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1 Introduction

In the late 1960s, Robert Langlands proposed a new and far-reaching connection
between the representation theory of Lie groups over real and p-adic fields, and
the structure of the Galois groups of these fields [24]. Even though this local
L anglands correspondence remains largely conjectural, therelation that it predicts
between representation theory and number theory has profoundly changed our
views of both fields. Moreover, we now know enough about the correspondence
to address, and sometimes solve, traditional problemsin representation theory that
were previously inaccessible.

Roughly speaking, the local Langlands correspondence predicts that complex
irreducible representations of a reductive group G' over alocal field k& should be
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parametrized by certain homomorphisms of the Galois group (or more generally
the Weil group) of & into a complex Lie group “G which isdual to GG, in a sense
that will be explained below.

In this article, our am is two-fold: First, we want to introduce the Lang-
lands correspondence for reductive groups over local fields, giving many exam-
ples aong the way. Second, we want to show how the Langlands correspondence,
combined with some ideas from number theory, can be used to study the classical
problem of restricting irreducible discrete series representations from SO, | to
SOq,.

The conjectures of Gross-Prasad [14] describe these restrictions in terms of
symplectic local root numbers attached to the Langlands parameters of represen-
tations of orthogonal groups. These root numbers are number-theoretic invariants
of the parameters, but to test the conjectures one needs to construct the corre-
sponding irreducible representations. This has been done recently, for some inter-
esting discrete series parameters, in [9] and [22]. Specializing this constuction to
orthogonal groups, we verify the Gross-Prasad conjectures for these parameters.

Since the restriction problem we consider has roots in the very origins of rep-
resentation theory, we have tried to place our results on orthogonal groupsin an
historical context. Moreover, as representation theory is now used in many areas
of mathematics, we have also tried to make much of this paper accessible to a
wide audience, by raising the prerequisites as gradually as possible. Thisaim has
forced us to omit much recent work on the local Langlands correspondence, such
as[18], [20] for G L,,, and [26], [27] on unipotent representations.

We begin with a discussion of spherical harmonics for the compact real group
SO(3) of rotations in R*. We will see that each irreducible representation of
SO(3) isnaturally paired with a discrete series representation of the noncompact
orthogonal group SO(2,1). Thisis our first example of an L-packet of represen-
tations attached to a Langlands parameter. We then introduce the p-adic versions
of SO(3) and SO(2,1), and arrive at analogous L-packets of discrete series rep-
resentations. In both cases, we discuss the restriction of the representations to the
subgroup SO(2).

Next, we return to real groups, in amore general setting. After areview of the
fundamental results on discrete series for real Lie groups, due to Harish-Chandra
and Schmid, we partition their representations into L-packets, with illustrations
in the orthogonal case. This permits us to formulate the Gross-Prasad conjecture
on restriction from SOs,, 1 to SO, which in the real case generalizes classical
branching laws.

In section 6 we turn to a general description of Langlands parameters, intro-
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ducing the Weil group of alocal field and the complex Lie group “G mentioned
above. Here the prerequisites increase; to help the reader we give some back-
ground on root data and quasi-split groups. We then show how the L-packets
constructed by Harish-Chandra and Schmid correspond to real Langlands param-
eters, and we illustrate these parameters for orthogonal groups in more detail.

The remainder of the paper is devoted to the p-adic case, where much of the
Langlands correspondence remains conjectural. We focus on parameters which
we call “tameregular discrete”’, and which are analogous to discrete series param-
etersin the real case. In section 11 we briefly outline the recent construction of
the L-packets of irreducible representations associated to these parameters. After
asmall taste of Bruhat-Tits theory, we then give more details about this construc-
tion, in section 13.

We then turn to the parameters for p-adic orthogona groups, and introduce
local epsilon factors from number theory, in order to state the Gross-Prasad con-
jecture on restriction from SOy, 1 t0 SO, in the p-adic setting. The rest of the
paper is devoted to verifying this conjecture, for tame regular discrete Langlands
parameters. The proof invokesaresult in[28] on therestriction of Deligne-Lusztig
characters for finite orthogonal groups.

There isno denying that the L anglands correspondence throws many technical
barriersin the way of the interested mathematician, neophyte and expert alike! We
hope that the mixture of general theory with explicit examples will enable many
readers to hurdle, or at least to see over these barriers, in order to appreciate this
fruitful interaction between representation theory and number theory.

We thank J.-P. Serre and N. Wallach, for helpful comments on an earlier ver-
sion of this paper. In addition, the referees made numerous insightful criticisms
which, we believe, enabled us to improve the exposition.
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2 Spherical Harmonics

One of the earliest results in harmonic analysis for a nonabelian group was the
decomposition of square-integrable functions on the sphere S

12(5?) = P, (Hilbert direct sum) (1)

m>0

into eigenspaces of the spherical Laplacian. The eigenspace denoted 7, has di-
mension 2m + 1, and has associated eigenvalue A = —m(m + 1). It affords an
irreducible representation of the spherical rotation group SO(3).

Every irreducible complex representation of the compact group G = SO(3)
isisomorphic to somer,,. Let H be the subgroup of G fixing apoint on S2. Then
H isisomorphic to the rotation group in the plane orthogonal to the line through
the fixed-point and its antipode. Thus, we may identify

H=802)={ze€C": |z| =1}.

For k € Z, let x;, : H — C* be the unitary character defined by x(z) = 2*.
Then the restriction of the representation 7, from G to H decomposes as a direct
sum of irreducible representations:

Resg (m,) = @ Xk- 2

[k|<m

For al of the above see, for example, [43, 111.9]

The decompositions (1) and (2) were used by theoretical physicists to model
energy levels of the hydrogen atom [45]. Physicists also initiated the study of
representations of the non-compact form G’ = SO(2,1) of G; see[1]. Thisisthe
group of orientation-preserving isometries of the quadratic form Q = 2 +y? — 22,
and isisomorphic to PG Ly(R).

The irreducible complex representations of a Lie group G which occur as
closed subspaces of L?(G) are called discrete series. If G is compact then ev-
ery irreducible representation isin the discrete series.



For G' = SO(2, 1) the discrete series are representations 7/, , parametrized by
integersm > 0. The subgroup H C G’ fixing a vector in R* whose orthogonal
complement is definite is isomorphic to SO(2). The representation 7, can be
characterized by itsrestriction to SO(2):

Res () = @) xe- (3)

|k|>m

To summarize, for each integer m > 0 we have a set
I, = {Wma ﬂ—;n} (4)

of irreducible representations of G = SO(3) and G' = SO(2,1). Every irre-
ducible representation y, of SO(2) occurs once in the restriction of either ,, or
w,, for every m, but not in both. We will see that this appears to be a general
phenomenon for L-packets (of which IT,, is an example) of representations of
orthogonal groups over real and p-adic fields.

3 p-adic SO(3)

A similar result holds for representations of the rotation group SO(V'), for 3-
dimensional orthogonal spaces V' over p-adic fields. Let £ = Q, be the field of
p-adic numbers, let o = Z,, bethering of integersin k, and let f = o /po ~ Z/pZ
be the residue field. Let k- be the unramified quadratic extension of &, with ring
of integers o, and residue field f, = 0y/po,, with p? elements. If p > 2 then
ke = k(y/u) and 02 = o[y/u] for u € o* aunit which isnot asquare. Let 7 be the
nontrivial automorphism of k£, whichistrivial on &; on 0, we have the formula

7(a) =a” mod pos.

We begin with two-dimensional spaces which are analogous to the complex
plane. The space W = k, is an orthogonal space over k of rank two, whose
quadratic form a +— a - 7(a) isthe norm from &, to k. The rotation group of W is

H=SOW)={acky: 7(a)=a '} ={a€o): 7(a) =a '}

There is extra structure that did not appear in the real case: we also have a
quadratic f-space W = f, with quadratic form o — o”*!'. Reduction modulo
p from o, to §, givesa surjective group homomorphism

H— H=S0W)={acfy: o> =a'}.
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The group H is cyclic of order p + 1. We say a character y of H istame if it
factorsthrough H, and isregular if 2 # 1.

In three dimensions, there are exactly two distinct orthogonal spaces of rank
three over k, up to equivalence and scaling [32, Chap. IV]. We denote them by
(V,Q) and (V',Q"). They both contain 17" and have orthogonal decompositions

V=Wao/e), Q(e) = p,
Vi=Weol(), Q) =1

Inthefirst case, —Q)(e) = —pisnotanormfrom k., () doesnot represent zero
nontriviallyon V', and G = SO(V') iscompact. Inthe second case, —Q'(¢') = —1
isanorm from £, @' has nontrivial zeroson V', and G' = SO(V"') is noncom-
pact. The group H = SO(W) isasubgroup of both G and G', fixing the vectors
e and €, respectively.

We will now construct irreducible representations 7, and = of G' and G,
starting with tame regular characters y of H.

The group G preserves the lattice L = o0, @ oe in V, and the form induced
by @ on L/pL has one dimensiona radical. This implies a surjection G —
O(W). Hence G has a normal subgroup K of index two, which surjects onto
H = SO(W). We view x as a character of K, and define 7, as the induced
representation:

T, = Ind% x. (5)

More precisaly, induced representations are defined as follows. If K is afinite-
index subgroup of agroup G and p : K — GL(V,) is a representation of K,
then

Ind% p={f:G—V, suchtha f(kg) = p(k)f(g), foralk € K, g € G},
(6)

and the group G acts on Ind% p by (g - f)(z) = f(zg) for z,g € G. We have
dimInd% p = [G : K] - dim(V,). We will use various elementary properties of
induced representations without further comment. See, for example, [34, chap.
7).

Returning to m,, we have dim(r,) = 2. Since y is conjugate to x~' in
O(W) c G, it follows that 7, isisomorphic to 7, -1. Restricting 7, to H, we
find

Resg(my,) = x® x " (7)



To define 77 , it is convenient to view the noncompact group G’ as PG Ly (k),
whose Lie algebra is a three-dimensional quadratic space isometric to (V', Q').
This group has a maximal compact subgroup

K' = PGL»(0) C G

In turn, K’ maps surjectively onto G’ = PG L (). The latter is afinite group of
order p(p? — 1). The group H embeds as a subgroup of G’, and a cohomologi-
cal form of induction, due to Drinfeld in this case and extended by Deligne and
Lusztig [10], associates to the data (H, ) an irreducible representation R(x) of
G', of dimension p — 1. For the particular group G’ = PG Ls(§), the character of
the representation R () was discovered by Frobenius[11, section 9] in one of his
first papers on representation theory.

Theirreducible representation R(x) of G’ is characterized by itsrestriction to

H:
Resg (R(\) = €D n.
nelrr(H)
n#EXX !
We pull R(y) back to a representation of K’ via the homomorphism K' —
PG L,(f), and define
. =Ind% R(x). (8)
The group K’ hasinfinite index in G’. Induction is defined as in (6), but now we
requirethefunctions f € Ind%, R(x) to have compact support, and to be invariant
under a compact open subgroup of G'.
The representation r; is irreducible and belongs to the discrete series of G'.
All characters of H appear in the restriction Resy () with multiplicity one, ex-
cept for y and y~!. See, for example, [41].
In summary, as in the real case, the representations 7, of G and ; of G,
defined in (5) and (8), form an L-packet

I, = {Wxa ﬂ;(}

with the property that every character of H appears with multiplicity onein 7, or
., but not both.



4 Discreteseriesfor real groups

It would now be helpful if the reader had some familiarity with the basic structure
theory of semisimple Lie groups (cf. [42]). It may also help to glance at the next
section, where the general ideas below are illustrated for orthogonal groups.

A real semisimple Lie group G has discrete series representations precisely
when it contains a compact maximal torus. The discrete series of such groups
were constructed in a uniform way, first by Harish-Chandra [17] on the level of
characters, later by Schmid [30] on the level of vector spaces.

There are many excellent treatments of discrete seriesfor real groupsin thelit-
erature, for example[31]. Thefollowing sketch hasthe advantage of showing how
discrete series are naturally grouped into L-packets containing representations of
different inner forms of a compact Lie group. We also avoid certain technicalities
by restricting the class of Lie groups under discussion. Our treatment applies to
al real orthogonal groups that have discrete series, like SO(2,1) = PGLy(R),
aswell asto al semisimple Lie groups with trivia center, but it omits other Lie
groups with discrete series, like SL(2,R). The Lie groups we consider are those
obtained from compact Lie groups GG by twisting inside the complexification G ¢,
aswill be explained below.

