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1 Introduction

The centralizet” (w) of an elementv in a Weyl groupi?’ plays an important role
in the structure and representation theory of split reductive gréupser finite
andp-adic fieldsk, wherelV is the absolute Weyl group @f.

If % is finite, this is well-known: the element determines a maximat-
torusT,, C G and C(w) may be identified with the:-rational points in the
Weyl groupW (T,,, G) of T,, in G. For every charactey of T,,(k), the Deligne-
Lusztig construction [12] gives a virtual representatiﬁﬁw(x) of G(k) whose
self-intertwining number is the order of the stabilizeroih C(w).

If k& is p-adic thenw determines an unramified maximitorusT,,, which
now can be embedded as a maximal torug-iim several ways. ASSumé is
simply-connected. Each class in the Galois cohomology gk, 7,,) deter-
mines an embeddingj, — G and two classes i#/! (k, T,,) give G(k)-conjugate
embeddings iff they are conjugate under the natural actiai(of) on H'(k, T,,).
Let C(w, p) be the stabilizer of the clagse H'(k,T,). If T,, = T° C G is an
embedding belonging to the class H'(T,,, G), thenC(w) is isomorphic to the
big Weyl group ofk-rational elements iV (77, G) and C(w, p) is isomorphic
to the small Weyl group of elements i (7, G) which have representatives in
G(k).

On the representation theory side, supposs elliptic (i.e. T}, is anisotropic)
andy is a sufficiently regular character @f,(k). Then, in accordance with the



local Langlands conjecture, one can construct (cf. [11], [19] ) a finite set of repre-
sentationdl,(x) = {7 (x, p) : p € H'(k,T,)}, with the equivariance property:

m(x¥,p) ~n(x,y-p)  for yeCw),

which implies thatr(x, p) andn(x,y - p) are induced from the same maximal
compact subgroup of/(k) and that their characters agree near the identity, at
least in certain cases [11, 12.4.3]. Similar results hold for nonsplit unramified
groupsG, wherew is now an element of the group of automorphisms of the
absolute root system a@F, such that the coset a@f in A/W corresponds to the
splitting data ofG overk.

Thus we are led to study the action@fw) on H*(k,T,), forw € A. This
is a problem in basic Lie theory which arises in diverse contexts. It can be stated
in elementary terms: ik = Hom(G Ly, T,,) denotes the cocharacter grouplQf
then Tate-Nakayama duality gives a natural isomorphism

HY(k,T,) ~ X,,

whereX,, := X/(1 —w)X is the group of coinvariants af in X. The groupX,,

is finite becausev is elliptic. Equivalently, the number. := M (1) is nonzero,
where M (t) is the minimal polynomial ofv on X. It is easy to show (see sec-
tion 4.1 below) thatnX,, = 0 and that there is a naturdl/mZ-valued skew-
symmetric pairing , ),, on X,,, preserved by the natural action@fw) on X,,.
Thus, we have a natural homomorphism

0w : C(w) — Sp(Xu),

where Sp(X,,) is the group of automorphisms o&f,, preserving( , ).,, and our
problem reduces to studying the imagepf

For classical groups, this is straightforward (cf. [14, chap.14]). Exceptional
groups, especiallys, encourage the search for uniform, Lie theoretic methods
for determining the image af,,.

Two cases appear already in Bourbaki [2].ulfis a Coxeter element, then
C'(w) is generated by, X,, is isomorphic to the fundamental group of the dual
group ofG, the form(, ),, is identically zero, an@,, is trivial. (This case is not
without interest fop-adic groups, see [19].) The other case is whHérdas type
E, andw = —1. HereC(w) = W andX,, = X/2X. The form(, ), arises from
a quadratic formy on X/2X. Using methods that apply only to this case ([2] or
[18]), one can show that the image &f is the orthogonal group af.
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We will see that forv # —1 we often have , ),, nondegenerate and o, =
Sp(X,). The implication for the corresponding-packetsll, (x) is that all the
nongeneric representations in the packet are induced from the same maximal com-
pact subgroup and, in certain cases, behave the same near the ide@fit) of

A general approach te, must begin with a Lie-theoretic description@fw),
on which it seems that the only general results are due to Springer [22]. These ap-
ply whenw is regular (no eigenvector af lies on a root hyperplane), so we con-
fine ourselves to regulas. Then, by Springer, we know théat(w) acts faithfully
on a regular eigenspace ofas a (complex) reflection group whose degrees are
those degrees df” which are divisible by the order af. This tells us the order
of C(w) and the number of reflections @i(w). However, this is not enough to
determine the image qf,,, for Springer arrives at his results via invariant theory,
which does not actually produce any reflectiong’ifw), or give the order of the
reflections, or say it”(w) is an irreducible reflection group. The degrees alone
do not answer these questions and they do not determine the isomorphism type of
the reflection grou'(w).

We can sharpen Springer’s results for certain regular elements. We say that
is cyclotomic if its minimal polynomial M (t) is irreducible oveQ. For Gy, F)
and Fy this is not an additional restriction: in these cases the elliptic regular ele-
ments inl/ are precisely the nonidentity cyclotomic elements.

Let V = Q ® X be the rational reflection representationléf. The Q-
subalgebra irfind(V') generated by a cyclotomic elementof orderd is a cy-
clotomic field K = Q(¢,), andC'(w) is the subgroup ofl” acting K -linearly on
V. Cyclotomic structures on thBs-root lattice for X' = Q(¢3) andQ(¢4) were
known in the 19th century [6]. Recent literature on lattice theory [1] mentions the
Q(¢o)-structure onEs and theQ((y5)-structure onEg. All of these cyclotomic
structures arise from cyclotomic elementdin In the first part of this paper we
use the fieldx to find the reflections in the centralizer of a cyclotomic element.

More general fieldg< are also of interest. For example, Wi (Es) there
is a cyclotomic elementv of order ten, such that + w~! generates a field
K ~ Q(v/5) whose centralizer ifi’ ( Ey) is the exceptional Coxeter grolig( H,)

(see section 3.4.2). This subgroup has been previously understood via auxilliary
structures such as icosians (cf. [17]).

So we take an arbitrary field™ ¢ End(V) which is closed under the adjoint
involution onEnd (V) arising from thelV/-invariant inner product ofy’. Let Vi
be the group/ regarded as & -vector space and consider the subgréiip of
elements iV commuting withK'. Say that two roots: and 3 are K-equivalent
if Ka = K. Each equivalence clagsis a subroot system a® and gives rise
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to a cyclic subgroupVk(S) C Wx whose nonidentity elements are reflections
on V. We show that all reflections i are obtained in this way, and we give
an explicit formula for the canonic@l i -invariant hermitian form oy, thereby
giving a formula for each reflection. Different types of root systefran occur
as K-equivalence classes, leading to reflections of different orddrg,in These
are worked out in the various cases foy, in sections 3.3 and 3.4.

In general ¥k is not generated by reflections. Indeed, f@rthere is a copy of
Q(+v/2) in End(V') for which W is the extension ot/ (F}) by its graph automor-
phism. (This subgroup df ( Eg) is not related to the standall (7)) contained
in W (Es); it seems to have gone unnoticed till now.) However, Kor= Q(v/5)
as above, and fok = Q(w) by Springer’s theory, we know th&V'x is gener-
ated by the subgroupd’x (S). We can show moreover th8ty is irreducible on
Vk. This implies thatC'(w) is actually an irreducible reflection group on every
w-eigenspace it ® V', whenw is cyclotomic.

These results on reflections allow us to analyze the actiofi(af) on the
coinvariantsX,, for w cyclotomic. It is easy to see that, = 0 unless the order
of w is a power of a prime, in which casen = p, so X,, is a vector space
overF,. In fact, we have € {2,3,5}. The image ofy,, is computed using the
reflections found above and reduction modpld=or R = Eg we find thatp,, is
surjective forw # —1.

We then focus on the case whervec W is elliptic of order three; such el-
ements are cyclotomic. TheR has one of the typed,, Go, Dy, Fy, Eg, Ex
andw is unique up tdl’-conjugacy in each case. If we enlargéw) to the cen-
tralizer ofw in the full automorphism group aR, theny,, is surjective. This is
proved in a uniform way, but the individual cases have various connections to:
elliptic curves and the 24 cell (fary), hermitian curves and Weil representations
(for Eg), and the27 lines on a cubic surface and unipotent representations (for
Eg). A relation betweerfs and the27 lines was found by Coxeter in the last two
sections of [8]; our remarks here amount to little more than a different approach
to Coxeter’s observations.

Finally, in the last chapter, we apply our results on cyclotomic elements to
L-packets of supercuspidal representations-atlic groups.



Contents

1 Introduction 1
2 Reflections 6
2.1 Hermitianforms. . . . . . .. ... ... .. oo 6
2.2 Anexplicitformulaford . . . . ... ... ... L. 7
2.3 Root systems and an equivalence relation . . . ... .. ... .. 8
3 The cyclotomic case 10
3.1 Reflections inthe cyclotomiccase . ... ... .......... 10
3.2 Cyclotomic elements and exponents . . . . . ... .. ...... 13
3.3 Cyclotomic structuresofs . . . . . . ... . ... .. ... 16
331 d=4 ... 16
332 d=06 .. .. e 16
333 d=10 . . .. e 16
334 d=8 . .. 17
335 d=12 . . .. e 19
3.4 Some subfields of cyclotomicfields . ... ... .. ....... 20
341 Q(V2) ... 20
342 Q(VE) .. 22
4 Coinvariants 24
4.1 Lattices and skew-symmetricforms . . ... ... .. ... ... 24
4.2 Quadraticlattices . . . . . . .. .. o 26
4.3 Cyclotomic lattices and reduction modglo. . . . . . ... ... 26
4.4 Rootlattices . . . . . . . ... 27
5 Elliptic regular coinvariants for FEjg 30
6 Elliptic trialities 32
6.1 Coinvariants fortrialites . . . . . . ... ... ... .. ..... 33
6.2 Subgroupsobps(3) . . ... 36
6.3 Aremarkontransitivity . . . ... .. ... Lo . o 37
6.4 ElliptictrialitiesinFy . . . . . . ... ... .. 38
6.5 ElliptictrialitiesinEg . . . . . . . . ... 39
6.6 ElliptictrialitesinEg . . . . . . . ... ... 41



7 p-adic groups 42
7.1 Toriandtheircharacters . . ... ... ... ... ........ 43
7.2 Supercuspidal representations . . . ... ... 45

2 Reflections

2.1 Hermitian forms

Let V be aQ-vector space of dimensiom and fix a nondegenerate symmetric
Q-bilinear form( , ) on V. We denote the corresponding adjoint involution on
End(V) by f — f*; it is defined by the equatiotfz,y) = (x, f*y) for f €
End(V) andz,y € V.

