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1 Introduction

In the late 1960s, Robert Langlands proposed a new and far-reaching connection
between the representation theory of Lie groups over real and �-adic fields, and
the structure of the Galois groups of these fields [24]. Even though this local
Langlands correspondence remains largely conjectural, the relation that it predicts
between representation theory and number theory has profoundly changed our
views of both fields. Moreover, we now know enough about the correspondence
to address, and sometimes solve, traditional problems in representation theory that
were previously inaccessible.

Roughly speaking, the local Langlands correspondence predicts that complex
irreducible representations of a reductive group � over a local field � should be
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parametrized by certain homomorphisms of the Galois group (or more generally
the Weil group) of � into a complex Lie group �� which is dual to �, in a sense
that will be explained below.

In this article, our aim is two-fold: First, we want to introduce the Lang-
lands correspondence for reductive groups over local fields, giving many exam-
ples along the way. Second, we want to show how the Langlands correspondence,
combined with some ideas from number theory, can be used to study the classical
problem of restricting irreducible discrete series representations from ������ to
����.

The conjectures of Gross-Prasad [14] describe these restrictions in terms of
symplectic local root numbers attached to the Langlands parameters of represen-
tations of orthogonal groups. These root numbers are number-theoretic invariants
of the parameters, but to test the conjectures one needs to construct the corre-
sponding irreducible representations. This has been done recently, for some inter-
esting discrete series parameters, in [9] and [22]. Specializing this constuction to
orthogonal groups, we verify the Gross-Prasad conjectures for these parameters.

Since the restriction problem we consider has roots in the very origins of rep-
resentation theory, we have tried to place our results on orthogonal groups in an
historical context. Moreover, as representation theory is now used in many areas
of mathematics, we have also tried to make much of this paper accessible to a
wide audience, by raising the prerequisites as gradually as possible. This aim has
forced us to omit much recent work on the local Langlands correspondence, such
as [18], [20] for ���, and [26], [27] on unipotent representations.

We begin with a discussion of spherical harmonics for the compact real group
����� of rotations in �� . We will see that each irreducible representation of
����� is naturally paired with a discrete series representation of the noncompact
orthogonal group ����� ��. This is our first example of an �-packet of represen-
tations attached to a Langlands parameter. We then introduce the �-adic versions
of ����� and ����� ��, and arrive at analogous �-packets of discrete series rep-
resentations. In both cases, we discuss the restriction of the representations to the
subgroup �����.

Next, we return to real groups, in a more general setting. After a review of the
fundamental results on discrete series for real Lie groups, due to Harish-Chandra
and Schmid, we partition their representations into �-packets, with illustrations
in the orthogonal case. This permits us to formulate the Gross-Prasad conjecture
on restriction from ������ to ����, which in the real case generalizes classical
branching laws.

In section 6 we turn to a general description of Langlands parameters, intro-

2



ducing the Weil group of a local field and the complex Lie group �� mentioned
above. Here the prerequisites increase; to help the reader we give some back-
ground on root data and quasi-split groups. We then show how the �-packets
constructed by Harish-Chandra and Schmid correspond to real Langlands param-
eters, and we illustrate these parameters for orthogonal groups in more detail.

The remainder of the paper is devoted to the �-adic case, where much of the
Langlands correspondence remains conjectural. We focus on parameters which
we call “tame regular discrete”, and which are analogous to discrete series param-
eters in the real case. In section 11 we briefly outline the recent construction of
the �-packets of irreducible representations associated to these parameters. After
a small taste of Bruhat-Tits theory, we then give more details about this construc-
tion, in section 13.

We then turn to the parameters for �-adic orthogonal groups, and introduce
local epsilon factors from number theory, in order to state the Gross-Prasad con-
jecture on restriction from ������ to ���� in the �-adic setting. The rest of the
paper is devoted to verifying this conjecture, for tame regular discrete Langlands
parameters. The proof invokes a result in [28] on the restriction of Deligne-Lusztig
characters for finite orthogonal groups.

There is no denying that the Langlands correspondence throws many technical
barriers in the way of the interested mathematician, neophyte and expert alike! We
hope that the mixture of general theory with explicit examples will enable many
readers to hurdle, or at least to see over these barriers, in order to appreciate this
fruitful interaction between representation theory and number theory.

We thank J.-P. Serre and N. Wallach, for helpful comments on an earlier ver-
sion of this paper. In addition, the referees made numerous insightful criticisms
which, we believe, enabled us to improve the exposition.
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2 Spherical Harmonics

One of the earliest results in harmonic analysis for a nonabelian group was the
decomposition of square-integrable functions on the sphere � �:

������ �
��

���

�� �Hilbert direct sum) (1)

into eigenspaces of the spherical Laplacian. The eigenspace denoted �� has di-
mension �	 � �, and has associated eigenvalue 
 � �	�	 � ��. It affords an
irreducible representation of the spherical rotation group �����.

Every irreducible complex representation of the compact group � � �����
is isomorphic to some ��. Let� be the subgroup of� fixing a point on ��. Then
� is isomorphic to the rotation group in the plane orthogonal to the line through
the fixed-point and its antipode. Thus, we may identify

� � ����� � �� � � � � ��� � ��


For � � �, let �� � � � � � be the unitary character defined by ����� � ��.
Then the restriction of the representation �� from� to� decomposes as a direct
sum of irreducible representations:

	
������ �
�
�����

��
 (2)

For all of the above see, for example, [43, III.9]
The decompositions (1) and (2) were used by theoretical physicists to model

energy levels of the hydrogen atom [45]. Physicists also initiated the study of
representations of the non-compact form �� � ����� �� of �; see [1]. This is the
group of orientation-preserving isometries of the quadratic form� � ��������,
and is isomorphic to �������.

The irreducible complex representations of a Lie group � which occur as
closed subspaces of ����� are called discrete series. If � is compact then ev-
ery irreducible representation is in the discrete series.
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For �� � ����� �� the discrete series are representations ���, parametrized by
integers 	 � �. The subgroup � � �� fixing a vector in �� whose orthogonal
complement is definite is isomorphic to �����. The representation � �� can be
characterized by its restriction to �����:

	
������� �
��

�����

��
 (3)

To summarize, for each integer	 � � we have a set


� � ���� ���� (4)

of irreducible representations of � � ����� and �� � ����� ��. Every irre-
ducible representation �� of ����� occurs once in the restriction of either �� or
��� for every 	, but not in both. We will see that this appears to be a general
phenomenon for �-packets (of which 
� is an example) of representations of
orthogonal groups over real and �-adic fields.

3 �-adic �����

A similar result holds for representations of the rotation group ���� �, for �-
dimensional orthogonal spaces � over �-adic fields. Let � � � � be the field of
�-adic numbers, let � � �� be the ring of integers in �, and let � � ���� 	 ����
be the residue field. Let �� be the unramified quadratic extension of �, with ring
of integers ��, and residue field �� � ������, with �� elements. If � � � then
�� � ��



�� and �� � ��



�� for � � �� a unit which is not a square. Let � be the

nontrivial automorphism of �� which is trivial on �; on �� we have the formula

���� � �� ��� ���


We begin with two-dimensional spaces which are analogous to the complex
plane. The space � � �� is an orthogonal space over � of rank two, whose
quadratic form � �� � 
 ���� is the norm from �� to �. The rotation group of� is

� � ���� � � �� � ��� � ���� � ���� � �� � ��� � ���� � ����

There is extra structure that did not appear in the real case: we also have a
quadratic �-space �� � �� with quadratic form � �� ����. Reduction modulo
� from �� to �� gives a surjective group homomorphism

� �� �� � ��� �� � � �� � ��� � �� � ����
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The group �� is cyclic of order � � �. We say a character � of � is tame if it
factors through ��, and is regular if �� �� �.

In three dimensions, there are exactly two distinct orthogonal spaces of rank
three over �, up to equivalence and scaling [32, Chap. IV]. We denote them by
����� and �� �� ���. They both contain� and have orthogonal decompositions

� �� � ���� ���� � ��

� � �� � ����� ������ � �


In the first case,����� � �� is not a norm from ��� ,� does not represent zero
nontrivially on � , and� � ���� � is compact. In the second case,������� � ��
is a norm from ��� , �� has nontrivial zeros on � �, and �� � ���� �� is noncom-
pact. The group � � ���� � is a subgroup of both � and ��, fixing the vectors
� and ��, respectively.

We will now construct irreducible representations �� and ��� of � and ��,
starting with tame regular characters � of � .

The group � preserves the lattice � � �� � �� in � , and the form induced
by � on ���� has one dimensional radical. This implies a surjection � �
�� �� �. Hence � has a normal subgroup � of index two, which surjects onto
�� � ��� �� �. We view � as a character of �, and define �� as the induced
representation:

�� � ����	 �
 (5)

More precisely, induced representations are defined as follows. If � is a finite-
index subgroup of a group � and � � � � ����
� is a representation of �,
then

����	 � � �� � �� �
 such that ����� � ��������� for all � � �� � � ���
(6)

and the group � acts on ����	 � by �� 
 ����� � ����� for �� � � �. We have
��� ����	 � � �� � �� 
 �����
�. We will use various elementary properties of
induced representations without further comment. See, for example, [34, chap.
7].

Returning to ��, we have ������� � �. Since � is conjugate to ��� in
��� � � �, it follows that �� is isomorphic to ���� . Restricting �� to � , we
find

	
������ � �� ���
 (7)
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.
To define ���, it is convenient to view the noncompact group �� as �������,

whose Lie algebra is a three-dimensional quadratic space isometric to �� �� ���.
This group has a maximal compact subgroup

� � � ������� � ��


In turn, � � maps surjectively onto ��� � �������. The latter is a finite group of
order ���� � ��. The group �� embeds as a subgroup of ���, and a cohomologi-
cal form of induction, due to Drinfeld in this case and extended by Deligne and
Lusztig [10], associates to the data � ����� an irreducible representation  ��� of
���, of dimension �� �. For the particular group ��� � �������, the character of
the representation  ��� was discovered by Frobenius [11, section 9] in one of his
first papers on representation theory.

The irreducible representation  ��� of ��� is characterized by its restriction to
��:

	
� �� � ���� �
�

������ ��	
� �
�����

!


We pull  ��� back to a representation of � � via the homomorphism � � �
�������, and define

��� � ����
�

	�  ���
 (8)

The group � � has infinite index in ��. Induction is defined as in (6), but now we
require the functions � � ����

�

	�  ��� to have compact support, and to be invariant
under a compact open subgroup of ��.

The representation ��� is irreducible and belongs to the discrete series of ��.
All characters of � appear in the restriction 	
������� with multiplicity one, ex-
cept for � and ���. See, for example, [41].

In summary, as in the real case, the representations �� of � and ��� of ��,
defined in (5) and (8), form an �-packet


� � ���� ����

with the property that every character of � appears with multiplicity one in �� or
���, but not both.

8



4 Discrete series for real groups

It would now be helpful if the reader had some familiarity with the basic structure
theory of semisimple Lie groups (cf. [42]). It may also help to glance at the next
section, where the general ideas below are illustrated for orthogonal groups.

A real semisimple Lie group � has discrete series representations precisely
when it contains a compact maximal torus. The discrete series of such groups
were constructed in a uniform way, first by Harish-Chandra [17] on the level of
characters, later by Schmid [30] on the level of vector spaces.

There are many excellent treatments of discrete series for real groups in the lit-
erature, for example [31]. The following sketch has the advantage of showing how
discrete series are naturally grouped into �-packets containing representations of
different inner forms of a compact Lie group. We also avoid certain technicalities
by restricting the class of Lie groups under discussion. Our treatment applies to
all real orthogonal groups that have discrete series, like ����� �� � �������,
as well as to all semisimple Lie groups with trivial center, but it omits other Lie
groups with discrete series, like �������. The Lie groups we consider are those
obtained from compact Lie groups � by twisting inside the complexification �� ,
as will be explained below.

