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1. INTRODUCTION

One of the most serious difficulties in the determination of the unitary dual
of any simple Lie group is to understand the unitary representations which are
“singular” in a well defined sense. In [8] and [16] a large set of singular unitary
representations were constructed for classical groups via the method of reductive
dual pairs. Suppose G,G’ is a pair of reductive groups which are centralizers of
each other in some ambient symplectic group, and that they are in the so called
stable range (roughly, this means ¢/ is at most half the size of ). Then there is an
injection from the unitary dual of G’ to that of G. Keeping G fixed and varying G’,
we obtain families of singular unitary representations of G which are parameterized
by the unitary duals of various G’ (of much smaller size).

Unfortunately, the unitary representations of G thus obtained were described
by restriction to certain maximal parabolic subgroups. The construction provides
no a priori information about the Langlands parameters of these representations.
What [16] does prove, however, is the fact that the injections agree with the local
theta correspondences. Thus it i1s of considerable interest to describe, in terms of
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the Langlands-Vogan parameters, the local theta correspondence for reductive dual
pairs in the stable range. This was also emphasized by Vogan in [28].

For applications to automorphic forms and other reasons, it is of great interest to
understand the theta correspondence in general. Indeed, there have been numerous
papers on the subject. In terms of explicit descriptions, the papers [19], [1], [2], [20]
are among the most important. However, complete descriptions were obtained (for
the type of dual pairs considered in these papers) for more or less the “equal rank”
cases only (with the exception of [1] for complex groups). In particular, very little
is known for real reductive dual pairs in the stable range.

In this paper we investigate the type I dual pairs over the quaternion algebra
H, namely the family of dual pairs (Sp(p, q), O*(?n)). We shall give a complete
and explicit description of duality correspondence for p 4+ ¢ < n, in terms of the
Langlands parameters. We note that in this case “equal rank” means p+ ¢ = n
or n — 1, while “stable range” means p + ¢ < n/2. As an application, we obtain
families of irreducible small unitary representations of O*(2n) (with their Langlands
parameters). Most of these unitary representations were not known previously. In
particular, for n > 12 we obtain a complete classification of irreducible unitary
representations of O*(2n) with rank < 5. Here the notion of rank is as defined by
Howe [9].

Our approach is very natural and will be briefly outlined now. Let éd denote
the equivalence classes of discrete series representations of (. Let G denote the

admissible dual. From [17] we can read off
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Theorem 1.1. The theta correspondence gives rise to a bijection

(1.2) O 2, | o a)

pt+g=n,n-1

Now an arbitrary irreducible admissible representation can be obtained as a
Langlands subquotient of some standard representation induced from relative dis-
crete series. By applying the induction principle of Kudla and Moeglin (as in [19],

[1], [2], [20]), we obtain

Theorem 1.3. The theta correspondence gives rise to a bijection

(1.4) O (zn)+— |J  Splp.0)

pt+g=n,n-1

where G denotes the admissible dual of G'. This bijection takes discrete series to

discrete series, and tempered representations to tempered representations.

We emphasize that this is an ezplicit correspondence; see Theorem 5.1.

To deal with the range p+ ¢ < n — 2 we write n = m + 2k with m = p+ ¢ or
p+ g+ 1. Starting from any = € Sp/(p,\q) we first obtain the theta lift 6, () of 7w to
O*(2m) (see Notation 3.30) via Theorem 1.3. Consider the parabolic subgroup of
O*(2n) with Levi subgroup O*(2m) x GL(1,H)*. It turns out that 6, (7) € OT(%)
is a subquotient of the representation induced from 6, (7) ® x, where x is a one
dimensional representation of the (non-abelian) group GL(1,H)*. Sophisticated
versions of the induction principle then allows us to identify the Langlands param-
eters of @, (7). The main result is stated in Theorem 5.8. In particular, we find

that if p+ ¢ < n then every irreducible admissible representation of Sp(p, ¢) occurs

in the theta correspondence.
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Applications to unitary representations are discussed in section 5.3. Finally
for the sake of completeness, we also work out the duality correspondence for

(GL(m,H), GL(n,H)), the type I1 dual pairs over H.

2. THE GROUPS AND THEIR REPRESENTATIONS

2.1. The groups. For any positive integer n, we denote the n x n identity matrix

I,. If p and ¢ are non-negative integers, let

Sp(p,q) = {9 € Sp(2(p+ ), O)|'§Kp 49 = Kp 4},

where K, . is the diagonal matrix diag(l,,—1,,I,,—I;). The group O*(2n) =

SO*(2n) is the real form of SO(2n, C) realized as
O*(2n) ={g €02, 0 | '3 (. 3") 9= (1, 0"}

(see [B]).
Using the identification C? — H given by (a, b) — a+ jb (see [11]), we can think
of Sp(p,q) as the isometry group of the hermitian form (,) on V' = HP*¢ over the

quaternion algebra H given by

P r+q
(v,w) =Y vwi — > vy,
i=1 i=p+1
for v,w € V, v = (v1,...,04q), and w = (w1, ..., Wp4g). Similarly, the group

/

0O*(2n) may be thought of as the isometry group of the skew-hermitian form (,)

on V/ = H" given by (u,z) =Y i, uijzi.

2.2. The representations. To describe the admissible representations of Sp(p, ¢)
and O*(2n), we use the parametrization of [27]. We denote Lie algebras by gothic

letters with subscript 0, and omit the subscript to denote complexified Lie algebras.
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We realize H as
u*(2): |21,22€© ,

and the group GL(1,H) = H* as U*(2) = u*(2)NGL(2,C). Notice that GL(1, H) =
SU(2) x R = Sp(1) x R, so that its representations may be parametrized by pairs
(p,v) with g a positive integer and v a complex number. The complexified Lie
algebra of GL(1,H) is gl(2,C). The representation o(u,v) given by (p,v) corre-
sponds to S¥HC?) @ det(~)% with det(-) the reduced norm of H (or equivalently,
det(h) is the determinant of h as an element of U*(2)) and S*(C?) the irreducible
(k + 1)-dimensional representation of SU(2). The infinitesimal character of o(u, v)
).

Now let G = Sp(p, ¢) or O*(2n), K a maximal compact subgroup of G, g = ¢+p

_|_

is (

NI
o=
NI
|
o=

bl

the corresponding Cartan decomposition, and t C ¢ a Cartan subalgebra.
If G = Sp(p,q), we choose a basis {e1,...,ep, f1,..., fy} of it* so that the

compact roots are

A, = {:I:Qei, +2f;, :|:(6i + 6]'), :Iz(fl + fj)},

and the non-compact roots are A, = {£(e; & f;)}. We choose a system of positive

compact roots A} so that one half the sum of the positive compact roots is

pc:(pap_1a"'a2a1;Qaq_1a"'a2a1)'

If G = O*(2n), we choose a basis {e1,ea, ..., e,} of it* so that

A = {£(ei —¢5)]i < j},
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and A, = {£(e; +¢;)|i < j}. Now choose A} so that

Then the discrete series of G is parametrized by Harish-Chandra parameters A

as follows:

If G = Sp(p, q),
(2.1) A= (a1,a2,...,ap;b1,...,bg)

with a;,b; € Z, a1 > as > - >ap > 1,01 > by > > by > 1, and a; # b; for all
1,].

If G = O0*(2n),
(2.2) A= (ay,as,...,a,)

with a; > as > --- > a, and a; € Z.

Limits of discrete series of G are given by pairs (A, ¥), where A € itf and ¥ C
A(g : t) is a system of positive roots such that A is dominant for ¥. Moreover,
AT C ¥, and if a is a simple root in ¥ and < A, & >= 0 then « is non-compact.
(This is condition F-1 of [27].) The unique lowest K-type of the limit of discrete
series 7 = m(A, ¥) is then A = A+ p, — pe, where p, is one half the sum of the
non-compact roots in ¥. (We identify K-types with their highest weights.)

