues are the roots ofΦe(t), so{m1, . . . ,mn}
is a system of representatives for(Z/eZ)×.

Now assume condition 2 holds. We may assumen ≥ 2. Thenn = φ(e) is
even. Moreover, for any primep | e, we have the constraints

p ≤ n + 1, p - mi, 1 ≤ i ≤ n. (11)

For R = An, with exponents{1, 2, . . . , n}, the second constraint implies that
p ≥ n + 1. Hencen = p − 1 for some primep, andv is a Coxeter element, with
characteristic polynomialΦp(t).

For Bn, Cn, constraints (11) imply thatn is a power of2 andv is a Coxeter
element inW , with characteristic polynomialtn + 1 = Φ2n(t).

ConsiderR = Dn. We have seen thatn is even. But thenn− 1 appears twice
as an exponent; conditions 1,2 never hold.

For G2, F4, E6, E8, there are few primes satisfying the constraints (11) and
few possibilities fore such thatφ(e) = n. With the exception ofe = 4 for G2 and
e = 16 for E8, there is an elementv ∈ W of ordere. These are tabulated below,
in the notation of [4], for conjugacy-classes inW .

R exponents e v

G2 1, 5 3,6 A2, G2

F2 1, 5, 7, 11 8, 12 B4, F4

E6 1, 4, 5, 7, 8, 11 9 E6(a1)
E8 1, 7, 11, 13, 17, 19, 23, 29 15, 20, 24, 30 E8(a5), E8(a2), E8(a1), E8

For the cases in this table, we haveC(v) = 〈v〉, except for classA2 in G2 and
E8(a5), which are each the square of a Coxeter elementv′, andC(v) = 〈v′〉. �

If v ∈ W has characteristic polynomialΦe(t), then for each divisord | e,
the elementw = ve/d has irreducible minimal polynomialΦd(t). In fact, a case-
by-case check shows that almost all elementsw ∈ W with irreducible minimal
polynomial can be found in this way:
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Lemma 3.7 Supposew ∈ W has irreducible minimal polynomial onV . Then
one of the following holds:

1. There isv ∈ W with irreducible characteristic polynomialΦe(t) such that
w = ve/d for some divisord | e.

2. R = E7 andw = −1.

In Lemma 3.4 above we proved that ifw has irreducible minimal polynomial
on V then each eigenspacēV (w, ζ) is irreducible forC(w). In fact, we can use
Lemma 3.7 to prove irreducibility on a much smaller subgroup ofC(w), excluding
the case ofw = −1 ∈ W (E7).

First, a remark on normalizers of regular elements inW . Let v ∈ W have
ordere, letC(v) be the centralizer ofv in W and letN(v) be the normalizer inW
of the subgroup〈v〉 generated byv. There is a homomorphism

σ : N(v) −→ (Z/eZ)×

defined by
n−1vn = vσ(n), n ∈ N(v).

It follows from [22, 4.7] thatσ is surjective, so we have an exact sequence

1 −→ C(v) −→ N(v)
σ−→ (Z/eZ)× −→ 1, (12)

by which the group(Z/eZ)× permutes the eigenspaces ofv in V̄ . The following
fact is used implicitly in [22].

Lemma 3.8 If v is regular, then(Z/eZ)× freely permutes the regular eigenspaces
of v.

Proof: SupposēV (v, ζ ′) is an eigenspace forv containing a regular vector, and
n ∈ N(v) preserves̄V (v, ζ ′). Sincev is a scalar on̄V (v, ζ ′), the commutator[n, v]
fixesV̄ (v, ζ ′) pointwise. Therefore[n, v] fixes a regular vector, so[n, v] = 1. �

We now return to our cyclotomic elementw ∈ W of orderd and eigenvalueζ.
Write w = ve/d wherev ∈ W has characteristic polynomialΦe(t) andd | e. Then
ζ = ηe/d, whereη is an eigenvalue ofv. Let ∆ be the kernel of the natural map
(Z/eZ)× −→ (Z/dZ)×. The sequence (12) restricts to another exact sequence

1 −→ C(v) −→ N(v) ∩ C(w)
σ−→ ∆ −→ 1. (13)
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Sincev is regular with eigenvalues of multiplicity one, Lemma 3.8 implies that
the group∆ freely permutes the eigenlines ofv in V̄ . On the other hand, the
eigenvalues ofv in V̄ (w, ζ) areηi, wherei ∈ ∆. Hencedim V̄ (w, ζ) = |∆|, so
∆ is transitive on thev-eigenlines inV̄ (w, ζ). This shows thatN(v) ∩ C(w) is
already irreducible on̄V (w, ζ).

3.3 Cyclotomic structures onE8

We determine theK-equivalence classesS and the orders of the subgroupsWK(S)
for each of the fieldsK arising from cyclotomic elementsw ∈ W = W (E8). We
thereby find the number of reflections of each order, along with the Shephard-Todd
classification of the complex reflection groupC(w) = WK .

There is exactly one cyclotomic class inW (E8) of every order

d ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30}.

The fieldK is generated by thedth roots of unity. We omit the classes of odd
orderd since their negatives have the same centralizer. Ifd = 2 thenw = −1,
soWK = W . If d ∈ {20, 24, 30}, we have[K : Q] = φ(d) = 8 soS = R and
WK = 〈w〉. The nontrivial cases are as follows.

3.3.1 d = 4

Herew belongs to the class2D4(a1) andw2 = −1. This implies that〈α, wα〉 = 0
for all α ∈ R. Hence allK-equivalence classes have type2A1 andWK(S) = 〈w2

S〉
has order two. There are240/4 = 60 K-equivalence classes, each contributing a
singleK-reflection toWK .

3.3.2 d = 6

Herew belongs to the classE8(a8). By 3.5, there are40 K-equivalence classes
S, each of typeA2, and eachWK(S) is cyclic of order three, giving a total of80
K-reflections inWK . The roots inS are the vertices of a planar hexagon and form
a single orbit under〈w〉 (cf. section 6.6 below).

3.3.3 d = 10

Herew belongs to the classE8(a6). By 3.5, there are12 K-equivalence classes
S, each of typeA4, consisting of twow-orbits. EachWK(S) is cyclic of order

16



five, generated by a Coxeter element inW (S), giving a total of48 K-reflections
in WK .

3.3.4 d = 8

Herew belongs to the classD8(a3) andw4 = −1. We havecφ(e) = φ(8) = 4.
The table in section 3.1 and the constraints (9) show thatS has type4A1 or D4. To
analyze this dichotomy, we first make some preliminary remarks on subsystems
of type4A1 in E8, which we calltetrads. Recall thatX = Q(E8) is theE8-root
lattice. We say that a tetradT = ±{α0, α1, α2, α3} is evenif α0 +α1 +α2 +α3 ∈
2X, andT is odd otherwise.

Lemma 3.9 Let R be a root system of typeE8. The even and odd tetrads inR
each form a single orbit underW (R). The even tetrads are precisely those which
are contained in a subsystem of typeD4.

Proof: SetR0 := R and choose a rootα0 ∈ R0. Let R1 ' E7 be the set of roots
in R0 orthogonal toα0. Chooseα1 ∈ R1 and letR2 ' D6 be the set of roots in
R1 orthogonal toα1. Chooseα2 ∈ R2 and letR3 ' D4 × A1 be the roots inR2

orthogonal toα2. Chooseα′3 ∈ D4, α′′3 ∈ A1.
For i = 0, 1, 2 the groupsW (Ri) are transitive onRi, but W (R3) has two

orbits inR3. It follows that

T ′ := ±{α0, α1, α2, α
′
3}, T ′′ := ±{α0, α1, α2, α

′′
3}

represent the twoW (R)-orbits of tetrads inR. One can check thatT ′ is odd and
T ′′ is even.

If the general tetradT = ±{α0, α1, α2, α3} is contained inS ' D4, then
there is a base{β, α1, α2, α3} of S with 〈β, αi〉 6= 0 for i = 1, 2, 3. (That is,β
corresponds to the branch node.) The highest root for this base isα0 = 2β +α1 +
α2+α3. It follows thatα0+α1+α2+α3 ∈ 2X. Conversely, ifα0+α1+α2+α3 =
2λ ∈ 2X, one checks that〈λ, λ〉 = 2, so in factλ is a root. Moreover,〈λ, αi〉 = 1
for eachi. It follows thatβ = λ − α1 − α2 − α3 is a root, and{β, α1, α2, α3} is
the base of aD4 with highest rootα0. �

Return now to our cyclotomic elementw ∈ W (E8) of orderd = 8. Every
K-equivalence classS contains a uniquew-stable tetrad. This is clear ifS ' 4A1

is itself a tetrad. IfS ' D4, thenw, having order eight, must act onS as a Coxeter
elementwS ∈ W (B4). It follows that are threew-orbits onS. It is easy to check
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that these orbits are classified by the value of〈α, wα〉 ∈ {−1, 0, +1}. The set of
α ∈ S for which 〈α, wα〉 = 0 form the uniquew-stable tetrad inS. Let us define

ς := 1 + w + w−1 ∈ End(V ).