Let G be acompact connected Lie group with finite center. Up to conjugacy,
G contains a unique maximal torus S ~ (S')", adirect product of copies of the
circlegroup S!. The number n iscalled therank of G.

Associated to G is its complexification G~ which is a connected complex
Lie group containing G' as a maximal compact subgroup. For example, if G =
SO(2n+ 1) istherotation group of a positive definite quadratic form @ on R**+!,
then Gc = SO(2n + 1,C) is the subgroup of SL(2n + 1,C) preserving the
extension of () to C?"*+1,

We need to recall some structure theory of complex Lie groups. The group
G containsthe complexification S ~ (C*)™ of S. We choose a Borel subgroup
(i.e., amaximal connected solvable subgroup) of GG containing Sc.

Borel subgroups can also be characterized asfollows. Thereisaunique (up to
isomorphism) complex projective variety B of maximal dimension, on which G
acts transitively by holomorphic maps. The variety B is called the flag variety of
G¢. The Borel subgroupsin G are the stabilizers of pointsin the flag variety B.
In fact, Borel subgroups are their own normalizers, so we can think of B as the
variety of Borel subgroups of G, where G« acts by conjugation. The complex
torus S has only finitely many fixed pointsin B. By choosing B to contain S,
we are choosing B € B to be one of these S-fixed points. We can then identify
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B = G¢/Be.

The flag varieties of classical groups are familiar objects from algebraic ge-
ometry. For example, a Borel subgroup in SO(2n + 1, C) is the stabilizer of an
isotropic flag in C?"*1. The latter are nested chains of subspaces

o=V, cV,c..-CV, cCntt

withdim V; = 4, on which the quadratic form () vanishesidentically. In particular,
the flag variety of SO(3, C) isthe quadric in CP? defined by @, and isisomorphic
to CP!.

We now recall a bit more structure theory. The group S¢ acts on the Lie
algebras g and b of G and B, respectively. Hence Sc acts on the quotient g/b.
The positive roots of S¢ are the characters of S appearing in its action on g/b.
We let & denote the set of positiveroots. Within @+ there is a unique subset A
of simple roots, with the property that every root in ®* can be written uniquely
as a non-negative integral combination of rootsin A. Each positive root appears
in g/b with multiplicity one. Since g/b isthe tangent spaceto B at B, we have

dim B = |®7].

The negative roots @~ are those nontrivial characters of S appearing in b (this
seemingly odd convention is standard in the theory).

We have not forgotten the compact group G that we started with. Thereisan
analogue of complex conjugation, which is an automorphism of order two of the
abstract group G, denoted g — g. This automorphism preserves S, and we
have

G={g€Gec: g=g}, S={se€Sc: §=s}.

Since the automorphism g — ¢ preserves S¢, it permutes the roots. In fact, it
interchanges @+ and & .

We will twist this automorphism to obtain various non-compact real groups
inside G, asfollows. Let S, = {s € S : s? = 1} bethe 2-torsion subgroup of
S. Then

is an elementary abelian two-group of rank n. For each s € S,, we define a
subgroup Gy C G¢ by

Gs:={g9€ Gc: §g=sgs}.
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(Recdll that s = s7'.) In other words, G, consists of the fixed-points of the
nontrivial involution g — sgs. The group G, isareal Lie group, whichisusually
non-compact. The centralizer K of s in G isamaxima compact subgroup of G,
and

ScK,caG,. 9)

When s = 1,wehave K, = G, = G.
Since the automorphism ¢ +— g interchanges ®* and @, it follows that

GsNBez=S,

for any s € S,. Therefore, the homogeneous space G,/ S can be identified with
the G ;-orbit of B¢ in B. Thisorbit isopenin B, so the manifold G/ S acquiresa
complex structure, viaits identification with the domain

D, = GSB@/B(C - G@/B@ =B.

The homogenous space K /S aso has a complex structure; it is the flag variety
of the complexification of K. In fact, K,/S is a maxima compact complex
submanifold of the domain D, = G/S. Thefibration

K;/S — Ds=G,/S — G;/K;

of real manifolds shows that D, can be thought of as the family of flag varieties
of maximal compact subgroupsof G. For G = SO(3), we have D, = B = CP!
and D_, = CP! — RP! isthe union of two copies of the unit disk.

The existence and parameterization of the discrete series was obtained by
Harish-Chandra, in terms of their characters. The vector space realization of the
discrete series, in terms of cohomology of line bundles on the domain D, is due
to Schmid, and was in part conjectured by Langlands. We now sketch Schmid's
construction.

Our line bundles will be restrictionsto D of G'--equivariant holomorphic line
bundleson B. The latter correspond bijectively to (algebraic) characters of B, or
even to characters of S¢, because B isthe semidirect product Be = S¢ x U of
Sc by the commutator subgroup U of B¢, so we may identify the characters of
B¢ and Sc.

Given acharacter x : Sc — C*, wepull x back to B and define

'C(X) = GC X B¢ (Cxa
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which is the quotient of G x C by the Be-action: b - (g,2) = (gb™", x(b)2).
Projection onto the left factor makes £(x) a holomorphic line bundle over B on
which G acts by holomorphic vector bundle maps.

Written additively, the character group X (S¢) of S isisomorphic to Z"; to
(X1,---,Xn) € Z" corresponds the character x : Sc — C* given by

n

X215y 2p) = Hz,’f"

k=1

So the line bundles L£(y) constructed above are parametrized by points x in the
lattice X (S¢). It turns out to be helpful to shift thislattice by the element

p:%Za.

acdt

Note that p does not necessarily belong to X (S¢), but 2p, being a sum of roots,
does belong to X (Sc). Since 2p isthe sum of the characters of S¢ in the tangent
space g/b to B at B, it followsthat £(—2p) isthe canonica bundle of B, whose
sections are the top-dimensional holomorphic differential forms on 5.

We are going to construct representations of G, parametrized by those ele-
ments of the shifted lattice p + X (S¢) which satisfy a certain positivity property.
We call elementsof p + X (S¢) “characters’ athough they may not be characters
of S¢, but rather of atwo-fold cover of Sc.

To state the positivity property, we must first recall the notion of co-root. For
eachroot o € &+, there isahomomorphism

’Q/)a . SLQ((C) — G@

with differentia d1),,, sending the diagonal matrices of SL,(C) into S¢ and such

that di, ( {8 (1)} ) € g projects to a non-zero vector in the a-eigenspace of S

in g/b. The 1-parameter subgroup

. z 0
a: C* — Sg, Z'—Hﬁa({o 2—1])
is called the co-root of .. Each co-root & defines a homomorphism

(-,a): X(Sc) = Z suchthat y (d(z)) = 20%0%.
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The character p hasthe property that

(2p,a) =2 (20
for al smpleroots o« € A. It followsthat (x,a) € Z for every character y €
p+ X(Sc). Wesay that x € p+ X (Sc) ispositiveif (x,a) > 1foral a € o+,
By (10), the character y = p is positive, and is the least positive of all positive
charactersin p + X (S¢).

To every positive character x € p + X (Sc), we will associate 2" irreducible
discrete series representations (Y, s), indexed by the elements s € S,. Take
s € So, giving rise, as above, to adomain D, C B, with D, ~ G,/S. Since G,
acts on D, and on the restriction of the equivariant line bundles £(-), the group
G, acts on the holomorphic sheaf cohnomology groups

}ii(2)57l:(__Xf__ p))'

Schmid provesthat H*(D,, L(—x — p)) isnonzero only in degreei = ¢(s), where
q(s) isthe complex dimension of K;/.S. This nonvanishing cohomology group

7(x, 8) = H')(D,, L(—x — p))

is a Fréchet space affording an irreducible representation = (y, s) of G, which
Schmid proves is in the discrete series (he shows that the canonical map from
L?-cohomology to sheaf cohomology isinjective with dense image).

When s = 1, thegroup G = G; = K, iscompact, and 7(x, s) is the finite
dimensional representation of G' with highest weight x — p for .S, by the Borel-
Weil-Bott theorem. In general, the cohomological restriction map

HY)(G,/S, L(—x — p)) — HI(K,/S,L(—x — p))

is surjective, so that the irreducible K ,-representation H*) (K, /S, L(—x — p)),
of highest weight x — ps appearsin 7 (x, s), where

Ps = % Z a(s)a. (11

acdt

(Note that a(s) = +1 for any o € @7, since s> = 1.) Schmid proves, more-
over, that m(y, s) is the unique irreducible representation of Gy containing the
K ,-representation of highest weight x — p, with multiplicity one and no other K ;-
representations of theform y — p, + A, where A isanon-empty sum of rootsin &+
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which aretrivial on s. Thus, 7(x, s) is completely characterized by its restriction
to the maximal compact subgroup K, of G.

To summarize: For every positive character y € p + X(S¢), we have con-
structed 2" discrete series representations 7 (x, s), one for each group G, with
s € So. We call the set of these representations

[(x) :={7(x,5) : s € Sy}

an L-packet.

We dtill have a few loose ends to tie up. The first point is that many of the
groups G5 will be isomorphic to one ancther, so we are really getting different
representations of the same group. This is because of the action of the Weyl
group W := Ng(S)/S, the quotient of the normalizer of S in G by S. The Weyl
group actson S by conjugation (since S isabelian), preserving the finite subgroup
S,. If s" isinthe W-orbit of s in Sy, then s’ = s" = n~'sn for somen € Ng(T).
Wefind that Gy = n~'Gynin Ge and Ky = n~' K n in G. Hence conjugation
by n givesisomorphisms

S — K, — G,

% % 2 (12)
S = Ky — Gsl.

The choice of n such that s’ = s™ is not unique. However, two choices of n
differ by an element of N (S) N K. Thisimpliesthat if 7 : Gy — GL(V) is
a representation of GG, on a Hilbert space V/, then the isomorphism class of the
representation 7" : G, — GL(V) givenby 7"(g) = w(ngn~") is independent
of the choice of n. Hence, we have two representations

m(x,s) and 7(x,s)"

of G. It turns out that these two representations of G, are isomorphic if and only
if s = s'. Thus, we have constructed exactly |WW - s| distinct representations of G's.
If we choose representatives s, . .. s, of the W-orbitsin S,, then our L-packet
I1(y) ispartitioned as

m

() = [[T(x.p), (13)

p=1

whereII(x, p) consistsof [W : W, ] distinct representations of G,
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There is one more subtle point: it could even happen that G, ~ G with s, s’
belonging to different W-orbitsin S,. In fact, Gy, ~ Gy if and only if thereis
w € W such that s* = zs', for some z in the center of GG. Thus, it can happen
that the same representation of the same group appears more than once in our L-
packet TI(x). This phenomenon cannot happen for odd orthogonal groups, since
these have trivial center. However, it does happen for even orthogonal groups, as
will beillustrated in the next section.

5 Discreteseriesfor real orthogonal groups
and branching laws

We now illustrate the previous general theory of discrete seriesin the case of real
orthogonal groupsin higher dimensions.

Once again, we begin with spherical harmonics. Assume that d > 2. The
square-integrable functions on the sphere S¢ behave like (1): there is a decompo-
sition

L2(5") = P, (14)

m>0

into eigenspaces of the Laplacian, where 7, is the eigenspace with eigenvalue
—m(m+d—1). The spacer,, istherestrictionto S¢ of the harmonic polynomials
of degree m on R¢*+!; it affords an irreducible representation of the rotation group
SO(d+ 1), of dimension

dim _(d+m B d+m—2
Tm — d d .

For al of the above, see, for example, [21, p.17, Thm. 3.1].

For d > 3, not all irreducible representations of SO(d + 1) appear in L2(S?).
A representation 7 appearsin L?(S¢) precisely when  contains a nonzero vector
invariant under SO(d). Equivalently, the representations ,,, occurring in (14) are
precisely theirreducible representations of SO(d + 1) whoserestriction to SO(d)
contains thetrivial representation.

