DEPTH-ZERO SUPERCUSPIDAL L-PACKETS AND THEIR STABILITY

STEPHEN DEBACKER AND MARK REEDER

In this paper we verify the local Langlands correspondence for pure inner forms of unramified
p-adic groups and tame Langlands parameters in “general position”. For each such parameter,
we explicitly construct, in a natural way, a finite set (“L-packet”) of depth-zero supercuspidal
representations of the appropriate p-adic group, and we verify some expected properties of this
L-packet. In particular, we prove, with some conditions on the base field, that the appropriate
sum of characters of the representations in our L-packet is stable; no proper subset of our L-
packets can form a stable combination. Our L-packets are also consistent with the conjectures
of B. Gross and D. Prasad on restriction from SO,,, .1 to SO,, [24].

These L-packets are, in general, quite large. For example, Sp,,, has an L-packet containing 2"
representations, of which exactly two are generic. In fact, on a quasi-split form, each L-packet
contains exactly one generic representation for every rational orbit of hyperspecial vertices in the
reduced Bruhat-Tits building. When the group has connected center, every depth-zero generic
supercuspidal representation appears in one of these L-packets.

We emphasize that there is nothing new about the representations we construct. They are
induced from Deligne-Lusztig representations on subgroups of finite index in maximal compact
mod-center subgroups, see [42], [44], [61]. The point here is to assemble these representations
into L-packets in a natural and explicit way and to verify that these L-packets have the required
properties.

To explain further, we need some notation. Let k& be a p-adic field of characteristic zero, let K
be a maximal unramified extension of k, let I' = Gal(K/k), and let Frob € I' be a Frobenius
element. Let W,;, 7, be the tame Weil group of k and its inertia subgroup. Let G be a connected
reductive k-group which is K-split and k-quasi-split. To simplify the exposition, we assume in
this introduction that G is semisimple. Let G := G(K), and let F be the action of Frob on G,
arising from the given k-structure on G.

In the spirit of local class field theory, we construct both the “geometric” and “p-adic” sides
of our local Langlands correspondence, and make an explicit connection between the two sides.

We start with the geometric side. The action of F on the root datum of G gives rise to an
automorphism ¥ of the Langlands dual group G. The Langlands parameters considered in this
paper are continuous homomorphisms

~ ~

oW, — (¥) x G,
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(for the discrete topology on (1)) x G) whose centralizer in G is finite, and such that ¢ (Frob) is
a semisimple element in UG, and ©(Z;), a priori a finite cyclic group, is generated by a regular
semisimple element in G. This latter condition is what we mean by “general position”. It implies
that ¢(Z;) is contained in a unique maximal torus T C G. The element gp(Frob) normalizes T,
acting via an element of the form Db, where W belongs to the Weyl group of T in G. Moreover,
the centralizer of ¢ is the finite abelian group

Cy = o

of fixed-points of ¢ (Frob) in T'.

For each irreducible character p € Irr(C,,), we will define a representation of the group of
k-points of a certain inner form of G.

First, we parametrize Irr(C,,) as follows. The automorphisms ¥ and b induce dual automor-
phisms ¥ and w of the character group X = X *(T), and each A € X determines a character

pa € Irr(C,,) by restriction from T to T"%. Thus we have an isomorphism
X/(1—wd)X == Iir(CL), A py.

Next, for each A € X we construct an unramified cocycle uy € Z'(T', G), hence an inner
twist of G with Frobenius F\, = Ad(u,) o F, along with an irreducible depth-zero supercuspidal
representation 7 of G,

The cocycle u) is found as follows. Let IV be the affine Weyl group of G, acting on the
apartment A = R ® X in the Bruhat-Tits building B(G) of G. The character A € X determines
a translation £, € W. Since T is finite, it follows that the operator ¢)w1 has a unique fixed-
point x) € A. If we choose an alcove C'y C A containing x in its closure, we can then uniquely
write

(1) bwd = wayav,

where w) belongs to the “parahoric subgroup” of W at x) and y, € W satisfies v - C\ = C).
The cocycle uy : ' — G sends Frob to an appropriately chosen representative of y, in G.

Now for the representation 7,. The point x), is F\-stable, and is in fact a vertex in B (GFA).
The parahoric subgroup G, of G at x) is F\-stable, and GEA is a maximal parahoric subgroup of
G™. The representation 7y of G™ is compactly-induced from a representation ry of Gfk.

This ) is obtained as follows. The element w) determines an F\-anisotropic torus 73 of G
with Tf * C G,. By the depth-zero Langlands correspondence for tori (known, but reproved
in Chapter 4.3 below), we can associate to (p, A) a depth-zero character x, of Tf *, whence a
Deligne-Lusztig representation

Rx = iRTA XA-
Thus, for each \ € X, we define

i 3GEA
Ty 1= de? K,
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using compact (equivalently, smooth) induction, and prove that 7, is an irreducible representa-
tion of G, Of course, we now have infinitely many groups G™ and representations 7y, whereas
the L-packet I1(¢) should be parametrized by the finite set Irr(C,,).

However, according to Vogan’s idea of “representations of pure-inner forms” [62], we must
take into account the natural G-action on pairs (u, 7, ), where u € Z'(T, G) and 7, is a repre-
sentation of G™ (here F,, = Ad(u) o ). We prove that the G-orbit [uy, 7,] is independent of all
choices made in the construction, and that for A, u € X, we have

[ur, mA] = [up, m] & pa=pu € Irr(Cy).
Thus, our construction leads to an L-packet I1(¢) in the form of equivalence classes:

() = {[ur,m] = pr € Iir(C,)}.
We have a partition

)= ] Hew),

weHY(T",G)

where II(, w) consists of the classes [uy, 75| with uy € w. Let

Irr(C,) = H Irr(C,, w)

weH(T,G)

be the corresponding partition of Irr(C.,).
The first expected property of II(¢) is that Irr(Cy,, w) should be the fiber over w under the
composition

) Ir(C,) — Ire(27) =5 HY(T, G),

where the first map is restriction, the second map is Kottwitz’ isomorphism [34], and Z is the
center of G. This amounts to proving that the map described in (2) sends p) € Irr(C,) to the
class of uy in H'(T',G). For this, and other purposes, we need a very explicit description of
Kottwitz’ isomorphism on the level of cocycles. Chapter 2 contains a simple proof of Kottwitz’
isomorphism in the form we need, along with related facts used in the proof of stability.

The second expected property of I1(¢) is that the ratio of formal degrees

deg(my)
deg(Sty)’

where St is the Steinberg representation of G™, should be independent of A € X. This is
proved by a direct calculation in Chapter 5.

The third expected property of I1(¢) is that 7 (here A = 0) should be generic. This is true. In
fact, we determine all generic representations in I1(), and show that they are in natural bijection
with rational classes of hyperspecial vertices in the reduced building of GG. En route, we classify
all depth-zero supercuspidal generic representations of unramified groups, see Chapter 6. There
is a more general conjecture, due to B. Gross and D. Prasad [23], about which Whittaker models
are afforded by the generic representations in I1(). This conjecture is verified for I1(¢) in [19].
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We illustrate the construction and above-mentioned properties, in Chapter 13, with a “canoni-
cal example” of L-packets arising from the opposition involution.

The rest of our paper is devoted to the fourth expected property, namely, the stability of
(p,w).

We now consider L-packets from the p-adic side. Let G be any connected reductive K -split
k-group with Frobenius automorphism F' on GG. Take a pair (S, #), where S = S(K) is the group
of K -points in an unramified k-anisotropic maximal torus S in G and € is a depth-zero character
of S = S(k). The group S* has a unique fixed-point € B(G*). We have a Deligne-Lusztig
virtual character jog of the parahoric subgroup G, which we lift to a class function R(G, S, 6)
on the set of regular semisimple elements of G, using Harish-Chandra’s character integral. One
checks that R(G, S, 6) depends only on the GF-orbit 7 of the pair (S, 6). For (S,6) € T, we
define

R(G,T) = R(G, S,0).

We say that two pairs (51, 61), (Se, 62) as above are G-stably-conjugate if there is g € G such
that Ad(g) sends (SF,6,) to (SE,60,). Each G-stable class 7y of pairs (S, 6) is a finite disjoint
union

To=TU---UT,
of G¥-orbits. We consider the function

R(G,Ty) : ZR

Our aim is to prove that R(G,Tst) is a stable class-function on the set of strongly regular
semisimple elements in G¥'.

But first, we relate R(G, ’j;t) to the L-packets constructed previously on the geometric side.
To do this, we must put the representations in I1(y) in “normal form”, as follows. We fix w €
HY(T', @), and choose u € w. For each A € X, with u) € w, there is m,, in G such that Ad(m,)
sends G™ to G*. For each p € Irr(C,,, w), we define

71'u(§0, p) = Ad(m)\)*m\

where A € X is such that py = p. Then 7, (i, p) is a representation of G** whose isomorphism
class is independent of the choices of A and m). The “normalized” L-packet is then defined as

L) == A{mulip, p) = p € Irr(Cypw) };
it consists of representations of the fixed group G,

The comparison between the p-adic and geometric sides consists in proving that the sum of
characters in IT,(y) is, up to a constant factor, a function of the form R(G, 7g;) for an appro-
priate T... This involves an explicit parametrization of the GG-stable classes of pairs (5, 6), in
terms of characters A € X. This parametrization follows naturally from our study of Kottwitz’
isomorphism in Chapter 2.

Now, to prove stability for our L-packets, it remains to prove that the functions R(G, ’j;t) are
stable. The first main step is a reduction formula, using the topological Jordan decomposition.
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This reduction becomes trivial on the set of strongly regular topologically semisimple elements
in G¥, proving stability there without any restrictions on the residue characteristic.

To prove stability everywhere, we must examine the restriction of R(G, ’j;t) to the topologi-
cally unipotent set. We are dealing here with a p-adic analogue of a Green function, so we write
Q(G, ;) for the restriction of R(G, 7y) to the topologically unipotent set in G

To use the reduction formula, we must establish an identity between Q(G, 7y,) and Q(G’, T2,),
where G’ is an inner form of G. To prove this identity, we use Murnaghan-Kirillov theory. The
idea is to use a logarithm map and Kazhdan’s proof of the Springer Hypothesis [31] to express
Q(G, ’fst) as the Fourier transform of a stable orbital integral on the Lie algebra of G¥". We then
invoke a deep result of Waldspurger [63], to the effect that the fundamental lemma is valid for
inner forms, and this completes the proof.

However, there are two difficulties with this argument, one pleasant, one not. The pleasant
difficulty is about a certain sign in Waldspurger’s result. It is given in [63] as a ratio of gamma
constants. For us, it is necessary that this ratio be equal to Kottwitz’ sign ¢(G) [33]. This
equality of signs is a particular case of a conjecture of Kottwitz. Because of its importance, here
and elsewhere, we give two proofs, the first using Shalika germs, the second continuing in the
combinatorial spirit of [63].

The unpleasant difficulty is about the logarithm map, which is required to satisfy certain com-
patibility properties with respect to the Moy-Prasad filtrations on GG and its Lie algebra. It is at
this point that restrictions on k£ must be imposed. We require that p > (2 + e)n, where p is the
residual characteristic of k, e is the ramification degree of k/Q,, and n is the dimension of a
faithful algebraic representation of G over k.

Finally, some remarks about exhaustion. All depth-zero supercuspidal representations of G*
are constructed in [44]. Many of them do not appear in our L-packets I1(¢). They should appear
in square-integrable L-packets where ¢ is tame, but has a nontrivial component on S L,(C) and
therefore cannot be in general position. For groups with connected center, such L-packets have
been found for unramified ¢ in [39], [40], [41], [48]. For groups with connected center, the
L-packets constructed in this paper should be exactly those depth-zero L-packets which consist
entirely of supercuspidal representations. See Chapter 3 for more discussion of this.

We thank Robert Kottwitz, Fiona Murnaghan, Dipendra Prasad, Gopal Prasad, Loren Spice,
and Jiu-Kang Yu for helpful conversations. We thank Loren Spice for allowing us to use his
proof of Lemma B.7.2. Part of this work was done in 2001 while one of us (MR) was visiting
the Ecole Normale Supérieure in Paris, and the Korteweg-de Vries Institute in Amsterdam. He
thanks Anne-Marie Aubert and Eric Opdam, respectively, for their hospitality. Finally, we ac-
knowledge the National Science Foundation for its support, via grants DMS-0200542 (SD) and
DMS-0207231 (MR).

While we were writing the details of our stability proof, D. Kazhdan and Y. Varshavsky an-
nounced a similar stability result, also using Murhaghan-Kirillov theory. See [32].
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1. BASIC NOTATION

The cardinality of a finite set X is denoted by |X|. We denote the action of a group G on
aset X by gz orfx, forg € G,z € X. The fixed point set of g in X is denoted by X9,
and X := N,ecXY. The set of G-orbits in X is denoted by X /G. The centralizer of g € G is
denoted by Cz(g). The conjugation map ¢’ — gg’g~* on G is denoted by Ad(g). The normalizer
of a subgroup S C G is denoted by N(G, S). In this paper, the phrase “representation of a
group G” means “equivalence class of complex representations of G”. The set of irreducible
representations of a finite group G is denoted by Irr(G).

In this paper, k is a field of characteristic zero with a nontrivial discrete valuation for which
k is complete with finite residue field f. Let ¢ = |f|, and let p be the characteristic of f. We fix
an algebraic closure k of k. Let K be the maximal unramified extension of k in k, and let §
denote the residue field of K. Then § is an algebraic closure of . Until Section 12 there are no
restrictions on p or g. We fix an element w € k of valuation equal to one.

Let 7 be the inertia subgroup of the Galois group Gal(k/k), and let I' = Gal(k/k)/Z. Then T
is topologically generated by an element Frob whose inverse induces the automorphism = +— 4
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on §. We let Frob, “the Frobenius”, denote both this automorphism of K/k and the automor-
phism of §/f which it induces. We have K = k%, k = Kb,

We use the following conventions for algebraic groups and their groups of rational points. For
any k-group G, we identify G with its group G (k) of k-rational points, and let G := G(K) =
G7 denote the K -rational points of G. For most of our purposes, the group G will play the role
of “algebraic group”. The given action of Gal(k/k) on G restricts to an action of I on G, which
is completely determined by an automorphism F' € Aut(G) given by the action of Frob. We
have G = G(k). Likewise, we identify f-groups G with their groups of F-rational points, and
we have G = G(f).

The set of irreducible admissible representations of G*" is denoted by Irr(G¥"). The subset of
square-integrable representations in Irr(G*") is denoted by Irr?*(G¥').

If S is a k-torus in G, we say that a character § € Irr(SY) is F-regular if 6 has trivial stabilizer
in [N(G,S)/S]F.

Given an element « in either G or G, we let G, or G, denote the identity component of the
centralizer of v in G or G, respectively. If v € G, then we set G, := GNG.,. We say the element
v in G or G is regular semisimple if G, or G, is a torus. We let G™* denote the set of regular
semisimple elements of G. We say that -y in G or G is strongly regular semisimple if Cg(7y) or
Cg(7) is a torus. We let G*™* denote the set of strongly regular semisimple elements of G. If S
is a maximal k-torus in G, then by [8, 1.10] the set G*"** N S*" is nonempty.

For two reductive groups G1, G or G, G, of respective ranks 71,75 over k or f, we let

€(G1, G’Q) = (—1)7"1—r27 €(G1, Gg) — (_1)r1—r27

respectively.

For any torus S or S, we let X, (S) or X.(S) denote the group of algebraic one-parameter
subgroups of S or S. We say an f-torus S C G is F-minisotropic in G if every u € X,(S)" has
image contained in the center of G.

The analogous notion for tori in G has an extra condition: In this paper, an unramified torus
is a group of the form S = S(K), where S is a k-torus which splits over K. These conditions
mean that Z acts trivially on X, (S), and the action of Gal(k/k) on X, (S) factors through I". An
F-minisotropic torus in G is a group of the form S = S(K), where S is a k-torus in G such that
S is split over K, and the Frobenius F’, arising from the given k-structure on G, has the property
that every u € X, (S) has image contained in the center of G.

If S is a K-split k-torus, we let °.S denote the maximal bounded subgroup of the unramified
torus S. We have an isomorphism

K*® X,.(S) = S
given by evaluation. This restricts to an isomorphism

R ® X.(S) —°S,
where R is the group of units in the ring of integers of K.

For this paper, until the appendices, G denotes a connected reductive k-group which splits
over K. Let F' be the Frobenius automorphism of G arising from the given k-structure on G.
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Let B(G), B(GY) denote the Bruhat-Tits buildings of G, G, respectively. The Frobenius F
acts naturally on B(G), and we have B(G!) = B(G)F.

Let j : G — G,y denote the adjoint quotient. Following our conventions, we set G,q =
G4(K), and denote again by F' the action of Frob on G,g.

Via the map j, the group G acts on B(G ). The latter is sometimes referred to as the “reduced
building” of G. Likewise, the reduced building of G* is B(G) = B(G.q)".

Each unramified torus S in G determines apartments A(S) C B(G) and A.4(S) C B(Gaa);
these apartments can be defined as the fixed-point sets of °S in B(G) and B(Gq), respectively.
The Euclidean closure of any subset .J of an apartment is denoted by .J.

If J is an F'-stable subset of a facet in B(G) or B(G,4), we let G ; denote the corresponding
parahoric subgroup of G, and let G denote the pro-unipotent radical of G ;. The quotient
G, := G;/G7 is the group of F-points of a connected reductive group over f. We have F(G ;) =
Gy, F (G}“) = G}L, and the induced action of F' on G; agrees with the f-structure on G;. We
have G5 = G5 /G

Recall that G is split over K. By [10, 5.1.10], there exists a K -split maximal torus T C G
which is defined over k£ and maximally k-split. We abbreviate X := X, (T), A := A(T). Let N
be the normalizer of 7" in GG. The affine Weyl group of 7" in G is the quotient

W = N/OT.

We will use 7' = T(K) as a “platonic” unramified torus in G; various unramified tori .S as above
will arise from twisted embeddings of 7" in G.

Let T,y = j(T) denote the image of T in G4, and abbreviate A,y = A(Tuq), Xoa =
X,(Tuq). Let W, be the affine Weyl group of T,y in Gy. Since T and T, are defined over £,
the Frobenius F induces automorphisms of X, X4, A, A.q, W, W,4. We write also

J:X = Xag, JiW — Waq

for the maps induced by j. These maps are F'-equivariant, since j is defined over k. The kernel
and image of the latter map are given as follows.

We may identify X with the normal subgroup 7'/°T < W, via evaluation at . If A € X, we
let t) := A\(w) denote both the corresponding element of 7" and its image in WW. There is a map
Waa — Xaa/7 X, to be defined shortly, which fits into an exact sequence

(3) 1— XV s W L Wy — Xaa/jX — 1.

Note that the last group X,4/7 X is finite. The group X" acts trivially on A,q.

There exists an F'-stable alcove C' C \A. Let W° be the subgroup of IV generated by reflections
in the walls of C, and let Q¢ := {w € W : w - C = C}. The group ()¢ is abelian, isomorphic
to the quotient of X by the co-root sublattice X° C X. The normal subgroup W° <« W acts
simply-transitively on alcoves in .4, so we have a semidirect product expression

W = QcW°.

A similar discussion and decomposition holds for W,,.
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We have been using [ to denote the Frobenius arising from an arbitrary K -split k-structure
on G. When this k-structure is in fact k-quasi-split, we denote the Frobenius by F. The key
difference in the quasi-split case is the existence of an F-fixed hyperspecial vertex o € A,q.

In the quasi-split case, we denote by ¥ the automorphisms of X, X4, A, A.q, W, W4 induced
by F. Choose a ¥-fixed hyperspecial vertex o € A,4. We let W, be the image of N, := N NG,
in W. We may identify W, = N/T via the natural maps

W, — W = N/°T — N/T.

The map j is injective on W, and we identify W, with j(W,). We have semidirect product
decompositions

WIXNWO? Wad:XadNWm

and all factors are preserved by ¥). The map W,; — X,4/7X in the exact sequence (3) is
induced by projection onto the X, factor in W,,.

Finally, an inner twist of F by a cocycle u € Z'(F, Q) (see Section 2) will be denoted by
F, := Ad(u) o F.

2. REMARKS ON GALOIS COHOMOLOGY

To state the Langlands conjectures at the level of refinement considered in this paper requires
some notions from the Galois cohomology of reductive groups over local fields. The central
results here are due to Kottwitz [34, 35], who computes H 1(k;, G) in terms of the action of
Gal(k/k) on the center of the dual group of G, and Bruhat-Tits [11], who compute H'(k, G)
in terms of the building of G. Here we give simple proofs of the above-mentioned results at the
level of cocycles. This allows us to construct cocycles in G from fixed-points in .4 of elements in
the affine Weyl group. Such fixed-points arise from the Langlands parameters we consider. Thus
we can associate an explicit Frobenius to each Langlands parameter. We also use our cocycles
to give representatives for various stable and rational classes of tori and semisimple elements in
(. These will be used in the proof of stability.

2.1. Unramified cohomology. Let U be a group and let F' be an endomorphism of U. For an
integer d > 1 and g € U, define

Ny(F)(g) == gF(g)---F* ' (g) e U.
Note that
4) Num(F) = N, (F?) o Ny(F).

Assume that every element of U is fixed by some power of F'. Giving U the discrete topology,
this means that the group Z of profinite integers, with topological generator F', acts continuously
on U. We denote by

HY(F,U) = HY(Z,U)
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the continuous (nonabelian) cohomology of U. Any cocycle is determined by its value on F/,
which is an element of the set

ZYWF,U):={ueU: N,(u)=1 forsomem > 1}.

Thus we view cocycles as elements of U, and H'(F,U) is the quotient of Z'(F,U) under the
U-action: g * u = guF(g)~". Note that if N,,,(u) = 1 and F(g) = g, then N,,,q(F)(g * u) = 1.

If U is nonabelian, the set Z'(F, U) of cocycles is not closed under multiplication. However,
ifu,v € Z'(F,U) and d > 1 we have

(5) Na(F)(vu) = Na(F)(v) - No(F)(u),
where

F, = Ad(u) o F € End(U).
From Equations (4) and (5) we conclude:

Lemma 2.1.1. If two of the following hold, then so does the third:

(1) u e Z\(F,U),
) v e Z\(F,,U),
(3) vu € Z(F,U).

Lemma 2.1.2. If the fixed-point group U is finite for each d > 1, then Z*(F,U) = U.

Proof. Fix d > 1 and suppose that ¢ = 1 for each g € U¥' *. From Equation (4), we have

Naw(F)(9) = Nuo(F?) (Na(F)(9)) = (Na(F)(9))™ = 1.
O

Lemma 2.1.3. Suppose U is a compact group with endomorphism F' and a decreasing filtration
U=Uy DU DUy D --- by open normal F-stable subgroups U, such that (), U, = {1}.
Assume that H'(F, U, /U,,1) = 1 foralln > 0. Then H'(F,U) = 1.

Proof. Let u € Z'(F,U), so that u € U, for some n > 0. By the vanishing assumption and
normality, there are gy € U, and u; € U,,,; such that u = go*u,. Thenu; = g5 'xu € Z'(F,U).
Repeating, we have elements gy, u, € U,y for all k& > 1, such that u = (gog1 -+ - gr—1) * U.
Since U is compact, the limit g := limy gog; - - - g exists, and u = g * 1. U

2.2. Steinberg’s vanishing theorem. In this section, G is only required to be a connected k-
group, with Frobenius automorphism F on (G. At several points we use the following conse-
quence of a well-known result of Steinberg [56, Thm. 1.9]:

Theorem 2.2.1. H'(K,G) = 1.

One consequence of Theorem 2.2.1 is that the natural surjection Gal(k/k) — T induces an
isomorphism
HY(F,G) ~ H'(k,G).
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Each cocycle u € Z1(F, G) arises from a twisted k-structure on G, under which Frob acts on
G via the automorphism

F, = Ad(u) o F € Aut(G),

so that G is the group of k-rational points under this twisted k-structure [51, II1.1.3]. Note that
for g € GG, we have

Ad(g) o F, = F gy 0 Ad(g),

so Ad(g) induces an isomorphism
Ad(g) : GF» = GFore,

Thus, the isomorphism class of G depends only on the class of u in H'(F,G). However, the
dependence is non-canonical, in the sense that a class in H*(F, G) does not determine a unique
twist of F’; one must choose a cocycle in the class. We must therefore accept a wide range of
Frobenius endomorphisms F,, giving rise to the same k-isomorphism class of groups.

2.3. Explicit cocycles. For the rest of this chapter, G is a connected reductive k-group with
Frobenius automorphism F on GG. To keep things as simple and clear as possible, we assume that
G is K -split and k-quasi-split, even though these assumptions are not necessary until later in the
paper. The following result is a special case of [64, Prop. 2.3]. We give a direct proof, in our
context.

Lemma 2.3.1. For each x € B(G)" we have H'(F,G,) = 1, where G, is the parahoric
subgroup attached to x.

Proof. If u € ZY(F,G,), thenu € Gfd for some d > 1. We want to apply 2.1.3 to the compact
group U = G ‘. Let Gz, 7 € Rsp, be the Moy-Prasad-Yu filtration of G, [65]. There is
an increasing sequence {r,, : n = 0,1,2,...} C Ry, such that for every » > 0 we have
Gzr = G, ., for aunique n. These filtration subgroups are F'-stable; we set U,, := Gi in

Each quotient group U,, /U, is the group of f,-rational points in a connected f-group U,,.
Here 4 denotes the degree d extension of . By the Lang-Steinberg theorem, we have H'(f,U,,) =
1 for all n > 0. Since the natural map

H' (fd/fa Un(](d)) - Hl (f? Un)

is injective [51, 1.5.8], we have H'(f4/f,U,.(f4)) = 1 forall n > 0.
We have shown that the groups U, satisfy the conditions of Lemma 2.1.3, which implies that
the cocycle u is a coboundary in H'(F, Uy), hence also in H'(F, G,,). O

Recall that T is a K -split maximal k-torus in G, such that T contains a maximal k-split torus
in G, and N is the normalizer of 7" in G. The affine Weyl group of 7" in G is the quotient
W := N/°T, where °T is the maximal bounded subgroup of T'. The apartment of 7" in B(G) is
denoted by .A, and the N-action on .4 factors through a faithful action of W on A.