If β ∈ S satisfies〈β, wβ〉 = −1, then〈ςβ, wςβ〉 = +1 so thew-orbits inS are
represented by{α, β, ςβ} for any choice of rootsα, β in S such that〈α, wα〉 = 0,
〈β, wβ〉 = −1.

To count theK-equivalence classes of each type, we must look at the roots in
a more explicit way. As in [2], the roots ofR = E8 are the vectors

ei ± ej,
1
2

∑
ciei,

in R8, where1 ≤ i 6= j ≤ 8 and ci ∈ {±1} with
∏

ci = +1. The pairing
〈 , 〉 is then the usual dot product onR8. For visual clarity, we use an abbreviated
notation for roots of the form1

2

∑
ciei, as in the following example:

1
2
(1,−1,−1, 1, 1,−1, 1,−1) = [+−−+ | +−+−].

The roots of the formei ± ej comprise aD8 subsystem ofE8. We choosew ∈
W (D8) such that

w : e1 7→ e2 7→ e3 7→ e4 7→ −e1, e5 7→ e6 7→ e7 7→ e8 7→ −e5.

Using the criteria in 3.9, we find there are 18w-stable tetrads inR; twelve of these
tetrads are odd and six of them are even.

The twelveK-equivalence classesS ' 4A1 are thew-orbits through the fol-
lowing twelve rootsα:

e1 ± e6, e1 ± e8,

[+ + ++ | ± ∓ ±∓], [±∓±∓ | + + ++],

[+ + ++ | ∓ ± ∓±], [∓±∓± | + + ++].

(14)

The sixK-equivalence classesS ' D4 are each the union of threew-orbits,
throughα, β, ςβ, with 〈α, wα〉 = 0, 〈β, wβ〉 = −1, as shown:

α β ςβ

e1 − e3: e1 − e2 −e3 − e4

e5 − e7: e5 − e6 −e7 − e8

e1 ± e5: [+−+− | ± ∓±∓] [+ +−− | ± ±∓∓]
e1 ± e7: [+−+− | ∓ ±±∓] [+ +−− | ± ±±±]
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If S = 4A1 is itself a tetrad, thenWK(S) = {±1} has order two. IfS = D4,
thenWK(S) = 〈w2

S〉 has order four. It follows that there are12 · 1 + 6 · 3 = 30
reflections inWK . This is consistent with Springer’s theory: the degrees ofC(w)
are the degrees ofE8 which are divisible by8, namely8, 24, and7 + 23 = 30.

3.3.5 d = 12

Herew belongs to the classE8(a3). We havecφ(e) = φ(12) = 4. Using the table
in section 3.1 and the constraints (9) we find two possibilities for aK-equivalence
class:S = 2A2 or S = D4.

This time, the orbit-invariant

〈α, wα〉 ∈ {−1, 0, +1}

determines the isomorphism type ofS. Indeed, for anyα ∈ R, the relationw4 −
w2 + 1 = 0 implies that

〈α, w2α〉 = 2 + 〈α, w4α〉.

Sincew2α 6= α 6= −w4α we must have〈α, w2α〉 = 1. Writing the relation as
w3 − w + w−1 = 0 shows that

〈α, w3α〉 = 〈α, wα〉 − 〈α, w−1α〉 = 0.

If 〈α, wα〉 = 0 thenS contains, hence coincides with2A2 and has root basis

{α,−w2α} ∪ {wα,−w3α}

for the twoA2 components. Hence|S| = 12 and consists of a singlew-orbit. We
havec = 2 andw2 acts as the graph automorphism on each component ofS. The
groupWK(S) = 〈w4

S〉 has order three.
If 〈α, wα〉 = 1 thenS = D4 with root basis

{wα− α, w2α− wα, wα− w3α, α− w2α + w3α},

wherew2α − wα corresponds to the branch node. Now|S| = 24 soS consists
of two w-orbits. The orbit not containingα satisfies〈β, wβ〉 = −1. HerewS is a
Coxeter element inW (F4) = A(D4), whose image inA(D4)/W (D4) is a triality.
The groupWK(S) = 〈w3

S〉 has order four.
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We can count the number ofK-equivalence classes of each type, as follows.
Let a andb be the number ofK-equivalence classes of type2A2 andD4, respec-
tively. Countingw-orbits in each type, we havea + 2b = 240/12 = 20. The
degrees ofE8 are2, 8, 12, 14, 18, 20, 24, 30. By Springer’s theory, the degrees of
WK are12, 24, so there are11+23 = 34 reflections inWK . Counting the number
of reflections in each groupWK(S), we get2a + 3b = 34. It follows thata = 8
andb = 6. (In the earlier cased = 8 this method led to only one equation, so we
had to examine the roots.)

The table below summarizes the cases whereW 6= C(w) 6= 〈w〉. Row “num-
ber of S” gives the number ofS of each type. Row “N ” gives the number of
reflections inC(w) of each order. For example, whend = 8 there are18 reflec-
tions of order two and12 reflections of order four. The last row gives the notation
for C(w) according to the Shephard-Todd classification.

d : 4 3, 6 8 5, 10 12

class 2D4(a1) 4A2, E8(a8) D8(a3) 2A4, E8(a6) E8(a3)
|C(w)|: 8·12·20·24 12·18·24· 30 8 · 24 20 · 30 12 · 24
dim VK 4 4 2 2 2

type ofS 2A1 A2 4A1, D4 A4 2A2, D4

|WK(S)| 2 3 2, 4 5 3, 4
number ofS 60 80 12, 6 12 8, 6

N 260 380 218412 548 26316412

ST number 31 32 9 16 10

3.4 Some subfields of cyclotomic fields

Continuing withR = E8, we consider two examples where the image of a field
k ↪→ End(V ) is not generated by an element ofA(R).

3.4.1 Q(
√

2)

We use the notation of section 3.3.4. The embeddingK = Q(ζ8) ↪→ End(V )
sends1 + ζ8 + ζ−1

8 to the operatorς = 1 + w + w−1 ∈ End(V ), satisfying

ς2 = 2ς + 1, ς∗ = ς.

This gives an embedding of the subfieldk = Q(
√

2) ⊂ K in End(V ).
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Let a, b ∈ Q, and supposeη = aα + bwα + bw−1α ∈ R. Then we must have

〈α, η〉 = 2(a + b〈α, wα〉) ∈ {0,±1,±2},
1
2
〈η, η〉 = a2 + 2b2 + 2ab〈α, wα〉 = 1.

(15)

If 〈α, wα〉 = 0, the two equations (15) have only the solutionsη = ±α. In this
case, we haveW (S) = 〈sα〉 and Wk(S) = 1, sinceς does not have rational
eigenvalues.

If 〈α, wα〉 = −1, we find the solutionsη = ±α, ±ςα. By a straightforward
calculation, one proves the following:

Lemma 3.10 Supposeσ ∈ End(X) satisfies an equation of the formσ2 = cσ+1
for somec ∈ Z, andα ∈ R satisfies〈α, σα〉 = 0. Thenσα ∈ R, andσ commutes
with sαsσα.

It follows that Wk(S) = 〈sαsςα〉 has order two. Thus, we find that eachK-
equivalence class of typeD4 contributes fourk-reflections of order two, giving a
total of6·4 = 24 k-reflections inWk. SinceQ(

√
2) ⊂ R, these24 reflections gen-

erate a rank four Coxeter group, which must be of typeF4, by the classification.
We can see this explicitly, as follows.

Let u = 1 +
√

2. Using the linear mapT : k → Q given byT (a + bu) = a,
the formh(x, y) from section 2.1 is

h(x, y) = 〈x, y〉+ 〈x, ςy〉u.

We haveh(x, y) = h(y, x), sinceς is symmetric.
If 〈α, wα〉 = −1, thenh(α, α) = 2, so the reflectionrα := sαsςα is given by

rα(x) = x− h(x, α)α.