Let � be a compact connected Lie group with finite center. Up to conjugacy,
� contains a unique maximal torus � 	 �����, a direct product of copies of the
circle group ��. The number " is called the rank of �.

Associated to � is its complexification �� which is a connected complex
Lie group containing � as a maximal compact subgroup. For example, if � �
����"��� is the rotation group of a positive definite quadratic form� on ����� ,
then �� � ����" � �� � � is the subgroup of ����" � �� � � preserving the
extension of � to � ���� .

We need to recall some structure theory of complex Lie groups. The group
�� contains the complexification �� 	 �� ��� of �. We choose a Borel subgroup
(i.e., a maximal connected solvable subgroup) of �� containing �� .

Borel subgroups can also be characterized as follows. There is a unique (up to
isomorphism) complex projective variety � of maximal dimension, on which ��

acts transitively by holomorphic maps. The variety � is called the flag variety of
�� . The Borel subgroups in �� are the stabilizers of points in the flag variety �.
In fact, Borel subgroups are their own normalizers, so we can think of � as the
variety of Borel subgroups of �� , where �� acts by conjugation. The complex
torus �� has only finitely many fixed points in �. By choosing #� to contain �� ,
we are choosing #� � � to be one of these �� -fixed points. We can then identify
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� � �� �#� .
The flag varieties of classical groups are familiar objects from algebraic ge-

ometry. For example, a Borel subgroup in ����" � �� � � is the stabilizer of an
isotropic flag in � ���� . The latter are nested chains of subspaces

� � �� � �� � 
 
 
 � �� � � ���� �

with ����
 � $, on which the quadratic form� vanishes identically. In particular,
the flag variety of ����� � � is the quadric in � �� defined by�, and is isomorphic
to � �� .

We now recall a bit more structure theory. The group �� acts on the Lie
algebras � and � of �� and #� , respectively. Hence �� acts on the quotient ���.
The positive roots of �� are the characters of �� appearing in its action on ���.
We let �� denote the set of positive roots. Within �� there is a unique subset �
of simple roots, with the property that every root in �� can be written uniquely
as a non-negative integral combination of roots in �. Each positive root appears
in ��� with multiplicity one. Since ��� is the tangent space to � at #� , we have

���� � ����


The negative roots �� are those nontrivial characters of �� appearing in � (this
seemingly odd convention is standard in the theory).

We have not forgotten the compact group � that we started with. There is an
analogue of complex conjugation, which is an automorphism of order two of the
abstract group �� , denoted � �� ��. This automorphism preserves �� , and we
have

� � �� � �� � �� � ��� � � �% � �� � �% � %�

Since the automorphism � �� �� preserves �� , it permutes the roots. In fact, it
interchanges �� and ��.

We will twist this automorphism to obtain various non-compact real groups
inside �� , as follows. Let �� � �% � � � %� � �� be the 2-torsion subgroup of
�. Then

�� 	 �����

is an elementary abelian two-group of rank ". For each % � ��, we define a
subgroup �� � �� by

�� �� �� � �� � �� � %�%�
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(Recall that % � %��.) In other words, �� consists of the fixed-points of the
nontrivial involution � �� %��%. The group �� is a real Lie group, which is usually
non-compact. The centralizer�� of % in� is a maximal compact subgroup of��,
and

� � �� � ��
 (9)

When % � �, we have �� � �� � �.
Since the automorphism � �� �� interchanges �� and ��, it follows that

�� �#� � ��

for any % � ��. Therefore, the homogeneous space ���� can be identified with
the ��-orbit of #� in �. This orbit is open in �, so the manifold���� acquires a
complex structure, via its identification with the domain

�� � ��#� �#� � �� �#� � �

The homogenous space ���� also has a complex structure; it is the flag variety
of the complexification of ��. In fact, ���� is a maximal compact complex
submanifold of the domain �� � ����. The fibration

���� &� �� � ���� �� �����

of real manifolds shows that �� can be thought of as the family of flag varieties
of maximal compact subgroups of ��. For � � �����, we have �� � � � � ��

and ��� � � �� � ��� is the union of two copies of the unit disk.

The existence and parameterization of the discrete series was obtained by
Harish-Chandra, in terms of their characters. The vector space realization of the
discrete series, in terms of cohomology of line bundles on the domain ��, is due
to Schmid, and was in part conjectured by Langlands. We now sketch Schmid’s
construction.

Our line bundles will be restrictions to�� of�� -equivariant holomorphic line
bundles on �. The latter correspond bijectively to (algebraic) characters of #� , or
even to characters of �� , because #� is the semidirect product #� � �� � '� of
�� by the commutator subgroup '� of #� , so we may identify the characters of
#� and �� .

Given a character � � �� � � � , we pull � back to #� and define

���� � �� ���
� � �
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which is the quotient of �� � � by the #� -action: ( 
 ��� �� � ��(��� ��(���.
Projection onto the left factor makes ���� a holomorphic line bundle over � on
which �� acts by holomorphic vector bundle maps.

Written additively, the character group )��� � of �� is isomorphic to ��; to
���� 
 
 
 � ��� � �� corresponds the character � � �� � � � given by

����� 
 
 
 � ��� �
��
�
�

���� 


So the line bundles ���� constructed above are parametrized by points � in the
lattice)��� �. It turns out to be helpful to shift this lattice by the element

� � �
�

�
����

�


Note that � does not necessarily belong to )��� �, but ��, being a sum of roots,
does belong to )��� �. Since �� is the sum of the characters of �� in the tangent
space ��� to � at #� , it follows that ������ is the canonical bundle of �, whose
sections are the top-dimensional holomorphic differential forms on �.

We are going to construct representations of �� parametrized by those ele-
ments of the shifted lattice � �)��� � which satisfy a certain positivity property.
We call elements of ��)��� � “characters” although they may not be characters
of �� , but rather of a two-fold cover of �� .

To state the positivity property, we must first recall the notion of co-root. For
each root � � ��, there is a homomorphism

*� � ����� � �� ��

with differential +*�, sending the diagonal matrices of ����� � into �� and such

that +*�

��
� �
� �

��
� � projects to a non-zero vector in the �-eigenspace of ��

in ���. The 1-parameter subgroup

�� � � � �� �� � � �� *�

��
� �
� ���

��

is called the co-root of �. Each co-root �� defines a homomorphism

� 
 � ��� � )��� �� � such that � ������� � ������	
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The character � has the property that

���� ��� � � (10)

for all simple roots � � �. It follows that ��� ��� � � for every character � �
� �)��� �. We say that � � � �)��� � is positive if ��� ��� � � for all �� � ��.
By (10), the character � � � is positive, and is the least positive of all positive
characters in ��)��� �.

To every positive character � � � � )��� �, we will associate �� irreducible
discrete series representations ���� %�, indexed by the elements % � ��. Take
% � ��, giving rise, as above, to a domain �� � �, with �� 	 ����. Since ��

acts on �� and on the restriction of the equivariant line bundles ��
�, the group
�� acts on the holomorphic sheaf cohomology groups

� 
��������� ���


Schmid proves that� 
������������ is nonzero only in degree $ � ,�%�, where
,�%� is the complex dimension of����. This nonvanishing cohomology group

���� %� �� ����	��������� ���

is a Fréchet space affording an irreducible representation ���� %� of ��, which
Schmid proves is in the discrete series (he shows that the canonical map from
��-cohomology to sheaf cohomology is injective with dense image).

When % � �, the group � � �� � �� is compact, and ���� %� is the finite
dimensional representation of � with highest weight � � � for �, by the Borel-
Weil-Bott theorem. In general, the cohomological restriction map

����	����������� ��� �� ����	����������� ���

is surjective, so that the irreducible ��-representation ����	���������� � ���,
of highest weight �� �� appears in ���� %�, where

�� � �
�

�
����

��%��
 (11)

(Note that ��%� � �� for any � � ��, since %� � �.) Schmid proves, more-
over, that ���� %� is the unique irreducible representation of �� containing the
��-representation of highest weight ���� with multiplicity one and no other��-
representations of the form �����-, where - is a non-empty sum of roots in ��
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which are trivial on %. Thus, ���� %� is completely characterized by its restriction
to the maximal compact subgroup�� of ��.

To summarize: For every positive character � � � � )��� �, we have con-
structed �� discrete series representations ���� %�, one for each group ��, with
% � ��. We call the set of these representations


��� �� ����� %� � % � ���
an L-packet.

We still have a few loose ends to tie up. The first point is that many of the
groups �� will be isomorphic to one another, so we are really getting different
representations of the same group. This is because of the action of the Weyl
group � �� .������, the quotient of the normalizer of � in � by �. The Weyl
group acts on � by conjugation (since � is abelian), preserving the finite subgroup
��. If %� is in the� -orbit of % in ��, then %� � %� � "��%" for some " � .��/ �.
We find that ��� � "����" in �� and ��� � "����" in �. Hence conjugation
by " gives isomorphisms

� &� �� &� ��

�� � � � �
� &� ��� &� ���


(12)

The choice of " such that %� � %� is not unique. However, two choices of "
differ by an element of .���� � ��. This implies that if � � ��� � ���� � is
a representation of �� on a Hilbert space � , then the isomorphism class of the
representation �� � �� �� ���� � given by ����� � ��"�"��� is independent
of the choice of ". Hence, we have two representations

���� %� and ���� %���

of ��. It turns out that these two representations of �� are isomorphic if and only
if % � %�. Thus, we have constructed exactly �� 
%� distinct representations of��.
If we choose representatives %�� 
 
 
 %� of the � -orbits in ��, then our �-packet

��� is partitioned as


��� �
��
�
�


��� ��� (13)

where 
��� �� consists of �� � ���� distinct representations of ���.
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There is one more subtle point: it could even happen that �� 	 ��� with %� %�

belonging to different � -orbits in ��. In fact, �� 	 ��� if and only if there is
0 � � such that %� � �%�, for some � in the center of �. Thus, it can happen
that the same representation of the same group appears more than once in our �-
packet 
���. This phenomenon cannot happen for odd orthogonal groups, since
these have trivial center. However, it does happen for even orthogonal groups, as
will be illustrated in the next section.

5 Discrete series for real orthogonal groups
and branching laws

We now illustrate the previous general theory of discrete series in the case of real
orthogonal groups in higher dimensions.

Once again, we begin with spherical harmonics. Assume that + � �. The
square-integrable functions on the sphere �� behave like (1): there is a decompo-
sition

������ �
��

���

��� (14)

into eigenspaces of the Laplacian, where �� is the eigenspace with eigenvalue
�	�	�+���. The space �� is the restriction to �� of the harmonic polynomials
of degree	 on ���� ; it affords an irreducible representation of the rotation group
���+� ��, of dimension

����� �

�
+�	

+

�
�
�
+�	� �

+

�



For all of the above, see, for example, [21, p.17, Thm. 3.1].
For + � �, not all irreducible representations of ���+� �� appear in ������.

A representation � appears in ������ precisely when � contains a nonzero vector
invariant under ���+�. Equivalently, the representations �� occurring in (14) are
precisely the irreducible representations of ���+��� whose restriction to ���+�
contains the trivial representation.

