
THE EXPLICIT DUALITY CORRESPONDENCE OF�Sp(p; q); O�(2n)�JIAN-SHU LI, ANNEGRET PAUL, ENG-CHYE TAN, AND CHEN-BO ZHU1. Introdu
tionOne of the most serious diÆ
ulties in the determination of the unitary dualof any simple Lie group is to understand the unitary representations whi
h are\singular" in a well de�ned sense. In [8℄ and [16℄ a large set of singular unitaryrepresentations were 
onstru
ted for 
lassi
al groups via the method of redu
tivedual pairs. Suppose G;G0 is a pair of redu
tive groups whi
h are 
entralizers ofea
h other in some ambient symple
ti
 group, and that they are in the so 
alledstable range (roughly, this means G0 is at most half the size of G). Then there is aninje
tion from the unitary dual of G0 to that of G. Keeping G �xed and varying G0,we obtain families of singular unitary representations of G whi
h are parameterizedby the unitary duals of various G0 (of mu
h smaller size).Unfortunately, the unitary representations of G thus obtained were des
ribedby restri
tion to 
ertain maximal paraboli
 subgroups. The 
onstru
tion providesno a priori information about the Langlands parameters of these representations.What [16℄ does prove, however, is the fa
t that the inje
tions agree with the lo
altheta 
orresponden
es. Thus it is of 
onsiderable interest to des
ribe, in terms ofThe �rst author was supported in part by CNSF Grant No. 19928103, NSF Grant DMS-9801713, RGC-CERG grant HKUST6169/99P, and a Cheung Kong Chair Professorship.The third and fourth authors were supported in part by the NUS-MOE grants R-146-000-003-112 and R-146-000-017-112, respe
tively. 1



2 JIAN-SHU LI, ANNEGRET PAUL, ENG-CHYE TAN, AND CHEN-BO ZHUthe Langlands-Vogan parameters, the lo
al theta 
orresponden
e for redu
tive dualpairs in the stable range. This was also emphasized by Vogan in [28℄.For appli
ations to automorphi
 forms and other reasons, it is of great interest tounderstand the theta 
orresponden
e in general. Indeed, there have been numerouspapers on the subje
t. In terms of expli
it des
riptions, the papers [19℄, [1℄, [2℄, [20℄are among the most important. However, 
omplete des
riptions were obtained (forthe type of dual pairs 
onsidered in these papers) for more or less the \equal rank"
ases only (with the ex
eption of [1℄ for 
omplex groups). In parti
ular, very littleis known for real redu
tive dual pairs in the stable range.In this paper we investigate the type I dual pairs over the quaternion algebraH, namely the family of dual pairs �Sp(p; q); O�(2n)�. We shall give a 
ompleteand expli
it des
ription of duality 
orresponden
e for p + q � n, in terms of theLanglands parameters. We note that in this 
ase \equal rank" means p + q = nor n � 1, while \stable range" means p + q � n=2. As an appli
ation, we obtainfamilies of irredu
ible small unitary representations ofO�(2n) (with their Langlandsparameters). Most of these unitary representations were not known previously. Inparti
ular, for n � 12 we obtain a 
omplete 
lassi�
ation of irredu
ible unitaryrepresentations of O�(2n) with rank � 5. Here the notion of rank is as de�ned byHowe [9℄.Our approa
h is very natural and will be brie
y outlined now. Let bGd denotethe equivalen
e 
lasses of dis
rete series representations of G. Let bG denote theadmissible dual. From [17℄ we 
an read o�



THE EXPLICIT DUALITY CORRESPONDENCE OF �Sp(p; q);O�(2n)� 3Theorem 1.1. The theta 
orresponden
e gives rise to a bije
tion\O�(2n)d  ! [p+q=n;n�1 \Sp(p; q)d(1.2)Now an arbitrary irredu
ible admissible representation 
an be obtained as aLanglands subquotient of some standard representation indu
ed from relative dis-
rete series. By applying the indu
tion prin
iple of Kudla and Moeglin (as in [19℄,[1℄, [2℄, [20℄), we obtainTheorem 1.3. The theta 
orresponden
e gives rise to a bije
tion\O�(2n) ! [p+q=n;n�1 \Sp(p; q)(1.4)where bG denotes the admissible dual of G. This bije
tion takes dis
rete series todis
rete series, and tempered representations to tempered representations.We emphasize that this is an expli
it 
orresponden
e; see Theorem 5.1.To deal with the range p + q � n � 2 we write n = m + 2k with m = p + q orp+ q+1. Starting from any � 2 \Sp(p; q) we �rst obtain the theta lift �m(�) of � toO�(2m) (see Notation 3.30) via Theorem 1.3. Consider the paraboli
 subgroup ofO�(2n) with Levi subgroup O�(2m)�GL(1;H)k . It turns out that �n(�) 2 \O�(2n)is a subquotient of the representation indu
ed from �m(�) 
 �, where � is a onedimensional representation of the (non-abelian) group GL(1;H)k . Sophisti
atedversions of the indu
tion prin
iple then allows us to identify the Langlands param-eters of �n(�). The main result is stated in Theorem 5.8. In parti
ular, we �ndthat if p+ q � n then every irredu
ible admissible representation of Sp(p; q) o

ursin the theta 
orresponden
e.



4 JIAN-SHU LI, ANNEGRET PAUL, ENG-CHYE TAN, AND CHEN-BO ZHUAppli
ations to unitary representations are dis
ussed in se
tion 5.3. Finallyfor the sake of 
ompleteness, we also work out the duality 
orresponden
e for�GL(m;H); GL(n;H )�, the type II dual pairs over H.2. The Groups and Their Representations2.1. The groups. For any positive integer n, we denote the n� n identity matrixIn. If p and q are non-negative integers, letSp(p; q) = fg 2 Sp(2(p + q); C )j t�gKp;qg = Kp;qg;where Kp;q is the diagonal matrix diag(Ip;�Iq; Ip;�Iq). The group O�(2n) �=SO�(2n) is the real form of SO(2n; C ) realized asO�(2n) = �g 2 O(2n; C ) �� t�g � 0 �InIn 0 � g = � 0 �InIn 0 �	(see [5℄).Using the identi�
ation C 2 ! H given by (a; b) 7! a+ jb (see [11℄), we 
an thinkof Sp(p; q) as the isometry group of the hermitian form (; ) on V = Hp+q over thequaternion algebra H given by(v; w) = pXi=1 �viwi � p+qXi=p+1 �viwi;for v; w 2 V , v = (v1; : : : ; vp+q), and w = (w1; : : : ; wp+q). Similarly, the groupO�(2n) may be thought of as the isometry group of the skew-hermitian form (; )0on V 0 = Hn given by (u; z)0 =Pni=1 uij�zi.2.2. The representations. To des
ribe the admissible representations of Sp(p; q)and O�(2n), we use the parametrization of [27℄. We denote Lie algebras by gothi
letters with subs
ript 0, and omit the subs
ript to denote 
omplexi�ed Lie algebras.



THE EXPLICIT DUALITY CORRESPONDENCE OF �Sp(p; q);O�(2n)� 5We realize H as u�(2) = 8>><>>:0BB�z1 ��z2z2 �z1 1CCA j z1; z2 2 C9>>=>>; ;and the group GL(1;H) = H� as U�(2) = u�(2)\GL(2; C ). Noti
e that GL(1;H) �=SU (2) �R�= Sp(1) �R, so that its representations may be parametrized by pairs(�; �) with � a positive integer and � a 
omplex number. The 
omplexi�ed Liealgebra of GL(1;H) is gl(2; C ). The representation �(�; �) given by (�; �) 
orre-sponds to S��1(C 2 ) 
 det(�)�2 with det(�) the redu
ed norm of H (or equivalently,det(h) is the determinant of h as an element of U�(2)) and Sk(C 2) the irredu
ible(k+ 1)-dimensional representation of SU (2). The in�nitesimal 
hara
ter of �(�; �)is (�2 + �2 ; �2 � �2 ).Now let G = Sp(p; q) or O�(2n), K a maximal 
ompa
t subgroup of G, g = k+pthe 
orresponding Cartan de
omposition, and t � k a Cartan subalgebra.If G = Sp(p; q), we 
hoose a basis fe1; : : : ; ep; f1; : : : ; fqg of it� so that the
ompa
t roots are �
 = f�2ei;�2fi;�(ei � ej);�(fi � fj)g;and the non-
ompa
t roots are �n = f�(ei � fj)g. We 
hoose a system of positive
ompa
t roots �+
 so that one half the sum of the positive 
ompa
t roots is�
 = (p; p� 1; : : : ; 2; 1; q; q� 1; : : : ; 2; 1):If G = O�(2n), we 
hoose a basis fe1; e2; : : : ; eng of it� so that�
 = f�(ei � ej)ji < jg;