Next, let K be a number field with an automorphisme Aut(K’) such that
0? = 1. Fix a nonzeraQ-linear mapT’ : K — Q. EveryQ-linear functional
K — Qis of the formz +— T'(az) for a uniques € K.

If T'is the trace, theff’(x”) = T'(z), but it will be more convenient to make
other choices ofl” which are not necessarily-invariant. In general, there is a
unique element € K such thatl'(z?) = T'(xb) for all z € K. From the
calculation

T(x)=T(2°b) =T ((xb”)7) = T(xbb),

we see that’b = 1. By Hilbert’s Theorem 90, there ise K* such that
b=c"c Q)

We then havd'(zc) = T'((xc)?) forall x € K.
Assume we are given an embedding®flgebras

j: K — End(V)

such thatj(a”) = j(a)* for all a € K. We write Vi to denote the abelian group
V considered as & '-vector space, via the embeddinglrhe symmetric forng , )
onV gives rise to a hermitian formy on Vy, as follows (cf. [23, 1V.2]).

For every pair of elements, y € Vi, there ish(x,y) € K such that

(j(a)z,y) =T (a h(z,y)), forall a€ K.

This defines a nondegenerdtevalued pairingh on Vi which is hermitian up to
scalar. More precisely, if € K* is an element satisfying (1) then the scaled form

H(z,y) = ch(z,y),
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characterized by the identity

T (a H(z,y)) = (j(ac)z,y), 2)

is o-hermitian onVy: we haveH (y,z) = H(x,y)? for all z,y € Vk. The
equation?’ (H(z,y)) = (j(c)z,y) shows thatd is nondegenerate and that any
K-subspacé/ C Vi has the same orthogonal complement, whether taken with
respecttq , ) or H.

2.2 An explicit formula for H
Let( € K be a primitive element, so thaf = Q(¢), and let

M@t)=ay+ait+ - +a,t" "+ "

be the minimal polynomial of overQ. Then{1,¢,...,(" '} is aQ-basis ofK.
For ourQ-linear mapl’ : K — Q, let us take

T(Co + 01C +--+ cn_lﬁn_l) = (Ci c Q)

With these choices, we can give a more explicit formulaffyras follows. We
work with the unscaled form = ¢! H, writing it as

where each; is aQ-bilinear form onV. From the relation

h(j(¢)z,y) = Ch(z,y)

we get
n—1 n
hi(§(C)a,9)¢" =D hia ()¢
i=0 =1

n—1

= Z hio1(z,y)¢" = b1 (z,y) a0 + a1 + -+ + an1 ("]

i=1

—_

n—

= —Gohnfl(l’,y) + [hzel(%, 3/) - aihnfl<x7 y)] Ci-

i=1
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Comparing coefficients af, we find by induction that
hz(xvy) = hO (Q?, fl(z)y) )
wheref;(t) = ay*(a; + a;_1t + - - + a;t"" + aot?) andz = j(1/¢7). But also

ho(l’,y) = T(h(fL‘,y)) = <IE,y>,

so we get the formula

—_

n—

7

I
=)

2.3 Root systems and an equivalence relation

Retain the set-up of section 2.1: we have a number fieldith involution o, an
orthogonal spac& overQ, an embedding : K — End(V') which intertwines
o with the adjoint involution ori/, andV denotes the abelian grodfy regarded
as aK-vector space, via.

Assume now that the orthogonal spaceis definite and that? is a finite
root system inl” whose Weyl grougl” = W (R) preserves the form, ). Let
A = A(R) be the group of orthogonal automorphismd/oivhich preserver. In
this section we study the subgroup

WK =Wn GL(VK)

consisting of the elements Iy which centralize the imagg K') of K in End(V).
Each rootn € R may be regarded as a vector in tRevector spacé’/. We
say that two rootsy, 5 € R are K-equivalent if Ka = Kf.
For eachK-equivalence clasS C R, let V' (S) be theQ-subspace oV gen-
erated byS. ThenV (S) = Ka foranya € S. We have

S=RNV(S). 4)

To see this, lev € RN V(S) and writeaw = cjaq + -+ + ¢ With ¢; € Q
anda; € S. By the definition of K-equivalence, there arg € j(K) such that
o = inél, SO

a=(c+ceafot -+ csfs)a € Kay,

hencen € S. The other containment in (4) is clear.



Equation (4) implies that' is a root subsystem iR, of rank equal to the
degree ofK overQ. Let A(S) andW (S) denote the automorphism and Weyl
groups ofS, respectively. Thefml/(.S), being generated by reflections froshis
a subgroup of/(R). However, the groupl(S) need not be contained it(R).

Consider the group

WK(S) = WK N W(S),

consisting of thek-linear elements ofV/(.5). If we fix « € S, we have a homo-
morphism

ns : Wg(S) — K*, such that wa = ng(w)a (5)

forallw € Wi (S). One checks thajs is independent of the choice afe S and
thatns is injective. It follows that the groupVx(.S) is cyclic, of order dividing
the number of roots of unity I .

A K-reflection onVj is an elemeny € GL(Vk) of finite order whose fixed-
point set is ak-hyperplane. AK-reflection has exactly one eigenvalge# 1
andn = det(w) is a root of unity inK*. Any nonidentity element € Wy(S)
is a K-reflection with nontrivial eigenvalug = ng(r), fixing the K-hyperplane
orthogonal td/(.S) (with respect tad or (, ), recall it is the same). We have the
formula

r(a) = o — (1-n)p——a (6)

foranya € S.

For example, ifK = Q then each equivalence class is a pair= {+a},
forming a root system of typd, and K -reflections are the usual reflections in
W. At the other extreme, ifK : Q] = dimV/, thenR itself is the uniqueXk -
equivalence class, an@l is cyclic.

Lemma 2.1 Every K-reflectionr € Wy is contained inWg(S) for a unique
K-equivalence clasS C R.

Proof: Let L be the nontrivialK-eigenline ofr. Then the fixed-point set of
r in Vi is the orthogonal complemerit of L. The subgrougl”’ of W fixing
L' pointwise is generated by reflections about the roots orthogondl [, V.3
Prop.2]. The seb of these roots is nonempty, sinte# » € W’. HenceS' is a
K-equivalence class ande Wk (.S). Uniqueness follows from equation (4



3 The cyclotomic case

There are many field& C End(V); “usually” one hadVx C {£1}. In this sec-
tion we will show that ifj( K') is generated by an automorphism of the irreducible
root systemR thenW is irreducible oV, the groupsV (.S) are all non-trivial,
and they generatd/,. Along the way, we give a classification of possible root
systemsS which arise, which facilitates our later calculations.

3.1 Reflections in the cyclotomic case

We say that an element € A(R) is cyclotomicif the minimal polynomiall/ (¢)
of w onV is irreducible overQ. Letd be the order ofv. ThenM (t) = ®4(t) is
the cyclotomic polynomial, whose roots are the elements of atderQ*. Fix a
root ¢ of ®4(¢) and letK = Q(¢), with involution (° = ¢~*. Then we have an
embedding/ : K — End(V) given byj(¢) = w, such thatj(¢?) = w™! = w*.
The imagej(K'), hence the groupl/k, is independent of the choice ¢f Indeed,
Wi is just the centralize€'(w) of w in W.

Proposition 3.1 In the situation just described, the grolipk is generated by the
cyclic subgroupdV (.S), with S ranging over the(-equivalence classes iR.

Proof: The Galois groug’ = Gal(Q/Q) is transitive on the eigenvalues of
This Galois action extends 16 = Q ® V, acting trivially onV/, so as to commute
with the A(R)-action. Thus]" permutes the eigenspaceswofransitively.

Each rootn € R may be viewed as a functional an, via the pairing , ). In
this guise, the map : V — Q commutes with thé&-action onV andQ. Hence if
« vanishes on one eigenspaceuqfit must vanish on all eigenspaces, so that
0, a contradiction. Therefore every raotc R restricts to a nonzero functional on
everyw-eigenspace. This means that evergigenspace iV contains a regular
vector. The stabilizer i}’ of a regular vector is trivial.

The grouplVy = C(w) preserves each eigenspacewdh V. Hence we have
a representation

7+ C(w) — GL(V (w,())

on the¢-eigenspacé’ (w, ¢) of w in V. SinceV (w, ¢) contains a regular vector,
the mapr is injective. By Springer’s results [22, 4.2,6.4] we have that the image
of 7. is generated by reflections.
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The eigenspack (w, () is defined overs, hence every reflection in the image
of 7. has its nontrivial eigenvalue if. We have &’'(w)-equivariant isomorphism

@ ®K VK ; V(U),C)

sendingy € Vi to 327, ¢~*w*v. Hencer, maps thek -reflections ini bijec-
tively onto the reflections im: (Wx). The result followsH

We now examine the group (S) in more detail. LetS be aK'-equivalence
class inR. Thenw acts onS via an automorphismg € A(S) having character-
istic polynomial®,(¢) onV'(.S). This implies that the group generated:by acts
transitively on the irreducible componerts, - - - , S. of S, thatc | d, and that
w§ = (wy, -+ ,w.), where eachw; € A(S;) has ordee := d/c.

OnV/(S), viewed as &)-vector space, the elemenf, has characteristic poly-
nomial

det(tIy sy — ws) = @, (1) D90 = H det(tIy (s, — w;). 7)
=1
By the transitivity ofwg on theS;, each polynomiadlet(t/y (s,) —w;) has the same
degree. Hence there is an integer> 1 such that
det(tly(s,) — w;) = P ()™
for all ;. Comparing degrees in (7), we find that
¢(d) =m-c- (). (8)

The following lemma is an elementary consequence of (8); its proof is left to the
reader.

Lemma 3.2 We haven = 1 and that every prime dividing must dividee. In
particular, we have: > 1.

HenceS = ¢S;, whereS; is an irreducible root system of raigke) admitting
an automorphisnw, with characteristic polynomial

det(t]v(gl) — wl) = q)e(t).
We have the numerical constraints

¢(d) =c-¢(e) and ddivides both S| and|A(S)]. 9
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The first item has been shown above and the last two are forced byalbits

havingd elements and!(.S) containing the elements of orderd, respectively.
The possibilities forS; are given in the table below, using the notation of

[4] for conjugacy-classes in Weyl groups, extendeditd) in the obvious way.