The decomposition of an irreducible representation of SO(d + 1) when re-
stricted to SO(d) is known classically as a branching law. Here we will gen-
eralize branching laws to the restriction of discrete series representations of both
compact and non-compact orthogonal groups.
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We begin by describing the discrete series parameters for the group G =
SO(2n+1). Here S = SO(2)" ~ (S')", and the character group of S¢ = (C*)"

is .
S@) = @ Zek,
k=1

where e¢;, : Sc — C* is projection onto the k£ factor of S-. The Weyl group
W, isthe group of the n-cube, of order 2"n!. Viewed as a group of permutations
of X (Sc), thegroup IV, isthe semidirect product of the symmetric group &, of
permutations of the e;, with the normal subgroup {+1}" of sign changesinthee;.
We may choose our Borel subgroup B¢ so that

Pt ={e;te;: 1<i<j<n}U{er: 1<k<n}, (15)

and

n

The positive characters y € p + X (Sc) are given by x = > xxer With each
Xk € % + Z and
X1 > X2 > > Xn > 0.

We have S, = {+1}" C SO(2)", and the IW,,-orbit of s € S, is determined
by the number of components k£ such that e, (s) = —1. If s € S, has p such
componentsequal to —1 and p + ¢ = n then

Gs ~ SO(2p,2q + 1)

isthe special orthogonal group of areal quadratic form with signature (2p, 2¢+1).
The stabilizer of s in W, is W, x W,, so the W-orbit of s hassize (7). This
is the number of distinct dlscrete series representations of G in the L -packet
II(x) = g (x).
For the L-packet {,,, 7, } definedin (4) for n = 1, wehave x = (m + 1)e;
The line bundle £,, = L(—x — p) on CP! is the one traditionally denoted by
O(—2—2m). Therepresentationsr,,, 7, arerealized on the cohomology groups

T = H'(CP', L,,), and 7/ = H°(CP' —RP',L,,).
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Thegroup H = SO(2n) contains the same maximal torusas SO(2n + 1), so
we again have X (S¢) = @®}_,Ze,. The Weyl group W is the subgroup of index
twoin W, generated by &,, and an even number of sign changes. We may choose
our Borel subgroup B¢ so that

<I>+:{el:|:e]1§z<j§n}, (16)

and

p:Z(n—k)ek: (n—1,n—-2,...,1,0).
k=1
The positive characters n € p + X (S¢) are those of theformn = >, nye, with
ng € Z and
M >0 > > ot > |1l

If t € Sy hasp components k such that e (¢) = —1 and p + ¢ = n then H; ~
SO(2p,2q). For each positive character ) for H, the construction of the previous
section gives us an irreducibl e discrete series representation of H;, which we will
denote by o (7, t), so as not to confuse it with the anal ogous representation 7 (x, )
of G5. We then have a discrete series L-packet [15(n) = {o(n,t) : t € Sy},

The W -orbit of ¢ again has size (}’j) Since SO(2p, 2q) ~ SO(2q, 2p), we see
that there are two W-orbitsin S, giving rise to the isomorphic groups H; ~ H 4,
when p # ¢. In al cases, each discrete series representation occurs twice in
14 (n), oncefor H; ~ SO(2p,2q), and oncefor H_, ~ SO(2q, 2p).

For the one-dimensional representation y,,, of SO(2), we have n = me;. The
L-packet 11 (n) consists of the two occurrences of y,,, once for SO(2,0) and
oncefor SO(0,2).

Let x and n be positive characters for G and H respectively, giving rise to
L-packetsT1;(x) and I14(n), as above.

In[14], abranching law was proposed for the multiplicity of representationsin
14 (n) intherestriction of representationsin Il (x). According to thisconjecture,
the characters x = Y xxer, and n = > ney, determine elements s, ¢ € S, by the
conditions

ex(s) = (=)™, en(t) = (-1, (17)

where v (k) is the total number of 7, j such that x;,n, < x, and u(k) is the total
number of ¢, j such that x;,n; > 1.
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The coordinates of s and ¢ have the same number p of coordinates equal to
—1,s0

m:=m7(x,s) Iisarepresentationof G5 ~ SO(2p,2q+ 1)

and
o:=o(n,t) isarepresentation of H, ~ SO(2p,2q).

The prediction is that ¢ occurs in the restriction of 7, with multiplicity one, i.e.,
that

dim Homy, (7, 0) = 1, (18)

and that no other representation in the L-packet 115 () should appear in the re-
striction of arepresentation in the L-packet I1; ().

Formula (18) was proved in [15], in the cases where the restriction of 7 to
SO(2p,2q) decomposes discretely as a Hilbert direct sum. (In most cases, the
restriction will have continuous spectrum.) This discrete decomposition occurs
when x = Y xxer and n = > ney interlace in the following way: For some
integer 0 < p < n we have

> X1 > > 1y > Xps Xpt1 > Tt > > Xpn > . (19)
Then s = ¢t and we have

-1 if 1<k<p
+1 if p<k<n.

ex(s) = ex(t) = {

The representations 7 = 7 (x, s) and o = o(n, s) are “small” discrete series:
their restriction to the compact subgroup SO(2p) € Hy C G, contains each
irreducible representation of SO(2p) with finite multiplicity.

For example, if

X1>M > X2 > > > X > |l (20)

thenp =0,ands =t = 1. Inthiscase, G = SO(2n + 1) and H = SO(2n) are
compact, and we recover a classical branching law (see [2]) for the finite dimen-
sional representation 7(x, 1):

Resy (r(x,1)) = @ o(n. 1),

n
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where we sum over al positive characters  for SO(2n) satisfying (20).
Thetrivial representation of SO(2n) isw(p, 1), where werecall that

p = pu = Y. (n— ke for H= SO(2n). For n, = n — k, the characters

X = Y. xxex satisfying (20) are those of the form

X = mey + p, mZO,

wherewerecall that p = p = > _,(n—k+3)ey, for G = SO(2n+1). Therep-
resentation 7 (me; + p, 1) isthe representation 7, appearing in the decomposition
(14) of functions on the sphere S°.

At the other extreme, if

m > X1 >0 > X2 > > 0y > Xn, (21)

wehavep = n, Gy = SO(2n,1) and Hy; = SO(2n) hasindex two in the maximal
compact subgroup K; = O(2n) of G;. We recover another known branching law,
whichisaspecial case of Blattner’s formula, proved by Hecht and Schmid [19]:

Resu, (m(x, 5)) = o (n, ),

aHilbert direct sum over all n = > nye. satisfying (21).

6 Introduction to Langlands parameters

All of the results on branching laws for orthogonal groups which we have dis-
cussed so far fit nicely into ageneral conjecture [14], using the language of Lang-
lands parameters for irreducible representations of reductive groups G over local
fields k. Therough ideais that irreducible representations of these groups should
be parametrized by homomorphisms from the Weil group of & into a group “G
which is dua to G’ and encodes the arithmetic structure of GG as a group over k.
Then properties of irreducible representations, such as branching laws, should be
determined by number-theoretic invariants of the corresponding parameters.

Historically, and in this paper so far, this connection between number theory
and representation theory was not evident in the real case, because the Galois
theory of R is rather ssimple. However, it is enlightening to rephrase the above
results on L-packets for real groups in terms of the Weil group of R. For non-
archimedean fields £, the Well group is essential for describing L-packets and
branching laws.
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In this chapter we define Weil groups for real and p-adic local fields, and give
an introduction to some of the local number theory that is needed to construct
p-adic L-packets. Thisis followed by some background on quasi-split groups,
which is preliminary to the definition of the group “G. With these ingredientsin
hand, we giveapreliminary definition of aL anglands parameter, and then consider
some refinements of this definition.

6.1 Waell groups

Let k be alocal field of characteristic zero. That is, k is either R, C or afinite
extension of Q,. Fix an algebraic closure & of k. The Weil group W(k) of k isa
locally compact group, which comes with a group homomorphism

W(k) — Gal(k/k)
with dense image, and an isomorphism
W(k)® ~ k>,

Here W(k) isthe quotient of WW(k) by the closure of its commutator subgroup.
Weil groups can be described concretely. For archimedean £ they are given

by:
W(C) = C~,

W(R) = Nige (C¥). (22)

That is, W(R) isthe normalizer of C* in H*, the multiplicative group of Hamil-
ton’s quaternions. The group WW(R) contains the normal subgroup C* with index
two; the nontrivia coset jC* is represented by ; € H* where j2 = —1 and
jzj~t = zforal » € C*. Thus, we have an exact sequence

1 —C — W(R) — Gal(C/R) — 1 (23)

with ;7 mapping to complex conjugation. This sequence is not split; since H isa
division algebra, the only involutionsin H* are +1.

If k& is non-archimedean, then the description of VW (k) is abit more involved.
Roughly speaking, W (k) isthe Galois group of k/k with the topology relaxed, so
asto allow more continuous representations. More precisely, if £ hasresiduefield
f of order ¢, then we have an exact sequence

1 — T — Gal(k/k) — Gal(j/f) — 1,
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whose kernel T is called the inertia group of k. Any element F € Gal(k/k)
whose image in Gal(j/f) is the automorphism a — a4 of f iscalled a Frobenius
element. We fix a choice of F once and for all. The image of F in Gal(f/f)
generates a dense subgroup, isomorphic to Z.

The Weil group of W(k) is defined to be the subgroup of Gal(k/k) generated
by F' and the inertia subgroup Z. Thus,

W(k) =[] ZF" =T = (F),

nez

and we have an exact sequence (analogousto (23))
1—I—Wk) —Z— 1. (29

A subset of W (k) isopen iff itsintersection with every coset of Z isopen, where Z
hasthe profinite topology inherited from Gal(k/k). A homomorphismfrom W (k)
to adiscrete group is continuousiff theimage of Z isfinite; such ahomomorphism
extends continuously to Gal(k/k) iff theimage of all of W(k) isfinite.

To better understand the Weil group W(k) for non-archimedean &, we will
now describe some subgroups of W (k) and the corresponding extension fields of
k; these will be useful later on.

First of al, a Galois extension L/k is unramified if a prime element in the
integers of k& remains primein the integers of L. Equivalently, L/k is unramified
if theinertiagroup Z actstrivialy on L. Thisimpliesthat Gal(L/k) is generated
by the image of £ under the canonical map Gal(k/k) — Gal(L/k). Since Z has
aunique subgroup of every positiveindex, we see that for every d > 1, thefield &
has aunique unramified extension k, C k of degreedeg(kq/k) = d. For example,
the extension k, of k£ = QQ, was described in section 3.

The Weil group W(kg) of k4 isthe subgroup of W (k) generated by Z and F<.
The composite field

K = U ]{Id

d>1
is the maximal unramified extension of & in k; its Galois group is the inertia
group of k: )

7 = Gal(k/K).
The residue field of K is §, and the natural map Gal(K/k) — Gal(f/f) is an
isomorphism. This means that the unramified extension & /k can be constructed

asky = k(a), where a € K isalift of an element o € § which generates the
degree d extension f,/f.
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Thus, the theory of unramified extensions is more or less equivalent to the
theory of extensions of finite fields. At the other extreme, a Galois extension L/k
of degree e istotally ramified if a prime element inthering of integersin £ isthe
' power of aprimein L. Equivalently, L/ istotally ramified if the residue field
of L isequal to theresidue field of k.

A generd finite Galois extension L/ is of the foom &k C k, C L for some
d, where L/k, is totally ramified of degree e = [L : k]/d. We say that L/k is
tameif e isnot divisible by the residue characteristic p of k. All of the L-packets
constructed in this paper will arise from tame extensions.

Totally ramified Galois extensions correspond to normal subgroups A < 7 of
finite index, and the extension istame if A contains the maximal pro-p subgroup
Z* of 7. The quotient

I,:=1/T"

is called the tame inertia group ; it is the Galois group of the maximal tame
extension K, of K. Thefield K, can be described very explicitly: it is obtained
by adjoining to K all the roots of the polynomials

X 4o, for n>1,

for any fixed choice of prime element w in the ring of integers of k. This de-
scription of K, implies that the tame inertia group can be viewed as an inverse
limit

Z; = lim§,, (25)
—

where§, C fistheextension of j of degree n and the transition maps are the norm
homomorphisms < — %, for m | n. Under the isomorphism (25), the action of
F' by conjugation on Z; corresponds to the automorphism « — % on each finite
field f<.

6.2 Quasi-split groupsand the L-group

More details for this section can be found, for example, in [36]. An excellent
survey on the origins of the L-group can be found in [7].

