
DIRAC OPERATORS IN REPRESENTATION THEORY

Jing-Song Huang and Pavle Pandžić
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Lecture 1. (g,K)-modules

1.1. Lie groups and algebras. A Lie groupG is a group which is also a smooth manifold,
in such a way that the group operations are smooth. In more words, the multiplication
map from G£G into G and the inverse map from G into G are required to be smooth.
The Lie algebra g of G consists of left invariant vector fields on G. The left invariance

condition means the following: let lg : G ! G be the left translation by g 2 G, i.e.,
lg(h) = gh. A vector field X on G is left invariant if (dlg)hXh = Xgh for all g, h 2 G.
g is clearly a vector space. It can be identified with the tangent space to G at the

unit element e. Namely, to any left invariant vector field one can attach its value at e.
Conversely, a tangent vector at e can be translated to all other points of G to obtain a left
invariant vector field.
Note that we did not require our vector fields to be smooth; it is however a fact that a

left invariant vector field is automatically smooth.
The operation making g into a Lie algebra is the bracket of vector fields:

[X,Y ]f = X(Y f)¡ Y (Xf),

for X,Y 2 G and f a smooth function on G. Here we identify vector fields with derivations
of the algebra C∞(G), i.e., think of them as first order differential operators.
The operation [,] satisfies the well known properties of a Lie algebra operation: it is

bilinear and anticommutative, and it satisfies the Jacobi identity:

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0

for any X, Y,Z 2 g.
The main examples are various matrix groups. They fall into several classes. We are

primarily interested in the semisimple connected groups, like the group SL(n,R) of n£ n
matrices with determinant 1. Its Lie algebra is sl(n,R), consisting of the n £ n matrices
with trace 0. There are also familiar series of compact groups: SU(n), the group of
unitary (complex) matrices, with Lie algebra su(n) consisting of skew Hermitian matrices,
and SO(n), the group of orthogonal (real) matrices with Lie algebra so(n) consisting of
antisymmetric matrices. Further examples are the groups Sp(n), SU(p, q) and SO(p, q);
they are all defined as groups of operators preserving certain forms.
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Other classes of Lie groups one needs to study are solvable groups, like the groups
of upper triangular matrices; nilpotent groups like the groups of unipotent matrices and
abelian groups like Rn or the groups of diagonal matrices. They are not of our primary
interest, but they show up as subgroups of our semisimple groups and therefore have to
be understood.
One also often considers reductive groups, which include semisimple groups but are

allowed to have a larger center, like GL(n,R) or U(n).
The definitions are easiest to formulate for Lie algebras g: define C0g = D0g = g, and

inductively Ci+1g = [g, Cig], Di+1g = [Dig, Dig]. Then g is nilpotent if Cig = 0 for large
i, g is solvable if Dig = 0 for large i, g is semisimple if it contains no nonzero solvable
ideals, and g is reductive if it contains no nonabelian solvable ideals. Abelian means that
[, ] = 0.
Instead of checking that each of the above mentioned groups is a Lie group, on can

refer to a theorem of Cartan, which asserts that every closed subgroup of a Lie group is
automatically a Lie subgroup in a unique way. Since each of the groups we mentioned is
contained in GL(n,C) we only need to see that GL(n,C) is a Lie group. But GL(n,C) is
an open subset of Cn2 , hence is a manifold, and the matrix multiplication and inverting
are clearly smooth. Without using Cartan’s theorem, one can apply implicit/inverse func-
tion theorems, as each of the above groups is given by certain equations that the matrix
coefficients must satisfy.
Let us note some common features of all the mentioned examples:
² g is contained in the matrix algebraMn(C), and [X,Y ] = XY ¡Y X, the commutator

of matrices;
² G acts on g by conjugation: Ad(g)X = gXg−1. This is called the adjoint action. The

differential of this action with respect to g gives an action of g on itself, ad(X)Y = [X, Y ],
which is also called the adjoint action.
² There is an exponential map exp : g ¡! G mapping X to eX . This is a local diffeomor-

phism around 0, i.e., sends a neighborhood of 0 in g diffeomorphically onto a neighborhood
of e in G.

1.2. Finite dimensional representations. Let V be a complex n-dimensional vector
space. A representation of G on V is a continuous homomorphism

π : G ¡! GL(V ).

Any such homomorphism is automatically smooth; this is a version of the already men-
tioned Cartan’s theorem.
Given a representation of G as above, we can differentiate it at e and obtain a homo-

morphism
dπ = π : g ¡! gl(V )

of Lie algebras.
An important special case is the case of a unitary representation. This means V has an

inner product and that all operators π(g), g 2 G are unitary. Then all π(X), X 2 g are
skew-hermitian.
The main idea of passing from G to g is turning a harder, analytic problem of studying

representations of G into an easier, purely algebraic (or even combinatorial in some sense)
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problem of studying representations of g. Actually, since we are only considering complex
representations, we can as well complexify g and study representations of gC.

Example. The most basic example and the first one to study is the representations of
g = sl(2,C). There is an obvious basis for g: take

h =

µ
1 0
0 ¡1

¶
; e =

µ
0 1
0 0

¶
; f =

µ
0 0
1 0

¶
.

Then the commutator relations are

[h, e] = 2e; [h, f ] = ¡2f ; [e, f ] = h.

Let V be an irreducible representation of g of dimension n+ 1. Then there is a basis

fvk
¯̄
k = ¡n,¡n+ 2, . . . , n¡ 2, ng

of V , such that the action of h is diagonal in this basis:

π(h)vk = kvk.

The integers k are called the weights of V . The operator π(e) raises the weight by 2, i.e.,
π(e)vk is proportional to vk+2 (which is taken to be 0 if k = n). The operator π(f) lowers
the weight by 2. There is an obvious ordering on the set of weights (usual ordering of
integers), and n is the highest weight of V ; this corresponds to the fact that π(e)vn = 0.
Here is a picture of our representation V :

v−n
e¡!Ã¡
f

v−n+2
e¡!Ã¡
f

. . .
e¡!Ã¡
f

vn−2
e¡!Ã¡
f

vn

Finally, the actions of e and f are also completely determined: let us normalize the choice
of vk’s by taking vn to be an arbitrary π(h)-eigenvector for eigenvalue n, and then taking
vn−2j = π(f)jvn. Then

(*) π(e)vn−2j = j(n¡ j + 1)vn−2j+2.

All of this is easy to prove; we give an outline here and encourage the reader to complete
the details.
First, it is a general fact that the action of h diagonalizes in any finite dimensional

representation, as h is a semisimple element of g. One can however avoid using this, and
just note that the action of h will have an eigenvalue, say λ 2 C, with an eigenvector vλ.
By finite dimensionality, we can take λ to be the highest eigenvalue. For any µ 2 C, let us
denote by Vµ the µ-eigenspace for π(h); of course, Vµ will be zero for all but finitely many
µ.
From the commutator relations, it is immediate that π(e) sends ¿Vµ to Vµ+2, while

π(f) sends Vµ to Vµ−2 for any µ. In particular, the sum of all Vµ is g-invariant, hence it
is all of V by irreducibility. One now takes a highest weight vector vλ, defines (as above)
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vλ−2j = π(f)jvλ, and then proves the analog of the formula (*) with λ replacing n, by
induction from the commutator relations. From (*), finite dimensionality and irreducibility
it now follows that ¿λ must be a non-negative integer, say n, and that V is the ¿span of
the vectors vn, vn−2, . . . , v−n.
Thus we have described all irreducible finite dimensional sl(2,C)-modules. Other finite

dimensional representations are direct sums of irreducible ones; this is a special case of
Weyl’s theorem, which says this is true for any semisimple Lie algebra g. One way to
prove this theorem is the so called unitarian trick of Weyl: one shows that there is a
compact group G with the same representations as g. E.g., for sl(2,C), G = SU(2).
Now using invariant integration one shows that every representation of a compact group
is unitary. On the other hand, unitary (finite dimensional) representations are easily seen
to be direct sums of irreducibles; namely, for every invariant subspace, its orthogonal is an
invariant complement.

We now pass on to describe finite dimensional representations of a general semisimple
Lie algebra g over C. Instead of just one element h to diagonalize, we can now have a
bunch of them. They comprise a Cartan subalgebra h of g, which is by definition a maximal
abelian subalgebra consisting of semisimple elements. Elements of h can be simultaneously
diagonalized in any representation; for each joint eigenspace, the eigenvalues for various
X 2 h are described by a functional λ 2 h∗, a weight of the representation under consider-
ation. All possible weights of finite dimensional representations form a lattice in h∗, called
the weight lattice of g. The nonzero weights of the adjoint representation of g on itself
have a prominent role in the theory; they are called the roots of g, and satisfy a number
of nice symmetry properties. For example, the roots of sl(3,C) form a regular hexagon in
the plane. The roots of sl(2,C) are 2 and ¡2 (upon identifying h∗ = (Ch)∗ with C).
One can divide up roots into positive and negative roots, which gives an ordering on h∗R,

the real span of roots, and also a notion of positive (“dominant”) weights. The irreducible
finite dimensional representations of g are classified by their highest weights. The possible
highest weights are precisely the dominant weights.
If we denote by n+ (respectively n−) the subalgebra of g spanned by all positive (re-

spectively negative) root vectors, then we have a triangular decomposition

g = n− © h© n+.

For example, if g = sl(n,C), one can take h to be the diagonal matrices in g, n+ the strictly
upper triangular matrices and n− the strictly lower triangular matrices.
Let V be an irreducible finite dimensional representation with highest weight λ. The

highest weight vector is unique up to scalar, and is characterized by being an eigenvector
for each X 2 h, with eigenvalue λ(X), and by being annihilated by all elements of n+.
We now address the question of “going back”, i.e., getting representations of G from

representations of g which we have just described. This is called “integrating” or “expo-
nentiating” representations.
It turns out there is a topological obstacle to integrating representations; this can already

be seen in the simplest case of 1-dimensional (abelian) Lie groups. There are two connected
1-dimensional groups: the real line R and the circle group T1. Both have the same Lie
algebra R.
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Consider the one-dimensional representations of the Lie algebra R; each of them is given
by t 7! tλ for some λ 2 C (we identify 1 £ 1 complex matrices with complex numbers).
All of these representations exponentiate to the group R, and give all possible characters
of R:

t7¡! etλ, λ 2 C.
However, of these characters only the periodic ones will be well defined on T1, and etλ is
periodic if and only if λ 2 2πiZ.
In general, when G is connected and simply connected, then all finite dimensional

representations of g integrate to G. Any connected G will be covered by a simply connected
G̃, and the representations of G are those representations of G̃ which are trivial on the
kernel of the covering.
If G is semisimple connected with finite center, then there is a decomposition

G = KP

called the Cartan decomposition; here K is the maximal compact subgroup of G, while P
is diffeomorphic to a vector space. For example, if G = SL(n,R), then K = SO(n), and
P consists of positive matrices in SL(n,R); so P is diffeomorphic to the vector space of
all symmetric matrices via the exponential map. It follows that the topology of G is the
same as the topology of K, and a representation of g will exponentiate to G if and only if
it exponentiates to K.

1.3. Infinite dimensional representations. In general, a representation of G is a
continuous linear action on a topological vector space H. Some typical choices for H are:
a Hilbert space, a Banach space, or a Fréchet space.
The first question would be: can we differentiate a representation to get a representation

of g? The answer is: not quite. Actually, g acts, but only on the dense subspace H∞ of
smooth vectors (a vector v 2 H is smooth if the map g7! π(g)v from G into H is smooth).
For semisimple G with maximal compact K, there is a better choice than H∞: we can

consider the dense subspace HK of K-finite vectors in H (a vector v 2 H is K-finite if the
set π(K)v spans a finite dimensional subspace of H). One shows that K-finite vectors are
all smooth, and so HK becomes a Harish-Chandra module, or a (g, K) module. A vector
space V is a (g,K)-module if it has:

(1) an action of g;
(2) a finite action of K;
(3) the two k-actions obtained from (1) and (2) agree.

In case we want to allow disconnected groups, we also need
(4) the g-action is K-equivariant, i.e., π(k)π(X)v = π(Ad(k)X)π(k)v, for all k 2 K,

X 2 g and v 2 V .
One usually also puts some finiteness conditions, like finite generation, or admissibility
defined below.
Now a basic fact about (unitary) representations of compact groups is that they can be

decomposed into Hilbert direct sums of irreducibles, which are all finite dimensional. This
can be proved using the basic facts about compact operators. Thus our H decomposes
into a Hilbert direct sum of K-irreducibles, and Harish-Chandra modules, being K-finite,
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decompose into algebraic direct sums of K-irreducibles. For δ 2 bK, the unitary dual of K,
we denote by V (δ) the δ-isotypic component of a Harish-Chandra module, i.e., the largest
K-submodule of V which is isomorphic to a sum of copies of δ. We say V is admissible

if each V (δ) is finite dimensional. In other words, every δ 2 bK occurs in V with finite
multiplicity. Harish-Chandra proved that for each unitary representation H of G, the
(g,K)-module HK is admissible.
Going back from (g,K)-modules to representations ofG is hard. We call a representation

(π,H) of G a globalization of a Harish-Chandra module V , if V is isomorphic toHK . Every
irreducible V has globalizations. In fact there are many of them; one can choose e.g. a
Hilbert space globalization (not necessarily unitary), or a smooth globalization. There are
also notions of minimal and maximal globalizations. A few names to mention here are
Harish-Chandra, Lepowsky, Rader, Casselman, Wallach and Schmid. We will not need
any globalizations, but will from now on work only with (g, K)-modules.