If G = Sp(p, q), then A is of the form

mi Mg 1 ng

—N—— —N— ——
(2.3) A=(ar, .. a1y o Uy Q3 ATy ey Ly e Gy ey Q)

where a; € Z, a1 > -+ > ax > 0 and |m; —n;| < L.

If G = O*(2n), then
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mi mg Nk ni

—N—— —N—
(2.4) A= (A1, 0y Aoy ey Gy =y e e ey =y ooy =G, ooy — (1)

with the a; as in (2.3); or with one zero between the last a; and the first —ay.

Using the parametrization of [27], each irreducible admissible representation of
G may be given by a @-stable Cartan subgroup H = T'A and a final limit character
y=(¥,T,7) as follows.

For this section only, let n = p+¢. Up to conjugation by K, the #-stable Cartan
subgroups of GG are given by H, = T, A, with 0 < r < min{p, ¢} if G = Sp(p, q),
and 0 < r < [§] if G = O*(2n), with 7, = U(1)"~" and A, = R". Notice that
T =T, 2 U(1)". The centralizer M, A, of A, is a Levi subgroup of G with relative

discrete series. We have

(2.5) M, A, = Gr x GL(1,H)"
(2.6) H, =U(1)"™2" x (C%)"
(2.7) (hy)o = w(1)"~2" x u(1)" x R".

Here G = Sp(p — r,q — r) if G = Sp(p, ¢), and O*(2(n — 2r)) if G = O*(2n). The
limit character 4 corresponds to inducing data as follows. Let 7 = 7(A, ¥) be a
limit of discrete series representation of G, o = ®§:15“j_1(C2) a representation
of SU(2)", and x, = ngl Xv,; the character of R” given by x,,(r) = ", v =

(v1,...,v) €C. Let

VNu(ryn-2r = A,
(2.8) Yluyr = (p1y -5 ),

Ver = v.
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The non-parity condition F-2 of [27] amounts to the requirement that p; is odd if
v; = 0. T is the character of H, determined by the condition dT' = ¥+ p(¥) —2p. (V)
(notice that H, is connected). Choose P, = M, A, N, so that Re{< a,¥ >} <
0 VYo € A(n,a). Then X () = IndIGDr(T®0'®XV) has a unique irreducible submodule.

Here, as everywhere in this paper, we use normalized induction.

Definition 2.9. We write m(r, A, ¥, 1, ) to denote the (infinitesimal equivalence

class) of the unique irreducible submodule of X () as above.

This parametrizes the irreducible admissible representations of G up to conju-
gation by K. Tt is easy to check that 7w(r, A\, ¥, u,v) ~ n(+', N, ¥ /' V') & r =1/,
A= N, U =" and (¢/,v) may be obtained from (s, v) by simultaneous permu-
tation of the coordinates, and by replacing some of the v; by —u;.

Recall that m(r, A, ¥, y,v) may also be obtained as a submodule of a standard
module X (y4) which is induced from a discrete series representation. This module
is then the sum of all modules X (v') for 4 a final limit character associated to a
fixed Cartan subgroup H,s and a fixed parameter 3. We obtain one such module
for each root system ¥’ which can be associated to the parameter A (as in (2.3) and
(2.4)), subject to condition F-1 and with A} C . We obtain X (v4) from X (v) by
changing the inducing data as follows. Let ry = r + Zle min{m;, n; }. Then A\ is
obtained from A by removing, for each ¢ < k, min{m;, n;} a;’s on each side of the
semicolon if G = Sp(p, ¢), and min{m;, n; } a;’s and —a;’s each if G = O*(2n). Since
Ag4 18 non-singular, ¥, is then uniquely determined. To obtain pg4, we concatenate

p and

(@1, oy@1, oy Uy, QR ),
S—— S—

min{mi,n1} min{mg,nk}
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and vg = (v1,...,v,0,...,0). Notice that v4 does not satisfy the non-parity con-

dition F-2.

2.3. Lowest K-types. We compute the lowest K-types of the representations of
the previous subsection, using the standard theory of [13] and [26]. If v is a limit
character, write ¥ = (A, v) with X € t*. If 4 is as in (2.8), write X' as the AT-

dominant W (T : &) conjugate of

my mg ni Nk

T N— — T N U Hr .7 N Hi Er
(2.10) (ay,...,a1,...,Qg, ... a4k, 5 Bsan, . arn, Gy ag, B )
if G = Sp(p,q), and
ma My
—N—— —N—
M1 Hr
(2.11) (ay,...,a1, ... a4, ... ap, 5,0 B
Nk 1
Hr 231
—7,...,—7,—%,...,—ak,...,—al,...,—aD,

or with one zero between £~ and —&,if G = O*(2n).

Let g = q(A) = [ u be the f-stable parabolic subalgebra of g defined by A’ (see

[26] Def. 5.2.1). Then the normalizer L of q in G is of the form

(2.12) L=U(p1,q1) X U(p2,q2) x -+ x U(ps, qs)

with |[p; — ¢;| < 1. The lowest K-types of X(vy) and X (v4) are then of the form
A=XN+punp)—punt)+dr for some fine weights oz of KN L. Here p(unyp) and
p(unt) are one half the sums of the roots associated to uNp and uNt respectively, and
dz, is the differential of det® @ det~® on each factor U(p;) x U(g;), with a € {0, :I:%},
and a = 0 if p; # ¢; (see [26], [20]).

A more explicit calculation: Relabel the coefficients of X’ so that it is in the form
of (2.3) or (2.4). Notice that the a; are now integers or half integers. If a; is a half

integer then a; = &+ for some 7. In this case we have m; = n;.
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Set

(213) Rj:m1—|—~~~—|—mj, Sj:n1—|—~~~—|—nj.

o G = S5p(p,q):

We have Ry = p, Sk = ¢, and

Nt p(unp) = p(une)

(2.14) my M
n1 Nk
—_—— ——
= (b1, by, by b, e, Chy e, ),
where
bj:aj—i—Rj—Sj—%(mj—nj—l—l)—l—q—P
(2.15)
cj:aj—Rj—l—Sj—%(nj—mj—l—l)-l—p—q
o G =0"(2n):

We have R, + S, =norn— 1. Then

A+ punp) —punt)
(2.16)

ma My Nk 1

——— ———
:(bl,...,bl,...,bk,...,bk,—ck,...,—Ck,...,—cl,...,—CD,

if R +5k = n, or with R — S, in the middle between by and —¢i if R +S; = n—1.

Here

bj = a; + Rj — Sj — 5(mj —nj +1)

(2.17)
¢j =aj — Rj+ 8 — 3(nj —m; + 1)

Then in both cases, the lowest K-types are obtained by changing (b;,¢;) to (b; +

NI

,¢j — %) where 2 = 0 or £1, chosen so that the result is an integral weight.
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3. THE CORRESPONDENCE AND K-TYPES

3.1. The space of joint harmonics. The following discussion is in [10]. Let
(G,G") be a reductive dual pair in Sp = Sp(2n,R), and let F be the Fock space
of the oscillator representation of the double cover 5?) For any subgroup H of Sp,
we denote H the inverse image of H in :S?) by the covering map. Recall that the
ﬁ(n)—ﬁnite vectors may be realized as the space of polynomials in n variables, in
such a way that the action of ﬁ(n), and therefore, that of K and K’ preserves the
degree. This allows us to associate to each K- and I}’—type occurring in F a degree,
which is the minimal degree of polynomials in the isotypic subspace.

There is a K x K'-invariant subspace H of F, the space of joint harmonics, with

the following properties.

Theorem 3.1 (Howe). There is a one-one correspondence of K- and [Z”-types on
H with the following properties. Suppose m and 7' are irreducible admissible repre-
sentations ofé and G' respectively, and © < 7 in the correspondence for the dual
pair (G,G"). Let o be a f(-type occurring in 7, and suppose that o is of minimal
degree among the R’-types of m. Then o occurs in H. Let o’ be the R”-type which

corresponds to o in H. Then o’ is a I}’-type of minimal degree in .

