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HERMITIAN FORMS FOR AFFINE HECKE ALGEBRAS

DAN BARBASCH AND DAN CIUBOTARU

Abstract. We study star operations for Iwahori-Hecke algebras and invari-
ant hermitian forms for finite dimensional modules over (graded) affine Hecke
algebras, with a view towards a signature algorithm.

1. Introduction

In this paper, we study star operations for Iwahori-Hecke algebras and invariant
hermitian forms for the (graded) affine Hecke algebras that appear in the theory
of reductive p-adic groups. There are three main parts to our paper. We explain
them next.

1.1. We classify the star operations (conjugate-linear involutive anti-automorphims)
for the graded affine Hecke algebra H with unequal parameters which preserve a
natural filtration of H (section 2). This can be viewed as an analogue of the prob-
lem of classifying the star operations for the enveloping algebra U(g) of a complex
semisimple Lie algebra which preserve g. The first result, Proposition 2.4.3, says
that essentially there are only two such star operations: ∗ and •, Definition 2.3.2.

The anti-automorphism ∗ is known to correspond to the natural star operation of
the Hecke algebra of a reductive p-adic group, i.e., f∗(g) = f(g−1), see [BM1, BM2].

On the other hand, the anti-automorphism • is the Hecke algebra analogue of
the “compact star operation” for (g,K)-modules studied by Adams-van Leeuwen-
Trapa-Vogan [ALTV] and Yee [Y]. The operation • also arises naturally in conjunc-
tion with Macdonald theory for affine Hecke algebras, and from this perspective, it
was studied by Opdam [Op2].

1.2. We investigate the basic properties of the signature of •-invariant hermitian
forms for finite dimensional H-modules (sections 3–6). We prove that every irre-
ducible H-module with real central character admits a nondegenerate •-invariant
hermitian form, Corollary 5.1.3, and moreover, when H is of geometric type, this
form can be normalized canonically so that it is positive definite on every isotypic
component of a lowest W -type, Corollary 5.3.3. For the first claim, we explicitly
determine in Theorem 3.7.5 the •-hermitian dual of any given simple H-module,
in terms of the Langlands datum, and we exhibit in Proposition 3.9.1 an explicit
invariant hermitian form. The second claim follows by comparing the Langlands
classification with the geometric classification of simple and standard H-module
[Lu2], together with an argument involving the “signature at infinity” of the form.

These results represent the Hecke algebra analogue of the similar results about
c-invariant forms of (g,K)-modules [ALTV]. Motivated by the algorithm of [ALTV]
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2 DAN BARBASCH AND DAN CIUBOTARU

(see also [Vo]), we define in section 6, based on the Jantzen filtration, hermitian
Kazhdan-Lusztig polynomials (see Definition 6.3.2). We conjecture (Conjecture
6.3.2) a simple relation with the Kazhdan-Lusztig polynomials for graded Hecke
algebras [Lu3]. In the remainder of section 6, we offer some evidence for this
conjecture, by analyzing the case of regular central character, and the interesting
examples of the subregular central character in types B2 and G2.

The algebra H has a large abelian subalgebra A. Since • preserves A (unlike
the classical ⋆), it is interesting to consider the weight spaces for A and study
signatures of forms in this way. We prove a number of results along these lines, for
example, a linear independence result for A-characters of irreducible H-modules,
Theorem 4.4.2, as well as explicit formulas for the •-forms when the A-parameter
is sufficiently dominant, e.g., Corollary 3.10.3. These results enter in an essential
way in our proof of Conjecture 6.3.2 in the regular case.

1.3. We give an explanation of the occurence of the • operation from the perspec-
tive of the theory of Bernstein projective modules (section 7). We prove that in the
Iwahori-spherical case for split p-adic groups, when the Iwahori-Hecke algebra H
is viewed as the endomorphism algebra of a projective generator P ([Be]), then H
acquires a natural hermitian inner product and the • star operation (with respect
to right adjointness), see Theorem 7.8.4. We expect that a similar result holds in
the generality of [He].

2. Star operations

2.1. Graded affine Hecke algebra. We fix an R-root system Φ = (V,R, V ∨, R∨).
This means that V, V ∨ are finite dimensional R-vector spaces, with a perfect bilinear
pairing ( , ) : V × V ∨ → R, where R ⊂ V \ {0}, R∨ ⊂ V ∨ \ {0} are finite subsets
in bijection

R←→ R∨, α←→ α∨, satisfying (α, α∨) = 2. (2.1.1)

Moreover, the reflections

sα : V → V, sα(v) = v−(v, α∨)α, sα : V ∨ → V ∨, sα(v
′) = v′−(α, v′)α∨, α ∈ R,

(2.1.2)
leave R and R∨ invariant, respectively. Let W be the subgroup of GL(V ) (respec-
tively GL(V ∨)) generated by {sα : α ∈ R}. We assume that the root system Φ
is reduced, meaning that α ∈ R implies 2α /∈ R. We fix a choice of simple roots
Π ⊂ R, and consequently, positive roots R+ and positive coroots R∨,+. Often, we
will write α > 0 or α < 0 in place of α ∈ R+ or α ∈ (−R+), respectively. The com-
plexifications of V and V ∨ are denoted by VC and V ∨

C
, respectively, and we denote

by ¯ the complex conjugations of VC and V ∨
C

induced by V and V ∨, respectively.
Notice that

(v, u) = (v, u), for all v ∈ VC, u ∈ V ∨
C . (2.1.3)

Let k : Π → R be a function such that kα = kα′ whenever α, α′ ∈ Π are W -
conjugate. Let C[W ] denote the group algebra of W and S(VC) the symmetric
algebra over VC. The group W acts on S(VC) by extending the action on V. For
every α ∈ Π, denote the difference operator by

∆ : S(VC)→ S(VC), ∆α(a) =
a− sα(a)

α
, for all a ∈ S(VC). (2.1.4)
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Definition 2.1.1. The graded affine Hecke algebra H = H(Φ, k) is the unique
associative unital algebra generated by A = S(VC) and {tw : w ∈ W} such that

(i) the assignment twa 7→ w ⊗ a gives an isomorphism H ∼= C[W ] ⊗ S(VC) of
(C[W ], S(VC))-bimodules;

(ii) atsα = tsαsα(a) + kα∆α(a), for all α ∈ Π, a ∈ S(VC).
The center of H is S(VC)

W ([Lu1]). By Schur’s Lemma, the center of H acts by
scalars on each irreducible H-module. The central characters are parameterized by
W -orbits in V ∨

C
. If X is an irreducible H-module, denote by cc(X) ∈ W\V ∨

C
its cen-

tral character. By abuse of notation, we may also denote by cc(X) a representative
in V ∨

C
of the central character of X .

If (π,X) is a finite dimensional H-module and λ ∈ V ∨
C
, denote

Xλ = {x ∈ X : for every a ∈ S(VC), (π(a)− (a, λ))nx = 0, for some n ∈ N}.
(2.1.5)

If Xλ 6= 0, call λ an A-weight of X . Let Ω(X) ⊂ V ∨
C

denote the set of A-weights of
X . If X has a central character, it is easy to see that Ω(X) ⊂W · cc(X).