If also 〈β, wβ〉 = −1, whereβ lies in anotherk-equivalence class, then on the
two dimensional spacekα + kβ, the productrαrβ has matrix

rαrβ =

[
h(α, β)2 − 1 h(α, β)
−h(α, β) −1

]
, (16)

in terms of thek-basis{α, β}. Since

h(α, β) = 〈α, β〉+ 〈α, ςβ〉u,

there are three possibilities for the order ofrαrβ as follows:
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1. 〈α, β〉 = 〈α, ςβ〉 = 0 ⇒ |rαrβ| = 2;

2. 〈α, β〉 = 0 6= 〈α, ςβ〉 ⇒ |rαrβ| = 3;

3. 〈α, β〉〈α, ςβ〉 = −1 ⇒ |rαrβ| = 4.

For example, the fourk-reflections coming from a singleK-equivalence class of
typeD4 generate aW (B2).

Let

α1 = e1 − e2, α2 = [+−+− | −+ +−],

α4 = e8 − e7, α3 = [+ +−+ | +−++] = wα2.
(17)

One checks that〈αi, wαi〉 = −1 for i = 1, 2, 3, 4 and that thek-reflections

ri := sαi
sςαi

satisfy the Coxeter relations forF4, according to the diagram1—2 4—3—4.
Let W ′

k ' W (F4) denote the subgroup ofWk generated by thek-reflections.
Since the latter are even elements inW (E8), this subgroupW ′

k is not conjugate to
the standardW (F4) ⊂ W (E6) ⊂ W (E8).

We also haveW ′
k 6= Wk. In other words,Wk is not generated byk-reflections.

Indeed, we can writew = v3, wherev ∈ W (E8) has order24. Thenv ∈ Wk,
butW (F4) contains no element of order24. Sincek is real andH is definite, the
groupWk is a finite subgroup of the compact orthogonal groupO4(R). From the
classification (cf. [7, p.47]), we find thatWk is the extension ofW ′

k = W (F4) by
its graph automorphism, which arises from an isometry overQ(

√
2).

3.4.2 Q(
√

5)

Again takeR = E8 and letw ∈ W (E8) be cyclotomic of order10. The operator
τ = w + w−1 ∈ End(V ) satisfies the equationτ 2 = τ + 1 of the golden ratio. We
have an embeddingk = Q(

√
5) ↪→ End(V ), sending1

2
(1 +

√
5) 7→ τ . From the

equation
w2 − w + 1− w−1 + w−2 = 0,

it follows that
〈α, wα〉 = 〈α, w2α〉+ 1 (18)

for everyα ∈ R, which implies that〈α, wα〉 ∈ {0, 1}. For i ∈ {0, 1}, let Ri =
{α ∈ R : 〈α, wα〉 = i}.
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Lemma 3.11 The operatorτ mapsR0 bijectively ontoR1, and has the following
properties:

1. 〈α, τα〉 = 0;

2. sαsτα ∈ Wk for all α ∈ R0;

3. Thew-orbits ofα andτα comprise a root subsystem of typeA4.

Proof: If 〈α, wα〉 = 0, then〈α, w2α〉 = −1 by (18), so thatα+w2α ∈ R. Hence
τα = w−1(α + w2α) ∈ R. It is straightforward to check that

〈τα, τwα〉 = 1, and 〈α, τα〉 = 0.

The first of these equations shows thatτα ∈ R1, and the second, combined with
Lemma 3.10, shows thatτ commutes withsαsτα, proving 2. For the bijectivity,
note thatτ − 1 sendsR1 → R0 and τ(τ − 1) = 1. For 3, one checks that
{wα, w3α, α, w2α} forms a base of anA4. �

From Lemma 3.11, it follows that thek-equivalence classes are the subsystems
of R of the form

S = {±α,±τα} ' 2A1, for α ∈ R0.

These give60 k-reflectionssαsτα in the reflection subgroupW ′
k ⊂ Wk. From the

classification of real reflection groups, we see thatW ′
k is the Coxeter group of type

H4.
To see the Coxeter generators, number the simple roots ofE8 as shown:

1 2 3 4 5 6 7
8

(19)

and letsi be the corresponding simple reflections. Choose a “bipartite” Coxeter
element

v = s2s4s6s8s1s3s5s7

(writing si for sαi
). The elementw = v3 is cyclotomic of order ten. One checks

that
α1, α2, α3, α8 ∈ R0, α4, α5, α6, α7 ∈ R1

and that
τ : α1 7→ α7, α2 7→ α6, α3 7→ α5, α8 7→ α4.
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Thus we recover the “inflation map” of [17] (defined there in terms of icosians).
As in [ibid.] the Coxeter relations inW (E8) immediately imply that thek-
reflections

r1 = s1s7, r2 = s2s6, r3 = s3s5, r4 = s4s8

satisfy the Coxeter relations ofW (H4), according to the diagram1—2—3 5—4.
In contrast to the previous section, this time we haveW ′

k = Wk. This can be
seen as follows. LetXk be the latticeX, viewed as a module over the ring of
integerso = Z[τ ] in k. Since2 remains prime ino, the quotientXk/2Xk is a four
dimensional vector space overo/2o ' F4. The formH(x, y) is symmetric and
the formula (3) reads as

H(x, y) = −〈x, y〉 − 〈x, y + wy + w−1y〉τ.

Since〈x, x〉 ∈ 2Z for all x ∈ X, we haveH(x, x) ∈ 2o, so thatWk preserves
theF4-valued quadratic formq(x) ≡ 1

2
H(x, x) mod 2o on Xk/2Xk. It is well-

known that kernel of the action ofW onX/2X is {±1}, so we have an injection

Wk/{±1} ↪→ Oε
4(4), (20)

whereε = ± is + if the form q is split andε = − otherwise. Since|Oε
4(4)| =

2 · 42(42− ε)(42− 1) andWk contains the subgroupW ′
k = W (H4) of order1202,

it follows thatε = +, thatW ′
k = Wk and that (20) is an isomorphism.

4 Coinvariants

4.1 Lattices and skew-symmetric forms

Let V be a finite dimensionalQ-vector space of dimensionn, and letX ⊂ V
be a freeZ-module of rankn. Let w be an automorphism ofV of finite order,
preservingX. We assume thatw is elliptic , that is,w has no nonzero fixed vectors
in V . Equivalently, the group of coinvariants

Xw := X/(1− w)X

is finite, of order
|Xw| = det(1− w),

Forλ ∈ X, we let
ρλ := λ + (1− w)X ∈ Xw
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be the coset containingλ.
Let M(t) be the monic minimal polynomial ofw onV and set

m := M(1).

There is a unique polynomialJ(t) ∈ Z[t], with deg J < deg M , such that

(1− t)J(t) + M(t) = m.

Let Z[w] be theZ-subalgebra ofEnd(V ) generated byw. In the ringZ[w], we
then have

(1− w)J(w) = m. (21)

It follows thatmX ⊂ (1− w)X, so that

mXw = 0, (22)

andXw is aZ/mZ-module. Explicit formulas forJ(t) in certain cases are given
in section 4.3 below.

Note thatM(t) is also the minimal polynomial ofw−1, so that

(1− w−1)J(w−1) = m = (1− w)J(w),

or
−w−1(1− w)J(w−1) = (1− w)J(w).

Since1− w is a unit inEnd(V ), this implies that

J(w−1) = −wJ(w) = (1− w)J(w)− J(w) = m− J(w). (23)

Let V̂ be the dual space ofV and letX̂ = Hom(X, Z) be the dual lattice, with
the natural pairing〈·, ·〉 : X × X̂ → Z. Forλ ∈ X, we have

〈J(w)λ, X̂〉 ⊂ mZ ⇔ J(w)λ ∈ mX

⇔ J(w)λ ∈ J(w)(1− w)X

⇔ λ ∈ (1− w)X,

(24)

by (21). From (23), we have

〈J(w)λ, µ̂〉 ≡ −〈λ, J(w)µ̂〉 mod m,

for λ ∈ X, µ̂ ∈ X̂. It follows that we have a duality

Xw × X̂w −→ Z/mZ, (ρλ, ρµ̂) 7→ 〈J(w)λ, µ̂〉 mod m, (25)

whereλ ∈ X, µ̂ ∈ X̂ are lifts ofρλ, ρµ̂, respectively.
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4.2 Quadratic lattices

Now suppose〈·, ·〉 is a symmetric positive definiteQ-bilinear form onV , taking
integer values onX. We can then identifyV = V̂ and regard the dual latticêX as

X̂ = {λ ∈ V : 〈λ, X〉 ⊂ Z}.