For the dual pairs (Sp(p, q), O*(?n)), the two-fold covers are the trivial (discon-
nected) ones, so that we can state all the results in terms of the groups themselves,
rather than the covering groups.

An explicit description of the correspondence of K-types in the space of joint
harmonics for the dual pairs (Sp(p, q), O*(?n)) can be obtained using the known
duality correspondence for the case where the first member of the dual pair is

compact (see [4]), and the analysis in §3 of [10]. The degrees of the K-types in H



12 JIAN-SHU LI, ANNEGRET PAUL, ENG-CHYE TAN, AND CHEN-BO ZHU

may be obtained by considering the see-saw dual pairs

U(2p,2q) O™ (2n)
(3.2) X

Sp(p,q) U(n)

and the known degrees for K-types in the space of joint harmonics for the dual
pairs (U(p, ), U(r, s)) (see e.g., [20]).

Fix n,p, ¢ and let F(n; p, ¢) be the Fock model for the dual pair (Sp(p, ¢), O*(2n)).
Let o be an irreducible representation of Sp(p) x Sp(q) C Sp(p,q) and ¢’ an irre-

ducible representation of U(n) C O*(2n). Write

o =(ay,...,ar,0...0;b1,...,b5,0...0) (r<p, s<gq)
o =(dy,...;a.,0...0,=b, ... =b)+({p—q...,0—q (+s<n)

where a; > -+ >a, >0, by > --- > b, > 0, and similarly for the a} and b/.

Lemma 3.4. (a) In the above notations we have o occurs in F(n;p,q) if and only
if r,s < n, and o' occurs in F(n;p,q) if and only if v < 2p. s’ < 2¢. If the
conditions are satisfied then

degree(d) =ay + -+ ap + by + -+ b
(3.5)

degree(c’y =a) + -+ al, + b + -+ b,
(b) & occurs in the space of joint harmonics if and only if r +s < n, and ¢’ occurs
in the space of joint harmonics if and only if v’ < p,s’ <q. Then we have o > ¢’

if and only if r =7v',s =5',a; = aj,b; = b foralli,j.
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Definition 3.6. Let p = p(A, ¥) be a limit of discrete series representation of
O*(2n). Write A as in (2.4). Let p = p(A) = my + -+ my, and ¢ = ¢(N) =
ny + -+ ng. Notice that p+¢=norn—1.

We define Tp = p(TA,TT) to be the limit or discrete series representation of

Sp(p, q) given by

my mg ni Nk

—N—— —N— —— —N—
(3.7) TA=(a1,...,01,. ., @k, ..oy Qe @1, e ey ATy ey Ay e ey AF)

and T'W the unique system of positive roots containing AT, with respect to which

' is dominant, satisfying condition F-1, and such that for 1 <7 <p, 1 < j <y,
(38) ei—fj EFWC}@Z'—I—GH_]'_H e v,

Lemma 3.9. Let p = p(A, V) be a limit of discrete series representation of O*(2n),
p=p(A), and ¢ = q¢(N). Then the lowest K -types of p and T'p occur and correspond

in the space of joint harmonics for the dual pair (Sp(p,q), 0O*(2n)).

Proof. For 1 < i < p, let 8; = #{j < qles — f; € TT¥}, and for 1 < i < ¢,
let vi = #{j < p|fi —e; € T¥}. Rewrite TA = (b1,...,bp;¢1,...,¢4) and A =
(b1,...,bp, —¢q,...,—c1), or with a zero between b, and —¢,. Let o and ¢’ be the

LKT’s of p and I'p respectively. Then using the formula given in §2.2, we get

(3.10) U':(b’l,...,b;,;cll,...,c;) with

3.11 b/»:bi—l—ﬁi— +:—1

(3.11) i p ,

3.12 ch=c;i+v—qg+i—1; and

(3.12) i %= q ;

(3.13) 0':(b’l,...,b;,—c;,...,—cll)—l—(p—q,...,p—q),

or with a zero between &), and —c{. Since b, > 1 and ¢; > 1, we have that b}, ¢;, > 0,

and the result follows from Lemma 3.4. O
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Theorem 3.14. Let m# = w(r, A, ¥, u,v) be an irreducible admissible representa-
tion of O*(2n), and let X (yq) be the corresponding standard module induced from
discrete series. Let p=p(A) +r and g =q(A) +7r, sothat p+q=n orn—1.

(a) The lowest K-types of X(vq) are of minimal degree and occur in the space
H of joint harmonics for the dual pair (Sp(p, q), 0*(2n)).

(b) Let o' = w(r,TATW, u,v), a representation of Sp(p,q), and let X(v}) be
the corresponding standard module induced from discrete series. Then the lowest

K-types of X(v}) occur in H and correspond to the lowest K-types of X(v4).

Proof. If

mi mp Nk n1
_ —_— —_
(3.15) Fale = (@1, - ary o Ay ooy Ay =y e vy =y ooy =1,y -y — 1),

or with one zero in the middle, (this is the parameter A’ of (2.11)), then

mi M 7 Nk
_ —N—— —N— ——— ——
(3.16) Yole= @y, o ary o Qhy ey QS AL, ey ALy ey Ay e ey ).

Using formulas (2.14) through (2.17), the LKT’s of X (y4) are those of the form

(3.17) (p—q,-.-,p—9)

ma My Nk 1

——— —_——
+(bl,~~~,b1,~~~,bk,~~~,bk,_ck,~~~,_Ck,~~~,_cl,~~~,_CD,

or with one zero in the middle, and where

bj=aj+Rj— S —g5(mj —nj+1) —p+qg+e
(3.18)
cj:aj—Rj—I—Sj—%(nj—mj—l—l)—l—p—q—ej.

The R; and S; are as in (2.13), so that Ry = p and Sy = ¢, and for each j,
¢; € {0, :I:%}, and is chosen so that b; and c; are integers. All such choices for the

¢; yield all the LKT’s for X (v4).
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Similarly, the LKT’s of X (/) are those of the form

M1 M ni ng
R —_— .
(3.19) (b1, ybyy oo biy o b, oy, Chy e Cl),
with the b; and ¢; as in (3.18), and the ¢; subject to the same conditions as for
O*(2n). Since by, ¢ > 0, these K-types occur and correspond in H by Lemma 3.4,
proving (b) and the second part of (a).

To estimate the degree of K-types in X (74), first notice that the LKT’s all have

the same degree, namely

k k
(3.20) Zmibi +Znici
i=1 i=1

which is independent of the ¢; chosen. Let 7 be a K-type occurring in X (y4). By
the standard theory of [26] and [13] (see e.g., [20] Lemma 5.1.1 for details), 7 is of

the form

(3.21) T= U—i—Znaa,

where ¢ is a LKT of X (v4), the sum runs over roots in A(l : t) UA(unNp), and
ng > 0 for all «. Here [ and u are as in Section 2.3. If 44|, is as in (3.15) then the

roots in A([: ) UA(uNyp) are of the form

(3.22) +(e; —€j) 1<i<j<p
(3.23) F(en—j+1— €n—it1) 1<i<j<g
(3.24) (e + en_j1) 1<i<p1<j<qg
(3.25) (e: +¢5) 1<i<j<p

(3.26) —(en—j+1 + €n—iy1) 1<i<j<q
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Rewrite

(3.27) o=0p—q¢....p—q) +(a1,...,0p,B1,...,8q)

or with one zero between a, and #;. Recall that a, > 0> 3;. Then

(3.28) T=04(21,...,Tp, Y1, -, Yqg)

or with one more coordinate z between z, and y;. Then

i=1 i=1
P q
Z Z(az + xz) - Z(ﬁz + yz)
(3.29) - T .
= Zaz _Zﬁl‘i‘zxz _Zyz
i=1 i=1 i=1 i=1
P q
= degree(o) + Z T — Z Yi
i=1 i=1

But >>F_, #; —>°7_, y; > 0 since each of the roots contributing to the sum (3.21)

is of the form (3.22-3.26). This finishes the proof of the theorem . O

3.2. General facts about the correspondence. We now state some (mostly
standard) results about how the correspondences for different dual pairs of the
form (Sp(p, ¢), 0*(2n)) are related.