1.4. Infinitesimal characters. Recall that a representation of a Lie algebra g on a vector
space V is a Lie algebra morphism from g into the Lie algebra End(V ) of endomorphisms
of V . Now End(V ) is actually an associative algebra, which is turned into a Lie algebra
by defining [a, b] = ab¡ ba; this can be done for any associative algebra. What we want is
to construct an associative algebra U(g) containing g, so that representations of g extend
to morphisms U(g) ¡! End(V ) of associative algebras. The construction goes like this:
consider first the tensor algebra T (g) of the vector space g. Then define

U(g) = T (g)/I,

where I is the two-sided ideal of T (g) generated by elements X − Y ¡ Y − X ¡ [X, Y ],
X,Y 2 g. It is easy to see that U(g) satisfies a universal property with respect to maps
of g into associative algebras; in particular, representations of g (i.e., g-modules) are the
same thing as U(g)-modules. Some further properties are
² There is a filtration by degree on U(g), coming from T (g);
² The graded algebra associated to the above filtration is the symmetric algebra S(g);
² One can get a basis for U(g) by taking monomials over an ordered basis of g.
The last two properties are closely related and are the content of the Poincaré-Birkhoff-

Witt theorem. Loosely speaking, one can think of U(g) as “noncommutative polynomials
over g”, with the commutation laws given by the bracket of g. If we think of elements of g
as left invariant vector fields on G, then U(g) consists of left invariant differential operators
on G.
Here are some benefits of introducing the algebra U(g).

(1) One can use constructions from the associative algebra setting. For example, there
is a well known notion of “extension of scalars”: let B ½ A be associative algebras
and let V be a B-module. One can consider A as a right B-module for the right
multiplication and form the vector space A−BV . This vector space is an A-module
for the left multiplication in the first factor. So we get a functor from B-modules
to A-modules. Another functor like this is obtained by considering HomB(A,V );
now the Hom is taken with respect to the left multiplication action of B on A (and
the given action on V ), and the (left!) A-action on the space HomB(A,V ) is given
by right multiplication on A.
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(2) Since g is semisimple, it has no center. U(g) however has a nice center Z(g). It
is a finitely generated polynomial algebra (e.g. for g = sl(n,C) there are n ¡ 1
generators and their degrees are 2, 3, . . . , n). The importance of the center follows
from a simple observation that is often used in linear algebra: if two operators
commute, then an eigenspace for one of them is invariant for the other. This
means that we can reduce representations by taking a joint eigenspace for Z(g).

Let us examine the center Z(g) and its use in representation theory in more detail.
First, there is an element that can easily be written down; it is the simplest and most
important element of Z(g) called the Casimir element. To define it we need a little more
structure theory.
There is an invariant bilinear form on g, the Killing form B. It is defined by

B(X,Y ) = tr(adX adY ), X, Y 2 g.

The invariance condition means that for a Lie group G with Lie algebra g, one has

B(Ad(g)X,Ad(g)Y ) = B(X, Y ), g 2 G, X, Y 2 g.

The Lie algebra version of this identity is

B([Z,X], Y ) +B(X, [Z, Y ]) = 0, X, Y, Z 2 g.

Furthermore, B is nondegenerate on g; this is actually equivalent to g being semisimple.
In many cases like for sl(n) over R or C, one can instead of B use a simpler form tr(XY ),
which is equal to B up to a scalar.
There is a Cartan decomposition of g:

g = k© p.

k and p can be defined as the eigenspaces for the so called Cartan involution θ for the
eigenvalues 1 respectively ¡1. There is also a Cartan decomposition G = KP on the
group level that we already mentioned; here K is the maximal compact subgroup of G (if
G is connected with finite center), and k is the Lie algebra of K.
Rather than defining the Cartan involution in general, let us note that for all the matrix

examples in 1.1, θ(X) is minus the (conjugate) transpose of X. So e.g. for g = sl(n,R), k
is so(n) and p is the space of symmetric matrices in g.
Some further properties of the Cartan decomposition: k is a subalgebra, [k, p] ½ p and

[p, p] ½ k. The Killing form B is negative definite on k and positive definite on p.
To define the Casimir element, we choose orthonormal bases Wk for k and Zi for p, so

that
B(Wk,Wl) = ¡δkl; B(Zi, Zj) = δij .

The Casimir element is then

Ω = ¡
X
k

W 2
k +

X
i

Z2i .
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It is an element of U(g), and one shows by an easy calculation (which we leave as an exer-
cise) that it commutes with all elements of g and thus is an element of Z(g). Furthermore,
it does not depend on the choice of bases Wk and Zi.
Assume now X is an irreducible (g, K)-module. Then every element of Z(g) acts on X

by a scalar. For finite dimensional X it is the well known and obvious Schur’s lemma: let
z 2 Z(g) and take an eigenspace for z in X. This eigenspace is a submodule, hence has to
be all of X. For infinite dimensional X the same argument is applied to a fixed K-type in
X; see [V1], 0.3.19, or [Kn], Ch. VIII, x3.
Now all the scalars coming from the action of Z(g) on X put together give a homomor-

phism
χX : Z(g) ¡! C

of algebras, which is called the infinitesimal character of X.
By a theorem of Harish-Chandra, Z(g) is isomorphic (as an algebra) to S(h)W , the

Weyl group invariants in the symmetric algebra of a Cartan subalgebra h in g. (The Weyl
group W is a finite reflection group generated by reflections with respect to roots.) This
is obtained by taking the triangular decomposition g = n− © h © n+ mentioned before
and building a Poincaré-Birkhoff-Witt basis from bases in n−, h and n+. We now get a
linear map from U(g) into U(h) = S(h) by projecting along the span of all monomials that
contain a factor which is not in h. This turns out to be an algebra homomorphism when
restricted to Z(g), and this gives the required isomorphism.
Now we can identify S(h) with the algebra P (h∗) of polynomials on h∗, and recall that

any algebra homomorphism from P (h∗) into C is given by evaluation at some λ 2 h∗.
It follows that the homomorphisms from Z(g) into C correspond to W -orbits Wλ in h∗.
So, infinitesimal characters are parametrized by the space h∗/W . They are important
parameters for classifying irreducible (g,K)-modules. It turns out that for every fixed
infinitesimal character, there are only finitely many irreducible (g,K)-modules with this
infinitesimal character. More details about Harish-Chandra isomorphism can be found e.g.
in [KV].
To finish, let us describe an example where it is easy to explicitly write down all irre-

ducible (g,K)-modules. This is the case G = SL(2,R), whose representations correspond
to (sl(2,C), SO(2))-modules.
To see the action of K = SO(2) better, we change basis of sl(2,C) and instead of h, e, f

used earlier we now use

W =

µ
0 ¡i
i 0

¶
, X =

1

2

µ
1 i
i ¡1

¶
, Y =

1

2

µ
1 ¡i
¡i ¡1

¶
Note that W 2 kC. The elements W,X and Y satisfy the same relations as before:

[W,X] = 2X; [W,Y ] = ¡2Y ; [X,Y ] =W.

Fix λ 2 C and ² 2 f0, 1g. Define an (sl(2,C), SO(2))-module Vλ,² as follows:
² a basis of Vλ,² is given by vn, n 2 Z, n congruent to ² modulo 2;
² π

µ
cos θ sin θ
¡ sin θ cos θ

¶
vn = e

inθvn;
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² π(W )vn = nvn;
² π(X)vn =

1
2(λ+ (n+ 1))vn+2;

² π(Y )vn =
1
2 (λ¡ (n¡ 1))vn−2.

The picture is similar to the one that we had for finite dimensional representations of
sl(2,C), but now it is infinite:

. . .
e¡!Ã¡
f

vn−2
e¡!Ã¡
f

vn
e¡!Ã¡
f

vn+2
e¡!Ã¡
f

. . .

Also, note that we changed normalization for the v0ns; now we do not have a natural place
to start, like a highest weight vector, so it is best to make π(X) and π(Y ) as symmetric
as possible.
The following facts are not very difficult to check:
² Vλ,² is irreducible unless λ+ 1 is an integer congruent to ² modulo 2;
² The Casimir element Ω acts by the scalar λ2 ¡ 1 on Vλ,²;
² If λ = k ¡ 1 where k ¸ 1 is an integer congruent to ² modulo 2, then Vλ,² contains

two irreducible submodules, one with weights k, k + 2, . . . and the other with weights
. . . ,¡k ¡ 2,¡k. If k > 1, these are called discrete series representations, as they occur
discretely in the decomposition of the representation L2(G). The quotient of Vλ,² by the
sum of these two submodules is an irreducible module of dimension k ¡ 1. For k = 1 the
two submodules are called the limits of discrete series, and their sum is all of V0,1.
All this can be found with many more details and proofs in Vogan’s book [V1], Chapter

1. Actually, Chapters 0 and 1 of that book contain a lot of material from this lecture
(plus more) and comprise a good introductory reading. Other books where a lot about
(g,K)-modules can be found are [Kn] and [W].
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Lecture 2. Clifford algebras, spinors and Dirac operators

2.1. Clifford algebras. From now on we will adopt the convention to denote real Lie
algebras ¿with the subscript 0 and to refer to complexified Lie algebras with ¿the same
letter but no subscript. For example, g0 = k0 © p0 ¿will denote the Cartan decomposition
of the real Lie algebra g0, ¿while g = k© p will be the complexified Cartan decomposition.
We saw in 1.4 that Z(g) has an important role: it reduces representations, and defines

a parameter (infinitesimal character) for the irreducible representations. We also defined
the “smallest” non-constant element of Z(g), the Casimir element Ω.

Let us imagine for a moment that Z(g) contains a smaller (degree one) element T ,
such that T 2 = Ω. Then T would (in principle) have more eigenvalues than Ω, as two
opposite eigenvalues for T would square to the same eigenvalue for Ω. As a consequence,
we would get a better reduction of representations, and infinitesimal character would be
a finer invariant. Of course, such a T does not exist; degree one elements of U(g) are the
elements of g and g has no center being semisimple.

The idea is then to twist U(g) by a finite dimensional algebra, the Clifford algebra C(p).
The algebra U(g) − C(p) will contain an element D (the Dirac element) whose square is
close to Ω− 1.
One can define the Clifford algebra C(p) as an associative algebra with unit, generated

by an orthonormal basis Zi of p (with respect to the Killing form B), subject to the
relations

ZiZj = ¡ZjZi (i6= j); Z2i = ¡1.
(There are variants obtained by replacing the ¡1 in the second relation by 1 or by 1/2.)
This definition involves choosing a basis, so let us give a nicer one:

C(p) = T (p)/I,

where T (p) is the tensor algebra of the vector space p and I is the two-sided ideal of T (p)
generated by elements of the form

X − Y + Y −X + 2B(X, Y ).

This definition resembles the definition of U(g); the similarity extends to an analog of the
Poincaré-Birkhoff-Witt theorem. Namely, C(p) inherits a filtration by degree from T (p).
The associated graded algebra is the exterior algebra

V
(p). One can obtain a basis for

C(p) by taking an (orthonormal) ordered basis Zi for p and forming monomials over it to
obtain

Zi1 . . . Zik , i1 < ¢ ¢ ¢ < ik.
Note that no repetitions are allowed here, as Z2i is of lower order. Together with the empty
monomial 1, the above monomials form a basis of C(p) which thus has dimension equal to
2dim p.

Finally, let us note that one can analogously construct a Clifford algebra for any vector
space with a symmetric bilinear form.
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2.2. Dirac operator. Using again our orthonormal basis Zi of p, we define the Dirac
operator

D =
X
i

Zi − Zi 2 U(g)− C(p).

It is easy to show that D is independent of the choice of basis Zi and K-invariant (for the
adjoint action of K on both factors).
The adjoint action of k0 on p0 gives a map from k0 into so(p0). On the other hand, there

is a well known embedding of so(p0) into C(p0), given by

Eij ¡Eji 7!¡1
2
ZiZj ,

where Eij denotes the matrix with all matrix entries equal to zero except the ij entry
which is 1. One can check directly that this map is a Lie algebra morphism (where C(p0)
is considered a Lie algebra in the usual way, by [a, b] = ab ¡ ba). Combining these two
maps, we get a map α : k0 ¡! C(p0) ½ C(p), and we use it to produce a diagonal embedding
of k0 into U(g)− C(p), by

X7! X − 1 + 1− α(X), X 2 k0.
Complexifying this we get a map of k, hence also of U(k) and Z(k) into U(g)− C(p). We
denote the images by k∆, U(k∆) and Z(k∆) (∆ for diagonal). In particular, we get Ωk∆ ,
the image of the Casimir element Ωk of Z(k). Since Ωk = ¡

P
kW

2
k , we see

Ωk∆ = ¡
X
k

(Wk − 1 + 1− α(Wk))
2.

Here is now the announced relationship between D2 and the Casimir element Ωg:

Lemma (Parthasarathy).