The decomposition of an irreducible representation of ���+ � �� when re-
stricted to ���+� is known classically as a branching law. Here we will gen-
eralize branching laws to the restriction of discrete series representations of both
compact and non-compact orthogonal groups.
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We begin by describing the discrete series parameters for the group � �
����"���. Here � � ������ 	 �����, and the character group of �� � �� ���

is

)��� � �
��
�
�

����

where �� � �� � � � is projection onto the ��� factor of �� . The Weyl group
�� is the group of the "-cube, of order ��"�. Viewed as a group of permutations
of )��� �, the group �� is the semidirect product of the symmetric group �� of
permutations of the �
, with the normal subgroup ����� of sign changes in the �
.
We may choose our Borel subgroup #� so that

�� � ��
 � �� � � � $ 1 2 � "� � ��� � � � � � "�� (15)

and

� � �
�

�
����

� �
��
�
�

�"� � � �
�
��� � �"� �

�
� "� �

�
� 
 
 
 � �

�
�


The positive characters � � � � )��� � are given by � �
�
���� with each

�� � �
�
� � and

�� � �� � 
 
 
 � �� � �


We have �� � ����� � ������, and the ��-orbit of % � �� is determined
by the number of components � such that ���%� � ��. If % � �� has � such
components equal to �� and �� , � " then

�� 	 ������ �, � ��

is the special orthogonal group of a real quadratic form with signature ���� �,���.
The stabilizer of % in �� is �� ���, so the � -orbit of % has size

	
�
�



. This

is the number of distinct discrete series representations of �� in the �-packet

��� � 
����.

For the �-packet ���� ���� defined in (4) for " � �, we have � � �	 � �
�
���.

The line bundle �� � ���� � �� on � �� is the one traditionally denoted by
������	�. The representations ��� ��� are realized on the cohomology groups

�� � ���� �� ����� and ��� � ���� �� � ��� ����
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The group � � ����"� contains the same maximal torus as ����"� ��, so
we again have )��� � � ��

�
����. The Weyl group � is the subgroup of index
two in��, generated by�� and an even number of sign changes. We may choose
our Borel subgroup #� so that

�� � ��
 � �� � � � $ 1 2 � "�� (16)

and

� �
��
�
�

�"� ���� � �"� �� "� �� 
 
 
 � �� ��


The positive characters ! � � � )��� � are those of the form ! �
�

� !��� with
!� � � and

!� � !� � 
 
 
 � !��� � �!��

If 3 � �� has � components � such that ���3� � �� and � � , � " then �� 	

������ �,�. For each positive character ! for � , the construction of the previous
section gives us an irreducible discrete series representation of ��, which we will
denote by ��!� 3�, so as not to confuse it with the analogous representation ���� %�
of ��. We then have a discrete series �-packet 
��!� � ���!� 3� � 3 � ���.

The � -orbit of 3 again has size
	
�
�



. Since ������ �,� 	 ����,� ���, we see

that there are two� -orbits in �� giving rise to the isomorphic groups�� 	 ���,
when � �� ,. In all cases, each discrete series representation occurs twice in

��!�, once for �� 	 ������ �,�, and once for ��� 	 ����,� ���.

For the one-dimensional representation �� of �����, we have ! � 	��. The
�-packet 
��!� consists of the two occurrences of ��, once for ����� �� and
once for ����� ��.

Let � and ! be positive characters for � and � respectively, giving rise to
�-packets 
���� and 
��!�, as above.

In [14], a branching law was proposed for the multiplicity of representations in

��!� in the restriction of representations in 
����. According to this conjecture,
the characters � �

�
���� and ! �

�
!��� determine elements %� 3 � �� by the

conditions

���%� � �������	� ���3� � �������	� (17)

where 4��� is the total number of $� 2 such that �
� !� � ��, and 5��� is the total
number of $� 2 such that �
� !� � !�.
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The coordinates of % and 3 have the same number � of coordinates equal to
��, so

� �� ���� %� is a representation of �� 	 ������ �, � ��

and
� �� ��!� 3� is a representation of �� 	 ������ �,�


The prediction is that � occurs in the restriction of �, with multiplicity one, i.e.,
that

����������� �� � �� (18)

and that no other representation in the �-packet 
��!� should appear in the re-
striction of a representation in the �-packet 
����.

Formula (18) was proved in [15], in the cases where the restriction of � to
������ �,� decomposes discretely as a Hilbert direct sum. (In most cases, the
restriction will have continuous spectrum.) This discrete decomposition occurs
when � �

�
���� and ! �

�
!��� interlace in the following way: For some

integer � � � � " we have

!� � �� � 
 
 
 � !� � ��� ���� � !��� � 
 
 
 � �� � �!��
 (19)

Then % � 3 and we have

���%� � ���3� �

�
�� if � � � � �
�� if � 1 � � "


The representations � � ���� %� and � � ��!� %� are “small” discrete series:
their restriction to the compact subgroup ������ � �� � �� contains each
irreducible representation of ������ with finite multiplicity.

For example, if

�� � !� � �� � !� � 
 
 
 � �� � �!��� (20)

then � � �, and % � 3 � �. In this case, � � ����" � �� and � � ����"� are
compact, and we recover a classical branching law (see [2]) for the finite dimen-
sional representation ���� ��:

	
�� ����� ��� 	
�
�

��!� ���
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where we sum over all positive characters ! for ����"� satisfying (20).
The trivial representation of ����"� is ���� ��, where we recall that

� � �� �
�

�" � ���� for � � ����"�. For !� � " � �, the characters
� �

�
���� satisfying (20) are those of the form

� � 	�� � �� 	 � ��

where we recall that � � �� �
��

�
��"��� �
�
��� for� � ����"���. The rep-

resentation ��	����� �� is the representation �� appearing in the decomposition
(14) of functions on the sphere ��.

At the other extreme, if

!� � �� � !� � �� � 
 
 
 � !� � ��� (21)

we have � � ",�� � ����"� �� and�� � ����"� has index two in the maximal
compact subgroup�� � ���"� of ��. We recover another known branching law,
which is a special case of Blattner’s formula, proved by Hecht and Schmid [19]:

	
�������� %�� �
��
�

��!� %��

a Hilbert direct sum over all ! �
�
!��� satisfying (21).

6 Introduction to Langlands parameters

All of the results on branching laws for orthogonal groups which we have dis-
cussed so far fit nicely into a general conjecture [14], using the language of Lang-
lands parameters for irreducible representations of reductive groups � over local
fields �. The rough idea is that irreducible representations of these groups should
be parametrized by homomorphisms from the Weil group of � into a group ��
which is dual to � and encodes the arithmetic structure of � as a group over �.
Then properties of irreducible representations, such as branching laws, should be
determined by number-theoretic invariants of the corresponding parameters.

Historically, and in this paper so far, this connection between number theory
and representation theory was not evident in the real case, because the Galois
theory of � is rather simple. However, it is enlightening to rephrase the above
results on �-packets for real groups in terms of the Weil group of �. For non-
archimedean fields �, the Weil group is essential for describing �-packets and
branching laws.
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In this chapter we define Weil groups for real and �-adic local fields, and give
an introduction to some of the local number theory that is needed to construct
�-adic �-packets. This is followed by some background on quasi-split groups,
which is preliminary to the definition of the group ��. With these ingredients in
hand, we give a preliminary definition of a Langlands parameter, and then consider
some refinements of this definition.

6.1 Weil groups

Let � be a local field of characteristic zero. That is, � is either �, � or a finite
extension of � � . Fix an algebraic closure �� of �. The Weil group���� of � is a
locally compact group, which comes with a group homomorphism

���� �� ���������

with dense image, and an isomorphism

������ 	 ��

Here������ is the quotient of���� by the closure of its commutator subgroup.

Weil groups can be described concretely. For archimedean � they are given
by:

��� � � � � �

���� � .�� �� ��

(22)

That is,���� is the normalizer of � � in � � , the multiplicative group of Hamil-
ton’s quaternions. The group���� contains the normal subgroup � � with index
two; the nontrivial coset 2� � is represented by 2 � � � where 2� � �� and
2�2�� � �� for all � � � � . Thus, we have an exact sequence

� �� � � �� ���� �� ����� ��� �� � (23)

with 2 mapping to complex conjugation. This sequence is not split; since � is a
division algebra, the only involutions in � � are ��.

If � is non-archimedean, then the description of���� is a bit more involved.
Roughly speaking,���� is the Galois group of ���� with the topology relaxed, so
as to allow more continuous representations. More precisely, if � has residue field
� of order ,, then we have an exact sequence

� �� � �� ��������� �� ��������� �� ��
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whose kernel � is called the inertia group of �. Any element 6 � ���������
whose image in ��������� is the automorphism � �� �� of �� is called a Frobenius
element. We fix a choice of 6 once and for all. The image of 6 in ���������
generates a dense subgroup, isomorphic to �.

The Weil group of���� is defined to be the subgroup of ��������� generated
by 6 and the inertia subgroup �. Thus,

���� �
�
���

�6 � � � � �6 ��

and we have an exact sequence (analogous to (23))

� �� � ������ �� � �� �
 (24)

A subset of���� is open iff its intersection with every coset of � is open, where �
has the profinite topology inherited from ���������. A homomorphism from����
to a discrete group is continuous iff the image of � is finite; such a homomorphism
extends continuously to ��������� iff the image of all of���� is finite.

To better understand the Weil group ���� for non-archimedean �, we will
now describe some subgroups of���� and the corresponding extension fields of
�; these will be useful later on.

First of all, a Galois extension ��� is unramified if a prime element in the
integers of � remains prime in the integers of �. Equivalently, ��� is unramified
if the inertia group � acts trivially on �. This implies that �������� is generated
by the image of 6 under the canonical map ��������� � ��������. Since � has
a unique subgroup of every positive index, we see that for every + � �, the field �
has a unique unramified extension �� � �� of degree �
������� � +. For example,
the extension �� of � � � � was described in section 3.

The Weil group����� of �� is the subgroup of� ��� generated by � and 6 �.
The composite field

� ��
�
���

��

is the maximal unramified extension of � in ��; its Galois group is the inertia
group of �:

� � ���������


The residue field of � is ��, and the natural map �������� � ��������� is an
isomorphism. This means that the unramified extension ���� can be constructed
as �� � ����, where � � � is a lift of an element � � �� which generates the
degree + extension ����.
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Thus, the theory of unramified extensions is more or less equivalent to the
theory of extensions of finite fields. At the other extreme, a Galois extension ���
of degree � is totally ramified if a prime element in the ring of integers in � is the
��� power of a prime in �. Equivalently, ��� is totally ramified if the residue field
of � is equal to the residue field of �.

A general finite Galois extension ��� is of the form � � �� � � for some
+, where ���� is totally ramified of degree � � �� � ���+. We say that ��� is
tame if � is not divisible by the residue characteristic � of �. All of the �-packets
constructed in this paper will arise from tame extensions.

Totally ramified Galois extensions correspond to normal subgroups � � � of
finite index, and the extension is tame if � contains the maximal pro-� subgroup
�� of �. The quotient

�� �� ����

is called the tame inertia group ; it is the Galois group of the maximal tame
extension �� of �. The field �� can be described very explicitly: it is obtained
by adjoining to� all the roots of the polynomials

)���� �7� for " � ��

for any fixed choice of prime element 7 in the ring of integers of �. This de-
scription of �� implies that the tame inertia group can be viewed as an inverse
limit

�� � ���



��� � (25)

where �� � �� is the extension of � of degree " and the transition maps are the norm
homomorphisms ��� � ���, for 	 � ". Under the isomorphism (25), the action of
6 by conjugation on �� corresponds to the automorphism � �� �� on each finite
field ��� .

6.2 Quasi-split groups and the L-group

More details for this section can be found, for example, in [36]. An excellent
survey on the origins of the �-group can be found in [7].

In this section � is a connected reductive algebraic group defined over the
local field �. We also assume that the group � is quasi-split over �. This means
that the flag variety � of � has a �-rational point, that is, � has a Borel subgroup
# defined over �. (Note that � is no longer a compact real Lie group, as it has
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been until now.) Let / � # be a maximal torus defined over �, contained in #,
and let

) � �������� / �� 8 � ����/�����

be the groups of algebraic co-characters (i.e., 1-parameter subgroups) and char-
acters of / , respectively. Inside 8 have the roots � of / in the Lie algebra of
�, and the positive roots �� of / in the Lie algebra of #. Inside ) we have the
corresponding co-roots �� and positive co-roots ���. The Galois group ���������
acts on ) and 8 , preserving �� and ���. Let �������9� denote the kernel of this
action; the field 9 is a finite Galois extension of �, called the splitting field of �.
We say � is split if 9 � �.