Recall first how the groups Sp(p, ¢) and O*(2n) are embedded in Sp(4n(p+q),R)
(see [7], [24]). Let V be a (p + ¢)-dimensional (right) vector space over H, with
hermitian form (,) of signature (p, ¢), Hrlinear in the second variable, and let V' be
an n-dimensional (left) vector space over H, with skew-hermitian form (,)" which
is H-linear in the first variable. Now define a symplectic space (W, <, >) as follows:
W =V @u V' as a vector space over R, and <,>= try/g ((,) ®W) Then

the isometry groups of (,), (,)’, and <, > are isomorphic to Sp(p, ¢), O*(2n), and
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Sp(4n(p+q),R) respectively, and this defines an embedding of the first two groups

as a reductive dual pair in the symplectic group.

Notation 3.30. Let m and 7’ be irreducible admissible representations of Sp(p, ¢)
and O*(2n) respectively. If 7 < 7’ in the correspondence for the dual pair
(Sp(p, q),O*(?n)) we write 0,(7) = 7' and 6, ,(7') = m. If = does not occur
in the correspondence, we write 0, (7) = 0, and similarly for #’. If there is no con-
fusion possible about the dual pair under consideration, we will omit the subscript

and write 8(r) = 7', etc.

If 7 is an irreducible admissible representation of GG, let 7* denote the contra-
gredient representation. (Notice that if GG = Sp(p, ¢), then 7* = x.) The following

result is due to Przebinda (Theorem 5.5 of [21]).

Lemma 3.31. Let w be an irreducible admissible representation of O*(2n). Then
Opq(m)" = Oqp(77).

Let V} and V5 be Hihermitian or Heskew-hermitian spaces. Then V = Vi BV, will
be a space of the same type. This defines natural embeddings Sp(p, q) x Sp(r,s) —
Sp(p+r,q+s) and O*(2n) x O*(2m) — O*(2(n+ m)), so that any representation
of Sp(p+ r, ¢+ s) is a representation of Sp(p, ¢) x Sp(r,s) by restriction. Similarly
for O*(2(n + m).

If p, ¢, and n are non-negative integers, we denote the oscillator representation for

the dual pair (Sp(p, ¢), O*(2n)) wp ¢ (this is a representation of %(Qn(p—l— q),R)).

Lemma 3.32. Let p,q,r,s,n, and m be non-negative integers. Then

L. Wpgn @Wrsn = Wpirgts,n as representations of Sp(p, q) x Sp(r, s) x O* (2n),

with O*(2n) acting diagonally on the left-hand-side; and
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2. Wpgn @Wpgm ZWp gntm as representations of Sp(p, q) x O*(2n) x O*(2m),

with Sp(p, q) acting diagonally on the left-hand-side.

Proof. If Wy and W5 are symplectic spaces with 1sometry groups Sp; and Sps re-

spectively, then W = W7 & W5 1s a symplectic space, and this defines an embedding

(3.33) Sp1 x Spa = Sp = Sp(W).

By Corollary 5.6 of [23], this embedding lifts to a map 3 : 5?)1 X 5?)2 — 5?) of the

metaplectic covers so that for the corresponding oscillator representations, we have

(3.34) Wi Quws Zwof

as representations of 5?)1 X 5?)2.
Let V4,V be hermitian spaces over H, and let V' be a skew-hermitian space.

Let G(V;) and G(V’) be the corresponding isometry groups. Write

(3.35) W=WieWhaoV=zWVoeV)s(VaoV)=W eW,

(as vector spaces over R). Then we get corresponding embeddings

G(V) x G(Va) x G(V') = Sp  and
(3.36)
G(V1) x G(V') x G(Va) x G(V') = Sp, x Sp,.
The action of G(V') on (Vi @ V2) @ V' corresponds under the isomorphism (3.35)
to the diagonal action on (V3 @ V') @ (Va @ V'). Restricting w; ® wy and w in
(3.34) to these subgroups now yields the first part of the lemma. The second part

1s similar. O
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The next result rules out that a representation of O*(2n) lifts to more than one
group of the form Sp(p, ¢) with p+¢ < n, so that our result in Theorem 5.1 indeed

gives us all such occurrences.

—

Proposition 3.37. Let 7 € O*(2n). Suppose 8, 4(7) # 0 and 0, ;(7) # 0. Then
etther
(a) p—r=q—s, ie., Sp(p,q) and Sp(r,s) are in the same Witt Tower; or

(b)p—r#qg—s, p+s>nand g+r > n, and in particular, p+q+r+s > 2n.

Proof. Assume 6, 4(7) # 0 and 6, ,(7) # 0. By Lemma 3.31, 6, ,(7*) # 0 as
well. So m and 7 are quotients of wy, 4, and w; ,, respectively. By Lemma 3.32
(1), # @ «*, and therefore the trivial representation 1l of O*(2n) is a quotient of
Wpts,gtrn, L€, Opps grr (1) # 0. So the trivial K-type must occur in the space
of joint harmonics for the dual pair (Sp(p +s,q+7), O*(?n)). The conditions on

p,q, 7, s given in the proposition now follow from Lemma 3.4. O

4. THE INDUCTION PRINCIPLE

We formulate the induction principle, which is due to Kudla [15] (see also [19],
[1], [2], [20]), for the dual pairs (Sp(p, q), O*(?n)).

Let D = H with the standard involution ™

Let V' (resp. V') be a right (resp., left) vector space over D equipped with a
hermitian form (,) (resp. a skew-hermitian form (,)’). Denote by G(V) (resp.
G(V")) the isometry group. Then W = V @p V' is a real symplectic space with
the symplectic form tr((,) ® W), where tr is the reduced trace map from D to R.

Furthermore (G(V), G(V")) is a reductive dual pair in Sp(WV).
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Suppose that

(4.1) V=VipVWidV_,

(4.2) Vi=VieVie V.,

where Vi, V_ (resp. Vi, V) are totally isotropic subspaces and are dual to each
other with respect to (,) (resp. (,)).
Let Wy = Vp @ Vg, and let Wy = Xy @ Yp be a complete polarization. Then W

admits the following complete polarization:

where
(4.4) X=VeV)e(V;oV o X,
(4.5) Y=VeoV)s V.oV e Y.

Let Py = P(Vy) (resp. Py» = P(V])) be the stabilizer of V, in G(V') (resp. V]

in G(V')). We have the Levi decomposition

(46) Py = My Ny, Py = My Ny,
where
(4.7 My = GL(Vy) x G(Vy), My, = GL(V_I'_) x G(Vy).

Define the real symplectic space

(4.8) Wy=V_oV))e(VyaV)eW.
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Then (My, My+) is a dual pair in Sp(Was). Note that Wy has the following

complete polarization

where
(4.10) XM:(V_®V_|/_)@X0,
(4.11) Yu=VyoV)aY.

The oscillator representation w associated to the dual pair (G(V),G(V')) C
Sp(W) may be realized on the Schwartz space S(Y'), and the oscillator representa-
tion wps associated to the dual pair (My, My+) C Sp(War) may be realized on the
Schwartz space S(Yar) (see [23]).

Let p: S(Y) — S(Yar) be the obvious restriction map.

Denote d = dimg D = 4, and dy = dimg{t € D|t = —i} = 3.

We set
(4.12) mg = dimp Vo, ng = dimp Vy, k =dimp Vy, [ =dimp V_ll_.

For A € Myxi(D), let det(A) be the usual determinant of A realized as an
element of u*(2k) C Maj 2k (C). (If k=1 then this is the reduced norm as in §2.2.)

Let & be the following character of GL(Vy) x GL(W,):
(4.13)  £(h, h') = det(h)otDdde(p')motR)d (b By € GL(Vy) x GL(VY).