Recall thak is the order ofw; in A(S7). In the last column we give the ordépf

wy in the quotient groupA(S;)/W (S1). In the second row is a prime> 3.

| &5 w [ e [ ¢]
Ay Ay
Apy Ap1, —A, P, 2p 1, 2
By, Cor By ol 1
Dy, 17> 2 By or ¥l
Dy Fy 12 3
E6 E6<a1), —E(;((ll) 97 18 ]_, 2
Eg Eg, Eg(al), Eg(ag), Eg(a5> 30, 24, 20, 15 1
F Fy, B, 12, 8
Gy Gy, A, 6, 3 1

Lemma 3.3 For each K -equivalence clasS§ C R, the groupiWg(.S) is nontriv-
ial.

Proof: Recall thatwg € A(S) is the automorphism o$ induced byw. If w% €
W (S) for somer > 1 thenw? acts trivially on the orthogonal complement/sfs
and acts ort asw”. Hencew?% commutes withv onV, so thatwy € Wi(.5).

Therefore it suffices to show that # 1. If wg = 1, thenw{ = 1, which
impliese | £. The table above shows this does not hapjin.

Lemma 3.4 AssumeR is irreducible. TherV acts irreducibly only.

Proof: We use the following basic fact: Given any two roats3 € R, there is a
sequence
04:04070417"'70%26 (10)

of roots inR such thata;, a;41) # 0 for 0 < i < k. This can be seen as follows.
By viewing 3 as part of a basis of simple roots, we see that thefedsR of the
same length as, such that3,v) # 0. Hence we may suppose, o) = (3, 3).
The claim follows from transitivity o#1” on roots of a given length [2, VI.1 Prop
11].
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The formh(z,y) from section 2.1 satisfi€s (h(x,y)) = (x,y). It follows the
sequence (10) also satisfiegy;, ;1) # 0for 0 < i < k.

Now supposd/ C Vi is a nonzerok-subspace preserved all the groups
Wk(S). Take a nonzero elemente U. Choosen € R such that(x, ) # 0,
and letS be the K-equivalence class containing By Lemma 3.3, there is a
K-reflectionrs € Wg(S) of orderm > 1, having the formula

h(x,a)a
h(a,a)

re(z) =z —(1—n)

wheren € Q* has ordemn. SinceT (h(z,a)) = {(r,a) # 0, this shows that

a € U. Let g € R be arbitrary, and choose a sequence as in (10). Repeating the
previous argument with, o replaced by, a; shows thaty; € U. In this way,

we see thatt € U. HenceR c U,soU =V.

Corollary 3.5 Supposev € A(R) is cyclotomic with even square-free ordeér
Then one of the following holds.

1. w=-1;
2. R = G5 or Eg andw is a Coxeter element;

3. d = 2p, wherep € {3,5}. EachK-equivalence class$ has typeA, i,
Wk (S) is generated by a Coxeter elementlin(S) and there are R|p~!
reflections inlV, each of ordep.

Proof: Sinced is square-free and contains every prime divisor of, we must
havee = d, soc = 1 and eachS = S; is irreducible. The third column of the
table above gives the asserted possibilitiesSfoll

3.2 Cyclotomic elements and exponents

One can characterize the cyclotomic elements in a Weyl gibup- W (R), in
terms of the exponent&n,, ..., m,} of W. With one exception, these are all
obtained as powers of elementg W with irreducible characteristic polynomial.
The latter are characterized as follows.

Lemma 3.6 Lete > 2 be an integer. Then the following are equivalent:

1. There exists € W with characteristic polynomiab.(t).
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2. The exponent&n,, ..., m,} of W represent the cosets (Z/eZ)*.

If these conditions hold, themis regular, unique up to conjugacy, and the cen-
tralizer C'(v) = (') is cyclic of order equal to the unique degrée= m, + 1 of
W which is divisible by. Conditions 1,2 also hold witfe, v) replaced(d;, v').

Proof: Assuming condition 1, regularity was proved by Springer in [22, 4.11] and
also follows from the proof of Lemma 3.1 above. Uniqueness now follows from
[22, 4.2], which also shows that the eigenvalues efen™:,: = 1,...,n, where
n € Q* has ordee. Butthese eigenvalues are the root®pft), so{m;, ..., m,}
is a system of representatives {@/eZ)*.

Now assume condition 2 holds. We may assume 2. Thenn = ¢(e) is
even. Moreover, for any prime| e, we have the constraints

For R = A,, with exponentd1,2,...,n}, the second constraint implies that
p > n+ 1. Hencen = p — 1 for some primep, andv is a Coxeter element, with
characteristic polynomiab, (¢).

For B,,, C,,, constraints (11) imply that is a power of2 andv is a Coxeter
element inl¥/, with characteristic polynomial’ + 1 = ®,,,(¢).

ConsiderR = D,,. We have seen thatis even. But them — 1 appears twice
as an exponent; conditions 1,2 never hold.

For Gs, Fy, Eg, Eg, there are few primes satisfying the constraints (11) and
few possibilities fore such thatp(e) = n. With the exception of = 4 for G, and
e = 16 for Eg, there is an element € W of ordere. These are tabulated below,
in the notation of [4], for conjugacy-classeslin.

| R | exponents \ e \ v |
G 1,5 3,6 Ay, Gs
5 1,5,7,11 8,12 By, Fy
E@ 1,4,5, 7,8,11 9 E@(al)
Eg 1, 7, ]_17 13, 17, 19, 23, 29 15, 20, 24, 30 Eg(a,5), Es(ag), Eg(dl), Eg

For the cases in this table, we hat/¢v) = (v), except for classi, in G and
FEs(as), which are each the square of a Coxeter elemgrtndC (v) = (v'). B

If v € W has characteristic polynomidl.(¢), then for each divisod | e,
the elementy = v*/¢ has irreducible minimal polynomiak,(t). In fact, a case-
by-case check shows that almost all elements W with irreducible minimal
polynomial can be found in this way:
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Lemma 3.7 Supposav € W has irreducible minimal polynomial olr. Then
one of the following holds:

1. There isv € W with irreducible characteristic polynomiab. (¢) such that
w = v*/? for some divisotl | e.

2. R=F;andw = —1.

In Lemma 3.4 above we proved thatifhas irreducible minimal polynomial
onV then each eigenspad&w, ¢) is irreducible forC(w). In fact, we can use
Lemma 3.7 to prove irreducibility on a much smaller subgrouf @f), excluding
the case ofv = —1 € W(Er).

First, a remark on normalizers of regular element$lin Letv € W have
ordere, letC'(v) be the centralizer af in W and letN (v) be the normalizer ifl/
of the subgrougv) generated by. There is a homomorphism

o:Nw)— (Z/eZ)*
defined by
n~ton = 7™, n € N(v).

It follows from [22, 4.7] thatv is surjective, SO we have an exact sequence
1 — C(v) — N(v) -5 (Z)eZ)* — 1, (12)

by which the groudZ/eZ)* permutes the eigenspacesvdh V. The following
fact is used implicitly in [22].

Lemma 3.8 If vis regular, thenZ/eZ)* freely permutes the regular eigenspaces
of v.

Proof: Supposé/(v, (') is an eigenspace far containing a regular vector, and
n € N(v) preserved (v, (’). Sincev is a scalar o (v, ), the commutatofn, v]
fixesV (v, ') pointwise. Thereforén, v] fixes a regular vector, Sa,v] = 1. B

We now return to our cyclotomic elementc W of orderd and eigenvalu€.
Write w = v*/¢ wherev € W has characteristic polynomigl (¢) andd | e. Then
¢ = n°/4, wheren is an eigenvalue of. Let A be the kernel of the natural map
(Z)eZ)* — (Z/dZ)*. The sequence (12) restricts to another exact sequence

1 — C(v) — N@)NC(w) - A — 1. (13)
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Sincew is regular with eigenvalues of multiplicity one, Lemma 3.8 implies that
the groupA freely permutes the eigenlines ofin V. On the other hand, the
eigenvalues of in V(w, ¢) aren’, wherei € A. Hencedim V (w,¢) = |A|, so

A is transitive on the-eigenlines inV/ (w, ¢). This shows thatV(v) N C(w) is
already irreducible o (w, ().

3.3 Cyclotomic structures onFEy

We determine thé& -equivalence classésand the orders of the subgroup, (.5)
for each of the fieldg( arising from cyclotomic elements € W = W (Es). We
thereby find the number of reflections of each order, along with the Shephard-Todd
classification of the complex reflection groGffw) = W.

There is exactly one cyclotomic classlii( Eg) of every order

d e {1,2,3,4,5,6,8,10,12,15, 20, 24, 30}.

The field K is generated by thé" roots of unity. We omit the classes of odd
orderd since their negatives have the same centralized. ¥ 2 thenw = —1,
soWgx = W. If d € {20,24,30}, we havelK : Q] = ¢(d) = 8s0S = R and
Wy = (w). The nontrivial cases are as follows.

331 d=4

Herew belongs to the clas&D,(a,) andw? = —1. This implies thato, wa) = 0
forall « € R. Hence allK-equivalence classes have typ& andWy (S) = (w?)

has order two. There ag&0/4 = 60 K-equivalence classes, each contributing a
single K -reflection tolW.

332 d=6

Herew belongs to the clasBs(ag). By 3.5, there ard( K-equivalence classes
S, each of typed,, and eachiVk (S) is cyclic of order three, giving a total &0
K-reflections inlVg. The roots inS are the vertices of a planar hexagon and form
a single orbit undefw) (cf. section 6.6 below).

3.3.3 d=10

Herew belongs to the clasBs(ag). By 3.5, there ard2 K-equivalence classes
S, each of typeA,, consisting of twow-orbits. EachiV,(.S) is cyclic of order
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five, generated by a Coxeter elementif(.S), giving a total of48 K -reflections
in Wi.

334 d=28

Herew belongs to the clasBg(a3) andw? = —1. We havecg(e) = ¢(8) = 4.

The table in section 3.1 and the constraints (9) showSHsds typel A; or D4. To
analyze this dichotomy, we first make some preliminary remarks on subsystems
of type4 A, in Eg, which we calltetrads. Recall thatX = Q(Es) is the Eg-root
lattice. We say that a tetrdd = +{ag, a1, o, s} isevenif ag+ a1 +as + a3 €

2X, andT is odd otherwise.

Lemma 3.9 Let R be a root system of typEs. The even and odd tetrads
each form a single orbit undé#’(R). The even tetrads are precisely those which
are contained in a subsystem of type.

Proof: SetR, := R and choose aroat, € Ry. Let R, ~ E; be the set of roots
in Ry orthogonal tary. Choosen; € R, and letR; ~ Dg be the set of roots in
R, orthogonal tar;. Choosex, € R, and letR; ~ D4 x A, be the roots inR,
orthogonal tax,. Choosey; € Dy, af € A;.