Thus, � determines a based root datum �)� 8� ������� with an action of
����9���. There is a unique (up to isomorphism) complex reductive Lie group
�� whose based root datum �8�)���� ���� is dual to that of�. Moreover, there is
a maximal torus and Borel subgroup �/ � �# in �� such that

) � ���� �/ ������ 8 � �������� �/ ��

and ��� is the set of roots of �/ in the Lie algebra of �#. The action of ����9���
on this root datum extends to an action of ����9��� by automorphisms of ��,
preserving �/ and �#.

The �-group of � is defined as the semi-direct product

�� �� ����9���� ��


Conversely, any continuous action of ��������� on a based root datum arises from
a unique quasi-split group over �, up to isomorphism. Thus, the group � is deter-
mined by its �-group.

The center :���� of �� plays an important role, expecially in the �-adic case.
One can show that

:���� � :� ���
������	

is the fixed point group of ����9��� in the center :� ��� of ��. The group :����
is finite precisely when ���� has compact center. In particular, :���� is finite if
� is semisimple.

We now consider some examples. If / is a torus over �, with character group
8 , then / is quasi-split, with dual torus

�/ � 8 � � � �
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and the �-group
�/ � ����9���� �/

is given by the action of ����9��� on 8 .

At the opposite extreme from tori, we have semisimple quasi-split groups.
Here the Galois action on the root datum is given by an automorphism of the
Dynkin diagram of �. (For the passage from root data to Dynkin diagrams, see
[3, VI.4].) Let us consider the possibilities of this action for orthogonal groups,
assuming that � �� � .

If � � ������ is a quasi-split odd orthogonal group, there are no nontrivial
automorphisms of the Dynkin diagram, so the action of ��������� is trivial. Hence
9 � � and � is split. This means there is only one quasi-split odd orthogonal
group, up to �-isomorphism. It arises from the quadratic form�� � ������, where
�� � ������ � 
 
 
� �����. In this case, we have �� � �� � ������ �.

If � � ���� is an even orthogonal group with " � �, then the Dynkin
diagram has a symmetry of order two, so� is either split, or 9 is a quadratic field
extension of �. These arise from the quadratic forms��� ���� �.� respectively,
where �� is as above, and 9 is viewed as a two-dimensional �-vector space with
quadratic form . � 9 � � given by the norm. We call these two quasi-split
groups ���� and ���

��, respectively. (We omit the dependence on 9 since, in
this paper, 9�� will always be � �� or the unramified quadratic extension ����.)

In the split case, we have �� � �� � ������ �. In the non-split case, we have

�� � ����9���� ������ ��

where the Galois action on ������ � is given by conjugation by a reflection in
����� �, and we have an isomorphism

�� 	 ����� �


In summary, we have the following table of �-groups for quasi-split orthogo-
nal groups.

� ��

������ ������ �
���� ������ �
���

�� ����� �
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In all three cases we have :���� � ��;� (except for ���, which is not semisim-
ple).

When � � �, these groups have real points

��������� � ���"� �� "�

������� � ���"� "�

���
����� � ���"� �� "� ���

(26)

where ����� ,� is the special orthogonal group of a quadratic form on ���� of
signature ��� ,�.

6.3 Langlands parameters

Recall that � is a connected quasi-split reductive group over the local field �,
whose splitting field 9 is a finite Galois extension of �. In the previous sections
of this chapter we defined the Weil group ���� of �, and the �-group �� �
����9���� ��.

In this paper, a Langlands parameter has two ingredients. The first is a contin-
uous homomorphism

< ����� �� ��� (27)

whose projection onto the first factor ����9��� is the composition of canonical
maps

���� &� ��������� �� ����9���� (28)

and whose projection to the second factor �� consists of semisimple elements.
For example, suppose 9 � � is �-adic. If < is trivial on the inertia subgroup �

of����, then < is completely determined by the semisimple element <�6 � � ��.
A more general Langlands parameter replaces the element <�6 � by an arithmetic
refinement: the homomorphism < ������ ��.

For another example, let / be a torus over � with character group 8 �
����/�����, with dual group �/ � � � �8 , and �-group �/ � ����9���� �/ .
A Langlands parameter

< ����� �� �/

amounts to a continuous one-cocycle on���� with values in �/ , where���� acts
on �� via the natural map����� ����9���.
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The second ingredient of a Langlands parameter is an irreducible representa-
tion of the finite group -� � �� �= ���<�� of connected components of the central-
izer in �� of <. From basic homotopy theory we have a surjective homomorphism

��� �� 
 <� �� -��

where �� 
 < � ��������� ��� is the ��-orbit of < under conjugation. So a
representation of -� gives rise to a representation of the fundamental group of the
��-conjugacy class of <.

In this paper, the complete Langlands parameter is a pair �<� ��, with < as
in (27) and � � �  �-�� is an irreducible representation of -�. Two parameters
are considered equivalent if they are conjugate under ��. Thus, the pair �<� ��
may be thought of as a conjugacy-class in ��, with arithmetic and topological
enhancements.

Note that the center :���� of �� is contained in = ���<�. We say that a Lang-
lands parameter is discrete (some say elliptic) if the group = ���<� has dimension
as small as possible, that is, if = ���<� and :���� have the same identity compo-
nent. For � semisimple, the Langlands parameter < is discrete if and only if the
group = ���<� is finite, in which case we have -� � = ���<�.

A caveat: The Langlands parameters defined above are not sufficient to ac-
count for all representations in the �-adic case; one must also add a nilpotent part
(see [37]). These more general parameters will play no role in this paper, but we
will briefly mention them again in section 9, to give some perspective.

7 Real orthogonal groups again

In this section we explicitly describe Langlands parameters for real orthogonal
groups, and show how they relate to the �-packets contructed in section 4.

Recall from (22) that the Weil group of � is���� � .�� �� ��. In particular,
���� contains � � as a normal subgroup of index two, with quotient ����� ���.
It has a family of two-dimensional complex representations � ���, indexed by
� � �

�
�, defined by

� ��� � ���
���	
��

�����

where �� � � � � �� is the unitary character

����� �

�
��

��
�

���

������ 


26



The representation � ��� is isomorphic to � ���� � �������� �, and is self-dual.
It is symplectic when � � �

�
� � and orthogonal when � � �. When � ��� is

orthogonal, its determinant is the sign character of � ����� � �� . Finally, � ���
is irreducible unless � � �, and � ��� is the direct sum of the trivial representation
and the sign character.

The Langlands parameters for ������ over � are symplectic representations

< ����� �� �� � ������ � � ���� �


Discrete series parameters for ������ are symplectic representations � of the
form

� �
��


�

� ��
��

with
�
 � �

�
� �� �� � �� � 
 
 
 � �� � �


Thus, < corresponds to the positive character � � � � )��� � defined in section
5. We write 
�<� � 
���.

The compact torus � of section 4 is conjugate under �������� � to the max-
imal compact subgroup of the complex torus / . Hence the involutions in � cor-
respond to involutions in / . The latter involutions may be identified, by duality,
with characters of the group �/� of involutions in �/ . In turn, �/� is the the center of
the subgroup

�� �� ������ 
 
 
 � �� �� ����� �

and since the �
 are distinct, this center is exactly -� � = ���<�. Thus, the �-
packet 
�<� is in bijection with the set of �� characters of -�.

For even orthogonal groups over �, recall from (26) that ���� denotes the
quasi-split orthogonal group with ������� � ���"� "�, and ���

�� denotes the
quasi-split orthogonal group with �� �

����� � ���" � �� " � ��. A Langlands
parameter for either of these groups is an orthogonal representation

< ����� �� �� � ����� � � ��� �

whose image is contained in ������ � when � � ���� and is not contained in
������ � when � � ���

��. Discrete series parameters for real even orthogonal
groups are orthogonal representations� of dimension �", of the form
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� �
��


�

� �!
��

with
!
 � �� !� � !� � 
 
 
 � �!��


Since each � �!
� is orthogonal with nontrivial determinant equal to the sign char-
acter of ������ � �� , the resulting homomorphism < � ���� �� ��� � has
image contained in ���� � � ������ � precisely when " is even. Thus, < is a
discrete series parameter for ���� when " is even and ���

�� when " is odd.
In either case, < corresponds to the positive character ! � � �)��� � defined

in section 5. The involutions in � again correspond to characters of the centralizer
-� of < in ���� �, and -� is the center of the subgroup

� �� �!���� 
 
 
 � � �� �!��� 


The �� characters of -� parametrize the representations in the �-packet 
�<� �

�!� described in section 5.

The above calculations may seem more natural when viewed in greater gener-
ality, and this will also permit later comparison with �-adic Langlands parameters.
For any quasi-split real group �, a Langlands parameter

< ����� �� ��

maps the normal subgroup � � of���� to maximal torus in ��, which, after con-
jugation, we may arrange to be �/ . To be discrete, <�� �� must contain a regular
element of ��. Then the centralizer of <�� �� in �� is exactly �/ , and the full Weil
group ���� maps to the normalizer .��� �/ � of �/ in ��. The element 2, gen-
erating the quotient ������ � � ����� ���, maps to an element " � .��� �/ �,
and conjugation by " is an involution of �/ . The centralizer = ���<� is the fixed
points in �/ of this involution. The discrete condition forces this involution to be
inversion, and the centralizer -� of < is therefore always equal to the 2-torsion
subgroup of �/ . So the character group of -� may be identified with the 2-torsion
subgroup of a maximal compact torus in ����, as in section 4.
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8 Pure inner forms of �-adic groups

The examples of �-packets for �-adic ��� in section 3 belong to a family of
discrete series �-packets for �-adic groups whose Langlands parameterization
(though not their construction) is similar to that for real groups. Later, we will
discuss this family of �-adic �-packets in more detail.

First, recall that in those examples we had two versions of ���, one compact
and the other non-compact. In this section we explain how the various versions of
a �-adic group are controlled by Galois cohomology sets� ������. The real case
also involved Galois cohomology, but in disguise. There, it sufficed to consider
involutions %, which were the concrete manifestations of real Galois cohomology
classes. Indeed, if � is a compact real group with maximal torus � and Weyl
group � , then the Galois cohomology is given by � ���� �� � ���� (see [33,
III.4.5]).

In the �-adic case, we will see that������� is nicely described by a theorem
of Kottwitz. See [33] for an introduction to Galois cohomology, and [9] for more
details in what follows.

For the rest of this paper , our local field � is non-archimedean, of character-
istic zero, with residue field �, and � denotes the characteristic of �. Recall that �
is a connected quasi-split �-group.

For each continuous cocycle > � ��������� � �, we define a new ���������-
action on � by

? Æ� � � >�?� 
 �� 
 >�?���

This new ���������-action is that of a new �-structure on �. Let �� be the group
� with this new �-structure, so that the �-rational points of �� are given by

����� � �� � � � ? Æ� � � � for all ? � ����������

The �-isomorphism class of �� is determined by the image of the class of > in
�������:�, where : is the center of �.

For each class @ � �������, we choose a cocycle > � @, and by abuse of
notation we write � � �� (see [33, p.48]). We call � a pure inner form of
�. As in the real case, two such groups � , � � may be �-isomorphic, even if
@ �� @�. Usually, � is no longer quasi-split. In fact � is quasi-split if and only
if @ has trivial image in �������:�, and this is equivalent to having � 	 �
over �.