By comparing the actions of the groups involved in the mixed models of w and

wyr (c.f. [20] for the case D = C), we have
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Proposition 4.14. The restriction map p is a surjective Py x Py equivariant map
(4.15) w—rwy @&

Let ny (resp. nyv) be the Lie algebra of Ny (resp. Ny), and let p(ny) (resp.
p(nys) be half the sum of the roots of ny (resp. nys) with respect to a Cartan
subgroup of My (resp. My+). Then p(ny) (resp. p(ny+)) exponentiates to a
character py of Py (resp. pyv: of Pys). Notice that N = Ny and N/ = Ny admit

exact sequences

(4.16) 1—7ZN — N — Hom(Vy,V}) — 1,

(4.17) 1 — ZN'— N' — Hom(V{,V]) — 1,

where ZN and ZN’ are the centers of N and N’ respectively. Furthermore, ZN =
B(V_)skew, the space of skew-hermitian forms on V_, and ZN' = B(V/ )pepm, the

space of hermitian forms on V' . We therefore see that the characters py and py.

are given by

(4.18) pv(h, go,nv) = det(h)%(mud-l-(k—l)dﬂdu)
for h € GL(V4), 90 € G(W),nv € Ny and

(419 pur(H gy my) = det () Krad 1 +1)d=240)

for h' € GL(V]), g5 € G(V§),nv: € Ny:. They are the modulus functions of Py
and Py.
We now state the Induction Principle which follows from Proposition 4.14 using

Frobenius Reciprocity.
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Theorem 4.20. Let © € G/(‘Z), e G/(‘Z’), o c Gf(i_), and o' € Gf(?_l’_)
Suppose that m &> 7', and 0 < ¢’ in the correspondence of dual pairs (G(Vy), G(Vy))
and (GL(Vy), GL(VY])). Let xv and xv: be the characters of GL(V) and GL(VY)

given by:

(4.21) v (h) = det(h)5((rotlzmo=ktl)d=2do) = p o Gy,
(4.22) v (h') = det(B/)Tl(moth—no=l=Ld+2do) = pr e Gr(v]).
Then there is a nonzero G(V) x G(V')-map

(4.23) U w— IndeY

v

)(7T®O'®Xv) ® Indﬁf/‘f )(71'/ @ @ xvi).

The following theorem is the extended induction principle which is due to Adams

and Barbasch [1].

Theorem 4.24. Let ¥ be as in Theorem 4.20, G = G(V), G' = G(V'), M = My,
and M' = M), and let K and K’ be marimal compact subgroups of G and G’
respectively. Suppose p is a K-type and X is a (KN M)-type such that the following
conditions are satisfied:
(1) X occurs and is of minimal degree in 7 ® o.
(2) jt occurs and is of minimal degree and of multiplicity one in IndIGDV(ﬂ'®0'®XV).
(3) p and A have the same degree, and the restriction of u to K N\ M contains A.
(4) There exist characters o and o' of M and M' which are trivial on K N M
and K' " M', such that (n @ 0 @ @) ® (7' ® ¢’ ® ') is a quotient of wyr, and
IndIGDV(ﬂ' ® 0o ®a®yv) is irreducible.

Let p' be the K’-type which corresponds to p in the space of joint harmonics.
Then p @ p’ is in the image of W.

The statement of the theorem is also true with the roles of V and V' reversed.
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We are going to apply these theorems to the following situation: G(V) =
Sp(p,q), G(V') = 0*(2n), M = Sp(p—1,¢—1)xGL(1,H), and M’ = O*(2(n—2)) x
GL(1,H). The characters xv and xv- then become yv (h) = det(h)”_p_q_%, and
xvi(h) = det(h)p*'q_”‘l'%, so that xv+ = x7,. Notice that in our parametrization of
§2.2, xv = 0(1,2(n—p—g¢) = 1) and xv’ = ¢(1,2(p + ¢ — n) + 1).

We will need to know something about the correspondence for the dual pairs

(GL(n,H),GL(m,H)). We first describe the space of joint harmonics.

Proposition 4.25. Let n < m. The correspondence of Sp(n)- and Sp(m)-types
in the space H of joint harmonics for the dual pair (GL(n,H), GL(m,H)) is given
as follows. If o = (a1, ...,a,) is an Sp(n)-type, then o occurs in H, and o & o,

where o' = (a1,...,a,,0,...,0). The degree of o and o' sy ;| a;.

Proof. Consider the diamond dual pairs (see [10])

O*(4n) Sp(m)

(4.26)  G'L(n,H) U(2n) GL(m,H) U(2m)

Sp(n) O~ (4m)

Recall that any two groups positioned at corresponding corners of the two diamonds
are a dual pair in Sp(8nm,R). Using the known correspondence of K-types for the
three dual pairs (O*(4n), Sp(m)), (U(2n),U(2m)), and (Sp(n),0*(4m)) and the
theory of [10] §3, the correspondence for (GL(n,H), GL(m,H)) may now easily be

obtained. O
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Proposition 4.27. Let ¢ = o(p,v) be an irreducible representation of GL(1,TH)
(see §2.2). Then o occurs wn the correspondence for the dual pair
(GL(1,H), GL(1,H)), and 6(c) = o*, i.e., 0(c) is o(u,—v). The corresponding

SU(2)-type has degree p— 1.

Proof. Occurrence follows from the results of [1] by considering the see-saw dual

pairs

GL(2,0) GL(1,TH)

(4.28) «

GL(1,H) GL(1,0).

Let k = (p,0), z = (1,0), and let L(k, z) be the representation of GL(2,C) deter-
mined by k and z asin §1 of [1]. Recall that L(k, z) is the unique irreducible quotient

of an induced representation IndIGDL(Z’(C)(

Xk,z), where P = M N is a parabolic sub-
group of GL(2,C) with Levi factor GL(1,C) x GL(1,C) and xj , is the character of
GL(1,C) x GL(1,C) = (C*)? given by xk »(r1€"1, roe?2) = r¥e#1. Then L(k, 2)
occurs in the correspondence with GL(1,C) (it lifts to L(—u,—v) € GL/(?C)).
Since the restriction of L(k, z) to GL(1,H) contains ¢ as a constituent, ¢ occurs in
the correspondence for the dual pair (GL(1,H), GL(1,H)). The theta lift can be
determined by looking at the way the members of the dual pair are embedded in
Sp(8,R) (see [6]): Write W = X &Y a complete polarization of the 8-dimensional
symplectic space W. Think of X and Y as two-dimensional complex vector spaces,
and identify GL(1,H) with U*(2) C GL(2,C). If (g,h) € GL(1,H) x GL(1,H)

and (z,y) € W, then (g,h) - (2,y) = (9zh~!, hag™?). Consequently, the two fac-

tors will act by contragredients. The degree of the SU(2)-type with highest weight
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(4L — 221y (this is the Sp(1)-type with highest weight (1 — 1)) is given by Propo-

20 2

sition 4.25. O

5. THE MAIN THEOREM

5.1. The cases p+q=n or n-1. We are now ready to state and prove our main

theorem.

Theorem 5.1. Let © = n(r, A, U, y,v) be an irreducible admissible representation
of G' =0*(2n). Let p = p(A)+r, and ¢ = q(A) + 7, and let 7 = n(r, TA, T, p, v),
a representation of G = Sp(p, q) (see Definition 3.6). Then
1. 6, 4(7') =m.
2. The lowest K'-types of ' are of minimal degree in «' and correspond in H to
the lowest K-types of .
3. Ifp' and ¢’ are integers so that p' + ¢ =n orn—1 and (p',¢') # (p, q) then
Oy o (7') = 0; i.e., part 1 completely describes the duality correspondence for

the dual pairs (Sp(p,q), O*(2n)) withp+q¢=n orn—1.

Remark 5.2. The algorithm of Definition 3.6 is easy to reverse, and it follows that
if p+q = n then every irreducible admissible representation of Sp(p, ¢) has nonzero

theta lifts to both O*(2n) and O*(2n + 2). Theorem 1.3 follows.