To describe H'(F, G) on the level of cocycles, the first step is to reduce the group in which
the cocycles live. Let C' be an F-stable alcove in A (see [60, 3.4.3]). Let G be the Iwahori
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subgroup of G attached to C'. The normalizer in G of G is the group
t={geG: g-C=C}.
We have N N G = T, and we set
Neo == NNGg.

Then the group

Qo ={weW: w-C=C}
is the image of N¢ in W. The inclusion N¢ — G¢, induces an isomorphism

d: Qo — G5 /Ge.

Since F-C' = C, we have F(G,) = G, so we may define H'(F, G§,) as in 2.2, and similarly
for H*(F, N¢). The first reduction relies on the existence and conjugacy of rational alcoves,
already used above.

Lemma 2.3.2. The inclusion G, — G induces an isomorphism
H'(F,Gy) — H'(F,Q).

Proof. We first prove surjectivity. Let u € Z'(F,G). By [60, 1.10.3] there is an F,-stable
alcove C,, C B(G). We have g - C,, = C for some g € G. Since F,-C, = C,, we have
uF(gh)-C=g' C,ie,gxueGE.

For injectivity, suppose u,v € Z'(F, G.), and ¢ * u = v for some g € G. Then

F,.g-C=0vF(g)-C=gu-C=g-C.
Thus ¢ - C and C are two F,-stable alcoves in B(G). By [60, §2.5] there is h € G such that
hg - C = C,so hg € G.. However, h = F,,(h) implies
(hg)uF(hg)™" = hoF(h)™ =,

so [u] = [v] in HY(F, G§). O

To go further, we need another vanishing result. The image of °T in G¢ is a maximal f-torus
T in Go. We let °T* be the kernel of the natural map 7" — T. Then °7'* is the pro-unipotent
radical of °T.

Recall that I' = Gal(K/k). A topological I'-module [50, X111, p.188] is a I"-module in which
every element is fixed by some power of Frob.

Lemma 2.3.3. For any n € N, letting Frob act on °T via F, := Ad(n) o F makes °T a
topological T'-module for which H*(F,,,T) = 0.

Proof. As endomorphisms of T, we have F,, = F,,, where w is the image of n in N/T. Now
FF = AdfwF(w) ---F**(w)] o F*, forall k> 1.

Since N/T is finite, the term in brackets is 1 for some & (cf. Lemma 2.1.2) and multiples thereof.
Also every t € T is fixed by some F"* and multiples thereof. The first assertion now follows.
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The exact sequence of topological ['-modules
1 — %7t =97 T —1
gives an exact sequence [51, §2.2, p.10] in Galois cohomology
- — H*(F,,°T") — H*(F,,°T) — H*(F,,T) — -+~

Since T is a torsion group, we have H?*(F,,T) = 0 by [50, Proposition 2, p.189]. Since
OT* is the union of an inverse limit of torsion groups, from [50, Lemma 3, p.185] we have
H?*(F,,°T*) = 0. OJ

Consider now the following commutative diagram, where the horizontal maps are inclusions,

and the vertical maps are the natural projections.

No —2 =Gy

Qo —% G /Ge
Lemma 2.3.4. The maps a,b,c,d in the above diagram induce isomorphisms a., b, c,d, on
H(F, ).

Proof. The map d is already an isomorphism. The map a. is surjective by Lemma 2.3.3 and [51,
Corollary, p.54]. Since the induced diagram on cohomology is commutative, the map c, is also
surjective.

If u € ZY(F, GY), then from [51, Corollaries 1 and 2, p.52] the fiber of ¢, through [u] is in
bijection with ker[H'(F,, Gt.) — H'(F,, G5 /Gc)]. By the exact sequence

- — HY(F,,G¢) — H'(F,,G%) — HY(F,, G5 /Ge)

in nonabelian cohomology [51, Proposition 38, p.51] and the vanishing of H'(F,, G¢) by Lemma 2.3.1,
the above kernel is trivial. Hence c, is injective. A similar argument shows that a, is injective,
which completes the proof. 0J

2.4. Kottwitz’ Theorem. In this section we will recover Kottwitz’ theorem on the level of co-
cycles. First we need an elementary result.

Lemma 2.4.1. Let A be a finitely generated abelian group, and let o € Aut(A) be an automor-
phism of finite order. Define

Ay={acA: l+o+---+0"Na=0 forsome n>1},
Ay:={a€A: mae(l—0)A forsome m >1}.

Then Al = AQ.
Proof. Forp > 1let N, =140+ -+ o?~! € End(A). Then
Nyy=N,+ 0N, + -+ 0P TIN, = (1 + 07+ + 0PN,
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Hence if N,(a) = N,(b) = 0, then N,,(a + b) = 0. That is, A, is a subgroup of A. Also, since
Aqor 1s finite, every element of Ay, is fixed by some power of o. If ga = 0, then o”(a) = a for
some p > 1, so Ny, (a) = gN,(a) = N,(ga) = 0. Thus, A, C A

Set A = A;/Air, V = Q ® A. The latter is a finite-dimensional Q-vector space, to which o
and N, extend for all p. We claim that V° = {0}. If 0 # v € V7, we may assume, by clearing
denominators, that v € A. Then N,(v) = pv # 0 for all p > 1, a contradiction. Hence 1 — o is
invertible on V. Let a € A; have image @ € A. Write @ = (1 — o)b, for some b € V. Clearing
denominators, we have ma = (1 — o)c for some m € Z, ¢ € A;. Soma = (1 — o)c + z, where
z € Aior- Say gz = 0. Then gma = (1 — o)gc € (1 — o)A, showing that A; C A,.

The other containment is easy: If ga = (1 — 0)b, and p is the order of o, then

Ny,(a) = g¢N,(a) = Np(ga) = Npy(1 —o)b=(1—-0")b=0.
O
Let X = X,.(T), and let W*° be the subgroup of W generated by reflections in the walls of
an alcove in A. Evaluation at w identifies A € X with the operator ¢, € W of translation
by A on A. Under this identification, X N W° =: X° is the co-root lattice of T. We set

X := X/X°. The group W° acts simply-transitively on alcoves, hence we have the semidirect
product decomposition

W =W?°xQ¢.

The automorphism F preserves 7', hence induces an automorphism v of W, which preserves
X, W° Qc. If G is actually k-split then ¢ is trivial. In general, ¢ has finite order.

For A € X, let w, be the unique element of £,V ° N . Then w) = 1 exactly when \ belongs
to X°; the map \ — w, induces a 1J-equivariant group isomorphism X —— Q.

Corollary 2.4.2. The map )\ — w) induces an isomorphism
[)_(/(1 — N X]or — HY(F,Q0).

Proof. Apply Lemma 2.4.1 to the abelian group A = Q¢, 0 = 9. Since (1 —9)Q¢c C (Q2¢)2, we
have

HY(F,Qc) = (Qc)1/(1 = 9)Qc = (Q)2/(1 = 9)Qc = [Qc/(1 = 0)Qcior-
The isomorphism X ~ Q¢ finishes the proof. 0
Combining 2.3.4 and 2.4.2, we can express Kottwitz’ isomorphism in the following form.
Corollary 2.4.3. The composition
[X/(1 = 0)X]or == H'(F, Q) “ HY(F,Ng) 2 H(F,G)

is a bijection. A class [\] € [X /(1 — 9)X]or, represented by X € X, corresponds to the class

[wy] € HY(F, Q), where wy, € Z'(F, N¢) is any element whose image in W is the unique element
Wi Oft)\Wo N Qc.
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2.5. The dual group. Corollary 2.4.3 is usually expressed in terms of the dual group G of G.
Let Y := X*(T) be the algebraic character group of T, and let (, ) : X x Y — Z be the natural
pairing. The dual group of T is the complex torus T :=Y ® C*; it is a maximal torus in G. Let
Z denote the center of G.

For any 0 € Aut(X), let 6 € Aut(Y) be defined by

(oA, m) = (N, an), AeX, nevy.

The action of ¥ on Y extends to the automorphism U @ 1 of T, thence by restriction to an
automorphism of 7.
We may identify
X = Hom(Z,CX),
via restriction of characters. Restricting further to 70, we may identify

X/(1 =X = Hom(Z’,C).

The elements in X/(1 —_19))_( vanishing on the identity component of 79 are exactly the torsion
elements in X /(1 — ) X. Hence we may identify

[X/(1 = 0)X]yor = Irr[mo(27)].

With these identifications, Corollary 2.4.3 becomes the usual expression of Kottwitz’ isomor-
phism.

2.6. A commutative diagram. It is at this point that we first use seriously the assumption that
F arises from a quasi-split k-structure on G which is K-split. Such an assumption ensures the
existence of a F-fixed hyperspecial vertex o € j(C).
Let W, be the image of N, = N N G, in W. The latter has another semidirect product
expression
W =X xW,,

and both factors are preserved by .

Since G is K-split and k-quasi-split, there is a Gal(k/k)-invariant pinning in G. Applying
Prop. 3 of [59] to this pinning, we see that there is an F-stable finite subgroup W, c N,
projecting onto IV,

Let w € W,, choose a lift @ € W, of w, and set F,, := Ad(w) o F. Applying Lemmas 2.1.2
and 2.3.1 to the groups W, and G,, respectively, there exists pg € G, such that

W= py " Flpo).
The map Ad(py) : T — G intertwines the pairs (T, F,,), (G, F). Let
(6) r:H'(F,,T) — H'(F,G),

be the map induced by Ad(py).
A version of the following result was proved by Kottwitz [35, Thm. 1.2].
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Lemma 2.6.1. We have a commutative diagram

[X/<1 - wﬁ)X}tor — [X/<1 - 79>X]t0r
~| 1~

HY(F,,T) SN HY(F,G)

where the vertical maps are from 2.4.3 applied to T' and G, the top row is the natural projection
and the map 7 is defined in Equation (6).

Proof. Starting at [X /(1 — w?) X, and going down the left side, then over on the bottom row,
the class of A € [ X/(1 — w?) X0, goes to the class

[potapy '] = [tapy " F(po)] = [trid] € H'(F, G).
Equation (9) below shows that [t w] = [w,], which is the result of the other route, by Corol-
lary 2.4.3. 0

2.7. Fixed points and cocycles. We continue in the set-up of Section 2.4. In this section we
show how cocycles in Z!(F, G) arise from fixed-points in A of elements in the affine Weyl group

W. This will be used to associate Frobenius endomorphisms on GG to Langlands parameters in
La.
Let w € W, and let X, be the preimage in X of [X/(1 — w?)X];o;. For A € X,,, we define

oy =twt e W x <19>

Lemma 2.7.1. The element o) € W x () has finite order.

Proof. The element w has finite order, say n, since it belongs to the finite group W, x (J). We
let Nyy = 1 +wd + -+ + (wd)" 1 € End(X) be the associated norm mapping. Since A € X,
there is m > 1 such that mA = (1 — wd)v, for some v € X. Then

O'fm = ng(tm)\) = ng(l — wﬁ)(tl,) =1.
0

By Lemma 2.7.1, o, preserves a facet .J, in .A. Choose an alcove C' in A containing .J), in its
closure. Let W) be the subgroup of I/° generated by reflections in the hyperplanes containing
Jy. The group W, acts simply-transitively on alcoves in .4 containing J, in their closure. Hence
there is a unique element wy, € W) such that

O')\'C)\:’U})\'C,\.
Set yy := w;lt,\w. Thus we have two expressions for o y:

(7) bhwd = oy = wyyrv,
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and the latter is characterized as the unique factorization of o such that wy € Wy and y, € W
satisfies v - Cy, = C). Since w,, fixes .J, pointwise, we also have y,¥ - J, = J,; indeed, o, and
y ¢ have the same action on J,.

To briefly look ahead: Equation (7) is the essence of our Langlands correspondence. The
expression ¢ wd will arise from a certain kind of Langlands parameter, that is, ¢\w1J is an object
on the “geometric side”. On the other hand, y) and w), will determine a twisted Frobenius F
and an unramified torus in G, respectively, so y, and w) are objects on the “p-adic side”. The
next result leads us to F).

Lemma 2.7.2. There exists a lift uy € N of yx such that uy € Z'(F, N).

Proof. 1f j is the order of o), (see Lemma 2.7.1), then
1= (wxyad) = wi (o),
for some w, € W°. Since W* acts simply-transitively on alcoves in .A, we can decompose
W (9) = W° x Qe

where Qc, is the stabilizer of C in W x (19). It follows that (y5)’ = 1. Let k be the order of
9. Then ‘ ' ‘ .

L= (10" = [ypnd(yn) - - 07 )]0 = yad(ya) - - 7" (ya).
That is, y) € Z'(F,W). Hence, for all z € W, we have z 'y, d(z) € Z'(F,W).

Recall that ¢, - C\ = C\. Let x € W?° be the element such that C'y = x - C. Then
-z C =x-C,s0x yd(z) € Q¢ (recall C is ¥-stable). By the previous paragraph, we
have in fact 7'y \J(z) € Z(F, Qc).

By Lemma 2.3.4 there is a lift n € Z'(F, N) of z7'y,9(x) such that n - C' = C. Choose a lift
2 € N of x. Then the element

uy = inF ()"t € ZY(F,N)
is a lift of y, as claimed. O

Lemma 2.7.3. The class of uy in H'(F, G) is equal to that of wy € Z'(F,G). (See 2.4.3.)

Proof. By the construction of uy in Lemma 2.7.2, we have [uy] = [n], where n € Z!(F, N) is a
lift of 21y, 9(z) € Q¢, and z is a certain element of W°. By Corollary 2.4.3, it suffices to show
that
—1 o
oy (x) € LS.
First note that ¢£,1/° is preserved under conjugation by W°. The equation {yw = w,y, then
implies y, € t,WV°. Since x € W° as well, it follows that z 7 1y\0(x) € t\W°. O

Fix once and for all a lift w of w in Wo. Since ¢ Awygl = w) € W?°, there exists a unique lift
wy € N of w), satisfying
t,\w = 11))\11,)\.
Set
G)\ = GJ)\, F)\ = Ad(u/\)oF
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Since y v - Cy = C), we have
F)\ 'C)\ - C)\.

‘We have
ty € Z'(F,, Q), we 7Y F,G),

the first by the definition of X, and the second by Lemma 2.1.2 applied to the group W,. From
Lemma 2.1.1 we conclude that

tai € Z1(F, Q).

But also uy € Z*(F, G), so using Lemma 2.1.1 again, we conclude that
wy € Z'(Fy, Gy).

By Lemma 2.3.1 there is an element p) € G such that
Py Fa(pa) = iy,

This equation can be written as

(8) tai = pyuy F(py).
It follows that ty1w € Z(F, G), and, in view of Lemma 2.7.3, we have
©) [taw] = [un] = [wn] € H'(F, G),

as claimed in the proof of Lemma 2.6.1.

2.8. A normal form for Frobenius endomorphisms. Keep the set-up of Section 2.7. For each
A € X, we have defined a Frobenius automorphism F, and an F,-stable alcove C) in .A. For
certain w € W,, we will eventually associate to )\, and some additional data, a representation
7y € Irr(G™). This association will be quite natural, but it will leave us with infinitely many
pairs (G™, ), which are almost all conjugate to one another in some sense, and we will need
to compare them. To do this, we seek a normal form for our Frobenius endomorphisms F).

Fix aclass w € H'(F, @), along with a representative u € w N N, such that u-C' = C. This is
possible by Lemma 2.3.4. In this section we will gather together all of the F for which u) € w.
We will then use our explicit cohomology picture to keep track of conjugacy classes of tori and
certain semisimple elements in a fixed group G*«. This, in turn, will be used in our stability
calculations.

From Lemma 2.6.1, we have a map
r: X, — H'(F,Q)

sending A — [wy]. For A € r~1(w), define o), = t,w?), and choose Jy, Cy, u, as in Section 2.7.
Recall that the Frobenius F\, = Ad(u,) o F stabilizes the alcove C).

Lemma 2.8.1. For each \ € r~*(w), there exists my € N such that

my * Uy = U, my - Cy\ =C.
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Proof. Choose k) € N such that k) - C'y = C. Since F) -C\ = C), it follows that k) * u) € N¢.
In Lemma 2.7.3 we proved that [u] = [u,] in H'(F, G). Therefore [u] = [k * uy] in H'(F, G).
Since v and k) * uy belong to N¢, and H*(F, N¢) — H'(F, Q) is injective (see Lemma 2.3.4),
we have [u] = [ky * uy] in H'(F, N¢). Hence there is /) € N¢ such that u = (¢\ky) * uy. Then
my := )k, has the required properties. U

As in Section 2.7, we have the alternative expression o, = wyy ¥, where w, € W, and y,
is the image of u), in W. Recall that we have fixed a lift w € WO of w, which determines a
lift w) € N N G, by the equation tyw = wyuy, and we have an element p, € G, such that
py ' Fa(py) = 1. Choose m, as in Lemma 2.8.1 and set

Q) 1= Mypx € G, Sy = Ad(qA)T

Then in G' we have, using equation (8),
¢ Fulan) = py'-my uF(my - pa)u~t = pylua F(pa)u™t =ty
Thus, we have the analogue of equation (8) for g,:

(10) tab = gy ' uF(qn).

Equation (10) will be used repeatedly in future calculations. It implies that the map Ad(g,) :
T — S, satisfies
F.oAd(g\) = Ad(qy) o F,, .

In particular, S, is an F,-stable unramified maximal torus in (, whose underlying algebraic
group S, is k-isomorphic to the twist of T by w.

In this section we have constructed an infinite family {S\ : A € r~(w)} of such tori, and our
next task is to group these tori, and their strongly regular elements, into G**-conjugacy classes.

2.9. Conjugacy. We will use several times another consequence of Steinberg’s vanishing result,
Theorem 2.2.1.

Lemma 2.9.1. Let G, be the adjoint group of G, and let G,q = G4(K). Suppose G4 acts on
a k-variety X, with connected stabilizers. For x,y € X(K), the following are equivalent:

(1) x and y are in the same G-orbit
(2) x and y are in the same G ,q-orbit
(3) x and y are in the same G-orbit.

Here G acts on X via the canonical map j : G — Ggq.

Proof. Implication 1 = 2 is clear. Since G — G, is surjective, 2 = 3 is also clear. Assume
3 holds, so there is g € G such that -z = y. Since z,y € X(K) = X7, the map sending 0 € T
to g 'o(g) € G is acocycle in Z'(K, G,). By hypothesis, G, is the full stabilizer of z in G.
By Theorem 2.2.1 we have H!(K, G,) = 1, so there is h € G, such that (gh)~'o(gh) = 1 for
all o € 7. Hence gh € G, and 1 follows. O
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We say that v € GF is strongly regular semisimple in G if the centralizer of 7y in G is a torus.
By 2.9.1 we have for such v the equalities

[AA(G)y] %P = [Ad(Gaa)y)" = [AA(G)]".

Such a set is called the G-stable conjugacy-class of ~y. It is a finite union of Ad(G”)-orbits,
which are called the rational classes in the stable class.

2.10. Rational classes in a stable class. We continue with the setup of Section 2.8. Our aim is
to explicitly parametrize the rational classes in the stable classes of certain elements v € G.
Recall that the map r : X,, — H'(F, Q) is defined as a composition
7 Xy — [ X/(1 — wd) X]ior — H'(F,G).

We have fixed w € H'(F, G), and have considered the fiber r~*(w) C X,,. Now let [r~!(w)]
denote the image of 7~!(w) in [X/(1 — w) X]ior. In other words, [r~!(w)] is the fiber over w in
the second map in the above composition. By Lemma 2.6.1, we may identify [r~*(w)] with the
fiber over w of the natural map H'(F,,T) — H(F, Q).

Let v € T™ be a strongly regular element of G. For A € r~!(w), we set

M= gy € Sy
Lemma 2.10.1. For \,u € r~(w), the elements v\ and -, are G¥-conjugate if and only if
A =p mod (1 —wd)X. Thus, sending X\ — -, defines a bijection
[ w)] = [Ad(G)]™ /G

Proof. Since S\ = G,,, this is almost obvious from Lemma 2.6.1. However, we will give a
direct proof which produces the conjugation from elements already in play.
By Equation (10) we have

¢ uF(q\) = taw, qulu F(q,) = t,w.

Let h = q,q, ", so that Ad(h)yy = .. Then h™'F,(h) € S since 7 is strongly regular.
Moreover, 7, € Ad(G™)y, if and only if the class [R~' F,(h)] in H'(F,, S)) is the identity
element. We have

h'Fu(h) = qr - g, 'uF(q) - Fgn) '™
=t Fgy) "t
= q)\tuww_lt_,\qgl
= QAtu-ady
SO
(W Fu(h)] = [aat-aqy '] € H'(F, Sy).
On the other hand, we have isomorphisms

X/(1 - wi)X],, > H\(F,,T) "% H'(E,, 5)).
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The first isomorphism is Corollary 2.4.3 applied to 7', F,,; for v € X, it sends the class of v
mod (1 —wd)X to the class of ¢, in H'(F,,, T). Thus, [gxt,_xqy '] is trivial in H(F,, S,) if and
only if A — € (1 — wd)X. O

2.11. A partition of the rational classes in a stable class. We have seen in Lemma 2.10.1
that the fiber [r~!(w)] parametrizes the G-conjugacy classes in the stable class of 7y, for A €
r~!(w). In this section we study an additional structure on this fiber. Namely, the group

W= {z, € W, : wi(zo)w™" = z,}

acts naturally on X, [X/(1 — wi)X]or, and [X /(1 — ) X]ior, and W*? acts trivially on the
latter. Hence there is a natural W *Y-action on the fiber [r~!(w)]. This action in fact corresponds
to G*«-conjugacy among the family of tori {S) : A € r~(w)}, as follows.

Lemma 2.11.1. For \, i € r~'(w) the following are equivalent.

(1) There is z, € W*? such that zopp = X mod (1 — wd)X.
(2) There is g € G™ such that 9, € S).
(3) There is g € G*™ such that9S,, = S).

Proof. Assertions 2 and 3 are equivalent because S\ = G, forall A € r~*(w). (We have made
them separate statements for later convenience.)
Assume 3 holds. Then q)fl 9q, € N. Applying Equation (10) for 12 and )\, we find that

090t - F(q, g an) = a3 " guF(9) " Flan)
=qy'g-uF(g) tu!
=q,'9-Fu(g)" - oatawd
— tyai.

S W

(11)

Let z € W be the image of q/(l 99, and write z = t, 2, with v € X, z, € W,,. Mapping the first
and last terms of Equation (11) to IV, we have

t2ze - tyw - Iz t,) = thw.
This shows that z, € WY, and then projection onto W, yields
A= 2+ (1 —wi)y,

so 1 holds.
Conversely, if 1 holds, then A = z,p+ (1 — w?)v for some v € X, and we set z = t,,2,. Since
HY(F,,°T) = 1, there is a lift 2, € N of z,, and we set Z = t,%,. Then

F(2) = tg, ™ 2.
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Set g = qxéqul. It is clear that 9S,, = S). To prove 3, it remains to show that g € G™. Using
equation (10) again, we compute
Fu(9) =uF(q\) - F(2) - Flg,)u™

= atat - gt e T g,

= qn  bawdv—zon * Zoll),

S

=9
as desired. OJ

Let
W i={zeW™: 2A=X mod (1 - wd)X}

be the stabilizer in TW,*” of the class of X in [r~'(w)]. The next result interprets W*? and W

as “large” and “small” Weyl groups of S, respectively. This will be used to relate L-packets to
stable conjugacy classes of tori.

Lemma 2.11.2. For A\ € r~!(w), the map Ad(qy) induces isomorphisms
W = N(G,S5) /Sy, W& — N(G, )™ /Sy

Proof. First, a remark about normalizers of tori. Let /' be a Frobenius on G arising from some
k-structure, and let S be the group of K -points of a maximal k-torus S C G. We claim that

(12) [N(G,5)/S]" = N(G, ST)/S.

For C: Let n € N(G,S) be such that F'(n) = ns for some s € S. Then on S we have
Ad(n) o F = F o Ad(n), implying that n € N(G, ST). For 2: Choose sy € S¥ N G*™. For
n € N(G, SE ), and s € S, the element nsn~! centralizes sg, hence lies in S. This shows that
N(G, ST) C N(G, S). Moreover, we have Ad(n)so € S, implying that Ad(n"'F(n))sy = o,
hence F'(n) € nS, as desired.

This remark shows that W*? = N (G, T")/T, and the first isomorphism follows. The second
isomorphism amounts to showing that the projections N — W — W, induces an isomorphism

(13) NFoxw /TR0 s W)
Letn € N and lett,z be the image of n in W, where v € X and z € W,. We want to show
that z € Y. From the equation Ad(t,) F,,(n) = n, we get
Ad(tyw)d(t,z) = t,z,
which leads to
tatwo—1)y Ad(w)d(2) = t.52,

hence z € W*¥ and 2\ = X + (wd — 1)v, as desired. This shows also that (13) is injective.

To see that (13) is surjective, let z € WY, and choose a lift 2 € N,. Since Ad(tyw)d(z) = z
in W, = N, /T, we have

Ad() F(2) = 2,
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for some ¢t € °T. Since H*(F,,T) = 1 we can write t = s F,,(s™!) for some s € °T. Then Zs
is a lift of z in N¥w, O

3. THE CONJECTURAL LOCAL LANGLANDS CORRESPONDENCE

Very roughly speaking, the conjectural local Langlands correspondence predicts a relationship
between representations of a p-adic group and certain maps from the Weil group into the dual
group. The latter maps are called “Langlands parameters”; they should partition the represen-
tations of the p-adic group into finite sets, called “L-packets”, and it is conjectured that these
L-packets have many nice properties. We now make these statements more precise.

