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ROGAWSKI'S CONJECTURE ON THE JANTZEN
FILTRATION FOR THE DEGENERATE AFFINE
HECKE ALGEBRA OF
TYPE A

TAKESHI SUZUKI

ABSTRACT. The functors constructed by Arakawa and the author
relate the representation theory of gl, and that of the degener-
ate affine Hecke algebra H; of GL,;. They transform the Verma
modules over gl,, to the standard modules over Hy. In this paper
we prove that they transform the simple modules to the simple
modules (in more general situations than in the previous paper).
We also prove that they transform the Jantzen filtration on the
Verma modules to that on the standard modules. We obtain the
following results for the representations of H, by translating the
corresponding results for gl,, through the functors: (i) the (gener-
alized) Bernstein-Gelfand-Gelfand resolution for a certain class of
simple modules, (ii) the multiplicity formula for the composition
series of the standard modules, and (iii) its refinement concerning
the Jantzen filtration on the standard modules, which was conjec-
tured by Rogawski.

INTRODUCTION

This paper is a continuation of the paper [AS], in which we gave func-
tors from O(gl,,) to R(H,). Here O(gl,,) denotes the Bernstein-Gelfand-
Gelfand (in short, BGG) category of representations of the complex Lie
algebra gl , and R(H,) denotes the category of finite-dimensional repre-
sentations of the degenerate affine Hecke algebra H, of GL, introduced
by Drinfeld [Dy].

Let us review the results in [AY]. Let t! and W, denote the space
of weights and Weyl group of gl,, respectively. For A € t&, let M(\)
denote the Verma module with highest weight A and L(\) its simple
quotient. Let V,, = C" denote the vector representation of gl,. For
each A € tf and X € O(gl,,), we define an action of H, on the finite-
dimensional vector space F\(X) = Hom g (M(N), X ® V,¥*). Under
the condition that A + p is dominant, we proved that the functor F) is
exact and Fy(M(p)) is isomorphic to M (A, i) unless it is zero. Here
M(\, 1) € R(Hy) denotes the standard module. With the restriction
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¢ = n, we proved that F\(L(u)) is isomorphic to the unique simple
quotient L(A, u) of M(A, ) unless it is zero. Any simple H,-module is
thus obtained. To prove the irreducibility of F\(L(u)), we compared the
multiplicities of the simple modules in the composition series of M (u)
and those in M(\, p) by using the Kazhdan-Lusztig type multiplicity
formulas known for O(gl,,) and R(H,). (See (b) (c) below.)

In the present paper, further properties of the functors are deduced
from the key observation that the gl -contravariant bilinear form on
a highest weight gl -module X induces the Hy-contravariant bilinear
form on F(X). The irreducibility of F)\(L(u)) is deduced from the non-
degeneracy of the bilinear form. As a consequence, we can determine
the images of simple gl,-modules (Theorem B.2.3) without assuming
¢ = n or referring to the multiplicity formulas.

We also prove that F) transforms the Jantzen filtration on M (u) to
that on F\(M(pn)) = M(\, u) (Theorem [.3.5).

The followings are the consequences of these results.

(i) We obtain a resolution for a certain class of simple H,-modules by
applying F) to the BGG resolution [BGQ] and its generalization by
Gabber-Joseph [GJI| for gl,-modules. This generalizes the results of
Cherednik [CLI] and Zelevinsky [Zed].

(ii) To simplify the descriptions, we assume A and p are dominant
integral weights. (More general cases are treated in §5.2.) Set wo u =
w(p+ p)—p for w e W, and let w,y € W, be such that A —w o p and
A\ — y o u are weights of V¢ We have a direct proof of the following
formula:

[M(wopu): Ly op)] = [MA wop): LA, yop). (a)

Let P, ,(q) denote the Kazhdan-Lusztig polynomial of W,. The
formula (a) implies the equivalence of the following two multiplicity
formulas:

(M wop) - LIy o p)]=Pu,y(1), (b)
[M(wop): Ly o] =Fuy(1). ()

The formula (b) was proved by Ginzburg [[Gi]] (see also [[CG)]) for affine
Hecke algebras, and (c) was proved by Beilinson-Bernstein [BBI]| and
Brylinski-Kashiwara by using the geometric method and the the-
ory of perverse sheaves. We remark that our proof of (a) is purely
algebraic.
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(iii) We have a refinement of the formula (a): Let A, x and w,y be as
in (ii). (See §b.3 for more general cases.) Let

M(p) = M(p)o 2 M(p)y 2 M(p) 2+,
M, 1) = M 1) 2 MA, i)y 2 M(A 1) 2 -

be the Jantzen filtrations on M (u) and M(A, ), respectively. Since
F\ preserves the Jantzen filtration, we have

[M(wop)j: L(yop)]=[MAwou);: LIA,yopu) (a”)