Note thatX ⊆ X̂.
Assumew preserves the form〈 , 〉. Then the pairing (25) restricts to anZ/mZ-

bilinear form onXw, given by

〈ρλ, ρµ〉w := 〈J(w)λ, µ〉 mod m, for λ, µ ∈ X, (26)

which is skew-symmetric, by (23). More precisely the form〈 , 〉w is symplectic
(that is,〈ρ, ρ〉w = 0 for all ρ ∈ Xw) if m > 2, or if m = 2 and〈λ, λ〉 ∈ 2Z for all
λ ∈ X. The form〈 , 〉w is orthogonal ifm = 2 and〈λ, λ〉 /∈ 2Z for someλ ∈ X.
A calculation similar to (24) shows that the form〈 , 〉w has radical

X0
w = [X ∩ (1− w)X̂]/(1− w)X = ker[Xw −→ X̂w], (27)

where the latter map is induced by the inclusionX ↪→ X̂.
In particular, ifX = X̂, then〈 , 〉w is nondegenerate onXw. At the other

extreme, the form〈 , 〉w can be identically zero onXw, as we shall see in section
4.4.

4.3 Cyclotomic lattices and reduction modulop

Retain the set-up of the previous two sections. As before, we say thatw is cyclo-
tomic if its minimal polynomialM(t) is irreducible overQ.

Lemma 4.1 Supposew is cyclotomic of orderd > 1. If d is not a prime power,
thenXw = 0. If d is a power of a primep, then

Xw ' Fa(d)
p ,

wherea(d) = n · φ(d)−1.

Proof: Sincem = Φd(1) kills Xw, this follows from (22) and the elementary fact
thatΦd(1) = 1 unlessd is a power of a primep, in which caseΦd(1) = p. �

Suppose thatw is cyclotomic of orderd a power of a primep and letζ ∈ Q̄×

have orderd. As before, the fieldK = Q(ζ) embeds inEnd(V ) via ζ 7→ w
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andZ[w] is the image of the ring of integers ofK. The element1 − w ∈ Z[w]
generates the unique ramified prime idealP ⊂ Z[w]; we havepZ[w] = P φ(d) and
Z[w]/P ' Fp.

Let XK be the abelian groupX, viewed as anZ[w] module. Then we have

Xw = XK/PXK ,

so thatXw is the reduction modulop of theZ[w]-latticeXK .
The relation between the hermitian formh and the pairing〈 , 〉w is as follows.

Forx, y ∈ XK , we have (see (3))

h(x, y) =

φ(d)−1∑
i=0

〈x, fi(w)y〉ζ i ≡
φ(d)−1∑

i=0

〈x, fi(w)y〉 mod P,

wherefi(t) = ai + ai−1t + · · ·+ a1t
i−1 + ti, andΦd(t) =

∑φ(d)−1
i=0 ait

i. Using the
relationai = aφ(d)−i and the fact thatΦd(1) = p, one can check that

(1− t)

φ(d)−1∑
i=0

fi(t) + Φd(t) = p.

It follows that the polynomialJ(t) of section 4.1 is given by

J(t) =

φ(d)−1∑
i=0

fi(t),

so that we have
h(x, y) ≡ −〈x, y〉w mod P.

4.4 Root lattices

Let V be a quadratic space as in section 4.2 and letR be an irreducible reduced
root system inV . For eachα ∈ R, we set

α̌ =
2α

〈α, α〉
, Ř = {α̌ : α ∈ R}.

We assumeR is compatible with the quadratic structure onV , that is,

〈α, β̌〉 ∈ Z for all α, β ∈ R
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and the reflectionsα(x) = x− 〈x, α̌〉α onV preservesR. The inner product〈 , 〉
is normalized so that

1 ∈ 〈R, R〉 ⊂ Z. (28)

In most cases, the normalization (28) makes〈α, α〉 = 2 for each short rootα ∈ R.
The exceptions areR = Bn andC2, where〈α, α〉 = 1 for each short root.

Let Q(R) andQ(Ř) be theZ-lattices inV generated byR andŘ, and let

P (R) = Q̂(Ř) = {λ ∈ V : 〈λ, Ř〉 ⊂ Z},

P (Ř) = Q̂(R) = {λ ∈ V : 〈λ, R〉 ⊂ Z}.

We haveQ(R) ⊂ P (R) andQ(Ř) ⊂ P (Ř), along with a duality

P (R)/Q(R)× P (Ř)/Q(Ř) −→ Q/Z

induced by our pairing〈x, y〉. Let

f = [P (R) : Q(R)] = [P (Ř) : Q(Ř)].

For anyα ∈ R andλ ∈ P (R) we have(1− sα)λ = 〈λ, α̌〉α ∈ Zα. It follows
easily that(1− w)P (R) ⊂ Q(R), which implies that

f | det(1− w). (29)

We apply section 4.1 to the latticeX = Q(R), with X̂ = P (Ř). Thus we have
a skew-symmetric form〈 , 〉w onXw with radical

X0
w =

[
Q(R) ∩ (1− w)P (Ř)

]
/(1− w)Q(R) = ker[Xw −→ X̂w].

The normalization (28) makes the forms〈 , 〉w symplectic in all cases except
R = Bn, C2, where the forms〈 , 〉w are orthogonal.

If R = Ř, then since(1 − w)P (R) ⊂ Q(R), the map1 − w induces an
isomorphism

P (R)/Q(R)
∼−→ X0

w. (30)

For R = E8 in particular, the form〈 , 〉w is a nondegenerate symplectic form on
Xw for all elliptic w ∈ W (E8).

If R 6= Ř, then the radicalX0
w depends onw. The various cases work out

as follows. IfR = Bn, we haveX = Q(R) = Zn with the usual inner product
〈ei, ej〉 = δij. The elliptic classes inW (Bn) are in bijection with partitions of
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n: to the partitionn = n1 + · · · + nr corresponds the class ofw ∈ W (Bn) with
characteristic polynomial

det(tIV − w) =
r∏

i=1

1 + xni .

We haveXw ' (Z/2Z)r. SinceX = X̂, the pairing〈 , 〉w is a nondegenerate
orthogonal form on(Z/2Z)r.

For R = Cn with n ≥ 3, the elliptic classes are those ofW (Bn). We have
X = Q(R) = {(x1, . . . , xn) ∈ Zn :

∑
xi ∈ 2Z} andXw ' (Z/2Z)r as above.

The form〈 , 〉w is symplectic with radical

X0
w '

{
Z/2Z for r odd

Z/2Z× Z/2Z for r even.
(31)

ForG2 andF4 we list in the following tables the elliptic classes, their charac-
teristic polynomials and the corresponding groupsXw, X0

w. The forms〈 , 〉w are
symplectic.

Class ofw ∈ W (G2) det(tIV − w) Xw X0
w

G2 Φ6 0 0
A2 Φ3 Z/3Z Z/3Z

A1 + Ã1 Φ2
2 (Z/2Z)2 0

Class ofw ∈ W (F4) det(tIV − w) Xw X0
w

F4 Φ12 0 0
F4(a1) Φ2

6 0 0
D4 Φ2

2Φ6 (Z/2Z)2 0
D4(a1) Φ2

4 (Z/2Z)2 (Z/2Z)2

B4 Φ8 Z/2Z Z/2Z
A2 + Ã2 Φ2

3 (Z/3Z)2 0

A3 + Ã1 Φ2
2Φ4 (Z/4Z)× (Z/2Z) (Z/4Z)× (Z/2Z)

A1 + C3 Φ2
2Φ6 (Z/2Z)2 (Z/2Z)2

4A1 Φ4
2 (Z/2Z)4 (Z/2Z)2
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5 Elliptic regular coinvariants for E8

Let w ∈ W = W (E8) be elliptic and regular. Recall that forE8 this is equivalent
to w being cyclotomic and6= 1. By Lemma 4.1, the space of coinvariantsXw is
nonzero iff the order ofw is a power of the primep. Recall that the symplectic
form 〈 , 〉w is nondegenerate onXw. Hence we have a natural homomorphism
%w : C(w) −→ Sp(Xw) from the centralizerC(w) of w in W to the group of
automorphisms of the nondegenerate symplectic spaceXw overFp.

If w = −1 thenXw = X/2X andC(w) = W preserves the quadratic form
q(x) = 1

2
〈x, x〉 mod 2 on X/2X. It is well known that image of%w is the or-

thogonal groupO(X/2X, q), which is properly contained inSp(X/2X).
In this section and the next we prove

Proposition 5.1 If w ∈ W = W (E8) is elliptic and regular and not equal to−1
then the natural map%w : C(w) −→ Sp(Xw) is surjective.

Proof: The class ofw is determined by its orderd ∈ {3, 4, 5, 8}. The cased = 3
is the most complicated and is covered in the next section.