For: = 0, 1,2 the groupsiV(R;) are transitive onR;, but W (R3) has two
orbits in Rs. It follows that

T := t{ag, a1, aa, 05}, T" = {ag, ar, a2, o5}

represent the twdl’( R)-orbits of tetrads inR. One can check that’ is odd and
T" is even.

If the general tetrad” = +{«p, a1, a9, a3} is contained inS ~ Dy, then
there is a bas€s, oy, as, az} of S with (5, ;) # 0fori = 1,2,3. (That s,/
corresponds to the branch node.) The highest root for this bage=423 + o +
as+as. Itfollows thatag+a; +as+as € 2X. Conversely, itvy+a; +as+as =
2) € 2X, one checks that\, \) = 2, so in fact) is a root. Moreover(\, o;) = 1
for each:. It follows thatf = A\ — a; — as — ag is aroot, and 3, ay, an, s} IS
the base of &, with highest root,. B

Return now to our cyclotomic element € W (Ejg) of orderd = 8. Every
K-equivalence clasS contains a unique-stable tetrad. This is clearff ~ 4A;
is itself a tetrad. I1fS ~ D,, thenw, having order eight, must act ghas a Coxeter
elementws € W (B,). It follows that are threev-orbits onS. It is easy to check
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that these orbits are classified by the valuéafwa) € {—1,0,+1}. The set of
a € S for which («, wa) = 0 form the uniquev-stable tetrad irf. Let us define

si=1l+w+w ' €End(V).

If 5 € S satisfies(3,w3) = —1, then(s, ws3) = +1 so thew-orbits in S are
represented by« (3, ¢} for any choice of roots, 3 in S such that«, wa) = 0,

(B,wp) = —1.
To count theK -equivalence classes of each type, we must look at the roots in
a more explicit way. As in [2], the roots @t = Ej are the vectors

1
el-:lzej, EZciei,

in R®, wherel < i # j < 8andc¢; € {1} with [[¢; = +1. The pairing
(, ) is then the usual dot product @®¥. For visual clarity, we use an abbreviated
notation for roots of the forné > cie;, as in the following example:

%<1’ _1’ _17 17 17 _17 17 _1) = [_'_ - —+ ’ + — +_]

The roots of the forne; + e; comprise aDg subsystem ofs. We choosev €
W (Ds) such that

Using the criteriain 3.9, we find there ared:8stable tetrads if; twelve of these
tetrads are odd and six of them are even.

The twelveK-equivalence classes ~ 4A; are thew-orbits through the fol-
lowing twelve rootsy:

e1 * eg, e1 T eg,
[+ 4+ ++ | £ F =7, [+ F£F |+ + +4], (14)
[++++ | FE2FE], [FEFE|[+++H]

The six K-equivalence classes ~ D, are each the union of three-orbits,
througha, 3, 3, with (o, wa) = 0, (3, w() = —1, as shown:

L a | B | <0 |
€1 — €3. €1 — €2 —e3 — €4
és — ér. €5 — €g —e7 — ey
epter | [+—+—|FL£EF] | [++—— | £ £ 4]
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If S =4A, isitself a tetrad, the®/x(S) = {£1} has order two. IS = D,,
thenWg(S) = (w%) has order four. It follows that there até - 1 +6 - 3 = 30
reflections inlW. This is consistent with Springer’s theory: the degreeS'@b)
are the degrees dis which are divisible bys, namely8, 24, and7 + 23 = 30.

335 d=12

Herew belongs to the clasks(as). We havero(e) = ¢(12) = 4. Using the table
in section 3.1 and the constraints (9) we find two possibilities feraquivalence
class:S =245 0r S = Dy.

This time, the orbit-invariant

(o, wa) € {—1,0,+1}

determines the isomorphism type ®f Indeed, for anyr € R, the relationuw?* —
w? + 1 = 0 implies that

(o, w?a) = 2+ (a, w'a).

Sincew?a # a # —w*a we must havea, w?a) = 1. Writing the relation as
w® —w + w~! = 0 shows that

(o, w?a) = (o, wa) — (o, w 'a) = 0.
If (o, wa) = 0 thenS contains, hence coincides wi2td, and has root basis
{a, —w?a} U{wa, —wia}

for the two A, components. Hend&| = 12 and consists of a single-orbit. We
havec = 2 andw? acts as the graph automorphism on each componest the
groupWy (S) = (wi) has order three.

If (o, war) = 1thenS = D, with root basis

{wa —a, wa—wa, wa—wla, o—wia+uwial,
wherew?a — wa corresponds to the branch node. N = 24 so S consists
of two w-orbits. The orbit not containing satisfies(3, w3) = —1. Herewg is a
Coxeter element ifl/ (Fy) = A(D,), whose image iA\(D,)/W (D,) is a triality.
The groupiWg (S) = (w?) has order four.
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We can count the number @&f-equivalence classes of each type, as follows.
Let e andb be the number of-equivalence classes of typel, and D,, respec-
tively. Countingw-orbits in each type, we have+ 20 = 240/12 = 20. The
degrees ofts are2, 8,12, 14, 18, 20, 24, 30. By Springer’s theory, the degrees of
Wy arel2, 24, so there aré1 + 23 = 34 reflections iniV,. Counting the number
of reflections in each group/x (.S), we get2a + 3b = 34. It follows thata = 8
andb = 6. (In the earlier case = 8 this method led to only one equation, so we
had to examine the roots.)

The table below summarizes the cases where: C'(w) # (w). Row “num-
ber of S” gives the number of5 of each type. Row N” gives the number of
reflections inC'(w) of each order. For example, whén= 8 there arel8 reflec-
tions of order two and2 reflections of order four. The last row gives the notation
for C'(w) according to the Shephard-Todd classification.

| d: ] 4 | 36 | 8 | 510 | 12 |
class 2D4(a1) 4142, Eg(ag) Dg(ag) 2A4, Eg(a,6> Eg(ag)
IC(w)[: | 8-12-20-24 | 12-18-24-30 | 8- 24 20 - 30 1224
dim Vg 4 4 2 2 2
type of S 24, A, 4141, D, Ay 2A2, D,
Wi(S)] 5 3 2, 4 5 3, 4
number ofS 60 80 12, 6 12 8, 6
N 260 380 218412 548 26316412
ST number 31 32 9 16 10

3.4 Some subfields of cyclotomic fields

Continuing withR = Fjg, we consider two examples where the image of a field

k — End (V) is not generated by an element4fR).

341 Q(V2)

We use the notation of section 3.3.4. The embedding- Q({s) — End(V)
sendsl + (s + (3 * to the operatot = 1 +w + w~! € End(V), satisfying

2 =2+1,

*

¢ =G

This gives an embedding of the subfigld= Q(v/2) C K in End(V).
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Leta,b € Q, and suppose = aa + bwa + bw'a € R. Then we must have

(a,n) = 2(a + bla, wa)) € {0, £1,+2},

15
%<77>7]> :a2—|—2b2+2ab<a7wa> — 1 ( )

If (o, wa) = 0, the two equations (15) have only the solutions- £a. In this
case, we havéV(S) = (s,) and W (S) = 1, sincec does not have rational
eigenvalues.

If (o, wa) = —1, we find the solutiong = +«, +ca. By a straightforward
calculation, one proves the following:

Lemma 3.10 Suppose € End(X) satisfies an equation of the fod = co + 1
for somec € Z, anda € R satisfies(«, ca) = 0. Thenca € R, ando commutes
with 5,554

It follows that W (S) = (saSca) has order two. Thus, we find that eaéh
equivalence class of type, contributes fouk-reflections of order two, giving a
total of6-4 = 24 k-reflections inlV,.. SinceQ(v/2) C R, these24 reflections gen-
erate a rank four Coxeter group, which must be of typeby the classification.
We can see this explicitly, as follows.

Letu = 1 4+ v/2. Using the linear maf : k — Q given byT'(a + bu) = a,
the formh(z, y) from section 2.1 is

W, y) = (z,y) + (z,5y)u.

We haveh(z,y) = h(y, x), sinces is symmetric.
If (o, war) = —1, thenh(a, a) = 2, so the reflectiom,, := s,s., iS given by

ro(z) =z — h(z, a)a.

If also (3, wB) = —1, wheref lies in anotherk-equivalence class, then on the
two dimensional spacken + k3, the product, s has matrix
Mo, 8)2 =1 h(a,f
=" ) (19)

in terms of thet-basis{«, 5}. Since

e, B) = (@, B) + (e, s B)u,

there are three possibilities for the ordengf as follows:
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L{a,f) =(a,sB) =0 = [rarsl =2;
2. (a,0) =0# (a,s8) = |rars| =3;
3. (a,f)(a,¢f0) =—1 = |rargl =4

For example, the fouk-reflections coming from a singl&-equivalence class of
type D, generate &V (B,).
Let

] = €1 — €9, Oé2:[+—+—|_++_],

(17)
ag=es—er, oa3=[++—+|+—++] =wan.

One checks thal;, wa;) = —1 fori = 1,2, 3,4 and that the:-reflections
T3 ‘= Sa;Sca;

satisfy the Coxeter relations fét,, according to the diagram—2--3—4.

Let W] ~ W (F,) denote the subgroup &V, generated by thé-reflections.
Since the latter are even element$if{ Es), this subgroup?/ is not conjugate to
the standardl’ (F,) C W (Es) C W (Es).

We also havél/| # W;. In other wordsJV;, is not generated by-reflections.
Indeed, we can writev = v3, wherev € W (E;g) has order4. Thenv € W,
but W (F},) contains no element of orded. Sincek is real andH is definite, the
groupWy is a finite subgroup of the compact orthogonal gréugpR). From the
classification (cf. [7, p.47]), we find th&t, is the extension ofV, = W (F},) by
its graph automorphism, which arises from an isometry Gvay?2).

3.4.2 Q(V5)

Again takeR = Eg and letw € W (FEjg) be cyclotomic of ordet0. The operator
T =w+w"! € End(V) satisfies the equatiorf = 7 + 1 of the golden ratio. We
have an embedding = Q(v/5) — End(V), sending}(1 + v/5) — 7. From the
equation

w—w+l—wl+w?=0,

it follows that
(o, wa) = {a,w?a) + 1 (18)

for everya € R, which implies thata, wa) € {0,1}. Fori € {0,1}, letR; =
{a € R: {a,wa) = i}.