Definition 2.1.2 (Casselman’s criterion). Set

V + = {ω ∈ V : (ω, α∨) > 0, for all α ∈ Π}.
An irreducible H-module X is called tempered if

(ω,Reλ) ≤ 0, for all λ ∈ Ω(X) and all ω ∈ V +.

A tempered module is called a discrete series module if all the inequalities are strict.

When the root system Φ is semisimple, H has a particular discrete series module,
the Steinberg module St. This is a one-dimensional module, on which W acts via
the sgn representation, and the only A-weight is −∑α∈Π kαω

∨
α , where ω

∨
α is the

fundamental coweight corresponding to α.

2.2. An automorphism of H. Let w0 denote the longWeyl group element. Define
an assignment

δ(tw) = tw0ww0 , w ∈W, δ(ω) = −w0(ω), ω ∈ VC. (2.2.1)

Lemma 2.2.1. Suppose kδ(α) = kα, for all α ∈ Π. The assignment δ from (2.2.1)
extends to an involutive automorphism of H. When w0 is central in W , δ = Id.

Proof. It is clear that δ is an automorphism of C[W ] and it also extends to an auto-
morphism on S(VC), so it remains to check the commutation relation in Definition
2.1.1:

ωtsα − tsαsα(ω) = kα(ω, α
∨), α ∈ Π, ω ∈ VC. (2.2.2)

Then

δ(ω)δ(tsα) =δ(ω)tsδ(α)
= tsδ(α)

sδ(α)(δ(ω)) + kδ(α)(δ(ω), δ(α)
∨) =

=tsδ(α)
sδ(α)(δ(ω)) + kα(ω, α

∨).

Notice that we have used the fact that δ(α) ∈ Π if α ∈ Π. It is easy to see that
δ(sα(ω)) = sδ(α)(δ(ω)).

Since w2
0 = 1, δ2 = Id . �

Thus, one may define an extended graded Hecke algebra H′ = H⋊ 〈δ〉.
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2.3. Star operations.

Definition 2.3.1. Let κ : H → H be a conjugate linear involutive algebra anti-
automorphism. An H-module (π,X) is said to be κ-hermitian if X has a hermitian
form ( , ) which is κ-invariant, i.e.,

(π(h)x, y) = (x, π(κ(h))y), x, y ∈ X, h ∈ H.

A hermitian module X is κ-unitary if the κ-hermitian form is positive definite.

Definition 2.3.2. Define

t⋆w = tw−1 , w ∈W, ω⋆ = −tw0 · w0(ω) · tw0 , ω ∈ VC, (2.3.1)

and

t•w = tw−1 , w ∈W, ω• = ω, ω ∈ VC. (2.3.2)

Lemma 2.3.3. The operations ⋆ and • defined in (2.3.1) and (2.3.2), respectively,
extend to conjugate linear algebra anti-involutions of H.

Proof. Straightforward by Lemma 2.2.1. �

Remark 2.3.4. The two star operations just defined are related as follows

h⋆ = tw0 · δ(h)• · tw0 , h ∈ H. (2.3.3)

In particular, when w0 is central in W , they are inner conjugate to each other.

Lemma 2.3.5. For every w ∈W , ω ∈ VC,
tw · ω · tw−1 = w(ω) +

∑

β>0,w(β)<0

kβ(ω, β
∨)tsw(β)

. (2.3.4)

In particular,

ω⋆ = −ω +
∑

β>0

kβ(ω, β
∨)tsβ . (2.3.5)

Proof. This is [BM2, Theorem 5.6]. �

2.4. Classification of involutions. We define a filtration of H given by the degree
in S(VC). Set deg twa = degS(VC) a for every w ∈ W , and homogeneous element

a ∈ S(VC) and FiH = span{h ∈ H : deg h ≤ i}. In particular, F0H = C[W ]. Set
F−1H = 0. It is immediate from Definition 2.1.1 that the associated graded algebra

H = ⊕i≥0H
i
, where H

i
= FiH/Fi−1H, is naturally isomorphic to the graded Hecke

algebra for the parameter function kα ≡ 0.

Definition 2.4.1. An automorphism (respectively, anti-automorphim) κ of H is
called filtered if κ(FiH) ⊂ FiH, for all i ≥ 0. Notice that by Definition 2.1.1, this
is equivalent with the requirement that κ(FiH) ⊂ FiH for i = 0, 1. If, in addition,
κ(tw) = tw (resp., κ(tw) = tw−1), we say that κ is admissible.

If κ is a filtered automorphism, then κ induces an automorphism of the associated

graded algebra H which preserves that grading, i.e., κ(H
i
) ⊂ H

i
.

Lemma 2.4.2. Assume the root system Φ is simple. Let κ be an admissible in-
volutive automorphism (or anti-automorphism) of H which respects the grading

κ(H
i
) ⊂ H

i
. Then κ(ω) = c0ω, for all ω ∈ VC, where c0 is a constant equal to

1 or −1.



HERMITIAN FORMS FOR AFFINE HECKE ALGEBRAS 5

Proof. We treat the case when κ is an automorphism, the other case is completely
similar. By the assumptions on κ,

κ(ω) =
∑

y∈W

fy(ω)ty, ω ∈ VC, (2.4.1)

where fy : VC → VC is a linear function, for every y ∈ W. Let α be a simple root.

The commutation relation in H is tsαω = sα(ω)tsα . Applying κ to this relation, it
follows, by a simple calculation, that

sα(fsαx(ω)) = fxsα(sα(ω)), for all x ∈ W.
In particular, setting x = sα, we see that

sα(f1(ω)) = f1(sα(ω)). (2.4.2)

Since the root system was assumed simple, this means that f1 is a scalar function
f1(ω) = c0ω, for some c0 ∈ C.

Now, we use that κ is an involution, κ2(ω) = ω, which implies
∑

x,y∈W (fx ◦
fy)(ω)txy = ω. Thus

∑

x∈W

fx ◦ fx−1 = Id, and fx ◦ fy = 0, if x 6= y−1. (2.4.3)

Specializing y = 1 in the second relation, we see that fx = 0 if x 6= 1. Then the
first relation implies c20 = 1, and this is the claim of the lemma. �

Proposition 2.4.3. Assume the root system Φ is simple. If κ is an admissible
involutive automorphism or anti-automorphism (in the sense of Definition 2.4.1),
then

κ(ω) = ω, for all ω ∈ V,
or

κ(ω) = tw0 · δ(ω) · tw0 , for all ω ∈ V.
In particular, the only admissible conjugate linear involutive anti-automorphisms
of H are ⋆ and • from Lemma 2.3.3.