The Jantzen filtration on standard modules over affine Hecke alge-
bras of GL was introduced by Rogawski [Rd]. He conjectured a refine-
ment of the formula (b) concerning the Jantzen filtration. Rogawski’s
conjecture was proved by Ginzburgf]. (The result is announced in [[GiJ]
without details.) A degenerate affine Hecke analogue of Rogawski’s
conjecture is written as follows:

3 ler, MO\ wo ) s LAy o p)]gt @92 = p,(q).
iEZzO (b’>

The formula (a’) implies the equivalence between (b’) and the improved
Kazhdan-Lusztig multiplicity formula

S lgrM(wo ) : Ly o p)]g'®@=1=072 = p, (¢), (¢

Z'GZEO
which was proved in [BBJ].
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1. BASIC DEFINITIONS

1.1. Lie algebra gl,,. Let gl, denote the Lie algebra consisting of all
n X n matrices with entries in C. Let t, be the Cartan subalgebra of
gl,, consisting of all diagonal matrices. An inner product is defined on

gl,, by
(@|y)n = tr(zy) (1.1.1)

L 1. Grojnowsky announced similar results in a series of his lectures at Kyoto
1997. He also treated affine Hecke algebras at a root of unity.
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for x,y € gl,. Let t denote the dual space of t,,. The natural pairing is
denoted by (, ), : t# xt, — C. Let E; ; (1 <1,j < n) denote the matrix
with only nonzero entries 1 at the (i, j)-th component. Define a basis
{€i}iz1,..n of € by €(E;;) = 0;;, and define the roots by a;; = €, — ¢,
and the simple roots by a; = ¢; — €;41.

Put
R, ={a;|1<i+#j<n}, (1.1.2)
Rf ={ay|1<i<j<n}, R,=R,\R/,
(1.1.3)
I, ={a; |i=1,...n—1}. (1.1.4)

Then R, C t! is a root system of type A,_;. Since the restriction of
(| )n to t, is non-degenerate, we have an isomorphism t? = t,, whose
image of ¢ € t! is denoted by ¢Y. In particular we have ¢/ = E;; and
Oéiv = E” - Ez'+1,z'+1-

Putting nf = @®;;CE,;;, n, = @;-;CE;;, we have a triangular
decomposition gl, = nf @ t, ®n, . We put bf =nfdt,.

Let o denote the involution on gl,, given by the transposition: o(E; ;) =
E; ;. The inner product ( | ),, is invariant with respect to o: (o(z)|o(y)), =
(x|y), for all z,y € gl,.

Put p = %ZaeR; « and define

Qn = E;Zai, (1.1.5)
D,={ et | A +p,a), ¢ Z foral a € R},

(1.1.6)
Dy ={ et | (\a), ¢ Z forall a € R}, (1.1.7)
P, = é Ze;, P =P,NnD. (1.1.8)

An element of D¢ (resp. P,, P)) is called a dominant (resp.integral,
dominant integral) weight.

1.2. Weyl group. Let W, C GL(t}) be the Weyl group associated
to the root system (R,,Il,), which is by definition generated by the
reflections s, (a € R,,) defined by

saN)=A=(N\a"),a (Net). (1.2.1)

We often write s; = s,, for a; € II,,. Note that W, is isomorphic to
the symmetric group G,,.
We often use another action of W,, on t;, which is given by

wod=wA+p)—p (weW,, Aet,). (1.2.2)
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For w,y € W, we write w > y if and only if y can be obtained as a
subexpression of a reduced expression of w. The resulting relation in
W, defines a partial order called the Bruhat order.

1.3. Representations of gl,. For a t,-module X and A € t}, put

Xy={veX|h=(\h)ovforalhct,}, (1.3.1)
X ={ve X | (h—(\h),)v=0forall h€t,, somek € Zy},

(1.3.2)

P(X)={\et | X\#0}. (1.3.3)

gen

The space X (resp X} ) is called the weight space (resp. generalized
weight space) of weight A with respect to t,, and an element of P(X)
is called a weight of X.

Let U(gl,) denote the universal enveloping algebra of gl,,. Let O =
O(gl,)) denote the category of gl,-modules which are finitely gener-
ated over Ul(gl,), n}-locally finite and t,-semisimple (see [BGG]). The
category O is closed under the operations such as forming subquotient
modules, finite direct sums, and tensor products with finite-dimensional
modules. For A € ¢, let M(A) = U(gl,) ®+) Coa denote the Verma
module with highest weight A, where v, denotes the highest weight
vector. The unique simple quotient of M (A) is denoted by L(A). The
modules M () and L(A) are objects of O.

Let x» : Z(U(gl,,)) — C denote the infinitesimal character of M(\).
We introduce an equivalence relation in t; by

A~ s AN=wopu for some w € W,. (1.3.4)
Then it follows that x\ = x, if and only if A ~ p. Let [A] denote the
equivalence class of A € t;. Define the full subcategory Oy of O by
0bj O = {X € 0bj O | (Kerx,)"X = 0 for some k}.
Then any X € obj O admits a decomposition

X= o XxW (1.3.5)
et /~

such that XN € obj Opy- The correspondence X +— X N gives an exact
functor on O.