6 JIAN-SHU LI, ANNEGRET PAUL, ENG-CHYE TAN, AND CHEN-BO ZHUand �n = f�(ei + ej)ji < jg. Now 
hoose �+
 so that�
 = (n�12 ; n�32 ; : : : ; �n+12 ):Then the dis
rete series of G is parametrized by Harish-Chandra parameters �as follows:If G = Sp(p; q), � = (a1; a2; : : : ; ap; b1; : : : ; bq)(2.1)with ai; bj 2Z, a1 > a2 > � � � > ap � 1, b1 > b2 > � � � > bq � 1, and ai 6= bj for alli; j.If G = O�(2n), � = (a1; a2; : : : ; an)(2.2)with a1 > a2 > � � � > an and ai 2Z.Limits of dis
rete series of G are given by pairs (�;	), where � 2 it�0 and 	 ��(g : t) is a system of positive roots su
h that � is dominant for 	. Moreover,�+
 � 	, and if � is a simple root in 	 and < �;� >= 0 then � is non-
ompa
t.(This is 
ondition F-1 of [27℄.) The unique lowest K-type of the limit of dis
reteseries � = �(�;	) is then � = � + �n � �
, where �n is one half the sum of thenon-
ompa
t roots in 	. (We identify K-types with their highest weights.)If G = Sp(p; q), then � is of the form� = ( m1z }| {a1; : : : ; a1; : : : ; mkz }| {ak; : : : ; ak; n1z }| {a1; : : : ; a1; : : : ; nkz }| {ak; : : : ; ak)(2.3)where ai 2Z, a1 > � � � > ak > 0 and jmj � nj j � 1.If G = O�(2n), then



THE EXPLICIT DUALITY CORRESPONDENCE OF �Sp(p; q);O�(2n)� 7� = ( m1z }| {a1; : : : ; a1; : : : ; mkz }| {ak; : : : ; ak; nkz }| {�ak; : : : ;�ak; : : : ; n1z }| {�a1; : : : ;�a1)(2.4)with the ai as in (2.3); or with one zero between the last ak and the �rst �ak.Using the parametrization of [27℄, ea
h irredu
ible admissible representation ofG may be given by a �-stable Cartan subgroup H = TA and a �nal limit 
hara
ter
 = (	;�; �
) as follows.For this se
tion only, let n = p+ q. Up to 
onjugation by K, the �-stable Cartansubgroups of G are given by Hr = TrAr with 0 � r � minfp; qg if G = Sp(p; q),and 0 � r � [n2 ℄ if G = O�(2n), with Tr �= U (1)n�r and Ar �= Rr. Noti
e thatT = T0 �= U (1)n. The 
entralizer MrAr of Ar is a Levi subgroup of G with relativedis
rete series. We have MrAr = Gr �GL(1;H)r(2.5) Hr = U (1)n�2r � (C� )r(2.6) (hr)0 = u(1)n�2r � u(1)r �Rr:(2.7)Here Gr = Sp(p � r; q� r) if G = Sp(p; q), and O�(2(n� 2r)) if G = O�(2n). Thelimit 
hara
ter 
 
orresponds to indu
ing data as follows. Let � = � (�;	) be alimit of dis
rete series representation of Gr, � = 
rj=1S�j�1(C 2 ) a representationof SU (2)r , and �� = Qrj=1 ��j the 
hara
ter of Rr given by ��i(r) = e�ir, � =(�1; : : : ; �r) 2 C r . Let �
ju(1)n�2r = �;�
ju(1)r = (�1; : : : ; �r);�
jRr = �:(2.8)



8 JIAN-SHU LI, ANNEGRET PAUL, ENG-CHYE TAN, AND CHEN-BO ZHUThe non-parity 
ondition F-2 of [27℄ amounts to the requirement that �i is odd if�i = 0. � is the 
hara
ter ofHr determined by the 
ondition d� = �
+�(	)�2�
(	)(noti
e that Hr is 
onne
ted). Choose Pr = MrArNr so that Ref< �; �
 >g �0 8� 2 �(n; a). ThenX(
) = IndGPr (�
�
��) has a unique irredu
ible submodule.Here, as everywhere in this paper, we use normalized indu
tion.De�nition 2.9. We write �(r; �;	; �; �) to denote the (in�nitesimal equivalen
e
lass) of the unique irredu
ible submodule of X(
) as above.This parametrizes the irredu
ible admissible representations of G up to 
onju-gation by K. It is easy to 
he
k that �(r; �;	; �; �)' �(r0; �0;	0; �0; �0), r = r0,� = �0, 	 = 	0, and (�0; �0) may be obtained from (�; �) by simultaneous permu-tation of the 
oordinates, and by repla
ing some of the �i by ��i.Re
all that �(r; �;	; �; �) may also be obtained as a submodule of a standardmodule X(
d) whi
h is indu
ed from a dis
rete series representation. This moduleis then the sum of all modules X(
0) for 
0 a �nal limit 
hara
ter asso
iated to a�xed Cartan subgroup Hr0 and a �xed parameter �
0. We obtain one su
h modulefor ea
h root system 	0 whi
h 
an be asso
iated to the parameter � (as in (2.3) and(2.4)), subje
t to 
ondition F-1 and with �+
 � 	. We obtain X(
d) from X(
) by
hanging the indu
ing data as follows. Let rd = r +Pki=1minfmi; nig. Then �d isobtained from � by removing, for ea
h i � k, minfmi; nig ai's on ea
h side of thesemi
olon ifG = Sp(p; q), and minfmi; nig ai's and�ai's ea
h ifG = O�(2n). Sin
e�d is non-singular, 	d is then uniquely determined. To obtain �d, we 
on
atenate� and (a1; : : : ; a1| {z }minfm1 ;n1g; : : : ; ak; : : : ; ak| {z }minfmk;nkg);



THE EXPLICIT DUALITY CORRESPONDENCE OF �Sp(p; q);O�(2n)� 9and �d = (�1; : : : ; �r; 0; : : : ; 0). Noti
e that 
d does not satisfy the non-parity 
on-dition F-2.2.3. Lowest K-types. We 
ompute the lowest K-types of the representations ofthe previous subse
tion, using the standard theory of [13℄ and [26℄. If 
 is a limit
hara
ter, write �
 = (�0; �) with �0 2 t�. If �
 is as in (2.8), write �0 as the �+
 -dominantW (T : G) 
onjugate of( m1z }| {a1; : : : ; a1; : : : ; mkz }| {ak; : : : ; ak; �12 ; : : : ; �r2 ; n1z }| {a1; : : : ; a1; : : : ; nkz }| {ak; : : : ; ak; �12 ; : : : ; �r2 )(2.10)if G = Sp(p; q), and(2.11) ( m1z }| {a1; : : : ; a1; : : : ; mkz }| {ak; : : : ; ak; �12 ; : : : ; �r2 ;� �r2 ; : : : ;��12 ; nkz }| {�ak; : : : ;�ak; : : : ; n1z }| {�a1; : : : ;�a1);or with one zero between �r2 and ��r2 , if G = O�(2n).Let q = q(�0) = l� u be the �-stable paraboli
 subalgebra of g de�ned by �0 (see[26℄ Def. 5.2.1). Then the normalizer L of q in G is of the formL = U (p1; q1)� U (p2; q2)� � � � � U (ps; qs)(2.12)with jpi � qij � 1. The lowest K-types of X(
) and X(
d) are then of the form� = �0+�(u\p)��(u\ k)+ ÆL for some �ne weights ÆL of K\L. Here �(u\p) and�(u\k) are one half the sums of the roots asso
iated to u\p and u\k respe
tively, andÆL is the di�erential of deta
det�a on ea
h fa
tor U (pi)�U (qi), with a 2 f0;�12g,and a = 0 if pi 6= qi (see [26℄, [20℄).A more expli
it 
al
ulation: Relabel the 
oeÆ
ients of �0 so that it is in the formof (2.3) or (2.4). Noti
e that the aj are now integers or half integers. If aj is a halfinteger then aj = �i2 for some i. In this 
ase we have mj = nj .



10 JIAN-SHU LI, ANNEGRET PAUL, ENG-CHYE TAN, AND CHEN-BO ZHUSet Rj = m1 + � � �+mj ; Sj = n1 + � � �+ nj:(2.13)� G = Sp(p; q):We have Rk = p; Sk = q, and�0 + �(u \ p)� �(u \ k)= ( m1z }| {b1; : : : ; b1; : : : ; mkz }| {bk; : : : ; bk; n1z }| {
1; : : : ; 
1; : : : ; nkz }| {
k; : : : ; 
k);(2.14)where bj = aj + Rj � Sj � 12 (mj � nj + 1) + q � p
j = aj � Rj + Sj � 12 (nj �mj + 1) + p � q(2.15)� G = O�(2n):We have Rk + Sk = n or n� 1. Then�0 + �(u \ p)� �(u \ k)= ( m1z }| {b1; : : : ; b1; : : : ; mkz }| {bk; : : : ; bk; nkz }| {�
k; : : : ;�
k; : : : ; n1z }| {�
1; : : : ;�
1);(2.16)if Rk+Sk = n, or with Rk�Sk in the middle between bk and �
k if Rk+Sk = n�1.Here bj = aj + Rj � Sj � 12 (mj � nj + 1)
j = aj �Rj + Sj � 12 (nj �mj + 1)(2.17)Then in both 
ases, the lowest K-types are obtained by 
hanging (bj ; 
j) to (bj +x2 ; 
j � x2 ) where x = 0 or �1, 
hosen so that the result is an integral weight.