Consider the cased = 5, and letK ⊂ Q̄× be the field generated by a fifth root
of unity ζ ∈ Q̄×. SinceΦ5(t) = 1 + t + t2 + t3 + t4, the formh(x, y) on VK is
given by

h(x, y) = 〈x, y〉+〈x, y+wy〉ζ+〈x, y+wy+w2y〉ζ2+〈x, y+wy+w2y+w3y〉ζ3

and
h(x, y) ≡ −〈x, y〉w mod P,

whereP = (1− ζ)Z[ζ] is the ramified prime inZ[ζ].
From section 3.3.3 we have forα ∈ R either

〈α, wα〉 = 0 and 〈α, w2α〉 = −1

or
〈α, wα〉 = −1 and 〈α, w2α〉 = 0,

which leads to

h(α, α) = 2 + 2ζ + ζ2 = (1− ζ)(1 + 2ζ + 2ζ2 + ζ3),

or
h(α, α) = 2 + ζ + ζ2 + ζ3 = (1− ζ)(1 + ζ + ζ2 + ζ3),

30



respectively. Henceh(α, α)(1 − ζ)−1 ≡ 1 mod P . It follows that the action of
theK-reflectionrS onXw = XK/PXK ' F2

5 is given by

rS(x) = x− h(x, α)ᾱ = x + 〈x, α〉wᾱ, (32)

whereα ∈ S and ᾱ denotes the image ofα in Xw. Since the pairing〈 , 〉w
is nondegenerate, there are two rootsα, β such that〈α, β〉w 6= 0 mod 5. Then
{ρα, ρβ} is a basis ofXw. LettingS, T be theK-equivalence classes ofα, β, the
matrices ofrS, rT are given by

rS =

[
1 〈β, α〉w
0 1

]
, rT =

[
1 0

〈α, β〉w 1

]
. (33)

HencerS andrT generateSL2(5), proving surjectivity ford = 5.

Consider the cased = 8 and letK be the field generated by the eighth roots
of unity. Recall that eachK-equivalence classS contains a rootα ∈ S such that
〈α, wα〉 = 0. We haveS ' 4A1 or S ' D4. By Lemma 3.9, the latter holds iff
J(w)α ∈ 2X. Since2 = (1− w)J(w), we have

S ' D4 ⇔ α ∈ (1− w)X ⇔ ρα = 0.

ForS ' 4A1, we haveh(α, α) = 2 so formula (32) holds in this case as well, and
the rest of the proof is identical to the previous case.

For the cased = 4, we take a different tack. Let̄X = X/2X, and letO(X̄)
be the orthogonal group of the quadratic formq defined above. The mapW →
O(X̄) sendsw to an involution inO(X̄) and the projectionX → X̄ induces an
isomorphismX̄w ' Xw on coinvariants. LettinḡXw denote the invariants ofw in
X̄, we have an exact sequence

0 −→ X̄w −→ X̄
1−w−→ X̄ −→ X̄w −→ 0.

Hence the subgroupU ⊂ O(X̄) acting trivially onX̄w andX̄w is the unipotent
radical of the parabolic subgroup inO(X̄) with Levi GL4(2). Let Ũ be the pre-
image ofU in W . We have

|U | = 26, |Ũ | = 27.

The normalizerN(w) = {v ∈ W : wv = w±1} preserves the form〈 , 〉w
on X̄w, andŨ is the kernel of the induced mapN(w) −→ Sp(X̄w) = Sp4(2).
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Counting orders, we find the latter map is surjective. I claim there existsv ∈ Ũ
such thatwv = w−1. This will imply that we have an exact sequence

1 −→ Ũ ∩ C(w) −→ C(w) −→ Sp(X̄w) −→ 1,

completing the proof in this case.
To verify the claim, we use the notation of section 3.3.4 for roots ofE8. For

0 ≤ i ≤ 6, let

αi = ei+1 − ei+2, α7 = e7 + e8, α8 = 1
2
(−1,−1,−1,−1,−1,−1,−1,−1).

These roots correspond to the nodes in the extended Dynkin diagram, labelled as
follows:

8 7 5 4 3 2 1 0
6

We may takew ∈ W (D8), writing (ij) andti for a transposition and sign change,
respectively:

w = (12)t2 · (34)t3 · (56)t6 · (78)t8.

The element
v = (12) · (34) · (56) · (78) = s0s2s4s6

conjugatesw tow−1 and fixes eachραi
∈ X̄w. This last is clear except fori = 1, 3,

but here we havevα1 = −wα1, vα3 = wα3. This completes the proof in this case.
�

6 Elliptic trialities

Let R be an irreducible root system, withX = Q(R), A = A(R), W = W (R)
as before. Atriality is a group element of order three. An elliptic triality inA
is cyclotomic with minimal polynomialM(t) = t2 + t + 1 and characteristic
polynomialdet(t ·IV −w) = (t2 + t+1)k, where2k, the rank ofR, must be even.
By regularity, there is at most oneW -conjugacy class of elliptic trialities inA. If
w ∈ W then (29) implies that the index[P (R) : Q(R)] is a power of3. It follows
thatR has one of the types

A2, G2, F4, E6, E8. (34)

Elliptic trialities exist for each case in (34): the prime3 divides the Coxeter num-
ber and does not divide any exponent, so for any Coxeter elementv ∈ W , the
elementw = vh/3 is an elliptic triality.
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If w /∈ W thenR = D4 andw is an elliptic triality inW (F4) = A(D4). In
this case, the inclusionQ(D4) ↪→ P (D4) = Q(F4) induces an isomorphism on
w-coinvariants. Hence the caseR = D4 is subsumed by the caseR = F4.

6.1 Coinvariants for trialities

By Lemma 4.1, we have
Xw ' Fk

3. (35)

Since3 = (1−w)(2+w), we haveJ(t) = 2+t and the corresponding symplectic
form onXw is given by

〈x, y〉w = 〈(2 + w)x, y〉 mod 3.

Lemma 6.1 Supposew ∈ A is an elliptic triality, letλ ∈ X and setδ = (1−w)λ.
Then

2〈wλ, λ〉 = −〈λ, λ〉 and 〈δ, δ〉 = 3〈λ, λ〉 ∈ 3Z.

Proof: Sincew + w−1 = −1, we have

2〈wλ, λ〉 = 〈wλ, λ〉+ 〈λ, w−1λ〉 = 〈wλ, λ〉+ 〈w−1λ, λ〉 = −〈λ, λ〉.

It follows that

〈δ, δ〉 = 〈(1− w)λ, (1− w)λ〉 = 2〈λ, λ〉 − 2〈wλ, λ〉 = 3〈λ, λ〉 ∈ 3Z,

as claimed. �

Lemma 6.2 Supposeα, β ∈ R are short roots. Letw be an elliptic triality, and
supposeα, β have the same class inXw. Thenβ = wiα for somei = 0, 1, 2.

Proof: Our normalization (28) implies that〈α, α〉 = 〈β, β〉 = 2 for the cases in
(34). We are assuming the elementδ = α − β vanishes inXw, so there isλ ∈ X
such that

δ = (1− w)λ, (36)

and we can apply Lemma 6.1:

〈δ, δ〉 = 3〈λ, λ〉, 2〈wλ, λ〉 = −〈λ, λ〉.

On the other hand, sinceδ = α− β, we have

〈δ, δ〉 = 4− 2〈α, β〉 ∈ 3Z. (37)
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Since〈α, β〉 ∈ Z, [2, VI.1.3] implies

〈α, β〉 ∈ {0,±1,±2}.

However, equation (37) limits the possibilities to

〈α, β〉 ∈ {−1, 2}.

If 〈α, β〉 = 2 thenα = β. Hence from now on we assume

〈α, β〉 = −1,

which means
〈δ, δ〉 = 6, and 〈λ, λ〉 = 2.

But a vector inX of norm equal to that of a short root is itself a root [Kac [16,
Prop. 5.10 a)]. Thus,λ is also a short root and we have

〈wλ, λ〉 = −1
2
〈λ, λ〉 = −1.

This implies that

〈λ, α〉 − 〈λ, β〉 = 〈λ, δ〉 = 〈λ, (1− w)λ〉 = 〈λ, λ〉 − 〈λ, wλ〉 = 3.

But λ, α, β are roots of the same length, so as above, we have

〈λ, α〉, 〈λ, β〉 ∈ {0,±1,±2}.

Since〈λ, α〉 − 〈λ, β〉 = 3, there are two possibilities:

〈λ, α〉 = 2 and 〈λ, β〉 = −1, (38)

or
〈λ, α〉 = 1 and 〈λ, β〉 = −2. (39)

The first possiblity (38) implies thatλ = α, so (36) reads as

α = β + (1− w)α,

that is,
β = wα.