D2 = ¡Ωg − 1 +Ωk∆ + C,
where C is a constant that can be computed explicitly (C = jjρcjj2 ¡ jjρjj2, where ρ is the
half sum of positive roots and ρc is the half sum of compact positive roots).

We just start the calculation and invite the reader to continue. Using the relations in
C(p), we see the left hand side is

D2 =
X
i,j

ZiZj − ZiZj = ¡
X
i

Z2i − 1 +
X
i<j

[Zi, Zj ]− ZiZj .

On the other hand, the right hand side is

(
X
k

W 2
k − 1¡

X
i

Z2i − 1)¡
X
k

(W 2
k − 1 + 2Wk − α(Wk) + 1− α(Wk)

2) +C.

One now shows easily thatX
i<j

[Zi, Zj ]− ZiZj = ¡2
X
k

Wk − α(Wk),

and somewhat less easily that
P
k α(Wk)

2 is a constant (actually, exactly the one mentioned
above).
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2.3. Spinors. Let X be a (g,K)-module, so U(g) acts on X. We want to get the Dirac
operator to act, so we have to tensor X with a C(p)-module S; then U(g)− C(p) will act
on X − S, in particular D will act. Since we also want to stay as close as possible to X,
we want to take minimal, i.e., simple S. It turns out there are only one or two choices for
S, depending on whether dim p is even or odd. A simple C(p)-module is called the spin
module, or a space of spinors.
Let us first consider the case when dim p is even, say 2r. The construction of S involves

taking a maximal isotropic subspace u of p with respect to B. We can for example construct
one such subspace starting from our orthonormal basis Zi of p0 and dividing it into two
groups, Z1, . . . , Zr and Zr+1, . . . , Z2r. Now we can take for u the span of all Zs + iZr+s,
s = 1, . . . , r. Clearly, ū will be a complementary isotropic subspace (the conjugation is
with respect to p0), and we have

p = u© ū.
Since the restriction of B to both u and ū is zero, it follows that B identifies ū with the dual
space u∗ of u. Furthermore, the Clifford algebras over u and ū are equal to the exterior
algebras, since B = 0. We take a basis ui of u and the dual basis ūi of ū. Let ū∗ = ū1 . . . ūr
be the corresponding basis element of

Vtop
ū. We define S to be the left ideal in C(p)

generated by ū∗.
More explicitly, one can identify

S »=
^
(u)ū∗ »=

^
(u),

(since ū annihilates ū∗). The action of p is now given by

u ¢ (ui1 ^ ¢ ¢ ¢ ^ uis) = u ^ ui1 ^ ¢ ¢ ¢ ^ uis
ū ¢ (ui1 ^ ¢ ¢ ¢ ^ uis) = ¡2

X
k

B(ū, uik)ui1 ^ . . . buik ¢ ¢ ¢ ^ uis
for u 2 u and ū 2 ū. Namely, u just Clifford multiplies, or equivalently wedge multiplies,
from the left, while ū has to commute through, and then eventually gets killed upon
meeting ū∗.
It is quite easy to show that S is a simple C(p)-module, and not too difficult that it is

the only one up to isomorphism. See e.g. [W], 9.2.1.
Let us now briefly examine the case when dim p is odd, say 2r+1. We can still consider

maximal isotropic u and ū as before, but now there is an additional element Z 2 p,
orthogonal to both u and ū, and we take it to be of norm 1. We again take S to be

V
u,

and we want to define an action of Z on S. From the relations it follows that Z must be
scalar on every ¿homogeneous component of

V
u, and that these scalars must alternate as

the degree changes. To see this, start by observing that all elements of u kill the top wedgeVr
u, and that there are no other elements of

V
u killed by all elements of u. Since

Vr
u is

one dimensional, Z must act on it by a scalar. Now use anticommuting of Z and u∗i ’s to see
that Z acts on

Vr−1
u by the opposite scalar, etc. From Z2 = ¡1, the scalars by which Z

can act are i and ¡i. We ¿thus have two choices: Z can be i on Veven u and ¡i on Vodd u,
or vice versa. This gives us two nonisomorphic simple modules for C(p) in this case. One
shows by a similar argument as above that these are the only simple C(p)-modules up to
isomorphism.

12



2.4. Spin group. Let us again first assume that dim p is even. Let v 2 p0 be of length
1, i.e., B(v, v) = 1. Then v is clearly invertible in C(p0), as v

−1 = ¡v. Consider now the
action of v on p0 by conjugation in C(p0):

rv(X) = vXv
−1 = ¡vXv, X 2 p0.

If X is orthogonal to v, then v and X anticommute, and hence rv(X) = ¡X. If X is
proportional to v, then rv(X) = X. So we see that rv is minus the reflection with respect
to the hyperplane orthogonal to v.
All v as above generate a subgroup of the invertible elements of C(p0) which we denote

by Pin(p0). The above discussion shows that we have a map

Pin(p0) ¡! O(p0),

which is surjective and has kernel f1,¡1g. The connected component of Pin(p0) is the
spin group Spin(p0); it coincides with the products of an even number of vectors v as
above. It is a compact, semisimple group which is a double cover of the group SO(p0).
In case dim p is odd, one can do a similar construction. Instead of doing this, let us

give a uniform description of Spin(p0) valid regardless of the parity of dim p (and also
for forms which are not necessarily positive definite); see [Ko1], p. 282. Let α be the
antiautomorphism of C(p) given by the identity on p. Then Spin(p0) is the group of
all even elements g of C(p0) such that gα(g) = 1 and gxα(g) 2 p0 for all x 2 p0. For
g 2 Spin(p0), define T (g) 2 GL(p0) by T (g)x = gxα(g). Then T : Spin(p0) ¡! SO(p0) is
a double covering. In particular, Spin(p0) is compact (since B is positive definite on p0).
Since Spin(p0) is contained in C(p), it acts on any C(p)-module. For dim p even, there

is only one such simple module, S. Since Spin(p0) consists of even elements of C(p), it
preserves the subspaces

S+ =
Veven

u; S− =
Vodd

u

of S. These are actually irreducible, and they are called spin representations.
For dim p odd, the two spaces of spinors S1 and S2 are irreducible for Spin(p0) and

equivalent to each other. This representation is also called the spin representation.

2.5. Dirac cohomology. We consider the spin double cover K̃ of K, constructed from
the following pullback diagram:

K̃ ¡¡¡¡! Spin(p0)y y
K ¡¡¡¡! SO(p0)

Now if X is a (g,K)-module, then K̃ acts on X − S by acting on both factors: on X
through K and on S through Spin(p0). Moreover, it is easy to show that X − S is a
(U(g)− C(p), K̃)-module. Such modules are defined analogously as (g,K)-modules; here
K̃ acts on U(g)−C(p) through the adjoint action of K on both factors, and the Lie algebra

of K̃ embeds into U(g)− C(p) as the diagonal k∆ described earlier.
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Dirac operator D acts on X −S and we define the Dirac cohomology of X to be the K̃
module

HD(X) = KerD/KerD \ ImD.
If we supposeX is a unitary (g,K)-module, then we can define a positive definite hermitian
form such that D is symmetric with respect to this form. For this we use the usual form on
S for which all elements of p0 are skew-hermitian (see [W], 9.2.3, or [Ch]). It now follows
that if X is unitary, then KerD\ ImD = 0, and the Dirac cohomology of X is just KerD.
More or less all of the above can be found in any of the following references: [Ch], [Ko1],
[W] or [Kn] (even case).
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Lecture 3. Dirac operators and group representations

3.1. Paul Dirac and his operator. Paul Dirac (1902-1984) was one of the greatest
physicists of the 20th century. His research interests were mainly quantum mechanics and
elementary particles. A free particle T in R3 is described by a state function ψ(t, x) with
t 2 R and x 2 R3. To understand this function, one needs to understand the square root
of the wave operator

¤ = ∂2

∂x20
¡ ∂2

∂x21
¡ ∂2

∂x22
¡ ∂2

∂x23
.

In 1928, Dirac found the square root D of ¤. It is a matrix valued first order differential
operator, and it is now called the Dirac operator.

3.2. Square root of Laplace operator. We first describe the square root of the Laplace
operator in Rn:

∆ = ¡ ∂2

∂x21
¡ ∂2

∂x22
¡ ¢ ¢ ¢ ¡ ∂2

∂x2n
.

For n = 1, the Laplacian operator has the form ∆ = ¡ ∂2

∂x2 and the Dirac operator

D = i ∂∂x acts on the space of smooth functions f :R! C.
For n = 2, the Laplacian operator has the form ∆ = ¡ ∂2

∂x2 ¡ ∂2

∂y2 . We define

D =

µ
0 i
i 0

¶
∂

∂x
+

µ
0 1
¡1 0

¶
∂

∂ + y
= γx

∂

∂x
+ γy

∂

∂y
,

which acts on the space of smooth functions f :R2 ! C2. It follows from

γ2x = γ2y = ¡I, γxγy + γyγx = 0

that

D2 = ∆

µ
1 0
0 1

¶
= ∆I.

For n = 3, the Laplacian operator has the form ∆ = ¡ ∂2

∂x21
¡ ∂2

∂x22
¡ ∂2

∂x23
. We define

γ1 =

µ
i 0
0 ¡i

¶
, γ2 =

µ
0 ¡1
1 0

¶
, γ3 =

µ
0 i
i 0

¶
.

Then one has
γ2i = ¡I, γiγj + γjγi = 0(i6= j), i, j 2 f1, 2, 3g.

Set

D = γ1
∂

∂x1
+ γ2

∂

∂x2
γ3

∂

∂ + x3
,

which acts on the space of smooth functions f :R3 ! C2. It follows that

D2 = ∆

µ
1 0
0 1

¶
= ∆I.
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3.3. The original Dirac operator and its generalizations. Dirac defined the square
root of the wave operator ¤ in terms of Pauli matrices:

σ0 =

µ
1 0
0 1

¶
,σ1 =

µ
1 0
0 ¡1

¶
,σ2 =

µ
0 ¡i
i 0

¶
, σ3 =

µ
0 1
1 0

¶
.

Then one has

σ2i = I, σjσk = ¡σkσj = ¡iσl, if j < k and fj, k, lg = f1, 2, 3g.

Define 4£ 4 matrices

γ0 =

µ
0 σ0
σ0 0

¶
, γj =

µ
0 σj
¡σj 0

¶
, j = 1, 2, 3

and

D = γ0
∂

∂x0
+ γ1

∂

∂x1
γ2

∂

∂x2
+ γ3

∂

∂x3
.

It follows from

γ20 = I, γ
2
1 = γ22 = γ23 = ¡I, γjγk = ¡γkγj (j6= k)

that
D2 = ¤I.

Brauer and Weyl afterwards generalized the definition of Dirac operator to arbitrary
finite-dimensional (quadratic) space of arbitrary signature. The Dirac operator defined
in 2.2 is a much more recent analogue for semisimple Lie algebras; it was introduced by
Parthasarathy in 1972.

3.4. Group representations. Representations of finite groups were studied by Dedekind,
Frobenius, Hurwitz and Schur at the beginning of the 20th century. In 1920’s, the focus of
investigations was representation theory of compact Lie groups and its relations to invari-
ant theory. Cartan and Weyl obtained the well-known classification of equivalence classes
of irreducible unitary representations of compact Lie groups in terms of highest weights. In
1930’s, Dirac and Wigner started the investigation of infinite-dimensional representations
of noncompact Lie groups.
Harish-Chandra (1923-1983) was a Ph.D. student at the University of Cambridge under

supervision of Dirac during the years 1945-1947. It was Harish-Chandra who began a
systematical investigation of infinite-dimensional representations of semisimple Lie groups
after his Ph.D. thesis. He lay down the foundation for further development of the theory
for the last half century. In 1964 and 1965, Harish-Chandra published two papers which
gave a complete parametrization of discrete series representations. Later he used this
classification to prove the Plancherel formula. This classification of discrete series is also
crucial to Langlands classification of admissible representations. However, Harish-Chandra
did not give explicit construction of discrete series. His work was parallel to that of Cartan-
Weyl for irreducible unitary representations of compact Lie groups.
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In 1955, Borel and Weil gave explicit realization of irreducible unitary representations
of compact Lie groups. In 1957, Bott generalized Borel-Weil theorem by considering Dol-
beault cohomology of line bundles over G/T , where T is a maximal torus. In 1967, Schmid
proved in his thesis the conjecture of Kostant and Langlands that discrete series repre-
sentations are equivalent to certain Dolbeault cohomology of line bundles over G/T for
noncompact G.
After Hotta’s work on construction of holomorphic discrete series and Parthasarathy’s

construction of most discrete series representations by Dirac operators, Atiyah and Schmid
in 1977 proved that all discrete series can be constructed as kernels of the Dirac operator
over twisted spinor bundles.
The definition of the Dirac operator for a spin bundle was a major accomplishment of

Atiyah-Singer, who obtained the celebrated index theorem. The Dirac cohomology is a
far reaching generalization of the idea of index theory to representation theory. In the
rest of the lectures we see how this simplifies proofs of many classical results such as Bott-
Borel-Weil theorem and Atiyah-Schmid theorem and how it sharpens a result of Langlands
and Hotta-Parthasarthy on multiplicities of automorphic forms. An important tool in our
approach is the theory of Aq(λ)-modules which we review in the next lecture. One should
bear in mind that this theory was not available at the time when the above mentioned
classical results were proved.
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Lecture 4. Introduction to Aq(λ)-modules

Mackey’s construction of induction is based on real analysis, and Zuckerman’s con-
struction of induction which is needed for Aq(λ)-modules is based on complex analysis. It
amounts to the geometric construction of representations by using Dolbeault cohomology
sections of vector bundles over a noncompact complex homogeneous spaces then passing
to the Taylor coefficients.