The set������� can be made completely explicit, thanks to a theorem of Kot-
twitz [23], who showed that there is a natural bijection between� ������ and the
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set of irreducible characters of the group ��
	
:����



of connected components of

the center :���� of the �-group ��. Thus, for �-adic �, the Galois cohomology
set ������� has a natural structure of a finite abelian group. Recall that if � is
semisimple, then :���� is finite, so Kottwitz’ bijection takes the simpler form

������� 	 �  
	
:����




 (29)

Let us use (29) to determine the pure inner forms of quasi-split orthogonal
groups (see section 6.2). First, we have ����� ���� � �. In all other cases we
have :���� � ����, so � has a unique pure inner form � , corresponding to
the nontrivial element @ � � ������. These are tabulated as follows.

� � 

������ ���
����

���� ���
��

���
�� ���

��

Here, ���
���� is the special orthogonal group of the sum of "�� hyperbolic planes

and the three dimensional anisotropic quadratic space considered in section 3, and
���

�� is the special orthogonal group of the sum of " � � hyperbolic planes and
the four dimensional anisotropic quadratic space arising from the unique non-split
quaternion algebra over �. For � � ���

��, we have � 	 �. Thus, we have a
total of five families of orthogonal groups to consider.

The groups ���
�� ��

�
� and ���

� have compact groups of �-rational points, and
the remaining orthogonal groups have non-compact groups of �-rational points.

9 The �-adic Langlands conjecture

Unlike the real case, the discrete series representations of reductive �-adic groups
have not yet been classified. However, there is a conjectural classification, due
initially to Langlands and then refined by others. We now have most of the in-
gredients needed to state this conjectural classification for pure inner forms of a
quasi-split group �. However, our Langlands parameters, as defined in section
6.3, while sufficing for the actual representations we will consider later, are not
general enough to parametrize the whole discrete series. In this section only, we
will consider more general parameters, which are expected to suffice, in order to
give the reader an idea of how our representations should fit into the complete
picture.
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We assume � is semisimple, just to make the statements cleaner. Given a
Langlands parameter <, the inclusion :���� &� = ���<� will induce a homomor-
phism

$� � :���� �� -�

whose image is contained in the center of -�. Hence, by (29), for every � �
�  �-�� there is @
 � ������� such that � Æ $� is the scalar character @
 on
:����.

The correspondence � �� @
 should be the means of distributing the different
representations in the �-packet 
�<� among the different pure inner forms of �
(cf. [44]). This is part of the conjectural Langlands correspondence, as stated
below.

Conjecture 9.1 For each class @ � �������, the discrete series of the pure inner
form � ��� is partitioned as �

�


�<� @��

where

�<� @� � ���<� �� � � � �  �-�� � @
 � @��

and < runs over the set of ��-conjugacy classes of Langlands parameters

< ������ ����� � �� ��

whose image has finite centralizer in ��.

Note that the new ingredient here is the factor of ����� �. This is the “nilpotent
part” that we previously ignored. It is possible to have < being trivial on ����� �;
that is the case for the parameters as we originally defined them, to which we will
confine ourselves after this section.

The last condition in 9.1 is the “discrete series” condition. It says that -� �
= ���<�, and is equivalent to there being no ����9���-stable proper parabolic sub-
group �� � �� such that the image of < lies in ����9���� �� .

Assuming Conjecture 9.1, the �-packet 
�<� would be the disjoint union


�<� �
�

 �������	


�<� @��

consisting of a certain number of representations ��<� �� on the various pure inner
forms of �, determined by the restriction of representations of -� to :����.
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10 Parameters for some �-adic discrete series

We now consider some �-adic Langlands parameters < � ���� �� ��, anal-
ogous to discrete series parameters for real groups (see section 7). In that case,
���� had a normal subgroup � � . In the �-adic case, the analogous normal sub-
group is the inertia group � � ����. We will only consider the simplest nontriv-
ial case, where < is trivial on the wild inertia subgroup ��. For similar parameters
with higher ramification, see [29].

We continue to assume that � is semisimple and quasi-split over �. We also
now assume that the splitting field 9 is unramified over �. Then ����9��� is
cyclic, generated by the image of Frobenius 6 . Hence the action of ����9��� on
the root datum of � and on �� is completely determined by an automorphism A of
order �
��9���, given by the action of the 6 . We can then write

�� � �A�� ��

and
������� � �  �:� ���!�


10.1 Tame regular discrete parameters

Let� ����� be the Weil group of �. We say that a homomorphism

< �� �� ��

as in (27) is tame, regular and discrete if the following three conditions hold.

1. < is trivial on the wild inertia group ��.

2. The centralizer in �� of <��� is the maximal torus �/ in ��.

3. The centralizer in �� of <��� is finite.

The first condition means that < factors through the tame inertia group

�� � ���� 	 ���



���
 (30)

This map induced on �� by < must factor through ��� for some 	 � �. Since ���
is cyclic, it follows that <��� � �%� is cyclic, generated by an element % � �/ of
order prime to �.
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The second condition means that this element % � �/ is “regular” in the sense
that its centralizer, namely �/ , is as small as possible.

Outside of �, the homomorphism< is determined by the single element <�6 �.
Since 6 normalizes �, the element " �� <�6 � � �� must normalize the central-
izer of <���, which is �/ , so " lies in the normalizer .��� �/ �. Let 0 be the image
of " in the quotient group

�� �� .��� �/ �� �/ � �A�� ���

where �� � . ��� �/ �� �/ is the Weyl group of �/ in ��. Our conditions 1-3 force the
element 0 to have two significant properties.

First, recall that conjugation by 6 on �� corresponds, under (30), to the ,-
power automorphism of the groups ���. This implies the relation

%� � "��%" � %�


The second property comes from condition 3: the centralizer in �� of <��� is �/�,
so 0 must have the property that its fixed-point group �/� in �/ is finite, and we
have

-� � �/�


The finiteness of �/� is equivalent to 0 having no invariants (except zero) in the
action of �� on the free abelian group ) � ���� �/ � � �� of characters of �/ .
In this case, the character group of -� is isomorphic, by restriction of characters
from �/ to �/�, to the co-invariants of 0 in ):

�  �-�� � )���� 0�)


In particular, -� is an abelian group of order

�-�� � �
!��� 0��" 

For example, if 0 acts by inversion on �/ , hence by �� on ) , we will have

�  �-�� � )��)�

so that � �  �-��� � ��, where " � ���/ � rank ) . This is the situation that
most closely resembles the real case.

At the other extreme, suppose that � is split with trivial center, and let 0 be
a Coxeter element of �� (see [3, V.6]). Then -� � �/� � :� ��� is the center of
��. We will see that, for orthogonal groups, all examples of tame regular discrete
parameters are built from copies of this Coxeter example.
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10.2 Anisotropic tori

We now begin the construction of an �-packet of representations of our �-adic
group� and its pure inner forms, starting from a tame regular discrete Langlands
parameter < � � �� ��, as defined in 10.1. The first step is to associate to <
a pair �/�� ���, consisting of an anisotropic torus /� over �, determined by the
element 0 � <�6 � in �� and a character �� of /����.

A torus � is anisotropic over � if either of the following equivalent conditions
holds:

1. No nontrivial 1-parameter subgroup of � is invariant under ���������.

2. The group ���� is compact.

Recall that we have chosen a maximal �-torus / contained in a �-rational
Borel subgroup # in our quasi-split group �, and ) � �������� / � denotes
the lattice of 1-parameter subgroups of / . Since the splitting field 9 is unramified
over �, the Galois action on ) is trivial on �, and the Frobenius 6 acts by A. Let
0 be the image of <�6 � in �� , and let + be the order of 0.

We define /� to have the same lattice) � �������� /��, with Galois action
on) again trivial on �, but now the Frobenius 6 acts by 0. Thus, we have

/����� � ) � ��� � /���� �
�
) � ���

��
#

 (31)

The discreteness condition 3 on < (see section 10.1) is equivalent to having
)� � ���, which means that /� is anisotropic over �, and /���� is compact. In
fact, we have

/���� �
�
) � ���

��
#
�

where �� is the ring of integers in ��.
For example, if 0 � ��, the torus /� is a product of one-dimensional unitary

groups, and
/���� � ) � '��

where '� is the kernel of the norm homomorphism ��� � ��.
In general, the �-group of /� is

�/� � �0�� �/ 


Note that �/� need not be a subgroup of ��, since <�6 � � " can have order
greater than that of 0. Hence < does not, a priori, give a Langlands parameter
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< � ���� � �/�. However, a slight modification of < will give a parameter for
/�. Namely, we define

<� ����� �� �/� � �0�� �/

by making <� equal to < on �, and defining

<��6 � � 0 � � � �0�� �/ 


If ? � � and 3 � <�?�, we have

<�6?6��� � 3� � <��6?6����

so <� is a homomorphism.
By the Langlands correspondence for tori (which is essentially local class field

theory, see [9] for an elementary treatment of the tame case), the parameter <�

determines a character
�� � /���� �� � � 


10.3 Summary

We summarize what has been shown in this chapter. We started with a Langlands
parameter < � ���� �� �� whose restriction to � factors through the tame
inertia group ��. We insisted that < satisfy the regularity condition

= �� �<���� � �/ �

as well as the discrete condition

-� � = ���<� � �/� is finite�

where 0 � �A�� �� is the image of <�6 �. We call these < “tame regular discrete
parameters”.

Then we constructed an anisotropic torus /�, splitting over the unramified ex-
tension of � of degree equal to the order of0. Finally, using the abelian Langlands
correspondence, we associated to < a character �� of the compact group /����.

Note that all of this took place externally to �; the torus /� is not given as a
subgroup of� in any natural way. In the next chapter, we shall see that the various
embeddings of /� into� and its pure inner forms are controlled by the characters
of the finite abelian group -� � �/�.
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11 Tame regular discrete series L-packets for p-adic
groups: introduction

Let < ������ �� be a tame regular discrete Langlands parameter, as in section
10.3. We want to construct an �-packet


�<� � ���<� �� � � � �  �-���
parametrized by the irreducible representations � of -�, in accordance with Con-
jecture 9.1.

We saw in Kottwitz’ theorem (29) that � ������ � �  
	
:����



, and part of

Conjecture 9.1 asserts that a representation ��<� @� � 
�<� should be a repre-
sentation of the pure inner form � ��� precisely when � � �  �-�� restricts to
@ � �  

	
:����



.

In this chapter, we sketch the construction of such �-packets 
�<�. A more
detailed discussion of the construction requires more structure theory of �-adic
groups, which we provide in the next chapter, along with illustrations for orthog-
onal groups.

As in the real case, maximal compact subgroups (or large subgroups of them)
will play a key role in our construction. One difference here is that �-adic groups
have several conjugacy-classes of maximal compact subgroups. Also, instead
of the complex flag variety �, the �-adic construction will use the Bruhat-Tits
building.

We can outline the construction of 
�<�, without reference to the Bruhat-Tits
building, as follows. Rather than working with the quotient group �  �-�� �
)���� 0�) , we work in the lattice ) itself. Fix @ � � ������ � �  

	
:����



.

For each 
 � ) whose restriction to :���� is @, we will construct a �-group �$

in the �-isomorphism class of � , along with a �-rational embedding

/�
��� /$ � �$

of the anisotropic torus /� constructed in section 10.2 onto a maximal torus /$ in
�$. Using this embedding, we transfer the character �� of /���� from 10.2; we
then have a character �$ of /$���.

As a general fact, the group of rational points of any anisotropic maximal torus
in �$ is contained in a unique maximal compact subgroup of �$���. Let �$ be
the maximal compact subgroup of �$��� containing /$���. Hence we have

/$��� � �$ � �$���� (32)
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in analogy with the real case, where now 
 plays the role that % did in (9). (In
fact, the compact group�$ will be almost, but not quite, maximal. We ignore this
difference while outlining the construction.)