Likewise, the second possibility implies thatα = wβ. The lemma is proved.�
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Now we can prove the main result of this section. The automorphism group
A = A(R) of R containsW as a normal subgroup; we haveA = W for R =
G2, F4, E8 and [A : W ] = 2 for R = A2, E6. Recall that the caseR = D4 is
contained in the caseR = F4. If w ∈ W is an elliptic triality, the centralizer
CA(w) of w in A acts on theF3- vector spaceXw, preserving the symplectic form
〈 , 〉w.

Proposition 6.3 Let w ∈ W be an elliptic triality. The natural action ofCA(w)
onXw gives an exact sequence

1 −→ 〈w〉 −→ CA(w) −→ Sp(Xw) −→ 1,

whereSp(Xw) is the isometry group of the symplectic form〈 , 〉w on Xw. This
sequence splits in all cases exceptR = E6.

Proof: If x ∈ A, thenxwx−1 is another elliptic triality, hence isW -conjugate to
w. This shows that

|CA(w)| = [A : W ] · |CW (w)|,

hence this order is the given by degrees. These are tabulated below, along with a
concrete description of the groupSp(Xw) and its order.

R |CA(w)| Sp(Xw) |Sp(Xw)|
A2 2 · 3 F×3 3− 1
G2 6 F×3 3− 1
F4 6 · 12 SL2(F3) 3(32 − 1)
E6 2 · 6 · 9 · 12

[
F×3 × SL2(F3)

]
n F2

3 2 · 33(32 − 1)
E8 12 · 18 · 24 · 30 Sp4(F3) 34(34 − 1)(32 − 1)

In each case, we have
|CA(w)| = 3|Sp(Xw)|.

Hence it suffices to prove that the kernel of the mapCA(w) → Sp(Xw) is gener-
ated byw.

Suppose thatu ∈ CA(w) acts trivially onXw. Then for every short rootα ∈ R,
the rootsα, uα have the same image inXw. Lemma 6.2 implies thatα anduα are
in the samew-orbit. Henceu preserves eachK-equivalence classS containing a
short root inR, whereK is the subfield ofEnd(V ) generated byw. This means
thatu preserves theK-line in VK throughS. The short roots spanV , sou has all
of its eigenvalues inK.
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LetS be the set ofK-equivalence classes inR containing a short root. Sinceu
preservesKS for S ∈ S, it follows thatu commutes with the groupWK(S). The
proof of Lemma 3.4 shows that the subgroup ofWK generated the groupsWK(S)
for S ∈ S is irreducible onVK . This implies thatu acts onVK by a scalar inK.
The roots of unity inK× are generated by−w. Since−1 is acts nontrivially on
theF3-vector spaceXw, it follows thatu ∈ 〈w〉, as claimed.�

6.2 Subgroups ofSp4(3)

All centralizers of elliptic trialities are algebraic subgroups ofSp4(3). We ignore
A2 since the automorphism group of this root system isW (G2). For this discus-
sion it is convenient to number the simple roots ofE8 as follows:

1 2 3 4 5 7 8
6

(40)

and let

α9 = α1 + 2α2 + 3α3 + 2α4 + α5 + 2α6,

α0 = 2α1 + 4α2 + 6α3 + 5α4 + 4α5 + 3α6 + 3α7 + 2α8

be the highest roots in theE6 Coxeter subsystem andE8, respectively. Letsi ∈
W (E8) be the reflection forαi.

As our elliptic triality inW (E8), we takew = w0w1w2w3, where

w0 = s0s8, w1 = s1s2, w2 = s5s4, w3 = s6s9.

Then
w1 ∈ W (G2), w1w2w3 ∈ W (F4) ⊂ W (E6)

are elliptic trialities in the respective groups. Let us writeCR(x) = CA(R)(x) for
R = G2, F4, E6 andx ∈ W (E8). We have

CG2(w1) = CG2(w) and CR(w1w2w3) = CR(w) for R = F4, E6.

Let ρi be the image ofαi in Xw. The quadruple(ρ0, ρ6, ρ3, ρ7) is an ordered basis
of Xw = F4

3 on which the form〈 , 〉w has matrix
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 . (41)
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From Proposition 6.3, we have

CE8(w) = 〈w〉 × Sp4(3),

whereSp4(3) is identified with the elements ofCE8(w) of determinant one onVK .
Sincew /∈ CE6(w), the projection ofCE8(w) into Sp(Xw) = Sp4(3) is injective
on the groupsCR(w), for R = G2, F4, E6. Their images give the following chain
of algebraic subgroups ofSp4(3):

CG2(w) ⊂ CF4(w) ⊂ CE6(w) ⊂ CE8(w)
↓ ↓ ↓ ↓

1 0 0 0
0 ∗ ∗ 0
0 0 ∗ 0
0 0 0 1

 ⊂


1 0 0 ∗
0 ∗ ∗ 0
0 ∗ ∗ 0
0 0 0 1

 ⊂


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗

 ⊂ Sp4(3).

Here∗ represents arbitrary independent elements ofF3 such that the indicated
matrix preserves the form (41).

6.3 A remark on transitivity

Let us call a vectorv ∈ Xw nonsingular if v lies outside the radical of〈 , 〉w
whenR = E6, and if v is nonzero in the remaining cases. One can check that
each root gives a nonsingular vector inXw.

The idea for Lemma 6.2 came from the observation that the number of non-
singular vectors inXw is one third the number of short roots, as follows.

A2 : 3− 1 = 6/3

G2 : 3− 1 = 6/3

F4 : 32 − 1 = 24/3

E6 : 33 − 3 = 72/3

E8 : 34 − 1 = 240/3.

(42)

Moreover, sinceSp(Xw) is transitive on nonsingular vectors inXw. It follows
from Proposition 6.3 thatCA(w) is transitive on the set of short roots inR. In
fact, since the highest short root is fixed by diagram symmetries, the smaller group
CW (w) transitive on short roots. In the casesR = G2, F4 where there are multiple
root lengths, there is an involution onE interchanging long and short roots and
invertingw. It follows thatCW (w) is also transitive on long roots inR.
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6.4 Elliptic trialities in F4

Each case of elliptic trialities has special features, relating to other areas of math-
ematics. We explore these next, starting with the simplest nontrivial case.

The F4 root latticeX = Q(F4) is the subgroup ofR4 consisting of vectors
whose coordinates are all integers or all half-integers. Identifying the standard
basis ofR4 with 1, i, j, k, the Hamilton quaternion relations impart a ring struc-
ture toX. This ringH, with underlying additive groupX, is isomorphic to the
endomorphism ringEnd(E) of the unique supersingular elliptic curveE in char-
acteristic two, with affine equationy2 + y = x3. We refer to [21] for the basic
facts about elliptic curves. The automorphism group of any elliptic curve has or-
der dividing24 [21, Thm. 10.1] and the curveE attains this maximum: we have
Aut(E) = H× ' SL2(3). This isomorphism is given by the action ofAut(E)
on the groupE[3] = {P ∈ E : 3P = 0} of 3-torsion points, on which the Weil
pairing is a symplectic form invariant underAut(E).

A ring isomorphism
θ : H ∼−→ End(E)

intertwines the quadratic form〈x, x〉 on X with the form onEnd(E) given by
the degree of an endomorphism. Henceθ sends the short roots inX to the units
Aut(E). The Frobenius endomorphismF of E has degree two, soθ sends the
long roots inX to the twisted Frobeniiσ F with σ ∈ Aut(E).

Fix an elliptic trialityw ∈ W (F4). Proposition 6.3 shows that

CW (D4)(w) ' SL2(3).

The elementω := θ(w · 1) ∈ Aut(E) satisfies

θ(wλ) = θ(λ)ω, for all λ ∈ H. (43)

Sinceω has order three, it fixes a unique line in the two-dimensionalF3-vector
spaceE[3] = {P ∈ E : 3P = 0}. Let P be a non-identity point in this line.
Then the map

H −→ E[3], A 7→ θ(A) · P

induces an anSL2(3)-equivariant isomorphism

Xw = H/(1− w)H ∼−→ E[3].

Thus, the elliptic curveE gives an interpretation of the abstract isomorphism (35).
In the next section, we’ll see thatE is also relevant to the elliptic triality inW (E6).
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Before getting to that, we conclude theF4 example with a remark on the24-
cell; this is the unique regular convex self-dual polytope in four dimensions (see
[9, chap.8]). It is comprised of24 octahedra, centered at24 roots of a fixed length
in X. The symmetry group of the24-cell isW (F4) and the fixed-point-free triality
symmetries of the24-cell are exactly the elliptic trialitiesw ∈ W (F4). From the
last paragraph in section 6.3 we conclude thatCW (D4)(w) = SL2(3) acts simply-
transitively on the24 octahedra.