Proof. Suppose κ is an admissible involutive automorphism. (The argument is
identical if κ is an antiautomorphim). By the admissibility condition, κ induces an
admissible involutive automorphism of H. Lemma 2.4.2 implies that κ(ω) ≡ c0ω
mod F1H. Therefore, κ must be of the form:

κ(tw) = tw, w ∈W ; κ(ω) = c0ω +
∑

y∈W

gy(ω)ty, ω ∈ VC,

where gy : VC → C, y ∈W, are linear.
Since κ has to preserve the commutation relation

tsαω − sα(ω)tsα = kα(ω, α
∨), α ∈ Π, ω ∈ VC,

we find that

c0tsαω − c0sα(ω)tsα +
∑

y∈W

gy(ω)tsαy −
∑

x∈W

gx(sα(ω))txsα = kα(ω, α
∨),

or equivalently,
∑

y∈W

gy(ω)tsαy −
∑

x∈W

gx(sα(ω))txsα = kα(1− c0)(ω, α∨). (2.4.4)
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This implies that

gsαysα(ω) = gy(sα(ω)), for all α ∈ Π, y ∈ W, y 6= sα, and ω ∈ VC, (2.4.5)

and

gsα(ω)− gsα(sα(ω)) = kα(1− c0)(ω, α∨),

from which one easily concludes that

gsα(α) = kα(1 − c0), α ∈ Π. (2.4.6)

We first show that gy = 0 unless y = sβ for some positive root β. If y = 1,
relation (2.4.5) shows that gy = 0, so assume y 6= 1. The automorphism κ must
also satisfy κ(ω1)κ(ω2) = κ(ω2)κ(ω1) for all ω1, ω2 ∈ VC. This implies that

gy(ω2)(ω1− y−1(ω1)) = gy(ω1)(ω2 − y−1(ω2)), for all y ∈ W, ω1, ω2 ∈ VC. (2.4.7)
If λ1, λ2 are eigenvalues of y−1, then for ω1 ∈ Vλ1 ω2 ∈ Vλ2 ,

gy(ω1)(1− λ2)ω2 = gy(ω2)(1− λ1)ω1. (2.4.8)

Set λ1 = 1. Then

gy(ω1)(1 − λ2)ω2 = 0 for any ω2 ∈ Vλ2 .

Because y−1 6= 1, it has an eigenvalue λ2 6= 1, so gy is 0 on the 1−eigenspace of y−1.
Similarly, relation (2.4.8) implies that if λ 6= 1, any ω1, ω2 ∈ Vλ must be multiples
of each other. So dimVλ ≤ 1 for any λ 6= 1.

Because y is an automorphism of the real space V, if λ is an eigenvalue, so is
λ. From relation (2.4.8), we see that unless λ = λ, gy = 0 on these eigenspaces.
The only remaining case, when gy 6= 0, is when y−1 has eigenvalues ±1, and the
−1−eigenspace has dimension 1. It follows that gy = 0 unless y = sβ for a root β.

In conclusion,

κ(ω) = c0ω +
∑

β>0

gsβ (ω)tsβ , where c20 = 1.

Now we use that κ2 = Id, which immediately implies that

ω = κ2(ω) = ω + (1 + c0)
∑

β>0

gsβ (ω)tsβ . (2.4.9)

When c0 = 1, we necessarily have gsβ = 0, and therefore κ(ω) = ω.
Suppose now c0 = −1.We wish to prove that, in this case, κ(ω) = tw0 ·δ(ω) · tw0 .

Specialize in (2.4.7) y = sβ , for β ∈ R+. Then

gsβ (ω2)(ω1, β
∨)β = gsβ (ω1)(ω2, β

∨)β, ω1, ω2 ∈ VC,
and therefore gsβ (ω) = cβ(ω, β

∨), for some cβ ∈ C. When β = α ∈ Π, (2.4.6)
with c0 = −1, implies that cα = kα. If β is not a simple root, we can use (2.4.5)
inductively to check that cβ = kβ .

�

Remark 2.4.4. There may be many more (up to inner conjugation) filtered au-
tomorphisms κ that preserve, but are not the identity on W . Every filtered auto-
morphism κ is, in particular, an automorphism of C[W ], so a first question would
be to classify the group of outer automorphisms of C[W ], a subgroup of which is
Out(W ), and this can be nontrivial (e.g., when W = S6, Out(S6) = Z/2Z). But if
we require that κ preserves the root reflections, then κ is obtained from one of the
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two automorphisms in Proposition 2.4.3 by composition with an automorphism of
H coming from the root system.

3. Invariant hermitian forms

In this section, we study invariant hermitian forms for H-modules with respect
to the two star operations • and ⋆ from section 2.

3.1. Relation between the forms. The relation between • and ⋆ from (2.3.3)
reflects into a relation between the invariant hermitian forms, when they exist, on
a given simple H-module X . This relation is more easily expressed in terms of the
extended Hecke algebra H′-modules.

Lemma 3.1.1. An H′-module (π,X) admits a •-invariant form 〈 , 〉• if and only
if it admits a ⋆-invariant form 〈 , 〉⋆. In this case, the forms are related by

〈v1, v2〉⋆ = 〈v1, π(tw0δ)v2〉•. (3.1.1)

Proof. Suppose 〈 , 〉• exists on X . We verify that the ⋆-form from (3.1.1) is indeed
invariant. For h ∈ H, we use (2.3.3):

〈π(h)v1, v2〉⋆ = 〈π(h)v1, π(w0δ)v2〉• = 〈v1, π(h•tw0δ)v2〉•
= 〈v1, π(tw0δ(h

∗)δ)v2〉• = 〈v1, π(tw0δ)π(h
∗)v2〉•

= 〈v1, π(h∗)v2〉⋆.
(3.1.2)

The invariance under π(δ) is immediate since δ∗ = δ and δ commutes with tw0 . �

Suppose (π,X) is a simple H-module. Define the δ-twist of X to be (πδ, Xδ),
where Xδ = X as vector spaces and πδ(h) = π(δ(h)). Suppose X admits a •-
invariant form. Then, as in Lemma 3.1.1, we get a ⋆-invariant pairing between Xδ

and X via

〈 , 〉⋆ : Xδ ×X → C, 〈u, v〉⋆ = 〈u, π(tw0)v〉•, u ∈ Xδ, v ∈ X. (3.1.3)

This implies that, under the hypotheses, X admits also a ⋆-invariant form if and
only if X ∼= Xδ. Notice that if there exists an H-isomorphism τδX : (πδ, Xδ) →
(π,X), then X can be lifted to a simple H′-module, where δ acts by τδX . In section
5.3, we will see that when H is of geometric type, these isomorphisms admit a
canonical normalization. Then the • and ⋆-forms on X are related by

〈v1, v2〉⋆ = 〈v1, π(tw0)τ
δ
X(v2)〉•. (3.1.4)

The above analysis has an important application to the relation between the
signatures of the form on W -isotypic components of X . Since δ acts by conju-
gation by w0 on W , it is clear that Xδ|W ∼= X |W . Suppose µ is an irreducible
W -representation, and let X(µ) denote the µ-isotypic component of µ in X . In
particular, Xδ(µ) ∼= X(µ). The pairing (3.1.3) descends to a W -invariant pairing

〈 , 〉µ⋆ : Xδ(µ)×X(µ)→ C, 〈u, v〉µ⋆ = 〈u, π(tw0)v〉•, u, v ∈ Xµ. (3.1.5)

If Xδ ∼= X as H-modules, the H-isomorphism τδX induces isomorphisms τδX(µ) :
Xδ(µ)→ X(µ), so composing with τδX(µ) in (3.1.5), we find a W -invariant pairing
on X(µ). We have proved:

Lemma 3.1.2. If (π,X) is a simple H-module admitting a •-invariant form then

(1) X admits also a ⋆-invariant form if and only if Xδ ∼= X, and in this case,
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(2) the signatures of the two forms on a W -isotypic space X(µ), µ ∈ Ŵ , are
related by π(tw0) ◦ τδX(µ), i.e., by the action of tw0δ.