THE EXPLICIT DUALITY CORRESPONDENCE OF �Sp(p; q);O�(2n)� 113. The 
orresponden
e and K-types3.1. The spa
e of joint harmoni
s. The following dis
ussion is in [10℄. Let(G;G0) be a redu
tive dual pair in Sp = Sp(2n;R), and let F be the Fo
k spa
eof the os
illator representation of the double 
over fSp. For any subgroup H of Sp,we denote eH the inverse image of H in fSp by the 
overing map. Re
all that theeU (n)-�nite ve
tors may be realized as the spa
e of polynomials in n variables, insu
h a way that the a
tion of eU (n), and therefore, that of eK and eK0 preserves thedegree. This allows us to asso
iate to ea
h eK- and eK0-type o

urring in F a degree,whi
h is the minimal degree of polynomials in the isotypi
 subspa
e.There is a eK � eK0-invariant subspa
e H of F , the spa
e of joint harmoni
s, withthe following properties.Theorem 3.1 (Howe). There is a one-one 
orresponden
e of eK- and eK0-types onH with the following properties. Suppose � and �0 are irredu
ible admissible repre-sentations of eG and eG0 respe
tively, and � $ �0 in the 
orresponden
e for the dualpair (G;G0). Let � be a eK-type o

urring in �, and suppose that � is of minimaldegree among the eK-types of �. Then � o

urs in H. Let �0 be the eK0-type whi
h
orresponds to � in H. Then �0 is a eK0-type of minimal degree in �0.For the dual pairs �Sp(p; q); O�(2n)�, the two-fold 
overs are the trivial (dis
on-ne
ted) ones, so that we 
an state all the results in terms of the groups themselves,rather than the 
overing groups.An expli
it des
ription of the 
orresponden
e of K-types in the spa
e of jointharmoni
s for the dual pairs �Sp(p; q); O�(2n)� 
an be obtained using the knownduality 
orresponden
e for the 
ase where the �rst member of the dual pair is
ompa
t (see [4℄), and the analysis in x3 of [10℄. The degrees of the K-types in H



12 JIAN-SHU LI, ANNEGRET PAUL, ENG-CHYE TAN, AND CHEN-BO ZHUmay be obtained by 
onsidering the see-saw dual pairsU (2p; 2q) O�(2n)�Sp(p; q) U (n)(3.2)and the known degrees for K-types in the spa
e of joint harmoni
s for the dualpairs (U (p; q); U (r; s)) (see e.g., [20℄).Fix n; p; q and let F(n; p; q) be the Fo
k model for the dual pair (Sp(p; q); O�(2n)).Let � be an irredu
ible representation of Sp(p) � Sp(q) � Sp(p; q) and �0 an irre-du
ible representation of U (n) � O�(2n). Write8>><>>: � = (a1; : : : ; ar; 0 : : :0; b1; : : : ; bs; 0 : : :0) (r � p; s � q)�0 = (a01; : : : ; a0r0 ; 0 : : :0;�b0s0; : : : ;�b01) + (p� q; : : : ; p� q) (r0 + s0 � n)(3.3)where a1 � � � � � ar > 0; b1 � � � � � bs > 0, and similarly for the a0i and b0j.Lemma 3.4. (a) In the above notations we have � o

urs in F(n; p; q) if and onlyif r; s � n, and �0 o

urs in F(n; p; q) if and only if r0 � 2p; s0 � 2q. If the
onditions are satis�ed thendegree(�) = a1 + � � �+ ar + b1 + � � �+ bsdegree(�0) = a01 + � � �+ a0r0 + b01 + � � �+ b0s0(3.5)(b) � o

urs in the spa
e of joint harmoni
s if and only if r+ s � n, and �0 o

ursin the spa
e of joint harmoni
s if and only if r0 � p; s0 � q. Then we have � $ �0if and only if r = r0; s = s0; ai = a0i; bj = b0j for all i; j.



THE EXPLICIT DUALITY CORRESPONDENCE OF �Sp(p; q);O�(2n)� 13De�nition 3.6. Let � = �(�;	) be a limit of dis
rete series representation ofO�(2n). Write � as in (2.4). Let p = p(�) = m1 + � � � + mk and q = q(�) =n1 + � � �+ nk. Noti
e that p+ q = n or n � 1.We de�ne �� = �(��;�	) to be the limit or dis
rete series representation ofSp(p; q) given by�� = ( m1z }| {a1; : : : ; a1; : : : ; mkz }| {ak; : : : ; ak; n1z }| {a1; : : : ; a1; : : : ; nkz }| {ak; : : : ; ak)(3.7)and �	 the unique system of positive roots 
ontaining �+
 , with respe
t to whi
h�� is dominant, satisfying 
ondition F-1, and su
h that for 1 � i � p, 1 � j � q,ei � fj 2 �	, ei + en�j+1 2 	:(3.8)Lemma 3.9. Let � = �(�;	) be a limit of dis
rete series representation of O�(2n),p = p(�), and q = q(�). Then the lowest K-types of � and �� o

ur and 
orrespondin the spa
e of joint harmoni
s for the dual pair (Sp(p; q); O�(2n)).Proof. For 1 � i � p, let �i = #fj � qjei � fj 2 �	g, and for 1 � i � q,let 
i = #fj � pjfi � ej 2 �	g. Rewrite �� = (b1; : : : ; bp; 
1; : : : ; 
q) and � =(b1; : : : ; bp;�
q; : : : ;�
1), or with a zero between bp and �
q. Let � and �0 be theLKT's of � and �� respe
tively. Then using the formula given in x2.2, we get�0 = (b01; : : : ; b0p; 
01; : : : ; 
0q) with(3.10) b0i = bi + �i � p + i � 1;(3.11) 
0i = 
i + 
i � q + i � 1; and(3.12) � = (b01; : : : ; b0p;�
0q; : : : ;�
01) + (p� q; : : : ; p� q);(3.13)or with a zero between b0p and �
0q. Sin
e bp � 1 and 
q � 1, we have that b0p; 
0q � 0,and the result follows from Lemma 3.4.



14 JIAN-SHU LI, ANNEGRET PAUL, ENG-CHYE TAN, AND CHEN-BO ZHUTheorem 3.14. Let � = �(r; �;	; �; �) be an irredu
ible admissible representa-tion of O�(2n), and let X(
d) be the 
orresponding standard module indu
ed fromdis
rete series. Let p = p(�) + r and q = q(�) + r, so that p+ q = n or n� 1.(a) The lowest K-types of X(
d) are of minimal degree and o

ur in the spa
eH of joint harmoni
s for the dual pair (Sp(p; q); O�(2n)).(b) Let �0 = �(r;��;�	; �; �), a representation of Sp(p; q), and let X(
0d) bethe 
orresponding standard module indu
ed from dis
rete series. Then the lowestK-types of X(
0d) o

ur in H and 
orrespond to the lowest K-types of X(
d).Proof. If �
djt = ( m1z }| {a1; : : : ; a1; : : : ; mkz }| {ak; : : : ; ak; nkz }| {�ak; : : : ;�ak; : : : ; n1z }| {�a1; : : : ;�a1);(3.15)or with one zero in the middle, (this is the parameter �0 of (2.11)), then�
0djt = ( m1z }| {a1; : : : ; a1; : : : ; mkz }| {ak; : : : ; ak; n1z }| {a1; : : : ; a1; : : : ; nkz }| {ak; : : : ; ak):(3.16)Using formulas (2.14) through (2.17), the LKT's of X(
d) are those of the form(3.17) (p � q; : : : ; p� q)+ ( m1z }| {b1; : : : ; b1; : : : ; mkz }| {bk; : : : ; bk; nkz }| {�
k; : : : ;�
k; : : : ; n1z }| {�
1; : : : ;�
1);or with one zero in the middle, and wherebj = aj +Rj � Sj � 12(mj � nj + 1)� p+ q + �j
j = aj � Rj + Sj � 12 (nj �mj + 1) + p� q � �j:(3.18)The Rj and Sj are as in (2.13), so that Rk = p and Sk = q, and for ea
h j,�j 2 f0;�12g, and is 
hosen so that bj and 
j are integers. All su
h 
hoi
es for the�j yield all the LKT's for X(
d).