22



Lemma 3.11 The operatorr mapsk, bijectively ontoR;, and has the following
properties:

1. (o, 7a) = 0;
2. 5,5:0 € Wy forall o € Ry;

3. Thew-orbits ofa and 7« comprise a root subsystem of type.

Proof: If (o, wa) = 0, then{a, w?a) = —1 by (18), so thatv+w?a € R. Hence
Ta =w ' (a+w?a) € R. Itis straightforward to check that

(Ta, Twa) =1, and («a,7a) =0.

The first of these equations shows that € R;, and the second, combined with
Lemma 3.10, shows that commutes withs,s.., proving 2. For the bijectivity,
note thatr — 1 sendsR; — R, and7(r — 1) = 1. For 3, one checks that
{wa, w3a, a, w?a} forms a base of ad ;. B

From Lemma 3.11, it follows that theequivalence classes are the subsystems
of R of the form

S ={+a,+ra} ~ 24, for o€ Ry.

These gives0 k-reflectionss, s, in the reflection subgrougd’;, C W;. From the
classification of real reflection groups, we see iiigtis the Coxeter group of type
H,.

To see the Coxeter generators, number the simple rodts aé shown:

1234567

3 (19)

and lets; be the corresponding simple reflections. Choose a “bipartite” Coxeter
element
UV = 52545658515355S57

(writing s; for s,,). The elementv = v* is cyclotomic of order ten. One checks
that
ay, Qg, (i3, g € R07 Qy, O5, Og, 07 € R1

and that
T IO — Oy, Qg — O, 3 — Os, ag F— O4y.
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Thus we recover the “inflation map” of [17] (defined there in terms of icosians).
As in [ibid.] the Coxeter relations i/ (Es) immediately imply that thek-
reflections

T = 8187, 9 = S925¢, s = 8385, T4 = 5458

satisfy the Coxeter relations &F (I1,), according to the diagram—2—3->4.

In contrast to the previous section, this time we h&je= W,. This can be
seen as follows. LeK, be the latticeX, viewed as a module over the ring of
integerso = Z[7] in k. Since2 remains prime i, the quotientX} /2.X, is a four
dimensional vector space over2e ~ F,. The formH (x,y) is symmetric and
the formula (3) reads as

H(z,y) = —(z,y) — (z,y + wy + w'y)7.

Since(z,z) € 2Z for all z € X, we haveH (z,x) € 20, so thatl¥}, preserves
the F,-valued quadratic form(z) = 1 H(z, ) mod 20 on X /2X;. Itis well-
known that kernel of the action & on X /2X is {+1}, so we have an injection

Wi /{£1} — 04(4), (20)

wheree = =+ is + if the form ¢ is split ande = — otherwise. SincgOj(4)| =
2-42(4? — €)(4? — 1) andW}, contains the subgrouy] = W (H,) of order120?,
it follows thate = +, thatW, = W, and that (20) is an isomorphism.

4 Coinvariants

4.1 Lattices and skew-symmetric forms

Let V' be a finite dimensional-vector space of dimensiom, and letX C V
be a freeZ-module of rankn. Letw be an automorphism df of finite order,
preservingX. We assume that is elliptic, that is,w has no nonzero fixed vectors
in V. Equivalently, the group of coinvariants

Xy =X/(1—w)X

is finite, of order
| X| = det(1l — w),
For\ € X, we let
=2+ (1—-w)X € X,
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be the coset containinky
Let M (t) be the monic minimal polynomial ab on V" and set

m = M(1).
There is a unique polynomial(t) € Z[t], with deg J < deg M, such that
(I—=t)J(t) + M(t) = m.

Let Z[w] be theZ-subalgebra ofind(V') generated byv. In the ringZ[w|, we
then have

(1—w)J(w) =m. (21)
It follows thatm X C (1 —w)X, so that
mX, =0, (22)

and X, is aZ/mZ-module. Explicit formulas for/(¢) in certain cases are given
in section 4.3 below.
Note that)M (t) is also the minimal polynomial af—*, so that

1—wHJw ) =m=(1-w)J(w),

or
—w N1 —w)J(w™) = (1 —w)J(w).

Sincel — w is a unitinEnd(V), this implies that
Jw™) = —wJ(w) = (1 —w)J(w) — J(w) =m — J(w). (23)
LetV be the dual space of and letX = Hom(X, Z) be the dual lattice, with
the natural pairind-, ) : X x X — Z. For\ € X, we have

(J(w)A, X) € mZ < J(w)h € mX
& J(w)d € J(w)(1 —w)X (24)
e le(l-w)X,
by (21). From (23), we have
for A € X, /i € X. It follows that we have a duality
Xy x Xy — Z/mZ,  (pr,pp) = (J(w)A, i) mod m,  (25)

wherel € X, i € X are lifts ofpy, ps, respectively.
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4.2 Quadratic lattices

Now suppos€-, -) is a symmetric positive definit@-bilinear form onV, taking
integer values otX. We can then identify/ = V' and regard the dual lattic€ as

X={eV: (\X)cCz}.

Note thatX C X.
Assumew preserves the forr, ). Then the pairing (25) restricts to &jmZ-
bilinear form onX,,, given by

(Pr pp)w = (J(w)A, ) mod m,  for A peX, (26)

which is skew-symmetric, by (23). More precisely the fofm)., is symplectic
(thatis,{p, p), = 0forall p € X)) if m > 2, orif m = 2and(\, \) € 27 for all
A € X. The form(, ), is orthogonal ifm = 2 and(\, \) ¢ 27Z for some\ € X.
A calculation similar to (24) shows that the forfm ),, has radical

X0 = [XN(1-wX]/(1-wX =ker[X, — X,], (27)

where the latter map is induced by the inclusion— X.

In particular, if X = X, then( , ), is nondegenerate oN,,. At the other
extreme, the fornj , ),, can be identically zero o, as we shall see in section
4.4,

4.3 Cyclotomic lattices and reduction modulay

Retain the set-up of the previous two sections. As before, we saytisatyclo-
tomic if its minimal polynomial)M () is irreducible overQ.

Lemma 4.1 Supposev is cyclotomic of orderl > 1. If d is not a prime power,
thenX, = 0. If d is a power of a prime, then

X, = Fo@),
wherea(d) = n - ¢(d) .

Proof: Sincem = ®,4(1) kills X,,, this follows from (22) and the elementary fact

that®,(1) = 1 unlessd is a power of a prime, in which caseb,(1) = p. B
Suppose that is cyclotomic of orderl a power of a prime and let( € Q*

have orderd. As before, the field\ = Q(¢) embeds inEnd(V) via { — w
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andZ[w] is the image of the ring of integers &f. The element — w € Z[ ]
generates the unique ramified prime id€at Z[w]; we havepZ[w] = P and
Z[w]/P ~F,.

Let X be the abelian groufy, viewed as atZ[w| module. Then we have

X = Xk /PXk,

so thatX,, is the reduction modulp of the Z]w]-lattice X .
The relation between the hermitian fofmand the pairing , ),, is as follows.
Forz,y € Xk, we have (see (3))

#(d)—1 ' #(d)—1
h(x,y) = Z <£L', fZ(UJ)y)Cl = Z (.%’, fz(w)y> mod P,
1=0 =0

wheref;(t) = a; + a; 1t + - - - +at™t + ¢, and®y(t) = Z‘“d a;t'. Using the
relationa; = ag44)—; and the fact thab,(1) = p, one can check that

so that we have

4.4 Root lattices

Let V' be a quadratic space as in section 4.2 andklee an irreducible reduced
root system in/. For eachv € R, we set

G— -2 R_{a:ach)
(a, @)

We assumer is compatible with the quadratic structure Bnthat is,

(a, 3 ez  foralla,B e R
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and the reflection,,(z) = = — (z,&)a onV preservesk. The inner product, )
is normalized so that
1€ (R,R) CZ. (28)

In most cases, the normalization (28) makesx) = 2 for each short roat € R.
The exceptions ar = B, andC,, where(a, o) = 1 for each short root.
Let Q(R) andQ(R) be theZ-lattices inV” generated by? and R, and let

P(R) = Q(R)

P(R)=Q(R)={ eV : (\R) C Z}.
We haveQ(R) ¢ P(R) andQ(R) C P(R), along with a duality

P(R)/Q(R) x P(R)/Q(R) — Q/Z

induced by our pairingz, y). Let

NeV: (\R) cZ,

Foranya € R and\ € P(R) we have(l — s,)\ = (A, &) € Za. It follows
easily that(1 — w)P(R) C Q(R), which implies that

f ] det(l —w). (29)

We apply section 4.1 to the latticé = Q(R), with X = P(R). Thus we have
a skew-symmetric fornd, ),, on X,, with radical

Xy = [QR)N (1 —w)P(R)] /(1 = w)Q(R) = ker[X,, — X,,].

The normalization (28) makes the formis ),, symplectic in all cases except
R = B,, Cy, where the formg , )., are orthogonal.

If R = R, then since(1 — w)P(R) C Q(R), the mapl — w induces an
isomorphism

P(R)/Q(R) — X, (30)

For R = Fjs in particular, the form( , ),, is a nondegenerate symplectic form on
X,, for all elliptic w € W (Ey).

If R # R, then the radicalX’ depends onv. The various cases work out
as follows. IfR = B,,, we haveX = Q(R) = Z" with the usual inner product
(ei,ej) = 0;. The elliptic classes iV (B,,) are in bijection with partitions of
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n: to the partitionn = n; + - - - 4+ n, corresponds the class of € W (B,,) with
characteristic polynomial

det(tly —w) = H 1+ ™.
i=1

We haveX,, ~ (Z/2Z)". SinceX = X, the pairing( , ),, is a nondegenerate
orthogonal form onZ/2Z)".
For R = C,, with n > 3, the elliptic classes are those bf(B,,). We have

X =QR) ={(x1,...,m,) €Z": Y x; € 2Z} and X, ~ (Z/27)" as above.
The form( , )., is symplectic with radical
X0~ 727 for r odd (31)
7)27 X 7./27 for reven

For G, and F; we list in the following tables the elliptic classes, their charac-
teristic polynomials and the corresponding grouys X°. The forms(, ),, are
symplectic.

| Class ofw € W(Gs) | det(tly —w) | X, | X0 |
Gy D¢ 0 0
A, o, Z/3Z | Z/3Z
ALt A, 02 (Z/22)% | 0
| Class ofw € W(Fy) | det(tly —w) | X \ X0
Fy P 0 0
Fu(ar) o2 0 0
Dy D20, (Z/2Z)? 0
Dal(ar) o2 (Z]2Z)? (Z]2Z)
By Dy 7J2Z 7J2Z
Ay + A, o2 (Z/3Z)? 0
As 1 Ay 2D, | (Z/4Z) % (Z)2Z) | (Z]4Z) x (Z.]2Z)
A1 G, B2, (Z]2L)’ Z]2Z)
A, ol (Z]27)* (Z]2Z)
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5 Elliptic regular coinvariants for Ej

Letw € W = W (FEj) be elliptic and regular. Recall that féis this is equivalent
to w being cyclotomic and4 1. By Lemma 4.1, the space of coinvariaiXg, is
nonzero iff the order ofv is a power of the prime. Recall that the symplectic
form (, )., is nondegenerate oN,,. Hence we have a natural homomorphism
0w : C(w) — Sp(X,,) from the centralizeC'(w) of w in W to the group of
automorphisms of the nondegenerate symplectic sjaceverl,,.