Lemma 1.3.1. Let A € D,,. Then the natural map (X)), — (X/n- X)),

15 bijective.

Remark 1.3.2. (i) There also exists a canonical bijection Hom g (M (), X) =
(XP‘]))\ for A € D,,.

(ii) A proof of Lemma [.3.]] for integral A is given in [[AY]. The gener-
alization to non-integral cases is similarly proved.
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2. DEGENERATE AFFINE HECKE ALGEBRAS AND THEIR
REPRESENTATIONS

2.1. Degenerate affine Hecke algebras. For a group G, let C[G]
denote its group ring. Let S(t,) denote the symmetric algebra of t,,
which is isomorphic to the polynomial ring Cley, ..., €/].

Definition 2.1.1. The degenerate (or graded) affine Hecke algebra Hy
of GL, is the unital associative algebra over C defined by the following
properties:

(i) As a vector space, Hy = C[W,] ® S(t,).

(ii) The subspaces C[W,] ® C and C® S(t;) are subalgebras of H, in
a natural fashion (their images will be identified with C[I¥/,] and S(t,)
respectively).

(iii) The following relations hold in H,:

Sa'g_sa(g)'sa:_<a>€>£ (OéEHg, §€t€)'
(2.1.1)

It is easy to verify the following lemma.
Lemma 2.1.2. There exists a unique anti-tnvolution v on H, such that
vw) =w™ (we W), &) =¢(Eet).

For a subset B C II, let tg denote the subspace of t, spanned by all
e; such that (a,€’) # 0 for some o € B. Put

Hp =C[Wg|® S(tg) C Hy. (2.1.2)
Then it turns out that Hpg is a subalgebra of H,.

2.2. Induced modules. For a pair A = [a,b] of complex numbers
such that b —a + 1 = £ € Z>, there exists a unique one-dimensional
representation Cx = C1a of Hy (we put Hy = C for convenience) such
that

wia=1s (we W), (2.2.1)
&la=(a+i—1)1an (i=1,...,0). (2.2.2)

Let A € t; and i € t be such that A — p € P(V2%). Then putting
li=N=pw€), €Zsy (i=1,...,n), (2.2.3)

we have ¢ = 71", (;. Let I, , C II, be'the subset associated to the
partition (¢y,...,0,): I\, = {a; | i # >, { for any j}. Put

W)\,u - WHA,H g Wéa H)\7M == HHA»M g HZ (224)
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Note that HA,H = Hgl (SR ®Hgn = S(tg) ®C[W)\7“]. Put
A= [<:u +p, 62\'/>n7 <)‘ +p, 6;/>n - 1] e C? (225>

Define the parabolically induced module M(A, 1) associated to (A, )
by

M()\,,u) = HZH® (CA1®"'®CA”). (2.2.6)
A

Evidently M(A, p) is a cyclic module with a cyclic weight vector
Ly =1, ® - @14, (2.2.7)

whose weight ¢ , is given by

i—1 i—1 7
<§)\’u,€}/>£:<,u—|—p,€;/>n+j—zgk—1 for Z€k<j§Z€k
k=1 k=1 k:€228>

It is also obvious that M (A, ) = C[W,/W, ] as a C[W,]-module and
thus its dimension is given by dim M(A, p) = £1/(¢4!- - - £,!). Recall that
the simple modules of W, are parameterized by unordered partitions of
¢ (or Young diagrams of size £). We let S,, denote the simple W;-module
corresponding to the partition 7. Let [\ — u| denote the unordered
partition of ¢ obtained from (¢y,...,¢;) by forgetting the order. As is
well-known, it holds that

M) =Sy @ S5, (2.2.9)
Be[A—p]
as a C[W]-module . Here > denotes the dominance order in the set of
partitions, and ag are some non-negative integers.

Let Yy(n) denote the set of Young diagrams of size ¢ consisting of
at most n rows. We say that an H,-module Y is of level n if Y =
Dreyo(n) S5 ¢ for some a, € Zxp. The induced module M(A, i) (A, pu €
t") is of level n. Of course, any finite-dimensional H,-module is of level

l.

2.3. Zelevinsky’s classification of simple modules. The represen-
tation theory of the degenerate affine Hecke algebra is related to that
of the affine Hecke algebra by Lusztig [Ld]. Thus the statements in
this subsection are deduced from [Zel], Theorem 6.1] and [Rd, §5]. (See
also [ChI.)

Theorem 2.3.1 ([Zel], Rd)). Let A € D,, and p € A — P(V2").

(i) In the decomposition (B.2.9), Spn—, generates M(A, ) over Hy.

(ii) The Hy-module M(X, ) has the unique simple quotient, which is
denoted by L(\, ).
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(iii) The L(A, i) contains Sia—,) with multiplicity one as a C[W,]-module.
Remark 2.3.2. The statement (i) easily follows from (ii) and (iii).