THE EXPLICIT DUALITY CORRESPONDENCE OF �Sp(p; q);O�(2n)� 15Similarly, the LKT's of X(
0d) are those of the form( m1z }| {b1; : : : ; b1; : : : ; mkz }| {bk; : : : ; bk; n1z }| {
1; : : : ; 
1; : : : ; nkz }| {
k; : : : ; 
k);(3.19)with the bj and 
j as in (3.18), and the �j subje
t to the same 
onditions as forO�(2n). Sin
e bk; 
k � 0, these K-types o

ur and 
orrespond in H by Lemma 3.4,proving (b) and the se
ond part of (a).To estimate the degree of K-types in X(
d), �rst noti
e that the LKT's all havethe same degree, namely kXi=1mibi + kXi=1 ni
i(3.20)whi
h is independent of the �i 
hosen. Let � be a K-type o

urring in X(
d). Bythe standard theory of [26℄ and [13℄ (see e.g., [20℄ Lemma 5.1.1 for details), � is ofthe form � = � +X� n��;(3.21)where � is a LKT of X(
d), the sum runs over roots in �(l : t) [�(u \ p), andn� � 0 for all �. Here l and u are as in Se
tion 2.3. If �
djt is as in (3.15) then theroots in �(l : t) [�(u \ p) are of the form�(ei � ej) 1 � i < j � p;(3.22) �(en�j+1 � en�i+1) 1 � i < j � q;(3.23) �(ei + en�j+1) 1 � i � p; 1 � j � q;(3.24) (ei + ej) 1 � i < j � p;(3.25) �(en�j+1 + en�i+1) 1 � i < j � q:(3.26)



16 JIAN-SHU LI, ANNEGRET PAUL, ENG-CHYE TAN, AND CHEN-BO ZHURewrite � = (p� q; : : : ; p� q) + (�1; : : : ; �p; �1; : : : ; �q)(3.27)or with one zero between �p and �1. Re
all that �p � 0 � �1. Then� = � + (x1; : : : ; xp; y1; : : : ; yq)(3.28)or with one more 
oordinate z between xp and y1. Thendegree(� ) = pXi=1 j�i + xij+ qXi=1 j�i + yij (+jzj)� pXi=1(�i + xi)� qXi=1(�i + yi)= pXi=1 �i � qXi=1 �i + pXi=1 xi � qXi=1 yi= degree(�) + pXi=1 xi � qXi=1 yi:(3.29)But Ppi=1 xi �Pqi=1 yi � 0 sin
e ea
h of the roots 
ontributing to the sum (3.21)is of the form (3.22-3.26). This �nishes the proof of the theorem .3.2. General fa
ts about the 
orresponden
e. We now state some (mostlystandard) results about how the 
orresponden
es for di�erent dual pairs of theform (Sp(p; q); O�(2n)) are related.Re
all �rst how the groups Sp(p; q) and O�(2n) are embedded in Sp(4n(p+q);R)(see [7℄, [24℄). Let V be a (p + q)-dimensional (right) ve
tor spa
e over H, withhermitian form (; ) of signature (p; q), H-linear in the se
ond variable, and let V 0 bean n-dimensional (left) ve
tor spa
e over H, with skew-hermitian form (; )0 whi
his H-linear in the �rst variable. Now de�ne a symple
ti
 spa
e (W;<;>) as follows:W = V 
H V 0 as a ve
tor spa
e over R, and <;>= trH=R�(; )
 (; )0�. Thenthe isometry groups of (; ), (; )0, and <;> are isomorphi
 to Sp(p; q), O�(2n), and
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tively, and this de�nes an embedding of the �rst two groupsas a redu
tive dual pair in the symple
ti
 group.Notation 3.30. Let � and �0 be irredu
ible admissible representations of Sp(p; q)and O�(2n) respe
tively. If � $ �0 in the 
orresponden
e for the dual pair�Sp(p; q); O�(2n)� we write �n(�) = �0 and �p;q(�0) = �. If � does not o

urin the 
orresponden
e, we write �n(�) = 0, and similarly for �0. If there is no 
on-fusion possible about the dual pair under 
onsideration, we will omit the subs
riptand write �(�) = �0, et
.If � is an irredu
ible admissible representation of G, let �� denote the 
ontra-gredient representation. (Noti
e that if G = Sp(p; q), then �� = �.) The followingresult is due to Przebinda (Theorem 5.5 of [21℄).Lemma 3.31. Let � be an irredu
ible admissible representation of O�(2n). Then�p;q(�)� = �q;p(��).Let V1 and V2 be H-hermitian or H-skew-hermitian spa
es. Then V = V1�V2 willbe a spa
e of the same type. This de�nes natural embeddings Sp(p; q)�Sp(r; s) !Sp(p+ r; q+ s) and O�(2n)�O�(2m)! O�(2(n+m)), so that any representationof Sp(p+ r; q+ s) is a representation of Sp(p; q)� Sp(r; s) by restri
tion. Similarlyfor O�(2(n+m).If p; q, and n are non-negative integers, we denote the os
illator representation forthe dual pair (Sp(p; q); O�(2n)) !p;q;n (this is a representation of fSp(2n(p+ q);R)).Lemma 3.32. Let p; q; r; s; n, and m be non-negative integers. Then1. !p;q;n
!r;s;n �= !p+r;q+s;n as representations of Sp(p; q)�Sp(r; s)�O� (2n),with O�(2n) a
ting diagonally on the left-hand-side; and



18 JIAN-SHU LI, ANNEGRET PAUL, ENG-CHYE TAN, AND CHEN-BO ZHU2. !p;q;n
 !p;q;m �= !p;q;n+m as representations of Sp(p; q)�O�(2n)�O�(2m),with Sp(p; q) a
ting diagonally on the left-hand-side.Proof. If W1 and W2 are symple
ti
 spa
es with isometry groups Sp1 and Sp2 re-spe
tively, then W = W1�W2 is a symple
ti
 spa
e, and this de�nes an embeddingSp1 � Sp2 ! Sp = Sp(W ):(3.33)By Corollary 5.6 of [23℄, this embedding lifts to a map � : fSp1 � fSp2 ! fSp of themetaple
ti
 
overs so that for the 
orresponding os
illator representations, we have!1 
 !2 �= ! Æ �(3.34)as representations of fSp1 � fSp2.Let V1; V2 be hermitian spa
es over H, and let V 0 be a skew-hermitian spa
e.Let G(Vi) and G(V 0) be the 
orresponding isometry groups. WriteW = (V1 � V2)
 V 0 �= (V1 
 V 0)� (V2 
 V 0) = W1 �W2(3.35)(as ve
tor spa
es over R). Then we get 
orresponding embeddingsG(V1)� G(V2) �G(V 0)! fSp andG(V1) �G(V 0)� G(V2) �G(V 0)! fSp1 � fSp2:(3.36)The a
tion of G(V 0) on (V1 � V2) 
 V 0 
orresponds under the isomorphism (3.35)to the diagonal a
tion on (V1 
 V 0) � (V2 
 V 0). Restri
ting !1 
 !2 and ! in(3.34) to these subgroups now yields the �rst part of the lemma. The se
ond partis similar.



THE EXPLICIT DUALITY CORRESPONDENCE OF �Sp(p; q);O�(2n)� 19The next result rules out that a representation of O�(2n) lifts to more than onegroup of the form Sp(p; q) with p+ q � n, so that our result in Theorem 5.1 indeedgives us all su
h o

urren
es.Proposition 3.37. Let � 2 \O�(2n). Suppose �p;q(�) 6= 0 and �r;s(�) 6= 0. Theneither(a) p� r = q � s, i.e., Sp(p; q) and Sp(r; s) are in the same Witt Tower; or(b) p� r 6= q� s, p+ s � n and q+ r � n, and in parti
ular, p+ q+ r+ s > 2n.Proof. Assume �p;q(�) 6= 0 and �r;s(�) 6= 0. By Lemma 3.31, �s;r(��) 6= 0 aswell. So � and �� are quotients of !p;q;n and !s;r;n respe
tively. By Lemma 3.32(1), � 
 ��, and therefore the trivial representation 11 of O�(2n) is a quotient of!p+s;q+r;n, i.e., �p+s;q+r (11) 6= 0. So the trivial K-type must o

ur in the spa
eof joint harmoni
s for the dual pair �Sp(p + s; q + r); O�(2n)�. The 
onditions onp; q; r; s given in the proposition now follow from Lemma 3.4.4. The indu
tion prin
ipleWe formulate the indu
tion prin
iple, whi
h is due to Kudla [15℄ (see also [19℄,[1℄, [2℄, [20℄), for the dual pairs �Sp(p; q); O�(2n)�.Let D = H with the standard involution�.Let V (resp. V 0) be a right (resp., left) ve
tor spa
e over D equipped with ahermitian form (; ) (resp. a skew-hermitian form (; )0). Denote by G(V ) (resp.G(V 0)) the isometry group. Then W = V 
D V 0 is a real symple
ti
 spa
e withthe symple
ti
 form tr((; )
 (; )0), where tr is the redu
ed tra
e map from D to R.Furthermore (G(V ); G(V 0)) is a redu
tive dual pair in Sp(W ).