Proof. To prove part 1, we use induction on n, the rank of O*(2n). The base case
is when 7’ is a discrete series. Part 1 in this case follows from Theorem 6.2 of [17],
and part 2 from Lemma 3.9 and Theorem 3.14.

So now assume that 7’ is not a discrete series representation. Then there are
a representation wj; of O*(2(n — 2)) and a representation o of GL(1,H) such that

7' is a lowest K’-type constituent of I’ = Indg:(ﬂ'é ® o), where P/ = M'N’ is
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a parabolic subgroup of G’ with Levi factor M’ = O*(2(n — 2)) x GL(1,H). We
can choose o (if necessary replace by its contragredient) so that = is a quotient of
the induced representation. Let mp = 6,_1 q—1(7() (by the induction hypothesis).
(For the cases n = 2 and n = 3 we formally define the correspondences for the
dual pairs (Sp(O, 0), O*(O)) and (Sp(O, 0), O*(?)) to be 1 ¢ 1; here 1 is the trivial
representation of the appropriate group.) Then it is easy to compare Langlands
parameters and see that 7 is a lowest K-type constituent of [ = Indg(ﬂ'o ® o*),
where P = M N is a parabolic subgroup of G with Levi factor M = Sp(p — 1,¢ —
1) x GL(1,H). (Recall from §2.2 that if v is obtained from v by changing some
of the signs of the coefficients, then n(r, A\, ¥, u, v') = 7(r, A\, ¥, u, v)). By Theorem
4.20 and Proposition 4.27, there is a nonzero G x G’ map ® from the oscillator
representation w for the dual pair (G,G’) to I @ I'. By Theorem 3.14, we know
that every lowest K’-type 1’ of 7’ is of minimal degree in I’ and corresponds in H
to a lowest K-type 5 of the standard module X (v4) induced from discrete series
which contains m as a lowest K-type constituent. Moreover, ' has multiplicity
one in I’. To prove part 1, we will use Theorem 4.24, with the roles of G' and G’
interchanged, to show that n @ ' is in the image of ®, and then show that 5 is a
lowest K-type of w. Since 5 then has multiplicity one in I, 7 @ #’ must then be a
quotient of I @ I’, and hence of w. This will also finish the proof of part 2.
Write v/ = (¥, TV,7') and ~j = (¥, ', 7)) for the final limit characters for 7/
and 7} respectively, and let t' and t® be compact Cartan subalgebras of O*(2n) and

O*(2(n — 2)) respectively with t° C t'. If

_ N —ee
(5.3) Ao = (A1, o A1y ooy Al ooy Gy =y ooy =Gy oy =, ooy — 1),
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or with one zero in the middle, then o will be of the form (2a;, z) for some j and

some complex number z, and

mi m;—1 me
_y g —N— —_———
(5.4) Ylo = (ar,..., a7, ...,a5,...,a5,...,ak, ..., ag,
Nk nj—1 n1
—ak,...,—ak,...,—aj,...,—aj,...,—al,...,—aD,

or with one zero in the middle. Let n’ be a lowest K’-type of #’, and let { be the
(K’ N M')-type with highest weight equal to the restriction of (the highest weight

of) n' to t°. Write (as in the proof of Theorem 3.14)

(5.5) 7'=@p-9q,....0—q)

mi Mk Nk 1
—_——
+(bl,~~~,b1,~~~,bk,~~~,bk,_ck,~~~,_Ck,~~~,_cl,~~~,_CD,

or with one zero in the middle, and with the b; and ¢; as in (3.18). Then it is easy

to see that ( = 3 + &, where

mi m;—1 m
—_—— —_——— /—L
(56) ﬁ:(p—q,...,p—q)—|—(bl,...,bl,...,bj,...,bj,...,bk,...,bk,

Nk nj—1 n1

—Ck,...,—Ck,...,—Cj,...,—Cj,...,—Cl,...,—CD,

2a;—1 _Zaj—l
2 2

or with one zero in the middle, and & = ( ) is the highest weight of
the SU(2)-type of 0. Notice that g is a lowest U(n — 2)-type of x{, hence by
Theorem 3.14 of minimal degree in 7f,. Also, & is clearly of minimal degree in o

since o contains only one SU(2)-type. So ' and ¢ will play the roles of y and A

in Theorem 4.24. We can read the degrees of #’ and 3 off the formulas (5.5) and



THE EXPLICIT DUALITY CORRESPONDENCE OF (Sp(p, q), 0" (2n)) 29

(5.6), and using (3.18) and (4.25) we have

(5.7) degree(n') — degree(B) = bj + ¢; = 2a; — 1 = degree(§).

Consequently, ' and ¢ satisfy parts (1) through (3) of Theorem 4.24. For part
(4), notice that if we choose « to be a character of GL(1,H) of the form (det)" for
some complex number w, and o/ = a*, then a and o’ will be trivial on K N M and
K'NM’ and if p and p’ are representations of M and M’ so that p®p’ is a quotient
of wyy, then (p® a) @ (p' ® o’) will be a quotient of wpas as well. Tt remains to show
that w can be chosen so that Ind% (7 @ ¢ @ a) is irreducible. But this follows from
[25].

Now let 1 be the K-type which corresponds to 5’ in H. To finish the proof
of the theorem, we must show that 5 is a lowest K-type of m. If #’ is a limit of
discrete series representation, then this follows from Lemma 3.9. If not, then we
may assume that our representation ¢ = o(2a;, z) satisfies the following condition:
z # 0 or 2a; is odd. (This is the nonparity condition of §2.2.) In this case, the
induced representation [ has only one lowest K-type constituent, namely 7. Since
(as is easily checked) 7 is a lowest K-type of the standard module X (vy4) induced
from discrete series which has 7 as a constituent, and the constituents of I are also
constituents of X (v4), n must be a lowest K-type of m. This completes the proof

of parts 1 and 2. Part 3 follows from Proposition 3.37. O

5.2. Going up the Witt towers. Starting from the correspondence for the dual
pairs (Sp(p, q), O*(2n)) with p+¢q = n,n — 1, we can determine the correspondence
for all cases p+ ¢ < n, as well as for some of the cases n < p+ ¢, by moving up one

Witt tower at a time, using the induction principle in a one-sided way.
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Theorem 5.8. Let ©' = n(r, A, ¥, u,v) € O*(2n), p, ¢, and © = 0, 4(7') be as
in Theorem 5.1. Let s be a non-negative integer. Write p = (p1,..., pr) and

v=(v1,...,v4). Then
(5.9) Opnyos(m) =7 = m(r+ s, A\, ¥, pu* V%),
where p1* = (p1, .. .pr, 1,000, 1), and

: ) (vi,. .00, 1,5,9,...,4s=3), ifp+qg=n
5.10 v =

(V1,003,711 04— 1), if p+g=n—1.
Proof. We use induction on s. The base case s = 0 is Theorem 5.1. So assume s > 0
and 0,425 2(m) = mi_,. By Theorem 4.20, there is a nonzero Sp(p,q) x O*(2(n +
25)) map from the oscillator representation for the dual pair (Sp(p, q),0"(2(n +

25))) to
(5.11) 7@ Ind, P (2! o o),

where P/ = M'N' is a parabolic subgroup of O*(2(n + 2s)) with Levi factor M’ =
0*(2(n+2s—2)) x GL(1,H), and ¢ is the character of GL(1,H) given by (1,4s—3)
ifp+q¢=mn,and (1,4s—1) if p+¢ = n—1. Consequently, 0,425 (7) is a constituent
of this induced representation I’. The representation 7’ is the unique lowest K’-
type constituent of I’. Let 5 be a lowest K-type of w. Then by Theorems 5.1 and
3.1, n 1s of minimal degree in 7. Therefore, if we show that 5 corresponds in H to
a lowest K'-type 5’ of 7}, then we have proved that f,49;(7) = 7 (since 5’ has
multiplicity one in I').