In this section G is a connected reductive algebraic group defined over the
local field k. We also assume that the group G is quasi-split over k. This means
that the flag variety B of GG has a k-rational point, that is, G has a Borel subgroup
B defined over k. (Note that G is no longer a compact real Lie group, as it has
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been until now.) Let 7" C B be a maximal torus defined over &, contained in B,
and let
X = Hom(GL,,T), Y =Hom(T,GL,)

be the groups of algebraic co-characters (i.e., 1-parameter subgroups) and char-
acters of T', respectively. Inside Y have the roots ® of 7" in the Lie algebra of
G, and the positiveroots ®* of T in the Lie agebra of B. Inside X we have the
corresponding co-roots & and positive co-roots ®*. The Galois group Gal(k/k)
actson X and Y, preserving ®* and ®*. Let Gal(k/E) denote the kernel of this
action; thefield £ isafinite Galois extension of £, called the splitting field of G.
Wesay G issplit if £ = k.

Thus, G determines a based root datum (X,Y, ®*, &*) with an action of
Gal(E/k). Thereis a unique (up to isomorphism) complex reductive Lie group
G whose based root datum (Y, X, &+, &*) isdual to that of G. Moreover, thereis
amaximal torus and Borel subgroup 7' ¢ B in G such that

X = Hom(T,GL,), Y = Hom(GLy,T),

and &+ is the set of roots of 7" in the Lie algebra of B. The action of Gal(E/k)
on this root datum extends to an action of Gal(E/k) by automorphisms of G,
preserving 7' and B.

The L-group of G is defined as the semi-direct product

LG .= Gal(E/k) x G.

Conversely, any continuous action of Gal(k /k) on abased root datum arises from
aunique quasi-split group over &, up to isomorphism. Thus, the group G is deter-
mined by its L-group.
The center Z (LG of LG playsan important role, expecidly in the p-adic case.
One can show that
Z(LG) — Z(G)Gal(E/k)

is the fixed point group of Gal(E/k) in the center Z(G) of G. Thegroup Z(*G)
is finite precisely when G (k) has compact center. In particular, Z(LG) isfinite if
G issemisimple.

We now consider some examples. If T" isatorus over k, with character group
Y, then T" is quasi-split, with dual torus

T=Y®C*,
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and the L-grou
oo LT = Gal(E/k) x T

isgiven by the action of Gal(E/k) onY'.

At the opposite extreme from tori, we have semisimple quasi-split groups.
Here the Galois action on the root datum is given by an automorphism of the
Dynkin diagram of GG. (For the passage from root data to Dynkin diagrams, see
[3, V1.4].) Let us consider the possibilities of this action for orthogonal groups,
assuming that £ # C.

If G = SO,, . isaquasi-split odd orthogonal group, there are no nontrivial
automorphisms of the Dynkin diagram, so the action of Gal(k/k) istrivial. Hence
E = k and G is split. This means there is only one quasi-split odd orthogonal
group, up to k-isomorphism. It arises from the quadratic form Q,, + 23, , ,, where
Qn = T1&ny1 + - - - + TnTay. INthiscase, wehave LG = G = Spy,(C).

If G = SO,, is an even orthogonal group with n > 2, then the Dynkin
diagram has a symmetry of order two, so GG iseither split, or E isaquadratic field
extension of k. These arise from the quadratic forms@,,, Q,, 1+ N, respectively,
where (),, isas above, and E isviewed as atwo-dimensional k-vector space with
guadratic form N : E — k given by the norm. We call these two quasi-split
groups SO, and SO}, respectively. (We omit the dependence on E since, in
this paper, E/k will dways be C/R or the unramified quadratic extension k- /k.)

In the split case, we have LG = G = S04, (C). Inthe non-split case, we have

LG = Gal(E/k) x SO,,(C),

where the Galois action on SO,, (C) is given by conjugation by a reflection in
0,,,(C), and we have an isomorphism

LG ~ 0,,(C).

In summary, we have the following table of L-groups for quasi-split orthogo-
nal groups.

| G | G ]
502n+1 Sp2n((c)
SO, | SO2,(C)
505, | 02(C)
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Inal three caseswe have Z (*G) = {41} (except for SO,, whichisnot semisim-
ple).

When k& = R, these groups have real points

502n41(R) = SO(n+1,n)
SO0, (R) = SO(n,n) (26)
SO, (R) = SO(n+1,n—1),

where SO(p, q) is the specia orthogonal group of a quadratic form on RP*4 of
signature (p, q).

6.3 Langlands parameters

Recall that G is a connected quasi-split reductive group over the local field k&,
whose splitting field £ is afinite Galois extension of £. In the previous sections
of this chapter we defined the Weil group W(k) of k, and the L-group £G =
Gal(E/k) x G.

In this paper, a Langlands parameter has two ingredients. Thefirst isacontin-
uous homomorphism

0 :W(k) — LG, (27)

whose projection onto the first factor Gal(F/k) is the composition of canonical
maps

W(k) < Gal(k/k) — Gal(E/k), (28)

and whose projection to the second factor GG consists of semisimple elements.

For example, suppose E' = k isp-adic. If pistrivia ontheinertiasubgroup Z
of W(k), then ¢ is completely determined by the semisimple element (F) € G.
A more general Langlands parameter replaces the element p(F') by an arithmetic
refinement: the homomorphism ¢ : W(k) — G.

For another example, let 1" be a torus over k with character group ¥ =
Hom(T, GL,), withdual group 7 = C* ® Y, and L-group “T = Gal(E/k) x T
A Langlands parameter

0 W(k) — T

amounts to a continuous one-cocycle on W (k) with valuesin T, where W(k) acts
on GG viathe natura map W(k) — Gal(E/k).
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The second ingredient of a Langlands parameter is an irreducible representa-
tion of thefinite group A,, = m, (C(¢)) of connected components of the central-
izer in G of . From basic homotopy theory we have a surjective homomorphism

ﬂ—l(GA . ()0) — ACP;

where G - ¢ ¢ Hom(W(k), *G) is the G-orhit of ¢ under conjugation. So a
representation of A, givesrise to arepresentation of the fundamental group of the
G-conjugacy class of .

In this paper, the complete Langlands parameter is a pair (¢, p), with ¢ as
in (27) and p € Irr(A,) is an irreducible representation of A,. Two parameters
are considered equivalent if they are conjugate under Gi. Thus, the pair (¢, p)
may be thought of as a conjugacy-class in G, with arithmetic and topological
enhancements.

Note that the center Z(“G) of “G iscontained in C; (). We say that a Lang-
lands parameter is discrete (some say elliptic) if the group C';(¢) has dimension
as small as possible, that is, if C'5(¢) and Z(“G) have the same identity compo-
nent. For G semisimple, the Langlands parameter ¢ is discrete if and only if the
group Cs () isfinite, in which casewe have A, = C(¢p).

A caveat: The Langlands parameters defined above are not sufficient to ac-
count for all representations in the p-adic case; one must al'so add a nilpotent part
(see[37]). These more general parameters will play no role in this paper, but we
will briefly mention them again in section 9, to give some perspective.

7 Real orthogonal groupsagain

In this section we explicitly describe Langlands parameters for real orthogonal
groups, and show how they relate to the L-packets contructed in section 4.

Recall from (22) that the Weil group of R isW(R) = Nyx (C*). In particular,
W(R) contains C* as anormal subgroup of index two, with quotient Gal(C/R).
It has a family of two-dimensiona complex representations V'(a), indexed by
a € 37, defined by

V(a) = Ind(xa),
where y, : C* — St isthe unitary character

2a

Xa(2) = (i)a =2 _

z |zz|e
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The representation V'(a) is isomorphic to V(—a) = Ind(x;"'), and is self-dual.
It is symplectic when « € $ + Z and orthogonal when a € Z. When V (a) is
orthogonal, its determinant is the sign character of W (R)** = R*. Finally, V' (a)
isirreducible unlessa = 0, and V'(0) isthe direct sum of thetrivial representation
and the sign character.

The Langlands parameters for SO, over R are symplectic representations

P W(R) — "G = Spy,(C) = Sp(V).

Discrete series parameters for SO,,,; are symplectic representations V' of the
form

with
xieé—l—Z, X1 > X2 > > Xn > 0.

Thus, ¢ corresponds to the positive character x € p + X (S¢) defined in section
5. We writeTI(y) = II(y).

The compact torus S of section 4 is conjugate under SO, 1(C) to the max-
imal compact subgroup of the complex torus 7'. Hence the involutionsin S cor-
respond to involutionsin 7'. The latter involutions may be identified, by duality,
with characters of the group 75 of involutionsin 7'. In turn, T} is the the center of
the subgroup

Sp (V(x1)) x ==+ xSp(V(xn)) ,

and since the y; are distinct, this center is exactly A, = Cx(p). Thus, the L-
packet I1(¢) isin bijection with the set of 2" charactersof A,,.

For even orthogonal groups over R, recall from (26) that SO, denotes the
quasi-split orthogonal group with SO,,(R) = SO(n,n), and SO), denotes the
quasi-split orthogonal group with SO}, (R) = SO(n + 1,n — 1). A Langlands
parameter for either of these groupsis an orthogonal representation

0 : W(R) — “G C 04,(C) = O(W)

whose image is contained in SO,,(C) when G = SO,, and is not contained in
SO,,(C) when G = SO),,. Discrete series parameters for real even orthogonal
groups are orthogonal representations 17 of dimension 2n, of the form
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Wz@wm

with
n; € 7, m>mny > > 0.

Since each V' (7;) is orthogonal with nontrivial determinant equal to the sign char-
acter of W(R)® = R*, the resulting homomorphism ¢ : W(R) — O(W) has
image contained in SO(W) = SO,, (C) precisely when n is even. Thus, ¢ isa
discrete series parameter for SO, when n iseven and SO, when n is odd.

In either case, ¢ corresponds to the positive character € p + X (S¢) defined
insection 5. Theinvolutionsin S again correspond to characters of the centralizer
A, of ¢ in SO(W), and A, isthe center of the subgroup

OV(m))x--+x0OV(n)).

The 2" characters of A, parametrize the representations in the L-packet I1(¢) =
I1(n) described in section 5.

The above calculations may seem more natural when viewed in greater gener-
ality, and thiswill also permit later comparison with p-adic Langlands parameters.
For any quasi-split real group GG, a Langlands parameter

©: W(R) — LG

maps the normal subgroup C* of W(R) to maximal torusin G/, which, after con-
jugation, we may arrange to be T'. To be discrete, ©(C*) must contain a regular
element of G. Then the centralizer of ¢(C*) in G isexactly T', and the full Weil
group W(R) maps to the normalizer N.4(T) of T in G. The element j, gen-
erating the quotient W(R)/C* = Gal(C/R), mapsto an element n € No(T),
and conjugation by n is an involution of 7. The centralizer Ceal(yp) is the fixed
pointsin 7" of this involution. The discrete condition forces this involution to be
inversion, and the centralizer A, of ¢ is therefore aways equal to the 2-torsion
subgroup of 7. So the character group of A, may be identified with the 2-torsion
subgroup of a maximal compact torusin G(R), asin section 4.
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8 Pureinner formsof p-adic groups

The examples of L-packets for p-adic SO3 in section 3 belong to a family of
discrete series L-packets for p-adic groups whose Langlands parameterization
(though not their construction) is similar to that for real groups. Later, we will
discussthisfamily of p-adic L-packetsin more detail.

First, recall that in those examples we had two versions of SO3, one compact
and the other non-compact. In this section we explain how the various versions of
ap-adic group are controlled by Galois cohomology sets H'! (k, G). Therea case
also involved Galois cohomology, but in disguise. There, it sufficed to consider
involutions s, which were the concrete manifestations of real Galois conomology
classes. Indeed, if G is a compact real group with maximal torus S and Weyl
group W, then the Galois cohomology isgiven by H(R, G) = S,/W (see[33,
111.4.5]).

In the p-adic case, we will seethat H'(k, G) isnicely described by a theorem
of Kottwitz. See[33] for an introduction to Galois cohomology, and [9] for more
detailsin what follows.

For the rest of this paper , our local field & is non-archimedean, of character-
istic zero, with residue field §, and p denotes the characteristic of . Recall that G
isaconnected quasi-split k-group.