3.1. Frobenius endomorphisms and representations of p-adic groups. Continue with the set-
up of section 2.3: G is a connected reductive k-group which is k-quasi-split and K -split, with
Frobenius automorphism F on the group G = G(K).

For each cocycle u € Z!(F, G), we have a twisted Frobenius

F,:=Ad(u) o F
on (G, and for g € GG, we have
Ad(g) o F,0Ad(g) ™" = Fyuu -
Therefore Ad(g) is an isomorphism
Ad(g) : GF — GFor,
which induces a bijection on irreducible representations, denoted by
Ad(g), : Irr(G*™) — Trr(GForv).

This bijection preserves the sets Irr?(-) of square-integrable representations.
Thus we have a GG-action on the set

R2(F7G) = {(u77'(') U € Zl(F7 G)7 TE II‘I‘Z(GF")},
Considering the u-coordinate, we can partition R?(F, G) into G-stable subsets
RQ(F’G) = H RQ(F’G7W>7
weH(F,G)

where R*(F, G, w) consists of the pairs (u, 7) € R*(F,G) with u € w.

3.2. Dual group. Let G be the dual group of G. By definition, the dual torus
T:=Y ®C~

is a maximal torus in G. The operator 0 e Aut(Y') dual to 9 extends to an automorphism of the

torus T with trivial action on C*. o A R
We choose, once and for all, a pinning (7', B, {z,}) where B is a Borel subgroup of G con-
taining 7" and the z, are non-trivial elements in the simple root groups of 7" in B. There is a
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unique extension of ¥ to an automorphism of G, satisfying 19(31:&) = Xy.o (see [7]). We can then
form the semidirect product

LG .= () x G.

3.3. Weil group. Recall that the inertia subgroup Z < Gal(k/k) is the kernel of the natural map
Gal(k/k) — Gal(K/k).

The Weil group W is the subgroup of Gal(k/k) generated by Z and the Frobenius Frob. The
wild inertia subgroup Z= <1 Z is the maximal pro-p subgroup of Z. The tame inertia group is
the quotient Z, := Z/Z ", and the fame Weil group is the quotient W, := W/Z*. We will have
more to say about these groups in Section 4.3.

3.4. Elliptic Langlands parameters. An elliptic Langlands parameter is a homomorphism
©: W x SLy(C) — G
with the following properties:
e ©(Z) is a finite subgroup of G,
e o(Frob) = Jf, where f € G is semisimple,
e the restriction of ¢ to SLy(C) is algebraic, )
e The identity component Cf(¢)° of C5(¢p) is equal to the identity component (Z”)° of
A
The last condition expresses the “ellipticity” of ¢; it is equivalent to requiring that the image of
¢ is not contained in a proper Levi subgroup of “G, where the meaning of “Levi subgroup” is as
in [7, 3.4]. .
We let C,, denote the component group of C(p). Since 7" is contained in the center of

Cea(p), each p € Irr(C,,) determines a central character on A hence, via Kottwitz’ isomorphism
(Corollary 2.4.3), a class w, € H'(F,G). Thus we may partition

Irr(C,) = H Irr(C,, w),

weHL(F,G)

where Irr(C,,, w) consists of the representations p € Irr(C,) with w, = w.

3.5. The conjectures. The version of the Langlands conjectures stated here is the product of
many refinements, by Deligne, Lusztig, Vogan and others. The local Langlands correspondence
for G is a conjectural bijection between the set of G-orbits of pairs (¢, p), where ¢ is an elliptic
Langlands parameter and p € Irr(C,,), and the set of G-orbits in R?(F, ). Among many other
expected properties, the G-orbit corresponding to (¢, p) should lie in R?*(F, G, w) precisely when
w

p:w.
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Thus, we expect to have, for each G—conjugacy class of elliptic Langlands parameters ¢, a

finite set
Ie)= J[ Mew),
weH(F,G)
where
(14) (g, w) = {[r(p,p)] : p€lrr(Cp,w)},

and [7(, p)] = {(u, (¢, p)) : u € w}is a G-orbitin R*(F, G,w).
These putative sets I1() are known as “L-packets”. These L-packets should form partitions

RYF.G)/G = [] H(p), R*F.Gw)/G= [] e w).
{¥}/G {v}/G

To describe the properties we expect of an L-packet, we fix a representative u € Z'(F, N) of
each class w € H'(F, G). We represent the trivial class by u = 1, recalling that F; = F. Then
{mu(p,p) = p € Irr(C,,w)} is a set of representatives for the G-orbits comprising I1(y, w).

We expect L-packets to have the following properties.

(i) The representation 7, (i, p) is unipotent [39] if and only if ¢ is unramified, (that is, if ¢ is
trivial on the inertia subgroup Z of V). For G with connected center, Lusztig has constructed
unipotent L-packets corresponding to unramified ¢ [39], [40]. See also [41] and [48] and for
orthogonal and split adjoint exceptional groups, respectively.

(ii) 7. (¢, p) has depth-zero (that is, has nonzero vectors fixed under the pro-unipotent radical
of some parahoric subgroup in G™) if and only if ¢ is tame (that is, ¢ is trivial on the wild inertia
subgroup Z of 7).

(iii) 71 (¢, 1) should be generic (that is, has a Whittaker model). If G has connected center,
then 7 (¢, 1) should be the unique generic representation in I1(y).

(iv) Let M be a minimal Levi subgroup of “G containing (V). (Itis unique up to conjugacy
by the connected centralizer of (W) [7].) If “M = LG, then every class in T1(p) should consist
of supercuspidal representations. In this case, we say that I1(¢) itself is “supercuspidal”. The
L-packets in this paper are all supercuspidal.

If “M # G, then “M corresponds to an F-stable Levi subgroup M C G contained in
an F-stable proper parabolic subgroup P C G. The restriction ¢ : W — LM inductively
corresponds to a generic supercuspidal representation )7 (¢, 1) of M™, and 71 (¢, 1) should be a
generic constituent of the smoothly-induced representation Indgi ™M (p,1). For (u,p) # (1,1),
the representation 7, (¢, p) should be supported on Levi subgroups of G™ whose center has
k-rank no larger than that of MF.

(v) For each u, normalize Haar measure on G so that the formal degree of the Steinberg
representation of G is independent of u. (For example, one could make all Steinberg formal
degrees equal to one, but we will choose a different normalization.) Let Deg denote formal
degree with respect to these measures. Then we should have

Deg[m. (i, p)] = dim p - Deg[m (¢, 1)].
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Recall that 7, (¢, p) and 71 (¢, 1) may be representations of non-isomorphic groups.

Properties (i-v) were verified in [48] for unipotent L-packets of split adjoint exceptional groups
(see (i) above).

(vi) Fix v and ¢, and let ©, be the character of m,(p, p), viewed as a function on the set
(G™$)F= of regular semisimple elements of G™. The function

Z dimp -0,

p€lrr(Cypw)

should be stable. That is, if 7,7 € (G¥*)¥ are G-conjugate' strongly regular elements (see
Section 1), then we should have

Y dimp-©,(1)= ) dimp-6,().

pelrr(Cyp,w) pelrr(Cyp,w)

This was verified in [41] for unipotent L-packets for inner forms of SO(2n + 1) (see (i) above).

4. FROM TAME REGULAR SEMISIMPLE PARAMETERS TO DEPTH-ZERO SUPERCUSPIDAL
L-PACKETS

We shall construct L-packets satisfying (ii)-(vi) above, for tame parameters ¢ in “general
position”. We will first make this condition precise, and outline the construction.

Our construction relies on the tame Langlands correspondence for tori. A general Langlands
correspondence for tori was proved by Langlands [37] but it seems more difficult to extract
the depth-zero correspondence from [37] than to re-prove it from scratch, so we give a short
self-contained account of the tame Langlands correspondence for tori. Then we construct our
L-packets, using the material from Section 2.7.

4.1. Tame regular semisimple parameters. We say that a Langlands parameter ¢ is tame reg-
ular semisimple if it is trivial on the wild inertia subgroup Z* and the centralizer of ©(Z) in G is
a torus. The latter condition is what we mean by “general position”. This forces ¢ to be trivial
on SLy(C). (There is a more general notion of “tame regular” parameter which we will consider
elsewhere.)

Recall that W, = W/Z" and Z, = Z/Z". Our choice of inverse Frobenius determines a
splitting

W, = (Frob) x Z;,
where Frob™! z Frob = 2 for = € Z,.

Recall that the Weyl group N/T is identified with W, the i image of N, in W. We let W,
denote the Weyl group N / T where N is the normalizer of 7" in G. The restriction of the duality
map

Aut(X) 79 Aut(Y)

defines an anti-isomorphism w — w from W, to Wo.

Tt is customary to require the elements to be G-conjugate, but we have seen in Lemma 2.9.1 that two strongly
regular semisimple elements of G are G-conjugate if and only if they are G-conjugate.
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After conjugating by G, we may assume that ¢(Z;) C T and o(Frob) = 9 f, where f € N.
Let w be the image of f in W, corresponding to w € W, via the above anti-isomorphism.
Then

Caly) =T,
which implies that the restriction map X — Hom(T “79, C*) induces an isomorphism
(15) [(X/(1—wd)X], — Irr(C,), A = Py

Moreover, ¢ is elliptic if and only if
(T@)o _ (ZAﬁ)o.

To summarize: A tame regular semisimple elliptic Langlands parameter (TRSELP) is given
by two objects:

e a continuous homomorphism s : Z, — T, with Cj5(s) = T', and
e an element f € NNV satisfying the two conditions

Jo Ad(f)os? = s, (T@)O = (ZW)O,

where w € W, arises from f as above.

Remark 4.1.1. 1f G is sem1s1mple then the elhptlclty condition on ¢ is that T be finite. In this
case, the map T—T given bytL =t wz?( t) has finite fibers, hence is surjective. Hence, if we
conjugate i f by elements of T, we can change f to any other representatlve of w. This means the
T- -conjugacy class of i f is determined by the image w of f in W,, so the G- -conjugacy classes
of TRSELPs are in bijection with W, -conjugacy classes of pairs (s, w), where s : 7, — T is
continuous, with Cx(s) = T, and 1 € W, satisfies

wi} o s = s, T is finite.

4.2. Outline of the construction. Suppose we have a TRSELP ¢, with s, f, w as above. Recall
from Section 2.7 that X, denotes the preimage in X of [X/(1 — w1) X]ior. For A € X, let p)
be as in (15). In Section 2.7 we associated to \ a cocycle uy whose class in H!(F, G) is Wy, . The
twisted Frobenius F, = F,,, stabilizes a facet J, C A with corresponding parahoric subgroup
G- Ellipticity will imply that the facet .J, is in fact a minimal F,-stable facet in A, so GEA is a
maximal parahoric subgroup of G™.

To (¢, A) we will further associate an F\-minisotropic torus 7}, a depth-zero character y
of Ty, whence an irreducible cuspidal representation s§ of G1* := (G,/G{)™ (viewed as a
representation of Gf*), via the Deligne-Lusztig construction. In fact, y, will define an extension
Ky of K3 to Z FGEA such that the smoothly-induced representation

GF
IndZF G A
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is irreducible. Here Z denotes the group of K '-rational points of the maximal k-split torus in
the center of G. An exercise shows that the functions in 7 necessarily have compact support
modulo Z¥, so we could just as well define 7y, using the compact induction functor ind.

In our construction, uy and Jy are not uniquely defined, but the G-orbit [uy, m)] € R*(F, G)
will be independent of the choices of u) and J\. Moreover, for \, u € X,,, we will have

[ux, T = [u, 7] & pa = pp
Thus, to (¢, p) we will associate the G-orbit [uy, ] € R*(F,G,w,), where A € X, is any
character of T' restricting to p.

The L-packets thus defined are the “natural” ones: All choices involved in the construction
are rendered equivalent by taking G-orbits. However, to make the stability calculations, we need
representations of a fixed group. Using Section 2.8, we will choose a representative (u, ) in
each G-orbit [uy, ], so as to have all representations in the “unnatural” L-packet living on the
single group G*.

4.3. Depth zero characters of unramified tori. Recall that X = X,(T), ¥ = X*(T). Let
o € Aut(X) be an automorphism of X of order n, and let F, = 0 ® Frob™! be the corresponding
twisted Frobenius of both 7 = X @ K* and T = X ® §*. (Recall that Frob™ ' is the ¢g-power
map on §.) Let f,, be the degree n extension of f contained in §. Since o has order n, the torus T
with Frobenius F, splits over f,, and T = X ® f*.

Given automorphisms «, (3 of abelian groups A, B, respectively, let

Hom, 3(A, B)
denote the set of homomorphisms f : A — B suchthat foa = (o f.
We have an exact sequence
1— TP 7% Ey i Mo i g
where N, (t) = t F,(t) F2(t) --- E*~!(t). So N, induces an isomorphism
Hom(T™,C*) = Homg, 14(T", C*) = Homg, 14(X ® f,C*).
There is also an isomorphism
Hom(§%,T) = Hom(X ® £X,C*), s~ Xs,
where (A ® a) = A(s(a)), for A € X, a € . One checks that
Xs € Homp, u(X ®f,,C*) << Gos=sokFrob,

where & € Aut(Y) is dual to o. (The action of & on 7' is such that o - A = Ao 6 forall A € X.)
Hence s — Y is an isomorphism

Homprobﬁ(f; > T) ;> HomFo,Id (X ® f; s CX)
The tame inertia group Z; is identified with the projective limit

Z, = limf,
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with respect to the norm mappings on the finite fields f,,. The canonical projection
Ty —
induces an isomorphism as Frob-modules

Since ¢ has order n, any s € Homaqmobs(Zt, 1) is trivial on (1 — Ad Frob™)Z,. It follows that

A~

HomFrobﬁ (fr: ) T) = HomAd Frob,& (Ita T)
Thus the map s — Y is a canonical bijection
HomAd Frob,& (It, T) - HOHI(TFU, (CX)

Now so Ad Frob = ¢ o s iff for some (equivalently, any) 7 € T, the assignment Frob — o x 7
extends s to a homomorphism

SOZWt —>LTO'7

where T, = (6) T is the L-group of the torus 7" with Frobenius F,. The T—conjugacy class
of the extension ¢ is uniquely determined by the image of 7 in 7'/(1 — )T The latter group is
identified with the character group of X, whereby 7 corresponds to

X- € Hom(X?,C*), Xr(A) = A(7).
Our choice of uniformizer in k£ gives an isomorphism
TP ~ 07" x X,

where °T is the group of Ry-points of T. Hence the above isomorphisms give a canonical
bijection between T-conjugacy classes of admissible homomorphisms ¢ : W, — LT, and
depth-zero characters

Xo = Xs @ Xr € Irr(TF"),

where s = |7, and p(Frob) = & x 7. This bijection has the following naturality property.

Lemma 4.3.1. Let « be an algebraic automorphism of T commuting with F,, so o € Aut(X)
and & € Aut(Y'). Then x, 0 0 = Xaop-

Proof. We check it first on X 7. Since x., (1) = p(7), for p € X7, we have
Xe(a-p) = (a- p)(7) = (- 7) = Xaop(1t)-
Now on T*” we have x, = x;, where x; € Homg, 14(X @, C*). For A € X, a € §, we have
Xaop(A®a) = Xaos(A®a) = A(@-(s(a))) = (a-A)(s(a)) = (xsca)(A®@a) = (x,0a)(A@a).
O
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Now let ¢ : W, — L@ be a TRSELP, with associated w € W, and set ¢ = wy. We want to
construct from ¢ a T'-conjugacy class of Langlands parameters

SOT : Wt — LTO’7
such that ¢ = ¢ on Z, and such that ¢7(Frob) and ¢(Frob) have the same action on 7. We
will have

or(Frob) =6 x 7
for some 7 € T', which is only defined up to o-twisted conjugacy. That is, we need only define
the cosetof 7inT'/(1 — &)T.

We define the coset of 7 as follows. Let G be the derived group of G, and let 77 = T'N .
Ellipticity implies that the map 7 +— 76(7)~! has finite kernel on 7", which means that

(1—6)T" =T,

so the inclusion 7" — G induces a bijection

~

T/(1-6)T" = GG =: Gu.
It follows that 7' <—  induces a bijection
(16) T/(1—6)T =5 Gap/(1 — )G

between the the set of o-twisted conjugacy classes in T and the set of J-twisted conjugacy
classes in the abelianization G . Now, if (Frob) = I x f, we take any 7 € T whose class in
T/(1 — 6)T corresponds under (16) to the image of f in G,/ (1 — 0)Glap.

Hence, from the TRSELP ¢ we get a character x,, € Irr(7%"). We will abuse notation
slightly and again denote this character by ...

4.4. From tame parameters to depth-zero types. Let ¢ : W, — L@ be a TRSELP with
¢(Frob) = ¥ f as in Section 4.1. Let w € W, be the element such that 0 is the image of f in
W,. Since ¢ is elliptic, we have

(17 X" =X(2°)", X ={0},

where Z° is the identity component of the center Z of G.
Let A € X, and set
oy = twt € W x <Q9>,
as in Section 2.7. By the second equation in (17), the operator I — w) acts invertibly on 4,4, SO
o has a unique fixed-point x) € A4, given by

zy = (I —wd) ;) - o.
Let 7 be the pre-image of ) in A%,

The facet J, from Section 2.7 is the unique facet in A containing Z,. As in Section 2.7, we
choose an alcove C' in A containing J, in its closure, and write

G)\ = GJA, W>\ = [NQG)\]/OT, G)\ = G)\/Gi_
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We choose uy € Z'(F, N) as in Lemma 2.7.2, and define
F/\ = Ad(u,\) oF.

Then F) is a Frobenius endomorphism of GG for some k-rational structure on G which is inner
to the quasi-split structure on G given by F. Recall also that F), stabilizes the apartment .4, the
alcove (', and the facet .J,.

Lemma 4.4.1. We have
AT = TP = TN = 7.

In particular, the point xy is a vertex in B(Gaq)™.
Proof. From (7) of Section 2.7 we may decompose o) in two ways:
o) = thywt = wyrv.
Since w), fixes J) pointwise, we have
I = g = J = i,
Also, A% = 7, C J,, implying that A7 = J7*. O
Since F), - J, = J), F) induces a Frobenius endomorphism of G, preserving T. Since F) -C) =

C, the Frobenius F), also preserves a Borel subgroup of G, containing T. It follows [6, 20.6]
that T is a maximally f-split torus in G, with respect to F).

From Section 2.7 we have the alternative expression
o\ = WYY,

where w, € W), and vy, is the image of u, in W. Moreover, our fixed choice of lift w of w
defines a lift wy € N N G, of w,, via the equation

t >\U.) = li))\U)\.
Recall we can then choose an element p, € GG such that

Py Ea(py) = .
Note that
FyoAd(py) = Ad(py) o Ad(wyuy) o F.
Define
Ty := Ad(p\)T.

Then T is an F)-stable unramified torus in G. On T, we have Ad(wyu,) = Ad(w), so Ad(p,) :
T — T, satisfies
FyoAd(py) = Ad(py) o Fy,
where F,, = Ad(w) o F.
By ellipticity, we have

TFe = X7 5 OT™ = X, (2°)" x "T™ = 27 .°7™.
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This implies that T} is Fy-minisotropic. Moreover, we have °T'y = T N G, and °T', projects to
an F)-minisotropic maximal torus T in G,.

On A and A,; we have Ad(wyuy) F = o). By Lemma 4.4.1 the unique fixed-point of 7} in
B (Gad>FA is

[pa - Aad)™ =pa - AT = py - 1) = 2.

As in Section 4.3, we have a depth-zero character x = x,, of 7™. Since ¢ is in general
position, Lemma 4.3.1 implies that y is F,,-regular.

This character y transports to a depth-zero F\-regular character

X i= Ad(pa)ax € Tir(T5).

The restriction of y) to OTEA factors through a character x§ € Irr(Ti*), which is in “general
position” with respect to F), in the sense of [20, 5.16]. By [20, 8.3], Deligne-Lusztig induction
then gives an irreducible cuspidal representation

0._ G F
Ky = €(Gy, Ty) - RTi,xg € Irr(GY).
Inflate » to a representation of G and define an extension to Z"G'> by
Ky = X ® K.
This makes sense since (Z N G)™ acts on kY via the restriction of the scalar character x3.

So far, to the TRSELP ¢ and A € X, we have associated a Frobenius F), an F,-stable
parahoric subgroup G, and an irreducible representation x) of Z FGE*. In the process we made
choices of w, Cy, uy, px.

Lemma 4.4.2. Given a TRSELP ¢ and \ € X, both fixed, suppose we make two sets of choices
(w, Cy, ux, py) and (W', C4, ul, p\) as above, giving rise to (Fx, Ty, xx, k) and (Fy, T, X5, £4)
as above. Then there is h € G, such that

(1) h*u) =uy;
(2) Ad(h)«(T5, X\s £3) = (T, Xa, )

Proof. Note that (1) implies that Ad(h) (GI}) = GE*, so (2) makes sense. Since o) is defined
before the choices are made, we have
ways = taw = Wiy,
so there is t € °T such that
’Li))\U)\ = tw&u'/\
Here, both sides belong to Z!(F, N) and act on T via w. Lemma 2.1.1 implies that ¢t €
ZY(F,,°T). By Lemma 2.3.1 for °T’, there is s € T such that

(18) sE,(s) ' =t
Since Ad(w) = Ad(w\u}) on T, equation (18) can be written

(19) swiuy = tw\u) F(s) = wyuy F(s).
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Recall our equations characterizing p, and p):

(20) Py Ea(pa) =y, Py F(ph) = b
These allow us to write (19) in the form
1) s-ph A F(PY) = py ua F(pa) - F(s),

Equation (21) shows that the element i := pAsp’{l satisfies h * u), = uy. We have h € G,
since p,, s, ph are all in G. It is clear that Ad(h)(T%, x}) = (T, x»), which then implies that
Ad(h)*lil/\ = K). O

4.5. Definition of the L-packets. Given a TRSELP ¢, an element A € X, and a set of choices
(C, ux, py), define

L GPA
Ty = IndZFGEA K,

where Ind denotes smooth induction. (The functions in 7, automatically have compact support
modulo Z¥'.) In this notation we have suppressed the choices (Cly, uy, py), but by Lemma 4.4.2
the G-orbit (in fact the G ,-orbit) of (uy, ) is independent of these choices.

Lemma 4.5.1. The representation 7y of G™ is irreducible supercuspidal.

Proof. By [44, 6.6] it suffices to show that ) induces irreducibly to the group
(G’;\)FA = {g € GFA L g- J)\ = J)\},
which is the normalizer of G? in G*™. For this, it is enough to show the stabilizer of k) in
(G5)™ is just ZDGR>.
Suppose h € (G%)™ and Ad(h).kx = k. By [20, Thm. 6.8], there is g € G* such that
Ad(gh)«(Tx, xa) = (Tas xa)-
Then by [14] there is £ € (G)™ such that

Ad(Lgh)«(Tx, x») = (T, xa)-
That is, fgh € N(G,Ty)™ and fixes x). Hence p;léghpA € NY and fixes y. Let z be the
projection of p;\lfghpA to W,. By Lemma 4.3.1 we have 2o s = s, but Cz(s) = T,s0z = 1.
It follows that fgh € Ty N (G5)™ < Z®G3>. Since £ and g are in G5, this implies that
h € ZRGY. O
At this point we have a supercuspidal representation 7y, € Irr(G™) for every A € X,,. We now

show that the G-orbit [uy, m)] := Ad(G) - (ua, 7)) depends only on the character p) € Irr(C,,)
corresponding to the image of A in [X/(1 — w?) X, = Irr(C,,) (see Section 4.1).

Lemma 4.5.2. Given ¢, along with \, u € X,,, make choices (Cy,uy, py), (Cy, w,, py) as above.
Then py = p,, if and only if there exists g € G such that

(1) g *uy=uy;

2) g-Ih=Jy

(3) Ad(g)«kn =~ Ky
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Proof. Suppose py = p,. This is equivalent to having 1 = X + (1 — wd)v for some v € X,
which amounts to the following equation in W x ():

t,ont, !t =t thwidt,! = t,wd = o,
Lifting to NV, we have
(22) tabyuy F(t,) ™ = ti,uy,
for some ¢ € °T. Arguing as in the proof of Lemma 4.4.2, there is s € °T, such that
p“tp;1 =51 F,(s).
Using Equations (20) we then find that
g * Uy = Uy,

where g = sp,t,p)

Since 0 and o, have unique fixed-points x and z,, in A,4, we must have ¢, - x = x,,, hence
t, - Jx = J,,, from which 2 is immediate.

Finally, we have

Ad(g)*(TM X)x) - Ad(sputu)*(Ta X) = Ad(S)*(TN, Xu)v

s0 Ad(g)«ka > K.
Turning to the converse, suppose we have g € G satisfying items 1-3 above. By 2 and 3
and [20, Thm. 6.8], the pairs

(Ad(g)Th, Ad(g)«xn), (T Xp1)

are conjugate in G}, so without loss of generality, we may assume these two pairs are equal.
Then, the element n := p;l gp» belongs to N. By 1, Ad(n) preserves T, and it preserves the
F,,-regular character y, since Ad(g).x» = X, It follows that n € T'. Let ¢, be the image of n in
. As in the first paragraph of the proof, it suffices to prove that ¢, 0,t, ! = o,,. But this follows
from the equation

Ad(n) o Ad(iyuy) o FoAd(n)™! = Ad(u,u,) o F,
which is proved using Equations (20) as before. UJ
Now we have our first main result.