If w= —1thenX, = X/2X andC(w) = W preserves the quadratic form
q(z) = L(z,z) mod 2 on X/2X. It is well known that image op,, is the or-
thogonal group)(X/2X, q), which is properly contained ifp(X/2X).

In this section and the next we prove

Proposition 5.1 If w € W = W (KEy) is elliptic and regular and not equal te 1
then the natural map,, : C(w) — Sp(X,,) is surjective.

Proof: The class ofv is determined by its ordef € {3,4,5,8}. The casel = 3
is the most complicated and is covered in the next section.

Consider the casé= 5, and letK’ C Q* be the field generated by a fifth root
of unity ¢ € Q*. Since®s(t) = 1+t + t* + ¢* + ¢*, the formh(z,y) on Vi is
given by

h(z,y) = (z,y)+ (x, y+wy)(+ (z, y+wy+w’y) C+ (z, y +wy +w’y +w’y) ¢

and
h(l’,y) = _<$7y>w mod P,

whereP = (1 — ()Z[(] is the ramified prime ifZ[(].
From section 3.3.3 we have farc R either

(a,wa) =0 and {(a,w’a)=—1

or
(a,wa) = -1 and (a,w’a) =0,

which leads to
ha,0) =2+2C+ =1 -1 +20+202+¢%),

or
Ma,0) =24+ C+C+C=1-O0+ ¢+ + ),
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respectively. Hencé(a, a)(1 —¢)™' =1 mod P. It follows that the action of
the K-reflectionrs on X, = Xy /PXy ~ F? is given by

re(z) =x — h(z,a)a =z + (z,a),q, (32)

wherea € S anda denotes the image af in X,,. Since the pairing , ),
is nondegenerate, there are two roet$ such that(a, 3),, # 0 mod 5. Then
{pas ps} is a basis ofX,,. Letting S, T’ be theK -equivalence classes of /3, the
matrices ofrg, r are given by

ol el e

Hencerg andr; generates Ly (5), proving surjectivity ford = 5.

Consider the cas¢é = 8 and letK be the field generated by the eighth roots
of unity. Recall that eaclk -equivalence clasS contains a rootv € S such that
(o, wa) = 0. We haveS ~ 44, or S ~ D,. By Lemma 3.9, the latter holds iff
J(w)a € 2X. Since2 = (1 — w)J(w), we have

S~Dy, & ac(l-wX <& p,=0.

ForS ~ 4A;, we haveh(a, a) = 2 so formula (32) holds in this case as well, and
the rest of the proof is identical to the previous case.

For the caseél = 4, we take a different tack. Le¥ = X/2X, and letO(X)
be the orthogonal group of the quadratic fogrdefined above. The mdp —
O(X) sendsw to an involution inO(X) and the projectiony — X induces an
isomorphismX,, ~ X,, on coinvariants. Lettingd” denote the invariants af in
X, we have an exact sequence

O—)Xw—>X11U>X—>Xw—>O.

Hence the subgroup C O(X) acting trivially on X" and X, is the unipotent
radical of the parabolic subgroup (X)) with Levi GL,(2). LetU be the pre-
image ofU in W. We have

Uj=2°  [U]=2"

The normalizerN (w) = {v € W : w" = w*'} preserves the forng, ),
on X, andU is the kernel of the induced map(w) — Sp(X,) = Spa(2).
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Counting orders, we find the latter map is surjective. | claim there exists/
such thatw® = w~!. This will imply that we have an exact sequence

1 — UNCw) — C(w) — Sp(X,) — 1,

completing the proof in this case.
To verify the claim, we use the notation of section 3.3.4 for root&of For
0<i<6,let

A = €41 — €342, 7 = e7 + es, CYgZ%(—1,—1,—1,—1,—1,—1,—1,—1).
These roots correspond to the nodes in the extended Dynkin diagram, labelled as

follows:
8 75 4 3 210

6

We may takev € W(Ds), writing (ij) andt; for a transposition and sign change,
respectively:
The element
v=(12)-(34) - (56) - (78) = s0S2545¢
conjugatesy tow~! and fixes each,, € X,,. This lastis clear except for= 1, 3,

but here we havea; = —waq, vas = was. This completes the proof in this case.
|

6 Elliptic trialities

Let R be an irreducible root system, witki = Q(R), A = A(R), W = W(R)
as before. Atriality is a group element of order three. An elliptic triality #
is cyclotomic with minimal polynomialV/(t) = t*> + t + 1 and characteristic
polynomialdet (¢ - Iy —w) = (2 +t+1)*, where2k, the rank ofR, must be even.
By regularity, there is at most ori&-conjugacy class of elliptic trialities id. If
w € W then (29) implies that the indd®(R) : Q(R)] is a power of. It follows
that R has one of the types

A27 G27 F4a E67 E8' (34)

Elliptic trialities exist for each case in (34): the primelivides the Coxeter num-
ber and does not divide any exponent, so for any Coxeter elementl, the
elementw = v"/3 is an elliptic triality.
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If w ¢ W thenR = D, andw is an elliptic triality inW (F,) = A(D,). In
this case, the inclusio@(D,) — P(D,) = Q(F}) induces an isomorphism on
w-coinvariants. Hence the cage= D, is subsumed by the cage= F}.

6.1 Coinvariants for trialities

By Lemma 4.1, we have
X, ~ T (35)

Since3 = (1—w)(2+w), we haveJ(t) = 2+t and the corresponding symplectic
form on X, is given by

(Z,Y)w = ((24+w)z,y) mod 3.

Lemma 6.1 Supposev € A is an elliptic triality, letA € X and set) = (1—w)A.
Then
2(wA, A) = —(\\) and (0,0) = 3(\, \) € 3Z.

Proof: Sincew + w~! = —1, we have

2(wA, A) = (wA, A) + (A, w A = (wh, A) + (w A N = — (A, \).
It follows that

(0,0) = (1 —w)\, (T —w)A) = 2(\, A) — 2w, \) = 3(\, \) € 3Z,
asclaimed. H

Lemma 6.2 Supposey, 3 € R are short roots. Letv be an elliptic triality, and
supposey, 3 have the same class ii,,. Thens = w'a for some; = 0, 1, 2.

Proof: Our normalization (28) implies thdty, o) = (3, 3) = 2 for the cases in
(34). We are assuming the elemént o — 3 vanishes inX,,, so there is\ € X
such that

d=(1—w)A\, (36)

and we can apply Lemma 6.1:
(0,8) =3\ A),  2(wA,\) = —(\\).
On the other hand, sinde= o — 3, we have
(6,0) =4 — 2{(a, B) € 3Z. (37)
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Since(«, §) € Z, [2, VI.1.3] implies
(a, B) € {0, £1,£+2}.
However, equation (37) limits the possibilities to
(o, B) € {-1,2}.

If («r, B) = 2 thena = 5. Hence from now on we assume

which means
(0,0) =6, and (A \) =2

But a vector inX of norm equal to that of a short root is itself a root [Kac [16,
Prop. 5.10 a)]. Thus) is also a short root and we have

(WA, \) = —L(\,A) = —1.

2
This implies that
(A a) = (A B) = (A 0) = (A (T —w)A) = (A A = (A wh) = 3.
But )\, o, § are roots of the same length, so as above, we have
(A a), (A B) € {0,£1,£2}.
Since(\, a) — (A, 3) = 3, there are two possibilities:
(M, a)y=2 and () () =—1, (38)

or
(\,ay=1 and () ) =-2. (39)

The first possiblity (38) implies that = «, so (36) reads as
a=L0+(1—-w)a,

that is,
0 = wa.

Likewise, the second possibility implies that= w(3. The lemma is provedll
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Now we can prove the main result of this section. The automorphism group
A = A(R) of R containslV as a normal subgroup; we have= W for R =
G, Fy, Eg and[A : W] = 2 for R = A,, Fs. Recall that the cas® = D, is
contained in the cas® = F,. If w € W is an elliptic triality, the centralizer
Ca(w) of win A acts on thé';- vector spaceX,,, preserving the symplectic form

5 Jw-

Proposition 6.3 Letw € W be an elliptic triality. The natural action of' 4 (w)
on X, gives an exact sequence

1 — (w) — Cy(w) — Sp(Xy) — 1,

whereSp(X,,) is the isometry group of the symplectic foim )., on X,,. This
sequence splits in all cases excépt Fg.

Proof: If x € A, thenzwz~! is another elliptic triality, hence i -conjugate to
w. This shows that
[Ca(w)] = [A: W] [Cw(w)],

hence this order is the given by degrees. These are tabulated below, along with a
concrete description of the group(X,,) and its order.

| R | |Cu(w)] | Sp(Xw) | 1(Xw) |
Ay 23 F3 3—1
G 6 Fy 3-1
F, 6-12 SLy(F3) 3(32-1)
Eg| 2-6-9-12 | [F; x SLy(Fs)] x F3 | 2-3%(32 1)
Eg [ 12-18-24-30 Sp4(F3) 3BT -1)(3% 1)

In each case, we have
|Ca(w)] = 3|Sp(Xy)|-

Hence it suffices to prove that the kernel of the niggw) — Sp(X, ) is gener-
ated byw.