4.1. θ-stable parabolic subalgerbas. Let H = TA be a fundamental Cartan in G. Let
h0 = t0+a0 be the corresponding θ-stable Cartan subalgebra. Then t0 = h0\k0 is a Cartan
subalgebra of k0. As usual we drop the subscript 0 for the complexified Lie algebras. Let
X 2 it0 be such that ad(X) is semisimple with real eigenvalues. We define
(i) l to be the zero eigenspace of ad(X),
(ii) u to be the sum of positive eigenspaces of ad(X),
(iii) q to be the sum of non-negative eigenspaces of ad(X).

Then q is a parabolic subalgebra of g and q = l+ u is a Levi decomposition. Furthermore,
l is the complexification of l0 = q \ g0. We write L for the connected subgroup of G with
Lie algebra l0. Since θ(X) = X, l,u and q are all invariant under θ, so

q = q \ k+ q \ p.
In particular, q \ k is a parabolic subalgebra of k with Levi decomposition

q \ k = l \ k+ u \ k.
We call such a q a θ-stable parabolic subalgebra.
Let f ½ q be any subspace stable under ad(t). Then there is a subset fα1, . . . ,αrg of t∗

and subspaces fαi of f such that if y 2 t and v 2 fαi , then
ad(y)v = αi(y)v.

We write
∆(f, t) = ∆(f) = fα1, . . . ,αrg,

the weights or roots of t in f. Here ∆(f) is a set with multiplicities, with αi having
multiplicity dim fαi . Then if

ρ(f) = ρ(∆(f)) =
1

2

X
αi∈∆(fαi)

αi 2 t∗,

we have

ρ(f)(y) =
1

2
tr(ad(y)jt) (y 2 t).

Fix a system ∆+(l\k) of positive roots in the root system ∆(l\ k, t). (Note that we extend
the meaning of root system to include the zero weights.) Then

∆+(k) = ∆+(l \ k) [∆(u \ k)
is a positive root system for t in k.
If Z is an (l, L \K)-module, we write Z# for Z − ^topu. We set

pro(Z#) = HomU(q)(U(g), Z
#)L∩K−finite and ind(Z#) = U(g)−U(q̄) Z#.

Then both pro(Z#) and ind(Z#) are (g, L \K)-modules.
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4.2. Zuckerman and Bernstein functors Γ. Let V be a (g, L \ K)-module. The
Zuckerman functor Γ = Γg,Kg,L∩K can be defined as follows (if K is connected): Let Γ(V ) be
the sum of all finite-dimensional k0-invariant subspaces of V such that the k0-action can be
lifted to K. For a morphism ϕ : V ¡!W of (g, L\K)-modules, let Γ(ϕ) be the restriction
of ϕ to Γ(V ).
The functor Γ is not exact, but only left exact. Therefore one also needs to study the

right derived functors Γj . For the study of unitarity, it is useful to consider also a “left
analog” of Γ, the Bernstein functor Π = Πg,Kg,L∩K and its left derived functors Πj . Π is
not so easily defined directly; however, there is a uniform way to describe Zuckerman and
Bernstein functors in terms of Hecke algebras.
Let R(K) be the space of distributions on K. Let R(g, K) be the space of left and right

K-finite distributions on G with support in K. Then

R(g,K) »= R(K)−U(k) U(g) »= U(g)−U(k) R(K).

Then one has that the Zuckerman functor on V is

Γ(V ) = HomR(g,L∩K)(R(g,K), V )K−finite,

and the Bernstein functor is

Π(V ) = R(g,K)−R(g,L∩K) V.

We set
Rj(Z) = Γj(proZ#) and Lj(Z) = Πj(indZ#).

4.3. Irreducibility and unitarity of cohomologically induced modules. The her-
mitian inner product is not obvious for cohomological parabolic induction. This makes
studying unitarity a very difficult problem for cohomologically induced modules. Never-
theless, Vogan proved the following powerful theorem.

Theorem ([V2]). Suppose q is a θ-stable parabolic subalgebra of g and Z is an (l, L\K)-
module with infinitesimal character λ. If Z is weakly good (i.e. Rehλ + ρ(u),αi ¸ 0 for
any α 2 ∆(u)), then
(i) Lj(Z) = Rj(Z) = 0 for j6= s (s = dim u \ k).
(ii) Ls(Z) »= Rs(Z).
(iii) If Z is irreducible, then Ls(Z) is irreducible or zero.
(iv) If Z is irreducible and in addition is good (i.e. Rehλ+ρ(u),αi > 0 for any α 2 ∆(u)),

then Ls(Z) is irreducible and nonzero.
(v) If Z is unitary, then Ls(Z) is unitary.

Remark.. There are two dualities:

(Πg,Kg,L∩K)j »= (Γg,Kg,L∩K)2s−j and Πj(W )
h = Γj(Wh)

where Wh is the hermitian dual of W .
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4.4. Aq(λ)-modules. Now we consider Z to be a one-dimensional representation. λ: l!
C is called admissible if it satisfies the following conditions:
(i) λ is the differential of a unitary character of L

(ii) if α 2 ∆(u), then hα,λjti ¸ 0.
Given q and an admissible λ, define

µ(q,λ) = representation of K of highest weight λjt + 2ρ(u \ p). (4.1)

The following theorem is due to Vogan and Zuckerman.

Theorem ([VZ], [V2]). Suppose q is a θ-stable parabolic subalgebra of g and λ: l! C is
admissible as defined above. Then there is a unique unitary (g,K)-module Aq(λ) with the
following properties:

(i) The restriction of Aq(λ) to k contains µ(q,λ) as defined in (4.1);

(ii) Aq(λ) has infinitesimal character λ+ ρ;

(iii) If the representation of k of the highest weight δ occurs in Aq(λ), then

δ = µ(q,λ) +
X

β∈∆(u∩p)
nββ

with nβ non-negative integers. In particular, µ(q,λ) is the lowest K-type of Aq(λ).

We note that the unitarity of Aq(λ) in the above theorem was proved in [V2]. In the
context of definition of θ-stable parabolic subalgebras, if we take X to be a regular element,
then we obtain a minimal θ-stable subalgebra b = h+ n. We call such a subalgebra b a θ-
stable Borel subalgebra. The corresponding representation Ab(λ) is called a fundamental
series representation. It is the (g,K)-module of a tempered representation of G. If G
has a compact Cartan subgroup, then Ab(λ) is the (g, K)-module of a discrete series
representation of G. Moreover, all (g,K)-modules of discrete series representations of G
are of this form; this will be important in Lecture 6. For the proof of the main result
of [HP] (Lecture 5) it is only needed that Ab(λ) has infinitesimal character λ + ρ and
the lowest K-type µ(b,λ) = λ + 2ρn, where ρn = ρ(n \ p). These facts are contained in
Theorem 4.4.

4.5. Salamanca-Riba’s classification of the unitary dual with strongly regular
infinitesimal characters. Let h be a Cartan subalgebra of g. Given any weight Λ 2 h∗,
fix a choice of positive roots ∆+(Λ, h) for Λ so that

∆+(Λ, h) ½ fα 2 ∆(g, h) j RehΛ,αi ¸ 0g.

Set

ρ(Λ) =
1

2

X
α∈∆+(Λ,h)

α.
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Definition. A weight Λ 2 h∗ is said to be real if

Λ 2 it∗0 + a∗0,

and to be strongly regular if it is real and

hΛ¡ ρ(Λ),αi ¸ 0, 8α 2 ∆+(Λ, h).

Salamanca-Riba [SR] proved that if an irreducible unitary (g,K)-moduleX has strongly
regular infinitesimal character then X »= Aq(λ) for some θ-stable parabolic subalgebra q
and admissible character λ of L. Moreover, she proved the following stronger theorem
which was conjectured by Vogan.

Theorem(Salamanca-Riba). Suppose that X is an irreducible unitary (g,K)-module
with infinitesimal character Λ 2 h∗ satisfying

RehΛ¡ ρ(Λ),αi ¸ 0, 8α 2 ∆+(Λ, h).

Then there exist a θ-stable parabolic subalgebra q = l + u and an admissible character λ
of L such that X is isomorphic to Aq(λ).
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Lecture 5. Vogan’s conjecture and its proof

In this lecture we explain Vogan’s conjecture on Dirac cohomology and a proof of this
conjecture. The presentation mostly follows [HP].

5.1. Vogan’s conjecture. Let T be a maximal torus in K, with Lie algebra t0. Let h be
the centralizer of t in g; it is a θ-stable Cartan subalgebra of g containing t. Since h = t©pt,
we get an embedding of t∗ into h∗. Therefore any element of t∗ determines a character of
the center Z(g) of U(g). Here we are using the standard identification Z(g) »= S(h)W via
the Harish-Chandra homomorphism (W is the Weyl group), by which the characters of
Z(g) correspond to the W -orbits in h∗.
We fix a positive root system∆+(k, t) for t in k; let ρc = ρ(∆+(k, t)) be the corresponding

half sum of the positive roots. For any finite dimensional irreducible representation (γ, Eγ)
of k, we denote its highest weight in t∗ by γ again.
Vogan [V3] made a conjecture which was proved as the following theorem:

Theorem [HP]. Let X be an irreducible (g, K)-module, such that the Dirac cohomology

of X is non-zero. Let γ be a K̃-type contained in the Dirac cohomology. Then the
infinitesimal character of X is given by γ + ρc.

In view of the remarks in 2.5, in caseX is unitarizable, we get the following consequence:

Corollary. Let X be an irreducible unitarizable (g,K)-module, such that KerD 6= 0.

Let γ be a K̃-type contained in KerD. Then the infinitesimal character of X is given by
γ + ρc.

In fact, Vogan first conjectured the above corollary and then he saw that the above
theorem should be the right generalization to non-unitary representations.

5.2. An algebraic reduction of the conjecture. Vogan further reduced the claim of
his conjecture to an entirely algebraic statement in the algebra U(g)− C(p). Let us first
recall that in 2.2 we described a diagonal copy k∆ of k inside U(g)−C(p). U(k∆) and Z(k∆)
denote the corresponding universal enveloping algebra and its center. It is easy to see that
they are also embedded into U(g) − C(p); namely, if u 2 U(k) is a PBW monomial, then
its image in U(g)− C(p) is the sum of u− 1 and terms of the form w − a, with w having
smaller degree than u.
We can now state Vogan’s algebraic conjecture that implies the theorem in 5.1.

Theorem. Let z 2 Z(g). Then there is a unique ζ(z) in the center Z(k∆) of U(k∆), and
there are K-invariant elements a, b 2 U(g)−C(p), such that

z − 1 = ζ(z) +Da+ bD.

To see that this theorem implies the theorem in 5.1, let x̃ 2 (X − S)(γ) be non-zero,
such that Dx̃ = 0 and x̃ /2 ImD. Note that both z − 1 and ζ(z) act as scalars on x̃. The
first of these scalars is the infinitesimal character Λ of X applied to z, and the second is
the k-infinitesimal character of γ applied to ζ(z), that is, (γ + ρc)(ζ(z)).
On the other hand, since (z− 1¡ ζ(z))x̃ = Dax̃, and x̃ /2 ImD, it follows that (z − 1¡

ζ(z))x̃ = 0. Thus the above two scalars are the same, i.e., Λ(z) = (γ + ρc)(ζ(z)).
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In 5.6 we will show that under identifications Z(g) »= S(h)W »= P (h∗)W and Z(k∆) »=
Z(k) »= S(t)WK »= P (t∗)WK the homomorphism ζ corresponds to the restriction of polyno-
mials on h∗ to t∗. Here the already mentioned inclusion of t∗ into h∗ is given by extending
functionals from t to h, letting them act by 0 on a = pt. It follows that Λ = γ + ρc, as
claimed.

5.3. A differential complex induced by Dirac operator. Let us first note that the
Clifford algebra C(p) has a natural Z2-gradation into even and odd parts:

C(p) = C0(p)©C1(p).

This gradation induces a Z2-gradation on U(g)−C(p) in an obvious way.
We define a map d from U(g)−C(p) into itself, as d = d0 © d1, where

d0 : U(g)−C0(p) ¡! U(g)−C1(p)

is given by
d0(a) = Da¡ aD, (5.3a)

and
d1 : U(g)−C1(p) ¡! U(g)−C0(p)

is given by
d1(a) = Da+ aD. (5.3b)

In other words, if ²a denotes the sign of a, that is, 1 for even a and ¡1 for odd a, then
d(a) = Da¡ ²aaD (for homogeneous a, i.e., those a which have sign).
We will use the formula for D2 from Lemma 2.2, namely

D2 = ¡Ωg − 1 +Ωk∆ + C

to prove that our d induces a differential on the K-invariants in U(g)− C(p).
Proposition. Let d be the map defined in (5.3a) and (5.3b). Then
(i) d is K-equivariant, hence induces a map from (U(g)− C(p))K into itself.
(ii) d2 = 0 on (U(g)−C(p))K .