Theorem 4.5.3. Given a TRSELP ¢ with associated w € W,, letr : X, — H'(F, Q) be as in
section 2.8. For each w € H'(F, G) define

(p,w) = {[ur, ] : A €rHw)}).

Then we have a well-defined bijection Irr(C\,,w) = Il(p,w), as follows. Given p € Irr(Cy, w),
choose any \ € r~(w) such that py = p, and associate to p the G-orbit [uy, ] € I1(p,w).
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Proof. Recall that r(\) = w if and only if p) € Irr(p,w). Suppose we have \, u € X, such that
Pxs pp € Irr(p,w). From [44, 6.2] it follows that conditions 1-3 of Lemma 4.5.2 are equivalent
to having g € G such that
Ad(g) - (ux, mr) = (up, 7).
So we have proved that
[uy, T2 = [uwﬂu] < Px= Pus
as desired. 0J

Remark 4.5.4. Recall that Irr(C,,, w) is equal to the fiber over w under the composition
Irr(C,) = [X/(l — wz?)XLor — [X'/(l — 19))_(] = HY(F,G),

whereby p = py — 7(A). By Lemma 2.7.3 we have u), € wy = r(\) = w. Hence our
representation 7y lives on an inner twist of GG belonging to the classw € H'(F, G), in accordance
with the conjectures in Section 3.

tor

4.6. Choosing representatives in an L-packet. We now use Section 2.8 to choose representa-
tives, living on a single group, of each G-orbit in an L-packet I1(p,w). We fix u € w N N, and
for each A € r~!(w) we choose m, as in Section 2.8. For each p € Irr(C,,w), define

Tu(@, p) == Ad(my),my € Irr(G™),

for any A € r~!(w) such that py = p. We have seen that the isomorphism class of 7 is inde-
pendent of the choice of \. Two choices of m,, differ by an element of G+, so the isomorphism
class of 7, (¢, px) likewise does not depend on the choice of m,. The normalized L-packet is
then defined as

IL.(¢) = {mu(p,p) : p € lrr(Cp,w)}.

More explicitly, the representation 7, (i, p) is given as follows. Recall that m, - C', is our fixed
F,-stable alcove C. The facet I, := m, - J, is contained in C, and is likewise F,-stable. The F,-
minisotropic torus Sy = Ad(my)T\ = Ad(g\)7 (see Section 2.8) has the property that S\ NG,
projects to an F,,-minisotropic torus Sy in G;,. The character 0 := Ad(m,).xx = Ad(gy).x is
F,-regular, and gives a(n inflated) Deligne-Lusztig representation

0 Gr F,
sy = ¢e(Gr,,Sy) - Rs %y, € Iir(GTY),
and an extension of » to a representation s, of Z% Gi‘ Finally, we have
GFu
(@, p) = IndZFG?u 7).
A

5. NORMALIZATIONS OF MEASURES AND FORMAL DEGREES

We now move toward Harmonic Analysis. The first step is a uniform normalization of Haar
measures on groups of the form G, where G = G(K) and G is a connected reductive k-group,
split over /K. We then verify the equality of formal degrees in an L-packet, according to the
conjectures in Section 3. (Note that the group C,, is abelian for these L-packets.) Except where
noted, our Frobenius on G is now unspecified, and is denoted by F', according to our conventions.
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5.1. Haar measure. We denote the Lie algebra of GG by g, and again let F' denote the induced
Frobenius action on g.

Suppose = € B(G) or B(G,q). Just as we could attach a parahoric GG, and its pro-unipotent
radical G to x, so we can define lattices g, and g in g (see [43, §3.2], [3, §2.2], where the cor-
responding objects are called g, o and g, o+). As before, the lattices g, and g/ are independent
of the facet to which z belongs. If J is any subset of a facet and x € J, then we set g; = g, and
g5 = g If J is an F-stable subset of a facet, then

Ly :=gs/07)

is the Lie algebra of G, and we have
Ly =gl /(a5").

Let dg denote the Haar measure on G¥, normalized so that

F
Py _ 1G]
measq, (G ) = [ALE

for one, in fact every, F'-stable facet .J in B(G).
Let dX denote the Haar measure on g, normalized so that
measax (g5) = |L5|'/?

for one (in fact, every) F'-stable facet .J in B(G).

To show that these normalizations are independent of the choice of J as claimed, it is enough
to show that if J and J' are F'-stable facets in B(G) with J' C J, then

N ]
meas (G ) = [PARE
implies
. |GL
Hleang(GJ/) = W
J/

(and similarly for the measure dX on g). Since J' C .J, we have
Gj:/ C G}— cGy;CGy.

Moreover, the image of G in G is a parabolic f-subgroup with unipotent radical GF /G, and
Levi component isomorphic to G;. A short calculation gives the desired result.

Remark 5.1.1. The above expression for measy,(G%) can be simplified a bit. Let G be a con-
nected reductive group over f with Frobenius F'. Let T C B be an F'-stable maximal torus and
an F'-stable Borel subgroup in G. Then

G"| = [G" : BF] - |B"| = ¢"[G" : BT] - [T"],
where v is the number of (absolute) roots of T in B. The latter two factors are prime to p, so
|G, = [G" : B |T"],
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where | - |,/ is the largest factor of | - | which is prime to p. We have dim G = dim T + 2v. It
follows that
measdg(G§) =q rk(G)/2’G§|p’-
where rk(G) is the absolute rank of G.
This normalization applies as well to the largest k-split torus Z of the center of (G, and gives
F —r — r
measdz(OZ ) =q k(Z)/Q‘ZF| — (q1/2 —q 1/2) k(Z)

where Z =07/°Z".

Y

For any irreducible admissible representation 7 of G which is square-integrable modulo Z %,
let Deg() denote the formal degree of 7 with respect to the quotient measure dg/dz on G¥' /Z*
(c.f. [26]).

5.2. Formal degree of the Steinberg representations. The formal degree conjectures in Sec-
tion 3 require Haar measures for which the formal degree of the Steinberg representation of G’
is unchanged by inner twists of F, for ' = F,. In this section we show that the measures dg
defined above have this property. First we consider some constants arising in this formal degree.

Recall that the quasi-split Frobenius F acts on X = X, (T) by the automorphism J, and that
Z denotes the largest k-split torus in the center of G. Note that G/Z = (G/Z)*.

Let X; = X.(T/Z) and let C be the projection to the apartment of 7'/Z in B(G/Z) of the
v-stable alcove C'in A. Let {2 be the stabilizer of C] in the affine Weyl group of 7'/Z in G/ Z.
The inclusion X, (Z) — X projects to an embedding

X(Z) = (X/X°)" = Qg,

where X° is the co-root lattice of T. Identifying, as we may, X ° with the co-root lattice of T /Z,
we have

Ql >~ Xl/XO >~ QC/X*(Z),
and a finite subgroup €2y := Q% /X, (Z) — Q, fitting into the exact sequence

1 —>Qg —>Ql 1;1%91 —>Ql/(1—19)91 —_— 1,
showing that
(23) Qo] = /(1 = 9| = [H(F,G/Z)|.

Now take a cocycle u € Z*(F, N¢), with corresponding twist F,, = Ad(u)oF as before. Since
u € N¢ and Q is abelian, we have Q% = Q%. It follows that €2, is unchanged if we replace ¥/
by an inner twist ut). Of course this also follows from (23).

Next, let V; = X, ®C, let R be the graded C-algebra of W, -invariant polynomial functions on
the C-vector space V7, and let m be the maximal ideal in R of functions vanishing at 0 € V4. Then
V := m/m? is a vector space of dimension ¢ := dim V;. The space V inherits a grading from
R, written V' = @V (d). Moreover, ¥ acts naturally on R and V, preserving the grading. Choose
a basis of eigenvectors for ¢ in each V' (d) and let f1,..., f; be the collection of eigenvectors
obtained. Let d; = deg( f;) and let ¢, be the eigenvalue of ¥/ on f;.
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Define the constant
¢ qdi — €
«(G/Z) = || - H—qdi_1 —.
i=1 v

The denominators in ¢(G /Z) are nonzero because each ¢; is a root of unity and V' (1)? = {0}.
Since w acts trivially on R and [{2| is invariant under inner-twists, it follows that ¢(G/Z) is
invariant under inner-twists.

Let G, be the Iwahori subgroup of G/Z at the alcove C;. From [5, 5.3] and [55, 3.10], (see
also [22, 5.5]) it follows that the formal degree of the Steinberg representation St, of G is
given, using our normalizations in section 5.1, by

Deg(St,) = '
eg(Sty) c(G/Z) measdg/dz(Ggul)
B |Ggul|p’ . qu(G/Z)/2
co(G/Z) |G|y
o(G/Z)

This last expression is independent of w, as claimed.

5.3. Formal degrees in our L-packets. Now suppose 7 is an irreducible cuspidal representa-

tion of G¥ of the sort considered in 4.5, namely 7 = Indgg 4 K, for some minimal F'-stable
facet J C B(G) and k € Trr(G5 ZT'). The formal degree of 7 is given by
F
, measg, (°Z")
D =d —.
eg(m) im K moasg, (GT)

Recall also that  is of the following form. We have an F-minisotropic torus S < G such that
A(S)F = J¥, a regular character § € Irr(S”) whose restriction to S N G factors through
SF'=8SNnGF/SNGHE, and on GY we have

k =¢e(Gs,S) - RSy
By [20, Thm. 7.1] we have
|G§|p’

7]

dimk =

Using also Remark 5.1.1, we find that
Deg(ﬂ) _ ’ZF’qu(G/Z)/Q
|S7] '

Now if F' = F, and 7 = 7,(¢p, p) as in 4.6, then the torus S is k-isomorphic to the platonic
torus 1" with twisted Frobenius F,, (see 2.8). Therefore, we have

§H(C/2)/2
Deg(mu(p, p)) = T /ZF]
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The right side of this equation is independent of u and p, so all representations in an L-packet
II(¢) (see Section 4.5) have the same formal degree.

6. GENERIC REPRESENTATIONS

In this section we determine the generic representations in our L-packets I1(¢). Only quasi-
split groups have generic representations, so these can only occur in packets I1(p, w) for w be-
longing to the kernel of the map j; : H'(F,G) — H'(F,G,.) induced by the adjoint map
j G — Gad-

Let B be a Borel subgroup of G defined over k, and let U be the unipotent radical of B. We
may and shall assume that B contains our fixed maximal torus T, which is the centralizer of a
maximal k-split torus S.

A character ¢ : U¥ — C* is generic if 1) is nontrivial on each simple root group of S¥ in
UF. A representation 7 € Irr(GY) is generic if Homyr (,1) # 0, for some generic character 1)
of UY. We say that 7 is 1-generic if we want to specify ).

If w € kerjg and p € Irr(Cy,, w), we say the class w(p, p) € II(p,w) is generic if some
(equivalently, every) representation in (¢, p) is generic.

Generic characters and representations for finite reductive groups are defined similarly.

6.1. Depth-zero generic characters and representations. This first section of this chapter
concerns all generic depth-zero supercuspidal representations, not just those arising in our L-
packets.

Given a hyperspecial vertex z € A?,, set U, := U N G,, U} := U N G}. The quotient
U, := U,/US is the unipotent radical of an F-stable Borel subgroup of G,. We say that a
character v : UY — C* has depth-zero at x if the restriction of ¢ to UL factors through a
generic character ¢, of UE. Note that a depth-zero character at x is automatically generic for
UF, since z is hyperspecial. Moreover, any generic character 1, of UY arises from some 1)
having depth-zero at « (using, for example, [27, 24.12]).

Let x° € Irr(GY) be the inflation of an irreducible cuspidal representation of G., and let x be
an extension of k° to Z FGE. In this chapter, it is convenient to use the notation

(24) m(x, k) = ind%ﬁai K

for the compactly induced representation of G¥. Since z is hyperspecial, the normalizer of
GY in GY is ZVGY, so [44, 6.6] implies that 7(z, k) is an irreducible depth-zero supercuspidal
representation of GF.

Lemma 6.1.1. Let v € AP, be a hyperspecial vertex, let 1 be a character of UY having depth-
zero at x, and let 1, be the corresponding generic character of U as above. Assume that k° is
V,-generic. Then m(x, k) is 1-generic.

Proof. This follows from Frobenius reciprocity: Let V' C w(z, k) be the space of functions
supported on Z¥GEUY. Then V' =~ indgg x as representations of UY, and V is a U"-stable direct
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summand of 7(z, k). We have
0 # Homyr (K, ¥,) = HomUF(indgg Ky 1)
= HOHIUF (V, fw)
C Homyr (7(z, k), ).
0]

The next result shows that all generic depth-zero supercuspidals are of the form 7(z, k) as
constructed in (24) above.

Lemma 6.1.2. Let ¢ be a generic character of UY, and let T be an irreducible supercuspidal
depth-zero 1)-generic representation of G¥. Then there is a hyperspecial vertex v € AV, and
a cuspidal representation r° of GE (which we inflate to a representation of GY), such that the
following hold.

(1) + has depth-zero at x, and Kk° is a 1,-generic representation of GE.

(2) There is an an extension of k° to a representation k of Z* GE, such that 1 ~ 7 (z, k).

Proof. From [44, 6.8] there is a vertex z € Agd, a cuspidal representation x, of GY, and a

. z?
representation . of the normalizer G% of Gf in G* such that «. appears in f.|cr and m ~
indgg ..

We may assume that 2 is contained in the closure of our fixed alcove jC? C AY,. Let  be
the set of affine roots of S in G. For any point y in the closure of jCV, we set

d,:={acd: aly) =0},
é; ={a e <i>y: ale > 0}.

Then CTDy is a spherical root system, and CTDJ is a set of positive roots in <i>y. We let fIy be the
unique base of ®, contained in CIDJ.

Let &, ®F, II, be the respective sets of gradients of the affine roots in &,, @, II,. Each
of these sets lies in ®,, a set upon which Wf acts. The roots in 11, are non-divisible in ®,, and

form a base of the reduced root system consisting of non-divisible roots in ®,,.
Let

W= {weW?: w ', Cc &}

Since 7 is Y-generic and is a quotient of 1ndgF K., we have
z
. F F
Homgr (mdgg ki, IndSr 1b) # 0.

As in the proof of [47, Lemma 4], this implies that there exists n € N¥ whose image v € W/
belongs to ,W? and such that n,)| atanpr 18 trivial, while n.3|q Anpr appears in k.|, anpr.

By [47, Lemma 2], the image V¥ of G, N"UY in G is the maximal unipotent subgroup of
G generated by root groups Uy for 3 € II.. Let 6 be the character of V! obtained from the
restriction of ") to G, N "UY. We have seen that § appears in Kzlvr.
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We claim that v~ 'TI, C II,. Suppose not, and choose 3 € II, such that v='3 € ®F \ TI,.
Then the root group Uf_l 5 1s contained in the kernel of ¢, so 6 is trivial on the simple root group
U in VI. This contradicts the cuspidality of .. So v™'II, C I, hence in fact v~ 'IL, = II,,
since |I1,| = |II,| = dim .A?,.

We have shown, moreover, that for each « € T1,,, the character ™1 is trivial on G} N U, P and

(e

nontrivial on G, N U},,. Hence v is trivial on G_, _ N U} and nontrivial on G,,-1., N UY.

It now suffices to prove that the vertex z is hyperspecial. For then the previous paragraph
shows that 1) has depth-zero at x := n™! - 2, and taking k° := Ad(n™1).k., k = Ad(n™'),k,
will satisfy the conclusions of the lemma.

Since vll, = II,, it is clear that z is special, but not immediately clear that it is hyperspecial.
Let « € 11,,. Since va € 11, there is k, € Z such that vae — k,, € 1:IZ. It follows that

z = H thavra * 05
a€ell,

where {\, : a € II,} C X4 is the dual basis of II,. Hence z = ¢ - o, for an element ¢ € ch;l.
Since Ad(t) is a k-rational automorphism of GF, it follows that z is hyperspecial. 0J

6.2. Generic representations in our L-packets. Fix a TRSELP ¢ with corresponding w € W,,.
We identify
Irr(C,) = H' (Fy, T) = [X/(1 — w?) X]sor-
We likewise identify
Hl (Fw7 Tad) = Xad/(l — wz?)Xad.
(Note that the latter group is finite.) For A € X, let py denote the image of \ in H*(F,,T'), and
p;x the image of j\ in H'(F,,, Tyq). Then pjy = ju(py), where
Juw 2 H' (Fy, T) — H'(F,, Tua)
is the map induced by the map j : G — G,4. Recall that z) is the unique fixed-point of £)w
in Aad-

Lemma 6.2.1. For A\ € X,,, the following are equivalent.

(D) pjx =1
(2) the vertex x) is hyperspecial;
(3) the representation ), of Section 4.5 is generic.

Proof. The representations ), are generic, by [21, 3.10]. The equivalence of 2 and 3 now follows
from Lemmas 6.1.1 and 6.1.2.
To prove the equivalence of 1 and 2, recall that x is defined by the relation

(1 —wid)zy =ty 0.
Now =z, is hyperspecial iff 2\ € X4 - 0, iff jA € (1 — w) Xy, iff pj\ = 1. O
For w € ker j4, we set

Irr(Cy, w)gen = {p € Irr(Cy,w) : w(¢p, p) is generic}.
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Lemma 6.2.2. For w € ker jg, we have
[ Trr(Cop, w)gen| = [Xog = 5(X7)].

a

In particular, the number of generic representations in 11(p, w) is independent of the TRSELP ¢
and the class w € ker jq.

Proof. We give the proof assuming that p 1 [X,4 : jX]|. The argument for general p is more
complicated (see [19]). In this proof only, we change notation and let Z denote the full center of
G, and set Z = G N Z. We have a diagram of group homomorphisms

H'(k,Z) -~ HYF,G) -% HY(F,Gu)
I rl
HY(k,Z) 2 HYF,,T) 2% HY(F,,Tw)
I
Irr(C,,)

induced by the inclusions Z — T — G, the adjoint map j : G — Guq, and Ad(py) : T — G,
where py ! F(po) = w (see Section 2.7). The rows are exact at the middle term [51, Prop.38],
and . = r o 1,,. Recall that 7' (w) = Irr(C,,w). We prove the result by computing | ker ¢| in
two ways.

We have ker ¢, C ker, so the ¢-fibers are unions of ¢,,-fibers. From Lemma 6.2.1 it follows
that

Lo (0N W) = Irr(Clp w) gen-
This implies that
| ker | = [ (w)] = [Trr(Clpy ) gen] - | ker 1]
Now
ker 1, o~ Trw /5(T™),
and we have
Toj = Xo x ()™, §(T™) = G(X) x j(°T™),
Since X = {0}, it follows that

(25) [ ket o] = [100(Cips0)gen! - [(*Tua) " /5CT™).

On the other hand, we have
| ker ¢ = |Gy /(G-
Since G is quasi-split, [8, 5.6] implies that the inclusion 7T,; — G4 induces a bijection
T/ 3(TY) == Giy/3(GY).
Since T, = XY, x (°T,4)¥, we have
Th/3(TT) = [X00/3(X)] x (CTua)* /5(°T"),
SO
. T o
(26) | ker | = [X0,/5(X)| - |(“Taa)” /5 (°T )]



44 STEPHEN DEBACKER AND MARK REEDER

Comparing Equations (25) and (26), the proof boils down to showing that

(27) |(°Taa)™ [3(OT™)| = |("Taa)" /3 (°T7).

If pf [Xuq: jX], then jX @ Ry = X,qg ® R, so we have an exact sequence
1—°TNZ — T 1507, — 1.

Since H'(F,,,°T) = HY(F,°T) = 1 and w acts trivially on Z, it follows that both sides of
Equation (27) are equal to |H'(F,°T N Z)|. O

It follows from [60, 2.5] that [X?, : j(X")] is the number of G¥-orbits of hyperspecial
vertices in B(G™). Lemma 6.2.2 leads one to expect that each of these orbits supports a unique
generic representation in 1T, (). We will prove this in a few steps, as follows.

Lemma 6.2.3. Let ¥, be a quasi-split Frobenius, and let S be an ¥,-minisotropic torus in G.
Assume that the unique fixed-point x of S™ in B(Guq)™™ is hyperspecial. Then

N(GF, 8)/SP = N(G, §™)/S.

Proof. Letn € N(G,S™) C N(G, S). Since x is hyperspecial and is contained in the apartment
of S in B(G,q), we have N(G, S) = N(G,,S)S, so we may assume n € N(G,,S™). Then
F,(n) = nt for some t € SN G, = °S. Choose d > 1 such that F(n) = n. If d = 1 there is
nothing to prove, so assume d > 1. This implies that ¢ F,(¢) - - - F4~*(¢) = 1. By Lemma 2.3.1
there is s € °T such that t = sF,(s)!, so that F,(ns) = ns. O

Returning to the notation of Section 4.6, let u € w € ker jg, and suppose A, i € r~*(w) are
such that py, p,, € ker j,,. It follows from Lemma 6.2.1 that vy := m, - z) and v, := m,, - x, are
hyperspecial vertices in .A'. The representations 7, (i, p) and 7, (i, p,) are induced from the
stabilizers in G™ of vy and v,,, respectively.

Lemma 6.2.4. Assume that vy and v, are G*™-conjugate hyperspecial vertices. Then py = p,.

Proof. We first prove that Sy and S, are G*-conjugate. Since G™ = G, N™G*, there is
n € N™ such that n - v, = vy. The F,-minisotropic tori

Sl = S)\, SQ = nSH

both have vy, as their unique fixed-point in B(G,4)". Let T and S; be the images of TN G,, and
S; N G,,, respectively, in Gy, .
Set

- -1 o -1, -1
ki = qm, ", ko == ng,m, n"".

Then k; € G,, and S; = Ad(k;)T fori = 1,2. Let k; be the image of k; in Gy,, so that

Using Equation (10) we find that

ki Fu(ky) = my - wut - Fy(my)™' mod T,

ky'F,(ky) = nmy, - wu™' - F,(nm,)™" mod T.
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Since v is hyperspecial, every class in N/T" has a representative in N N G,,,. Applying this
to myT, nm, T and wu='T, it follows that k; ' F,(k;) and k; ' F, (k) are F,-conjugate in the
Weyl group of T in G,,. This means (c.f. [12, 3.3.3]) that S; and S, are Gfg—conjugate. The
uniqueness part of Lemma 8.0.10 then implies that S; and S, are G*-conjugate. Hence S, and
S, are GFe -conjugate, as claimed.

By Lemma 2.11.1 there is 2, € W*? such that

A=z, mod (1 —w?d)X.
But Lemmas 6.2.3 and 2.11.2 imply that
wy wy
Wy =Wwg.
Hence A = 1 mod (1 — wd)X, so px = p,. O

Remark 6.2.5. Lemma 6.2.3 and the last step in the above proof can be seen in another way, as
follows. Since v, is hyperspecial, Lemma 6.2.2 implies that py € ker j,, = imi,, : [H'(k,Z) —
HY(F,,T)]. Since W™ acts trivially on H'(k,Z), it follows that py is a W*?-fixed point in
HY(F,,T).

Combining Lemmas 6.2.2 and 6.2.4 yields the promised result:

Corollary 6.2.6. There is a bijection between the set of generic representations in 11, (p) and
the set of G¥-orbits of hyperspecial vertices in B(G.q)™™, such that a generic representation is
induced from the stabilizer of any hyperspecial vertex in the corresponding orbit.

Remark 6.2.7. If G has connected center, then G, has connected center for any hyperspecial
vertex € B(G). Assume z is F,-stable. It follows from Proposition 5.26 and Theorems 6.8 and
10.7 of [20] that every cuspidal generic representation of G, is of the form j:jog for some F,-

minisotropic maximal torus S C G, and § € Irr(S'™) in general position. Using Lemma 6.1.2,
this implies that every depth-zero generic supercuspidal representation of G appears in IT,, (¢)
for some TRSELP ¢.

7. TOPOLOGICAL JORDAN DECOMPOSITION
We define the set of compact elements in GG by
Go:= |J G.,
zeB(G)
and the set of topologically unipotent elements in GG by
G- = |J G
z€B(G)

We define gy and go+ similarly. These G x (F')-stable subsets of G will play an important role
in this paper.
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Remark 7.0.8. From [16] we have that if z € B(G), then
Go N Stabg(l‘) = G:B

Let p denote the characteristic of f. Choose m such that for all F'-stable facets J in B(G) and
all elements g € G5 we have g®") = s where s denotes the semisimple component in the Jordan
decomposition of g.

Suppose v € G Let J C B(G) be any F-stable facet such that v € G;. Since v € GF, it
follows that we can define

ve := lim ~®™")

n—oo

This limit does not depend on m, and the element ~, has finite order prime to p. We set
_ ~1
Yu = ’Y ’ ’Ys .
The topological Jordan decomposition is the commuting factorization

Y= TsVu = TuVs-

We have v;, v, € G%. Moreover, v, is semisimple and has semisimple image in G; while ~, has
unipotent image in G;. In particular, -, is topologically unipotent. We say that ~ is topologically
semisimple if v = ~,, that is, if v = 77",

The topological Jordan decomposition 7 = v, is the unique commuting factorization of ~y
as a product of a topologically semisimple element and a topologically unipotent element. This
implies that if ¢ € G is chosen so that 9y € G¥, then 9(7,) = (%), and ?(V,,) = (97)..

Lemma 7.0.9. Suppose v € G has topological Jordan decomposition v = ~,y,. Then v, s,
and v, all belong 1o G.,,. Moreover, if v € G™, then v, € G7.

Proof. Choose a Borel subgroup B < G containing «y. Since B N G is a closed subgroup of G,
both v, and v, belong to B N GG. Since ~; is semisimple, it follows from [6, Theorem 10.6 (5ii)]
that the centralizer in B of , is connected. Thus, v, 7, and 7, belong to B, NG C G.,,.