20 JIAN-SHU LI, ANNEGRET PAUL, ENG-CHYE TAN, AND CHEN-BO ZHUSuppose that V = V+ � V0 � V�;(4.1) V 0 = V 0+ � V 00 � V 0�;(4.2)where V+, V� (resp. V 0+, V 0�) are totally isotropi
 subspa
es and are dual to ea
hother with respe
t to (; ) (resp. (; )0).Let W0 = V0 
 V 00 , and let W0 = X0 � Y0 be a 
omplete polarization. Then Wadmits the following 
omplete polarization:W = X � Y;(4.3)where X = (V 
 V 0+)� (V+ 
 V 00)�X0;(4.4) Y = (V 
 V 0�) � (V� 
 V 00) � Y0:(4.5)Let PV = P (V+) (resp. PV 0 = P (V 0+)) be the stabilizer of V+ in G(V ) (resp. V 0+in G(V 0)). We have the Levi de
ompositionPV = MVNV ; PV 0 = MV 0NV 0 ;(4.6)where MV �= GL(V+)� G(V0); MV 0 �= GL(V 0+)� G(V 00):(4.7)De�ne the real symple
ti
 spa
eWM = (V� 
 V 0+) � (V+ 
 V 0�)�W0:(4.8)



THE EXPLICIT DUALITY CORRESPONDENCE OF �Sp(p; q);O�(2n)� 21Then (MV ;MV 0 ) is a dual pair in Sp(WM ). Note that WM has the following
omplete polarization WM = XM � YM ;(4.9)where XM = (V� 
 V 0+)�X0;(4.10) YM = (V+ 
 V 0�) � Y0:(4.11)The os
illator representation ! asso
iated to the dual pair (G(V ); G(V 0)) �Sp(W ) may be realized on the S
hwartz spa
e S(Y ), and the os
illator representa-tion !M asso
iated to the dual pair (MV ;MV 0) � Sp(WM ) may be realized on theS
hwartz spa
e S(YM ) (see [23℄).Let �: S(Y ) �! S(YM ) be the obvious restri
tion map.Denote d = dimRD = 4, and d0 = dimRft 2 Dj�t = �tg = 3.We set m0 = dimD V0; n0 = dimD V 00 ; k = dimD V+; l = dimD V 0+:(4.12)For A 2 Mk�k(D), let det(A) be the usual determinant of A realized as anelement of u�(2k) �M2k�2k(C ). (If k=1 then this is the redu
ed norm as in x2.2.)Let � be the following 
hara
ter of GL(V+)�GL(W+):�(h; h0) = det(h)(n0+l)ddet(h0)(m0+k)d; (h; h0) 2 GL(V+) �GL(V 0+):(4.13)By 
omparing the a
tions of the groups involved in the mixed models of ! and!M (
.f. [20℄ for the 
ase D = C ), we have



22 JIAN-SHU LI, ANNEGRET PAUL, ENG-CHYE TAN, AND CHEN-BO ZHUProposition 4.14. The restri
tion map � is a surje
tive PV �PV 0 equivariant map! �! !M 
 �:(4.15)Let nV (resp. nV 0 ) be the Lie algebra of NV (resp. NV 0), and let �(nV ) (resp.�(nV 0) be half the sum of the roots of nV (resp. nV 0 ) with respe
t to a Cartansubgroup of MV (resp. MV 0). Then �(nV ) (resp. �(nV 0)) exponentiates to a
hara
ter �V of PV (resp. �V 0 of PV 0 ). Noti
e that N = NV and N 0 = NV 0 admitexa
t sequen
es 1 �! ZN �! N �! Hom(V0; V+) �! 1;(4.16) 1 �! ZN 0 �! N 0 �! Hom(V 00 ; V 0+) �! 1;(4.17)where ZN and ZN 0 are the 
enters of N and N 0 respe
tively. Furthermore, ZN �=B(V�)skew, the spa
e of skew-hermitian forms on V�, and ZN 0 �= B(V 0�)herm, thespa
e of hermitian forms on V 0�. We therefore see that the 
hara
ters �V and �V 0are given by �V (h; g0; nV ) = det(h) 14 (m0d+(k�1)d+2d0)(4.18)for h 2 GL(V+); g0 2 G(V0); nV 2 NV and�V 0(h0; g00; nV 0) = det(h0) 14 (n0d+(l+1)d�2d0 )(4.19)for h0 2 GL(V 0+); g00 2 G(V 00); nV 0 2 NV 0 . They are the modulus fun
tions of PVand PV 0 .We now state the Indu
tion Prin
iple whi
h follows from Proposition 4.14 usingFrobenius Re
ipro
ity.



THE EXPLICIT DUALITY CORRESPONDENCE OF �Sp(p; q);O�(2n)� 23Theorem 4.20. Let � 2 \G(V0), �0 2 \G(V 00), � 2 \GL(V+), and �0 2 \GL(V 0+).Suppose that � $ �0, and � $ �0 in the 
orresponden
e of dual pairs (G(V0); G(V 00))and (GL(V+); GL(V 0+)). Let �V and �V 0 be the 
hara
ters of GL(V+) and GL(V 0+)given by: �V (h) = det(h) 14 ((n0+l�m0�k+1)d�2d0); h 2 GL(V+);(4.21) �V 0(h0) = det(h0) 14 ((m0+k�n0�l�1)d+2d0); h0 2 GL(V 0+):(4.22)Then there is a nonzero G(V )� G(V 0)-map	 : ! �! IndG(V )PV (� 
 � 
 �V )
 IndG(V 0)PV 0 (�0 
 �0 
 �V 0):(4.23)The following theorem is the extended indu
tion prin
iple whi
h is due to Adamsand Barbas
h [1℄.Theorem 4.24. Let 	 be as in Theorem 4.20, G = G(V ), G0 = G(V 0), M =MV ,and M 0 = M 0V , and let K and K 0 be maximal 
ompa
t subgroups of G and G0respe
tively. Suppose � is a K-type and � is a (K\M )-type su
h that the following
onditions are satis�ed:(1) � o

urs and is of minimal degree in � 
 �.(2) � o

urs and is of minimal degree and of multipli
ity one in IndGPV (�
�
�V ).(3) � and � have the same degree, and the restri
tion of � to K \M 
ontains �.(4) There exist 
hara
ters � and �0 of M and M 0 whi
h are trivial on K \Mand K0 \M 0, su
h that (� 
 � 
 �) 
 (�0 
 �0 
 �0) is a quotient of !M , andIndGPV (� 
 � 
 �
 �V ) is irredu
ible.Let �0 be the K0-type whi
h 
orresponds to � in the spa
e of joint harmoni
s.Then �
 �0 is in the image of 	.The statement of the theorem is also true with the roles of V and V 0 reversed.



24 JIAN-SHU LI, ANNEGRET PAUL, ENG-CHYE TAN, AND CHEN-BO ZHUWe are going to apply these theorems to the following situation: G(V ) =Sp(p; q), G(V 0) = O�(2n),M = Sp(p�1; q�1)�GL(1;H ), andM 0 = O�(2(n�2))�GL(1;H). The 
hara
ters �V and �V 0 then be
ome �V (h) = det(h)n�p�q�12 , and�V 0(h) = det(h)p+q�n+ 12 , so that �V 0 = ��V . Noti
e that in our parametrization ofx2.2, �V = �(1; 2(n� p� q)� 1) and �V 0 = �(1; 2(p+ q � n) + 1).We will need to know something about the 
orresponden
e for the dual pairs(GL(n;H); GL(m;H )). We �rst des
ribe the spa
e of joint harmoni
s.Proposition 4.25. Let n � m. The 
orresponden
e of Sp(n)- and Sp(m)-typesin the spa
e H of joint harmoni
s for the dual pair (GL(n;H); GL(m;H )) is givenas follows. If � = (a1; : : : ; an) is an Sp(n)-type, then � o

urs in H, and � $ �0,where �0 = (a1; : : : ; an; 0; : : : ; 0). The degree of � and �0 is Pni=1 ai.Proof. Consider the diamond dual pairs (see [10℄)O�(4n) Sp(m)= n = nGL(n;H) U (2n) GL(m;H) U (2m)n = n =Sp(n) O�(4m)(4.26)Re
all that any two groups positioned at 
orresponding 
orners of the two diamondsare a dual pair in Sp(8nm;R). Using the known 
orresponden
e of K-types for thethree dual pairs (O�(4n); Sp(m)), (U (2n); U (2m)), and (Sp(n); O�(4m)) and thetheory of [10℄ x3, the 
orresponden
e for (GL(n;H); GL(m;H )) may now easily beobtained.
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ible representation of GL(1;H)(see x2.2). Then � o

urs in the 
orresponden
e for the dual pair(GL(1;H); GL(1;H )), and �(�) = ��, i.e., �(�) is �(�;��). The 
orrespondingSU (2)-type has degree �� 1.Proof. O

urren
e follows from the results of [1℄ by 
onsidering the see-saw dualpairs GL(2; C ) GL(1;H)�GL(1;H) GL(1; C ):(4.28)Let k = (�; 0), z = (�; 0), and let L(k; z) be the representation of GL(2; C ) deter-mined by k and z as in x1 of [1℄. Re
all that L(k; z) is the unique irredu
ible quotientof an indu
ed representation IndGL(2;C)P (�k;z), where P = MN is a paraboli
 sub-group of GL(2; C ) with Levi fa
tor GL(1; C )�GL(1; C ) and �k;z is the 
hara
ter ofGL(1; C ) �GL(1; C ) �= (C� )2 given by �k;z(r1ei�1 ; r2ei�2) = r�1ei��1 . Then L(k; z)o

urs in the 
orresponden
e with GL(1; C ) (it lifts to L(��;��) 2 \GL(1; C )).Sin
e the restri
tion of L(k; z) to GL(1;H) 
ontains � as a 
onstituent, � o

urs inthe 
orresponden
e for the dual pair (GL(1;H); GL(1;H )). The theta lift 
an bedetermined by looking at the way the members of the dual pair are embedded inSp(8;R) (see [6℄): Write W = X � Y a 
omplete polarization of the 8-dimensionalsymple
ti
 spa
e W . Think of X and Y as two-dimensional 
omplex ve
tor spa
es,and identify GL(1;H) with U�(2) � GL(2; C ). If (g; h) 2 GL(1;H) � GL(1;H)and (x; y) 2 W , then (g; h) � (x; y) = (gxh�1; hxg�1). Consequently, the two fa
-tors will a
t by 
ontragredients. The degree of the SU (2)-type with highest weight