From the data �/$� <$�, a cohomological induction process, due to Deligne
and Lusztig, gives us a finite dimensional representation  $ of �$. Via compact
induction, we then have a representation

�$ �� ���
����	
	�

 $

of �$���, as in section 3. The regularity assumption on < ensures that �$ is
irreducible. Since �$ has compactly-supported matrix coefficients, it is a discrete
series representation of �.

Thus, starting from any 
 � ) which restricts to @ � � ������, we will have
constructed a group �$ in the �-isomorphism class of � and a discrete series
representation �$ of �$���. The isomorphism class of the pair ��$� �$� depends
only on the restriction of 
 to �/� � -�. For � � �  � �/��, we can then define
��<� �� to be the representation �$ of �$���, for any 
 � ) whose restriction to
�/� is �.

This concludes our sketch of the construction of the �-packet 
�<�. In fact,
the actual construction of �$ finds �$ first, then �$, and the embedding of /$���
in�$ comes last.

12 Bruhat-Tits theory

To fill in details of the construction of �-packets just sketched, we need more
structure theory for reductive �-adic groups. This was developed in great gen-
erality by Bruhat and Tits [5], but the working knowledge that we need is not
easy to extract from the literature. We are going to cover the minimum amount
of Bruhat-Tits theory sufficient to make our story coherent. We refer to [40] for a
more thorough introduction to this theory.

12.1 The building

Recall that our quasi-split group � splits over some unramified extension 9 of �,
and that for orthogonal groups we have 9 � � or 9 � ��. The field 9 will now
play the role that � did in the real case.

37



The main tool for us is the Bruhat-Tits building ���� of the group ��9� of
9-rational points in �. This building ���� is a simplicial complex with ��9�-
action. In this paper, one can regard ���� as a replacement for the complex flag
variety � used in the real case.

As a set,
���� �

�
%����	

� 
  

is the union of ��9�-translates of an affine space

 �� � �)�

called an apartment, where we recall that) � �������� / � is the co-character
group of / . The various translates � 
  are not disjoint in ����; they are glued
together in a way that will not concern us. For � � ��� � ����, the building
���� is an infinite homogeneous tree, and  is a path in ���� without ends (cf.
[35, chap II]).

A wealth of information about pure inner forms of � and their maximal com-
pact subgroups is contained in the simplicial structure on ����. For our purposes,
it suffices to study the simplicial structure on  .

12.2 The geometry of an apartment and pure inner forms

A good reference for apartments and related affine Weyl groups is [3].
Recall that, by the definition of the dual group, we have

) � ���� �/ ����� � �������� / �

8 � �������� �/ � � ����/�����

and these groups are in duality via a the canonical pairing � � � � 8 � ) � �.
Hence each element of 8 gives a linear functional on  � � � ) . Recall that
� � 8 is the set of roots of / in �. The simplicial structure on  is given by the
family of hyperplanes

���� �� �� �  � ��� �� � "��

indexed by � � �, " � �. The apartment  is a disjoint union of facets. Two
points �� � �  lie in the same facet if, for every � � � and " � �, either � and
� both lie on ���� or are both strictly on the same side of ����. A chamber is a
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facet which is open in  . Equivalently, a chamber is a connected component of
the complement

 �
�
���

����

of all hyperplanes in  . The set �� of positive roots determines one particular
chamber

= �� �� �  � � 1 ��� �� 1 � for all � � ���
 (33)

The Weyl group� is generated, as a group of linear transformations on , by
the reflections

%� 
 � � �� ��� ����
(recall that each co-root �� is an element of )). Moreover, each 
 � ) acts on
 by the translation 3$ 
 � � � � 
. These two actions generate an action of the
affine Weyl group

�aff � ) �� � "#� � (34)

inside the group "#� � of affine transformations on  .
We let

$ � �@ � �aff � @ 
 = � =�
be the stabilizer of = in �aff . This subgroup has a normal complement � Æ in
�aff , and � Æ acts simply-transitively on the set of chambers in  . Hence we
have a factorization

�aff � � Æ � $
 (35)

Recall that � is quasi-split over �, and the splitting field 9 of � is a finite
unramified extension of �. We have seen that ����9��� acts on ) via an au-
tomorphism A of order �
��9���, which preserves the set �� of positive roots.
This means that the linear extension of A to preserves the chamber = defined in
(33). Hence A acts (via conjugation in "#� �) on�aff , preserving $.

Note that we have used the same letter @ to denote an element of $ as well as
a class in�������. This was intentional; the projection) &� �aff � $ induces
an isomorphism

$ 	 )���� 	 �  �:� ����
 (36)
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Let $���� A�$ denote the co-invariants of A in $. By restricting characters from
:� ��� to :� ���!, the isomorphism (36) induces another isomorphism

$���� A�$ 	 �  


:� ���!

�
� �  

	
:����


 	 �������� (37)

this last by Kottwitz’ theorem (29). Thus, each element @ � $ corresponds, via
its image in $���� A�$, to a pure inner form � of �.

To summarize, there are two automorphisms of  in play. Namely, A gives
the action of 6 under the quasi-split action on  , and @ � $ measures the inner
twisting of the quasi-split structure, via the isomorphism (37). Taken together, the
product @A � $A tells us what group � ��� we are looking at. For example, the
Frobenius action for the �-structure on � induces the operator @A on  . Thus,
we see that there is a close relation between the geometry of the apartment and
the arithmetic of the group � and its pure inner forms.

12.3 Parahoric subgroups

In this section we describe the appropriate analogues of maximal compact sub-
groups of real groups, using a minimum of structure theory. We will illustrate
them for orthogonal groups in the next section.

Retain the notation of section 12.2. Recall that the Frobenius 6 acts on  by
the automorphism A. Take an element @ � $, so that we have a pure inner form
� of �, via the isomorphism (37). Recall that the Frobenius for � acts on  
via the product @A.

Let � �   ! be a point fixed by @A. According to Bruhat-Tits theory, this
point � determines a certain compact and open subgroup

� �& � � ����

called a parahoric subgroup. This group � �& is profinite; it fits into an exact
sequence

� �� ��
 �& �� � �& �� �� �&��� �� ��

where ��
 �& is an inverse limit of finite �-groups, and �� �&��� is the group of �-

rational points in a connected reductive group �� �& over the residue field �.
In this paper, the only thing we need to know about � �& is the structure of

this �-group �� �&. As in section 6.2, the group �� �& is determined by its based
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root datum with ���������-action. The root datum of �� �& is that of �, except that
�� is replaced by the subset

��
& �� �� � �� � ��� �� � ��� (38)

and ���
& � ��� � � � ��

& �. Moreover, the Frobenius automorphism in ���������
acts on) via @A.

For our discrete series representations, we will only be interested in certain
parahoric subgroups. We call the @A-stable point � and corresponding parahoric
subgroup� �& good if � satisfies the two conditions

1. � � �=, the closure of the chamber = defined in (33).

2. The point � is the unique @A-fixed point in the facet containing �.

If A � @ � �, the good points are just the vertices of the simplex �=. In general
there are only finitely many good points �: they are the vertices in the fixed-point
simplex �= !. Two good parahoric subgroups � �& and � �' are conjugate in
� ��� iff � and � are in the same same $!-orbit.

A good parahoric subgroup� �& is almost, and is often equal to the full stabi-
lizer � ���& in � ��� of the point � � ����. In fact, � �& is a normal subgroup
of � ���& with finite quotient isomorphic to the stabilizer of � in $!. For or-
thogonal groups, we have �$!� � �. The groups � ���& are maximal compact
subgroups of � ���. However, it is the good parahoric subgroups � �& that play
the role in the �-adic case that the maximal compact subgroups�� did in the real
case.

13 Tame regular discrete series L-packets for p-adic
groups: completion

Now we have all the tools to carry out the construction of �-packets as outlined
in section 11, for a tame regular discrete parameter

< ����� �� ��


The groups � � �A� and �� are canonically anti-isomorphic. Let 0 � �A
correspond to the image of <�6 � in �� . Recall that our �-packet 
�<� should be
parametrized by characters

� � �  �-�� � )���� 0�)�
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where ) � ���� �/ �����.
For each 
 � ) , we have a translation element 3$ � �aff . Also 0 is a linear

transformation on  , so the product

3$0 � � �� 
� 0�

is an element of�aff A. The discrete condition 3 on < (see section 10.1) is equiv-
alent to having � � �. It follows that 3$0 has a unique fixed-point in , namely
the point

�$ �� ��� 0��� 
 

 (39)

Recall that the pair �<� �� is only taken up to conjugacy in ��. Replacing the pair
�<� �� by a ��-conjugate if necessary, we may arrange that �$ is contained in the
closure of the chamber = defined in (33).

We factor the element 3$0 as in (35), to obtain

3$0 � B$@$A� (40)

with B$ � � Æ and @$ � $.
The factorization (40) generates much of the inducing data of our Langlands

correspondence. Indeed, (40) has the following properties:

1. The element @$ � $ corresponds to the restriction of 
 to :� ��� under the
isomorphism (37). This implies that the pure inner form �$ �� � � is the
correct one, according to Conjecture 9.1.

2. The point �$ is fixed by @$A, and is good (see 12.3). Hence we have a good
parahoric subgroup

�$ �� � ��&� (41)

of �$���, as in section 12.3.

3. By the Lang-Steinberg theorem (see [6, p.32]), there is an element �$ �
���� which fixes �$, such that the conjugation map

"���$� � /� �� /$ �� �$/�
��
$

is a �-isomorphism. Since �$ 
 �$ � �$, it follows that /$��� � �$.
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We now have our desired set-up:

/$��� � �$ � �$���� (42)

where �$ is the appropriate pure inner form of �, �$ is a good parahoric sub-
group of �$���, and /$ is an anisotropic maximal �-torus of �$. Moreover, �$

is the unique parahoric subgroup of �$��� containing /$���.

To define the representation

��<� �� � �������	
	�

 $�

it remains to define the irreducible representation  $ of �$.
Recall from section 10.2 that < determines a character �� of /����, via the

abelian Langlands correspondence. Conjugating �� via �$, we get a character

�$ �� �� Æ "���$�
�� � �  �/$���� 


Recall that�$ fits into the exact sequence

� �� ��
$ �� �$ �� ��$��� �� �
 (43)

Restricting this sequence to the subgroup /$��� of �$ gives an analogous se-
quence

� �� /$���
� �� /$��� �� �/$��� �� ��

where �/$��� is group of �-rational points in a maximal �-torus of the reductive
group �-group ��$. Since our parameter < is tame, the character �$ of /$���
factors through the finite group �/$���. Likewise, the representation  $ will factor
through the finite group ��$���.

These representations  $ are famous in the world of finite reductive groups.
As mentioned in our example in section 3 for ������, the representation  $ has
dimension , � � and was known to Frobenius. In the late 1960s, Macdonald con-
jectured, based on the known character tables for������ and ������, that to every
maximal torus �/ in a finite connected reductive group �� and sufficiently regular
character � of �/ ���, there should correspond an irreducible character  � �/ � �� of
����� whose dimension

��� � �/ � �� � � ����� � �/ ������

is the maximal factor of the index � ����� � �/ ���� which is not divisible by the
characteristic � of �. Moreover, the restriction of  � �/ � �� to sufficiently general
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elements of �/ ��� should agree up to sign with the sum of � over the Weyl group
of �/ .

In the mid 1970s Macdonald’s conjecture was proved by Deligne and Lusztig,
building on the work of Drinfeld for ������. They found a cohomological con-
struction of � �/ � �� that bears some resemblance to Schmid’s construction of real
discrete series. Besides the original paper [10], we refer the reader to any of the
several good expositions of the Deligne-Lusztig construction, such as [6].