The centralizer of v, in G, has finite index in the centralizer of v in GG. This implies the last
assertion. OJ

Since 7y, is compact and has finite order prime to p, the results of [46] combined with Re-
mark 7.0.8 allow us to identify

(28) B(G..) = BG)™.

More precisely, there is an unramified maximal torus S of G containing y,, and a bijection from
the apartment of S in B(G.,,) to the apartment of S in B(G) which extends to a G, -equivariant
bijection B(G,,,) — B(G)". In particular, G, and G have the same K -rank.

For an exhaustive treatment of the topological Jordan decomposition, see [52].
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8. UNRAMIFIED AND MINISOTROPIC MAXIMAL TORI

Recall that we are assuming G is K -split, and that we say a subgroup S < G is a maximal
unramified torus in G if S = S(K), where S is a K-split maximal torus in G such that S is
defined over k.

All maximal unramified tori in G can be found as follows.

Lemma 8.0.10. Suppose we are given a nonempty F-stable subset J of a facet in B(G) or
B(G.q) and an F'-stable maximal torus S < G. Then there exists a maximal unramified torus S
in G such that

(1) J C A(S);
(2) the image of S N Gy in Gy is exactly S.
Moreover, S is unique up to conjugacy by G}FF.

Proof. The existence of S is shown in the proof of [10, 5.1.10]. The uniqueness is proved in [14,
Lemma 2.2.2]. L]

Such an S is called a [ift of (J,S).

A maximal unramified torus S in G is called F-minisotropic in G if X,.(S)" = X,(Z), where
Z is the identity component of the maximal k-split torus in the center of G.

Likewise, a maximal f-torus S in a reductive f-group G with Frobenius F'is called F'-minisotropic
in Gif X,(S)¥ = X.(Z), where Z is the maximal {-split torus the center of G.

Let ¥(G) be the set of F-minisotropic maximal tori in G. If S € T(G), then there exists a
unique F'-stable facet J C B(G) such that

A(S)F = Jr.
The unique parahoric subgroup °S of S is given by
'S =SNaGy.

Note that N(G, S)" preserves A(S)¥, hence normalizes G and G, In particular, G N (G, S)
is a subgroup of G,

Let S be the image of S N G in G;. Then S is an F-minisotropic torus in G, and S is a lift
of (J,S).

Fix now S € T(G) and a topologically semisimple element v € GJ. For our later integral
calculations we must consider the two sets

E(v,8)={geG': 9%yeG,;, 9yeS},
D(v,8):={deGF: iy e S}
In other terms, D(v7 S) is the set of elements of G which conjugate S into G, and E(v, S)

is the set of elements of G which send some G ¥ -conjugate of S into G, and whose inverse
sends J into B(G.,). Since v € G, we have D(v,S) C E(v, S).
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We have obvious actions, by multiplication, of GT*N(G, S)F x GI on E(v,S), and of
N(G,8)F x GI' on D(v,5).

Lemma 8.0.11. The inclusion D(v, S) — E(v, S) induces a bijection
N(G,S)P\D(, ) /GF = GIFN(G, S)P\E(7, ) /G
Both sets of double cosets are finite.

Proof. The set N(G, S)F\D(, 5)/GY parametrizes GI'-conjugacy classes of F-minisotropic
tori in G, which lie in the G*-conjugacy class of S. Since ij has only finitely many conjugacy
classes of unramified maximal tori, the set N(G, 5)"\D(v, S)/GZ is finite.

We now prove injectivity. Suppose we have d, d’ € D(7,S),andh € GT¥' n e N(G,8)F, g €
G, such that d’ = nhdg. Replacing d’ by n~'d'g~", we may assume without loss of generality
that d’ = hd. This means that %y and "?~ both belong to S, and being compact, ¢y and "*~ in fact
belong to SNG;. Since h € G, both %y and ¥~ have the same image in S. Hence we can write
hdr — dy~, where v, € GjF N S is topologically unipotent. But then 9y, = 7,9y, and since
hd~ is topologically semisimple, we must have 7; = 1, by uniqueness of the topological Jordan
decomposition. It follows that S and h~'Sh are two lifts of (S, J) in ?G.,,. By Lemma 8.0.10,
there is k € (G,,);" such that kSk™* = h~'Sh. This implies that h € N(G,S)" - 4(GF),
proving injectivity.

For surjectivity, suppose g € E(v,S), and let H = 9G.,. Then 9y fixes J pointwise, so
by Equation (28), J is contained in a facet in the building B(H) of H. We let H; denote the
corresponding parahoric subgroup of H. Then 9y € H .

Considering root data, we find a f-isomorphism ¢ : (G;)s5z — H, making the following
diagram commutative.

HﬂGJ = Hjy
! 1.
(Gsloy — Hy

We have S < (G)s7 by hypothesis, hence S is an F-stable maximal torus in H;. Choose a lift
S"in H of (J,:S). Then "N H; = S'N G, so S isaliftof (J,S) in G. But S is also a lift of
(J,S) in G, so by 8.0.10 there is k € G such that ¥S" = S. Since 9y € S’, we have ¥y € S.
This means kg € D(v, S), proving surjectivity. O

9. SOME CHARACTER COMPUTATIONS

In this chapter we give an integral formula for the characters of the representations constructed
in Section 4.4. In fact, we define a set of integrals on G which include these characters as a
subset. Our eventual goal is to express these integrals as combinations of similar integrals on
the set of topologically unipotent elements, in the same way that a Deligne-Lusztig character is
expressed as a combination of Green functions.
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9.1. Harish-Chandra’s character formula. Recall that Z denotes the group of K '-rational
points of the maximal k-split torus in the center of G.

Suppose that @ is an open subgroup of G containing Z*" such that () is compact modulo Z*".
Suppose also that x is a representation of () for which the compactly-induced representation
T o= indgF k of G is irreducible. Let Y, denote the extension by zero of the character of

K to a function on G¥'. In [26] Harish-Chandra showed that the value of the character of 7 at
v € (G™)! is given by the formula

220, oo

Here dg* denotes the quotient measure on G*'/Z*" with respect to Haar measures dg and dz on
G and Z*, respectively, Deg(m) denotes the formal degree of m with respect to dg* = dg/dz
(see Section 5), and L is an arbitrary compact open subgroup of G¥ with Haar measure dl
normalized so that measy (L) = 1.

9.2. The character integral. Let S be an F-minisotropic maximal torus in (G, and let J be the

unique minimal F-stable facet in B(G) such that A(S)” = J¥. Recall that °S” = S NG, and
S N G projects onto an F-minisotropic torus S in G.

Let Irro(ST) denote the set of depth-zero characters of S¥'. For § € Irro(ST), the restriction
of 6 to 95" factors through S, and thus defines a Deligne-Lusztig virtual character RS;@. Let

Rg‘g denote the natural inflation of Rg‘g to a function on G, extended by zero to the rest of G*'.
Define a function R(G, S,6) on (G™)! by the integral

measg, (ZF) / i} / G el
R(G,S,0 = d RSH(9~) dl.
( )(7) mease (GF)  Jur v v | so(*7)
Here L and the measures dg*, dl are as in Section 9.1. (The integral converges; see, for example,

Lemma 10.0.7.)

Remark 9.2.1. Forh € GF, a change of variables shows that
R(G,hS, h.0) = R(G, S, 0),

where .0 = 0 o Ad(h)~L. If T is a G¥-orbit of pairs (S, 0) with S € T(G) and 0 € Trry(ST),
we sometimes write
R(G,T) := R(G, S,0),

for any (5,6) € 7.
9.3. Relation to characters. Suppose # € Irro(ST) is regular, in the sense that 6 has trivial
stabilizer in N (G, ST')/S. There is a unique representation x of Z*'GY such that

(1) the restriction to G of x has the character £(G;,S) - Rg‘g and

(2) the restriction of x to Z¥ is given by the scalar character 0| ,~, times the identity.

We have seen that the induced representation 7 := IndgiG PR is irreducible and supercuspidal.
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Lemma 9.3.1. Let O, be the character of the representation 7 just defined. Then O, vanishes
off the set ZV'GY. For z € Z¥ and regular semisimple -y € G§ we have

O.(z7) =¢(G,S) - 0(2) - R(G, S,0)(7).

Proof. Harish-Chandra’s integral formula (see Section 9.1) makes the vanishing assertion obvi-
ous and gives, for z € Z* and regular semisimple v € G{', the formula

~measy(GY) Deg(m)

O,(zv) =0(2 - = R(G,S,0)(v).
(27) = 0(2) measi:(Z5) | FS(1) ( )()
Consequently, we need to show that
measqy(Gy) Deg(m) —£(G,.9)

measg, (ZF) Rg‘g(l)
But, from Remark 5.3 we have
Deg () - measyy-(Z5GY /ZF) = dim(k),
and the claim follows. 0

9.4. Stable conjugacy of tori and their characters. We want to produce a sum of character
integrals that will be be stable. In the situation of Section 9.3, these sums will specialize to the
sum of characters over an L-packet, as defined in Section 4.6. Our integral sums are based on
the notion of stable conjugacy of unramified tori and their characters.

Recall that T(G) denotes the set of F-minisotropic maximal tori in G. We say that two tori
Sy, Sy € T(G) are G-stably conjugate if there is g € G such that 9(ST") = SI'. This defines
an equivalence relation on T(G), whose equivalence classes are called G-stable classes . The
set of G-stable classes injects into H'(F, N/T) as follows. Any two maximal unramified tori
in G are conjugate by an element of G. For S € T(G), write S = 97, for g € G. Since
F(S) = S, we have an element n := ¢ 'F(g) € Z'(F,N). Projecting to N/T gives an
element n := g~ 'F(g)T € Z'(F,N/T). One checks that the class [n] of 72 in H'(F, N/T) is
independent of g. Note that S = 9(T*), where, as usual, F,, = Ad(n) o F.

Lemma 9.4.1. Suppose h € G, andn,m € N. Then
h='mF(h) € nT < "(T™) = ("T).
Proof. Implication = is straightforward. For the converse, choose a strongly regular element

t € T, From the equation Fy,("t) = "t, we find that the element h~'mF(h)n~! centralizes t,
hence lies in 7'. O

Forv =nT € N/T, set F,, = F,,, and define
T, :={S € %(G): ¥ =9(T*™) forsome g€ G}.

Lemma 9.4.2. The sets 7, have the following properties.
(1) If 7, is nonempty, then 1, is a G-stable class in T(G).
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(2) Every G-stable class in T(Q) is of the form T, for some v € N/T.
(3) Forv,v' € N/T, we have T, = T,y if and only if [v] = [v] in H*(F, N/T).
(4) If G is k-quasi-split, then T, is nonempty.

Proof. See [14]. O

For each S € 7,, Lemma 9.4.1 implies that there is ¢ € G such that S = 9T and g ' F(g) € v.
Note that the choice of g is not uniquely determined by S'; two choices of ¢ differ by an element
of N(G,S¥). The map Ad(g) : T — S intertwines (7', F,) and (S, F’). For each depth-zero
character y € Irro(7*"), we have a corresponding character g,y € Irro(S*), which depends on
the choice of g.

This dependence on g is eliminated by passing to a “covering” of 7, as follows. Consider the
set of pairs

TG) ={(5,0): S€T(G) and 0 € Irry(S")}.
We say that two pairs (Sy,61), (S2,02) € T(G) are G-stably conjugate if there is g € G such
that
(1) 9(S{) = S5, and
(2) g6, = 05.
The G-stable classes of pairs (S,6) € T(G) are parametrized as follows. Fix v € N/T, x €
Irro(TF), and define

Ton = {(S,0) € T(G) : there exists g € G suchthat ST =9(T™) and § = g,x}.

Lemma 9.4.3. (1) If 7, is nonempty, then ’]A;X is a nonempty (G-stable class in @(G)
(2) Every G-stable class in T(Q) is of the form T, ,, for some v € N/T, x € Irro(TF).
(3) Forv € N/T, x,X' € Trro(T*), we have T, = 7T, if and only if there is n €
N(G,T™) such that n.x = X'
Proof. This follows easily from Lemma 9.4.2. U

Thus, we have a partition

2o =] 1T Tox

vEN/T x€lrrog(THv)/N(G,TFv)
T,#2

of T(G) into nonempty G-stable classes.
Projection onto the first factor is a surjection p; : 7,,, — 7,. Given S € 7, we can project
the fiber p; ' (.S) onto the second factor. This gives a map

po Py H(S) — Trrg(SY).

X= > 0

9 € papyt(9)

We define
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To see the dependence on Y, choose g as in the definition of ’ZA;,X above. Then
bi= Y (ng)x
neN(G,SF)/S
and the sum is independent of the choice of g.

The character sums 0% have the following stability property.

Lemma 9.4.4. Suppose S, Sy € T,, v € SF', and x € Trro(T*). Then for any h € G such that
hSE) = SE, we have

035, () = 03, (")

Proof. This is immediate from the observation that k., [pyp; ' (S1)] = pap;*(S2). O

9.5. The stable character integral. Fix a G-stable class 7y, C S(G). The group G acts on
T(G) via g - (S,0) = (95, g,0), and T, is the union of finitely many G -orbits in T(G). By
Remark 9.2.1 the function R(G, S, 6) depends only on the G -orbit of (S, #). We can therefore
define a function R(G, 7g) on (G™)F by

R(G,T4) == > R(G,S,9),
(S.0)€Ts/GF
where R(G, S, 0) was defined in Section 9.2. Our eventual goal is to show that the function

R(G, Ts) is stable. But first, we relate R(G, Ts;) to the sum of characters in an L-packet.

9.6. Relation to L-packets. In this section we show that the sum of characters in an L-packet,
as defined in Section 4.6, can be expressed, up to a sign, as one of the functions R(G, Zt) as
defined in Section 9.5. We return to the notation used in Section 4.6 and previously, so that
F =F,. Setv =wu"'T € N/T, and let x € Irro(T™") be regular. Note that F, = F,,, and by
the proof of Lemma 2.11.2, we may identify

N(G,T"))T = W,

For each A € 7~!(w) we have the pair (Sy,0)) = gx - (T, X) € 7, Recall from Lemma 2.6.1
the commutative diagram

(X/(1—wd)X)ior — [X/(1—9)X]tor
~ IS

H'(F,,T) ™M™ HY(FG)

where the vertical maps are bijections. Recall that [r~!(w)] denotes the fiber of the map in the
top row, and this fiber carries a natural action of W7,
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Lemma 9.6.1. Recall that v = wu'T, and x € Irrg(T") is regular. The mappings \
(Sh, 0)), A — S\, respectively, induce bijections

a: [ W) =5 Ty /G BT W))W S TG
which make the following diagram commute.

[r=H(w)] 5 T, /GY
pl L ;

W))W L T/6R
Here p is the quotient map and p, is induced by the projection p, onto the first factor.

Proof. The map /3 is well-defined and bijective, by Lemma 2.11.1.
If \,u € r~}(w) are congruent modulo (1 — wv)X, then from the proof of Lemma 2.10.1
there exists s € S such that q“q)fls € G, Since

qﬂqgls ’ (SM 9>\) = (Sw 9#)7
this shows that the map « is well-defined.
The fiber of 5, over the G*-orbit of S, in 7, is in evident bijection with N (G, S5*) /N (G, Sy).
By Lemma 2.11.2, the latter is in bijection with the fiber of p over the class of X in [~ (w)] /W’
It therefore suffices to prove that « is injective. Suppose g € G™, A\, € r~(w) and ¢ -
(S,,0,) = (Sh,0)). As in the proof of Lemma 2.11.1, the element ¢, ' gg,, belongs to N (T),
and projects to an element z, € W*? such that 2,4 = A mod (1 — wd)X. But also g.0,, = 0,

which means that z, fixes y. Since y is regular, we have z, = 1, hence x = A mod (1 —
wi) X. O

Recall that for A € r~!(w), u € w, and a TRSELP ¢ we defined in Section 4.6 the representa-
tion
Tu(, pr) = Ad(m,y),my € Irr(G™),
where m,, is as in Lemma 2.8.1. This construction involved the character x = x,, € Irro(7T"™)
corresponding to ¢ as in Section 4.3.

Lemma 9.6.2. Let G, be the inner twist of G given by the cocycle u € w, and let T, be the
twist of T determined by w. Then for \ € r~(w) we have

€(G)\, T)\) = €(Gu, Tw).
Hence, this sign is independent of \ € r~1(w).

Proof. The f-rank of G, equals the k-rank of G,,, and G,, ~ G, over k. Likewise, we have
seen that T, ~ T, over k. O

For A € r~'(w), let ©,, be the character of m,(¢, py). By construction, the function © ,,
depends only on the class of \ in [r~!(w)]. We can now prove the desired result of this section.
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Lemma 9.6.3. Let v = wu™" and let x = x,, be as in Section 4.3. Then
> 6, =e(G,,T,) R(G.T,,).
Ae[r—1(w)]
Proof. By Lemma 9.3.1, we have
@PA = €(G>\, T)\) . R(G, S)U 6))\),

so the claim follows from Lemmas 9.6.1 and 9.6.2. OJ

10. REDUCTION FORMULAE FOR CHARACTER INTEGRALS

If G is a connected reductive f-group with Frobenius F', S is a maximal f-torus in G, and
0 € Trr(S*), then from [20, Thm 4.2] we have the reduction formula

(29) RSy(x) = > g.0(s) - Q% (u),

geGF
9SCGs

where © = su € G! is the Jordan decomposition, and for any maximal {-torus S; C G,, the
normalized Green function ng is defined on all of G*" by

1
30) Q% (h) = @Rgfﬂl(h) if h € GI" and h is unipotent
Sq1 T S

0 otherwise ,
the right side being independent of 6, € Trr(SI).
In this section we prove an analogue of Equation (29) for our functions R(G, S, 6), using now
the topological Jordan decomposition.
Fix a pair (5,0) € ¥(G), and let 7 denote the G -orbit of (S,6). For v € GF N G™ with
topological Jordan decomposition v = 757, we define
T(v) ={(8,0)eT: v €8}

Then G preserves 7T (7,), and acts on 7 () with finitely many orbits.
Our reduction formula for R(G, S, 0) is as follows.

Lemma 10.0.4. For v = 7,7, as above, we have

R@G,S 0= >, 00 R(G,, S 1))

(5.6)€T (v+)/GE,

The proof of Lemma 10.0.4 will require some preliminary steps. Let J be the facet in A(S)
such that J© = A(S)”, and let S be the image of S N Gy in G;. Any compact element § € S
belongs to S N G, and we let § € S denote the image of 6.

Applying Equation (30) with G = G;, s = 7,, and S; = S, we have the normalized Green
function Q{°"7 defined on all of GZ'. We let Q'=”'% denote the natural inflation of Q"% t0 a
function on G, extended by zero to the rest of G7'.
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Lemma 10.0.5. Let v € Gt be regular semisimple with v, € S, and let L., be a compact open
subgroup of G.,, with Haar measure di. Then the support of the function on Gi given by

is compact modulo the center of Gf;s .

. GJ)y . . . i GJ)y
Proof. The function Q)¢ 17+ on the unipotent set in (G)5, is the restriction of Ré 6‘])“ , for any
. . . . . (G,
0 € Irr(S™). Take 6 to be regular. Since S is F-minisotropic in (G;)5_, the function Ré QJ)“ is
a matrix coefficient of a supercuspidal representation of GFS , constructed as in Section 4.4 with

. (G, - i . .
G there replaced by Gfs . Hence the function Qé 77 is the restriction of a supercuspidal matrix

coefficient to the compact topological unipotent set in Gi . The result now follows from [26,
Lemma 23, p. 59]. O

The restriction of 6 to S¥ N G is the inflation of a character 6, € Irr(S¥). Let 6 denote the
function on G*' defined by

0(8) =

0 otherwise.

{90(5) if € GE andd €S,

For each regular semisimple element v € G{/, define a locally constant function f., on G by

. - (G1)gy,
F(9) = 007) - Qs 7 ()

Note that f., is supported on the set E(v,,S) defined in Section 8, and is left-invariant under

G

Lemma 10.0.6. Let v € GY be regular semisimple, and let L., be a compact open subgroup of
G.,, with Haar measure di. Then the function 7.,: G — C defined by

mlg) = [ fylgi)di
L’Ys
is locally constant and compactly supported modulo Z*.
Proof. Since 7,(jg) = 7,(g) forall j € (G})F and g € G*, it is clear that 7, is locally constant.

Without loss of generality, we assume that v € G and 7, € S. By Lemma 8.0.10, there is
a lift of (/,S) in G,,. Any such lift is F-minisotropic in G. It follows that the center of G is

compact modulo Z %,
Choose a set D(~;, S) of representatives for the double cosets in

N(G, 8)"\D(vs,9)/GE.
By Lemma 8.0.11 the set D(vs, S) is finite, and the support of 7, is contained in
E(v.S) = [ &3"N(@G, 9" dGE.

dGD(%,S)



56 STEPHEN DEBACKER AND MARK REEDER

Since S is F-minisotropic, the group N (G, S)¥ is compact modulo Z¥. It suffices therefore to
show, for fixed d € D(v,, S), that the function i — 7., (dh) on Gi has compact support modulo
the center of G’i . This is Lemma 10.0.5 with  there replaced by %~. U

The key to the reduction formula is the following “localization” result.

Lemma 10.0.7. Suppose v € GY is regular semisimple and L is a compact open subgroup of
G*, and let L., = L N G.,,. Normalize Haar measures so that measq(L) = measg;(L,,) = 1.

Then the integrals
[ dr [ pna
GF/ZF L

L [ a

both converge and are equal. Moreover, these integrals are independent of L.

/ 7—7(9) dg”.
GF/ZF

Lemma 10.0.6 shows that this integral converges and allows us to rewrite it as

/G o 7,(9) dg” = /G e dg” / 7, (gl) dl
—/ dg/dl/ fy(gli)d
GF/ZF

-/ cw/n@ma
GF/zF L
absorbing ¢ into the integral over L.

To see that the integrals are independent of L, it suffices to show they are unchanged if we
replace L by a compact open subgroup L' < L. We have

/ dg* | f,(gl)dl = / dg* / dl / £y (glly dl'.
GF |ZF L, GF |ZF L,

/)’Ys

and

Proof. The first integral is

By Lemma 10.0.6 again, the integral over (L’),, has compact support as a function on G¥'/Z* x
L.,,. Hence we may switch the integrals over G*/Z* and L.,. The claim follows. U

Now we can prove Lemma 10.0.4. From Equation (29), we have

measq, (GY)

Fmaawwa/ ST
GF |ZF

measgy,(°Z")
= / dg* / fy(zgl)d
GF/ZF

zeGE /GHF
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Absorbing z into the integral over G¥'/Z* and using Lemma 10.0.7 , we get

measg, (G5 . .
ey @) pesom =165 [ dg [ f(gidi
measg, (°Z") GF J2F L.

During the rest of this calculation only, we use the abbreviations
N:=N(G, 9", U=G, H=aG,.
Let D(7s,.S) be as in the proof of 10.0.6. The integral over L., is supported on

E(v.S)= [I I vnde®/z",

deD(vs,5) REN/Ny
where N; = “H N N. Consequently, we have

measq, (GY)

O TYINT I F % .
O ooz NESON =G DL 3 /| warre e /wa”(“”)dl

deD(vs,5) nEN/Ng
Note that the map (d, 71) — (nd)~! - (S, 0) induces a bijection
D(Vs: S) X N/Nd — f(Vs)/H

Hence the sum in Equation (31) matches the sum in Lemma 10.0.4.
Fix d € D(vs,S) and 7 € N/N,4, and set

S =(md), U =G = Ad(nd) U, (S,0) = (nd) " (5,0), 9L ="
We then have

N g measg, (U) / o
dg° di = z dh* dhi) di.

From the definitions, we have

- ) 2 (GO nani ) (G5 ohi
Jy(ndhi) = 0(+v0) - Qs (") = 8/ (7) - Qg7 ().
As in the proof of Lemma 8.0.11, the projection H N G ;; — G allows us to identify
(Gr)s, = Ho,

so that
. a H /
fr(ndhi) = 0'(v,) - Qe (7).
Since U = G1* and H}* = H N U’, we have

. measy G+F “H.,
Lo [, o= et | i [ ) QY ()i
UndHF | ZF measdh(HJ HF |ZF

57
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Since the center of H is contained in the F-minisotropic torus S’, we conclude that Z is the
group of K-rational points of the maximal £-split torus in the center of G.,. Hence, from the
definition of R(H, S’, 1), we have

F
64| ag [ fy(giyai = DesunlCs)

F
UndHF /ZF L, measg, (OZ )

0,(75) ’ R(Ha Sl» 1)(’%)'
Inserting this into Equation (31) completes the proof of Lemma 10.0.4.

10.1. Characters in a simple case. We illustrate Lemma 10.0.4 in the simple case where v €
GY is strongly regular and topologically semisimple. We have v, = 7 and 7, = 1.
Let 7 C T(G) be a GF-orbit. We write

R(G,T) = R(G, S0

for any (5,0') € 7. Then 7 (v) is nonempty if and only if (S,0) € T, where S = G, and
0 € Trro(ST), in which case we have

T(y) = {(S,n0) : ne N(G,5)"/5"}.
Since R(G,, S,1)(1) = 1, Lemma 10.0.4 gives the formula
RGT(v)= Y  nby
neN(G,S)F /SF

if 7 (v) is nonempty, and R(G,T)(v) = 0 otherwise.
Return now to the situation of Section 9.6, with F' = F,, etc. By Lemma 9.6.1, 7 contains

(S, 0x) = Ad(qn) - (T, x),

for some A € r~*(w). If S is not GF*-conjugate to Sy, then R(G, T)(v) = 0. Suppose S = S,
for some h € G¥. Let § = h.,6,, so that

T(y) ={(8,n.0) : n€ N(G,S)"/S}.
From Lemmas 2.11.2 and 10.0.4 it follows that

RGT)) = Y (haxy)x(7)-

yewry
From Lemma 9.3.1 we get the following character values.