Proof. (i) is trivial, since D is K-invariant.
Let a 2 (U(g)− C(p))K be even or odd. Then

d2(a) = d(Da¡ ²aaD) = D2a¡ ²DaDaD ¡ ²a(DaD ¡ ²aDaD2) = D2a¡ aD2,

since obviously ²aD = ²Da = ¡²a. From the formula for D2 (Lemma 2.2), we see that a
will commute ¿with D2 if and only if it commutes with Ωk∆ . If a is K-invariant, then this
clearly holds, as a then commutes with all of U(k∆). ¤
Thus we see that d is a differential on (U(g)− C(p))K , of degree 1 with respect to the

above defined Z2-gradation. Note that we do not have a Z-gradation on (U(g) − C(p))K
so that d is of degree 1, i.e., this is not a complex in the usual sense.
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5.4. Determination of cohomology of the complex. We want to calculate the co-
homology of d. Before we state the result, let us note the following:

Proposition. Z(k∆) is in the kernel of d.

Proof. Since D is K-invariant, it commutes with k∆, and thus with U(k∆) and in particular
with Z(k∆). Since Z(k∆) ½ (U(g)− C0(p))K , the claim follows. ¤

We now state the following theorem which implies Theorem 5.2.

Theorem. Let d be the differential on (U(g)−C(p))K constructed above. Then Ker d =
Z(k∆)© Im d. In particular, the cohomology of d is isomorphic to Z(k∆).
The proof uses the standard method of filtering the algebra (the filtration comes from

the usual filtration on U(g)), and then passing to the graded algebra. This graded algebra
is of course S(g) − C(p). The analogue of our theorem in the graded setting is easy; the
complex we get is closely related to the standard Koszul complex associated to the vector
space p. Namely, the operator d̄ induced by d on S(g)−C(p) is given by supercommuting
with

D̄ =
X
i

Zi − Zi,

and one easily calculates that

d̄(U − Zi1 . . . Zik) = ¡2
kX
j=1

uZij − Zi1 . . . Ẑij . . . Zik .

Upon identifying C(p) and
V
(p) as vector spaces and writing

S(g)− C(p) = S(k)− (S(p)−
^
(p)),

we see that

d̄ = (¡2)id− dp,
where dp is the Koszul differential for the vector space p. In particular, d̄ is a differential
with cohomolgy S(k)−C, which embeds into S(g)−C(p) by embedding C into S(p)−V(p)
as the constants. Passing to K-invariants, we see that

Ker d̄ = S(k)K − 1© Im d̄

on (S(g)−C(p))K . This is the graded version of our theorem.
One can now go back to the original setting by an easy induction on the degree of the

filtration. The main point is that one can reconstruct an element of Z(k∆) from its top
term.
We refer the reader to our paper [HP] for the details of the above proof. Let us note a

consequence, which immediately proves Vogan’s conjecture, just put b = a.
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Corollary. Let z 2 Z(g). Then there is a unique ζ(z) 2 Z(k∆), and there is an a 2
(U(g)− C1(p))K , such that

z − 1 = ζ(z) +Da+ aD.

Proof. This follows at once from Theorem 5.4, if we just notice that z − 1 commutes with
D (indeed, it is in the center of U(g)− C(p)), and being even, it is thus in Ker d. Hence,
it is of the form ζ(z) + d(a) = ζ(z) +Da+ aD.

5.5. Dirac inequality and unitary representations with nonzero Dirac cohomol-
ogy. We first indicate how to check if a unitarizable X has non-zero Dirac cohomology.

Proposition. Let X be an irreducible unitarizable (g, K)-module with infinitesimal char-

acter Λ. Assume that X − S contains a K̃-type γ, i.e., (X − S)(γ)6= 0. Assume further
that jjΛjj = jjγ + ρcjj. Then the Dirac cohomology of X, KerD, contains (X − S)(γ).
Proof. This again uses the formula for D2 from Lemma 2.2. The formula implies that D2

acts on (X − S)(γ) by the scalar

¡(jjΛjj2 ¡ jjρjj2) + (jjγ + ρcjj2 ¡ jjρcjj2) + (jjρcjj2 ¡ jjρjj2) = 0.

It follows from self-adjointness of D that D = 0 on (X − S)(γ). ¤
Note that Corollary 5.1 implies the converse of the above proposition: if X is irreducible

unitarizable, with Dirac cohomology containing (X − S)(γ), then the infinitesimal char-
acter of X is Λ = γ + ρc. Hence jjΛjj = jjγ + ρcjj. We note that all irreducible unitary
representations with nonzero Dirac cohomology and strongly regular infinitesimal charac-
ters were described in [HP]. They are all Aq(λ)-modules. See Proposition 5.6 where this
is explained in a special case.
Finally, combining the above proposition with Corollary 5.1, we sharpen the Parthasarathy’s

Dirac inequality:

Theorem (Extended Dirac Inequality). Let X be an irreducible unitarizable (g,K)-
module with infinitesimal character Λ. If (X − S)(γ)6= 0, then

jjΛjj · jjγ + ρcjj.

The equality holds if and only if some W conjugate of Λ is equal to γ + ρc.

5.6. Fundamental series and determination of ζ.

Proposition. Let X be an Ab(λ)-module (as in Theorem 4.4) with b a θ-stable Borel
subalgebra, i.e., X is a fundamental series representation. Assume that λja = 0. Then the
Dirac cohomology of X contains a K̃-type Eγ of highest weight γ = λ+ ρn.

Proof. The lowest K-type µ(b,λ) has highest weight λ + 2ρn. Since ¡ρn is a weight of
S, Eγ occurs in µ(b,λ) − S, hence in X − S. Since the infinitesimal character of X is
λ+ρ = γ+ρc, it follows that Eγ is in the kernel of the Dirac operator D, i.e., in the Dirac
cohomology of X. ¤
Now we can describe the homomorphism ζ explicitly.
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Theorem. The homomorphism ζ satisfies the following commutative diagram:

Z(g)
ζ¡¡¡¡! Z(k)y y

S(h)W
Res¡¡¡¡! S(t)WK

Here the vertical arrows are the Harish-Chandra homomorphisms, and the map Res cor-
responds to the restriction of polynomials on h∗ to t∗ under the identifications S(h)W =
P (h∗)W and S(t)WK = P (t∗)WK . As before, we can view t∗ as a subspace of h∗ by extend-
ing functionals from t to h, letting them act by 0 on a.

Proof. Let ζ̄ : P (h∗)W ¡! P (t∗)WK be the homomorphism induced by ζ under the iden-

tifications via Harish-Chandra homomorphisms. Furthermore, let ζ̃ : t∗/WK ¡! h∗/W be
the morphism of algebraic varieties inducing the homomorphism ζ̄. We have to show that
ζ̄ is the restriction map, or alternatively that ζ̃ is given by the inclusion map.
We know from the above proposition that the fundamental series representation Ab(λ)

has the lowest K-type
µ(b,λ) = λ+ 2ρn,

and infinitesimal character
Λ = λ+ ρ.

On the other hand, it follows from Proposition 5.5 that if λja = 0, then the Dirac coho-

mology of Ab(λ) contains the K̃-type of highest weight γ = λ+ ρn.
When proving that Theorem 5.2 implies Theorem 5.1, we saw that Λ(z) = (γ+ρc)(ζ(z)),

for all z 2 Z(g). In our present situation we however have

Λ = λ+ ρ = (λ+ ρn) + ρc = γ + ρc,

so it follows that Λ(ζ(z)) = Λ(z) for all z 2 Z(g). This means that ζ̃(Λ) = Λ, for all
infinitesimal characters Λ of the above fundamental series representations.
It is clear that when λ ranges over all admissible weights in h∗ such that λja = 0, then

Λ = λ+ ρ form an algebraically dense subset of t∗. To see this, it is enough to note that
such λ span a lattice in t∗. Hence ζ̃ is indeed the inclusion map. ¤
5.7. Remark on finite-dimensional representations. Both Vogan and Kostant
pointed out to us that Theorem 5.6 can also be proved by considering finite-dimensional
representations with non-zero Dirac cohomology. These are the representations Vλ of high-
est weight λ 2 t∗ ½ h∗. See [HP, Remark 5.6.]
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Lecture 6. Generalized Bott-Borel-Weil
Theorem and construction of discrete series

6.1. Kostant cubic Dirac operator. Let G be a compact semisimple Lie group and
R be a closed subgroup. Let g and r be the complexifications of the corresponding Lie
algebras. Let g = r© p be the orthogonal decomposition with respect to the Killing form.
Choose an orthonormal basis Z1, . . . , Zn of p with respect to the Killing form h , i. Kostant
[K2] defines his cubic Dirac operator to be the element

D =
nX
i=1

Zi − Zi + 1− v 2 U(g)−C(p),

where v 2 C(p) is the image of the fundamental 3-form ω 2 V3(p∗),
ω(X, Y,Z) = ¡1

2
hX, [Y,Z]i

under the Chevalley identification
V
(p∗)! C(p). Kostant’s cubic Dirac operator reduces

to the ordinary Dirac operator when (g, r) is a symmetric pair, since ω = 0 for the sym-
metric pair. Kostant ([K2, Theorem 2.16]) shows that

D2 = Ωg − 1¡Ωr∆ +C, (6.1)

where C is the constant jjρjj2 ¡ jjρrjj2. This is the generalization of Lemma 2.2. The
sign change comes from the fact that Kostant uses a slightly different definition of C(p),
requiring Z2i to be 1 and not -1. Over C, there is no substantial difference between the
two conventions.
Now we can define the cohomology of the complex (U(g)−C(p))R using Kostant’s cubic

Dirac operator exactly as in Lecture 5, i.e., by d(a) = Da ¡ ²aaD. As before, d2 = 0 on
(U(g)−C(p))R. Since the degree of the cubic term is zero in the filtration of U(g)−C(p)
used in Lecture 5, the proof Theorem 5.4 goes through without change and we get

Theorem. Let d be the differential on (U(g)− C(p))R defined by Kostant’s cubic Dirac
operator as above. Then Ker d = Im d © Z(r∆). In particular, the cohomology of d is
isomorphic to Z(r∆).

As a consequence we get an analogous homomorphism ζ : Z(g) ! Z(r) for a reductive
subalgebra r in a semisimple Lie algebra g and a more general version of Vogan’s conjecture.

6.2. Kostant’s theorem on cohomology of homogeneous spaces. If we fix a Cartan
subalgebra t of r and extend t to a Cartan subalgebra h of g, then ζ is induced by the
Harish-Chandra homomorphism exactly as in Theorem 5.6. This was proved in [K3], by
constructing a sufficiently large family of highest weight modules with known infinitesimal
characters and nonzero Dirac cohomology.
Moreover, the homomorphism ζ induces the structure of a Z(g)-module on Z(r), which

has topological significance. Namely, Kostant has shown that from a well-known theorem
of H. Cartan [C], which is by far the most comprehensive result on the real (or complex)
cohomology of a homogeneous space, one has
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Theorem [K3]. There exists an isomorphism

H∗(G/R,C) »= TorZ(g)∗ (C, Z(r)).

6.3. A generalized Weyl character formula. We assume that rankR = rankG. Let
W 1 ½ Wg be the subset of Weyl group elements that map the positive Weyl chamber for
g into the positive Weyl chamber for r. If λ is a dominant weight for g, then λ+ ρ(g) lies
in the interior of the Weyl chamber for g. It follows that w(λ+ ρ(g)) lies in the interior of
the Weyl chamber for r for any w 2 W 1. Thus, w ¦ λ = w(λ+ ρ(g))¡ ρ(r) is a dominant
weight for r.

Theorem [GKRS].

Vλ − S+ ¡ Vλ − S− =
X
w∈W 1

(¡1)l(w)Uw¦λ.

It follows that

ch(Vλ) =

P
w∈W 1(¡1)l(w)ch(Uw¦λ)P
w∈W1(¡1)l(w)ch(Uw¦0) .

Note that the above formula reduces to the Weyl character formula when R is a maximal
torus T .

6.4. A generalized Bott-Borel-Weil Theorem. We assume that Uµ is an irreducible

representation of R (or R̃) so that S−Uµ is a representation of R. The Dirac operator acts
on the smooth and L2-sections on the twisted spinor bundles over G/R, if we let Zi 2 g
act by differentiating from the right. So we have

D:L2(G)−R (S − Uµ)! L2(G)−R (S − Uµ).

We write this action in another form:

D: HomR̃(U
∗
µ , L

2(G)− S)! HomR̃(U
∗
µ , L

2(G)− S).

Then D is formally self-adjoint. By Peter-Weyl theorem, one has L2(G) »= ©λ∈ bGVλ − V ∗λ .
It follows that

KerD =
M
λ∈ bG

Vλ −KerfD: HomR̃(U∗µ , V ∗λ − S) ªg.

The proved Vogan’s conjecture implies KerD 6= 0 if and only if λ + ρ(g) is conjugate to
µ+ ρ(r) by the Weyl group. Further consideration of the multiplicity results in

Theorem. One has KerD = Vw(µ+ρ(r))−ρ(g) if there exists a w 2Wg so that w(µ+ρ(r))¡
ρ(g) is dominant, and KerD is zero if no such w exists.