Let v = (¥, T7,%') and v, = (¥, T, 7.) be the final limit characters of =’ and

7, respectively, and let ' and t° be compact Cartan subalgebras of the Lie algebras
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of O*(2n) and O*(2(n + 2s)) respectively, with t' C t*. Write

mi mg Nk ni
_ —N—— —_——
(5.12) o = (@1, a1y ooy Al ooy Al =@y oy =Gy ooy =, oy —G1)

or with one zero in the middle. Then the lowest K-types of m (which by Theorem

5.1 correspond in H to the lowest K'-types of ©’) are of the form

(513) n_(bla abla" abka "abk;cla"'acla » Cky ack)a
with the b; and ¢; as in (3.18). Now
ma My 5
. —_——
5.14) Al = 1 1
(5.14) Al = (@1, ..., a1, ..., k.o ARy 5, 5,
s ng ni
—_——
1 1
—5,...,—5,—ak,...,—ak,...,—al,...,—aD

/

or with one zero between the %’s and the —%’s. Let 1’ be a lowest K’-type of 7.

First assume that ax # 5. Then

(5.15) ' =(p—q,....p—9)

mi mg s s Nk n1

—_—— —N— A
—|—(ﬁ1,...,ﬁl,...,ﬁk,...,ﬁk,z,...,z,—w,...,—w,—'yk,...,—'yk,...,—'yl,...,—'yD

or with an extra coordinate y between the z’s and the —w’s, where

Bj=a;+Rj—Sj—5(my —nj +1) —p+q+¢
(5.16)

Y =a; = Rj+8;—3(nj —mj +1) +p—q—¢
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. ) ) . ’ 1 ) ) 1
with the R; and S; as in 2.13, and €; = 0 or &5 so that 3; and 7; are integers.

Also,
=1+ (Re+s)—(Sk+s)—3(s—s+1)—p+qg+d

(0=0or + % as for e} above)
(5.17)

=J since Ry — Sy =p—q
=0 since z must be an integer.
Similarly, w = 0 and y = 0.

If a, = %, then my = n, since % can not be a coefficient of a discrete series

parameter, so

(B.18) #'=@p—q....r—9q)

mi ME—1 mg+s
—_—~— —_————
+ (ﬁla"'aﬁla"'aﬁk—la"'ﬁﬁk—laﬁka"'aﬁka
ng+s Nk—1 ni
_Pyk"'"_Pyk’_”yk—la'"a_PYk—la"'a_Pyla""_PyD

or with one y in the middle, where the §; and v; are as aboveif 1 < j <k —1, and

P =5+ (Re+5) = (Sk+5) = 5(mx +s—(n, +5) —p+qg+3
(5.19)

=0 since Ry — Sy =p—¢q, mg = ng, and By € Z.
Similarly, 4 = 0 and y = 0.
In either case, using Lemma 3.4, we see that 5’ corresponds in H to a K-type nq

which differs from 7 at most in the choice of the ¢;’s, so 7g is a lowest K-type of

. O

Because of Theorem 5.1, we can assign to each irreducible admissible represen-

tation m of O*(2n) a well-defined signature and rank.
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Definition 5.20. (a) We let sgn(n) = (p,q) if 6, 4(7) # 0 and p + ¢ is minimal
subject to that condition.

(b) If sgn(m) = (p, q) we define rank(n) = p+ q.

Notice that rank(r) < n for all 7. Theorem 5.8 now permits us to read the
signature of a representation m of O*(2n) off the Langlands parameters, and we get

the following

Corollary 5.21. Letw = n(r, A\, U, i, v) be an irreducible admissible representation
of O*(2n), and let € equal the number of zeros in A (so ¢ = 0 or 1). Let !l be
the largest integer with 0 < I < r such thal up to permutations of indices, p =
(Lo L g, oo ) and v = (1 + 26,5+ 2¢,..., 4l =3 4+ 2¢, 141, ..., v,). Then
sgn(m) = (p,q) = (pP(A) +r—Lg\)+r—=1), and 6, o(7) = w(r — L, TA T, 1/, 0'),

where (' = (pig1, - por) and V' = (Vig1, ..., V).

Starting from the case p + ¢ = n,n — 1, we can use the one-sided induction
principle again to obtain the correspondence for p + ¢ > n in the Witt tower

determined by sgn(r).

Theorem 5.22. Let w, @', p, q, and s be as in Theorem 5.8. Then

(5.23) Opts grs(m') =ms = m(r + s, TA TV, p°, 1),

where p* 1s as in Theorem 5.8, and

: ) (vi,..., v, 3,7,11,...,4s = 1), if p+g=n
5.24 v =

(vi,. 00, 1,5,9,...,4s=3), ifp+g=n—1.

Proof. Very similar to the proof of Theorem 5.8; we omit the details. O
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5.3. Applications. Finally, we comment on the applications mentioned in the last
paragraph of the introduction. By [16], the theta correspondence takes unitary rep-
resentations of Sp(p, q) to unitary representations of O*(2n) whenever p+¢ < n/2.
Thus starting from well known unitary representations of Sp(p, ¢) (e.g. tempered
representations, unitary representations with non-zero cohomology, etc), Theorem
5.8 describes the Langlands parameters of the corresponding unitary representa-
tions of O*(2n) which are much less familiar. Indeed, many of them are rather
exotic.

We also know [16] that any irreducible unitary representation of O*(2n) with
rank 7 < n/2 must be a theta lift from some unitary representation of Sp(p, ¢) with
p+q = r. Now suppose n > 12. Then all irreducible unitary representations of
O*(2n) with rank <5 are theta lifts from some Sp(p, ¢) with p + ¢ < 5. Since the
unitary dual of any Sp(p, ¢) with min(p, ¢) < 2 is known [3] [12] [18], Theorem 5.8
gives rise to a classification of all irreducible unitary representation of O*(2n) with

rank <5.

6. THE DUAL PAIRS (GL(m,H),GL(n,H))

For the sake of completeness, we describe the correspondence for the dual pairs
(GL(m,H),GL(n,H)). First we adapt the induction principle of Section 4 to
these type II dual pairs; similar calculations may be found in [1]. Recall that
GL(m,H) and GL(n,H) are embedded in Sp(8mn,R) as follows (see [6]). Let U3
and Uy be right vector spaces of dimension m and n over H respectively, and let
W = Hompu(Uy,Us) @ Hompu(Ua,Uy), considered as a real vector space. Define
a symplectic form <, > on W by < (S1,T1), (S2,T2) >= tr(S1T2 — S2T1), with

tr(-) the reduced trace over R on Endg(Usz). Then GL(Uy) x GL(Usz) acts on W
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by (91,92)(S,T) = (92597, 91795 "). This action preserves <,>, and this defines
an embedding of (GL(U1),GL(Uz)) = (GL(m,H),GL(n,H)) as a dual pair into
Sp(W) = Sp(8mn,R).

Fori=1,2,let U; = V; & W;, direct sums of H vector spaces, with dimgV; = k;
and dimgW; = l;, so that m = k1 +{; and n = ks + 5. Then W admits the

following complete polarization:
W=XaY,

(6.1) where X = Homp(V1,Us2) & Hompu(Uaz, Wh)

and Y = Homy(Us, V1) ® Homp (W1, Us).
The oscillator representation for the dual pair (GL(Ul),GL(Uz)) may be real-
ized on the Schwartz space S(Y'), with the action of the Siegel parabolic Ps =
Stabspwy(X) = MsNs given by simple formulas (see [23]). For i = 1,2, let
P; = P(W;) be the stabilizer of W; in GL(U;). Then P; = M;N;, where M; =
GL(V;) x GL(W;), and N; = Homp(Vi, W;). Notice that P; preserves X hence

is contained in Ps. Define the symplectic space Wjys with the following complete

polarization:
Wa =Xy & Yu
(6.2) where Xy = Homy(V1, V2) & Homp(Wa, W)
and Yy = Homp(Va, V1) ® Homp(Wr, Wa).
Then (My, Ms) is a dual pair in Sp(Wir). The associated oscillator representation

wyr may be realized on S(Yas). As in Section 4, let p : S(Y) — S(Yar) be the

obvious restriction map.
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For i = 1,2, let & be the following character of M; = GL(V;) x GL(W;):

&1(g1,h1) = (det(g1)) ™" (det (hy))*?
(6.3)

€a(ga, ha) = (det(g2)) ™" (det(ha))*  for (g5, hi) € GL(V;) x GL(W;).
By comparing the actions of the groups involved in the mixed models of w and wyy,

we have

Proposition 6.4. The restriction map p is a surjective Py X Py-map
(6.5) w—rwy @& @&

A calculation as in Section 4 yields the modulus functions p; and ps of P, and

P, to be given by

p1(g1, b, ) = (det(g1)) ™" (det(h1))™
(6.6)

p2(g2, ha,nz) = (det(g2)) ™" (det (h2))*,
for g; € GL(V;), hy € GL(W;), and n; € N;. We obtain the induction principle for

the dual pair (GL(U1), GL(U2)).