Proposition 10.1.1. Suppose v € Gy* is strongly regular and topologically semisimple. Then
©,, (7) = 0 unless vy lies in a G*-conjugate of Sy, and if v € " S\ for h € G, we have

0,,(7) =2(Gn. Ta) D> (hgay)ux (7).

9
yEW;‘jA
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11. REDUCTION FORMULA FOR STABLE CHARACTER INTEGRALS

In this section we prove the analogue of Lemma 10.0.4 for stable character integrals. Fix a
G-stable class T, C T(G). Recall from Lemma 9.4.3 that there is v € N/T and x € Irro(T*)
such that every pair (5, 6) € 7 is of the form

(5,0) = (°T, g« x)

for some g € G with g™'F(g) € v
Given v € G} regular semisimple, with topological Jordan decomposition 7y = 747,, we
define

~

Tt (7s) == {(9,0) € ,j;t s €S}
This set is a finite disjoint union
H Ij— 787A 7
el(~

where each 75 (7s, ) is a G, -stable class in rI(G%), and I () is an index set for these G -stable
classes.
Applying p;, we have

Zt(VS) = pl[lj;t(’VS)] = H Zt(VSui)v
ie](’Ys)

where each T (s, %) is a G, .-stable class in rS(G%) and [ (;) is an index set for these G, -stable
classes. There is a surJectlve map i — i from I(7,) to I(~,), such that
] =

[ st (787 )
The fiber of this map over i € I(;) has cardinality
N(i) = |N(G,,, 8")/8],
where S is any element of Zg (s, 7).
For any G.,-stable class 7{ C T(G.,,), we set

QG T)) = Y IN(G,.,S")/N(G],S)| - R(G,,, 5,1).

SET}/GE,

st(’}/sa )

This will turn out to be a stable p-adic analogue of a Green function. We will consider the sums
Q(G.,, Tst(7s,1)), for i € I(~;). But first we need more notation.

For each i € I(7,) and S € Ty (7s,7), we have a character sum
R )
0epy(p})~1(S)

where p%i (resp. pg) is the restriction of p; (resp. p2) to T (Vss 5)
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In fact, this sum is independent of S: Given two tori S, S" € T (s, 1), we have

9%(75) = 9?9’ (7s),
as a special case of Lemma 9.4.4. We therefore define

82((78) = 9?5‘(75)7
for any S € 7Ty (7, 7). Note that the sum

0X(7s) : ZGX %)

is none other than the character sum 6%(v;), for any S € 7(~s, 7), as defined in Section 9.4.
Finally, recall (Section 10) that for each G -orbit T C 7., we have defined
T(y)={(S.0) €T 7 €5}
Now we are ready to state the reduction formula for stable character integrals.

Lemma 11.0.2. For v € G} regular semisimple, with topological Jordan decomposition v =
YsVu, We have

RGT)0) = Y B QG Tt i) 0w
i€l(ys)

Proof. Using Lemma 10.0.4, we compute

RGT)(y) = >, RGT))
TeTy/GF

- Z Z 8(78) : R(G%v Sv 1)(’711)

TeTw/GF (S0)€T (vs)/GE,

— Z Z 9(’75) : R(G’ysa Sa 1)(’711)

'LEI (vs) (S@)E'Tst( Vs, )/G}:‘5

05(7s)
= - R(G,., S, 1) (1)
;e%s) se:rst@zs,‘?) jGr. IN(GE,S)/ST| g

N 1
=2 00 > iy@r.gyer G500

i€1(vs) S€Tst(7s,1) /G,
0 (7s)
= 7. .
Z N(Z) Q(G'Ys’ St(Vs, ))(,Yu)
i€l(vys)
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11.1. A bijection between stable classes of unramified tori. Lemma 11.0.2 reduces the proof
of stability to the topologically unipotent set, as follows. Let 7 (v;)/G., denote the set of G, -
stable classes in Zg(7s). So Zg(7s)/ G5, is indexed by (7).

We now assume that v € G} is in fact strongly regular semisimple, that is, the centralizer of
~in G is a torus. Then if g € G and 97 is again in G¥', we can construct a bijection

lg zt(%‘)/Gvs — St(g%)/Gg%

as follows. Let S € Ty(7s). Since v € G and has connected centralizer, we have g~ F(g) €
Z\(F.G,,).

Let Z.,, be the maximal k-split torus in the center of G.,. Since S is F'-minisotropic in G,
the group of co-invariants of F'in X, (S) has the same rank as X, (Z.,, ). It then follows from [35,
Thm.1.2] (see also Lemma 2.6.1) that the map H'(F,S) — H'(F,G.,) is surjective.

This means there is h € G, such that (gh)"'F(gh) € S. Hence Ad(gh) : S — 9"S
commutes with F', so IS € T;;(97,).

Suppose also S’ € T (7s), and (S")F" = #(ST") for some k € G.,.. This implies that k' F'(k) €
S. As above, there exists A’ € G, such that (gh/)"*F(gh’) € S'. Then the element j :=
gh'kh~tg™! € Go.,, satisfies j71F(j) € 9"S, 39S = 9" S’ which means that S is G, -stably
conjugate to 9" S’. Therefore, sending the G.,,-stable class of S to the Gy, -stable class of 95
gives a well-defined injection ¢+, as above. It is straightforward to check that ¢(,-1y is the inverse
of ¢4, 50 ¢4 1s actually a bijection.

We may view ¢, as a bijection on index sets:

by I(vs) — I(%7s).
This map has the property that
N (i) = N(g(2)),
for each i € I(~;).
Lemma 11.1.1. Let v € G& be strongly regular semisimple, with topological Jordan decompo-

sition Y = Y4y, and let g € G be such that 9y € G¥. Let ’j;t be a G-stable class in f(G) and
assume that for all i € I(vs) we have

Q(G’st Tt (75, 1)) (V) = Q(Gg%, Tt (s, lg (1)) (yu)-

Then we have

~

Proof. From Lemma 11.0.2 we have

62 RGTI0) = ¥ Q6 Tt )0
i€l(vs)

On the other hand, by Lemma 9.4.4 again (this time in full force) we have

0 (vs) = Qicg(i) (97s)-
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It follows that

33) RGT)) = Y A0 QG T )0,

whence the result. ]

11.2. Stable characters in a simple case. We illustrate Section 11.1 by considering the stable
version of Section 10.1. As in the latter section, we suppose v € G¥ is strongly regular and
topologically semisimple, and let S' = G.,. Let T C ‘i(G) be a GG-stable class.

Let us describe the objects in 11.0.2 in this case. If 75 (7y) is empty, then R(G, Zg;)(7) = 0.
Assume 7T, () is nonempty. Then there is 6 € Irro(S¥) such that

~

Ta(1) = {(8,n.6) : n € N(G,57)/S}.
Thus, we may identify I(v) = N (G, S¥)/S, and for each n € I(v), we have

~

Ta(v,n) = {(S,n.0)}.

The index set /() consists of a single element, 7, and

Q(Gy, Tt (7, 1)) () = Q(S,{SH (1) = 1.

In terms of tori, the map ¢, simply sends S to 9.S. Hence the conditions of Lemma 11.1.1 hold

trivially, so that R(G, ’j;t) is constant on the G-stable class of 7.
Lemma 11.0.2 gives the formula

RG T = >,  nb().

neN(G,SF)/S

From Lemma 9.6.3 it follows that the sum of characters in the L-packet I1(p,w) is constant
on the G-stable class of .

12. TRANSFER TO THE LIE ALGEBRA

Lemma 11.1.1 reduces the proof of stability to the following.

Lemma 12.0.1. Assume as above that v € G} is strongly regular semisimple, and g € G is such
that 9y € GF. Let Ty be a G -stable class in T(G.,,). Then

S

QG Tat) (V) = Q(Garys 1y Tet) (970)-

We will prove Lemma 12.0.1 under some restrictions on k, to be installed as they are needed.
The first step in the proof of Lemma 12.0.1 is to transfer the calculation to the Lie algebras g,
and gs,, of G, and G, respectively. We then invoke a deep result of Waldspurger [63], which
states that, for groups which are inner forms of each other, the fundamental lemma for the Lie
algebra is true.
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12.1. Orbital Integrals. Fix v and g as in the statement of Lemma 12.0.1. Since the calculation
takes place mostly in the groups G, and G4, , we adjust the notation slightly for clarity. Let
H = G,,,andleth = Lie(H ) be the Lie algebra of H. We fix an additive character A : K — C*
which is trivial on the prime ideal of R but non-trivial on R. Suppose B is a nondegenerate,
symmetric, (F') x H-invariant bilinear form on b. For f € C>°(hT"), the space of locally constant,
compactly supported functions on h*’, we define the Fourier transform (with respect to B) of f
by
fOO= | 100 MBI V) ay

where dY is Haar measure on h, normalized as in Section 5.

Suppose X is a regular semisimple element of h¥. For f € C°(h*') we define " (f), the
orbital integral of f with respect to X, by

- dh
(= [ x5
HF [(Cly(X))F t

where C';(X) is the maximal unramified torus in the torus C'y (X)) and dh, dt are Haar measures
on HY', C},(X)¥, respectively, normalized as in Section 5.

Remark 12.1.1. If X’ € h% is H-conjugate to X, then the tori C;(X) and C};(X’) are H-
conjugate. Consequently, if d¢’ denotes the Haar measure on C;(X’), it follows that the mea-

sures 9% and 9 determine the same multiple of the top degree form on the orbit #X = HX".

We define 21" (f) := pI" (f) for f € C°(hF). In this way, we have a distribution 1% on
C>(h*"). Thanks to Harish-Chandra [25, Theorem 4.4], we know that [&F is represented on h¥’
by a function, which we also denote by /fL)I}{F (The same result is true for the Fourier transform
of any orbital integral.)

12.2. A result of Waldspurger. In this section, H is any connected reductive k-group splitting
over K. As usual, F' is the Frobenius action on both H := H(K), and h := Lie(H). For X € p¥
regular semisimple, write

[Ad(H)X]" = [T AdH") X,

where the X; run over a (finite) set of representatives for the Ad(H')-orbits in [Ad(H) X]F (see

Section 2.9.1). We set
A IgF
The measures used for each orbital integral are compatible, in the sense of Remark 12.1.1.
Let H* denote a k-quasi-split inner form of H, and let H ; be the adjoint group of H*. Let H*
and H,; denote the groups of K-rational points of H* and H ;, respectively, and let /'* denote

the action of Frobenius on H*, H, and h* = Lie(H*). Choose an inner twist

¢: H— H*.
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That is, ¢ is a K-isomorphism, and there is hj, € H,,; such that
Ad(hy) = F*o¢o Flog™' € Autg(H").

Here we implicitly use the isomorphism H'(F, Hyq) = H'(k, Haq), see Section 2.2. The choice
of ¢ defines an injective map S, from the set of stable regular semisimple orbits in h¥" to the
set of stable regular semisimple orbits in (h*)f", as follows. If X € h¥, then F*(dp(X)) =
Ad(Rh})dp(X), so the Ad(H*)-orbit of dp(X) is F*-stable. If X is regular semisimple, then
so too is d¢(X ). The existence of an F*-stable Kostant section shows that the Ad(H*)-orbit of
d¢(X) contains an F™*-fixed point X* (see, for example, [56, 9.5] or [36]). Finally, Sy sends
[Ad(H)X]F to [Ad(H*)X*]F".

Suppose now that H' is any inner form of H. Let H’ denote the group of K-rational points
of H' and let £’ denote the action of Frobenius on H’ and §’ = Lie(H’). Suppose X € h¥
and X' € (h")"" are regular semisimple elements, and ¢: H — H* and ¢': H' — H* are inner
twists. We say that X and X’ are (¢, ¢')-comparable provided that

Ss([AA(H)X]") = Sy ([Ad(H)X)
as stable regular semisimple orbits in (h*)".

Example 12.2.1. Take H = G, as in the situation of Section 12.1. Let log: Go+ — g be any
injective (F') X G-equivariant map which takes regular semisimple elements to regular semisim-
ple elements. (The existence of such a map with just these properties follows from [9, p. 333,
§7.6, Proposition 10].) Then C'g () is a torus in H, and F'(g) = gs for some s € Cy(~y). More-
over, Ad(g) : H — H' := 9H is an inner twist, with F" = F. Let X := log(~,). From [29,
Theorem 13.4(a)] it follows that X € h and 9X € 9§ are regular semisimple elements. Since F'
and Ad(s) fix 7,, it follows that F/(X) = X, and F(X) = 9X.

Suppose ¢: H — H* is an inner twist, and let X* € [Ad(H*)d¢(X)]*". One checks that the
map ¢' := ¢o Ad(g~!): 9H — H* is also an inner twist, and that X* € [Ad(H*)d¢'(X)]F". Tt
follows that X and 9.X are (¢, ¢')-comparable.

Example 12.2.2. Continue with the notation of Example 12.2.1 and also Section 11.1. Let 7; be
an H-stable class in T(H ), and let 7], = 1,7, an H'-stable class in T(H’), be as in Section 11.1.
Suppose Sy € 7,; and X is a g-regular element of Lie(Sy)”. Let X € [Ad(H)X,]". Note that
X is regular in g. As in the definition of ¢,, there is h € H such that (gh) ' F(gh) € Cg(X),
and the elements X and X’ := 9" X € [Ad(H')(YXo)]" are (¢, ¢ o Ad(g)~')-comparable.

Lemma 12.2.3. Let ¢: H — H* and ¢': H' — H* denote inner twists. Suppose X,Y (resp.
X'.Y") are regular semisimple elements in h¥ (resp. (0)*'). If X and X' are (¢, ¢')-comparable
elliptic elements and 'Y and Y' are (¢, ¢')-comparable elements, then we have

SY(Y) = e(H,H) - ST, (V).

Remark 12.2.4. The above lemma may be viewed as more evidence for Kottwitz’ sign conjec-
ture [33].
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Proof. Without loss of generality, H’' is k-quasi-split, and we may replace H' by H*. Wald-
spurger has already shown [63, Théoréme 1.5] that for X, Y, X’ Y as in the statement of the
lemma, we have
Sx(Y) = ¢ S%(Y)
where c is an eighth root of unity. (In the notation of [63], this is actually the special case
s = 1,& = I of [63, Théoréeme 1.5], and ¢ = v5(h*)/va(h).) We will give two proofs that
c=¢e(H,H").
The first proof uses Shalika germs. For all n € Z we have
S%(@"Y) = ¢- 8T (@"Y").

From Harish-Chandra [25, Theorem 5.1.1], for all n € Z sufficiently large we have

Sh@Y)= 3 B(X) - fo(w™Y)

OEO;, (0)
=)+ Y D) g jio(Y)
00y (0)\{0}

where Oy (0) denotes the set of nilpotent H'-orbits in h*, the c{,(X) are complex constants, and
0 denotes the zero orbit {0}. A similar statement is true for S;’;,. Thus,

) = i Sh(=)
= lim ¢- ST, (@™Y")
—c-f (X).

Let X1, Xs, ..., X,, be representatives for the H*-orbits in [Ad(H)X]*. From [25, Theo-
rem 8.1] we have

SN X;
ch(X) =15 (X)),
j=1

where Fg b(X3) (X,) denotes the evaluation of the (unnormalized) Shalika germ corresponding to
the zero orbit at X;.

If the center of H* is compact, then so too is the center of (H*)¥". Thanks to Rogawski [49]

we have
e(H,Z)

Deg(St*)’

Thus, if the center of HF is compact, we conclude from the above, the fact that Deg(StH ) >0,
and the fact that ¢ is an eighth root of unity that ¢ = ¢(H, H*).

Suppose that the center Z" of H is not compact. Let H; denote the derived group of H and
let b, denote the Lie algebra of H; = Hy(K). The center of Hy is finite and H /(HI)Z" is a
finite group. Without loss of generality, we assume X € h%. From Lemma 2.9.1, we have that
two regular semisimple elements of b are H-stably conjugate if and only if they are H -stably

th(Xj)(X-)

J
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conjugate. However, since two regular semisimple elements of b} may be H*'-conjugate without
being H! -conjugate, for 1 < i < m we introduce the group

HF = {h e H" . thereisan h' € HY such that "X, = X,}.
We have HY' ZF < HF < HY. Thus, we can write

i=1 heHF /HF

Suppose we can show that the restriction of S% to b1 equals e - g;](d for some constant e > 0.
We would then have ¢{(X) = e - ¢J?(X). Arguing as in the previous paragraph, we would again
conclude that ¢ = ¢(H, H*).

To complete the proof, we now show that such a constant e exists. We will use Harish-
Chandra’s integral formula for the Fourier transform of a regular semisimple orbital integral [25,
Lemma 7.9]. Since we only wish to establish the positivity of e, in what follows we are not
careful about specifying our invariant measures nor about accounting for the (positive) constants
that occur. Let L be a compact open subgroup of H*" which lies in HY' Z¥. There is a positive

constant const so that for regular semisimple Y € b

dg* /L A(B(?'Y, X;)) d¢

:const-z Z Z / dg;/A(B(glgﬂY,thi))dé
HEZF [2F L

¢ heHF/Hf gieH[ /HjZF

which, from the definition of H ZF , becomes

= COHSt'Z Z |Hf/H5ZF‘ /

- - FogF |7F
1 hGHF/HiF Hy Z /Z

dg; / AB(=Y," X)) de.
L

We claim that for 1 < 7, 7 < m we have
\H]/Hy Z"| = |H] JHy Z"].
In fact, we will show that the group H/ is independent of i. Note that H/'/HY Z¥ can be

characterized as the set of cosets in HY'/HY Z¥ which intersect (Cy(X;))" nontrivially. Thus,
it is enough to show that for h € H¥ we have

WHE ZP) 0 (Cu(X)) £ 8 = h(HEZ7) 0 (Ca(X,)F # 2.
Suppose h € H and g € HY Z¥ so that hg € (C(X;))". Itis enough to producea g’ € HY ZF
such that hg' € (Cy(X;))¥. Since X; and X are H,-stably conjugate, there is an i/ € Hy so
that ¥ X; = X;. Since Cy(X;) is abelian, this implies that " ((Cy (X;))¥) = (Cu(X;))F.
Consequently, "' (hg) € (Cu(X;))" and " (hg) = h(h"'W'hg(h')™') € hH ZF. Set g :=
(bW hg(k)~'). Note that g € HY Z¥ implies ¢’ € Hy(Z"). Butalso ¢’ € h ™ (Cx(X;))F <
HF, soinfact g’ € HY Z¥ and hg' € (Cy(X;))F, as desired.
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Therefore,

Y (Y) = const - / dgs / A(BEYY, " X)) de
x(Y) > e ", (B( )

i heHF/HF

— const’ - dgi | A(BEY, M X)) de.
cons Z Z /Hg/(HfijF) QQ/L ( ( ) ))

t  heHF/HF
0

12.3. Another calculation of Waldspurger’s sign. In this section we give a second proof of
Lemma 12.2.3 in terms of our pure inner forms G,. This proof continues in the vein of [63].
For A € X,, we have a pure inner form G, of G with Frobenius F, = Ad(u,) o F. In
particular G = Gy is k-quasi-split. Note that G, = G as groups; the subscript indicates the
variation in k-structure. To simplify the notation, we write o := wJ, and set ¥ := (o).
We define an inner twisting ¢, : G, — Gq by ¢, = Ad(h,), where hy, = pop/(1 and
P, Po € G satisfy the equations

(34) po ' Flpo) =,  pyluaF(pa) =tab
of Chapter 2.7. Let ®(T) denote the set of roots of T in G. Likewise, let T, = Ad(p))T, and
let ®(T)) denote the set of roots of T in G,.

The map Ad(p,) : T — T, intertwines F,, on T with F on T,. It induces a map ®(T) —
®(T,) given by

a— ayi=aoAd(py) ",
satisfying
F)\ Q) = (0' . Oé))\.

(Recall that F,, acts on ®(T) via 0.)

Fix A € X,,. By Hilbert’s Theorem 90, there exists a set {£,, : a € ®(T)} of T)-root
vectors in g having the property that

F) 'Eoo\ = E(J'a)

\-
The transformed root vectors
E; = oa(Ea,)
are only preserved by F up to scalar multiples. That is, for each o € ®(T) there is c,, € k such
that
F(CQAE;) = C(U.a)XE:;.
A straightforward computation shows, for each a € ®(T), that

o

(35) Frob(ca,) = oo, Clo-a)

Following [63], a -orbit in ®(T) is called symmetric if it is closed under &« — —a and

anti-symmetric otherwise. Let S}}m(T) be a set of representatives for the symmetric >-orbits in
o(T).

A"
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For any o € ®(T), define
Yo={re¥: 7 a=a},
and let k, C k be the fixed field of the pre-image of 3, in Gal(k/k).
For each o € Sym(T), define
Yio=A{7€X: 7 -a=+a},

and let ki, C k be the fixed field of the pre-image of X, in Gal(k/k). There is an integer
m = m(«) such that
Yiio = (0™), Yo = (™).
We have 0™« = —«. The extension k,/k is unramified of degree 2m.
Moreover, k,/k+, is an unramified quadratic extension, hence corresponds via class-field
theory to the character x,, : k<, — {Z£1} given by

Xa() = (=1)",
where v is the valuation on K. Using [63], Lemma 12.2.3 is equivalent to the following formula.

Lemma 12.3.1.
IT  Xalcar - coay) = (G, Go).

aeSym(T)
The proof requires a few steps.

Lemma 12.3.2. We have

_ —(\oto-at4om=D.q
COO\'C,QA—TL'W< >,

where m = m(«) and n € k3, is a norm from k.

Proof. Applying Equation (35) repeatedly, we have
Clok-a)y = Frobk(cm) . w*<)\,0’-a+...+0k_a>,

for k > 1. Since 0™ - @« = —«, we have

~(Aoatetom= .
oy = Frob™(cg, ) - = Aottt aza)

Hence

2(Xa) —(Aato-at+om La)

Cay * C—ay = Cay - FrOD™(Cpo,) - @ W

Since ¢, € k,, this proves the claim, with

n = cq, - Frob™(c,, ) - w*™,

Choose a set of positive roots 7 (T) C ®(T), and set

2p = Z 0.

Bed*(T)



DEPTH-ZERO SUPERCUSPIDAL L-PACKETS AND THEIR STABILITY 69

Lemma 12.3.3.
Z Nato-a+---+0™971.a) = (N2 mod 2.
a€Sym(T)
Proof. Let Oy, ..., O, be a choice of one from each pair {O;, —O;} of anti-symmetric X-orbits

in ®(T), and let Oy,..., O, be the symmetric X-orbits. For a € &(T), define |a| = « if
a € ®F(T), and |a| = —aif —a € ®T(T). Set

1O/l ={lel: a € O}, OF =0;N@7(T).

Then we have a disjoint union

p q
o(T) =[]0l u J] o5
i=1 j=1
For any 1 <17 < p, we have
Y 8= o mod2Z(T).
Bellofl €0

The latter sum is Y-invariant, hence it vanishes, since o is elliptic. It follows that

q
(\20)=>" ) (\B) mod 2.
i=1 peof
Working modulo two, we can replace each sum over (’)j+ by

m(a)—1
A\ o"-a),
k=0
for any o € O;. This proves the lemma. UJ

Combining Lemmas 12.3.2 and 12.3.3, we get

Corollary 12.3.4.
H Xa(Cay * Coay) = (_1)(/\,2/))‘

a€Sym(T)

We next give another expression for (G, Gg). Let 2, € W, be the projection of u,. Then z)
and ¢ act linearly on the Q-vector space V' := X ® Q (recall that X = X,(T)), and the k-rank
of G, is given by

rk(G,) = dim VA7,
Let det(A) denote the determinant of an operator A € GL(V').

Lemma 12.3.5.
£(Gy, Go) = det(zy).
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Proof. Since 2,9 has finite order and preserves the lattice X C V/, we have
det(zy0) = (—1)dimV—dim vad
Likewise,
det(d) = (— 1)dim V-dimV?
Together, these give
det(z)) = (—1)ImVA"=dmV" — o(Gy, Go).

To prove Lemma 12.3.1 it remains to prove

Lemma 12.3.6.
det(zy) = (=1)M?,

Proof. From the definitions we see that z) = 2y, forany v € X°+ X" where X° is the co-root
lattice of T. Likewise, the parity of (), 2p) depends only on the class of X in X/(X° + X").
We have det(z,) = (—1)*2?) = +1if A € X° + XW.

Assume now that A ¢ X° + X". Recall that T, is the image of T in the adjoint group
Gq of G, and that X, = X.(T,.). We may view X° as a subgroup of X,4. The natural map
X — X,q induces an injection

X/(X°+ X)) — Xoa/X°.

The nontrivial elements in the group X,,/X° are represented by the minuscule co-weights of
Tuq [9, p. 240]. Hence the class of X in X/(X° + X") determines a simple root o € ®*(T)
such that (A, 5) = 0 for all simple roots 5 # «, and (A, a) = 1. Moreover, we have a disjoint
union

O(T) =P LDy Py,

where

®; ={6€®(T): (A ) =i}
(see [9, p. 239]).

Iwahori-Matsumoto [30, 1.18] show that z) is W,-conjugate to the unique element of W,
whose set of positive roots made negative is exactly ®;. This implies that
det(zy) = (—1)!*],

On the other hand, since

OT(T) = [®y N O (T)] U &y,
it follows that

(A 20) = ) (A5) = @],
BEP:

This proves the present lemma, as well as Lemma 12.3.1.
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12.4. Murnaghan-Kirillov theory. In this section, H is any connected reductive k-group, split
over K, with Frobenius ' on H := H(K). Let Hy+, ho+ denote respectively the sets of topo-
logically unipotent elements in H, and topologically nilpotent elements in h = Lie(H ).

We make the following restrictions on £ and H. Recall that ¢, a power of a prime p, is the
cardinality of the residue field f. Let e denote the ramification degree of k over Q,, and let v(H)
be the number of positive roots in H.