In the case R = T a maximal torus, this is a version of Borel-Weil theorem.
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Corollary. Consider

D+:L2(G)−R (S+ − Uµ)! L2(G)−R (S− − Uµ)

and the adjoint

D−:L2(G)−R (S− − Uµ)! L2(G)−R (S+ − Uµ).

One has IndexD = dimkerD+¡dimKerD− = (¡1)l(w) dimVw(µ+ρ(r))−ρ(g) if there exists
a w 2Wg so that w(µ+ ρ(r))¡ ρ(g) is dominant and it is zero if no such w exists.

6.5. Geometric construction of discrete series. Let G be a linear semisimple non-
compact Lie group. Let K be a maximal compact subgroup of G. Assume that rankG =
rankK. Let g0 = k0 + p0 be the Cartan decomposition of the Lie algebra of G. Then
u0 = k0 + ip0 is a compact real form of g = g0 −R C. Let U be the compact analytic
subgroup in the complexification GC of G with Lie algebra u0.
Borel showed that there exists a torsion free discrete subgroup Γ of G so that ΓnG and

X = ΓnG/K are compact smooth manifolds. For any µ 2 bK, the Dirac operator D acts
on the smooth sections of the twisted spin bundle in a similar way described in 6.4.

D:C∞(G/K,S − Eµ)! C∞(G/K, S − Eµ).

Note that the above action of D commutes with the left action of G. So we can consider
the elliptic operator

D+
µ (X):C

∞(ΓnG/K,S+ −Eµ)! C∞(ΓnG/K,S− − Eµ).

The index of D+
µ (X) can be computed by Atiyah-Singer Index Theorem

IndexD+
µ (X) =

Z
X

f(Θ,Φ),

where Θ is the curvature of X and Φ is the curvature of the twisted spinor bundle over
G/K. By the homogeneity, f(Θ,Φ) is a multiple of the volume form depending only on µ,
i.e., f(Θ,Φ) = c(µ)dx. Thus

IndexD+
µ (X) = c(µ)vol(ΓnG/K).

Let Y = U/K be the compact homogeneous space. By Hirzebruch proportionality princi-
ple, the index of

D+
µ (Y ):C

∞(U/K,S+ − Eµ)! C∞(U/K, S− −Eµ)

can be computed in the same way and

IndexD+
µ (Y ) = (¡1)qc(µ)vol(U/K),
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where q = dimG/K = dimU/K. It follows that

IndexD+
µ (X) = (¡1)q

vol(ΓnG/K)
vol(U/K)

IndexD+
µ (Y ).

If we normalize the Haar measure so that vol(U) = 1, then

IndexD+
µ (X) = (¡1)qvol(ΓnG) IndexD+

µ (Y ).

Let L2(G) »= R bGHj −H∗j dµ(j) be the abstract Plancherel decomposition. Then the L2
sections of the twisted spinor bundles are decomposed as

L2(G/K,S − Eµ) »=
Z
bGHj −HomK(Hj , S − Eµ)dµ(j).

It follows that the L2-sections of KerD are decomposed as

KerD »=
Z
bGHj −KerfD: HomK̃(E

∗
µ, ,H

∗
j − S) ªgdµ(j).

By the proved conjecture of Vogan, if Hj occurs in the decomposition of KerD then it
has infinitesimal character µ+ ρc. There are at most finitely many representations with a
fixed infinitesimal character. Thus, if KerD is nonzero, the occurred Hj must be in the
discrete spectrum, i.e., a discrete series representation. It follows from Corollary 6.4 and
the above discussion of the indices that w(µ + ρc) ¡ ρ is dominant. In other words, the
infinitesimal character is strongly regular and therefore Hj is an Aq(λ)-module. Write λ
for w(µ + ρc). In case λ is regular, this discrete series is isomorphic to Ab(λ) with the
lowest K-type w(µ + ρc) + ρc ¡ ρn. Therefore, we proved the following theorem due to
Atiyah and Schmid.

Theorem (Atiyah-Schmid [AS]). Let G be a linear group. Then the kernel of the Dirac
operator D acting on the L2-sections of the twisted spinor bundle corresponding to Eµ is
a discrete series representation if there exists a w 2Wg so that w(µ+ ρc)¡ ρ is dominant,
and KerD is zero otherwise.

We note that Atiyah and Schmid also extended this geometric construction of discrete
series to nonlinear groups.
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Lecture 7. Lie algebra cohomology

7.1. Definition. Let g be a complex Lie algebra and V a g-module. The space of
invariants of V with respect to g is the vector space

V g = fv 2 V ¯̄Xv = 0, 8X 2 gg.
Note that this definition is consistent with the definition of invariant (fixed) vectors under
a group action. Upon differentiation, the condition of being fixed becomes the condition
of being annihilated.
One also considers invariants not with respect to whole g but with respect to some

subalgebra. Let us describe an important example. Let g be semisimple, h a Cartan
subalgebra, ∆ the set of roots for g with respect to h, ∆+ a set of positive roots, and
n = n+ and n− the corresponding subalgebras like in Section 1.2.
Then one is interested in the space V n of n-invariants in V , which is now not only a

vector space but an h-module. We already know why this space is interesting; if V is finite
dimensional irreducible, then V n is one dimensional (the highest weight subspace), and the
h-action on V n, i.e., the highest weight of V , determines V . If V is still finite dimensional
but reducible, V = ©iVi, then each Vi contributes a weight vector to V n and V n thus
encodes the information about this decomposition.
We consider the functor V 7! V n from the categoryM(g) of g-modules into the category

V ectC of complex vector spaces. (Analogously, V 7! V n would be a functor from M(g)
intoM(h).) This functor is in general left exact, but not exact. This means that if

0 ¡! U ¡! V ¡!W ¡! 0

is a short exact sequence of g-modules (which is a slightly more precise way to write
W = V/U), then

0 ¡! Ug ¡! V g ¡!W g

is exact, but V g ¡! W g is not surjective in general. Thus we define the g-cohomology
functors to be the right derived functors of the functor V 7! V g.
To motivate the use of derived functors, let us consider the following simple exam-

ple. Knowing how one can benefit from the usual duality operation for vector spaces,
V ∗ = HomC(V,C), one would like to have something similar for modules, say over Z (for
simplicity). If one tries to consider V ∗ = HomZ(V,Z), then one notices that for free mod-
ules of finite rank it works fine (including double dual giving back the same module), but
for say Z2, one has

HomZ(Z2,Z) = 0.
Namely, Z2 is not free, and its generator 1 can not be mapped anywhere but to 0. We can
however resolve Z2 by free modules:

0 ¡! Z 2·¡! Z ¡! Z2 ¡! 0.

Thus the complex 0 ¡! Z 2·¡! Z ¡! 0, concentrated in degrees ¡1 and 0, should replace the
module Z2. If we take this resolution and plug it in the functor HomZ(¡,Z) instead of the
module Z2 it resolves, we get the complex

0 ¡! Z 2·¡! Z ¡! 0
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which is concentrated in degrees 0 and 1 (by contravariance, the arrows changed direction).
Its zeroth cohomology is 0, corresponding to the observed fact HomZ(Z2,Z) = 0. However,
its first cohomology is Z2 (this is Ext1Z(Z2,Z), the first derived functor of Hom). If we now
apply duality again, we get back to our resolution of Z2, that is Z2 in the zeroth cohomology.
To make the above completely precise, one would need to pass to derived category,

which is a way of making modules equal (isomorphic) to their resolutions. However, the
point we wanted to make is visible: the functor itself maybe sometimes gives nothing, but
considering also the derived functors may give more.
We now get back to our covariant, left exact functor V 7! V g. In principle, the right de-

rived functors are defined using injective resolutions 0 ¡! V ¡! I ·; so the i-th g-cohomology
space of V would be

Hi(g;V ) = Hi((I ·)g).

Namely, as above, we replace V by its resolution, plug the resolution in the functor, get
a complex with induced differential, and then take cohomology. However, this is not very
explicit, as injective resolutions are rather complicated to write down. Fortunately we have
a better possibility: note that

V g = Homg(C, V ),

where C is the trivial g-module; simply identify every map φ : C ¡! V with φ(1) 2 V g. This
means that our g-cohomology Hi(g;V ) is equal to Extig(C, V ), and to define it (calculate
it) we can resolve C by free modules (or projectives) instead of resolving V by injectives.
This is done by the so called standard, or Koszul complex

U(g)−V·g ²¡! C ¡! 0,

where the g-action is given by left multiplication in the U(g)-factor, the differential is the
deRham differential

d(u−X1 ^ ¢ ¢ ¢ ^Xk) =
X
i

(¡1)i−1uXi −X1 ^ . . . bXi ¢ ¢ ¢ ^Xk+X
i<j

(¡1)i+ju− [Xi,Xj ] ^X1 ^ . . . bXi . . . bXj ¢ ¢ ¢ ^Xk,
and ² is the augmentation map, given by 17! 1 and gU(g)7! 0.
To see that this is indeed a resolution, one considers the graded version, S(g)−V g and

is thus lead to the analogous question of resolving the trivial module C over a polynomial
algebra. Now for polynomials in one variable, it is obvious how to do this:

0 ¡! C[X] X·¡! C[X] ¡! C ¡! 0

is clearly the required resolution. To increase the number of variables, this is tensored with
itself several times; the introduction of signs which leads to the exterior algebra is forced
by the requirement d2 = 0. The reader is invited to try to construct a resolution for two
variables from scratch and see how the exterior algebra appears quite naturally.
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Now Hi(g;V ) is the i-th cohomology of the complex

Hom·U(g)(U(g)−
V·
g, V ) = Hom·C(

V·
g, V )

with the induced differential

dα(X1 ^ ¢ ¢ ¢ ^Xk) =
X
i

Xiα(X1 ^ . . . bXi ¢ ¢ ¢ ^Xk) +X
i<j

(¡1)i+jα([Xi,Xj ] ^ . . . ),

for α 2 Homk−1C (
V·
g, V ). Of course, H0(g;V ) = V g.

7.2. Properties and basic applications. Here are some properties of these functors:

(1) Any short exact sequence

0 ¡! U ¡! V ¡!W ¡! 0

of g-modules gives rise to a long exact sequence of cohomology

0 ¡! Ug ¡! V g ¡!W g ¡! H1(g;U) ¡! H1(g;V ) ¡! H1(g;W ) ¡! H2(g;U) ¡! . . .

This is a completely general property of derived functors. It can be used to calculate
cohomology in some case, or for various proofs, like the one below.

(2) If g is semisimple and if V has nontrivial infinitesimal character, then Hi(g;V ) = 0
for all i. This can be proved by noting that since any Z 2 Z(g) with no constant
term vanishes on the trivial module C, then by a standard homological argument
it follows that the action of Z on the standard complex which is a resolution of C
must be homotopic to 0.

From this statement one can obtain Weyl’s theorem mentioned in 1.2: any finite dimen-
sional module over a semisimple Lie algebra is a direct sum of irreducibles. This statement
is equivalent to the statement that any short exact sequence

0 ¡! U
i¡! V

p¡!W ¡! 0

of finite dimensional g modules is split, i.e., there is an s : W ¡! V such that p ± s is the
identity on W . Indeed, such a splitting exhibits V as a direct sum of U and W and we
can then decompose modules completely by induction on the dimension.
Now to get a splitting, it suffices to know that the sequence

Homg(W,V )
p◦¡! Homg(W,W ) ¡! 0

is exact; then we get our splitting s as a preimage of idW . But the functor Homg(W,¡)
is a composition of two exact functors: HomC(W,¡), which is clearly exact, and (¡)g
which is also exact on finite dimensional modules by the long exact sequence and the fact
that H1(g;¡) vanishes on all finite dimensional modules. The vanishing of H1 has to be
checked separately for the trivial module C; this is an easy calculation.

(3) Similarly, Levi’s theorem that any Lie algebra is a semidirect product of the rad-
ical and a semisimple subalgebra can be obtained from the fact that the second
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cohomology of finite dimensional modules over a semisimple Lie algebra vanishes.
Namely, by definition the radical r of g is the biggest solvable ideal, so there is an
exact sequence

0 ¡! r ¡! g ¡! l ¡! 0

of Lie algebras, with l semisimple. Now the nontrivial extensions of l by r can be
seen to correspond to H2(l; r). As the last space is 0, every extension is trivial and
hence the above sequence splits.

7.3. Theorems of Casselman-Osborne and Kostant. We next consider a parabolic
subalgebra q of g, with a Levi decomposition

q = l© u;
this is a slightly different Levi decomposition from the one mentioned above, with u the
nilradical (the largest nilpotent ideal) and l a reductive subalgebra. A special case arises
in the situation already studied; for a Cartan subalgebra h and n coming from a choice of
positive roots, define

b = h© n.
This is a maximal solvable subalgebra of g and such are called Borel subalgebras. A
parabolic subalgebra of g can be defined as any subalgebra containing a Borel subalgebra.
One should think of Borel subalgebras as algebras of upper triangular matrices, and of
parabolic subalgebras as algebras of block upper triangular matrices with some fixed shape
of blocks. Then the Levi factor l is the algebra of corresponding block diagonal matrices,
and the nilradical u is the algebra of all upper triangular matrices that are zero on blocks.
This is for example exactly true (in some complex basis) if g = sl(n,C).
We consider the u-cohomology spaces Hi(u;V ) for a g-module V . These spaces are

actually l-modules in a natural way; namely, l acts on the complex defining Hi(u;V ) by
acting both on

V
u and on V . This action commutes with the differential, hence descends

to cohomology.
Now Z(g), the center of the enveloping algebra of g, acts on the complex Hom·(

V
u, V )

and its cohomology Hi(u;V ) in two ways. One action is through the Harish-Chandra
homomorphism Z(g) ¡! Z(l) and the l (i.e., U(l)) action described above, and the other
is acting on V only. This second action is well defined only for the center and not for the
rest of U(g).