For each continuous cocycle ¢ : Gal(k/k) — G, we define anew Gal(k/k)-

actionon G by

yoeg=c(y)-g"-c(v)

Thisnew Gal(k/k)-action isthat of a new k-structure on G. Let G.. be the group
G with this new k-structure, so that the k-rational points of GG, are given by

Gk)={g€G: yo,g=g¢g fordl ~ec Gal(k/k)}.

The k-isomorphism class of G. is determined by the image of the class of ¢ in
H'(k,G/Z),where Z isthe center of G.

For each classw € H'(k,G), we choose a cocycle ¢ € w, and by abuse of
notation we write G, = G, (see [33, p.48]). We call G, apureinner form of
G. Asinthereal case, two such groups G, G, may be k-isomorphic, even if
w # w'. Usudly, G, isno longer quasi-split. In fact G, is quasi-split if and only
if w has trivial image in H'(k,G/Z), and thisis equivalent to having G, ~ G
over k.

Theset H'(k, G) can be made completely explicit, thanksto atheorem of Kot-
twitz [23], who showed that there is a natural bijection between H'(k, G) and the
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set of irreducible characters of the group 7 (Z (*G )) of connected components of
the center Z(“G) of the L-group “G. Thus, for p-adic k, the Galois cohomology
set H'(k, @) has a natural structure of a finite abelian group. Recall that if G is
semisimple, then Z (LG) isfinite, so Kottwitz' bijection takes the simpler form

H'(k,G)~Irr (Z("Q)). (29)

Let us use (29) to determine the pure inner forms of quasi-split orthogonal
groups (see section 6.2). First, we have H'(k, SO,) = 1. In al other cases we
have Z(*G) = {£1}, so G has a unique pure inner form G, corresponding to
the nontrivial element w € H'(k, G). These are tabulated as follows.

L ¢ | G |
SOomi1 | SO341
S0y, | SO,

Here, SO3,  , isthespecia orthogonal group of the sum of »—1 hyperbolic planes
and the three dimensional anisotropic quadratic space considered in section 3, and
SO;, isthe special orthogonal group of the sum of » — 2 hyperbolic planes and
the four dimensional anisotropic quadratic space arising from the unique non-split
quaternion algebra over k. For G = SO),,, we have G, ~ G. Thus, we have a
total of five families of orthogonal groups to consider.

Thegroups SO, SO; and SO} have compact groups of k-rational points, and
the remaining orthogonal groups have non-compact groups of k-rational points.

9 Thep-adic Langlands conjecture

Unlike the real case, the discrete series representations of reductive p-adic groups
have not yet been classified. However, there is a conjectural classification, due
initially to Langlands and then refined by others. We now have most of the in-
gredients needed to state this conjectural classification for pure inner forms of a
quasi-split group G. However, our Langlands parameters, as defined in section
6.3, while sufficing for the actual representations we will consider later, are not
genera enough to parametrize the whole discrete series. In this section only, we
will consider more general parameters, which are expected to suffice, in order to
give the reader an idea of how our representations should fit into the complete
picture.
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We assume G is semisimple, just to make the statements cleaner. Given a
Langlands parameter ¢, theinclusion Z(*G) — C(y) will induce a homomor-
phism

iy, Z("G) — A,
whose image is contained in the center of A,. Hence, by (29), for every p €
Irr (A,) thereisw, € H'(k,G) such that p o i, is the scalar character w, on
Z(Lq@).

The correspondence p — w, should be the means of distributing the different
representations in the L-packet I1(p) among the different pure inner forms of G
(cf. [44]). Thisis part of the conjectural Langlands correspondence, as stated
below.

Conjecture 9.1 For eachclassw € H'(k, G), thediscrete series of the pureinner
form G, (k) ispartitioned as
[Tm(e,w),
P

where
(o, w) ={n(p,p): pelir(4,), w,=uw},
and ¢ runs over the set of G-conjugacy classes of Langlands parameters

¢ : W(k) x SLy(C) — *G
whose image has finite centralizer in G.

Note that the new ingredient here is the factor of SL,(C). Thisis the “nilpotent
part” that we previously ignored. It is possible to have ¢ being trivia on SL,(C);
that isthe case for the parameters as we originally defined them, to which we will
confine ourselves after this section.

The last condition in 9.1 isthe “discrete series’ condition. It saysthat A, =
Ca(p), and isequivalent to there being no Gal( E/ k)-stable proper parabolic sub-
group P C G such that theimage of ¢ liesin Gal(E/k) x P.

Assuming Conjecture 9.1, the L-packet I1(¢) would be the disjoint union

Mp)= ] Mlpw),

weH(k,G)

consisting of a certain number of representations (¢, p) on the various pure inner
forms of GG, determined by the restriction of representations of A, to Z(“G).
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10 Parametersfor some p-adic discrete series

We now consider some p-adic Langlands parameters ¢ : W(k) — LG, and-
ogous to discrete series parameters for real groups (see section 7). In that case,
W(R) had anormal subgroup C*. In the p-adic case, the analogous normal sub-
group istheinertiagroup Z C W(k). We will only consider the simplest nontriv-
ial case, where ¢ istrivial onthewild inertiasubgroup Z*. For similar parameters
with higher ramification, see [29].

We continue to assume that G' is semisimple and quasi-split over k. We also
now assume that the splitting field £ is unramified over k. Then Gal(E/k) is
cyclic, generated by the image of Frobenius F'. Hence the action of Gal(FE/k) on
the root datum of G and on G is completely determined by an automorphism ¢ of
order deg(E/k), given by the action of the . We can then write

~

la =W xa
and

H'(k,G) =TIrr(Z(G)?).

10.1 Tameregular discrete parameters
Let W = W(k) bethe Weil group of k. We say that a homomorphism
o:W—La

asin (27) istame, regular and discrete if the following three conditions hold.
1. pistrivia onthewildinertiagroup Z+.
2. Thecentralizer in G of () isthe maximal torus 7" in G.
3. Thecentralizer in G of (W) isfinite.

The first condition meansthat ¢ factors through the tame inertia group

T, =T/I" ~lim§}. (30)
<_
This map induced on Z, by ¢ must factor through ., for somem > 1. Since f,,
is cyclic, it followsthat o(Z) = (s) is cyclic, generated by an element s € 7' of
order primeto p.
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The second condition means that this element s € 7" is“regular” in the sense
that its centralizer, namely 7', is as small as possible.

Outside of Z, the homomorphism ¢ is determined by the single element o ( F).
Since F normalizes Z, the element n := (F) € LG must normalize the central-
izer of (), whichisT, son liesinthe normalizer N.4(T). Let w be theimage
of n in the quotient group

LW .= Nog(T) /T = (9) x W,

where W = N4 (T)/T isthe Weyl group of 7' in G'. Our conditions 1-3 force the
element w to have two significant properties.

First, recal that conjugation by F' on Z; corresponds, under (30), to the g¢-
power automorphism of the groups §. Thisimpliesthe relation

s =n tsn = s%.

The second property comes from condition 3: the centralizer in G of (W) isT,
so w must have the property that its fixed-point group 7% in 7T is finite, and we
have

A, =T".

The finiteness of 7 is equivalent to w having no invariants (except zero) in the
action of “TV on the free abelian group X = Hom(T,C*) of characters of T'.
In this case, the character group of A, isisomorphic, by restriction of characters
from 7" to T, to the co-invariants of w in X:

Irr(A,) = X/(1 —w)X.
In particular, A, isan abelian group of order
Ay| = det(1 - w)|x.
For example, if w acts by inversionon 7', hence by —1 on X, we will have
Irr(A,) = X/2X,

so that | Irr(A,)| = 2", wheren = dim T = rank X. Thisis the situation that
most closely resemblesthe real case.

At the other extreme, suppose that G is split with trivial center, and let w be
a Coxeter element of W (see [3, V.6]). Then 4, = T* = Z(G) isthe center of
G. We will see that, for orthogonal groups, all examples of tame regular discrete
parameters are built from copies of this Coxeter example.
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10.2 Anisotropictori

We now begin the construction of an L-packet of representations of our p-adic
group GG and its pure inner forms, starting from a tame regular discrete Langlands
parameter ¢ : W — LG, asdefined in 10.1. The first step is to associate to ¢
apair (T, x,), consisting of an anisotropic torus 7', over k, determined by the
element w = ¢(F) in “W and acharacter x,, of T,,(k).

A torus S isanisotropic over k if either of the following equivalent conditions
holds:

1. No nontrivial 1-parameter subgroup of S isinvariant under Gal(k/k).
2. Thegroup S(k) is compact.

Recall that we have chosen a maximal k-torus T contained in a k-rational
Borel subgroup B in our quasi-split group G, and X = Hom(GL,,T') denotes
the lattice of 1-parameter subgroupsof 7'. Since the splitting field £ isunramified
over k, the Galois action on X istrivial on Z, and the Frobenius F' acts by ). Let
w betheimage of o (F) in L1, and let d be the order of w.

We define T, to have the samelattice X = Hom(G L4, T,,), with Galois action
on X again trivial on Z, but now the Frobenius F' acts by w. Thus, we have

Ty(ka) = X ® kY,  Tulk) = [X 0 k]""". (31)

The discreteness condition 3 on ¢ (see section 10.1) is equivalent to having
X% = {0}, which means that T, is anisotropic over k, and T, (k) is compact. In
fact, we have

Tu(k) = [X ® 051",
where o, isthering of integersin k.

For example, if w = —1, thetorus T, is aproduct of one-dimensional unitary

groups, and
Ty(k) =X U,

where U, isthe kernel of the norm homomorphism £ — k*.
In general, the L-group of T, is

Iy = (w) x T.

Note that T, need not be a subgroup of “G, since ¢(F) = n can have order
greater than that of w. Hence ¢ does not, a priori, give a Langlands parameter

34



¢ : W(k) — I'T,. However, adight modification of ¢ will give a parameter for
T,. Namely, we define

o W(k) — T, = (w) x T

by making ¢’ equal to ¢ on Z, and defining

~

Y(F)=wx1le{w)xT.
If v € Zandt = ¢(v), we have
p(FyF Y =tv = ¢ (FyF ),

s0 ¢’ isahomomorphism.

By the Langlands correspondencefor tori (whichisessentially local classfield
theory, see [9] for an elementary treatment of the tame case), the parameter ¢’
determines a character

Xo : Tw(k) — C.

10.3 Summary

We summarize what has been shown in this chapter. We started with a Langlands
parameter ¢ : W(k) — LG whose restriction to Z factors through the tame
inertiagroup Z,. We insisted that  satisfy the regularity condition

~

Ceo(p(T) =T,
aswell as the discrete condition
A, =Chlp) =T" isfinite,

wherew € () x IV istheimage of (F). We call these o “tame regular discrete
parameters’.

Then we constructed an anisotropic torus 7, splitting over the unramified ex-
tension of k of degree equal to the order of w. Finally, using the abelian Langlands
correspondence, we associated to ¢ a character x,, of the compact group 7, (k).

Note that all of thistook place externally to G; the torus 7', is not given as a
subgroup of G in any natural way. In the next chapter, we shall see that the various
embeddings of 7, into GG and its pure inner forms are controlled by the characters
of the finite abelian group A, = 7.
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11 Tameregular discreteseriesL -packetsfor p-adic
groups:. introduction

Let ¢ : W(k) — G beatameregular discrete Langlands parameter, asin section
10.3. We want to construct an L-packet

[(p) = {m(p,p) : p€Trr(A,)}

parametrized by the irreducible representations p of A, in accordance with Con-
jecture 9.1.

We saw in Kottwitz' theorem (29) that H'(k,G) = Irr (Z(*@)), and part of
Conjecture 9.1 asserts that a representation (¢, w) € II(¢) should be a repre-
sentation of the pure inner form G, (k) precisely when p € Irr(A,) restricts to
w € Irr (Z(*@)).

In this chapter, we sketch the construction of such L-packets I1(¢). A more
detailed discussion of the construction requires more structure theory of p-adic
groups, which we provide in the next chapter, along with illustrations for orthog-
onal groups.

Asinthereal case, maximal compact subgroups (or large subgroups of them)
will play akey rolein our construction. One difference here isthat p-adic groups
have several conjugacy-classes of maxima compact subgroups. Also, instead
of the complex flag variety B, the p-adic construction will use the Bruhat-Tits
building.