26 JIAN-SHU LI, ANNEGRET PAUL, ENG-CHYE TAN, AND CHEN-BO ZHU(��12 ;���12 ) (this is the Sp(1)-type with highest weight (��1)) is given by Propo-sition 4.25. 5. The main theorem5.1. The 
ases p+q=n or n-1. We are now ready to state and prove our maintheorem.Theorem 5.1. Let �0 = �(r; �;	; �; �) be an irredu
ible admissible representationof G0 = O�(2n). Let p = p(�) + r, and q = q(�) + r, and let � = �(r;��;�	; �; �),a representation of G = Sp(p; q) (see De�nition 3.6). Then1. �p;q(�0) = �.2. The lowest K 0-types of �0 are of minimal degree in �0 and 
orrespond in H tothe lowest K-types of �.3. If p0 and q0 are integers so that p0 + q0 = n or n� 1 and (p0; q0) 6= (p; q) then�p0;q0 (�0) = 0; i.e., part 1 
ompletely des
ribes the duality 
orresponden
e forthe dual pairs (Sp(p; q); O�(2n)) with p+ q = n or n � 1.Remark 5.2. The algorithm of De�nition 3.6 is easy to reverse, and it follows thatif p+q = n then every irredu
ible admissible representation of Sp(p; q) has nonzerotheta lifts to both O�(2n) and O�(2n+ 2). Theorem 1.3 follows.Proof. To prove part 1, we use indu
tion on n, the rank of O�(2n). The base 
aseis when �0 is a dis
rete series. Part 1 in this 
ase follows from Theorem 6.2 of [17℄,and part 2 from Lemma 3.9 and Theorem 3.14.So now assume that �0 is not a dis
rete series representation. Then there area representation �00 of O�(2(n � 2)) and a representation � of GL(1;H) su
h that�0 is a lowest K0-type 
onstituent of I0 = IndG0P 0 (�00 
 �), where P 0 = M 0N 0 is
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 subgroup of G0 with Levi fa
tor M 0 �= O�(2(n � 2)) � GL(1;H). We
an 
hoose � (if ne
essary repla
e by its 
ontragredient) so that �0 is a quotient ofthe indu
ed representation. Let �0 = �p�1;q�1(�00) (by the indu
tion hypothesis).(For the 
ases n = 2 and n = 3 we formally de�ne the 
orresponden
es for thedual pairs �Sp(0; 0); O�(0)� and �Sp(0; 0); O�(2)� to be 11$ 11; here 11 is the trivialrepresentation of the appropriate group.) Then it is easy to 
ompare Langlandsparameters and see that � is a lowest K-type 
onstituent of I = IndGP (�0 
 ��),where P = MN is a paraboli
 subgroup of G with Levi fa
tor M �= Sp(p � 1; q �1) � GL(1;H). (Re
all from x2.2 that if � 0 is obtained from � by 
hanging someof the signs of the 
oeÆ
ients, then �(r; �;	; �; � 0) �= �(r; �;	; �; �)). By Theorem4.20 and Proposition 4.27, there is a nonzero G � G0 map � from the os
illatorrepresentation ! for the dual pair (G;G0) to I 
 I0. By Theorem 3.14, we knowthat every lowest K0-type �0 of �0 is of minimal degree in I 0 and 
orresponds in Hto a lowest K-type � of the standard module X(
d) indu
ed from dis
rete serieswhi
h 
ontains � as a lowest K-type 
onstituent. Moreover, �0 has multipli
ityone in I0. To prove part 1, we will use Theorem 4.24, with the roles of G and G0inter
hanged, to show that � 
 �0 is in the image of �, and then show that � is alowest K-type of �. Sin
e � then has multipli
ity one in I, � 
 �0 must then be aquotient of I 
 I 0, and hen
e of !. This will also �nish the proof of part 2.Write 
0 = (	;�0; �
0) and 
00 = (	0;�00; �
00) for the �nal limit 
hara
ters for �0and �00 respe
tively, and let t0 and t0 be 
ompa
t Cartan subalgebras of O�(2n) andO�(2(n� 2)) respe
tively with t0 � t0. If�
0jt0 = ( m1z }| {a1; : : : ; a1; : : : ; mkz }| {ak; : : : ; ak; nkz }| {�ak; : : : ;�ak; : : : ; n1z }| {�a1; : : : ;�a1);(5.3)



28 JIAN-SHU LI, ANNEGRET PAUL, ENG-CHYE TAN, AND CHEN-BO ZHUor with one zero in the middle, then � will be of the form (2aj; z) for some j andsome 
omplex number z, and(5.4) �
00jt0 = ( m1z }| {a1; : : : ; a1; : : : ; mj�1z }| {aj; : : : ; aj; : : : ; mkz }| {ak; : : : ; ak;nkz }| {�ak; : : : ;�ak; : : : ; nj�1z }| {�aj; : : : ;�aj; : : : ; n1z }| {�a1; : : : ;�a1);or with one zero in the middle. Let �0 be a lowest K0-type of �0, and let � be the(K 0 \M 0)-type with highest weight equal to the restri
tion of (the highest weightof) �0 to t0. Write (as in the proof of Theorem 3.14)(5.5) �0 = (p� q; : : : ; p� q)+ ( m1z }| {b1; : : : ; b1; : : : ; mkz }| {bk; : : : ; bk; nkz }| {�
k; : : : ;�
k; : : : ; n1z }| {�
1; : : : ;�
1);or with one zero in the middle, and with the bi and 
i as in (3.18). Then it is easyto see that � = � + �, where(5.6) � = (p� q; : : : ; p� q) + ( m1z }| {b1; : : : ; b1; : : : ; mj�1z }| {bj; : : : ; bj; : : : ; mkz }| {bk; : : : ; bk;nkz }| {�
k; : : : ;�
k; : : : ; nj�1z }| {�
j; : : : ;�
j; : : : ; n1z }| {�
1; : : : ;�
1);or with one zero in the middle, and � = (2aj�12 ;�2aj�12 ) is the highest weight ofthe SU (2)-type of �. Noti
e that � is a lowest U (n � 2)-type of �00, hen
e byTheorem 3.14 of minimal degree in �00. Also, � is 
learly of minimal degree in �sin
e � 
ontains only one SU (2)-type. So �0 and � will play the roles of � and �in Theorem 4.24. We 
an read the degrees of �0 and � o� the formulas (5.5) and
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j = 2aj � 1 = degree(�):(5.7)Consequently, �0 and � satisfy parts (1) through (3) of Theorem 4.24. For part(4), noti
e that if we 
hoose � to be a 
hara
ter of GL(1;H) of the form (det)w forsome 
omplex number w, and �0 = ��, then � and �0 will be trivial on K \M andK0\M 0, and if � and �0 are representations ofM andM 0 so that �
�0 is a quotientof !M , then (�
�)
 (�0
�0) will be a quotient of !M as well. It remains to showthat w 
an be 
hosen so that IndGP (�
 �
�) is irredu
ible. But this follows from[25℄.Now let � be the K-type whi
h 
orresponds to �0 in H. To �nish the proofof the theorem, we must show that � is a lowest K-type of �. If �0 is a limit ofdis
rete series representation, then this follows from Lemma 3.9. If not, then wemay assume that our representation � = �(2aj ; z) satis�es the following 
ondition:z 6= 0 or 2aj is odd. (This is the nonparity 
ondition of x2.2.) In this 
ase, theindu
ed representation I has only one lowest K-type 
onstituent, namely �. Sin
e(as is easily 
he
ked) � is a lowest K-type of the standard module X(
d) indu
edfrom dis
rete series whi
h has � as a 
onstituent, and the 
onstituents of I are also
onstituents of X(
d), � must be a lowest K-type of �. This 
ompletes the proofof parts 1 and 2. Part 3 follows from Proposition 3.37.5.2. Going up the Witt towers. Starting from the 
orresponden
e for the dualpairs (Sp(p; q); O�(2n)) with p+ q = n; n�1, we 
an determine the 
orresponden
efor all 
ases p+ q � n, as well as for some of the 
ases n < p+ q, by moving up oneWitt tower at a time, using the indu
tion prin
iple in a one-sided way.