Theorem 2.3.3 ([Zell]). Any simple Hy-module of level n is isomor-
phic to L(\, ) for some X\ € D, and iy € A — P(V.®").

For A € D,, and pu € A — P(V®*), the Hi-module M(\, i) is called a
standard module. For n € £}, let W,,[n] denote the stabilizer of n:

Waln] =A{w € W, [ w(n) = n}, (2.3.1)
which is a parabolic subgroup of W,,.

Proposition 2.3.4 ([Zell). Suppose that \,u € D,, and w,y € W,
satisfy \—wou € P(VZY) and \—yopu € P(V.EY). Then the following
conditions are equivalent:

(i) w € Wyl + plyWa[u + pl.

(ii) MM\ wop) = M(Ayop).

(i) LA, wo p) = LA, yop).

Remark 2.3.5. Let A\, u € D,, and w € W,, such that A—wou € P(V2*).
We often use the following fact from Proposition B.3.4:

M, w o )= M(A, w o )= M(X, w), o ), (2.3.2)
L wou) = L wop)=L(N, wi‘ o). (2.3.3)

Here w™ (resp. wﬁ) denotes the unique longest element in W,,[A + pJw
(resp. Wi[A + pJwW, [ + p]).

3. FUNCTORS F),
3.1. Construction. Let us recall the definition of the functor

introduced in [AS]. Here R(H,) denotes the category of finite-dimensional
representations of Hy. Let V,, = C" denote the vector representation
of gl,.

Lemma 3.1.1 ([AY]). For any X € O(gl,), there exists a unique ho-
momorphism

0:Hy,— End g (X®V29 (3.1.1)
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such that
8 Qi (i=1,...,0—1), (3.1.2)
—1
&= 3 Q4 (i=1,....0), (3.1.3)
0<j<i 2
where
Qi= > 195,019 9K, ®1%"" € End (X @ V).
1<k,m<n
Let A € D,, and X € obj O(gl,,). We define
FA(X) = (X VveHl (3.1.4)

with an induced H,-module structure through the homomorphism 6.

We also introduce an H,-module structure on ((X RVEH n- (X ® Vnw)))\.

Then the bijection given in Lemma [.3.]] gives an H,-isomorphism
RA(X) = (X eV /(X eVh), . (3.1.5)

Obviously F) defines an exact functor from O(gl,,) to R(Hy).

3.2. Image of functors. We extend the definition of M (A, p) for any

A\ p €t by

M\, 1) =0 for A\, u € £ such that A — pu ¢ P(V20).
(3.2.1)
Let {u;};=1. _» denote the standard basis of V,, = C". For A € D,, and
€ A—P (V2% we define an element u, , € ((M(,u) @VEY) [ (M(p) ® Vnw)))\
as the image of v, @ Ui @ - - @u2™ € M(u) @ V.24, where £; = (A —
i, €’), . It was shown in [AY] that there exists an Hy,-homomorphism

MO ) = (M) @ V2 [0, (M(p) @ VE)
(3.2.2)

which sends 1, , to uy,, and that this is bijective. Combining (B.1.5),
we have

Theorem 3.2.1 ([AY]). For each A\ € D, and pn € t5, there is an
isomorphism of Hy-modules

FX(M(p)) = M(A, ).
In particular, the Hy-module F\(M (p)) has the unique simple quotient.
A proof of the following statement is given in §f.2.
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Theorem 3.2.2. Let A € D,, and p € A — P(V,2%).
(i) If u satisfies the condition
(w+p,a’), <0  for any o € R such that (A + p,a”) =0,

(3.2.3)
then we have
F(L(p) = L\, p), (3.2.4)
where L(X, ) is the unique simple quotient of M(\, ).
(ii) If p does not satisfy the condition (B23), then we have
F\(L(p)) = 0. (3.2.5)

Remark 3.2.3. (i) In the case ¢ = n, Theorem was proved in [AY]
using the Kazhdan-Lusztig type multiplicity formula for O(gl,,) and
that for R(H,) (see §5.9).

(ii) Recall that W, [n] € W, denotes the stabilizer of n € t (see (B.3.1])).
Let W1 denote the integral Weyl group of n:

Wh={weW,|won—n¢€Q,} (3.2.6)

(Recall that Q,, = @~ Za;.) We can express p in Theorem as
p=wof
with i € D,, and w € W/. Then the condition (B:2:3) is equivalent to
pw=uw"of orequivalently u= wg‘ o [i.
Here w” (resp. w;)) denotes the unique longest element in the coset
WA+ plw (resp. Wi, [A+ plwW[i + p]). (Note that w o i = wj 0 fi.)
From Theorem and Proposition P.3.4, we have

Corollary 3.2.4. Any finite-dimensional simple Hy-module of level n
is isomorphic to F\(L(u)) for some A\ € D, and up € X\ — P(V®%)
satisfying (B-2.3).