3.2. The elements Rw. Let O(VC) denote the ring of rational functions on VC,
and consider the completion of H

Ĥ = H⊗S(VC) O(VC). (3.2.1)

Following [Lu1, BM3], we define for every α ∈ Π the element of Ĥ

Rsα = tsα
α

kα − α
− kα
kα − α

. (3.2.2)

The reason for the normalization kα − α is so that for kα > 0, the intertwining
operator has no poles when evaluating on a negative weight like w0ν. In that case
kα − α(w0ν) > kα > 0.

If x ∈W has a reduced expression x = sα1 · sα2 · · · · · sαk
, set

Rx = Rsα1
Rsα2

. . . Rsαk
.

Notice that

Rx =
∑

y≤x

tyay, ay ∈ O(VC) and ax =
∏

x−1α<0

α

kα − α
.

Lemma 3.2.1.

(1) The element Rw, w ∈W , does not depend on the choice of reduced expres-
sion for w.

(2) For every a ∈ O(VC), w ∈ W
a · Rw = Rw · w−1(a). (3.2.3)

(3) For every w ∈W ,

tw ·Rw0 = (−1)ℓ(w)Rw0 · δ(tw). (3.2.4)

(4) RxRy = Rxy, x, y ∈W.
Proof. Claims (1) and (2) are in [BM3, Lemma 1.6]. For (3), it is sufficient to verify
that when α ∈ Π, tsα ·Rw0 = −Rw0tsβ , where β = −w0(α).Write w0 = wsα = sβw.
It follows that Rw0 = RwRsα = RsβRw, and therefore Rw0Rsα = RsβRw0 . Then
(tsββ − kβ)Rw0 = Rw0(tsαα − kα), and since kα = kβ , Rw0tsαα = tsββRw0 =

tsβRw0w0(β) = −tsβRw0α. Claim (4) follows immediately from R2
sα = (tsαα −

kα)
2 1
k2α−α2 = 1. �

Lemma 3.2.2. The elements Rx satisfy

(1) R•
x = (−1)ℓ(x)Rx−1

∏

x−1α<0

kα − α
kα + α

;

(2) R⋆x = (−1)ℓ(x)tw0Rδ(x)−1


 ∏

δ(x)−1α<0

kα − α
kα + α


 tw0 .

Proof. Claim (2) follows from (1) by (2.3.3). For (1), we need to compute R•
sα .

We have R•
sα = [(tsαα − kα)(kα − α)−1]• = (kα − α)−1(αtsα − kα) = −(kα −

α)−1Rsα(kα − α) = −Rsα kα−α
kα+α .

�
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3.3. Minimal principal series. We wish to define invariant hermitian forms on
irreducible H-modules. It is instructive to consider first the case of minimal prin-
cipal series. Every element h ∈ H can be written uniquely as h =

∑
w∈W twaw,

aw ∈ S(VC). Define the C-linear map

ǫA : H→ S(VC), ǫA(h) = a1.

If ν ∈ V ∨
C
, let Cν denote the character of S(VC) given by evaluation at ν. For

a ∈ H, denote by a(ν) the evaluation of a at ν. The minimal principal series with
parameter ν is X(ν) = H⊗S(VC) Cν .

If κ is any conjugate linear anti-involution of H, and L,R are arbitrary elements
of H, and ν′ ∈ V ∨

C
, the assignment

〈h1, h2〉 = ǫA(Lκ(h2)h1R)(ν
′), h1, h2 ∈ H, (3.3.1)

defines a κ-invariant (not necessarily hermitian) pairing on H viewed as an H-
module under left multiplication. For such a form to descend to a κ-invariant
hermitian form on X(ν), it must satisfy:

(H1) 〈h1a, h2〉 = a(ν)〈h1, h2〉, for all a ∈ S(VC);
(H2) 〈h1, h2a〉 = a(ν)〈h1, h2〉, for all a ∈ S(VC);
(H3) 〈h1, h2〉 = 〈h2, h1〉.

Of course, (H1) and (H3) imply (H2), but in practice it will be convenient for us
to check (1) and (2) first, which will then reduce the verification of (3) on the basis
{tw ∈W} of X(ν).

We show this for κ = • and the pairing

〈h1, h2〉• := ǫA(tw0h
•
2h1Rw0)(w0ν). (3.3.2)

Let

Rα := tα
α

kα + α
− kα
kα + α

,

and for x = sα1 . . . sαk
, define Rx =

∏Rαi
. The Rx have the same properties as

the Rx, except

R•
x = (−1)ℓ(x)Rx−1

∏

x−1α<0

kα + α

kα − α
. (3.3.3)

Let

V ∨
reg := {ν ∈ V ∨

C : (α, ν) 6= 0 for any α ∈ R+}.
For ν ∈ V ∨

reg, a basis of X(ν) is given by

{Rx ⊗ 11ν}x∈W . (3.3.4)

Notice that Rx is not in H, but in Ĥ. However it makes sense to express Rx =∑
tya

x
y with axy ∈ O(VC), and then evaluate at ν. The fact that ν ∈ V ∨

reg allows one
to solve for the tx ⊗ 11ν in terms of the Rx ⊗ 11ν; so indeed (3.3.4) is a basis. (Note
that we have assumed that kα > 0.)

Lemma 3.3.1. The vector Rx⊗ 11ν is an A-weight vector of X(ν) with weight xν.

Proof. Since a ·Rx = Rx ·x−1(a), a ∈ S(VC), it follows that in X(ν), a ·(Rx⊗11ν) =
a(xν)(Rx ⊗ 11ν). �
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We show that (H1)-(H3) hold for (3.3.4) and ν ∈ V ∨
reg. Since the relations (and

the change of basis matrices to the tx) are rational in ν, and V ∨
reg contains an open

set in V ∨
C
, they will hold in general.

The first identity holds by (3.2.3):

〈h1a, h2〉• = 〈h1, h2〉•a(ν).

For the second identity,

〈Rx,Rya〉• = 〈Rx,Ry〉•(w0x
−1y)(a•)(w0ν) = 〈Rx,Ry〉•(x−1y)(a•)(ν).