Restrictions 12.4.1. () ¢ > v(H).
(2) There is a faithful k-embedding ¢ : H — GL,, such that p > (2 + e)n.

Note that if G is as in the previous part of the paper, H is the identity component of the
centralizer of a topological semisimple element in G, and Restrictions 12.4.1 hold for G and
some n, then they hold for H, with the same n.

In Appendices A and B we will prove:

Lemma 12.4.2. Assume Restrictions 12.4.1 hold. Then we have:

(1) For every F-stable facet J C B(H), and maximal F-stable torus S C H; with Lie
algebra Ls, there is an element Xs € Lg whose centralizer in Hj is exactly S.

(2) There is an (F) x H-equivariant bijection log : Hy+ — B+, which induces, for every
minimal F-stable facet J C B(H), an (F') x Hj-equivariant bijection from the set of
unipotent elements of H to the set of nilpotent elements of the Lie algebra of H ;.

Recall that for S € T(H) there is a unique F-stable facet J C B(H) such that J* = B(S)F,
and that S denotes the image of S in H;. Let Z denote the maximal £-split torus in the center of
H. The following lemma is a special case of a result in [18].

Lemma 12.4.3. Assume Restrictions 12.4.1 hold. For each S € %(H), with (S, J) as above,
and any Xs € Lie(S) N h% whose projection to LE is an element Xs as in 12.4.2, we have the
equality
gF
R(H,5,1)(y) = £(H,Z) - fuy; (log(7)),
for every regular semisimple v € Héi, where log is as in Lemma 12.4.2

Proof. Fix a regular semisimple v & Hém+ . Let df¢ denote the Haar measure on HY with
measg(HY) = 1. We have

meas,.(Z)) / / SH (bt
—_— dh* R¢ dc.
measgn(H}) Jur,zr HE s1("7)

On the other hand, from [2, Proposition 3.3.1], we can write

R(H7 S, 1)(7) =

measy, (Z5) / . / / e'he ’
- an [ e | ABEMX, Xs)) de
measds<<CH(XS))§) HF/ZF HE HEY (Bl )

where X = log~ and ds is the Haar measure on (Cyr(Xs))”, normalized as in Section 5. (Note
that in [2] the quotient measure is normalized slightly differently.)

36)  l(x)=
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From [2, Lemma 6.1.1] we see that the inner integral in Equation (36) is zero unless " X ¢ bff .
Consequently, it is enough to show that if "X € b, then

e(H,Z) - measg,(HY)

SHy he _ . A B Z’h@X X /‘
S Rsi () measy;s((Cu(Xs))%) /Hf (Bl X)) dt
But since
P
means((CH(Xs))J) = |Lg‘1/27
and

E(H, Z) = E(H(], S)

because S is minisotropic, Equation (37) follows immediately from [31, Theorem 3] and the
properties of the map log in Lemma 12.4.2. 0

12.5. Completion of the proof of stability. In this section, we prove 12.0.1, assuming that
Restrictions 12.4.1 are in place.
Let 7;; be an H-stable class in T(H). We fix Sy € 7 and X, := Xg, € h asin 12.4.3.

Lemma 12.5.1. The map X — Cg(X) induces a surjective map

c: [Ad(H) - Xo)/H" — Ty /H",
whose fiber over the HY -orbit of S € Ty is in bijection with N(H,S*)/N(H* | S).
Proof. Note that

[Ad(H) - Xo]" = {"Xo: he H, and b 'F(h) € Sy},
and recall that
T ={"Sy: h€ H, and "(SF) = ("Sy)"}.
Since h 1 F(h) € Sy if and only if *(S{") = ("Sy)¥, it follows that
[Co(X) : X € [Ad(H) - Xo|7} = .

One checks that for k, h € H with *X "X € ¥, we have that Cq(*X) is H' -conjugate to
Cq("X) if and only if there is £ € HY such that k~'¢h € N(H,SL). It follows that the fiber
of ¢ over the H'-orbit of *S, consists of the distinct H -orbits Ad(H*")(9"X), as n ranges over
N(H, (*Sp)f)/N(HE kSy). O

Lemma 12.5.2. If Restrictions 12.4.1 hold, then Lemma 12.0.1 holds.
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Proof. Using Lemmas 12.4.3 and 12.5.1, we have
QH To)(w) = Y, IN(H,S")/N(H",S)|- R(H,S,1)(7.)

SeTy/HF
=c(H,Z)- > |N(H,S)/NH",S)|- it (log(1.))
S€Tst/HF
— £(H,7)- 3 i3 (log(va))

Xe[Ad(H)-Xo]F/HF
=e(H,Z) - 5%, (log())-

A similar result holds for Q(YH, 1,7 )(97,). The result now follows from Examples 12.2.1, 12.2.2
and Lemma 12.2.3. O

13. L-PACKETS ARISING FROM THE OPPOSITION INVOLUTION

We illustrate our L-packets with a canonical example. For simplicity, take G to be absolutely
quasi-simple and simply-connected, and let w, be the unique element of W, such that w, - C' =
—C'. Up to isomorphism, there is a unique K -split k-structure on G for which the Frobenius F
acts on X by 9 = —w,. This k-structure is quasi-split, and we have H'(F,G) = 1.

We tabulate the groups G below, using their names from the tables of [60], and give the
number r := [X7, : j(X")] of generic representations in an L-packet I1(;p) (see Lemma 6.2.2).

G 214,2m 2A/2m71 Bn Cn DQm 2D2m+1 G2 F4 2E‘G E7 ES
T 1 2 2 2 4 2 1 1 1 2 11

Now let ¢ be a TRSELP whose associated w is w,. Since w,9 = —Id, the L-packet II(¢p) is
parametrized by
Irr(Cy,) = X/2X,
where X = X° is the co-root lattice of T in G. In particular, |II(p)| = 27, where n is the
absolute rank of G. With Haar measure normalized as in Section 5.3, each representation ™ €
I1() has formal degree

Deg(m) = (¢'* +q ')

Since W2V = W, the full Weyl group W, acts on Irr(C,,). This action has several interpreta-
tions.

First, by Lemma 9.6.1, the W,-orbits on X/2X are in bijection with the GY-orbits in the
G-stable class 7,,,. The tori in this stable class are k-isomorphic to UY.

Second, the W,-orbits in X /2X are in bijection, via evaluation at —1, with conjugacy-classes
of 2-torsion elements in G (or G, since G is simply-connected, and Lemma 2.9.1 applies). For
each A € X, we have

ZL’,\:§t)\'O,

and the root datum, with Fy-action, of G, is that of the centralizer in G of A(—1). The generic
representations in I1(y) correspond to the 2-torsion elements in the center of G.
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For exceptional groups, the 2-torsion picture places a strong limitation on the type of inducing
parahorics that appear in I1(¢). For example, in Fg there are three W,-orbits in X/2X. The
L-packet I1(p) has 256 = 1 + 120 + 135 representations, induced from parahoric subgroups of
type Es, A1FE7, Dg, respectively.

Third and finally, the generic representations in I1(y) are parametrized by the W,-invariants:

Irr(C,) gen = Irr(C,)".

Containment “C” is shown in Remark 6.2.5. For the other containment, note that a W, -invariant
element in X,,4/2X,4 corresponds to a central 2-torsion element in G4, hence must be trivial.
Containment “2” now follows from Lemma 6.2.1.

APPENDIX A. GOOD BILINEAR FORMS AND REGULAR ELEMENTS

In the appendices, we prove various results used in the proof of stability. Here G is any
connected reductive k-group, not necessarily split over A, and F' is the corresponding Frobenius
automorphism of G.

A.1. Good bilinear forms. We say that a symmetric bilinear form B on g is “good” if B is
(F') x G-equivariant, nondegenerate, and restricts to the Killing form, B’, on the derived algebra
g =[g,9]of g.

Let g,, 9.+ be the Moy-Prasad filtration subalgebras of g attached to x € B(G) and ¢t € R.
(See Section B.5 below for a brief introduction to Moy-Prasad filtrations.)

Lemma A.1.1. If p > n + 1, where n > 2 is the dimension of a faithful k-representation of G,
then there exists a good bilinear form B on g which induces, for all x € B(G) and for all t € R,
a nondegenerate pairing

Ot/ Bzt X Oo(—t)/ Ba(—t)r — -
Remark A.1.2. If B satisfies Lemma A.1.1 and x is F'-fixed, then the induced pairing,

Oat/ Baa+ X gx,(—t)/gx,(ft)'*‘ — &,
is (F') x G -equivariant.

Proof. The existence of such a form B follows from the proof of [4, Proposition 4.1] under the
condition that p ¥ B'(H,, H,) for any root o of a maximal torus T C G, where H, is the
corresponding Chevalley basis vector in the Lie algebra of T.

Let gy, ..., g, be the simple factors of g'. Let m; be the sum of the coefficients in the expres-
sion of the highest co-root of g; in terms of simple co-roots. From [54, [.4.8], any prime dividing
B'(H,, H,) must divide 6(m; + 1), where g; is the factor containing .

Let m* = max{m; : 1 <i < r}. We have n > m*. To prove this, one may assume g simple,
and check the result case-by-case (recall that k& has characteristic zero). The result follows.  [J
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A.2. Regular elements. Suppose J is an F'-stable facet in B(G) and S is a maximal {-torus in
G;. We wish to establish conditions on p and ¢ which will guarantee that the Lie algebra LE
contains a regular semisimple element of L ;.

Let Fy be the g-power Frobenius of §/f. Let ®; be the set of F-roots of G; with respect to S,
and let / = dim Ls. There is a permutation 7 of ®; such that

aoF =Fyor(a)

for all « € ®;. Let d be the order of 7. Let ®; be the set of orbits in ®; under the group
generated by 7 and oo — —a.

Lemma A.2.1. If p # 2 and q > ‘CI)J|, then LL contains a regular element of L.
Proof. Set fq := %, L := LE”. The f-linear map
tr:Ld — LL,

given by
d—1
trX =) Fi(X)
j=0

has the property that for all « € ®, the composition « o tr is not identically zero on LZ. Indeed,
suppose there exists « € ®; for which « o tr is zero. Since S is f4-split, we can assume that the
Chevalley basis vector H,, belongs to L¢. For all ¢ € f,;, we have

0= a(tr(tH,))
=a(tHy +t"Hyo+ -+ tqdleTd_la)
= t{a, @) + t9a, Ta) + - - + tqd”(a, 7710,
Since p # 2, we have («, @) # 0. Hence we have a nonzero polynomial of degree at most ¢%~*

but with ¢¢ zeros in g, a contradiction.
Thus, for each v € ®; we have a nonzero f-linear map

aotr:Ld — f,.
Let Z, be the kernel of this linear map. Since
Fy(r(a)(tr X)) = a(tr X),

we have Z. ) = Z,. Also, we have Z, = Z_,. Hence the subspace Z, depends only on the
image of o in ® .
It suffices to show that the set
g = Lg\ U Zo
acd;
is nonempty. We have

=L = | U Za| = ¢~ |®,]120].

@E'i)(]
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where (3 is chosen so that |Z5] = max{|Z,| : a € ®;}. Since dim; Z5 < fd — 1, we have
|Z5] < ¢"~!. Consequently,

Lg) > g — 8] .
Therefore ¢ > }<I> J| ensures that L¢g is nonempty. 0

Note that
;] <wv(g),

where v/(g) is the number of positive (absolute) roots in g.

If p is not a torsion prime for G, then the centralizer in G; of any semisimple element in
L; is connected [58, Theorem 3.14]. The torsion primes of G; are also torsion primes of G.
Consequently, if p is not a torsion prime for G, then any regular element of Ls has central-
izer equal to S. The torsion primes of G are less than the number m* defined in the proof of
Lemma A.1.1. Putting all this together with Lemma A.2.1 gives the following result. Let n be
as in Lemma A.1.1.

Lemma A.2.2. If p > n+ 1 and q > v(g), then for every F-stable facet J in B(G), and
every maximal F-stable maximal torus S C Gy, the Lie algebra LE contains an element whose
centralizer in G is exactly S.

APPENDIX B. A LOGARITHM MAPPING FOR (G

Let e denote the ramification degree of k£ over Q,, and let ¢ : G — GL,, be a faithful
k-representation. We suppose that v(K*) = 7Z where v is the valuation on K. For notational
convenience we sometimes write (G*)o+ instead of (Gg+)”.

The purpose of this appendix is to prove the following Lemma.

Lemma B.0.3. If p > (2 + e)n, then there exists a (F') x G-equivariant bijective map
log: Go+ — go+

which, for each F-stable facet J in B(G), induces a (F) x Gj-equivariant bijective map from
the set of unipotent elements in G to the set of nilpotent elements in L ;.

B.1. The exponential map for the general linear group. Recall that ¢ is the order of the
residue field of k. For each X € gl (k) we have X € gl (k)o+ if and only if || < ¢~ '/"
for each eigenvalue y of X. For each g € GL,(k), we have ¢ € GL,(k)o+ if and only if
| — 1] < ¢~ '/™ for each eigenvalue y of g.

We begin with a technical result.

Lemma B.1.1. Ifp > en + 1, then
—j/n
m =
|J_-/|
Zin
oL — o
1

< q V" forj > 2and
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Proof. Set
J J J
o g 4]+ [2]-
b p p? p?
Note that y )
¢ 4 meAG)-)/
g gAY
To establish item (1) it is enough to show
(38) neA(j) —j < —1,
and to establish item (2) it is enough to show
. . —J
(39) neA(j) —j < .
D=7 520

Write
¢
J= Z bip’
i=0

with b; € {0,1,2,...,(p — 1)} and b, # 0. We have

: ¢
FIR
p t
for 1 <t < ¢. Consequently, (p — 1)A(j) = Zf:o bi(p' — 1) = j — > b;. Thus,

enA(j) < (p—1DAG) <G —1),
establishing (38), and
(p —1)(neA(j) - Jj)
=nej—ned bi—(p— 1)
<(ne—p+1)j
<-J

establishing (39). [

Our assumption p > (2 + e)n ensures that p > en + 1. Thus, thanks to Lemma B.1.1 and [25,
§10.1], the map exp defined by

=0

converges to a GL,, (k)-equivariant bijective analytic map from gl,, (k)o+ to GL,,(k)o+. We extend
exp to a (F) x GL,(K)-equivariant bijective analytic map from gl,(K )¢+ to GL,(K)g+ as
follows. For each m € Zs1, by replacing k by K™ in the discussion above, we obtain an
analytic map exp,,: (gl,,(K)o+)"" — (GL,(K)o+)"". Thus, if X € gl,,(K)y+, we may choose
m € Zsy so that X € (gl (K)o+)"" and define exp(X) := exp,,(X) € (GL,(K)p+)"" C
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GL,(K)p+. This gives a well-defined (F') x GL, (K )-equivariant bijective analytic map from
g[n(K>0+ to GLn(K)OJr

For each facet J in B(GL,(K)), the map exp takes gl (K); N gl,(K)o+ to GL,(K); N
GL,, (K )o+. Finally, the map exp also takes the Haar measure on gl,(k) into the Haar measure
on GL,, (k).

B.2. The logarithmic mapping ). From [9, III, §7.3, 2, Proposition 3], there is a neighborhood
V of 0in g¥" and a map ¢: V — G¥ such that ¢(V/) is an open subgroup of G¥ and ¢: V —
¢(V) is a k-analytic isomorphism of analytic manifolds with the property that $(mX) = ¢(X)™
for all m € Z and for all X € V. From [9, 11, §7.6, 6, Proposition 10], there is a neighborhood
U of the identity in (GT")o+ and a unique k-analytic map ¢: (G¥)o+ — g% such that(U) =V,
o1 = 1y, and ¥(g™) = ma(g) for all g € (G)g+ and all m € Z. Note that 1 is locally
injective, hence injective.

Recall that the exponential map, exp, for the general linear group was defined in section B.1.
The unique map from GL,,(k)o+ to gl,, (k) determined (in the sense of the previous paragraph) by
exp is called log. It has the usual power series expansion. Since p > (2+¢e)n > en + 1, the map
log: gl,,(k)os — GL,(k)o+ is the inverse of exp: GL,(k)o+ — gl,,(k)o+ (see, for example, [25,
Lemma 10.1]).

From [9, I11, §4.4, Corollary 2] there is a neighborhood V’ C V in g such that

(40) p(0(X)) = exp(dp(X))

for all X € V'’ and

dp(¥(g)) = log(¢(9))
forall g € ¢(V”). Suppose g € (G)L,. Choose m € Zxq so that g € ¢(V'). We have

de(ip(g)) = p~™ - de((g"")) = p~™ -log(p(g"")) = log((g))-
Thus

(41) de(¥(g)) = log(e(9))
forall g € (Go+)T.
B.3. An extension of 1). The map ¢ has a unique extension, which we shall also call v, to a

(F) x G-equivariant map from Gg+ to g. Indeed, for each m € Z1, by replacing k by K™ in
the discussion above, we obtain a (unique) K" -analytic map ©,,: (Go+)¥" — g™ for which

dp(Ym(g)) = log(v(g))

for all g € (Go+)"". Thus, since dy is injective, for m’ > m > 1 we have ¥, (9) = ¥ (g)
whenever g € (Go+ ). In particular, ,,(g) = 11(g) whenever g € (Gy+)¥. Thus, we may
define 1: G+ — g by setting ¢)(g) = ,,,(g) whenever g € (Go+)F™. To see that ¢ is (F) x G
- equivariant, it is enough to check that it is F'-equivariant. Since d is injective, it is enough to
check that dp(1(Fg)) = dp(F(1(g))) for all g € Go+. However,

dp(y(Fg)) = log(p(Fg)) = Flog(p(g))
= Fdp(¢(g)) = dp(F1(g)).
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B.4. The adjoint representation and ). Suppose Y € gl (K )y+. Since the valuations of the
eigenvalues of ad(Y") are bounded (below) by those of Y, and p > (2 + e)n, the power series for
exp(ad(Y')) converges in GL(gl,,)(K), and we have

(42) exp(ad(Y)) = Ad(exp(Y)).
Similarly, for all g € GL,,(K)o+ we have
(43) log(Ad(g)) = ad(log(g)).

For h € G+, we define log(Ad(h)) € gl(g)(K) by

log(Ad(h)) = =) (= AdR)"

Thus, for all h € G+ and X € g, _
delad(y(h))X] = [ad(dp(¥(h)))]dp(X)
(from Equation (41))
= [ad(log((h)))]de(X)
(from Equation (43))
= [log(Ad(p(h)))lde(X)
= dip(log(Ad(h))(X)).

Since d is injective, we conclude that
(44) log(Ad(h))X = ad(¢(h))X
forall h € Go+ and X € g.

B.5. A brief introduction to the filtrations of Moy and Prasad. We recall here what we need
from the theory of Moy-Prasad filtration lattices ([44, 43]).

Let T denote the group of K -rational points of a maximally K -split torus in G. Let A denote
the apartment in B((G) corresponding to 7', let ¢ denote the set of roots of G with respect to
T, and let A denote the set of affine roots of G with respect to 7" and our valuation on K. The
elements of A are affine functions on A. For § € A, we let § € ® denote the gradient of 4.

For a € , let g,, denote the corresponding root space in g. For § € A, define the lattices g,
and g, in g; as follows: Choose a facet J in A on which ¢ is zero. Set

g5 :=gsNg; and gf := g Ng;.

These definitions are independent of the choice of J.
Since G is K-quasi-split, the centralizer M := Cg(T) is the group of K-rational points of a
maximal K-torus M of G. Let m denote the Lie algebra of M. For s € R, we define

m, = {X € m|v(dx(X)) > sforall x € X" (M)}.
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For x € A and s € R, we define the lattice

Ges =M@ Y g

SEA; §(z)>s

Fort > s we have g, ; C g, ,; in fact,
Lng$§ =9, and (ﬁ]gxﬁ ::{0}~

We set
Yo st 1= LJJQIJ-
t>s

If y is in B(G), then there is a g in G so that gy € A. For s € R, we define

g ]
Hys ‘= "Bz,s and Gy st = Y st-

This is independent of the choice of g.
Recall [3, §3] that, for s € R, we have the closed, open, G-invariant subsets

U Oa.s and g+ := Ugt

zeB(G t>s

For each s € R>( and each z € B(G), we also define, in a completely analogous manner,
Moy-Prasad filtration subgroups G, s < G, = G, (see [43]).

The Moy-Prasad filtration lattices and subgroups have the following properties (which we
shall use without further comment). The first two properties are proved in [45, §2], the third is a
formal consequence of the definitions, and the final is [1, Proposition 1.4.3].

(1) For s,t € Rand x € B(G), we have [g,.+, 82,5 C Ga,(t+5)-
(2) For s,t € R>gand z € B(G), we have (G5, Got) C Gy (144)-
(3) For s € R and = € B(G) we have

W Bz,s = P (s+1)-

(4) Fort € R>g, s € R, and z € B(G), we have (Ad(g) — 1)g.s C gus4¢ forall g € G, .

B.5.1. A technical result. The purpose of this section is to establish a (weak) connection be-
tween the Moy-Prasad filtrations for g and those for gl,,(K’). We do this so as to avoid introduc-
ing another constant (r below) into our hypotheses.

Fix a facet J C B(G). Define a continuous, piecewise-linear function r: J — R. by sending
x € J to the unique real number r(x) for which

gj = Ya,r(z) # Gzr(2)+

After extending by zero, the function r becomes a continuous function on the closure of J.
Hence, we may choose x; € J so that

r(xy) > r(zx)
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for all z in the closure of .J. Define r; := r(x ). The (rational) number r; depends only on the
(G-conjugacy class of J. We set
rg = mJin rJ.

Note that, if J is F'-stable, then, from the concavity of r and the Bruhat-Tits fixed-point
theorem (see, for example, [60, §2.3.1]), we may assume that = ; is F'-fixed.

Lemma B.5.1. If C is an alcove in B(G), then r¢ = r¢.

Proof. Without loss of generality, G is semisimple. We can write
B(G) = [[ B(G)
=1

where the G; are the simple factors of G. This decomposition respects the polysimplicial struc-
ture of B(G). If, with respect to this decomposition, x € J is written as

(T1,. oy Tm),

then, from the way in which the Moy-Prasad filtration lattices are defined,

r(z) = min{ry(z1),...,"m(Tm)}
Here ry, ..., r,, are the analogues of r: J — R. Hence, we may in fact assume that G is simple.
Let J be a facet in B(G) and let C be an alcove in 5(G). We shall show that r; > r¢. After
conjugating, we may assume that .J is contained in the boundary of C' and that C' C A. Let Ax
denote the set of simple affine roots in A determined by C. Let A ; be the set

{6 € Ac|res; 0 #0} ={0 € Ac|res;6 > 0}.

We set

', := max min §(x),
zedJ deA;

and we let s denote the smallest positive number for which my # m,+. From the way in which
the Moy-Prasad filtration lattices are defined, we have

r; =min{s,r;} and rc = min{s,r}.

Thus, it is enough to show that r < 7/,.

One can show that
=T s/ 1D C T )]

0EA d'eAy SeA {8}
where r5 denotes the maximum value that J obtains on the closure of .J (and hence, on the closure
of ().

Suppose J’ is a facet in the closure of C' such that J is contained in the closure of J’ and
dim(J') = dim(J)+ 1. Let 6 € A¢ denote the affine root for which A, = A; U{4}. Algebraic
manipulation yields

rl, = 5 — -l <.
Ty + 71y
By iterating the above process, we conclude that r;, < 7).
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Remark B.5.2. If G is simple modulo its center and K -split, then

re=(1+ Zma)’l,

where m,, runs over the coefficients of the simple roots in the expression for the highest root. In

particular, for G = GL,(K), we have rg = n™'.

Lemma B.5.3.
Go+ = Ore 7 G-

Proof. Let C be an alcove in B(G). For all J in the closure of C' we have g+ C g/. Consequently

g0+ = | %at.

geG

Thus, the equality follows from the fact that g}, = g, -

As in the proof of Lemma B.5.1, we may assume that G is simple; we use the notation of that
proof.

Suppose g,, = 9,5 Under this assumption, from [3, Corollary 3.2.2] we have g, ,, C
+ + N. Thus, from, for example, [17, §4.1.2] or [43, Proposition 4.3], every coset = in

gﬁc,’f‘
[ Bocrt is killed by a one-parameter subgroup of M := M,/M;"; that is, for each = there
exists a one parameter subgroup y1 = jiz of the f-group M so that lim,_,, “(Y= = 0. Consequently,
in order to show that g, # 9,45 it is enough to find an X € g, ., for which the coset =x :=
X + Boord is not killed by any one-parameter subgroup of M.

If s < 7y, then choose X € m, \ my+. Since M is abelian, no one parameter subgroup
of M can kill Zx. If s > r{, then for each § € A, we may choose X in the root space
corresponding to the gradient of J so that X5 € g, ., yet X5 & g, ».+. From, for example, [13,
Proposition 1.2], the coset =x for

X:=> X;
5

cannot be killed by a one-parameter subgroup of M.
0

Lemma B.5.4. We have rg > n™'. In particular, G}, = Gepam and g5 = Ozo,1/n-

Proof. Since we are assuming that p > (24 e)n, it follows that every K -torus in G or GL,, splits
over a tame extension of K. Hence, from the discussion in [3, §3.6] we have

g gl (K)s+ = gor
and
gNal,(K)s = gs
for all s. From Remark B.5.2 and Lemma B.5.3, we have gl,,(K)o+ = gl,(K)1/n # g0, (K)1/n+-
We conclude that 1/n < rg. For the last assertion, note that G, , = G0+ for 0 < r < r¢,
and likewise for g, . L]
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B.6. A logarithmic map for semisimple groups. Suppose that G is semisimple.