4. CONTRAVARIANT FORMS AND THE JANTZEN FILTRATION

We remark on contravariant bilinear forms on gl,,-modules and those
on Hy-modules. We relate them via the functor F). As a consequence,
we have a proof of Theorem (a similar argument can be seen in
the theory of Jantzen’s translation functors [Jd]). We also prove that
the Jantzen filtration on the Verma modules are transformed to the
Jantzen filtration on the standard modules.
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4.1. Contravariant forms. Let X € 0bj O(gl,). A bilinear form
(])x:X x X — Cis called a gl,,-contravariant form if

(zvju)x = (vlo(z)u)x for allu,v € X, x € gl,,
(4.1.1)

where o is the transposition (§[.1]). For Y € obj R(Hy), a bilinear form
(])y:Y xY — Cis called an Hy-contravariant form if

(zvlu)y = (v|e(x)u)y for all u,v €Y, = € Hy,
(4.1.2)

where ¢ is given in Lemma P.1.2.
Let us recall some fundamental facts on contravariant bilinear forms.
The following lemma is easily shown.

Lemma 4.1.1. (i) Let X € obj O(gl,,) be equipped with a gl,,-contravariant
bilinear form (| )x. Then we have
XMW1 XMW unless A e W, opu,
X)L X, unless A=p.

(ii) Let Y € obj R(H,) be equipped with an H,-contravariant bilinear
form (| )y. Then we have

VEULYE™ unless ¢ =1. (4.1.5)

Lemma 4.1.2. (i) Let p € ti. A gl,-contravariant form on M(u) is
unique up to constant multiples.

(ii) Let A € D,, and p € X — P(V®Y. An H,-contravariant form on
M\, @) is unique up to constant multiples.

Proof. (i) is well-known. We will prove (ii). Recall the decomposition
B.2.9):
M) = Spoye D S5
B[A—4]
as a C[Wy|-module. Because an H,-contravariant form is W-invariant,

its restriction to Sp—,) is unique up to constant, and we have

Sl @ S§2%, 4.1.6
A oi-p) ( )

From Theorem P.3.1-(i), Sia—, generates M(A, i) over H,. Thus the
statement follows. O
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It is easy to construct a non-zero gl,-contravariant form on M (p). It is
also known that there exists a non-zero contravariant form on M (A, u)
(see [Rd, CG] and also Remark [f.2.3). In the rest of this paper, we fix a
canonical gl,-contravariant form ( | )¢, on M () by (vu|vu) s = 1.
The following lemma is easily shown.

Lemma 4.1.3. (i) Let p € t and let N be a unique mazimal submod-
ule of M(u). Then

N = rad( | )M(ﬂ)’ (417)
where rad( | )r(u) denotes the radical of (| )

(ii) Let A € D, and p € X — P(VEY). Let (| )mp be a non-zero
Hy-contravariant form on M(X, u) and let N be a unique mazimal
submodule of M(X, u). Then we have

N:rad( | )M(Avli)‘
Proof. (i) is well-known. Let us prove (ii). It is obvious that rad( | ) C
N. Theorem R3] implies that N C @gopn— S? " with some ag € Zxo.

Thus we have Spy_, LN by (E1.G). Hence Theorem P.3.T}(i) implies
that N grad( | )M()\#). U

Let X,Y € obj O(gl,,) with gl,-contravariant forms (| )x, (| )y. Then
the tensor product X ® Y is equipped with a natural gl -contravariant
bilinear form such that (u®v | W/ ®V)xgy = (u | v')x (v | V')y for
u,v' € X and v,v’ € Y. The following simple lemma will play a key
role.

Lemma 4.1.4. Let A € D,,. Let X be a highest weight module (i.e. a
quotient of a Verma module) of gl,,.

(i) The gl,-contravariant form on X ® V.¥¢ is also Hy-contravariant,
and thus it induces an Hy-contravariant form on (X @ VHW)E\)‘] = F\(X).
(i) If the gl,-contravariant form on X is non-degenerate, then the
induced contravariant form on F\(X) is non-degenerate.

Proof. (i) can be easily checked. (ii) follows from Lemma [.1.1. O

As a consequence of Lemma [L.1.4-(i), the canonical gl -contravariant
form on M (1) induces an Hy-contravariant form on M(\, u) = F\(M(u)),
which we call the canonical contravariant form on M(A, i). By Lemma
1.1.3(i), the gl,-contravariant form on L(u) is non-degenerate, and
it induces a non-degenerate H,-contravariant form on F\(L(u)) by

Lemma f.1.4+(ii). By Lemma [L.1.3-(ii), we have
Corollary 4.1.5. Suppose that X € D,, and p € A — P(V®*). Then
the Hy-module F\(L(p)) is simple unless it is zero.
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4.2. Proof of Theorem B.2.2. By F\(M(n)) = M(X, 1) and Corol-
lary LT3, it follows that F)\(L(u)) is isomorphic to L£(A, u) or zero.
Hence the proof of Theorem B.2.9 is reduced to the following lemma:

Lemma 4.2.1. Let A\ € D, and p € A\ — P(V®*). Then F\(L(p)) # 0
if and only if p satisfies the condition (B-2.3).