Suppose that € C'4(w) acts trivially onX,,. Then for every shortroat € R,
the rootsy, ua have the same image K,,. Lemma 6.2 implies that andua are
in the samev-orbit. Henceu preserves each -equivalence clasS containing a
short root inR, whereK is the subfield ofind (V') generated byv. This means
thatu preserves thé&'-line in Vi throughS. The short roots spaw, sou has all
of its eigenvalues irk .
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LetS be the set of(-equivalence classes fcontaining a short root. Sinee
preserved( S for S € S, it follows thatu commutes with the groud’x (.S). The
proof of Lemma 3.4 shows that the subgroupiof generated the group¥y (.S)
for S € Sis irreducible onVx. This implies that:, acts onV by a scalar ink.
The roots of unity inK'* are generated byw. Since—1 is acts nontrivially on
the F;-vector spaceX,,, it follows thatu € (w), as claimedll

6.2 Subgroups ofSp,(3)

All centralizers of elliptic trialities are algebraic subgroupsSgf,(3). We ignore
A, since the automorphism group of this root systerii§5,). For this discus-
sion it is convenient to number the simple roots@fas follows:

1 23 45 7 8 (40)
6
and let

Qg = a1 + 209 + 3as + 204 + a5 + 20,

g = 201 + 4o + 63 + oy + das + 3ag + 3ar + 20

be the highest roots in the; Coxeter subsystem ani, respectively. Lek; €
W (Ejs) be the reflection fory;.
As our elliptic triality in W (Eg), we takew = wow;wsws, Where

Wo = 5088, W1 = 5152, W2 = 5554, W3 = S6S59.

Then
wy € W(Gg), W1 WorW3 € W(F4) C W(EG)

are elliptic trialities in the respective groups. Let us wiitg(x) = Ca(g)(z) for
R = Gy, Fy, Eg andz € W(Eg). We have

Ca,(w1) = Cg,(w) and Cr(wywews) = Cr(w) for R = Fy, Eg.

Let p; be the image ofy; in X,,. The quadruplépo, ps, ps, p7) IS an ordered basis
of X,, = F3 on which the form( , ),, has matrix

00 0 -1
00 -1 O
01 0 O (41)
10 0 O
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From Proposition 6.3, we have
Cs(w) = (w) x Spa(3),

whereSp,(3) is identified with the elements 6, (w) of determinant one ol
Sincew ¢ Cg,(w), the projection ofCz, (w) into Sp(X,,) = Sp4(3) is injective
on the group€'z(w), for R = G5, Fy, Es. Their images give the following chain
of algebraic subgroups ¢fp,(3):

CG2 (w) - CF4 (w) - CEG (w) - CES (w)

! ! ! !
1000 100 # « ko
0 « % 0 0 « % 0 0 * x =x
000 S lox 0| S o« S 5P
000 1 000 1 00 0 x

Here x represents arbitrary independent element&'pfuch that the indicated
matrix preserves the form (41).

6.3 Aremark on transitivity

Let us call a vectow € X, nonsingular if v lies outside the radical of , ).,
when R = FEg, and if v is nonzero in the remaining cases. One can check that
each root gives a nonsingular vectorXp,.

The idea for Lemma 6.2 came from the observation that the number of non-
singular vectors inX,, is one third the number of short roots, as follows.

Ay: 3—1=6/3

Gy: 3—1=6/3

Fy: 3> —1=24/3 (42)
Es: 3*-3=12/3

Eg: 3*—1=240/3.

Moreover, sinceéSp(X,,) is transitive on nonsingular vectors .k, . It follows
from Proposition 6.3 thaf’,(w) is transitive on the set of short roots i In
fact, since the highest short root is fixed by diagram symmetries, the smaller group
Cw (w) transitive on short roots. In the casRs= G, F, where there are multiple
root lengths, there is an involution dn interchanging long and short roots and
invertingw. It follows thatCyy, (w) is also transitive on long roots iR.
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6.4 Elliptic trialities in F}

Each case of elliptic trialities has special features, relating to other areas of math-
ematics. We explore these next, starting with the simplest nontrivial case.

The F} root lattice X = Q(F}) is the subgroup oR* consisting of vectors
whose coordinates are all integers or all half-integers. Identifying the standard
basis ofR* with 1,4, j, k, the Hamilton quaternion relations impart a ring struc-
ture to X. This ringH, with underlying additive grougX, is isomorphic to the
endomorphism rindind( F) of the unique supersingular elliptic cur¥gin char-
acteristic two, with affine equatiog? + y = 3. We refer to [21] for the basic
facts about elliptic curves. The automorphism group of any elliptic curve has or-
der dividing24 [21, Thm. 10.1] and the curvE attains this maximum: we have
Aut(E) = H* ~ SLy(3). This isomorphism is given by the action afit(E)
on the groupE[3] = {P € E : 3P = 0} of 3-torsion points, on which the Weil
pairing is a symplectic form invariant undant(£).

A ring isomorphism

0:H — End(E)

intertwines the quadratic forn, z) on X with the form onEnd(F) given by
the degree of an endomorphism. Hedcgends the short roots i to the units
Aut(E). The Frobenius endomorphiskhof £ has degree two, sé sends the
long roots inX to the twisted Frobenii F with o € Aut(FE).

Fix an elliptic trialityw € W (F}). Proposition 6.3 shows that

Cov(pyy(w) = SLy(3).
The elemenw := f(w - 1) € Aut(FE) satisfies
O(wA) = 0(\)w, forall A € H. (43)

Sincew has order three, it fixes a unique line in the two-dimensidhaector
spacel([3] = {P € F : 3P = 0}. Let P be a non-identity point in this line.
Then the map

H — E[3], A—0(A)-P

induces an at¥' L, (3)-equivariant isomorphism
X =H/(1—w)H — E[3].

Thus, the elliptic curveé? gives an interpretation of the abstract isomorphism (35).
In the next section, we'll see thatis also relevant to the elliptic triality il ( E).
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Before getting to that, we conclude tlt¢ example with a remark on that-
cell; this is the unique regular convex self-dual polytope in four dimensions (see
[9, chap.8]). Itis comprised &¥4 octahedra, centered 2t roots of a fixed length
in X. The symmetry group of thl-cell isW (F},) and the fixed-point-free triality
symmetries of th@4-cell are exactly the elliptic trialities) € W (F},). From the
last paragraph in section 6.3 we conclude thatp,)(w) = SL2(3) acts simply-
transitively on the24 octahedra.

We can writew as a productv = wwv of commuting trialitiesu, v, where
u € W(D,). The element-u has order six and generates a Borel subgrBugf
SLy(3). The B-orbit of an octahedral cell is a solid polyhedral torus, consisting
of six octahedra meeting in a sequence of common faces. The whole 24-cell, a
polyhedral decomposition of the three-sphere, is the union of four such octahedral
tori, which are mutually linked.

The subgroup? is also the stabilizer of a vertex under the actior5@k(3)
on the tetrahedron via the mafl»(3) — SL2(3)/ £ 1 = Alt(4). The quotient
mapSL2(3) — SLy(3)/B thus gives a map from tht-cell to the tetrahedron,
which is a polyhedral analogue of the Hopf fibratisih— S, in which the fibers
have been fattened into linked tori.

6.5 Elliptic trialities in Ej

Let us change coordinates slightly, and view the elliptic cutnvabove as defined
in P2 by the cubic polynomiaf = X274+ Y3+ X Z2. The 3-torsion points on any
elliptic curve are also the inflection points, hence are independent of the choice of
origin defining the group structure. For our cuethe 3-torsion points coincide
with the[F4-rational points:

E[3] = E(F,).

The polynomialf may be viewed as a hermitian form @, and E(F,) is the
set of f-isotropic lines inF3. The projective unitary groupUs(2) of f, of order
9 - 24, acts on the curvé’ with group structure ignored. The stabilizer of a point
in E(F,) is a Borel subgroup itPU3(2) and is isomorphic t&'L,(3). Thus we
may identify the points inF(F,) with the Borel subgroups aPU;(2). Given a
Borel subgroupB, and lettingEz be the elliptic curve (oveF,) defined byf
with identity elementB, we haveAut(Eg) = B. To see this explicitly, leB be
the stabilizer ofO = [1,0,0] € E. Then ([21, p.327])B = Aut(FE) is given in
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X, Y, Z coordinates by the projective matrices

1 us
0 u s, uelFy, [st 1] € E(Fy). (44)
0 0 1

The subgroup withy = 1 is the quaternion grou@Q; these eight automorphisms
happen to be parametrized by the pointgri(i,) distinct fromO. This is ex-
plained by the Bruhat decomposition: sinB&/;(2) has rank one, the-Sylow
subgroup of any Borel subgroup acts simply-transitively, by conjugation, on the
remaining Borel subgroups.

The group(£, O) acts on itself by translations, and this action turns out to
be linear onE(F,4). To see this, it suffices, by the transitivity €, to note that
translation by the poinf = [0,0, 1] is given by the linear mapX,VY, 7] —
Z,Y,X + Z]. Thus, E(F,) embeds inPU;(4) as a normal subgroup, and we
have

PU;(4) = E(Fy) x SLy(3).

Now, an elliptic trialityw € W (F}) is also an elliptic triality inlV = W (E).
Let ¢ € Q* have order three, and I&}; be theK-vector spacé” = Q ® Q(Es)
where( acts onV viaw. The groupCy (w) = Wy preserves the hermitian form
h on Vi (see section 2.1). LeX be the abelian grouf’ = Q(Fjs), viewed as a
Z[¢]-module. Since& remains prime irZ[¢], the formh induces a hermitian form
on the vector spac& /2 X ~ F3. This gives an isomorphism

WK ~ U3<2),
in whichw maps to a scalar matrix iti;(2), so that
W /(w) =~ PU3(2).

Since all hermitian forms in three variables are equivalent, we se€'that) / (w)
is the automorphism group of the curiZewith group structure ignored.

Let A = A(Es) be the full automorphism group of thg; root system. In
section 6.2, we have seen thaf(w) is a maximal parabolic subgroup Hp,(3)
with Heisenberg group/ for unipotent radical. The Levi subgroup 6f;(w) is
F3 x SLy(3), where the first factor is generated by the graph automorphism of
E. It follows that
Cw(EG)(lU) = SL2(3) X H.
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The center off is generated by. From section 3.2, the eigenspa¢ésy, ¢) and
V(w, ¢?) are three dimensional irreducible representation§ypfw), affording
the central charactets — ¢, w — (% of H. It follows thatV (w, ¢) andV (w, ¢?)
are the Weil representations ©fy (w) = SL2(3) x H [13, 2.4].

6.6 Elliptic trialities in  FEg

For an elliptic trialityw € W = W (FEjy), the analogue of the elliptic curvé
with its 3-torsion points is a cubic surfacewith its 27 lines. Letw be an elliptic
triality in W (Eg), letX = Q(Es), V = Q® X, and letK’ = Q(() be generated by
an element of order three {@*. EachK-equivalence class of roots is an orbit of
—w, and is the vertex set of one of Coxeteftsplanar hexagons (cf. [8, p.480]).