Moy-Prasad filtrations and the adjoint representation.
Lemma B.6.1. Suppose v € B(G), t € R, and X € g,;. We have
X & go g+
if and only if there exist ¢ € R and Q) € g,.4 \ 95 o+ such that
ad(X)Q € Gu,(t+9)  Ba,(t+q)+-
Proof. “<": Suppose X € g, ,+. Then forall ¢ € R and for all () € g, , we have
ad(X)Q € ga(1+9)+

a contradiction.
“=": From Lemma A.1.1, there exists Y € g, ¢ \ g, -+ such that

(45) B(X,Y) € R".
For all s € R we have
(ad(X)ad(Y))ges C u.s-

Since G is semisimple, we have that B is the Killing form. We conclude from Equation (45) that
there existag € Rand a Z € g, (144) \ @a,(1+¢)+ Such that

ad(X)(ad(Y)Z) € Gu(t4q) \ Ga,(t4q)*-

Let @ := ad(Y)Z € guq. Since ad(X)Q € @a(t+q)  Oz,(t+q)+» We conclude that Q) € g, 4
Ya,qt- O

Corollary B.6.2. Suppose x € B(G), s € R, and X € g. We have
X € gas
if and only if for all q € R and for all () € g, , we have
ad(X)Q € o (s+q)-

Proof. “=": There is nothing to prove.

“<" If X ¢ g, then there exists t < s such that X € g,; \ g, ,+. From Lemma B.6.1,
as X & g, .+, there exist ¢ € R and Q) € g, 4 such that ad(X)Q & g, 149+ But ga (s4q) C
9z,(t4q)*> SO ad(X)Q € 92, (s+q)- O

Moy-Prasad filtrations and 1), 1.

Remark B.6.3. Since p > (2 +e) - n, we have m > n - v(m) + 2 for m > 2. If we assume that
m > (2n — 1), then we have m > n - (2 4+ v(m)) — 1.

Lemma B.6.4. Suppose v € B(G) andt € Rsq/,. If g € Gy, then for all ¢ € R and for all
Q € gy, we have

log(Ad(9))Q = (Ad(g) — 1)Q modulo g, (21+4)-
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Proof. Fixqg € Rand Q) € g, ,. Form > 1 we have
(1 —Ad(g))"

m

Q

belongs to

1
E * Pa,(g+tm) - 92, (g+tm—v(m))

C Gz, (g+2t+t(m—2)—v(m))-
From Remark B.6.3 we have m > n - v(m) + 2. Thus

Gz, (g+2t+t(m—2)—v(m)) © Bz, (g+2t)-

Consequently,
log(Ad(g))Q = (Ad(g) — 1)Q modulo g (442

Corollary B.6.5. For all x € B(G) and for all s > 1/n, we have
w(Gx7s) C gCC,S‘

Proof. From Corollary B.6.2, it is enough to show that for all ¢ € R, for all ) € g, 4, and for all
g € G, we have

ad(w(g»Q € Oz, (s+q)-
However, from Equation (44) we have
ad((9))Q = log(Ad(9))@,
and log(Ad(g))Q € gz (s+q from Lemma B.6.4. O

Logarithmic behavior of 1.

Lemma B.6.6. Suppose v € B(G) and s,t € Rogwiths <t. Ifg € G, sand h € G4, then for
all ¢ € R and for all Q) € g, , we have
(1= Ad(gh))"@Q = (1 — Ad(9))"Q modulo g (1+¢+m—1)s)
forallm € Z>,.
Proof. We will argue by induction on m. Suppose x € B(G), s,t € Ryg withs <t,g € G, 4,
and h € G, ;. Forg € Rand Q € g, 4, wedefine T’ = T(Q, h) € gz (g1 by T :="Q — Q.
When m = 1, we have that for all ¢ € R and forall Q) € g, ,
(1-Ad(gh)Q=Q ~"Q=Q QT
= @ —?Q) modulo g, (44
= (1 - Ad(9))Q-
It
(1 —Ad(gh))"Q = (1 — Ad(g))" Q" modulo gy (+1+(m—1)s)
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forall ¢ € R and for all ' € g, . then for all ¢ € R and for all () € g, ,
(1= Ad(gh))"™Q = (1 — Ad(gh))"[(1 — Ad(gh))()]
(since s < ¢, we have (1 — Ad(gh))Q € gz (g+s))
= (1 - Ad(yg ))m[(l — Ad(gh))Q] modulo gy (g4s+t+(m—1)s)
(E (1 —Ad(g))"™[(1 — Ad(gh))Q] modulo g:}c,(q+t+ms))
= [(1 = Ad(g )) Q] — [(1 - Ad(g))™(°T)]
(since YT € gy (11q) and s < t)
=(1- Ad(g))(mH)Q modulo g, (¢4q+ms)-
O

Lemma B.6.7. Suppose x € B(G) and s,t € Rwitht > s > 1/n. Forall g € G, s and for all
h € Gy, we have

Y(gh) = ¥(g) + ¥ (h) modulo g, (syv).-

Proof. Suppose z, s, t, g, and h are as in the statement of the lemma. From Corollary B.6.2, it
will be enough to show thatif ¢ € R and () € g, 4, then

ad[t(gh) — 1 (g) — V(h)]Q € Gu (grstt)-
Thus, from Equation (44), it will be enough to show that

log(Ad(gh)) — log(Ad(g)) — log(Ad(h))]Q € g (q+s+1)-

(1= Ad(gh)" (L=Ad(g)" 0 (1= Ad(h)"

m m m
all tend to zero in gl(g)(K), there exists N € Z-,, independent of ¢ and (), so that

[log(Ad(gh)) — log(Ad(g)) — log(Ad(h))]@

Since

is equivalent to

- Z [(1—Ad(gh))™ — (1 = Ad(g))™ — (1 — Ad(h))"]Q

modulo g, (s4¢+q)- le 2 <m < N. From Lemma B.6.6 we have
(1= Ad(gh))"—(1 — Ad(g))™ — (1 — Ad(h))"]Q
= —(1 - Ad(h))"Q modulo g, (1+q+s(m—1))
(since t > s)
= 0 modulo g (t4q+s(m—1))-

Thanks to Remark B.6.3, for m > 2 we have

s(m —2) — v(m) > %(m — %)~ y(m) >0,
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We conclude that for m > 2
(1= Ad(gh)" — (1= Ad(g))" — (1 - Ad(1)"]Q

belongs to g, (;+1+5). Consequently,

[log(Ad(gh)) — log(Ad(g)) — log(Ad(h))]Q
is equivalent to
—[(1 = Ad(gh)) — (1 = Ad(g)) — (1 — Ad(h))]Q
modulo g, (41++s). But the latter is (Ad(g) — 1)(Ad(h) — 1)@, which belongs to g, (g+¢+s).

Remark B.6.8. The condition ¢ > s in Lemma B.6.7 is not required. Suppose zx, g, h are as in
the statement of the lemma and 1/n <t < s. Choose u € Gz, (s+1) S0 that 9h = hu. Then

W(gh) = ¥((°h)g) = ¥ (*h) + 1(g) modulo gq (s
= P(hu) +9(g) = P(h) + ¢ (u) + ¢P(g) modulo ga (214
(from Corollary B.6.5)

= T/J(h) + ¢(9) modulo gz,(s+t)
= ¥(g) +¢(h).

We can now reformulate Lemma B.6.7 as follows.

Corollary B.6.9. Suppose x € B(G) and s,t € Rx1,. Forall g € G, c and for all h € G4, we
have

P(gh) = ¥(g) + &(h) modulo gq (st
Filtration quotients and 1.

Remark B.6.10. Since every torus of G splits over a tamely ramified extension of K, for all
t € R. and for all x € B(G) we have an isomorphism of abelian groups

CTvaﬁ,t/Gz,ﬁL = gx,t/gx,t+ .

This isomorphism has the property that for each coset = in G, /G, + the isomorphism identi-
fies a coset =g in g, +/g, ++ so that for all ¢ € R and for each () € g, , we have

ad(X)Q = (Ad(g) — 1)Q modulo g, (144)+
for all X € Z; and for all g € Z¢. See [64, Corollary 2.4] or [65] for details.

Lemma B.6.11. Suppose x € B(G) andt € Ry If g € Gy ~ G4+, then there exist ¢ € R
and Q) € gy \ 9z.4+ Such that

(Ad(g) - 1)Q € Oz, (t+q) ™ G, (t+q)+-
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Proof. Choose g as in the statement of the lemma. If X € =g, where =, € g, /g, ++ corresponds
to the coset ¢G4+ in Gy 1 /G 4+, then X € g, ;N\ g, ++. From Lemma B.6.1 we can choose ¢ € R
and Q) € gu 4 \ @4+ SO that
ad(X)Q € ga,(t49) ™ Ba,(t+q)+-
Since, from Remark B.6.10,
(Ad(g) — 1)Q = ad(X)Q modulo g, (;4q)+,

the lemma follows. 0
Lemma B.6.12. Suppose t > 1/n and v € B(G). The restriction of 1 to G, induces an
isomorphism

C7Yu’z:,t/Ga:,1f+ = gaz,t/gw,ﬁL
of abelian groups.

Proof. Fixt > 1/n and x € B(G). Since ¢: G+ — g is injective and from Corollary B.6.5

77Z)(Gw,t+) C gw,t+
while
w(Gm,t) C gm,tu
from Lemma B.6.7 we have that 1) induces a group homomorphism
Gm,t/Gz,t+ - gm,t/gx,t+-

We will show that this map is surjective. Since G, ;/G, + and g, +/g.++ are finite-dimensional
§-vector spaces of the same dimension, injectivity will follow.

To show that the induced map is surjective, we must show that for each X € g, there is a
g € G, for which

X = 9(9) € gar-
Equivalently, from Corollary B.6.2, we need that for all ¢ € R and for all ) € g, ,

[ad(X) — ad((9))]Q € ga,(g+t)+-

Suppose X € g, From Remark B.6.10, there is a g € G, so that for all ¢ € R and each
Q) € g4 we have

(46) (Ad(g) — 1)Q = ad(X)Q modulo g, (g 4)+
Now, for all ¢ € R and for all () € g, ,, we have
[ad(X) — ad(14(9))]Q = [ad(X) — log(Ad(9))]Q
(from Corollary B.6.4)
= [ad(X) — (Ad(g) — 1)]Q modulo g, (g2
(from Equation (46))

= 0 modulo g, (g4)+-
Thus [ad(X) — ad(¥(9))]Q € Ga(g+6)+- -
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Moy-Prasad filtrations and 1), 1. We begin with an abstract result about maps between complete
topological groups.

Lemma B.6.13. Suppose H and L are complete topological groups. Let f: H — L be a map
for which there exist neighborhood bases at the identity

{H;<H|H,:=H>Hy,>H;>--->{1}}
and
{L;<L|Ly:=L>Ly>Lg>--->{1}}

for H and L so that

(1) f(H;) C L; foralliand

(2) ifh € Hyand ' € Hj, then f(hh') = f(h)f(R') modulo L, ;.
If the induced map

Hi/H(i+1) - Li/L(i+1)a

is surjective for all i, then f is surjective.

Remark B.6.14. Note that the first condition on f implies that it is continuous at the identity,
while the second implies that f is continuous everywhere.

Proof. Suppose { € L. Fix jo € Z>; so that £ € Lj, ~\ L,+1). By hypothesis, there is an
ho € Hj, such that f(ho) = ¢ modulo Lj,+1). Fix ji > jo so that f(ho)™'¢ € Lj, \ L(j+1).
Since the induced map
Hj, [H 1) = Ly /L
is surjective, there is an b} € H;, so that f(h}) = f(ho) "¢ modulo L;, 11). Set hy := hoh). We
have
f(h1) = f(ho)f(h}) modulo Lj, ;.
Thus, f(hy) = ¢ modulo L;, 4.
Choose jo > ji so that f(hy)~'0 € Lj, \ Lj,+1). Since the induced map

Hj, [Hjy41) = Ljy /Lgot1)
is surjective, there is an h, € Hj, so that f(h}) = f(hy)~"¢ modulo L;,11). Set hy := hyh}. We
have
f(ha) = f(h1)f(hy) modulo Lj, ;.

Thus, f(he) = ¢ modulo L,, 4.

Continuing in this fashion, we produce a convergent sequence (h;) in H. If h = lim h;, then
f(h)="¢. O
Lemma B.6.15. For all facets J C B(G) and for all s > 0 we have (G, s) = 9u, .5

Proof. From Lemma B.5.4 we may assume that s > 1/n. Thanks to Corollary B.6.5 it suffices
to prove surjectivity.

Choose m’ € Z>; so that J is F™ _stable. We let 2 = x;. It will be enough to show that for
all m € Z~,,» we have

V(Gr) = ga.-
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Note that G£”" and gi " are complete topological groups. Thanks to Corollary B.6.5, Lemma B.6.7,

x,s

and Lemma B.6.12, the result follows from Lemma B.6.13. O
Corollary B.6.16.

(Go+) = go+
Proof. From Lemma B.6.15, for all facets J in B(G) we have ©(G}) = g¥. Since
Go- =G5
J
and
do+ = Ugj7
J
the result follows. U

The map over the residue field induced by ).

Lemma B.6.17. Suppose v € B(G). Ift > 1/nand g € G, then for all ¢ € R and for each
Q) € gz, we have

2(n—1) m
os(adg)e=- Y, T2,

modulo g, (412-1/n)-
Proof. Fixt > 1/nand g € G, ;. Suppose ¢ € Rand ) € g,,. For all m € Z>, we have

1—Ad(g))™
%Q € Gu,(g+mt—v(m))-

Since p > (2 + e)n, we conclude that for 1 < m < (3n — 2),

1 — Ad(yg
U= A" 5 ¢ ) o
m
(since m is a unit). In particular, as ¢ > 1/n, we conclude that
2(n—1) (3n—2)
1 —Ad(g (1 —Ad(g
yo U A", z (=AD" ) odulo ga e 1/

m=1

To finish the proof, it is enough to show that if m > (3n — 1), then mt — v(m) > 2 — 1/n. This
follows from Remark B.6.3.
U

Lemma B.6.18. Suppose J C B(G) is a facet and C' C B(G) is an alcove which contains J in
its closure. If g € G5 and h € G, then

(gh) € ¥(g) +gj-
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Proof. Since G < Gf, both g and gh belong to G, = G, 1/, (see Lemma B.5.4). Conse-
quently, from Lemma B.6.15, both ¥/(g) and ¥)(gh) belong to g < g;. Hence, the images of
¥ (g) and ¥ (gh) in L; belong to the nilradical of the Borel subgroup of G; corresponding to C.
Hence, they both belong to the derived Lie algebra of L ;. Since the restriction of B to g; induces
the Killing form on the derived Lie algebra of L ;, it will be enough to show that for all ) € g;
we have

[ad(¥(gh)) — ad(¢(9))]Q € g

Fix Q) € g;. Since @@ € g7 , we have

Qew gl <@ gl = guci/n1-

From Lemma B.6.17 and Equation (44) we have

2(n—1) m
d(p(9n)Q = log(Adigm)@ = - Y- TR,

modulo g, 1 = wgc < wgy < gF. (Note: m is a unit for 1 < m < 2(n — 1).) Similarly,

2(n—1)

wd(g)Q=- Y LAN,
modulo g7. Consequently,
2(n—1) m_ (1 m
R I [

modulo g. Since h acts trivially on g; /g, we have

(1= Ad(gh))"Q = (1 - Ad(9))"Q
modulo g7. The result follows. O

Corollary B.6.19. Suppose J is an F-stable facet in B(G). The restriction of ¢ to Go+ N G
induces a (F') X G j-equivariant bijective map from U, the f-variety of unipotent elements in G,
to N, the f-variety of nilpotent elements in L.

Proof. If § € Uy, then there exist an alcove C' and a g € G5 such that J C C and g is a lift of g.
From Lemma B.6.15 we have ¥)(g) € g& C g,. Thus, the image of ¢(g) in L, belongs to N.
From Lemma B.6.18, the image of ¢/(g¢) in L is independent of the choice of g. Hence ¢ induces
amap ¢: Uy — Nj. Aspis (F) x G -equivariant, it follows that v is (F') x G j-equivariant.
To see that ¢ : U; — N is bijective, we note that p > (2 + e)n implies (see for example [12,
§1.15]) that there is a (non-unique) bijective, Gj-equivariant f-morphism identifying {/; with
N;. Thus, for all m € Zx; the sets UF™ and NI have the same cardinality. Consequently, it
is enough to show that the restriction to Y™ of ¢ surjects onto NF™. If X € NF™, then there

exist an [""-stable alcove C' and X € (gg)Fm such that J C C and X is a lift of X. From the
proof of Lemma B.6.15 there exists a g € (Gg)F such that ¢(g) = X.
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Since U is the image of G+ N G5 in G, the corollary follows. O

B.7. An extension to reductive groups. Drop the assumption that G is semisimple. In this
section, we prove that the (F') x G- equivariant map ¢ : Go+ — g has the properties described
in Lemma B.0.3.

Let G’ denote the group of K-rational points of the derived group of G. Let Z denote the
group of K -rational points of Z, the identity component of the center of G. We recall that
Z NG is finite. We let g’ (resp. 3, resp. 3) denote the Lie algebra of G’ (resp. Z, resp. Z).

In Section B.6 we proved that the map

resgr: Gow — @
has the properties required by Lemma B.0.3. From [9, III, §7, Proposition 11] we have

(47) U(zh) = (2) +(h)

forall z € Zy+ and all h € Gy,.
Suppose S is any torus in G. Let S denote the group of K -rational points of S. Let s (resp. s)
denote the Lie algebra of S (resp. S).

Lemma B.7.1. With our assumptions on p, we have
¢(50+) = S0+.

Proof. Let E denote the splitting field of S over K. Since ¢: G — GL,, is faithful and ¢(S) is
a torus in GL,,, the field £ is a tame Galois extension of K and vg(p) < nv(p).
Since F is a tame Galois extension of K, from [2, Lemma 2.2.3], we have

S()+ == S(E)0+ n.s.

By an argument similar to that given in Section B.3, there is a unique Gal(E/K) x G(E)-
equivariant extension of ¢ to a map ¢: G(E)q+ — g(E). From Equation (44) the image of
the restriction to S(£)o+ of this map lies in s(E). It will be enough to show that ¢)(S(E)o+) =
5<E)0+.

Since S is E-split, there is an E-isomorphism ¢g from S to (GL;)’ for some j. Since

p=(2+vp)n =2n+ve(p),
we have p > 2 + vg(p). We conclude (see the discussion concerning GL,, in §B.1) that
log(GLy(E)),) = (Ma(E))3,.

Since ¢g and dpg are E-isomorphisms, the result follows from the fact that dyg(¥(s)) =
log(ps(s)) for s € S(E)g+ (see Equation (41)). O

Lemma B.7.2. Under our assumptions on p, the map (z,h) — zh from Zy+ x G|, to Gy+ is
bijective.

The proof below is due to Loren Spice; it is shorter than our original proof.
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Proof (Spice). Since for each x € B(G) we have Zy+ C G, o+ and G/, o+ © Gopo+, it suffices
to check that the map i,: Zo+ x G/, o+ — G o+ which sends (z,h) to zh is bijective for all
z € B(G).

Fix z € B(G). To show i, is bijective, it is enough to check that the induced map on successive
quotients of Moy-Prasad filtration subgroups is bijective. Fix r € R+ (. From [64, Corollary 2.4],
it is enough to check that the induced map

3r/3r+ X Gap/ Bt = Bair /Bt
is bijective. From [4, Propositioq 3.2], it ig surjective. If (Z X ) is in its kernel, then there exist
Z € 3 (resp., X € g ) lifting Z (resp., X) so that Z + X € g, ,+. From [4, Proposition 3.2],
we conclude that Z € 3,+ and X € g’w+. Thus, the map is injective as well. U

Thanks to Equation (47), from Lemma B.7.1 and Lemma B.7.2, the map ¢ is a bijective
(F) x G-equivariant map from G+ to go+ = 30+ + g+ . Moreover, since, for all z € B(G), the
image of 3¢+ in L, is trivial, it follows from Lemma B.7.1 (with S = Z) that v has the properties
required by Lemma B.0.3.

INDEX OF SELECTED NOTATION AND TERMS

elliptic Langlands parameter 25
F-regular 8
F-minisotropic 8
generic representation 40
(G-stable conjugacy-class 21
(G-stably conjugate 50
G-stable classes 50
lift of (J,S) 47
(¢, ¢')-comparable 64
rational classes 21
regular semisimple 8
strongly regular semisimple 8
tame regular semisimple 27
topological Jordan decomposition 46
topologically semisimple 46
TRSELP 28
unramified torus 8
* gxu:=guF(g)™! 11
Ad adjoint action of ¢ 7
A(S) apartment of unramified torus S 9
A apartment corresponding to 7 9
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[T, Ad(HT)X;

nondegenerate, symmetric, (F') X H-invariant bilinear form on h
Bruhat-Tits building of G

an alcove in A which contains .Jy in its closure
component group of Cg ()

formal degree of 7

{de GF: ¥y e S}

sign depending on relative ranks

{9eGF: 9yeG;, 9y€eS}

element of N

Fourier transform of f with respect to B

residue field of &

the degree d extension of |

residue field of K

topological generator for I'

automorphism of GG arising from k-structure on G
the automorphism F' when G is k-quasisplit
Ad(u) o F

Ad(ll,)\) oF

compact elements of G

topologically unipotent elements in G

dual group of G

) x G

set of regular semisimple elements of ¢

set of strongly regular semisimple elements of G
group of K -rational points of the adjoint group of G
parahoric subgroup of G corresponding to J C B(G)
Gy,

pro-unipotent radical of G;

connected reductive f-group associated to J C B(G)
Gr/G5

lattice in g attached to J C B(G)

sublattice in g

compact elements of g

topologically nilpotent elements in g

Gal(k/k)/T

identity component of the centralizer of v in G
topologically semisimple part of -y

topologically unipotent part of y

compact induction functor

smooth induction functor



ax
(G,
2 1
Q(G’Ys ’ ,];t)

r

STEPHEN DEBACKER AND MARK REEDER

set of irreducible representations

set of irreducible square-integrable representations
set of irreducible depth-zero representations
representations p € Irr(C,) with w, = w
inertia subgroup of Gal(k/k)

wild inertia subgroup

tame inertia group

index set for certain G, -stable classes
index set for certain G, -stable classes

map from () to 1(97s)

facet in A preserved by o,

finite extension of Q,,

maximal unramified extension of %

€(Gx Th) - BT o € Iix(GY)

representation of ZF G

Lie algebra of G; identified with g;/g}
element of N for which my x uy =uwand m, - Cy = C
HY¥ -orbital integral of f with respect to X
function representing Fourier transform of ,u)I?F
normalizer of a subgroup S C G

N(G,T)

NNG,

IN(G,.,S) /S|, where S € Ty (7s, 1)
{weW: w-C = C} for some alcove C'in A
unique element of £, W° N Q¢

element of Z'(F, N¢) with image wy in W
fixed element of H'(F, G)

F-fixed hyperspecial vertex in 4,4
characteristic of the residue field {

element of Gy, for which py ' Fy(py) =

G
Ind Fy, K\
ZrG >

Ad(my).my € Irr(G™)

normalized L-packet

surjective projection onto first factor: ’ZAZ,,X — T,
projection on second factor: p; ' (S) — Irry(ST)
cardinality of the residue field f

mapx € G

natural inflation of QéGJ)% , extended by zero to G¥

stable p-adic analogue of a Green function
map X,, — H'(F,G)

49
25

25
25
59
59
61
17

33

33
37
19
63
63

10
59

15
15
19
10

19
34
36
36

51
51

20

54
59
19
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image of 7 H(w) in [X/(1 — w9) X
function on (G™)F
R(G, S, 0), where T is the G*-orbit of (5, 0)

Z(S,G)e'f'st/G'F R(Gv S, 0)

homomorphism s : Z, — T with Cjs(s) = T
maximal bounded subgroup of an unramified torus S
twd e W x <f§>

Ad(q))T

Steinberg representation

Fourier transform of the stable orbital integral associated to X
fixed maximally k-split K -split torus in G

maximal bounded subgroup of T’

Ad(p\)T

Y @ C*

element of 7" or W corresponding to A € X

set of F-minisotropic maximal tori in G

{(5,0): SeZ(G) and 6 € Irry(ST)}
{SeX(G): SF'=9(T*™) forsomeg € G}

(S, 0) for which there is g € G so that ST = 9(T*) and 0 = g,y

fixed G-stable class in T(G)

G*-orbitin T(G)

{(8",0)eT: ~, €8}

{(S,0) € Ty : v, € S}

20 € p2py ' (S) 0

05(7s), forany S € Ty (s, 1)

character of m, (¢, py)

fixed representative of w

element of Z!(F, N) which lifts yy

fixed uniformizer of &k

automorphism of X, X4, A, Auq, W, or W,y
Weil group of k&

tame Weil group

N/°T

generated by reflections in the walls of an alcove C
image of N, in W

Tits extension of W,

generated by reflections in hyperplanes containing .Jy
{20 € W, : wi(z,)w™ ! =2z}

stabilizer in W*? of the class of A in [r~!(w)]
element of W,
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21
49
49
52

28

17
20

63

32
16

47
51
50
51
52
54
54
59
52
60
53
19
18

10
25
25

10
16
17
22
23
16
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W fixed lift in T, of w 18
Wy unique element in W), for which o) - C\ = w, - C) 17
W)y, unique lift of wy in N satisfying ty\w = wyuy 18
T\ unique fixed-point in A for ¢ywi 2
X, (H) group of algebraic one-parameter subgroups of H 8
X X.(T) 9
X° co-root sublattice in X 9
X X/Xe° 15
X preimage in X of [X/(1 — w?) X]or 17
X depth zero character corresponding to ¢ 30
XA Ad(py)ex € Trr(T)) 33
Y algebraic character group of T 16
U w;lt AW 17
ZYF,U) continuous cocycles I' — U 11
Z center of & 16
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