Remark 4.2.2. Lemma .21 implies that the canonical gl,-contravariant
form on M (u) induces a non-zero Hy-contravariant form on Fy(M (u))

if and only if the condition (B.:2.3) is satisfied. By Remark P.3.3 and

Remark B.2.3, it follows that any standard module admits a non-zero

H-contravariant form.

Proof of Lemma [[.2.1. First we show the “only if” part. Suppose
that u does not satisfy (B:2.3). Then there exists a € R, such that
(u+p,a¥) € Zg and (A+p, ") = 0. The first inequality implies M (s,0
1) C M(p), and the second equality implies M (A, ) = M(A, s, 0 1)
(Proposition P:3:4). Hence we have F)\(L(p)) = 0, because it is a
quotient of Fy(M(u))/Fx(M(sq 0 pn)) = 0.

Let us prove the “if” part. We can write p as

p=wo p,
where ji € D,, and w is an element of the integral Weyl group W# (see

Then the condition (B2:3) implies p = w} o i, where wy is the
longest element in W,[A + plw;W,[ii + p] (see Remark B.2.3). In the
Grothendieck group of O(gl,,), we write

Auwgog)zzxwgogy+%:%mL@ﬁoﬁ) (4.2.1)
Here the sum runs over those elements y; € W, such that y; is longest
in y; W, [ + p| and
U > wl (4.2.2)
Applying F\ to (E2]) we have
Mo ) = F(Bw} o 1) + 3 oy, Fr(E (0 ) .

in the Grothendieck group of R(Hy). Assuming that Fy(L(wjofi)) = 0,
we will deduce a contradiction. Since the multiplicity of £(A, wﬁ o [i)
in M(A, wg‘ o f1) is non-zero, Corollary .1, implies

LN wp o fi) = FA(L(yz 0 1)) = L\ yp o fi)
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for some y;. But this implies y; € Wy[A+plw; W[+ p] by Proposition
P34, and thus we have I(yz) < I(w}). This contradicts (£2.9). O

4.3. The Jantzen filtrations. Throughout this subsection, we fix a
weight § € t). Let A = C[t]y) denote the localization of C[t¢] at the
prime ideal (t). We use the notation: n* =n+ dt € tf ® A for ) € t&.

For pu € t, let M(u') be the Verma module of gl,, ® A with highest
weight p':

M) = (Ugl,) @A)  ® (Avu).
Ubl)® A

The canonical gl -contravariant bilinear form on M (x) can be naturally
extended to a gl, ® A-contravariant form ( | )asquey on M(u') (with

respect to the anti-involution o ®id4) with values in A.
Define

M) ={ve M) | (v]|u)mu € A for all u € M(u")}.

(4.3.1)
Putting M(u); = M(u"); /(EM(p*) N M(u');) we have a filtration
M(p) = M(p)o 2 M(p)1 2 M(p)2 2 -+ (4.3.2)

by gl,-modules called the Jantzen filtration [[Jd].

Our next aim is to define the Jantzen filtration on the standard
module, which was introduced in [Rd]. Let A € D,, and u € A—P(V,2*).
Analogously to §2.9, we define an Hy, ® A-module M (X', u*) by

Mo = (Hi A Alye ).
MO = (Hi© )| S (L)

Put X = M(u') ® V2, which is equipped with a gl,, ® A-contravariant

form (| )x. Then t ® A acts semisimply on X and it follows that

X= & Xy (4.3.3)
nteut+Pp
Xy LX,e unless = v. (4.3.4)

Let x,¢ : Z(U(gl,) ® A) — A be the infinitesimal character of M (n").
Following [GJZ], we define for n € t, an ideal J,+ of Z(U(gl,,) ® A) by

Jnt = ﬂweWnKerx(won)t,
and define
X0 = {veX| Jf;tv =0 for some k}. (4.3.5)

Obviously X" depends only on the equivalence class ] of n with
respect to the equivalence relation ([.3.4).
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Lemma 4.3.1 ([GJZ]). We have

X= & XxbI (4.3.6)
e/~
XL X unless [n] = [v]. (4.3.7)

On the gl, ® A-module X = M(u') @ V2* we can define an action
of Hy® A commuting with gl, ® A as in Lemma B.I.]. We define an
induced H, ® A-module structure on the following spaces:

(X/n- X ),  (XPD). (4.3.8)
With respect to this action, the natural map
(XA — (X/n; X)u (4.3.9)

is an H;, ® A-homomorphism.
Similarly to (B:2:3), we can construct an H, ® A-homomorphism
MO, ) — (X0, X) e (4.3.10)
The following lemma is elementary.