We can writew as a productw = uv of commuting trialitiesu, v, where
u ∈ W (D4). The element−u has order six and generates a Borel subgroupB of
SL2(3). TheB-orbit of an octahedral cell is a solid polyhedral torus, consisting
of six octahedra meeting in a sequence of common faces. The whole 24-cell, a
polyhedral decomposition of the three-sphere, is the union of four such octahedral
tori, which are mutually linked.

The subgroupB is also the stabilizer of a vertex under the action ofSL2(3)
on the tetrahedron via the mapSL2(3) → SL2(3)/ ± 1 = Alt(4). The quotient
mapSL2(3) → SL2(3)/B thus gives a map from the24-cell to the tetrahedron,
which is a polyhedral analogue of the Hopf fibrationS3 → S2, in which the fibers
have been fattened into linked tori.

6.5 Elliptic trialities in E6

Let us change coordinates slightly, and view the elliptic curveE above as defined
in P2 by the cubic polynomialf = X2Z+Y 3+XZ2. The 3-torsion points on any
elliptic curve are also the inflection points, hence are independent of the choice of
origin defining the group structure. For our curveE, the3-torsion points coincide
with theF4-rational points:

E[3] = E(F4).

The polynomialf may be viewed as a hermitian form onF3
4, andE(F4) is the

set off -isotropic lines inF3
4. The projective unitary groupPU3(2) of f , of order

9 · 24, acts on the curveE with group structure ignored. The stabilizer of a point
in E(F4) is a Borel subgroup inPU3(2) and is isomorphic toSL2(3). Thus we
may identify the points inE(F4) with the Borel subgroups ofPU3(2). Given a
Borel subgroupB, and lettingEB be the elliptic curve (overF4) defined byf
with identity elementB, we haveAut(EB) = B. To see this explicitly, letB be
the stabilizer ofO = [1, 0, 0] ∈ E. Then ([21, p.327])B = Aut(E) is given in
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X, Y, Z coordinates by the projective matrices1 us t
0 u s2

0 0 1

 , u ∈ F×4 , [s, t, 1] ∈ E(F4). (44)

The subgroup withu = 1 is the quaternion groupQ; these eight automorphisms
happen to be parametrized by the points inE(F4) distinct fromO. This is ex-
plained by the Bruhat decomposition: sincePU3(2) has rank one, the2-Sylow
subgroup of any Borel subgroup acts simply-transitively, by conjugation, on the
remaining Borel subgroups.

The group(E, O) acts on itself by translations, and this action turns out to
be linear onE(F4). To see this, it suffices, by the transitivity ofQ, to note that
translation by the pointP = [0, 0, 1] is given by the linear map[X, Y, Z] 7→
[Z, Y,X + Z]. Thus,E(F4) embeds inPU3(4) as a normal subgroup, and we
have

PU3(4) = E(F4) o SL2(3).

Now, an elliptic trialityw ∈ W (F4) is also an elliptic triality inW = W (E6).
Let ζ ∈ Q̄× have order three, and letVK be theK-vector spaceV = Q⊗Q(E6)
whereζ acts onV via w. The groupCW (w) = WK preserves the hermitian form
h onVK (see section 2.1). LetXK be the abelian groupX = Q(E6), viewed as a
Z[ζ]-module. Since2 remains prime inZ[ζ], the formh induces a hermitian form
on the vector spaceXK/2XK ' F3

4. This gives an isomorphism

WK ' U3(2),

in whichw maps to a scalar matrix inU3(2), so that

WK/〈w〉 ' PU3(2).

Since all hermitian forms in three variables are equivalent, we see thatCW (w)/〈w〉
is the automorphism group of the curveE with group structure ignored.

Let A = A(E6) be the full automorphism group of theE6 root system. In
section 6.2, we have seen thatCA(w) is a maximal parabolic subgroup inSp4(3)
with Heisenberg groupH for unipotent radical. The Levi subgroup ofCA(w) is
F×3 × SL2(3), where the first factor is generated by the graph automorphism of
E6. It follows that

CW (E6)(w) = SL2(3) n H.

40



The center ofH is generated byw. From section 3.2, the eigenspacesV̄ (w, ζ) and
V̄ (w, ζ2) are three dimensional irreducible representations ofCW (w), affording
the central charactersw 7→ ζ, w 7→ ζ2 of H. It follows thatV̄ (w, ζ) andV̄ (w, ζ2)
are the Weil representations ofCW (w) = SL2(3) n H [13, 2.4].

6.6 Elliptic trialities in E8

For an elliptic trialityw ∈ W = W (E8), the analogue of the elliptic curveE
with its 3-torsion points is a cubic surfaceS with its 27 lines. Letw be an elliptic
triality in W (E8), letX = Q(E8), V = Q⊗X, and letK = Q(ζ) be generated by
an element of order three in̄Q×. EachK-equivalence class of roots is an orbit of
−w, and is the vertex set of one of Coxeter’s40 planar hexagons (cf. [8, p.480]).

Just as forE6, the hermitian formh on VK becomes a cubic polynomial on
XK/2XK , which this time gives a two-fold covering

1 −→ {±1} −→ CW (E8)(w) −→ U4(2) −→ 1, (45)

under whichw maps to a generator of the center ofU4(2). This last group has
order

|U4(2)| = 26(24 − 1)(23 + 1)(22 − 1)(2 + 1) = 26 · 35 · 5

and preserves the nonsingular cubic surfaceS ⊂ P3 defined byh.
A line onS(F4) is anh-isotropic plane inF4

4. The groupU4(2) acts transitively
on isotropic planes and the stabilizer of one such is a semidirect productGL2(4)n
F4

2, of order26(24 − 1)(22 − 1). Since

26(24 − 1)(23 + 1)(22 − 1)(2 + 1)

26(24 − 1)(22 − 1)
= 27,

This shows thatU4(2) acts transitively on the lines inS and that every such line
is rational overF4. Using the Bruhat decomposition, one can check that19 of the
lines onS are rational overF2. Hence the action ofGal(F4/F2) on the set of lines
is nontrivial.

The symmetry group of the configuration of27 lines in S is W (E6), whose
order|W (E6)| = 27 · 34 · 5 is twice that ofPU4(2). SinceW (E6) has a unique
character of order two, namely the sign characterε, the action ofU4(2) on the
configuration of lines inS gives an isomorphism of simple groups

PU4(2)
∼−→ W (E6)

+ = ker ε.
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The nonidentity coset ofPU4(2) in W (E6) contains the nontrivial element of
Gal(F4/F2) acting on the lines inS.

Lifting back to the two-fold coverCW (E8)(w) of U4(2) via (45), we find that

CW (E8)(w) ' 〈w〉 × W̃ (E6)
+

,

whereW̃ (E6)
+

is a two-fold cover ofW (E6)
+.

On the other hand our split exact sequence in Proposition 6.3 realizesSp4(3)
as the subgroup ofCW (E8)(w) = WK with determinant one onVK . Thus we
recover the isomorphism (cf. [5])

W̃ (E6)
+

' Sp4(3).

SinceSp4(3) equals its own derived group, the covering

Sp4(3) → W (E6)
+ ⊂ SO6(R)

is non-split, in analogy with the binary tetrahedral covering

Sp2(3) → W (A3)
+ ⊂ SO3(R).

The eigenspaces̄V (w, ζ) andV̄ (w, ζ2) are in duality via the pairing〈 , 〉 on
V̄ and afford the two distinct four dimensional representations ofSp4(3) over Q̄
[5]. The exterior squares of these representations are irreducible and isomorphic
to one another; let

Λ := Λ2V̄ (w, ζ) ' Λ2V̄ (w, ζ2).

As a representation ofSp4(3), Λ is the unique cuspidal unipotent representation,
denoted byθ10 in [24]. As a representation ofU4(2), Λ is the unipotent repre-
sentation corresponding to the partition4 = 2 + 1 + 1. As shown in [15], the
representationΛ ⊗ Q̄` can be realized on the quotient of the`-adic cohomology
groupH2(S) by the one-dimensional subspace spanned by a hyperplane section.
Thus, for the elliptic trialities inF4 andE8, the middle exterior powers of̄V (w, ζ)
are realized in the cohomology groupsH1(E) andH2(S), respectively.

7 p-adic groups

Letk be a field of characteristic zero, complete with respect to a discrete valuation.
This means thatk is a finite extension of the fieldQp of p-adic numbers, for some
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integer primep. Let K be a maximal unramified extension ofk and letFrob be a
topological generator ofGal(K/k). Fix an element$ ∈ k of valuation= 1.