Casselman-Osborne theorem. The above two actions of Z(g) agree on cohomology
Hi(u;V ).

This is a similar statement to Property 2) of 7.2, about the action of the center on
the standard complex which was used to get vanishing of g-cohomology. A proof can be
found in [V], Theorem 3.1.5, or [KV], Theorem 4.149. We will also see how to get this in
a different way, using Clifford algebra actions and Dirac type operators.

Kostant’s theorem. Let h be a Cartan subalgebra of g and let b = h © n be a Borel
subalgebra corresponding to a choice of positive roots. Let Vλ be the irreducible finite
dimensional g-module with highest weight λ. Then

Hi(n;Vλ) =
M

w∈W,l(w)=i
Cw(λ+ρ)−ρ
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as h-modules. Here Cµ is the one dimensional h-module with weight µ, W is the Weyl
group, and l(w), the length of w 2 W , is the smallest number of simple root reflections
needed to write w as their product.

A proof of this statement and also its generalization to the case of u-cohomology can
be found e.g. in [KV], theorems 4.135 and 4.139. The original proof is greatly simplified
by using the (more recent) Casselman-Osborne theorem to conclude that only the weights
w(λ+ ρ)¡ ρ can appear.
Kostant interpreted this theorem as an algebraic version of the Borel-Weil-Bott theorem,

which realizes finite dimensional g-modules as global sections or cohomology of line bundles
on the flag variety B of g. (The flag variety consists of all Borel, i.e., maximal solvable
subalgebras of g). He further used it to obtain an algebraic proof of the Weyl character
formula, which explicitly calculates the (global) character of irreducible representations of
compact groups.

7.4. n-homology and Casselman subrepresentation theorem. Lie algebra homol-
ogy is defined in a similar way as cohomology. One starts by defining coinvariants

Vg = V/gV = V −U(g) C

of a g-module V ; this is the largest quotient of V on which g acts trivially. This is a right
exact functor, and Lie algebra homology functors are the left derived functors

Hi(g;V ) = Tor
g
i (C, V ) = Hi(U(g)−

V·
g−U(g) V ) = Hi(

V·
g− V ).

The differential is again induced by the deRham differential of the standard complex, which
is used to resolve the variable C and thus define the derived functors.
To illustrate the importance of (n-)homology, we mention a very standard construction of

representations, namely the real parabolic induction. Start with the Cartan decomposition

g0 = k0 © p0
of a real semisimple Lie algebra g0. Let a0 ½ p0 be a maximal abelian subalgebra (sub-
space). Then one can consider the (g0, a0)-roots, by the same principle as for h in g (the
adjoint action of a0 on g0 diagonalizes etc.) Let n0 be the sum of positive root spaces (for
a choice of positive roots). Then one shows that

g0 = k0 © a0 © n0;

this is called the Iwasawa decomposition of g0. There is also a group version of this fact:
multiplication defines a diffeomorphism

K £A£N ¡! KAN = G

where A and N are the connected subgroups of G corresponding to a0 and n0. We denote
by L the centralizer of A in G; then L =MA, where M = L\K is the centralizer of A in
K. The subgroup

P =MAN
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is called a minimal (real) parabolic subgroup of G. Note a slight problem with notation:
the Lie algebra of P is not p from Cartan decomposition (that one is not a Lie algebra at
all). Nevertheless, this is common notation.
Here is what is meant by induction from P to G. Let V be a (finite dimensional)

representation of P . Consider the principal bundle G ¡! G/P and construct the associated
G-equivariant vector bundle

G£P Vy
G/P

The space G£P V consists of classes of the equivalence relation on G£V defined by setting
(gp, v) » (g, p ¢ v), g 2 G, p 2 P, v 2 V.

The continuous sections of this bundle form a representation Indc(V ) of G called the
continuously induced representation. Here G acts on the sections by left translation. (One
can also consider smooth sections, or L2 sections of this bundle.) The sections can also
be interpreted as functions from G into V with the appropriate transformation property
for P ; in this way one can avoid the language of bundles. We will denote by Ind(V ) the
(g,K)-module of K-finite vectors in Indc(V ).
Let us consider the case

V = σ − λ− 1,
where σ is an irreducible finite dimensional representation of M , λ is a character of A
(which is the same as a character of a), and 1 denotes the trivial representation of N . This
is basically the only case one needs to study. In this case, Ind(V ) is called the principal
series representation.
Casselman proved the following version of Frobenius reciprocity: for any (g,K)-module

W ,

Hom(g,K)(W, Ind(V ))
∼=¡! Hom(p,M)(W,V ).

Here p is the Lie algebra of P ; note that M is a maximal compact subgroup of P . Since
the action of n on V is trivial, the second Hom-space is further equal to

Hom(p,M)(W/nW,V ).

If W/nW is not equal to zero, then one can choose V so that the last space is nonzero. It
follows that W maps nontrivially into Ind(V ), and if W is irreducible this map has to be
an embedding. So we get Casselman’s subrepresentation theorem. Namely, W/nW is not
equal to zero; in fact, this space contains leading exponents of asymptotic expansions of
matrix coefficients of W . See [CM].
Let us finish this lecture by mentioning briefly two more facts. First, there is a version

of Poincaré duality for Lie algebra cohomology. Second, there is a strong relationship
between n-cohomology and Beilinson-Bernstein localization theory. In this theory, irre-
ducible (g,K)-modules are realized as global sections (or cohomology) of certain sheaves
on the flag variety B of g. The relationship is the following: the geometric fiber of the
sheaf corresponding to a (g,K)-module V at a point b 2 X is exactly the n-cohomology
of V , where n = [b, b] is the nilradical of b.
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Lecture 8. (g,K)-cohomology

8.1. Definition. One can study relative Lie algebra cohomology for the pair (g, k). It
has however become more usual to study pairs (g,K). The main case we are interested
in is the one suggested by our choice of notation: g is a semisimple complex Lie algebra
and K is a maximal compact subgroup of a Lie group G with complexified Lie algebra g.
This setting can however be generalized; K could be another compact subgroup of G, or
a complex reductive subgroup of a complex group with Lie algebra g. In principle K does
not even have to be reductive, but then it is not as easy as below to write down resolutions.
One can also consider similar pairs (A,K) where A is an associative algebra. A could be
U(g), or a quotient Uθ corresponding to an infinitesimal character (θ is a Weyl group orbit
of an element of h∗).
For the purpose of this lecture, let us concentrate on the usual (and the most interesting)

case of (g, K), the first one mentioned above.
Formally, (g,K)-cohomology is analogous to g-cohomology. Namely, one can consider

the functor

V 7! V g,K = fv 2 V ¯̄Xv = 0, kv = v, for all X 2 g, k 2 Kg

of taking (g,K)-invariants. It is a functor from the category M(g,K) of (g, K)-modules
into the category of complex vector spaces, which is left exact. The (g,K)-cohomology
functors V 7! Hi(g,K;V ) are the right derived functors of V 7! V g,K .
As before, one can write

V g,K = Hom(g,K)(C, V ),

and thus
Hi(g,K;V ) = Exti(g,K)(C, V ).

As before, rather than resolving V by injectives, we use a projective resolution of the trivial
module C. This is the relative standard complex

U(g)−U(k)
V·(g/k) ²¡! C ¡! 0;

Since we are considering compact K, we can replace g/k by the K-invariant direct com-
plement p. The differential d of the above complex and the map ² are similar as before:

d(u−X1 ^ ¢ ¢ ¢ ^Xk) =
X
i

(¡1)i−1uXi −X1 ^ . . . bXi ¢ ¢ ¢ ^Xk+X
i<j

(¡1)i+ju− [Xi,Xj ]p ^X1 ^ . . . bXi . . . bXj ¢ ¢ ¢ ^Xk,
for any compact K; here [Xi, Xj ]p denotes the projection of [Xi,Xj ] to p along k. If K is
a symmetric subgroup, like in our main case when K is the maximal compact subgroup,
then this projection is always zero, so the second sum actually vanishes. ² is as before the
augmentation map, given by 1− 17! 1 and gU(g)− 17! 0.
The relative standard complex is obtained from the standard complex for g, by taking

coinvariants with respect to the k-action given by right multiplication on U(g) and adjoint
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action on
V
(g), and also with respect to the action of

V
(k) on

V
(g) by (exterior) multipli-

cation. Exactness is proved using this and exactness of the standard complex for g. The
fact that this is a projective resolution follows from general homological principles: any
finiteK-module is projective, and the functorW 7! U(g)−U(k)W from finiteK-modules to
(g,K)-modules preserves projectives, as it is left adjoint to the exact functor of forgetting
the g-action.
Using the above resolution, we can now identify Hi(g,K;V ) with the ith cohomology

of the complex

Hom·(g,K)(U(g)−U(k)
V·(p), V ) = Hom·K(V·(p), V ),

with differential

df(X1 ^ ¢ ¢ ¢ ^Xk) =
X
i

(¡1)i−1Xi ¢ f(X1 ^ . . . bXi ¢ ¢ ¢ ^Xk)
if K is symmetric, and for other K there is another sum, over i < j.
There is also a less often mentioned theory of (g,K)-homology. It is constructed by

deriving the functor of (g,K)-coinvariants; so

Hi(g,K;V ) = Tor
(g,K)
i (C, V ).

which is calculated using the same resolution of C as above.
8.2. Applications. A good reference for learning about various applications of (g,K)-
cohomology to the theory of automorphic forms is a recent survey article [LS]. Let us
mention just one very classical application, the Matsushima formula. Let Γ ½ G be a
cocompact lattice and let E be a finite dimensional representation of G. Then the group
cohomology of Γ with coefficients in E, which is also equal to the cohomology of the space
ΓnG/K with coefficients in E, can be expressed as

H∗(Γ, E) »=
M
π∈ bG

m(π,Γ)H∗(g,K;Hπ − E),

where m(π,Γ) is the multiplicity of the unitary representation (π, Hπ) of G in L
2(ΓnG).

Another application is a construction of derived Zuckerman functors. Namely, let (g, K)
be a pair as above, with K complex algebraic (e.g., the complexification of a maximal
compact subgroup). Let T ½ K be a closed reductive subgroup. Let R(K) be the algebra
of regular functions on K. Then one can express the derived Zuckerman modules of a
(g, T )-module V as

ΓiK,T (V ) = H
i(k, T ;R(K)− V ).

Here the (k, T ) cohomology is taken with respect to the tensor product of the regular
action with the given action on V . K acts by right translation on R(K), and the g-action
is obtained by twisting the given action πV on V : if we regard an element of R(K)−V as
a regular function F : K ¡! V , then for X 2 g the function π(X)F is given by

(π(X)F )(k) = πV (Ad(k)X)(F (k)).

There are several versions of this construction, due to Wallach ([W], Chapter 6), Duflo-
Vergne, and Miličić-Pandžić.
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8.3. The Vogan-Zuckerman classification. The central result about (g,K)-cohomology
(for K the maximal compact subgroup of G) is the classification of irreducible unitary
(g,K)-modules with nonzero (g, K)-cohomology obtained by Vogan and Zuckerman in
[VZ]. This result can be stated as follows.
Let V be irreducible unitary, of the same infinitesimal character as a finite dimensional

representation F . Note that there is only one possible F for any given V . Then V −
F ∗ has nonzero (g, K)-cohomology if and only if V is an Aq(λ) module, as described in
previous lectures. (We also saw that in this case the lowest K-type of V gives rise to Dirac
cohomology.)
Note that if V and F do not have the same infinitesimal character then H∗(g, K;V −

F ∗) = 0. In case there is cohomology, it is equal to

HomL∩K(
Vi−dim(u∩p)(l \ p),C),

where L is the Levi subgroup involved in the definition of Aq(λ), l is the (complexified)
Lie algebra of L and u is the nilradical of q.
For more details, see [LS] or [VZ].
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Lecture 9. Relationship of Dirac
cohomology to other kinds of cohomology

In this lecture we briefly sketch some results from [HPR], which grew out of the ideas
of [V4].

9.1. Kostant’s cubic Dirac operator. In [K2], Kostant has constructed a cubic Dirac
operator D corresponding to any decomposition

g = r© s

of a semisimple Lie algebra g with r a reductive subalgebra such that the Killing form is
non-degenerate on r. The definition is as follows: let Zi be an orthonormal basis for s and
let v 2 V3 s correspond to the alternating trilinear form (X,Y,Z)7! B([X, Y ], Z) under

the isomorphism (
V3
s)∗ »= V3 s induced by the Killing form. Then
D =

X
i

Zi − Zi + 1− v 2 U(g)− C(s).