Lemma 4.3.2. Let M and N be free A-modules of finite rank, and let
f: M — N be an A-homomorphism. If the specialization
f:M/tM — N/tN
at t = 0 is a C-isomorphism, then f is an A-isomorphism.
Using Lemma (3.3, we get

Proposition 4.3.3. The Hy ® A-homomorphisms (£.3.9) and ([.3.10)
are bijective:

(XY 2 (X /s X)) e =2 M(X, ). (4.3.11)

Proof. The specialization of (£.3.9) (resp. ([3.10)) at t = 0 gives
the isomorphism in Lemma [[.3-]] (resp. (B:2.9)). Therefore by Lemma
£33, it is enough to show that (X, (X/n; X) and M(X, ut) are
all free A-modules of finite rank. Obviously they are finitely generated
over A. Tt is also clear that M(M\f, u') is free. Since A is a principal
ideal domain and X is a free A-module, its subspace (X*1),: is a free
A-module. Finally, let us show that (X/n,; X) is a free A-module. By
the isomorphism
X =M@)eVy = U@E)oA) © (AvoV?)
U(br)®A (4.3.12)

as U(gl,) ® A-modules, it follows that
(X/n, X)) = (VE)N,©A (4.3.13)

n
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as A-modules. This is a free A-module. O

It follows that the gl, ® A-contravariant form on X = M (u!) @ V®*
is also H; ® A-contravariant. Through the isomorphism

MO ) = (XM c X, (4.3.14)

we introduce an A-valued H, ® A-contravariant form on M (A, ut).

Assume that y satisfies the condition (B.2.3) in Theorem B.2.3. Then
the induced contravariant form is non-zero (since its specialization at
t = 0 is non-zero). Therefore we have a filtration

M, 1) = M(A, p)o 2 M(A, 1)1 2 M(A, )2 2
(4.3.15)

by H,-modules, which we call the Jantzen filtration. Recall that any
standard module is isomorphic to M(A, ) for some A € D,, and p €

A\ — P(V@*) satisfying (B.2.3) (Remark P.3.9).

Remark 4.3.4. In [Rd], the deformation direction ¢ is restricted by a
certain condition. The construction above gives the definition of the
Jantzen filtration for an arbitrary direction 4.

Theorem 4.3.5. Suppose that A € D,, and p € A\— P(V,2") satisfy the
condition (B2:3). Then Fx(M(p);) = M(X\ p);.

Proof. 1t is easy to check that F\(M(u);) € M(X, u);. To prove the
opposite inclusion, let

p: M(ph) @ VE - (M(ph) @ VEORT = M(A, 1)

denote the natural projection. Note that (M (u') ® VW)) 1 Kerp by
(E33) and (E37). Fix any orthonormal basis {b;}", of V®¢ with
respect to the gl,-contravariant form (| )yee.

Take any u € M\, ut); C (M(p')® VW)))\)S and write as u =

n

>ia; ®b; with a; € M(u ) Then for any v € M(u') and k, we have

(ar | V)mgury = (U | 0@ bi) iy gvee = (W[ P(V@ b)) pruty o vt
- ('LL |p(U®bk>)<M( )®V®Z) 2] S t A

This implies a € M(u'); and thus v € (M(p'); ® V®Z)[)\)2t]. Therefore

n

we have Fy(M(p);) 2 M(A, p);. O
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5. CONSEQUENCES

5.1. BGG resolution. Recall the generalization of the BGG resolu-
tion for certain simple gl,,-modules given by Gabber-Joseph [[GJI].

We fix u € t such that —(u + p) is dominant and regular, i.e.
(—(n+p),a"), & Zforall € Rf. Set Rt ={a € R, | (1, "), €
Z}. 1t is known that R¥ is a root system and its Weyl group coincides
with the integral Weyl group

WH={weW, |wou—pneQ,} (5.1.1)

Set RET = RN R and let IT# be the set of simple roots of RFT.

Fix B C II#. The length function /5 and the Bruhat order of Wpg
are defined with respect to the set of simple roots B. Let wp be a
unique longest element of Wy with respect to lg. Put up = wg o u.
Gabber-Joseph constructed the exact sequence

0« L(up) « Cy«— Cp «— -+~ (5.1.2)
of gl,-modules, where

C; = ® M(y o ug).

yeWp, lB(y):z
We apply F) to the sequence (p.1.7). Then Theorem B.2.] and Theorem
B-2.2 imply the following:

Theorem 5.1.1. Let u and B as above. Suppose that A € D, N (up +

P(V2) satisfies (A + p, ") # 0 for any o € B. Then there exists an
exact sequence

0— LA\ pup) «—Cy—Cy - (5.1.3)
of Hy-modules, where

Ci = @ M(A’?JOMB)

Remark 5.1.2. Inthe case up € P and B = II, (the original BGG case
[BGQ)), the corresponding sequence has been obtained by Cherednik

[CLI] by a different method (see also [Ze4, AST]).

5.2. Kazhdan-Lusztig formulas. For a module M and simple mod-
ule L, let [M : L] denote the multiplicity of L in the composition series
of M.

Recall that W*# denotes the integral Weyl group of pu € t* (see
(B:2.4)). The following formula is a direct consequence of Theorem

B.2.1 and Theorem B.2.%:
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Theorem 5.2.1. Let A\, € D,, and let w,y € W} such that A —w o
A —you€ P(VEY. Then we have

M wop): L yop)] = [M(wopu): L(y* o)),
(5.2.1)

where y* denotes the longest element in W[\ + ply.