These Deligne-Lusztig representations are the final ingredient in our construc-
tion of �-packets: we define

 $ ��  � �/$� �$�
 (44)

This is a representation of the finite group ��$���, which we view as a representa-
tion of the good parahoric subgroup�$, via the exact sequence (43).

Putting everything together, we finally have our representation

��<� �� � ���
����	
	�

 $�

where 
 � ) projects to � � )���� 0�) � �  �-��, and our �-packet 
�<� is
then defined as


�<� �� ���<� �� � � � �  �-���

The simplest case of this construction is the following. Every semisimple

group has a quasi-split form for which some 0 � �� acts by inversion on �/ ,
and this 0 is unique. In this case �/� � �/� is the �-torsion subgroup of �/ , and
-� � )��) . We have

�$ � �
�

�

and the root datum of ��$ is that of the centralizer of the involution 
���� � �
(recall that characters of �/ are 1-parameter subgroups of / ). The �-packet 
�<�
has �� elements, where " � ���/ . These �-adic �-packets look quite similar to
the real �-packets described in section 4. However, the Galois theory of a �-adic
field � is richer than that of �. There are other tame regular discrete Langlands
parameters, corresponding to other elements0 � �� for which �/� is finite. Thus
the groups -� will vary, and the cardinality �-�� is not always a power of �.

14 L-packets for �-adic orthogonal groups

We first describe the regular discrete parameters explicitly for orthogonal groups.
As in the real case, we need a supply of some simple induced representations. For
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the moment, we make no assumption on tameness, since that plays no role in the
following construction.

We fix a prime element 7 in the ring of integers of �. Recall that the Weil
group���� is a semidirect product

���� � �6 �� �


We change and simplify the notation slightly. Let

� �� ���

be the unramified extension of � of degree �+. The Weil group of���� is

���� � �6 ���� ��

a normal subgroup of ����, with cyclic quotient of order �+. The tautological
embedding���� &� ��������� induces an isomorphism

��������� 	 ���������

sending the coset of 6 � to the unique element � of order two in the cyclic group
��������.

Let ! � ���� � � � be a character of finite order. Applying local class field
theory to �, we have a homomorphism

���� ��������
��� ��� (45)

sending 6 �� to 7, and sending � onto the unit group �� in the ring of integers
� of �. We view ! as a character of ��, via (45). Note that !�7� � !�6 ��� in
these two viewpoints. We define

� �!� � ����	 ! �� ���
���	
��		 !
 (46)

This gives a representation

< ����� �� �� �� �!�� (47)

of dimension �+.
We assume further that the conjugates !( of ! by the elements of �������� are

pairwise distinct, and that !) � !��. Since ! has finite order, we have !�� � �!.
The first hypothesis implies, by Mackey’s theorem (cf. [34, II.7]) that � �!� is
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irreducible and � �!� 	 � �!(� for any � � ��������. Since the dual of � �!� is
� ��!�, the second hypothesis implies that � �!� is self-dual.

Hence there is a nondegenerate bilinear form # on � �!� which is invariant
under ����, and unique up to scaling. Since � �!� is irreducible, the form #
either symplectic or orthogonal. We have an orthogonal decomposition into two
dimensional subspaces

� �!� �
����


�

� �!� $��

where � acts on � �!� $� as !�
�� �!�

�

, and <�6 �� interchanges these two summands.
The form #
 on � �!� $� is either symplectic for all $, or orthogonal for all $. Let
$ � �. Since !) � �!, we can choose eigenvectors for ! and �! so that the matrix

of <�6 �� on � �!� �� has the form

�
� !�6 ���
� �

�
. This matrix preserves #�. It

follows that !�6 ��� � ��, with !�6 ��� � �� if #� is orthogonal, !�6 ��� � ��
if #� is symplectic. Recalling that 6 �� corresponds to7 under (45), we conclude
that

� �!� is

�
orthogonal if !�7� � ���

symplectic if !�7� � ��

(48)

Moreover, in the orthogonal case, we have �
!<�6 � � ��, so �
!< is the unique
quadratic character of���� which is trivial on �.

14.1 L-packets for odd p-adic orthogonal groups

Here � � ������ and we have �� � ������ �, and a regular discrete Langlands
parameter is a homomorphism

< ����� �� ���� ��

with
� � �� � �� � 
 
 
 � ��� and �
 � � �!
� � ����	�

!
�

as in (46), where the �
 are unramified extensions of � of even degree �+
 � �,
such that

�
+
 � ". By (48), the characters !
 of ��


 satisfy !
�7� � ��. For
< to be regular and discrete (see 10.1), the representations �
 must be pairwise
non-isomorphic. Hence if �
 � �� , we must assume that !� is not equal to any
conjugate !(
 of !
. In order to apply the construction of �-packets as described in
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section 13, we now assume that each !� factors through the tame inertia group ��
(see 6.1), so that < will be tame.

We now describe explicitly the pair �/�� ��� associated to < in section 10.2.
The building blocks of /� are Coxeter tori, defined as follows. The Weyl group
�� of ������ � is the group of the hypercube in �� , and acts on �� by permuting
and changing the signs of the standard basis ���� 
 
 
 � ���. A Coxeter element
in �� is an element B � �� of order �+ which acts by a single orbit on the set
���
 � � � $ � +�. Coxeter elements form a single conjugacy class in ��. A
Coxeter torus /cox over the �-adic field � has character group 8 �

��


� ��
,

splitting over ���, for which 6 acts on 8 via B. The torus /cox has �-rational
points

/cox ��� 	 �� � �� � ���� � �����
where, as above,� � ��� and � is the nontrivial element of ���������.

The element 0 � <�6 � is the product

0 � 0� � 0� � 
 
 
 � 0�
of Coxeter elements 0
 � ��� , of order �+
, in the Weyl group ��� of �� ��
�,
where +� � 
 
 
� +� � ". The torus /� is the product

/� � /� � /� � 
 
 
 � /�
of corresponding Coxeter tori. The splitting field � of /� is the composite of
the unramified extensions �
, so � is unramified over � of degree twice the least
common multiple of �+�� 
 
 
 � +��. Each /
 has �-rational points

/
��� �� �� � ��

 � �
��� � �����

where �
 is the unique element of order two in �����
���. The character �� is
given by

�� � !� � !� � 
 
 
 � !�

The group -� 	 ����� is the center of �� ���� � 
 
 
 � �� ����, and the

diagonal subgroup of -� is the center ��;��� of �� � ������ �. Recall that

����� ������� � �  ���;���� � ��� @��
where @ gives the pure inner form ���

���� (see section 8).
The �-packet 
�<� contains �� representations, parametrized by characters

� � �� � 
 
 
 � �� � �  �-��. The representation ��<� �� lives on the quasi-split
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group ���� � ��������� if an even number of �
 are nontrivial, and on the pure
inner form � ��� � ���

������� otherwise .
We now determine the inducing subgroup�$ of ��<� �� (see (41)). Replacing

�<� �� by a conjugate in ������ � if necessary, we can assume that for some � �
C � %, the first C components ��� 
 
 
 � �* of � are non-trivial and the remaining
components �*��� 
 
 
 � �� are trivial. We write) � ���� �/ ����� and � ��)
as

) �
��


�

��
�  �
��


�

��
 �

where �
 is the $�� coordinate function of �/ � �� ���. As lift 
 � ) of �, we take
the sum of one �
 from each block ��� 
 
 
 � �*, as long as C � �. If C � � we take

 � �.

As in (15), the positive roots are

�� � ��
 � �� � � � $ 1 2 � "� � ��� � � � � � "��

where ��
� is the dual basis of ��
�. The corresponding chamber = is the interior
of the hypertetrahedron in  , defined by the inequalities

�� �� � �� � �� � 
 
 
 � �� � �
 (49)

We have $ � ��� @�, where, in this viewpoint, @ acts on  as a reflection in the
first coordinate:

@ 
 ���� ��� 
 
 
 � ��� � ��� ��� ��� 
 
 
 � ���
 (50)

Using the formula (39), we find that the unique fixed point of 3$0 in is

�$ � �
�
��� � �� � 
 
 
� ��� � �=�

where	 � +�� 
 
 
�+*, and �$ is read as � �  if C � �. Note that �$ is good, in
the sense of section 12.3. According to (38), the root datum of ��$ is determined
by the roots in �� which take integer values at �$.

In order to describe the groups ��$, we need some notation for orthogonal
groups over the finite field �. All such groups are quasi-split, and are classified as
in section 6.2. Up to �-isomorphism, there are three families, which we denote by

������� ����� ��
�
��� (51)
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corresponding to the quadratic forms

��� � ������� ���� ����� � �.�

where ��� � ������ � 
 
 
 � ����� and �. is the norm form on the quadratic
extension ��, viewed as a two-dimensional space over �.

Using (38), one finds that the reductive �-group ��$ is given by

��$ �

�
���� � �������	�� for C even

��
�
�� � �������	�� for C odd�

(52)

using the notation (51) for finite orthogonal groups.
Finally, recall that ��<� �� is obtained by inducing from�$ the representation

 $ in (44), whose dimension is

��� $ � � ��$��� � /�������


For example, if � is the trivial character, we have C � �, and we get

��� � �
�,� � ���,� � �� 
 
 
 �,�� � ��

�,�� � ���,�� � �� 
 
 
 �,�� � ��



14.2 L-packets for even p-adic orthogonal groups

The description of tame, regular, elliptic Langlands parameters for even orthog-
onal groups is similar, with just a few added twists, so we shall be brief. Recall
that

�� �

�
������ � if � � ����

����� � if � � ���
��


A tame regular discrete Langlands parameter for either ���� or ���
�� is a homo-

morphism
< ����� �� ��� ��

with

� � �� ��� � 
 
 
 ��+� and �� � � �5�� � ������ 5��

as in (46), where the �� are unramified extensions of � of even degree �+�� � �
such that

�
+�� � ". Note that the image of < lies in ���� � precisely if D is
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even, in which case < is a parameter for ����. If D is odd then < is a parameter
for ���

��.
The characters 5� are orthogonal, so 5��7� � ��. Again, for < to be regular

and discrete, the orthogonal representations�� must be pairwise non-isomorphic.
Hence if �
 � �� , the character 5� is not equal to any Galois conjugate 5
.

The class of 0 � <�6 �, the torus /� �
�
/� , the character �� �

�
5�, and

the component group -� 	 ����+ are as described in the odd orthogonal case.
However, there is a minor relaxation of the irreducibility of �� � � �5�� in the
two-dimensional case. Namely, if �� is the unramified quadratic extension of �,
we can take 5� � � or 5� � the nontrivial quadratic character of ��� ��

�, but not
both. We allow this for at most one 2. Then �� � � �5�� is reducible, but <
remains regular.

Again we have ������� � ��� @�. For D even, half of the �+ representations
in 
� live on ���� � ������� and the other half live on � ��� � ���

�����. For
D odd, each representation of ���

����� in 
�<� will appear twice: once for ����
and once for � ���. The descriptions of the inducing data �$�  $ are similar to
the odd orthogonal case. We will describe ��$ more precisely when it is needed,
in (62) below.

15 Symplectic root numbers

Our eventual aim is to show how the restriction of representations from pure inner
forms of ������ to pure inner forms of either ���� or ���

�� (see section 8)
is determined by symplectic root numbers. These are signs �� attached to the
Langlands parameters of the representations in question, using ideas from number
theory. In this section we give a short introduction to symplectic root numbers.

Fix a non-trivial additive character * � �� �� �� whose kernel is the ring of
integers � of �, and let +� be the Haar measure on �� giving unit volume to �.