We can outline the construction of TI(), without reference to the Bruhat-Tits
building, as follows. Rather than working with the quotient group Irr(A,) =
X/(1 —w)X,wework inthelattice X itself. Fixw € H'(k,G) = Irr (Z(*Q)).
For each A\ € X whoserestrictionto Z(“@) isw, we will construct a k-group Gy
in the k-isomorphism class of GG, along with a k-rational embedding

Tw%T)\CG,\

of the anisotropic torus 7;,, constructed in section 10.2 onto amaximal torus 7’y in
G'\. Using this embedding, we transfer the character ., of T, (k) from 10.2; we
then have a character x, of T (k).

Asageneral fact, the group of rational pointsof any anisotropic maximal torus
in G, is contained in a unique maximal compact subgroup of G (k). Let K be
the maximal compact subgroup of G, (k) containing 7’ (k). Hence we have

Ti(k) € Ky C Ga(k), (32)
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in analogy with the real case, where now A plays the role that s did in (9). (In
fact, the compact group K, will be almost, but not quite, maximal. Weignore this
difference while outlining the construction.)

From the data (7}, ¢,), a cohomological induction process, due to Deligne
and Lusztig, gives us a finite dimensional representation R of K. Via compact
induction, we then have a representation

Ty = Ind?(i\\(k) R)\

of G\(k), as in section 3. The regularity assumption on ¢ ensures that 7, is
irreducible. Since 7, has compactly-supported matrix coefficients, it is a discrete
series representation of G'.

Thus, starting from any A € X whichrestrictstow € H'!(k, G), we will have
constructed a group G, in the k-isomorphism class of GG, and a discrete series
representation 7, of G,(k). The isomorphism class of the pair (G, 7)) depends
only on the restriction of A to 7% = A,. For p € Trr(T"), we can then define
(¢, p) to be the representation 7 of G\ (k), for any A € X whose restriction to
T isp.

This concludes our sketch of the construction of the L-packet TI(¢). In fact,
the actual construction of r,, finds K, first, then G, and the embedding of 7’ (k)
in K, comeslast.

12 Bruhat-Titstheory

To fill in details of the construction of L-packets just sketched, we need more
structure theory for reductive p-adic groups. This was developed in great gen-
erality by Bruhat and Tits [5], but the working knowledge that we need is not
easy to extract from the literature. We are going to cover the minimum amount
of Bruhat-Tits theory sufficient to make our story coherent. We refer to [40] for a
more thorough introduction to this theory.

12.1 Thebuilding

Recall that our quasi-split group G splits over some unramified extension E of &,
and that for orthogonal groupswe have £ = k or E = k,. Thefield E will now
play the rolethat C did in thereal case.
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The main tool for usisthe Bruhat-Tits building B(G) of the group G(FE) of
E-rational pointsin G. This building B(G) is asimplicial complex with G(E)-
action. In this paper, one can regard B(G') as areplacement for the complex flag
variety B used in the real case.

Asaset,

BG) = |J g-4

9geEG(E)

isthe union of G(F)-trandates of an affine space
A=R® X,

called an apartment, where werecall that X = Hom(GL,, T') isthe co-character
group of 7. The various trandlates g - .A are not digoint in B(G); they are glued
together in away that will not concern us. For G = SO3 = PG Lo, the building
B(G) isan infinite homogeneous tree, and A is a path in B(G) without ends (cf.
[35, chap I1]).

A weadlth of information about pure inner forms of GG and their maximal com-
pact subgroupsis contained in the simplicial structure on B(G). For our purposes,
it suffices to study the simplicial structure on A.

12.2 Thegeometry of an apartment and pureinner forms
A good reference for apartments and related affine Weyl groupsis[3].
Recall that, by the definition of the dual group, we have
X = Hom(T,GL,) = Hom(GL,, T)
Y = Hom(GLy, T) = Hom(T, GL,)
and these groups are in duality via a the canonica pairing (, ) : YV x X — Z.
Hence each element of Y gives alinear functional on A = R ® X. Recall that

® C Y istheset of rootsof 7" in G. The simplicial structure on A is given by the
family of hyperplanes

Hy, ={reA: (a,z) =n},

indexed by o € ®, n € Z. The apartment A is adigoint union of facets. Two
pointsz,y € A liein the same facet if, for every a € ® andn € Z, either x and
y both lieon H, ,, or are both strictly on the same side of H,, ,,. A chamber isa
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facet which is open in A. Equivalently, a chamber is a connected component of
the complement
A—|JHaon

of all hyperplanesin A. The set ®* of positive roots determines one particular
chamber

C:={zeA: 0<{a,z) <1 fordlaec d}. (33)

The Weyl group W isgenerated, as agroup of linear transformationson A, by
the reflections
So-T=2— (,T)&

(recall that each co-root ¢ is an element of X). Moreover, each A € X acts on
A by the trandation ¢, - * = x + A. These two actions generate an action of the
affine Weyl group

Wai =X X W C Aff(A) (34

inside the group Aff(.A) of affine transformationson A.
We let
Q:{WEWaﬁ:w'C:C}

be the stabilizer of C' in W4 . This subgroup has a normal complement 1/° in
W, and W*° acts ssimply-transitively on the set of chambers in A. Hence we
have a factorization

Wat = W® % Q. (35)

Recall that GG is quasi-split over k, and the splitting field £ of G is a finite
unramified extension of k. We have seen that Gal(E/k) acts on X via an au-
tomorphism o of order deg(E/k), which preserves the set &+ of positive roots.
Thismeans that the linear extension of 1) to A preserves the chamber C defined in
(33). Hence ¥ acts (via conjugation in Aff(.A)) on W, preserving €2.

Note that we have used the same letter w to denote an element of €2 aswell as
aclassin H'(k, G). Thiswasintentional; the projection X — W —  induces
an isomorphism

Q ~ X/Zd ~ TIrr(Z(G)). (36)
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Let /(1 —)$2 denote the co-invariants of ) in 2. By restricting characters from
Z(G) to Z(@)?, the isomorphism (36) induces another isomorphism

Q/(1 - 9)Q ~ Trr (Z(é)ﬁ) = Ir (2(*G)) ~ H'(k,G), (37)

thislast by Kottwitz' theorem (29). Thus, each element w € Q) corresponds, via
itsimagein /(1 — 9)Q, toapureinner form G, of G.

To summarize, there are two automorphisms of A in play. Namely, 9 gives
the action of F' under the quasi-split action on A, and w € {2 measures the inner
twisting of the quasi-split structure, viatheisomorphism (37). Taken together, the
product wd C Q) tellsus what group G, (k) we are looking at. For example, the
Frobenius action for the k-structure on GG, induces the operator wv on A. Thus,
we see that there is a close relation between the geometry of the apartment A and
the arithmetic of the group G and its pure inner forms.

12.3 Parahoric subgroups

In this section we describe the appropriate analogues of maximal compact sub-
groups of real groups, using a minimum of structure theory. We will illustrate
them for orthogonal groups in the next section.

Retain the notation of section 12.2. Recall that the Frobenius F' acts on A by
the automorphism ¢). Take an element w € (2, so that we have a pure inner form
G, of G, viathe isomorphism (37). Recal that the Frobenius for G, actson A
viathe product w).

Let z € A“? be a point fixed by wi). According to Bruhat-Tits theory, this
point = determines a certain compact and open subgroup

K, C Gy(k),

called a parahoric subgroup. This group K, , is profinite; it fits into an exact
sequence )
1 — K, — Koo — Koo(f) — 1,

where K, is an inverse limit of finite p-groups, and K, .(f) is the group of -
rational pointsin a connected reductive group K, . over the residue field §.

In this paper, the only thing we need to know about K, ., is the structure of
this f-group K, . Asin section 6.2, the group K, , is determined by its based
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root datum with Gal(f/f)-action. The root datum of K, isthat of G, except that
o+ isreplaced by the subset

of ={aed®: (a,z) € Z}, (38)

and & = {& : a € ®}}. Moreover, the Frobenius automorphism in Gal(§/§)
actson X viaw?d.

For our discrete series representations, we will only be interested in certain
parahoric subgroups. We call the wv-stable point =z and corresponding parahoric
subgroup K, ,, good if = satisfies the two conditions

1. z € C, the closure of the chamber C' defined in (33).

2. The point x isthe unique w-fixed point in the facet containing =.

If ¥ = w = 1, the good points are just the vertices of the simplex C. In general
there are only finitely many good points z: they are the verticesin the fixed-point
simplex C*?. Two good parahoric subgroups K, and K, , are conjugate in
G, (k) iff z and y are in the same same Q7-orbit.

A good parahoric subgroup K, ,, isalmost, and is often equal to the full stabi-
lizer G, (k), in Gy, (k) of thepoint z € B(G). Infact, K, , isanormal subgroup
of G, (k), with finite quotient isomorphic to the stabilizer of x in Q”. For or-
thogonal groups, we have [2| < 2. The groups G, (k), are maximal compact
subgroups of G, (k). However, it is the good parahoric subgroups K, , that play
the role in the p-adic case that the maximal compact subgroups K, did in the real
case.

13 Tameregular discreteseriesL -packetsfor p-adic
groups. completion
Now we have all the tools to carry out the construction of L-packets as outlined
in section 11, for atame regular discrete parameter
o : W(k) — G,

The groups W x (9) and “W are canonically anti-isomorphic. Let w € W4
correspond to theimage of o (F) in L1/, Recall that our L-packet I1() should be
parametrized by characters

pe€lr(4,) =X/(1-w)X,
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where X = Hom(T', GL,).
For each \ € X, we have atrandation element ¢, € Wy . Also w isalinear
transformation on .4, so the product

thw:r = A+we

isan element of W o). The discrete condition 3 on ¢ (see section 10.1) is equiv-
alent to having A* = 0. It followsthat ¢,w has aunique fixed-point in A, namely
the point

ry = (1—w)™" -\ (39)

Recall that the pair (¢, p) is only taken up to conjugacy in GG. Replacing the pair
(¢, p) by a G-conjugate if necessary, we may arrange that = is contained in the
closure of the chamber C' defined in (33).

We factor the element ¢,\w asin (35), to obtain

t)\w = U)\w)\’&, (40)

withwvy, € W°andw, € Q.
The factorization (40) generates much of the inducing data of our Langlands
correspondence. Indeed, (40) has the following properties:

~

1. The element w, € 2 corresponds to the restriction of A to Z(G') under the
isomorphism (37). Thisimplies that the pure inner form G, := G, isthe
correct one, according to Conjecture 9.1.

2. Thepoint =, isfixed by w,v, and isgood (see 12.3). Hence we have agood
parahoric subgroup

Ky =Ky, 1, (41)
of G, (k), asin section 12.3.

3. By the Lang-Steinberg theorem (see [6, p.32]), there is an element p, €
G(K) which fixes x, such that the conjugation map

Ad(py) : T,y — Ty := paTpy "

isak-isomorphism. Sincep, -z, = z,, it followsthat 7', (k) C K.
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We now have our desired set-up:
Ti(k) C Ky C Ga(k), (42)

where GG, is the appropriate pure inner form of G, K, is a good parahoric sub-
group of G\(k), and T), is an anisotropic maximal k-torus of G . Moreover, K
is the unique parahoric subgroup of G (k) containing 7 (k).

To define the representation
’/T(Spa p) = IndIG(i\\(k) R/\,

it remains to define the irreducible representation R of K.
Recall from section 10.2 that ¢ determines a character x,, of 7,,(k), viathe
abelian Langlands correspondence. Conjugating x, vViap,, we get a character

X 1= Xy 0 Ad(py) ™! € Irr (Th(K)) .
Recall that K, fitsinto the exact sequence
1 — K — Ky, — K\(j) — 1. (43)

Restricting this sequence to the subgroup 7’ (k) of K gives an anaogous se-
guence )
1 — Th(k)t — Th(k) — Th(f) — 1,

where T) (f) is group of f-rationa points in a maximal j-torus of the reductive
group §-group K. Since our parameter ¢ is tame, the character y, of T)(k)
factors through the finite group T (§). Likewise, the representation 12, will factor
through the finite group K (f).

These representations R, are famous in the world of finite reductive groups.
As mentioned in our example in section 3 for SO;(f), the representation R, has
dimension ¢ — 1 and was known to Frobenius. In the late 1960s, Macdonald con-
jectured, based on the known character tablesfor GL,,(f) and Spa(f), that to every
maximal torus T in afinite connected reductive group K and sufficiently regular
character y of T'(k), there should correspond an irreducible character R(T), x) of
K (§) whose dimension

dim R(T, x) = [K(f) : T()],

is the maximal factor of the index [K(f) : T(f)] which is not divisible by the
characteristic p of f. Moreover, the restriction of R(7', x) to sufficiently general
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elements of T'(k) should agree up to sign with the sum of x over the Weyl group
of T.