Suppose x = y. Then this formula implies (H2) (with h1 = h2 = Rx) if and only if

a•(ν) = a(ν) which is equivalent to ν = ν, i.e., ν ∈ V ∨.
Suppose x 6= y. We show that each of the two sides of (H2) are zero because

ǫA(tw0RzRw0) = 0 unless z = 1:

ǫA (tw0(Rya)•RxRw0) = ǫA


tw0a(−1)ℓ(y)Ry−1

∏

y−1α<0

kα + α

kα − α
RxRw0


 =

= ǫA
(
tw0Ry−1xRw0

)
· (−1)ℓ(y)(w0x

−1y)(a)
∏

y−1α<0

kα + w0x
−1α

kα − w0x−1α
= 0, and

ǫA
(
tw0R•

yRxRw0

)
a = ǫA

(
tw0Ry−1xRw0

)
· (−1)ℓ(x)

∏

y−1α<0

kα + w0x
−1α

kα − w0x−1α
a = 0.

So (H2) is verified.
We also record the formula

〈Rx ⊗ 11ν,Rx ⊗ 11ν〉• = (−1)ℓ(x)
(∏

α>0

α

kα − α
·
∏

x−1α<0

kα − δ(x−1α)

kα + δ(x−1α)

)
(w0ν)

= (−1)|R|
∏

α>0

〈α, ν〉
〈α, ν〉 + kα

∏

xα<0

〈α, ν〉 − kα
〈α, ν〉 + kα

.

(3.3.5)
The equivalence of the two formulas can be easily seen by the substitution x−1α 7→ α

in the second product. Notice that the factor (−1)|R|
∏
α>0

〈α,ν〉
〈α,ν〉+kα

is independent

of x, so we may divide the form uniformly by it. The resulting normalized hermitian
form has the property that 〈R1 ⊗ 11ν,R1 ⊗ 11ν〉 = 1.

When ν is dominant, kα + 〈α, ν〉 > 0, so the denominator does not vanish, and
it is always positive (we have assumed kα > 0).

The arguments also imply that 〈h2, h1〉• = 〈h1, h2〉• for h1, h2 ∈ {Rx⊗11ν}x∈W ,
so also in general. In conclusion, we have proved the following result.

Proposition 3.3.2. The form

〈h1, h2〉• := ǫA(tw0h
•
2h1Rw0)(w0ν)

defines a •-invariant hermitian form on X(ν) if and only if ν = ν, i.e., ν ∈ V ∨.

The case of ⋆ follows by formal manipulations. Set

〈h1, h2〉⋆ = ǫA (h⋆2h1Rw0) (w0ν). (3.3.6)
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The relation between the forms is

〈h1, h2〉⋆ = ǫA (h⋆2h1Rw0) (w0ν) = ǫA (tw0δ(h2)
•tw0h1Rw0) (w0ν)

= 〈tw0h1, δ(h2)〉•;
(3.3.7)

compare with (3.1.4).
We also note the following formulas for the signatures.

Proposition 3.3.3. Write Rw0 =
∑

w∈W twaw.

(1) The signature of 〈 , 〉• is given by the signature of the matrix
{
ax−1yw0

}
x,y∈W

.

(2) The signature of 〈 , 〉⋆ is given by the signature of the matrix
{
ax−1y

}
x,y∈W

.

Proof. Straightforward. �

Corollary 3.3.4. For every w ∈ W,
ǫA (twRw0) = ǫA (δ(tw−1)Rw0) .

Proof. The left hand side is

ǫA (tw0tw0twRw0) ,

while the right hand side is

ǫA (tw0tw−1tw0Rw0)

Evaluating at w0ν, the left hand side is 〈tw0 , tw〉•,ν while the right hand side is
〈tw, tw0〉•,ν . The fact that the two are equal follows from the fact that 〈 , 〉• is
symmetric for ν real. �

As a consequence of the relation (3.3.7) between • and ⋆ forms and Proposition
3.3.2, we have the following corollary.

Corollary 3.3.5. The pairing

〈h1, h2〉⋆ = ǫA (h⋆2h1Rw0) (w0ν)

defines a ⋆-invariant hermitian form on X(ν) if and only if w0ν = −ν.
3.4. Parabolic subalgebras. Let ΠM be a subset of simple roots of Π and R+

M

the positive roots spanned by ΠM . Denote by WM the parabolic subgroup of W
generated by {sα : α ∈ ΠM} and by w0,M the long Weyl group element in WM .

Let HM be the subalgebra of H generated by {tw : w ∈ WM} and S(VC). The
star operations ⋆M and •M as in Definition 2.3.2 for HM are:

t⋆Mw = tw−1 , w ∈WM , ω⋆M = −tw0,M · w0,M (ω) · tw0,M , ω ∈ VC,
t•M
w = tw−1 , w ∈ WM , ω•M = ω, ω ∈ VC.

(3.4.1)

As before, from Definition 2.1.1, every element of H can be written uniquely as
h =

∑
w∈W twaw, where aw ∈ S(VC). Denote

JM = the set of coset representatives of minimal length in W/W (M); (3.4.2)

recall that in every coset xW (M) there exists a unique element of minimal length.
Then, more generally, every h ∈ H can be written uniquely as

h =
∑

w∈JM

twmw, mw ∈ HM .

Define the C-linear map

ǫM : H→ HM , ǫM (h) = m1. (3.4.3)



12 DAN BARBASCH AND DAN CIUBOTARU

In particular, ǫM (hm) = ǫM (h)m, for all m ∈ HM . It is also easy to see that

δ(ǫM (h)) = ǫδ(M)(δ(h)), h ∈ H, (3.4.4)

where Πδ(M) = δ(ΠM ), and δ is the automorphism from Lemma 2.2.1. We need
the relation between ⋆ and ⋆M .

Proposition 3.4.1 ([BM3, Proposition 1.4]). For every h ∈ H, ǫM (h⋆) = ǫM (h)⋆M .

Corollary 3.4.2. For every h ∈ H, ǫδ(M)(tw0h
•tw0) = δ(ǫM (h))⋆δ(M) .

Proof. Since tw0h
•tw0 = δ(h)⋆, the claim is immediate from Proposition 3.4.1 and

(3.4.4). �

3.5. Induced modules. Let ΠM ⊂ Π be given, and consider the subalgebra HM
of H. If (σ, Uσ) is an HM -module, consider the induced module

X(M,σ) = H⊗HM
Uσ, (3.5.1)

where H acts by left multiplication. The goal is to construct invariant hermitian
forms on X(M,σ) provided that σ admits such a form for HM . For this, we need
to describe the H-module structure πσ on X(M,σ) more explicitly.

A basis for X(M,σ) is

{tx ⊗ vi}, x ∈ JM , vi ∈ B(Uσ),

where B(Uσ) is a basis of Uσ.
Every z ∈ W can be written uniquely

z = c(z) ·m(z), (3.5.2)

where c(z) is the element of JM in the coset zW (M) and m(z) ∈W (M).