Let A\, € D,, and w,y € W be as in Theorem p.2.1. The equality
(6:2.1) has been known through the following two multiplicity formulas:

[(M(wop): Lyou)] = Puy,(1), (5.2.2)
[MAwop): LA yop)] = Pyya(l). (5.2.3)

Here P, ,(q) € Z|q,q '] denotes the Kazhdan-Lusztig polynomial [KLI]
of the Hecke algebra associated to W} (we put P, ,(¢) = 0 for w £ y
for convenience), and y, (resp. y,) denotes the longest element in
yWalp + p) (resp. Wi A+ plyW, [+ pl).

Remark 5.2.2. It follows from (5.2.2) and (5.2.3) that P, (1) = P, ,, (1)
and P, 2 (1) = Py, 42 (1) = Py a(1). The latter is expressed in terms
of the intersection cohomology concerning nilpotent orbits on the quiver

variety [[eJ.

The formula (5.2.2) was conjectured by Kazhdan-Lusztig [KL]] and
proved by Beilinson-Bernstein [BBT] and Brylinski-Kashiwara [BK].
The formula (5.2.3) was conjectured by Zelevinsky [ZeJ] (see also [Ze3])
and proved by Ginzburg [[Gil] (see also [CJ]). The theory of perverse
sheaves plays an essential role in these proofs.

Theorem (proved in a purely algebraic way) says that the
Kazhdan-Lusztig formula (5.2.2) is equivalent to its degenerate affine
Hecke analogue (or its p-adic analogue) (5.2.3). The implication (5.2.2) =
(5.2.3) is obvious. The implication (5.2.3) = (5.2.2) is proved as fol-
lows. Take any 1 € D,, and w,y € W}. Then we can find ¢ € Z>, and
A € Dy such that

A—zope PV for all z € W,

In this case F)\(L(z o u)) never vanishes and thus it is isomorphic to
L(A, zopu). Now (5.2.3) implies (5.2.2).

5.3. Rogawski’s conjecture. Let {M(u);}; and {M(X, u);}; be the
Jantzen filtrations defined in §ff.3. As a direct consequence of Theorem

B.2.2 and Theorem [.3.5, we have
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Theorem 5.3.1. Let \,u € D,, and w,y € W} (see (B.2.9)) be such
that X —wo u, A\ —yopu € P(VEY). Then we have

MXwop);: L yo )] = [Mw*opu);: Ly op),
(5.3.1)

where w* and y* denote the longest element in W, [\ + plw and W[\ +
ply respectively.

A priori the Jantzen filtrations depend on the choice of the defor-
mation direction ¢ € t. It has been known that the Jantzen filtration
on M () does not depend on the choice of ¢ for which ( | )as(u) is
non-degenerate [Bd]. Now Theorem [.3.5 implies

Proposition 5.3.2. Let A € D,, and p € X — P(V2") satisfy (B:23).
Then the Jantzen filtration on M(X, u) does not depend on the choice
of 0 such that

(6,"), #0 for any a € R} such that (n+ p, o), € Z>0( |
5.3.2

Remark 5.3.3. For X and p as in Proposition p.3.3, the condition (5.3.2)
is equivalent to the condition that the H, ® A-contravariant form (| ) aqoae,ut)
is non-degenerate.

We say that the Jantzen filtration {M(u);}; (or {M(X, p);};) is
reqular if the deformation direction ¢ satisfies (p.3.2). The following

formula was conjectured in [[GJ3, GM], and proved in [BB3J].

Theorem 5.3.4 ([BBJ]). Let p € D,, and w,y € W}. Suppose that w
and y are the longest elements in wW,[p + p] and yW, [+ pl, respec-
tively. For the regular Jantzen filtration {M(w o p);};, we have

> lerM(wop) : Ly o p))g W= 0=02 = P, (q),
. (5.3.3)

where P, ,(q) denotes the Kazhdan-Lusztig polynomial of W}, and 1,
denotes the length function on W}.

Combining with Theorem [p.3.]], the improved Kazhdan-Lusztig for-
mula (p.3-3) implies its degenerate affine Hecke analogue, which was
conjectured in [Rd].

Theorem 5.3.5. (c.f. [Gid, Theorem 2.6.1]) Let A\, u € D,, and w,y €
WH be such that A\—wopu, A\—you € P(V2*). Suppose that w and y are
the longest elements in WA+ plwW, [+ p] and WA+ plyWa[u+ o],
respectively. For the reqular Jantzen filtration { M(X,wop),};, we have

37 g M(Awo )t LA,y o p)]gle® =02 = p (q),
J€Z>0 (534)
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where P, ,(q) denotes the Kazhdan-Lusztig polynomial of W}, and 1,
denotes the length function on WH.

[Ba]
[BB1]
[BB2]

[BGG]
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