All connected reductivek-groupsH that we consider will be split overK; we
identify H with its group ofK-rational points. The group ofk-rational points is
H(k) = HF , whereF is the endomorphism ofH arising from thek-structure on
H.

As mentioned in the introduction, the study of cyclotomic structures in this
paper arose from the construction ofL-packets in [11], [19]. For more back-
ground, see [14]. We recall this construction in the simplest case of a simply-
connectedk-groupG which actually splits overk. Let F be the Frobenius endo-
morphism ofG. Fix a maximalk-split torus inT ⊂ G. The root systemR will
be the system of co-roots ofT in G. SinceG is simply connected, the abelian
groupX = ZR = Hom(GL1, T ) is the group of co-characters ofT . Let N and
W = N/T be the normalizer and Weyl groups ofT in G, respectively. The group
N acts by affine transformations on the apartmentA = R⊗X in the Bruhat-Tits
buildingB of G. Givenn ∈ N , there are unique elementsλ ∈ X andw ∈ W such
thatn acts onA by the affine transformationtλw : x 7→ λ + wx, and this gives a
surjective homomorphism fromN to the affine Weyl groupWaff = X o W .

7.1 Tori and their characters

For anyw ∈ W , we have a twistedk-torusTw, whereTw = T as sets, and the
Frobenius endomorphism ofTw is wF , so thatTw(k) = TwF . The torusTw is
anisotropic overk, equivalentlyTw(k) is compact, precisely ifw is elliptic. The
Galois cohomology groupH1(K/k, Tw) is isomorphic to the torsion subgroup of
Xw: If λ ∈ X represents a torsion classρλ ∈ Xw, thenρλ corresponds to the class
[cλ] ∈ H1(K/k, Tw) of the cocyclecλ endingFrob to λ($) ∈ T .

We henceforth fix an elliptic elementw ∈ W . ThenXw is finite, so we have
an isomorphism

Xw ' H1(K/k, Tw). (46)

Each classρ ∈ H1(K/k, Tw) determines an embeddingTw ↪→ G, as follows.
View ρ as a coset inX, via (46) and letλ ∈ ρ. The transformationtλw has a
unique fixed pointxλ ∈ A, given by

xλ = (1− w)−1λ =
1

m
J(w)λ.

The stabilizerGxλ
of of xλ in G is preserved byF andKλ := GF

xλ
is a maximal

compact subgroup ofGF . By the Lang-Steinberg theorem, there is an element
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pλ ∈ Gxλ
such thatp−1

λ F (pλ) ∈ N ∩Gxλ
is a lift of tλw in N . Conjugation bypλ

gives a mapAd(pλ) onG which restricts to an embedding

Ad(pλ) : T
∼−→ Tλ ⊂ G (47)

of T onto anF -stable torusTλ in G, such thatAd(pλ) ◦ wF = F ◦ Ad(pλ).
We haveT F

λ ⊂ Kλ; in fact, Kλ is the unique maximal compact subgroup ofGF

containingT F
λ . Note that the embedding (47) depends onw, which has been fixed

at the outset and suppressed from the notation.
Two such toriTλ andTµ (for λ, µ ∈ X) areGF -conjugate iffρλ andρµ are

conjugate under the action of the centralizerC(w) = CW (w) on Xw. The map
Ad(pλ) sends the centralizerC(w) to the groupW (Tλ, G)F of F -rational points in
the Weyl group ofTλ in G, and sends the stabilizerC(w, ρλ) of ρλ to the subgroup
W (Tλ, G

F ) of elements inW (Tλ, G)F having representatives inGF .
Thus, the mapλ 7→ Tλ induces a bijection from theC(w)-orbits in Xw to

theGF -orbits in the setTw of F -stable maximal toriS ⊂ G such thatSF is G-
conjugate toTwF . This map lifts toXw as follows. Fix a characterχ : TwF → C×

which is regular, in the sense of [14]. Givenλ ∈ X, let χλ = χ ◦ Ad(pλ) be the
corresponding character ofT F

λ . Thus we have an element(Tλ, χλ) in the setT̂w,χ

of pairs(S, θ), whereS is anF -stable torus inG, θ is a character ofSF , and there
is g ∈ G such that(SF , θ) = (g(TwF ), gχ).

The groupGF acts by conjugation onTw andT̂w,χ, with finitely many orbits,
and the maps above give a commutative diagram [11, Lemma 9.6.1]

Xw
∼−→ T̂w,χ/GF

↓ ↓
Xw/C(w)

∼−→ Tw/GF

(48)

where the horizontal maps are bijections, the left vertical map is the natural quo-
tient and the right vertical map is induced by the projection onto the first factor.

For example, supposeG has typeE8 andw is cyclotomic. Recall that ifw =
−1, thenC(w) surjects onto the orthogonal group ofq(x) = 1

2
〈x, x〉 on Xw =

X/2X, so there are three orbits:{0}, q = 0, q = 1.
If w 6= −1, then Proposition 5.1 shows that there are twoGF -classes of tori in

Tw. One of them, represented byT0, hasW (T0, G)F = W (T0, G
F ) ' C(w). The

other, represented byTλ for λ ∈ R, hasW (Tλ, G
F ) being the two-fold cover of

the stabilizer of a nonzero vector inSp(Xw).
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7.2 Supercuspidal representations

The embeddings of anisotropic unramified tori inG are mirrored in the represen-
tation theory ofGF . Given(S, θ) ∈ T̂w,χ, the compact maximal torusSF fixes a
unique pointx in the buildingB of G, whose stabilizerKx = GF

x is the unique
maximal compact subgroup ofGF containingSF . From the pair(S, θ), construc-
tions due to Adler and Deligne-Lusztig give us a finite dimensional irreducible
representationκ(S, θ) of Kx, which induces to an irreducible supercuspidal rep-
resentation

π(S, θ) := IndGF

Kx
κ(S, θ)

of GF . We haveπ(S, θ) ' π(S ′, θ′) iff the pairs (S, θ) and (S ′, θ′) are GF -
conjugate. Hence, forρ ∈ Xw, we can define

π(χ, ρ) := π(χλ, Tλ)

for anyλ ∈ ρ.
Thus, for each regular characterχ of TwF , we have a finite set (“L-packet”)

Πw(χ) := {π(χ, ρ) : ρ ∈ Xw}

of isomorphism classes of representations ofGF , parameterized byXw.
The centralizerC(w) enters this picture via the equivariance property [19]

π(χy, ρ) = π(χ, y · ρ), y ∈ C(w). (49)

Note that (49) is compatible with the isomorphismC(w, ρλ) ' W (Tλ, G
F ). It

also shows that two classesπ(χ, ρ) andπ(χ, y · ρ) contain representatives which
are induced from the same maximal compact subgroupKλ, the only difference
being a twist of the character onTλ by an element ofG which normalizesT F

λ .
This simplifies the determination of the groupsKλ from which we induce to get
the representations inΠw(χ).

SinceG is simply-connected, theGF -conjugacy classes of maximal compact
subgroupsK are in bijection with maximal proper subdiagrams of the affine
Dynkin diagram ofG, which gives the type of the maximal reductive quotient
of K. If ρλ = 0 thenKλ is hyperspecial and corresponds to the ordinary Dynkin
diagram ofG. If ρλ 6= 0, one can find the type ofKλ by first computing the point
xλ = (1 − w)−1λ and then determining the root system consisting of allα̌ ∈ Ř
which take integer values onxλ. In practice, it is more efficient to determine the
stabilizerWxλ

of xλ in the affine Weyl groupWaff . The tangent space ofA atxλ is
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the reflection representation ofWxλ
, so the latter contains the elementtλw ∈ Wxλ

having the same characteristic polynomal asw.
If G has typeE8 andw is cyclotomic then this method turns out to be sharp:

Recall that ifXw 6= 0 thenw is determined by its orderd ∈ {2, 3, 4, 5, 8}. We list
the prime-power orders of cyclotomic elements in the maximal finite subgroups
of Waff , other thanW , as follows:

D8 A1A7 A2A1A5 2A4 D5A3 E6A2 E7A1 A8

2, 4, 8 none none 5 none 3 2 none

The types of the inducing subgroupsKλ, for ρλ 6= 0, are then determined as
follows: Ford = 2 there are two orbits ofC(w) onXw −{0} and we findD8 and
E7A1 as the two types of maximal compact subgroups, other thanK0, appearing
as inducing data inΠw(χ). For d ∈ {3, 4, 8} there is just one orbit ofC(w) on
Xw − {0}, and indeed we find a unique type for eachd in the table above.
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