Let < ����� �� ���� � be a continuous representation of���� on a finite-
dimensional � -vector space � . In the notation of [37, 3.6], the root number of
<, with respect to *, is the number

E�<� �� E,�<� � 
 ����� *� +��

This is a non-zero complex number, which was introduced and studied by Tate,

in his thesis (see [8]), for one-dimensional representations < of � ����� � ��.
These root numbers give a product decomposition of the constants which appear
in the functional equations of Artin �-series (cf. [12]).
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Proposition 15.1 The root number E�<� has the following properties:

1. E�<� <�� � E�<� 
 E�<��.
2. If < is is trivial on �, then E�<� � �.

3. Let ��� be a finite unramified extension and let *	 � * Æ ! 	��. Let < be
a representation of����, and use *	 to define E�<� as above. Then

E����
���	
��		 <� � E�<�


4. Let � � ���� � � � be a tame character which is nontrivial on ��. Then
we have the formula

E��� �
��7�����

�
����

���3�*�
3

7
�


Here � is viewed as a character of �7�� �� via class field theory; see (45).

5. If < is self-dual and �
!< � � then E�<� � ��.

See [37] for proofs of these properties.
If � is a symplectic space and < � ���� �� ���� �, then the conditions of

item 5 hold, and we have a symplectic root number

E�<� � ��


Symplectic root numbers play a role in many important questions in modern
number theory. For example, if - is an abelian variety over a global field 6 , then
at each completion of 6 the Tate module of - defines a symplectic representation
of the local Weil group (or more generally, representations of the type discussed
in section 9.1). Almost all of these local representations are unramified, and the
product of their symplectic root numbers is the sign in the conjectural functional
equation of the �-series of - over 6 . Since this sign determines the parity of
the order of vanishing of the �-series in the center of the critical strip, it should
determine the parity of the rank of the Mordell-Weil group, by the conjecture of
Birch and Swinnerton-Dyer (cf. [13]).

Symplectic root numbers are also defined for � � � and � . The branching
laws for restrictions of discrete series of real orthogonal groups may be expressed
in terms of real symplectic root numbers [14, section 12]. This raises the hope
that �-adic root numbers may also determine branching laws in the �-adic case. In
the next section we recall the Gross-Prasad conjecture on this question.
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16 Restriction and symplectic root numbers

Fix two parameters which satisfy the conditions of being tame, regular, and dis-
crete, as in section 14:

<� ����� �� ���� �� � �
��


�

� �!
��

<� ����� �� ��� �� � �
+�

�
�

� �5��


Then <� is (part of) a Langlands parameter for an odd orthogonal group and <�

is (part of) a Langlands parameter for an even orthogonal group. To get complete
Langlands parameters, we need characters �
 of the respective centralizers -�� .
We define these characters �
 using symplectic root numbers, as follows.

The tensor product � �� is a symplectic representation of����, centralized
by -�� � -�� . Hence for each pair ��� (� � -�� � -�� the eigenspace

�� �� ��
�
��

is again a symplectic representation of����. We define the branching character

� � -�� � -�� �� ����� (53)

by the formula

���� (� � E
	
�� �� ��
�
��



� (54)

where the right side of (54) is the symplectic root number of �� �� ��
�
��, as
in section 15 (this is simpler than the general definition of � in [14], because each
�
!� �5�� is an unramified character in the present case). It is shown in [14] that
� is actually a character of -�� � -�� .

Writing the branching character as � � ��� ��, we now have complete Lang-
lands parameters �<�� ��� and �<�� ��� for odd and even orthogonal groups � and
� , respectively, whose �-isomorphism classes are determined by the values of ��
and �� on the centers of ���� � and ��� �, via Kottwitz’ theorem (see sections
14.1 and 14.2). Using our notation for orthogonal groups in section 8, this works
out as follows.

� 	
�
������ if ����;- � � ��

���
���� if ����;- � � ��


(55)
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� 	

���
��
���� for D even� ����;. � � ��

���
�� for D even� ����;. � � ��

���
�� for D odd


(56)

Note that previously,� always denoted a quasi-split group; we have made this
slight change in order to ease the notation later on. For the rest of the paper,� and
� will be as defined in (55) and (56). Since ���;- ��;. � � �, it follows from
[14, 10.9] that� is always a subgroup of �.

Using our �-packets from section 11, the Langlands parameters �<
� �
� define
irreducible representations

� � ��<�� ��� of �����

� � ��<�� ��� of ����


The conjectures of [14] predict that � occurs in the restriction of � to ����
with multiplicity one. More precisely, it is proposed that

��� �� �� ���������	��� �� � �
 (57)

Unpublished work of Bernstein and Rallis (independently) shows that ��� �� � �.
The rest of this paper will be devoted to proving that ��� �� � �.

The conjectures of [14] also predict that no other representation in the �-
packet 
�<�� can appear in the restriction of a representation in 
�<��, but at
present we do not know how to prove this.

17 Calculation of the branching character

We begin with the explicit determination of the branching character �, defined in
(53) by symplectic root numbers. The following lemma is crucial; it can be proved
using the properties 15.1, see also [12].

Lemma 17.1 Let
� � ����	 !� � � ����� 5

be irreducible symplectic and orthogonal representations, respectively, of����,
induced from tamely ramified characters of the unramified extensions� and � of
�. Then E�� �� � � ��, unless � and� are isomorphic representations of the
inertia subgroup � � ����, in which case E�� �� � � ��.
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We now use Lemma 17.1 to determine the character � of the elementary
abelian �-group -�� � -�� . Recall that the tame, regular discrete parameters
for odd and even orthogonal groups, respectively, have the form

� �
��


�

�
� �
 � ����	�
!
�

� �
+�

�
�

��� �� � ������ 5�


The group -�� has ����-basis elements �
, the non-trivial central elements in
����
�, and the group -�� has ����-basis elements (� , the non-trivial central
elements in �����. Using Lemma 17.1, we find that

���
� �� � E��
 �� � �
+�

�
�

E��
 ����

�

�
�� if 	
����
� 	 	
������ for some 2�

�� otherwise


Note that if �� exists then it is unique, since ��� 
 
 
 ��+ are pairwise non-
isomorphic. Similarly, we find that

���� (�� � E�� ���� �
��


�

E��
 ����

�

�
�� if 	
������ 	 	
����
� for some $�

�� otherwise


Again, �
 is unique, if it exists.

18 The representations � and � of ���"�� and ���"

Recall that � and � are the orthogonal groups determined by the Langlands pa-
rameters �<�� ��� and �<�� ��� (see (55) and (56)). We now use our formula for
� � �� � �� in the previous section to determine the representations

� � ��<�� ��� � �  ������ � and � � ���<�� ��� � �  ������ 
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Then we will show that � occurs in the restriction of � from ���� to ����, in the
sense of (57).

As in section 17, we have

� �
��


�

�
� � �
+�

�
�

��


Suppose that exactly C of these factors give isomorphic representations of the in-
ertia subgroup � of����. Reorder the factors so that

�� 	 ��� �� 	 ��� 
 
 
 � �* 	 �*

as representations of � and set �	 �
�*



� ����
 �
�*

�
� �����

Hence �� is nontrivial precisely on the basis vectors ��� 
 
 
 � �* of -�� , so that

����;- � � ����*� and (55) takes the more explicit form

� �

�
������ for C even

���
���� for C odd


(58)

Recall that ) � ��, with basis ��
�. As lift 
� � ) of ��, we may take the
sum of one �
 from each block ��� 
 
 
 � �*. Our good parahoric subgroup�$� � �
has reductive quotient given, in the notation of (51), by

��$� � �� �
$�
� �� ��

$�
�

�
���� � �������	�� for C even

��
�
�� � �������	�� for C odd


(59)

The representation � is then given explicitly by

� � ���
���	
	��

 $� � (60)

where  $� is the Deligne-Lusztig representation defined in (44).
Likewise �� is nontrivial precisely on the basis vectors (�� 
 
 
 � (* of -�� , so

that ����;. � � ����*, and (56) takes the more explicit form

� 	

���
��
���� for D� C both even

���
�� for D even� C odd

���
�� for D odd


(61)
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For ��, we may choose the lift 
� � ) so that �$� � �$� . Using the method
of section 14.1, we find that our good parahoric subgroup�$� � � has reductive
quotient given by

��$� � �� �
$� � �� ��

$� � (62)

where

�� �
$� � �� �

$� (63)

and

�� ��
$�

�

�
�������	 for D � C even

��
�
�����	 for D � C odd


Finally, the representation � is given explicitly by

� � ���
���	
	��

 $� � (64)

where  $� is the Deligne-Lusztig representation defined in (44).

19 The multiplicity of � in the restriction of �

In the next two sections we prove that ��� �� � �, in the sense of (57). Elementary
properties of induced representations show that

��� �	��
��	 � $� �  $�� � ������	 ��� �� 


We will show that ��� �	��
��	 � $� �  $�� �� �.

Our inducing representations  $� factor as products of Deligne-Lusztig repre-
sentations

 $� �  �
$�
�  ��

$�
�

according to the factorizations (59) and (62).
Recall from section 14 that for <� our torus and character are products�




/
�
�



!
� (65)
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and the characters !
 factor through the reductions /
��� �� �/
���. Likewise, for
<� our torus and character are products�

�

���
�
�

5�� (66)

and the characters 5� factor through the reductions ����� �� ������. By our
assumption that �� 	 ��� 
 
 
 � �* 	 �*, we have

*�


�

�/
 	
*�

�
�

���� (67)

and the characters
*�


�

�!
�
*�

�
�

�5��

are equal on the torus (67). Recall from (63) that �� �
$�

� �� �
$�

. Hence we have
 �
$�
	  �

$�
.

Setting 4 � "�	, it remains only to show that  ��
$�

appears in the restriction
of  ��

$�
from ��������� to either ������� or ���

����� according as D � C is even or
odd. This is a consequence of the result which is stated in the next section, and
proved in [28].

20 Restriction of Deligne-Lusztig representations

This last section concerns only representations of groups over the finite field �, so
we will simplify our notation.

Let / be a maximal �-torus in the group � � ������ over �, and let� �/ � be
the �-rational points in the Weyl group of / in �. We say a character of / ��� is
regular if it has trivial stabilizer in� �/ �.

Assume that / is anisotropic over �. Then / �
��



� /
 is a product of Coxeter
tori in odd orthogonal groups. Let ! �

��

 !
 be a regular character of / ���.

Let � �
�+

�
� �� be another such product of Coxeter tori, with
�

����� � ".
Then � is an anisotropic maximal torus in the �-group � which is ���� or ���

��

according as D is even or odd. Let 5 �
�+

�
� 5� be a regular character of ����.
We then have irreducible Deligne-Lusztig representations �/� !� on���� and

 ��� 5� on ����. The following result is proved in [28].
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Theorem 20.1 The ����-invariants in  �/� !��  ��� 5� have dimension

��� � �/� !��  ��� 5�����	 � � or �


This dimension is 0 if any factor matches, in the sense that there are $� 2 such that
/
 	 �� and !
 is a Galois conjugate of 5�. If there is no matching, the dimension
is 1.

In the case of  ��
$�

and  ��
$�

of the previous section, we have no matching, by
the definition of C. This concludes the proof that � occurs in 	
����	���.

It is a nice exercise to verify 20.1 for " � �, given the character table of
������ � ������� (cf. [11, section 9]). One finds that  �/� !� contains all
characters of ������, and all characters of ������� except ! and !��. We used this
in section 3.

The main idea of the proof of 20.1 for general " is to show that the sum over
���� of the the character of  �/� !��  ��� 5� is a rational function in , � ��� of
degree � � whose leading term can be computed explicitly. This idea goes back
to Thoma [38] for the pair ��� ! �����, and was used by Hagedorn [16] in his
1994 Harvard PhD thesis to give some abstract formulas for restriction for other
classical groups. Pushing this method further in [28] one obtains closed formulas
as in 20.1, as well as qualitative Deligne-Lusztig restriction formulas for a general
pair of reductive �-groups � ! � .
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