Lemma 3.5.1. The action πσ on X(M,σ) is given by

π(tz)(tx ⊗ v) = tc(zx) ⊗ σ(m(zx))v;

π(ω)(tx ⊗ v) = tx ⊗ σ(x−1(ω))v +
∑

β>0
x−1β<0

(ω, β∨) tc(sβx) ⊗ σ(m(sβx))v, (3.5.3)

for every z ∈ W and ω ∈ VC.

Proof. For z ∈W,

π(tz)(tx ⊗ v) = tzx ⊗ v = tc(zx) ⊗ σ(m(zx))v.

For ω ∈ VC,
π(ω)(tx ⊗ v) = ωtx ⊗ v.

The claim follows from Lemma 2.3.5, i.e.,

ωtx = txx
−1(ω) +

∑

β>0
x−1β<0

(ω, β∨)tsβx.

�
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3.6. Action on the hermitian dual to an induced modules. Let (σ, Uσ) be
a module for HM as in section 3.5. Let (σ•, Uhσ ) be the hermitian dual of (σ, Uσ)
and (π•

σ , X(M,σ)h), the hermitian dual of (πσ, X(M,σ)) with respect to the star
operation •. A basis for the hermitian dual X(M,σ)h of X(M,σ) is

{thx ⊗ vhi }, where x ∈ JM and vhi ∈ Uhσ dual to the basis B(Uσ) = {vi}. (3.6.1)

We calculate the action π•
σ of H on X(M,σ)h. For z ∈W,

π•(tz)(t
h
x ⊗ vhi )(ty ⊗ vj) = (thx ⊗ vhi )(tz−1x ⊗ vj). (3.6.2)

Then (3.6.2) is nonzero if and only if c(z−1y) = x, so

z−1y = xm(z−1y), or equivalently, zx = ym(z−1y)−1.

We conclude that m(zx) = m(z−1y)−1, and so

π•(tz)(t
h
x ⊗ vhi ) = thc(zx) ⊗ σ•(m(zx))vhi . (3.6.3)

For ω ∈ VC,

π•(ω)(thx ⊗ vhi )(ty ⊗ vj) = (thx ⊗ vhi )(ωty ⊗ vj).

Using Lemma 2.3.5

ωty = tyy
−1(ω)−

∑

γ>0
yγ<0

(ω, yγ∨)tysγ = tyy
−1(ω) +

∑

β>0

y−1β<0

(ω, β∨)tsβy,

we find that the expression is zero unless either x = y, or c(sβy) = x. In this latter
case,

sβy = x ·m(sβy), equivalently sβx = ym(sβx), so m(sβx) = m(sβy)
−1.

The conclusion is

π•(ω)(thx ⊗ vhi ) = thx ⊗ σ•(x−1(ω))vhi −
∑

β>0

c(sβx)
−1β<0

(ω, β∨) tc(sβx) ⊗ σ•(m(sβx))v
h
i .

Notice that since y ∈ JM , if y−1β < 0, then in fact y−1β ∈ R− \ R−
M . We show

that

c(sβx)
−1β < 0 if and only if x−1β ∈ R \RM .

We have sβx = ym for some m ∈ W (M). Then y−1 = mx−1sβ , and x−1 =
m−1y−1sβ .

If x−1β ∈ R \RM ,

y−1β = m−1x−1(−β) ∈ R− \R−
M .

So y−1β < 0.
If y−1β < 0 then as observed earlier, y−1β ∈ R− \R−

M , so

x−1β = m−1y−1(−β) ∈ m−1(R+ \R+
M ) = R+ \R+

M .

In conclusion, we have proved the following formulas for the action π•
σ.
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Lemma 3.6.1. The H-module action on the •-hermitian dual module (π•
σ, X(M,σ)h)

is given by:

π•(tz)(t
h
x ⊗ vhi ) = thc(zx) ⊗ σ•(m(zx))vhi ,

π•(ω)(thx ⊗ vhi ) = thx ⊗ σ•(x−1(ω))vhi −
∑

β>0

x−1β∈R+\R+
M

(ω, β∨) tc(sβx) ⊗ σ•(m(sβx))v
h
i .

(3.6.4)

3.7. Hermitian dual of an induced module. Retain the notation from the
previous sections. In particular, write w0 for the long Weyl group element of W ,
w0,M , w0,δ(M) for the corresponding long elements in the Levi components, and set

w0
M := w0w0,δ(M) = w0,Mw0.

This element is minimal in the cosets w0Wδ(M), and WMw0.

Let (σ, Uσ) be an HM−module. Recall that (σ•, Uhσ ) is the module on the her-
mitian dual with respect to the • action.
Lemma 3.7.1. The map φ given by

φ(tm) := t(w0
M

)−1mw0
M
, m ∈WM ,

φ(ω) := (w0
M )−1(ω), ω ∈ VC,

is an isomorphism between HM and Hδ(M) and it interchanges •M with •δ(M).

Proof. Straightforward. �

Definition 3.7.2. In light of Lemma 3.7.1, to each HM -module (σ, Uσ), we asso-
ciate the Hδ(M)−module (aσ, Uaσ) given by

Uaσ = Uσ, and (aσ)(m′) := σ(w0
Mm

′(w0
M )−1),m′ ∈ Hδ(M). (3.7.1)

Proposition 3.7.3. The element x ∈ W is minimal in xWM if and only if xw0
M

is minimal in xw0
MWδ(M).

Proof. We observe that w0(R
±
δ(M)) = R∓

M . Then

w0w0,δ(M)(R
+
δ(M)) = w0(R

−
δ(M)) = R+

M .

The claim follows,

x(R+
M ) ⊂ R+ if and only if xw0

M (Rδ(M)) ⊂ R+.

�

Corollary 3.7.4. In the notation of (3.5.2):

cδ(M)(xw
0
M ) = cM (x)w0

M , mδ(M)(xw
0
M ) = (w0

M )−1mM (x)w0
M ,

for every x ∈ W.
Theorem 3.7.5. The map

Φ(thx ⊗ vh) := txw0
M
⊗ avh

is an H−equivariant isomorphism between
(
π•
σ, X(M,σ)h

)
and

(
πσ, X(δ(M), aσh)

)

where the action on σh is given by •δ(M).
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Proof. Using Lemma 3.6.1, we have

Φ[π•(tz)(t
h
x ⊗ vh)] = Φ[thcM (zx) ⊗ σ•(m(zx))vh] = tcM(zx)w0 ⊗ a[σ•(mM (zx))vh],

π(tz)Φ[t
h
x ⊗ vh] = π(tz)[txw0 ⊗ avh] = tcδ(M)(zxw0) ⊗ (aσ)•[(mδ(M)(zxw

0))avh].

Next

Φ[π•(ω)(thx ⊗ vh)] = txw0
M
⊗ a[σ•(x−1ω)vh]−

−
∑

β>0

x−1β∈R+\R+
M

(ω, β∨)tcM (sβx)w0 ⊗ a[σ•(mM (sβx))v
h]

π(ω)Φ[thx ⊗ vh] = π(ω)[txw0 ⊗ avh] = txw0
M
⊗ (aσ)•((xw0

M )−1ω)avh+

+
∑

γ>0

(xw0)−1γ∈R+\R+
δ(M)

(ω, γ∨) tcδ(M)(sβxw
0
M

) ⊗ (aσ)•(mδ(M)(sβxw
0
M ))avh.