30 JIAN-SHU LI, ANNEGRET PAUL, ENG-CHYE TAN, AND CHEN-BO ZHUTheorem 5.8. Let �0 = �(r; �;	; �; �) 2 \O�(2n), p, q, and � = �p;q(�0) be asin Theorem 5.1. Let s be a non-negative integer. Write � = (�1; : : : ; �r) and� = (�1; : : : ; �r). Then�n+2s(�) = �0s = �(r + s; �;	; �s; �s);(5.9)where �s = (�1; : : : :�r; 1; : : : ; 1), and�s = 8>>><>>>:(�1; : : : ; �r; 1; 5; 9; : : :; 4s� 3); if p+ q = n(�1; : : : ; �r; 3; 7; 11; : : :; 4s� 1); if p+ q = n� 1:(5.10)Proof. We use indu
tion on s. The base 
ase s = 0 is Theorem 5.1. So assume s > 0and �n+2s�2(�) = �0s�1. By Theorem 4.20, there is a nonzero Sp(p; q) � O�(2(n+2s)) map from the os
illator representation for the dual pair �Sp(p; q); O�(2(n +2s))� to � 
 IndO�(2(n+2s))P 0 (�0s�1 
 �);(5.11)where P 0 = M 0N 0 is a paraboli
 subgroup of O�(2(n+ 2s)) with Levi fa
tor M 0 �=O�(2(n+2s�2))�GL(1;H), and � is the 
hara
ter of GL(1;H) given by (1; 4s�3)if p+ q = n, and (1; 4s�1) if p+ q = n�1. Consequently, �n+2s(�) is a 
onstituentof this indu
ed representation I0. The representation �0s is the unique lowest K0-type 
onstituent of I 0. Let � be a lowest K-type of �. Then by Theorems 5.1 and3.1, � is of minimal degree in �. Therefore, if we show that � 
orresponds in H toa lowest K0-type �0 of �0s, then we have proved that �n+2s(�) = �0s (sin
e �0 hasmultipli
ity one in I0).Let 
0 = (	0;�0; �
0) and 
0s = (	0s;�0s; �
0s) be the �nal limit 
hara
ters of �0 and�0s respe
tively, and let t0 and ts be 
ompa
t Cartan subalgebras of the Lie algebras
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tively, with t0 � ts. Write�
0jt0 = ( m1z }| {a1; : : : ; a1; : : : ; mkz }| {ak; : : : ; ak; nkz }| {�ak; : : : ;�ak; : : : ; n1z }| {�a1; : : : ;�a1)(5.12)or with one zero in the middle. Then the lowest K-types of � (whi
h by Theorem5.1 
orrespond in H to the lowest K0-types of �0) are of the form� = ( m1z }| {b1; : : : ; b1; : : : ; mkz }| {bk; : : : ; bk; n1z }| {
1; : : : ; 
1; : : : ; nkz }| {
k; : : : ; 
k);(5.13)with the bj and 
j as in (3.18). Now(5.14) �
0sjts = ( m1z }| {a1; : : : ; a1; : : : ; mkz }| {ak; : : : ; ak; sz }| {12 ; : : : ; 12 ;sz }| {�12 ; : : : ;�12 ; nkz }| {�ak; : : : ;�ak; : : : ; n1z }| {�a1; : : : ;�a1)or with one zero between the 12 's and the �12 's. Let �0 be a lowest K0-type of �0s.First assume that ak 6= 12 . Then(5.15) �0 = (p � q; : : : ; p� q)+( m1z }| {�1; : : : ; �1; : : : ; mkz }| {�k; : : : ; �k; sz }| {z; : : : ; z; sz }| {�w; : : : ;�w; nkz }| {�
k; : : : ;�
k; : : : ; n1z }| {�
1; : : : ;�
1)or with an extra 
oordinate y between the z's and the �w's, where�j = aj +Rj � Sj � 12(mj � nj + 1)� p+ q + �0j
j = aj �Rj + Sj � 12(nj �mj + 1) + p� q � �0j(5.16)



32 JIAN-SHU LI, ANNEGRET PAUL, ENG-CHYE TAN, AND CHEN-BO ZHUwith the Rj and Sj as in 2.13, and �0j = 0 or �12 so that �j and 
j are integers.Also, z = 12 + (Rk + s) � (Sk + s) � 12 (s � s + 1) � p+ q + Æ(Æ = 0 or � 12 as for �0j above)= Æ sin
e Rk � Sk = p� q= 0 sin
e z must be an integer:(5.17)Similarly, w = 0 and y = 0.If ak = 12 , then mk = nk sin
e 12 
an not be a 
oeÆ
ient of a dis
rete seriesparameter, so(5.18) �0 = (p � q; : : : ; p� q)+ ( m1z }| {�1; : : : ; �1; : : : ; mk�1z }| {�k�1; : : : ; �k�1; mk+sz }| {�k; : : : ; �k;nk+sz }| {�
k; : : : ;�
k; nk�1z }| {�
k�1; : : : ;�
k�1; : : : ; n1z }| {�
1; : : : ;�
1)or with one y in the middle, where the �j and 
j are as above if 1 � j � k� 1, and�k = 12 + (Rk + s) � (Sk + s) � 12(mk + s � (nk + s)) � p+ q + Æ= 0 sin
e Rk � Sk = p� q; mk = nk; and �k 2Z:(5.19)Similarly, 
k = 0 and y = 0.In either 
ase, using Lemma 3.4, we see that �0 
orresponds in H to a K-type �0whi
h di�ers from � at most in the 
hoi
e of the �j's, so �0 is a lowest K-type of�. Be
ause of Theorem 5.1, we 
an assign to ea
h irredu
ible admissible represen-tation � of O�(2n) a well-de�ned signature and rank.