In the mid 1970s Macdonald’s conjecture was proved by Deligne and Lusztig,
building on the work of Drinfeld for SL,(f). They found a cohomological con-
struction of R(T', x) that bears some resemblance to Schmid’s construction of real
discrete series. Besides the original paper [10], we refer the reader to any of the
several good expositions of the Deligne-L usztig construction, such as[6].

These Deligne-L usztig representations are the final ingredient in our construc-
tion of L-packets. we define

Ry := R(Th, x»)- (44)

Thisis arepresentation of the finite group K, (f), which we view as a representa-
tion of the good parahoric subgroup K, viathe exact sequence (43).
Putting everything together, we finally have our representation

’/T(Spa p) = Ind?{i(k) R/\,

where A € X projectsto p € X/(1 — w)X = Irr(A,), and our L-packet II(y) is
then defined as
() :==A{m(p,p) : p€lrr(Ay)}.

The simplest case of this construction is the following. Every semisimple
group has a quasi-split form for which some w € LIV acts by inversion on T,
and this w is unique. In this case 7™ = T is the 2-torsion subgroup of 7', and
A, = X/2X. Wehave

Ty = %)\,

and the root datum of K, isthat of the centralizer of the involution A\(—1) € G
(recall that characters of T' are 1-parameter subgroups of T'). The L-packet I1()
has 2" elements, where n = dim T'. These p-adic L-packets |ook quite similar to
thereal L-packets described in section 4. However, the Galois theory of a p-adic
field £ isricher than that of R. There are other tame regular discrete Langlands
parameters, corresponding to other elementsw € I for which 7% isfinite. Thus
the groups A, will vary, and the cardinality |A,,| is not always a power of 2.

14 L-packetsfor p-adic orthogonal groups

We first describe the regular discrete parameters explicitly for orthogonal groups.
Asinthereal case, we need asupply of some simpleinduced representations. For
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the moment, we make no assumption on tameness, since that plays no role in the
following construction.

We fix a prime element = in the ring of integers of k. Recall that the Well
group W(k) isasemidirect product

W(k) =(F) x L.
We change and simplify the notation dlightly. Let
K = ko4
be the unramified extension of k of degree 2d. The Weil group of W(K) is
W(K) = (F*) x T,

anormal subgroup of W(k), with cyclic quotient of order 2d. The tautological
embedding W(k) — Gal(k/k) induces an isomorphism

W) /W(K) =~ Gal(K/k),

sending the coset of ' to the unique element 7 of order two in the cyclic group
Gal(K/k).

Letn : W(K) — C* beacharacter of finite order. Applying local classfield
theory to K, we have a homomorphism

W(K) — W(K)® =5 K*, (45)

sending F?? to w, and sending Z onto the unit group O in the ring of integers
O of K. Weview n as acharacter of K, via(45). Note that 7(ww) = n(£??) in
these two viewpoints. We define

V(n) = Indf; n := Indyy) . (46)
This gives arepresentation
p: W(k) — GL(V(n)) (47)

of dimension 2d.

We assumefurther that the conjugates” of » by the elementsof Gal(K/k) are
pairwise distinct, and that ™ = n~!. Since n has finite order, we have n=! = 7.
The first hypothesis implies, by Mackey’s theorem (cf. [34, I1.7]) that V'(n) is
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irreducibleand V'(n) ~ V' (n?) for any o € Gal(K/k). Since the dual of V() is
V'(77), the second hypothesisimpliesthat V' () is self-dual.

Hence there is a nondegenerate bilinear form B on V (n) which is invariant
under W(k), and unique up to scaling. Since V'(n) is irreducible, the form B
either symplectic or orthogonal. We have an orthogonal decomposition into two
dimensional subspaces

Vin) =@V,
=0

whereZ actson V (1, ) asn? @', and (F?) interchanges these two summands.
Theform B; on V' (n, ) is either symplectic for all 4, or orthogonal for al i. Let
i = 0. Sincen™ = 7, we can choose eigenvectors for n and 77 so that the matrix

2d
of o(F?) on V(n,0) has the form <(1) 77(1; )
followsthat n(F??) = +1, with n(F?¥) = +1 if B, isorthogonal, n(F??) = —1
if By issymplectic. Recalling that F2¢ correspondsto o under (45), we conclude
that

). This matrix preserves By. It

V(n)

{ orthogona  if n(w) = +1, (48)

symplectic if n(w)= —1.

Moreover, in the orthogonal case, we have det ¢(F') = —1, so det ¢ isthe unique
quadratic character of YWW(k) which istrivial onZ.

14.1 L-packetsfor odd p-adic orthogonal groups

Here G = SOy, and we have LG = Sp,,(C), and aregular discrete Langlands
parameter is a homomorphism

v W(k) — Sp(V),
with
V=VieVe eV, ad V;=V(y)=Ind} n,
asin (46), where the K; are unramified extensions of & of even degree 2d; > 2,
such that ) d; = n. By (48), the characters n; of K satisfy n;(w) = —1. For
¢ to be regular and discrete (see 10.1), the representations V; must be pairwise

non-isomorphic. Hence if K; = K, we must assume that »; is not equal to any
conjugate n? of »;. In order to apply the construction of L-packets as described in
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section 13, we now assume that each n; factors through the tame inertia group Z;
(see 6.1), so that ¢ will be tame.

We now describe explicitly the pair (7, x,,) associated to ¢ in section 10.2.
The building blocks of T, are Coxeter tori, defined as follows. The Wey! group
W, of Spyy(C) isthe group of the hypercube in R¢, and acts on R? by permuting
and changing the signs of the standard basis {e;,...,eqs}. A Coxeter element
in W, isan element v € W, of order 2d which acts by a single orbit on the set
{#e; : 1 < i < d}. Coxeter elements form a single conjugacy classin W,. A
Coxeter torus Teox Over the p-adic field £ has character group Y = Zle Ze;,
splitting over ko4, for which F' actson Y viawv. The torus T has k-rationd
points

Toox (k) ~{a € K*: 7(a) =a '},

where, as above, K = ko4 and 7 isthe nontrivial element of Gal(K/k,).
The element w = ¢(F') isthe product

W= w1 X Wy X+ X Wg

of Coxeter elements w; € Wy, of order 2d;, in the Weyl group W, of Sp(V;),
whered; + - - - + d; = n. ThetorusT,, isthe product

Ty=T1 xTyx---xT;

of corresponding Coxeter tori. The splitting field L of T, is the composite of
the unramified extensions K;, so L isunramified over & of degree twice the least
common multipleof {d,...,d,}. Each T; has k-rationa points

T,(k) = {a € K :7i(a) =a '},

where 7; is the unique element of order two in Gal(K;/k). The character x,, is
given by
Xe =M @& Q1.
The group A, ~ {£1}* isthe center of Sp (Vi) x .- x Sp(V;), and the
diagonal subgroup of A, isthe center {+15,} of G = Spsn(C). Recall that

H'(k, SOop 1) = It ({£1,}) = {1, 0},

where w gives the pure inner form SO, | (see section 8).
The L-packet I1(p) contains 2° representations, parametrized by characters
p=p®--®p, € Irr(A,). Therepresentation 7 (¢, p) lives on the quasi-split
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group G(k) = SO, (k) if an even number of p; are nontrivial, and on the pure
inner form G, (k) = SO;,, (k) otherwise.

We now determine the inducing subgroup K, of 7 (¢, p) (see (41)). Replacing
(p, p) by aconjugate in Sp,, (C) if necessary, we can assume that for some 0 <
¢ < s, the first £ components py, ..., p, Of p are non-trivial and the remaining
components p1, . . . , ps aretrivial. Wewrite X = Hom (7, GL,) and A = R®X

as
X =P za, A= PRa;,
=1 =1

where z; isthe i coordinate function of T = (C*)". Aslift A € X of p, we take
the sum of one x; from each block V;,...,V,, aslongas/ > 0. If / = 0 we take
A=0.

Asin (15), the positive roots are

¢ ={e;te;: 1<i<j<n}U{er: 1<k<n},

where {e; } isthe dual basis of {x;}. The corresponding chamber C' isthe interior
of the hypertetrahedron in A, defined by the inequalities

l—ey>e >e>--->e, >0. (49)

We have Q2 = {1,w}, where, in this viewpoint, w acts on A as areflection in the
first coordinate:

w-(a,a9,...,a,) = (1 —ay,a9,...,a,). (50)
Using the formula (39), we find that the unique fixed point of ¢ \w in A is
Ty = %($1+1‘2++1‘m) € C,

wherem = d; +---+dy,and z isread as0 € A if ¢ = 0. Notethat x, isgood, in
the sense of section 12.3. According to (38), the root datum of K, is determined
by the rootsin ®* which take integer values at ).

In order to describe the groups K, we need some notation for orthogonal
groups over thefinite field f. All such groups are quasi-split, and are classified as
in section 6.2. Up to §-isomorphism, there are three families, which we denote by

SOQn-I—la SO?na SO,Zn? (51)
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corresponding to the quadratic forms

Qn + x§n+17 Qna anl + Na

where Q, = x12p41 + -+ + 2,79, and N is the norm form on the quadratic
extension ., viewed as a two-dimensional space over §.
Using (38), one finds that the reductive §-group K, is given by

_ {SOgm X SO20n—m)+1 for ¢ even (52)

Ky = ;
SOy, X SO2(n—m)+1 for ¢ odd,
using the notation (51) for finite orthogonal groups.

Finally, recall that 7(y, p) is obtained by inducing from K, the representation
Ry in (44), whose dimensionis

dim Ry = [Kx(F) : T (f)]y-
For example, if p isthetrivia character, we have ¢ = 0, and we get

(=" =1)--- (¢ - 1)

dim Ry = .
T e D @ )

14.2 L-packetsfor even p-adic orthogonal groups

The description of tame, regular, eliptic Langlands parameters for even orthog-
onal groups is similar, with just a few added twists, so we shall be brief. Recall
that

o [50m(©) if G =50y
020 (C) it G=50y,.

A tame regular discrete Langlands parameter for either SO,,, or SO, isahomo-
morphism
v W(k) — O(W),

with
W=wieWya---oW, ad W;=V(y)=Indj u,

asin (46), where the L; are unramified extensions of k of even degree 2d’; > 2
such that ) d; = n. Note that the image of ¢ liesin SO(W) precisely if r is

49



even, in which case ¢ is a parameter for SO,,,. If r isodd then ¢ is a parameter
for SO,,,.

The characters 1.; are orthogonal, so yi;(w) = +1. Again, for ¢ to be regular
and discrete, the orthogonal representations 117; must be pairwise non-isomorphic.
Henceif L; = L,, the character 1.; is not equal to any Galois conjugate ;.

The class of w = ¢(F'), thetorus T, = [[Tj, the character x, = [] p;, and
the component group A, ~ {+1}" are as described in the odd orthogonal case.
However, there is a minor relaxation of the irreducibility of W; = V'(y;) in the
two-dimensional case. Namely, if L; isthe unramified quadratic extension of £,
we can take p; = 1 or p; = the nontrivial quadratic character of {5 /§*, but not
both. We allow this for at most one j. Then W; = V(y;) is reducible, but ¢
remains regular.

Againwe have H'(k,G) = {1,w}. For r even, half of the 2" representations
inII, liveon G(k) = SO, (k) and the other hdlf liveon G, (k) = SO;, (k). For
r odd, each representation of SO, (k) in I1(y) will appear twice: once for G (k)
and once for G, (k). The descriptions of the inducing data K, R, are similar to
the odd orthogonal case. We will describe K, more precisely when it is needed,
in (62) below.

15 Symplectic root numbers

Our eventual aim isto show how the restriction of representations from pureinner
forms of SOy, to pure inner forms of either SO,, or SO}, (see section 8)
is determined by symplectic root numbers. These are signs +1 attached to the
Langlands parameters of the representationsin question, using ideas from number
theory. In this section we give a short introduction to symplectic root numbers.

Fix anon-trivial additive character + : k* — S! whose kernel isthe ring of
integers o of £, and let dz be the Haar measure on k™ giving unit volumeto o.