The corresponding expressions are equal because of Corollary 3.7.4, and the fact
that w0(R+\R+

M ) = R−\R−
δ(M). �

Example 3.7.6. A particular case of Theorem 3.7.5 is that of minimal principal se-
ries. The hermitian dual (π•, X(ν)h) of a minimal principal series module identifies
with (π,X(w0ν)) via

Φ(thx ⊗ 11ν) = txw0 ⊗ 11w0ν .

In particular, this means that X(ν) admits an invariant • form if and only if w0ν
is W -conjugate to ν, equivalently if ν is W -conjugate to ν. Thus, for example, if
w0 is not central in W , X(ν) does not admit a •-form for generic purely imaginary
values of ν.

3.8. Second form of Frobenius reciprocity. As an application of Theorem
3.7.5, we obtain the following lemma, which is the H-analogue of the second form
of Frobenius reciprocity.

Lemma 3.8.1. If HM is a parabolic subalgebra of H, V an H-module and U an
HM -module, then

HomHM
[V |HM

, U ] = HomH[V,H⊗Hδ(M)
a(U)]. (3.8.1)

Proof. Theorem 3.7.5 computed the hermitian dual of a parabolically induced mod-
ule. The same exact statement and proof hold of course for contragredient modules.
We use here the same notation V • to denote the contragredient (rather than the
hermitian dual) with respect to the involution •. We will also use twice the tauto-
logical isomorphism

Hom[A,B•] = Hom[B,A•]. (3.8.2)

We have:

HomHM
[V, U ] = HomHM

[V, (U•)•] = HomHM
[U•, V •]

= HomH[H⊗HM
U•, V •] (by first Frobenius reciprocity)

= HomH[V, (H⊗HM
U•)•]

= HomH[V,H⊗Hδ(M)
a(U)] (by Theorem 3.7.5).

(3.8.3)

�
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3.9. Sesquilinear Form. A •-invariant sesquilinear form onX(M,σ) is equivalent
to defining an H-equivariant map

I : (π,X(M,σ)) −→ (π•, X(M,σ)h). (3.9.1)

We call I hermitian if Ih = I or equivalently I(v)(w) = I(w)(v), for all v, w ∈
X(M,σ). Recall M, δ(M), and w0 = w0

Mw0,δ(M) = w0,Mw
0
M with w0

M minimal in

w0WM̃
. To simplify notation, write M̃ = δ(M), and

w0 = w0
M , R

0 := Rw0
M
. (3.9.2)

Furthermore,

Adw0
M :W

M̃
−→WM , σ(m̃) = σ(w0

M m̃(w0)−1).

If x = cM (x)mM (x), then xw0
M = cM (x)w0

M (w0
M )−1mM (xw0

M ), so

cM (x)w0
M = c

M̃
(xw0

M ), (w0
M )−1mM (x)w0

M = m
M̃
(xw0

M ). (3.9.3)

Assume that there is an HM -equivariant isomorphim

ι : (σ, Uσ) −→ (σ•, Uhσ )

defining a •-invariant hermitian form on (σ, Uσ). The same map gives an isomor-
phism ιa : (aσ, Uσ) −→ (aσ•, Uhσ ).

Write R0 =
∑
tzm

0
z̃ with z̃ minimal in z̃W (M̃) and m0

z̃ ∈ H
M̃
.

Define I to be the composition of the maps

X(M,σ)
LR0−−−→ X(M̃, aσ)

Ind ιa−−−−→ X(M̃, aσh)
Φ−1

−−−→ X(M,σ)h.

where:

(i)

LR0 : tx ⊗ v 7→ txR
0 ⊗ v =

∑
tc

M̃
(xz̃) ⊗ aσ(mM̃

(xz̃)m0
z̃)v

(ii) Ind ιa maps it to

Ind ιa ◦ LR0 : tx ⊗ v 7→
∑

tc
M̃

(xz̃) ⊗ ιa[aσ(mM̃
(xz̃)m0

z̃)v].

(ii) Applying Φ−1 we get

I : tx ⊗ v 7→
∑

thc
M̃

(xz̃)(w0)−1 ⊗ ιa[aσ[mM̃
(xz̃)m0

z̃v] =

=
∑

thcM (xz̃(w0)−1) ⊗ ιa[aσ(mM̃
(xz̃)m0

z̃)v].

Thus

〈tx ⊗ vx, ty ⊗ vy〉 = 〈aσ(mM̃
(xz̃)m0

z̃)vx, vy〉
with cM (xz̃(w0)−1) = y. This equation gives

xz̃(w0)−1 =y ·mM (xz̃(w0)−1)⇔ z̃ = x−1ymM (xz̃(w0)−1)w0 ⇔ z̃ = x−1yw0m
M̃
(xz̃)⇔

⇔x−1yw0 = z̃m
M̃
(xz̃)−1 ⇔ z̃ = c

M̃
(x−1yw0), m

M̃
(xz̃) = m

M̃
(x−1yw0)−1.

The final answer is

〈tx ⊗ vx, ty ⊗ vy〉 = 〈aσ[mM̃
(x−1yw0)−1m0

c
M̃

(x−1yw0)]vx, vy〉.
Compare and contrast this with

ǫ
M̃
(t(w0)−1ty−1txR

0) = ǫ
M̃
(
∑

t(w0)−1ty−1txtz̃m
0
z̃) = m̃ ·m0

z̃



HERMITIAN FORMS FOR AFFINE HECKE ALGEBRAS 17

where (w0)−1y−1xz̃ = m̃. So

x−1yw0 = z̃m̃−1 ⇔ z̃ = c
M̃
(x−1yw0), m̃ = m

M̃
(x−1yw0)−1.

In conclusion, we have proved the following result.

Proposition 3.9.1. Suppose (σ, Uσ) has a •-invariant hermitian form 〈 , 〉σ,•. The
form

〈h1 ⊗ v1, h2 ⊗ v2〉• = 〈aσ[ǫ
M̃
(t(w0)−1h•2h1R

0)]v1, v2〉σ,•
on X(M,σ) is •-invariant and sesquiliniar.

We prove in the next section that the form is also hermitian.

3.10. Symmetry. The parabolic Hecke subalgebra HM of H is attached to the
non-semisimple root system (V,RM , V

∨, R∨
M ). Let VM be the R-span of RM in V ,

V ∨
M the R-span of R∨

M in V ∨, and

V ⊥
M = {v ∈ V : (v, α∨) = 0, for all α ∈ RM},

V ∨,⊥
M = {v∨ ∈ V ∨ : (α, v∨) = 0, for all α ∈ RM}.

Then V = VM ⊕ V ⊥
M , V ∨ = V ∨

M ⊕ V ∨,⊥
M . Let H0

M denote the graded Hecke algebra
attached to the semisimple root system (VM , RM , V

∨
M , R

∨
M ) by Definition 2.1.1.