THE EXPLICIT DUALITY CORRESPONDENCE OF �Sp(p; q);O�(2n)� 33De�nition 5.20. (a) We let sgn(�) = (p; q) if �p;q(�) 6= 0 and p + q is minimalsubje
t to that 
ondition.(b) If sgn(�) = (p; q) we de�ne rank(�) = p+ q.Noti
e that rank(�) � n for all �. Theorem 5.8 now permits us to read thesignature of a representation � of O�(2n) o� the Langlands parameters, and we getthe followingCorollary 5.21. Let � = �(r; �;	; �; �) be an irredu
ible admissible representationof O�(2n), and let � equal the number of zeros in � (so � = 0 or 1). Let l bethe largest integer with 0 � l � r su
h that up to permutations of indi
es, � =(1; : : : ; 1; �l+1; : : : ; �r) and � = (1 + 2�; 5 + 2�; : : : ; 4l � 3 + 2�; �l+1; : : : ; �r). Thensgn(�) = (p; q) = (p(�) + r � l; q(�) + r � l), and �p;q(�) = �(r � l;��;�	; �0; �0),where �0 = (�l+1; : : : ; �r) and � 0 = (�l+1; : : : ; �r).Starting from the 
ase p + q = n; n � 1, we 
an use the one-sided indu
tionprin
iple again to obtain the 
orresponden
e for p + q > n in the Witt towerdetermined by sgn(�).Theorem 5.22. Let �, �0, p, q, and s be as in Theorem 5.8. Then�p+s;q+s(�0) = �s = �(r + s;��;�	; �s; �s0);(5.23)where �s is as in Theorem 5.8, and�s0 = 8>>><>>>:(�1; : : : ; �r; 3; 7; 11; : : :; 4s� 1); if p+ q = n(�1; : : : ; �r; 1; 5; 9; : : :; 4s� 3); if p+ q = n� 1:(5.24)Proof. Very similar to the proof of Theorem 5.8; we omit the details.
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ations. Finally, we 
omment on the appli
ations mentioned in the lastparagraph of the introdu
tion. By [16℄, the theta 
orresponden
e takes unitary rep-resentations of Sp(p; q) to unitary representations of O�(2n) whenever p+ q � n=2.Thus starting from well known unitary representations of Sp(p; q) (e.g. temperedrepresentations, unitary representations with non-zero 
ohomology, et
), Theorem5.8 des
ribes the Langlands parameters of the 
orresponding unitary representa-tions of O�(2n) whi
h are mu
h less familiar. Indeed, many of them are ratherexoti
.We also know [16℄ that any irredu
ible unitary representation of O�(2n) withrank r < n=2 must be a theta lift from some unitary representation of Sp(p; q) withp + q = r. Now suppose n � 12. Then all irredu
ible unitary representations ofO�(2n) with rank � 5 are theta lifts from some Sp(p; q) with p + q � 5. Sin
e theunitary dual of any Sp(p; q) with min(p; q) � 2 is known [3℄ [12℄ [18℄, Theorem 5.8gives rise to a 
lassi�
ation of all irredu
ible unitary representation of O�(2n) withrank � 5. 6. The dual pairs �GL(m;H); GL(n;H )�For the sake of 
ompleteness, we des
ribe the 
orresponden
e for the dual pairs�GL(m;H); GL(n;H )�. First we adapt the indu
tion prin
iple of Se
tion 4 tothese type II dual pairs; similar 
al
ulations may be found in [1℄. Re
all thatGL(m;H) and GL(n;H) are embedded in Sp(8mn;R) as follows (see [6℄). Let U1and U2 be right ve
tor spa
es of dimension m and n over H respe
tively, and letW = HomH(U1; U2) � HomH(U2; U1), 
onsidered as a real ve
tor spa
e. De�nea symple
ti
 form <;> on W by < (S1; T1); (S2; T2) >= tr(S1T2 � S2T1), withtr(�) the redu
ed tra
e over R on EndH(U2). Then GL(U1) � GL(U2) a
ts on W
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tion preserves <;>, and this de�nesan embedding of (GL(U1); GL(U2)) �= (GL(m;H); GL(n;H )) as a dual pair intoSp(W ) �= Sp(8mn;R).For i = 1; 2, let Ui = Vi �Wi, dire
t sums of H ve
tor spa
es, with dimHVi = kiand dimHWi = li, so that m = k1 + l1 and n = k2 + l2. Then W admits thefollowing 
omplete polarization:W = X � Y;where X = HomH(V1; U2)�HomH(U2;W1)and Y = HomH(U2; V1)�HomH(W1; U2):(6.1)The os
illator representation for the dual pair �GL(U1); GL(U2)� may be real-ized on the S
hwartz spa
e S(Y ), with the a
tion of the Siegel paraboli
 PS =StabSp(W )(X) = MSNS given by simple formulas (see [23℄). For i = 1; 2, letPi = P (Wi) be the stabilizer of Wi in GL(Ui). Then Pi = MiNi, where Mi �=GL(Vi) � GL(Wi), and Ni �= HomH(Vi;Wi). Noti
e that Pi preserves X hen
eis 
ontained in PS . De�ne the symple
ti
 spa
e WM with the following 
ompletepolarization: WM = XM � YMwhere XM = HomH(V1; V2)�HomH(W2;W1)and YM = HomH(V2; V1)�HomH(W1;W2):(6.2)Then (M1;M2) is a dual pair in Sp(WM ). The asso
iated os
illator representation!M may be realized on S(YM ). As in Se
tion 4, let � : S(Y ) �! S(YM ) be theobvious restri
tion map.
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hara
ter of Mi = GL(Vi) �GL(Wi):�1(g1; h1) = (det(g1))�l2 (det(h1))k2�2(g2; h2) = (det(g2))�l1 (det(h2))k1 for (gi; hi) 2 GL(Vi)� GL(Wi):(6.3)By 
omparing the a
tions of the groups involved in the mixed models of ! and !M ,we haveProposition 6.4. The restri
tion map � is a surje
tive P1 � P2-map! �! !M 
 �1 
 �2:(6.5)A 
al
ulation as in Se
tion 4 yields the modulus fun
tions �1 and �2 of P1 andP2 to be given by �1(g1; h1; n1) = (det(g1))�l1 (det(h1))k1�2(g2; h2; n2) = (det(g2))�l2 (det(h2))k2 ;(6.6)for gi 2 GL(Vi), hi 2 GL(Wi), and ni 2 Ni. We obtain the indu
tion prin
iple forthe dual pair �GL(U1); GL(U2)�.Theorem 6.7. For i = 1; 2, let �i 2 \GL(Vi), �i 2 \GL(Wi), and suppose that�1 $ �2 and �1 $ �2 in the 
orresponden
e for the dual pairs �GL(V1); GL(V2)�and �GL(W1); GL(W2)�. Let �1 and �2 be the 
hara
ters of GL(V1)�GL(V2) andGL(W1)� GL(W2) given by�1(g1; h1) = (det(g1))l1�l2(det(h1))k2�k1 ;�2(g2; h2) = (det(g2))l2�l1(det(h2)k1�k2 for (gi; hi) 2 GL(Vi) �GL(Wi):(6.8)Then there is a nonzero GL(U1) �GL(U2) equivariant map	 : ! �! IndGL(U1)P1 (�1 
 �1 
 �1)
 IndGL(U2)P2 (�2 
 �2 
 �2):(6.9)
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tion prin
iple (Theorem 4.24) holds in the set-ting of Theorem 6.7 as well (see [1℄).Now we des
ribe the representations of G = GL(n;H). Let K �= Sp(n) be amaximal 
ompa
t subgroup of G. Realize G asU�(2n) =8>><>>:0BB�X ��YY �X 1CCA jX;Y 2 gl(n; C )9>>=>>; \GL(2n; C ):(6.11)There is only one 
onjuga
y 
lass of theta stable Cartan subalgebras of g0 = u�(2n),whose 
entralizer is MA �= GL(1;H)n �= SU (2)n � Rn. An irredu
ible represen-tation � of MA is a tensor produ
t of n irredu
ible representations of GL(1;H),hen
e may be spe
i�ed by an n-tuple of positive integers � = (�1; : : : ; �n) and ann-tuple of 
omplex numbers � = (�1; : : : ; �n). If P = MAN is a paraboli
 subgroupof G with Levi fa
tor MA, let I(�; �) = IndGP (�). Then I(�; �) has a unique lowestK-type 
onstituent � (�; �) (independent of the 
hoi
e of P ). Two su
h representa-tions � (�; �) and � (�0; �0) are equivalent if and only if (�0; �0) is obtained from (�; �)by simultaneous permutation of the 
oordinates, and every irredu
ible admissiblerepresentation of G is of the form � (�; �) for some 
hoi
e of � and �.The in�nitesimal 
hara
ter of � (�; �) is (�1+�12 ; : : : ; �n+�n2 ; ��1+�12 ; : : : ; ��n+�n2 ),and the unique lowestK-type of � (�; �) has as its highest weight the dominantWeylgroup 
onjugate of � � 1 = (�1 � 1; �2 � 1; : : : ; �n � 1). For example, the trivialrepresentation is � (�; �) with � = (1; : : : ; 1) and � = (2n � 2; 2n� 6; : : : ;�2n+ 2)and has in�nitesimal 
hara
ter � = (2n�12 ; 2n�32 ; : : : ; �2n+12 ).Theorem 6.12. Suppose m � n, and let d = n�m. The duality 
orresponden
e forthe dual pair (G1; G2) = �GL(n;H); GL(m;H )� is given as follows. Let � = � (�; �)be an irredu
ible admissible representation of GL(m;H). Then � o

urs in the
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orresponden
e, and �(� ) = � 0 = � (�0; �0), where �0 = (�1; : : : ; �m; 1; : : : ; 1) and� 0 = (��1; : : : ;��m; 2d� 2; 2d� 6; : : : ;�2d+ 2). In parti
ular, the 
orresponden
efor the dual pairs �GL(n;H); GL(n;H )� is given by � $ ��, with all representationsof GL(n;H) o

urring. Moreover, the lowest K-types of � and � 0 are of minimaldegree and 
orrespond in the spa
e of joint harmoni
s.The proof of Theorem 6.12 pro
eeds along the same lines as that of Theorem5.1. We �rst prove two fa
ts whi
h will help us apply Theorem 6.10.Lemma 6.13. Let � be an irredu
ible admissible representation of GL(n;H), withlowest K-type � = (a1; : : : ; an). Then � is of minimal degree in � .Proof. By Frobenius Re
ipro
ity, every Sp(n)-type of � 
ontains the weight (a1; : : : ; an),hen
e its highest weight is of the form (a1; : : : ; an)+ a sum of positive roots. Sin
ethe degree of any Sp(n)-type is given by the sum of the 
oeÆ
ients of its highestweight, and the positive roots are those of the form 2ei and ei�ej , the result followseasily.Lemma 6.14. Let n = k + l, and let � = � (�; �) and �0 = � (�0; �0) be irredu
ibleadmissible representations of GL(k;H) and GL(l;H) respe
tively. Let P be a max-imal paraboli
 subgroup of GL(n;H) with Levi fa
tor M �= GL(k;H) � GL(l;H),and let I = IndGL(n;H)P (� 
 �0). Then I has a unique lowest K-type Æ. Let � and�0 be the unique lowest K-types of � and �0 respe
tively. Then the restri
tion of Æto Sp(k) � Sp(l) 
ontains � 
 �0, and the degree of Æ equals the degree of � 
 �0.Proof. Using indu
tion by stages, we know that I 
ontains (as its lowest K-type
onstituent) the representation � = � (�0; �0) of GL(n;H), where �0 is obtainedfrom � and �0 by 
on
atenation, and similarly for �0, �, and �0. Now � has a unique
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onjugate to) �0 � (1; : : : ; 1) isalso the highest weight of � 
 �0. So the restri
tion of Æ to Sp(k) � Sp(l) 
ontains� 
 �0, and the statement of the degrees follows from Proposition 4.25.Proof of Theorem 6.12. We start with the 
ase m = n, using indu
tion on m, withthe base 
ase m = 1 given by Proposition 4.27. If m � 2, we let k1 = k2 = m � 1and l1 = l2 = 1 to get P1, P2, and the map � of Proposition 6.4. Let � = � (�; �)be an irredu
ible admissible representation of GL(m;H) = G1. If P is a minimalparaboli
 subgroup of G1 (with Levi fa
tor M �= GL(1;H)m ) whi
h is 
ontained inP1, we 
an rearrange the indi
es of � and � so that Re � is dominant with respe
t toP . Then � is the unique irredu
ible quotient of IndG1P (�(�1; �1)
� � �
�(�m; �m)),and, by Frobenius re
ipro
ity, of IndG1P1 (�1 
 �(�m; �m)), where �1 = � (�0; �0) 2\GL(m � 1;H), and �0 and �0 are obtained from � and � by removing the last
oordinate. By the indu
tive hypothesis and Theorem 6.7, we have a nonzero map	 : ! �! IndG1P1 (�1 
 �(�m; �m))
 IndG2P2 (��1 
 �(�m;��m))(6.15)(taking � 
 � = �1 
 �(�m; �m) 
 ��1). The result now follows using Theorem6.10, Proposition 4.25, Lemma 6.13, and Lemma 6.14, analogously to the proof ofTheorem 5.1.For the 
ase n > m we apply Theorem 6.7 to the 
ase k1 = k2 = m, l1 = 0,l2 = d, and � = � 
 ��1 to get a nonzero map	 : ! �! � 
 IndG2P2 (�� 
 11):(6.16)
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onstituent of the indu
ed repre-sentation in 6.16. The theorem now follows from the fa
t that the lowest K-typesof � and � 0 
orrespond in the spa
e of joint harmoni
s (see Proposition 4.25).Referen
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