Just as forEs, the hermitian formh on Vi becomes a cubic polynomial on
Xk /2Xk, which this time gives a two-fold covering

1 — {1} — Cw(my)(w) — Us(2) — 1, (45)

under whichw maps to a generator of the center(éf(2). This last group has
order
UL(2)] =202 = 1)(2* + 1)(22 = 1)(2+1) =2°-3°-5
and preserves the nonsingular cubic surfsice P* defined byh.
Aline on S(FF,) is anh-isotropic plane iff}j. The group/,(2) acts transitively

on isotropic planes and the stabilizer of one such is a semidirect pr@diu¢t) x
I3, of order26(2* — 1)(2%2 — 1). Since

26(2% — 1)(28 4+ 1)(22 — 1)(2+ 1)
26(24 —1)(22 — 1)

— 27,

This shows that/,(2) acts transitively on the lines ifi and that every such line
is rational ovetf,. Using the Bruhat decomposition, one can check thaif the
lines onS are rational oveF,. Hence the action dfal(F,/F,) on the set of lines
is nontrivial.

The symmetry group of the configuration #f lines in .S is W (Es), whose
order|W (Eg)| = 27 - 3* - 5 is twice that of PU,(2). SinceWW (FEs) has a unique
character of order two, namely the sign charaetehe action ofU,(2) on the
configuration of lines irb gives an isomorphism of simple groups

PU4(2) AN W(E6)+ = kere.
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The nonidentity coset oPU,(2) in W (Eg) contains the nontrivial element of
Gal(F,/F,) acting on the lines ir¥.
Lifting back to the two-fold cove€yy g, (w) of Us(2) via (45), we find that

Corgiy (w) = (w) x W (Ey)

+
wherelWW (Es) is a two-fold cover oV (Es)™.

On the other hand our split exact sequence in Proposition 6.3 re&liz€3)
as the subgroup of'y (g, (w) = Wi with determinant one ovx. Thus we
recover the isomorphism (cf. [5])

— +

W(Es) = Spa(3).
SinceSp,(3) equals its own derived group, the covering
Spa(3) — W(Es)" C SOs(R)
is non-split, in analogy with the binary tetrahedral covering
Spa(3) — W (A3)" C SO3(R).

The eigenspaces(w, ¢) andV (w, ¢?) are in duality via the pairing , ) on
V and afford the two distinct four dimensional representationSyaf3) overQ
[5]. The exterior squares of these representations are irreducible and isomorphic
to one another; let
A= AV (w,¢) ~ A*V (w,(?).

As a representation dfp,(3), A is the unique cuspidal unipotent representation,
denoted byd,, in [24]. As a representation df4(2), A is the unipotent repre-
sentation corresponding to the partitien= 2 + 1 + 1. As shown in [15], the
representatiorh ® Q, can be realized on the quotient of thadic cohomology
group H2(S) by the one-dimensional subspace spanned by a hyperplane section.
Thus, for the elliptic trialities inF, and Es, the middle exterior powers 6f (w, ¢)

are realized in the cohomology groufis (E) and H?(.S), respectively.

7 p-adic groups

Let % be afield of characteristic zero, complete with respect to a discrete valuation.
This means that is a finite extension of the fiel@, of p-adic numbers, for some
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integer primep. Let K be a maximal unramified extension/oaind letkrob be a
topological generator dfal(K/k). Fix an elementv € k of valuation= 1.

All connected reductivé-groupsH that we consider will be split ovek’; we
identify H with its group of K-rational points. The group df-rational points is
H(k) = HY, whereF is the endomorphism dff arising from thek-structure on
H.

As mentioned in the introduction, the study of cyclotomic structures in this
paper arose from the construction bfpackets in [11], [19]. For more back-
ground, see [14]. We recall this construction in the simplest case of a simply-
connected:-groupG which actually splits ovek. Let F' be the Frobenius endo-
morphism ofG. Fix a maximalk-split torus inT" C G. The root systenR will
be the system of co-roots @f in G. SinceG is simply connected, the abelian
groupX = ZR = Hom(GL,,T) is the group of co-characters @t Let N and
W = N/T be the normalizer and Weyl groupsBfin GG, respectively. The group
N acts by affine transformations on the apartmédnt R @ X in the Bruhat-Tits
building B of G. Givenn € N, there are unique elementss X andw € W such
thatn acts onA by the affine transformatiohw : = — X + wz, and this gives a
surjective homomorphism fron¥ to the affine Weyl groupV, = X x W.

7.1 Tori and their characters

For anyw € W, we have a twisted-torusT,,, whereT,, = T as sets, and the
Frobenius endomorphism @, is wF, so thatT, (k) = T*F. The torusT,, is
anisotropic ovetk, equivalentlyT,, (k) is compact, precisely i@ is elliptic. The
Galois cohomology group/! (K /k,T,,) is isomorphic to the torsion subgroup of
X, If A € X represents a torsion clags € X, thenp, corresponds to the class
lc,] € HY(K/k,T,) of the cocycler, endingFrob to A\(w) € T
We henceforth fix an elliptic element € W. ThenX,, is finite, so we have

an isomorphism

Xy~ HY (K/k,T,). (46)

Each clasy € H'(K/k,T,) determines an embeddirig, — G, as follows.
View p as a coset inX, via (46) and let\ € p. The transformatiort,w has a
unique fixed pointz, € A, given by

ry=(1-w)"'\= %J(w)/\.

The stabilizerG,, of of z, in G is preserved by and K, := GfA is a maximal
compact subgroup aff’. By the Lang-Steinberg theorem, there is an element
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px € G, suchthap,'F(py) € NNG,, is alift of tyw in N. Conjugation by,
gives a mapAd(p,) on G which restricts to an embedding

Ad(py): T =T, CG (47)

of 7" onto anF’-stable torusl, in G, such thatAd(py) c wF = F o Ad(p,).
We haveT{ C K,; in fact, K is the unique maximal compact subgroup®f
containing". Note that the embedding (47) depends«gnhich has been fixed
at the outset and suppressed from the notation.

Two such toriTy and7,, (for A\, u € X) are GF-conjugate iffp, andp, are
conjugate under the action of the centralizéw) = Cy (w) on X,,. The map
Ad(py) sends the centralizél(w) to the grough (Ty, G)* of F-rational points in
the Weyl group off’, in G, and sends the stabilizéf{(w, p,) of p, to the subgroup
W (T, G'') of elements iV (Ty, G) having representatives @" .

Thus, the map\ — T) induces a bijection from thé’(w)-orbits in X,, to
the G -orbits in the sefr,, of F-stable maximal torlS c G such thatS” is G-
conjugate ta™*'. This map lifts taX,, as follows. Fix a charactey : 7% — C*
which is regular, in the sense of [14]. Givane X, let x, = x o Ad(p,) be the
corresponding character . Thus we have an elemefit,, x,) in the set]lx
of pairs(S, ), whereS is an F-stable torus ir7, 6 is a character of ', and there
is g € G suchthat(S¥, 0) = (9(T“F),9y).

The groupG! acts by conjugation off,, andTw,X, with finitely many orbits,
and the maps above give a commutative diagram [11, Lemma 9.6.1]

Xw L) j:U,X/GF
| | (48)
X,/Cw) — T,/GF

where the horizontal maps are bijections, the left vertical map is the natural quo-
tient and the right vertical map is induced by the projection onto the first factor.

For example, supposé has typeFs andw is cyclotomic. Recall that ifv =
—1, thenC(w) surjects onto the orthogonal group @fr) = 1(z,z) on X,, =
X/2X, so there are three orbit§0}, ¢ =0, ¢ = 1.

If w # —1, then Proposition 5.1 shows that there are &Woclasses of tori in
T..- One of them, represented By, hasW (T,, G)' = W (T,, GF') ~ C(w). The
other, represented ) for A € R, hasW (T), G*') being the two-fold cover of
the stabilizer of a nonzero vector #p(X,,).
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7.2 Supercuspidal representations

The embeddings of anisotropic unramified tor(irare mirrored in the represen-
tation theory ofG”. Given(S,9) € 7,.,, the compact maximal torus” fixes a
unique pointz in the buildingB of G, whose stabilizell, = GZ is the unique
maximal compact subgroup 6f" containingS*". From the pair S, #), construc-
tions due to Adler and Deligne-Lusztig give us a finite dimensional irreducible
representation (.S, #) of K, which induces to an irreducible supercuspidal rep-
resentation

7(S,0) == nd$. x(S,6)

of GF'. We haver(S,0) ~ =(S’,0') iff the pairs (S,0) and (5’,¢') are G-
conjugate. Hence, fgr € X, we can define

(X, p) = 7(xx, Th)

forany\ € p.
Thus, for each regular characteof 7%%, we have a finite set (:-packet”)

Iy(x) == {7(x,p) : p€ Xu}

of isomorphism classes of representation&/6f parameterized by, .
The centralize’ (w) enters this picture via the equivariance property [19]

T(xY, p) = 7(x,y - p), y € Clw). (49)

Note that (49) is compatible with the isomorphigitw, py) ~ W (Ty, GF). It
also shows that two classe$y, p) and«(y,y - p) contain representatives which
are induced from the same maximal compact subgrEypthe only difference
being a twist of the character df, by an element of7 which normalizesTy" .
This simplifies the determination of the groufig from which we induce to get
the representations i, ().

Sinced is simply-connected, thé’'-conjugacy classes of maximal compact
subgroupsK are in bijection with maximal proper subdiagrams of the affine
Dynkin diagram ofGG, which gives the type of the maximal reductive quotient
of K. If p, = 0thenK, is hyperspecial and corresponds to the ordinary Dynkin
diagram ofG. If p, # 0, one can find the type ot by first computing the point
zy = (1 —w)~'\ and then determining the root system consisting ofiail R
which take integer values or). In practice, it is more efficient to determine the
stabilizerlV,, of z, in the affine Weyl groupV,¢. The tangent space gf atz) is
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the reflection representation df,, , so the latter contains the elemegpt € W,
having the same characteristic polynomal.as

If G has typeFEs andw is cyclotomic then this method turns out to be sharp:
Recall that ifX,, # 0 thenw is determined by its ordef € {2, 3, 4,5, 8}. We list
the prime-power orders of cyclotomic elements in the maximal finite subgroups
of W, other thanV/, as follows:

Dg A1A7 A2A1A5 2144 D5A3 E6A2 E7A1 Ag
2,4,8 | none| none 5 | none 3 2 none

The types of the inducing subgroups,, for p, # 0, are then determined as
follows: Ford = 2 there are two orbits of' (w) on X,, — {0} and we findDs and
E-; A, as the two types of maximal compact subgroups, other ifigarappearing
as inducing data inl,(x). Ford € {3,4,8} there is just one orbit of'(w) on
X, — {0}, and indeed we find a unique type for eaktim the table above.
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