It is easy to see that D is independent of the choice of basis Zi and r-invariant for the
adjoint action. Following Kostant, we now use defining relations Z2i = 1 instead of Z

2
i = ¡1

for C(s).
Kostant has shown that the formula we had for the Dirac operator corresponding to the

Cartan decomposition, i.e.,

D2 = Ωg − 1¡ Ωr∆ + (jjρjj2 ¡ jjρrjj2)

still holds in this more general situation. The ingredients of this formula are defined
analogously as before.

Applications to u-cohomology. Let us consider a special case when r = l and s = u© ū
correspond to a θ-stable parabolic subalgebra

q = l© u.

Note that u and ū are both isotropic for B, that B identifies ū with u∗, and that ū is
complex conjugate to u with respect to the real form g0 implicit in the above definitions.
Let S =

V·
u be a space of spinors for C(s). Since s is even-dimensional, S is unique up

to isomorphism. There are two l-actions on S; one is given by the adjoint action of l on
u, and the other is the spin action, coming from l ¡! so(s) ¡! C(s). These two actions are
related by a twist by ρū; see [K4].
Let X be a (g,K)-module. Then the space

X − S = V·u−X
has an action of D and of the u-homology operator ∂. Moreover, since we can identifyV·

u−X »= Hom(V·ū,X)
40



using (
V·
u)∗ »= V·

u∗ »= V·
ū, we also get an action of the ū-cohomology operator d on

X − S.
One checks that

D = d+ 2∂

on X − S. To see this, take a basis ui for u and a dual basis u∗i for ū; so B(ui, u∗j ) = δij .
Now write

D =
X
i

u∗i − ui +
X
i

ui − u∗i ¡
1

4

X
i,j

1− [u∗i , u∗j ]uiuj ¡
1

4

X
i,j

1− [ui, uj ]u∗i u∗j .

Denote by C (respectively C−) the element of U(g)− C(s) composed of the first and the
third term (respectively the second and the fourth term) in the above expression for D.
Then show that the action of C on X − S induces the differential d, while the action of
C− induces 2∂.
The “half Diracs” C and C− are independent of the choice of basis ui and l-invariant.

They however do depend on the choice of u inside s, while D does not. Furthermore, both
C and C− square to zero, and their supercommutator CC− +C−C is equal to D2.
It is convenient to introduce another element,

E = ¡1
2

X
i

1− u∗iui.

This operator acts as a degree operator on X − S. It satisfies the following commuting
relations:

[E,C] = C; [E,C−] = ¡C−; [E,D2] = 0.

It follows that E, C, C− andD2 span a four dimensional superalgebra inside (U(g)−C(s))l.
This algebra is actually Z-graded, if we set C− to be of degree ¡1, D2 and E of degree 0
and C of degree 1. This grading is compatible with the obvious grading of X − S coming
from the standard grading of

V·
u.

This superalgebra was used by physicists under the name supersymmetric algebra. It
is denoted by l(1, 1) in Kac’s classification [Kac]. It is completely solvable and its repre-
sentation theory is easy but not trivial.
As an application of the above facts, let us mention that one can easily prove that

the main result of [HP] holds for C and C− and in this way get the Casselman-Osborne
theorem (see 7.3) as a corollary. Thus the formal analogy between the two results becomes
more concrete.
There are two questions that arise from the above considerations. The first one, asked

by Vogan in [V4], is to relate the Dirac cohomology, ū-cohomology and u-homology of a
(g,K)-module X. This could be useful for example to pass between different choices for
u within the same s. The second question was implicitly posed by Kostant in [K4]. His
remark was that X − S can be formed not just in the “Levi factor case”, i.e., for r = l,
but also for a wider class of r described above. On X − S there is always a cubic Dirac
operator, and its square is the Laplacian. So it looks natural to try and study this more
general setting and see how to make use of that.
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At this moment, we have some results regarding the first question. Namely, in certain
special cases all three (co)homology modules are equal up to appropriate twists. The twist
is coming from the already mentioned identification of spin and adjoint actions on

V
(u),

and it is given by ρū.

9.3. Hodge decomposition. Let us take X to be unitary, so it carries an invariant
positive definite hermitian form. We need to put a similar form on S. There is a natural,
l-invariant one, given by the Killing form B on

V·
u. This form is however indefinite if

u intersects both k and p as will usually be the case. The operators d and 2∂ can be
shown to be adjoint with respect to this form, but one can not in general obtain a “Hodge
decomposition”.
A good case where one can get the “Hodge theory approach” to work is when l = k so

that u ½ p and B is positive definite on u. This is possible only in the Hermitian symmetric
case (i.e., when k has a center). In this case the Dirac operator D is “ordinary” (i.e., has
no cubic term) - it is the same D we studied in Lecture 5. We know that in this situation

D2 is a scalar on each K̃-type, so in particular, D2 acts (locally) finitely on X − S. Note
also that D2 is negative semidefinite in the present situation. Namely, the relations in the
Clifford algebra are now Z2i = 1, not ¡1, hence D is skew-symmetric and not symmetric
as before. So all eigenvalues of D2 are non-positive.
Because of these facts, one can use the easy variant of Hodge theory for finite dimensional

spaces (see [W], Scholium 9.4.4), and conclude that

KerD = KerD2 = Ker d \Ker∂;

Ker d = KerD © Im d; Ker ∂ = KerD © Im∂.

In particular, the cohomology of both d and ∂ is equal to the Dirac cohomology of D,
KerD, as vector spaces. To compare them as l = k-modules involves the above mentioned
twist.
The same argument proves an analogous result for X finite dimensional; here one uses

the “admissible form” on X, i.e., the one invariant for the compact form of g. This case
was known to Vogan and it is also implicit in [K4].

9.4. A counterexample. Here is a simple example which shows that the equality of the
three cohomology modules does not hold for general (sl(2,C), SO(2))-modules. Consider
the module V which is a nontrivial extension of the discrete series representation of highest
weight ¡2 by the trivial module C:

0 ¡! C ¡! V ¡!W ¡! 0.

V is a submodule of the module V−1,0 from the end of Lecture 1. The weights of V (for

the basis element

µ
0 ¡i
i 0

¶
of k) are ¢ ¢ ¢ ¡ 4,¡2, 0. We are considering the case l = k, u is

spanned by u = X = 1
2

µ
1 i
i ¡1

¶
and ū is spanned by u∗ = Y = 1

2

µ
1 ¡i
¡i ¡1

¶
. Now

V − S = V − 1© V − u,
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with d : V − 1 ¡! V − u given by d(v − 1) = u∗ ¢ v − u, and ∂ : V − u ¡! V − 1 given by
∂(v − u) = u ¢ v − 1.
By an easy direct calculation one sees that the u-homology of V is given by

H0(∂) = 0; H1(∂) = Cv0 − u,

the ū-cohomology of V is given by

H0(d) = Cv0 − 1; H1(d) = Cv0 − u© Cv−2 − u,

and the Dirac cohomology of V is given by

HD(V ) = KerD = Cv0 − u.

So we see
HD(V ) = H·(∂)6= H ·(d).

9.5. Dirac cohomology and (g,K)-cohomology. In the rest of this lecture we make
a few comments on the relationship of Dirac cohomology and (g,K)-cohomology. It was
proved in [HP] that if X is unitary and has (g, K)-cohomology, i.e.,

H∗(g,K;X − F ∗) = H∗(Hom·K(
V·
p,X − F ∗))6= 0

for a finite dimensional F (which then necessarily has the same infinitesimal character as
X), then X also has Dirac cohomology.
In the following we assume that dim p is even. Then we can write p as a direct sum

of isotropic vector spaces u and ū »= u∗. One considers the spinor spaces S =
V·
u and

S∗ =
V·
ū; then

S − S∗ »= V·(u© ū) = V·p.
It follows that we can identify the (g, K)-cohomology of X − F ∗ with

H∗(Hom·
K̃
(F − S,X − S)).

There are several possible actions of the Dirac operator D on the above complex; similarly
as before, they can be related to the coboundary operator d and the boundary operator ∂
for (g,K)-homology, which also acts on the same complex after appropriate identifications.
Now if X is unitary, Wallach has proved that d = 0 (see [W], Proposition 9.4.3, or

[BW]). Using similar arguments one can analize the above mentioned Dirac actions and
the actions of the corresponding “half-Diracs”. In particular, it follows that

H∗(g, K;X − F ∗) = Hom·
K̃
(HD(F ),HD(X)).

This can be concluded from the fact that the eigenvalues of D2 are of opposite signs on
F − S and X − S; see [W], 9.4.6. One may hope to generalize some of these facts, either
with respect to X, or with respect to F .
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We finish by a remark that for nice and natural proofs it would be useful to formalize
some constructions in the category of modules over the Clifford algebra, although this may
not seem necessary as the category is extremely simple. For example, one can construct a
coproduct of C(p) by defining

c(Z) =
1p
2
(Z − 1 + 1− Z)

for Z 2 p. This coproduct is an algebra morphism in the graded sense. It is not coasso-
ciative, but it is cocommutative. There is no counit, but there is an antiautomorphism,
the already mentioned α (see 2.4) which can be used instead of an antipode. It seems
worthwhile to try to use this structure to clarify notions like tensor products and dual
modules.
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Lecture 10. Multiplicities of automorphic forms

In this lecture we prove a formula for multiplicities of automorphic forms which sharpens
the result of Langlands and Hotta-Parthasarathy. Let G be a linear semisimple noncompact
Lie group. Let K be a maximal compact subgroup of G. Assume that rankG = rankK.
Let g0 = k0 + p0 be the Cartan decomposition of the Lie algebra of G. Then u0 = k0 + ip0
is a compact real form of g = g0 −R C. Let U be the compact analytic subgroup in the
complexification GC of G with Lie algebra u0.

10.1. Hirzebruch proportionality principle. Let Γ be a torsion free discrete subgroup
of G so that ΓnG and X = ΓnG/K are compact smooth manifolds. Borel showed that
such a Γ always exists. Then the regular representation on ΓnG is decomposed discretely
with finite multiplicities:

L2(ΓnG) »=
M
π∈ bG

m(Γ,π)Hπ.

Let Xπ be the Harish-Chandra module of Hπ. For any µ 2 bK, we define the Dirac
operators D, D+

µ (X) and D
+
µ (Y ) as in 6.5. As we saw in 6.5, if we normalize the Haar

measure so that vol(U) = 1, then

IndexD+
µ (X) = (¡1)qvol(ΓnG) IndexD+

µ (Y ).

On the other hand,

IndexD+
µ (X) =

X
π∈ bG

m(Γ, π) IndexD+
µ (Xπ),

where D+
µ (Xπ) : HomK̃(E

∗
µ, Xπ − S+) ! HomK̃(E

∗
µ,Xπ − S−) is the linear map defined

by φ7! D ± φ for any φ 2 HomK̃(E∗µ, Xπ − S+).
10.2. Dimension of automorphic forms. If IndexD+

µ (Xπ) 6= 0, then the Dirac co-
homology HD(Xπ) contains Eµ∗ . It follows from the proved Vogan’s conjecture that the
infinitesimal character of Xπ is given by µ

∗ + ρc. If we assume that λ = w(µ
∗ + ρc) ¡ ρ

is dominant for some w 2 W , then Xπ is isomorphic to Aq(λ) for some θ-stable para-
bolic subalgebra q. If in addition we assume that λ is regular with respect to the non-
compact roots ∆+(p), then Xπ is uniquely determined as a discrete series Ab(λ). Since
IndexD+

µ (Ab(λ)) = dimD+
µ (Ab(λ)) ¡ codimD+

µ (Ab(λ)) = (¡1)q and IndexD+
µ (Y ) has

been calculated in Corollary 6.4., we obtain the following theorem.

Theorem. Let π = Ab(λ) be a discrete series representation with λ regular with respect
to all noncompact roots. Assume that λ is dominant and can be written as λ = µ¡ ρn for
some highest weight µ 2 bK. Then

m(Γ, π) = vol(ΓnG)dπ,
where dπ is the formal degree of π:

dπ =
Πα∈∆+(g,t)(λ+ ρ,α)

Πα∈∆+(g,t)(ρ,α)
.
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This sharpens the result of Langlands [L] and Hotta-Parthasarathy [HoP], who proved
the above formula for discrete series representations whose matrix coefficients are in L1(G).
Trombi-Varadarajan proved that if the matrix coefficients of the discrete series Ab(λ) are
in L1(G), then

hλ+ ρ,αi >Max f jhwρ,αij,8w 2Wg and 8α 2 ∆+(p) g.

Hecht-Schmid proved this is also a sufficient condition. Our assumption on the regularity
of λ with respect to the noncompact roots amounts to the condition

hλ+ ρ,αi >Max f jhwρ,αij,8α 2 ∆+(p) with w = 1. g.

Therefore, our condition is weaker than that assumed by Langlands and Hotta-Parthasarathy.

10.3. A final remark. Borel and Wallach proved that for any finite-dimensional repre-
sentation of G,

H∗(Γ, F ) =
M
π∈ bG

m(Γ, π)H∗(g, K,Xπ − F ).

We still assume that rankG = rankK. If the highest weight of F is regular, then it follows
from a similar argument as in 10.2. that Xπ is uniquely determined as a discrete series
Ab(λ), and therefore,

dimH∗(Γ, F ) = vol(ΓnG)dπ dimH∗(g,K,Xπ − F ).
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