Let o : W(k) — GL(V') beacontinuous representation of WW(k) on afinite-
dimensional C-vector space V. In the notation of [37, 3.6], the root number of
¢, with respect to 1, is the number

6(90) = 6D(90 ® | ) |1/2,77Z),d513).

Thisisanon-zero complex number, which wasintroduced and studied by Tate,
in his thesis (see [8]), for one-dimensional representations ¢ of W (k)™ = k*.
These root numbers give a product decomposition of the constants which appear
in the functional equations of Artin L-series (cf. [12]).
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Proposition 15.1 The root number () has the following properties:
L e(pd¢) =c(p) - e(¢).
2. If pisistrivial onZ, thene(p) = 1.

3. Let K/k be afinite unramified extension and let ¢x = 1 o trg ;. Let ¢ be
arepresentation of W(K), and use ¢ i to define () as above. Then

e(Indyy() @) = 2 ().

4. Let x : W(k) — C* be a tame character which is nontrivial on Z,. Then
we have the formula

-0 =D S s L),

|f| tefX
Here x isviewed as a character of (o) x {* via classfield theory; see (45).
5. If p isself-dual and det p = 1 thene(p) = +1.

See [37] for proofs of these properties.
If V' isasymplectic space and ¢ : W(k) — Sp(V'), then the conditions of
item 5 hold, and we have a symplectic root number

e(p) = £1.

Symplectic root numbers play arole in many important questions in modern
number theory. For example, if A isan abelian variety over aglobal field F', then
at each completion of F' the Tate module of A defines a symplectic representation
of the local Weil group (or more generally, representations of the type discussed
in section 9.1). Almost all of these local representations are unramified, and the
product of their symplectic root numbers is the sign in the conjectural functional
equation of the L-series of A over F. Since this sign determines the parity of
the order of vanishing of the L-series in the center of the critical strip, it should
determine the parity of the rank of the Mordell-Weil group, by the conjecture of
Birch and Swinnerton-Dyer (cf. [13]).

Symplectic root numbers are also defined for £ = R and C. The branching
lawsfor restrictions of discrete series of real orthogonal groups may be expressed
in terms of real symplectic root numbers [14, section 12]. This raises the hope
that p-adic root numbers may also determine branching lawsin the p-adic case. In
the next section we recall the Gross-Prasad conjecture on this question.
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16 Restriction and symplectic root numbers

Fix two parameters which satisfy the conditions of being tame, regular, and dis-
crete, asin section 14:

o1 W(k) — Sp(V), V= @ V(mi),

0y : W(k) — O(W), W = @V(uj).

Then ¢, is (part of) a Langlands parameter for an odd orthogonal group and -
is (part of) a Langlands parameter for an even orthogonal group. To get complete
Langlands parameters, we need characters p; of the respective centralizers A,
We define these characters p; using symplectic root numbers, as follows.

Thetensor product V @ W isasymplectic representation of WW(k), centralized
by A, x A,,. Hencefor each pair (a,b) € A,, x A,, theeigenspace

(V ® W)a@b:—l
isagain asymplectic representation of YV (k). We define the br anching char acter
p: Ay x Ay, — {£1}, (53)
by the formula
pla,b) = (V@ W)*=1), (54)

where the right side of (54) is the symplectic root number of (V' @ W)*®="1 as
in section 15 (thisis simpler than the general definition of p in [14], because each
det V(1) is an unramified character in the present case). It is shown in [14] that
pisactually acharacter of A, x A,,.

Writing the branching character as p = p; ® p2, we now have complete Lang-
lands parameters (o1, p1) and (2, po) for odd and even orthogonal groups G and
H, respectively, whose k-isomorphism classes are determined by the values of p;
and p, on the centers of Sp(1") and O(1V), via Kottwitz' theorem (see sections
14.1 and 14.2). Using our notation for orthogonal groups in section 8, this works
out as follows.

- {SOM1 it pi(—Iy) = +1 (=5

SO, i pi(—Iy) = 1.
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SOqp, for r even, po(—Iy) = +1
H~ ¢ S0O3, for r even, po(—Iy) = —1 (56)
SO, for r odd.

Note that previously, G' always denoted a quasi-split group; we have made this
slight changein order to ease the notation |later on. For therest of the paper, G and
H will be as defined in (55) and (56). Since p(—1Iy,—Iy) = 1, it follows from
[14, 10.9] that H isalways a subgroup of G.

Using our L-packets from section 11, the Langlands parameters (;, p;) define
irreducible representations

T = 7T(g01, pl) Of G(k)a
o=m(p2,p2) Of H(k).

The conjectures of [14] predict that o occurs in the restriction of = to H (k)
with multiplicity one. More precisely, it is proposed that

(m,0) := dim Homg ) (7, 0) = 1. (57)

Unpublished work of Bernstein and Rallis (independently) showsthat (7, o) < 1.
Therest of this paper will be devoted to proving that (7, o) > 1.

The conjectures of [14] also predict that no other representation in the L-
packet I1(y,) can appear in the restriction of a representation in T1(y;), but at
present we do not know how to prove this.

17 Calculation of the branching character

We begin with the explicit determination of the branching character p, defined in
(53) by symplectic root numbers. Thefollowing lemmaiscrucial; it can be proved
using the properties 15.1, see also [12].

Lemmal7.1 Let
V = TInd} n, W = Ind} p

be irreducible symplectic and orthogonal representations, respectively, of W(k),
induced from tamely ramified characters of the unramified extensions K and L of
k. Thene(V @ W) = +1, unless V and W are isomor phic representations of the
inertia subgroup Z C W(k), inwhichcasee(V @ W) = —1.
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We now use Lemma 17.1 to determine the character p of the elementary
abelian 2-group A, x A,,. Recal that the tame, regular discrete parameters
for odd and even orthogonal groups, respectively, have the form

V:@‘/Za ‘/Z :Ind];(l U
=1

w=w;,  W;=Ind} u.
j=1

The group A, has Z/2Z-basis elements a;, the non-trivial central elements in
Sp(V;), and the group A, has Z/2Z-basis elements b;, the non-trivia central
elementsin O(W;). Using Lemma 17.1, we find that

plai 1) =e(V;o W) = [e(Vio W)
j=1
-1 if Resz(V;) ~ Resz(1W;) for somej,
|+t otherwise.

Note that if 1V; exists then it is unique, since Wy,..., W, are pairwise non-
isomorphic. Similarly, we find that

p(1,b) =e(Vo ;) =[=(View;)
=1
-1 if Resz(W,) ~ Resz(V;) for somei,
+1 otherwise.

Again, V; isunique, if it exists.

18 Therepresentations and o of SO, and SO-,

Recall that G and H are the orthogonal groups determined by the Langlands pa-
rameters (1, p1) and (9, p2) (see (55) and (56)). We now use our formula for
p = p1 ® py In the previous section to determine the representations

T =m(p1,p1) € Irr (G(k)), and o= m(ps,pe) € Irr (H(K)).
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Then we will show that o occursin therestriction of = from G (k) to H (k), inthe
sense of (57).
Asin section 17, we have

W«
<

i=0 =0
Suppose that exactly ¢ of these factors give isomorphic representations of the in-
ertia subgroup Z of W(k). Reorder the factors so that

‘/IZWI, %:W27 ey WZWZ

asrepresentationsof Z and set 2m = Y, dim V; = 37 dim IW.
Hence p, isnontrivial precisely on the basisvectorsa, . . ., a; of A, so that
p1(—1Iy) = (—1)%, and (55) takes the more explicit form
G SO 11 for ¢ even (58)
SO3,.1 for ¢ odd.

Recall that X = Z", with basis {¢;}. Aslift \; € X of p;, we may take the
sum of onee; from each block V4, . .., V. Our good parahoric subgroup K, C G
has reductive quotient given, in the notation of (51), by

_ _ _ _ f
K, = KQI " KQ'I _ SOlgm X SOgn—m)41 for ¢ even (59)
SO,,, X SO2n—m)+1 for ¢ odd.
The representation = is then given explicitly by
= 1nd§§§’j’ Ry, (60)

where R,, isthe Deligne-Lusztig representation defined in (44).
Likewise p, is nontrivial precisely on the basis vectors by, ..., b, of A,,, SO
that po(—Iy) = (—1)¢, and (56) takes the more explicit form

SOy, for r, ¢ both even
H~{S0;  forreven, (odd (61)
SO, for r odd.
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For p,, we may choose the lift A, € X sothat z,, = z,,. Using the method
of section 14.1, we find that our good parahoric subgroup K, C H hasreductive
guotient given by

K, = K}, x KY , (62)
where
K}, =K, (63)
and

~n _ )SOz4-m) for r—{ even
S0,y for r—¢ odd.

Finally, the representation o is given explicitly by

o= Indgg

Y Ry, (64)

where R,, isthe Deligne-Lusztig representation defined in (44).

19 Themultiplicity of o in therestriction of =

In the next two sectionswe provethat (7, o) > 1, inthe sense of (57). Elementary
properties of induced representations show that

Homf(w(f) (Ry,, Ry,) C Hompgy) (7, 0) .

We will show that HOIH[’(MG) (R/\17 R,\2) 7§ 0.
Our inducing representations R, factor as products of Deligne-Lusztig repre-
sentations
Ry, = Ri\i ® i\l
according to the factorizations (59) and (62).
Recall from section 14 that for o, our torus and character are products

i)
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and the characters 1; factor through the reductions T;(k) — T;(J). Likewise, for
9 our torus and character are products

and the characters y; factor through the reductions S;(k) — S;(f). By our
assumptionthat V; ~ Wy, ..., V, ~ W,, we have

¢ ¢
17 =115 (67)
i=1 j=1

and the characters , ,
H ﬁia H ﬂja
i=1 j=1

are equal on the torus (67). Recall from (63) that K}, = K} . Hence we have
R\, ~ R),.

Setting v = n — m, it remains only to show that R, appearsin therestriction
of R}, from SO,,(f) to either SO, (f) or SO, (f) according asr — ¢ is even or
odd. Thisis a consequence of the result which is stated in the next section, and
proved in [28].

20 Restriction of Deligne-L usztig representations

This last section concerns only representations of groups over the finite field §, so
we will simplify our notation.

Let 7" be amaximal f-torusin the group G = SO, over f, and let W (T') be
the f-rational points in the Weyl group of 7" in G. We say a character of T'(f) is
regular if it hastrivial stabilizer in W (7).

Assumethat T" isanisotropic over f. ThenT = [[;_, T; isaproduct of Coxeter
tori in odd orthogonal groups. Let » = ]} n; be aregular character of T'(f).

Let S = [];_, S; beanother such product of Coxeter tori, with » - dim S; = n.
Then S is an anisotropic maximal torus in the f-group H which is SO, or SO,
according asr iseven or odd. Let ;1 = H§:1 ; be aregular character of S(f).

We then haveirreducible Deligne-L usztig representations R(7', ) on G(f) and
R(S, 1) on H(f). Thefollowing result is proved in [28].
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Theorem 20.1 The H (f)-invariantsin R(7T',n) ® R(S, 1) have dimension
dim [R(T,n) @ R(S, )]"D =0 or 1.

Thisdimension is 0 if any factor matches, in the sense that there are 7, j such that
T; ~ S; and n); isa Galois conjugate of ;.,. If there is no matching, the dimension
isl

In the case of RY, and RY, of the previous section, we have no matching, by
the definition of /. This concludes the proof that o occursin Res g ;) (7).

It is a nice exercise to verify 20.1 for n = 1, given the character table of
SO;(f) = PGLy(f) (cf. [11, section 9]). One finds that R(7,n) contains all
characters of SO»(f), and all characters of SO, (f) except  and ~!. We used this
in section 3.

The main idea of the proof of 20.1 for genera n is to show that the sum over
H () of thethe character of R(T,n) ® R(S, i) isarationa functioning = |f| of
degree < 0 whose leading term can be computed explicitly. This idea goes back
to Thoma [38] for the pair GL,, O GL,_, and was used by Hagedorn [16] in his
1994 Harvard PhD thesis to give some abstract formulas for restriction for other
classical groups. Pushing this method further in [28] one obtains closed formulas
asin 20.1, aswell as qualitative Deligne-Lusztig restriction formulas for ageneral
pair of reductive f-groups G D H.
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