— e

Theorem 6.7. For i = 1,2, let m; € GL(V;), i € GL(W;), and suppose that
m & wy and 01 < 05 in the correspondence for the dual pairs (GL(Vl),GL(Vz))
and (GL(Wl), GL(WQ)). Let x1 and x2 be the characters of GL(V1) x GL(V3) and

GL(W1) x GL(W3) given by

x1(g1, h1) = (det(g1))* ~"2(det(hy))*2=F2
(6.8)

x2(g2, ha) = (det(gz))lrll(det(hz)kl_k2 for (gi, hi) € GL(Vi) x GL(W;).

Then there is a nonzero GL(Uy) x GL(Us) equivariant map

(6.9) U:w— IndIGDIL(Ul)(m ® 01 ®x1)® IndIGDQL(UQ)(m @ o2 @ X2).
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Theorem 6.10. The extended induction principle (Theorem 4.24) holds in the set-

ting of Theorem 6.7 as well (see [1]).

Now we describe the representations of G = GL(n,H). Let K = Sp(n) be a

maximal compact subgroup of G. Realize G as

X -y
(6.11) U*(2n) = 1X,Y €gl(n,C) 3 NGL(2n,0).

Y X

There is only one conjugacy class of theta stable Cartan subalgebras of gg = u*(2n),
whose centralizer is M A = GL(1,H)* = SU(2)" x R™. An irreducible represen-
tation o of M A is a tensor product of n irreducible representations of GL(1,H),
hence may be specified by an n-tuple of positive integers g = (p1,. .., in) and an
n-tuple of complex numbers v = (v1,...,v,). If P = M AN is a parabolic subgroup
of G with Levi factor M A, let I(p,v) = Ind% (o). Then I(x, v) has a unique lowest
K-type constituent 7(u, v) (independent of the choice of P). Two such representa-
tions 7(y, v) and 7(y', V') are equivalent if and only if (¢, /') is obtained from (y, v)
by simultaneous permutation of the coordinates, and every irreducible admissible
representation of G is of the form (y, v) for some choice of x4 and v.

The infinitesimal character of 7(u, v) is (

gy

H1+vy BntVn —partta —UntVn
2 2

’ 2 yry 2 )a

and the unique lowest K-type of 7(u, v) has as its highest weight the dominant Weyl

group conjugate of p — 1 = (1 — L2 — 1,..., pun — 1). For example, the trivial

representation is 7(y,v) with = (1,... ;1) and v = (2n —2,2n —6,..., —2n +2)
and has infinitesimal character p = (2"2_1, 2"2_3, e _2Z+1).

Theorem 6.12. Suppose m < n, and let d = n—m. The duality correspondence for
the dual pair (G1,Ga) = (GL(n,H), GL(m,H)) is given as follows. Let T = m(u,v)

be an irreducible admissible representation of GL(m,H). Then T occurs in the



38 JIAN-SHU LI, ANNEGRET PAUL, ENG-CHYE TAN, AND CHEN-BO ZHU

correspondence, and 6(r) = v = (', V'), where p’ = (p1,..., pm,1,...,1) and
vV=(-vi,...,—Vm,2d—2,2d —6,...,—2d+ 2). In particular, the correspondence
for the dual pairs (GL(n,H), GL(n,H)) is given by T <> %, with all representations
of GL(n,H) occurring. Moreover, the lowest K-types of 7 and 7' are of minimal

degree and correspond in the space of joint harmonics.

The proof of Theorem 6.12 proceeds along the same lines as that of Theorem

5.1. We first prove two facts which will help us apply Theorem 6.10.

Lemma 6.13. Let 1 be an irreducible admissible representation of GL(n,H), with

lowest K-type n = (a1, ...,an). Then n is of minimal degree in 7.

Proof. By Frobenius Reciprocity, every Sp(n)-type of 7 contains the weight (aq, ..., a,),
hence its highest weight is of the form (a1, ..., a,)+ a sum of positive roots. Since
the degree of any Sp(n)-type is given by the sum of the coefficients of its highest
weight, and the positive roots are those of the form 2e; and e; £e;, the result follows

easily. O

Lemma 6.14. Let n = k + 1, and let 7 = 7(p,v) and © = 7(p', ') be irreducible

admissible representations of GL(k,H) and GL(I,H) respectively. Let P be a maz-

imal parabolic subgroup of GL(n,H) with Levi factor M = GL(k,H) x GL(l,H),
_ GL(n,M) / , .

and let I = Indp (m@7'). Then I has a unique lowest K-type . Let n and

n' be the unique lowest K-types of m and 7' respectively. Then the restriction of §

to Sp(k) x Sp(l) contains n @ 1', and the degree of § equals the degree of n@ 1n'.

Proof. Using induction by stages, we know that I contains (as its lowest K-type
constituent) the representation o = 7(u° v°) of GL(n,H), where u° is obtained

from g and g’ by concatenation, and similarly for 2, v, and v/. Now ¢ has a unique
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lowest K-type whose highest weight (Weyl group conjugate to) u° — (1,...,1) is
also the highest weight of 7 ® 1. So the restriction of § to Sp(k) x Sp(l) contains

7@ 7', and the statement of the degrees follows from Proposition 4.25. (]

Proof of Theorem 6.12. We start with the case m = n, using induction on m, with
the base case m = 1 given by Proposition 4.27. If m > 2, we let ky = ka =m —1
and {y = {3 = 1 to get Py, P», and the map p of Proposition 6.4. Let 7 = 7(p, v)
be an irreducible admissible representation of GL(m,H) = G;. If P is a minimal
parabolic subgroup of Gy (with Levi factor M = G'L(1,H)™) which is contained in
Py, we can rearrange the indices of p and v so that Re v is dominant with respect to
P. Then 7 is the unique irreducible quotient of Indl,GD1 (o(p1, 1)@ @0 (fm, Vm)),
and, by Frobenius reciprocity, of IndIGgll(Tl @ 0(fm, Vm)), where 7 = 7(u° %) €

GL(m —1,H), and pu° and v° are obtained from g and v by removing the last

coordinate. By the inductive hypothesis and Theorem 6.7, we have a nonzero map

(6.15) U:w— IndIGjll(Tl ® o (fims Vm)) ® Indg;(rl* ® o (fm, —Vm))

(taking # @ ¢ = 7 @ o(fim, Vm) @ x7). The result now follows using Theorem
6.10, Proposition 4.25, Lemma 6.13, and Lemma 6.14, analogously to the proof of
Theorem 5.1.

For the case n > m we apply Theorem 6.7 to the case k1 = ko = m, [; = 0,

Iy =d, and m = 7 ® x] to get a nonzero map

(6.16) Uiw— 7@ Indg (7" @ 1).
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The representation 7' is the unique lowest K-type constituent of the induced repre-

sentation in 6.16. The theorem now follows from the fact that the lowest K-types

of 7 and 7/ correspond in the space of joint harmonics (see Proposition 4.25). O

10.

11.

12.
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