Then there is an algebra isomorphism

HM = H0
M ⊗C S(V

⊥
M ). (3.10.1)

Assume σ = σ0 ⊗ Cν , where σ0 is an H0
M -module, and ν ∈ (V ⊥,∨

M )C.

Lemma 3.10.1. There is a set V ⊥,∨
M,reg containing an open set of V ⊥,∨

M such that

{Rx⊗vi} with x minimal in the coset xW (M) and {vi} a basis of Uσ forms a basis
of X(M,σ).

Proof. This follows from the formula

Rx = tx
∏

x−1α<0

α

kα + α
+
∑

y<x

tym
x
y .

The leading term for R0, σ


 ∏

(w0
M

)−1α<0

α

kα + α


, is invertible for generic ν. The

claim follows from the fact that the expression of Rx is upper triangular in the
ty. �

Theorem 3.10.2. The form in Proposition 3.9.1 is hermitian, and therefore, it
gives a •-invariant hermitian form on the induced module X(M,σ).

Proof. The claim follows (on V ⊥,∨
M,reg first, and thus always) from the formula

ǫ
M̃
(t(w0)−1R•

yRxR0) = 0 unless x = y.

�

As above, when ν ∈ (V ⊥,∨
M,reg)C, a basis of X(M,σ) is given by {Rx⊗ v}, where x

ranges in JM , and v ranges over a basis of σ0. In this case, one obtains a simpler
formula for the signature of the •-form.
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Corollary 3.10.3. When ν ∈ (V ⊥,∨
M,reg)C, the signature of the • form on X(M,σ),

σ = σ0 ⊗ Cν , is given by

〈Rx ⊗ v1,Ry ⊗ v2〉• =





0, x 6= y,

f(cc(σ))

〈
σ

( ∏

α>0,xα<0

α− kα
α+ kα

)
v1, v2

〉

σ,•

, x = y,

(3.10.2)

where x, y ∈ JM , v1, v2 ∈ Uσ, and f(cc(σ)) = (−1)|R+\R+
M

|
∏

α∈R+\R+
M

〈α, cc(σ)〉
kα + 〈α, cc(σ)〉 .

Proof. The first claim follows as in the proof of Theorem 3.10.2. For the second
claim, one uses formula (3.3.3) for R•

x and the same substitution as in the second
formula of (3.3.5). �

Since the factor f(cc(σ)) is common for all x, it makes sense to normalize the
hermitian form by dividing by it. The resulting form has the property that

〈R1 ⊗ v1,R1 ⊗ v2〉• = 〈v1, v2〉σ,•. (3.10.3)

Remark 3.10.4. In the particular case when σ0 = triv (so that σ is the one-
dimesional character Cν) and ν is large, we recover a result of Opdam [Op2, Theo-
rem 4.1]. In that case, the induced module X(M, ν) = H⊗HM

Cν is A-semisimple
with a basis given by {Rx ⊗ 11ν : x ∈ JM}, and in the normalization (3.10.3), the
form is

〈Rx ⊗ 11ν ,Ry ⊗ 11ν〉• = δx,y
∏

α>0,xα<0

〈α, ν〉 − kα
〈α, ν〉+ kα

(3.10.4)

It is easy to verify that this formula agrees (switching the between roots and coroots)
with the one in [Op2, Theorem 4.1.(4)], after taking the scaling factor a(λ, k) =∏
α>0(1 − kα/λ̃(α∨)) in the notation therein.

3.11. We have analyzed the construction of induced •-invariant forms. The same
type of discussion works for ⋆-invariant forms, or otherwise, the result for ⋆-invariant
forms can be deduced via formal manipulations as in section 3.1. We only state the
result and skip more details. A similar result was obtained in [BM3, section 1.8].

Proposition 3.11.1. Suppose (σ, Uσ) has a ⋆-invariant hermitian form 〈 , 〉σ,⋆.
The pairing

〈h1 ⊗ v1, h2 ⊗ v2〉⋆ = 〈aσ[ǫM̃ (h⋆2h1R
0)]v1, v2〉σ,⋆

on X(M,σ) is a hermitian, ⋆-invariant (sesquiliniar) form.

4. Langlands classification and A-weights

We use Langlands classification to deduce certain results about the A-weights of
irreducible H-modules. As a consequence, we show that every irreducible H-module
with real central character admits a •-invariant hermitian form.

4.1. Langlands quotient. Retain the notation from section 3.10. The following
form of Langlands classification is proved in [Ev].
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Theorem 4.1.1. (i) Let L be an irreducible H-module. Then L is a quotient
of X(M, ν) = H ⊗HM

(σ ⊗ Cν), where σ is an irreducible tempered H0
M -

module, and ν ∈ V ⊥
M such that Re ν is dominant, i.e., (Re ν, α) > 0, for all

α ∈ Π \ΠM .
(ii) If σ, ν are as in (i), then H⊗HM

(σ⊗Cν) has a unique irreducible quotient
L(σ, ν).

(iii) If L(σ, ν) ∼= L(σ′, ν′), then M =M ′, σ ∼= σ′, and ν = ν′.

We need to review the construction of ΠM , σ and ν from L.
Let {ω∨

1 , . . . , ω
∨
n} be the basis of V ∨ consisting of fundamental coweights, i.e.,

the basis dual to Π ⊂ V. For every subset F ⊂ {1, 2, . . . , n}, let
SF = {

∑

j /∈F

cjω
∨
j −

∑

i∈F

diα
∨
i : cj > 0, di ≥ 0} ⊆ V ∨.

A lemma of Langlands, cf. [Ev, Lemma 2.3] says that for every v ∈ V ∨, there
exists a unique subset F such that v ∈ SF . Denote this subset by F (v). If v =∑
j /∈F cjω

∨
j −

∑
i∈F diα

∨
i , then set

v0 =
∑

j /∈F

cjω
∨
j .

On V ∨ define the order relation ≥ by v ≥ v′ if v − v′ ∈ R≥0Φ
∨,+. Then, see for

example [Ev, Lemma 2.4],

v1 ≥ v2 implies v01 ≥ v02 . (4.1.1)

Choose λ ∈ Ω(L) such that Reλ is maximal with respect to ≥ among the real parts
of weights of L. Then

ν = λ|V ∨,⊥
M

, (4.1.2)

and σ is an irreducible H0
M -module such that σ ⊗Cν occurs in the restriction of L

to HM = H0
M ⊗ S(V ⊥

M ). Moreover the weights of σ are:

Ω(σ) = {λ′|V ∨

M
: λ′ ∈ Ω(L), λ′|V ∨,⊥

M
= ν, F (Reλ′) = ΠM} ⊂ V ∨

M . (4.1.3)

4.2. Iwahori-Matsumoto involution. The Iwahori-Matsumoto involution τ of
H is defined on the generators of H by:

τ(tsα ) = −tsα , α ∈ Π, τ(a) = −a, a ∈ VC. (4.2.1)

It is immediate that this assignment extends to an algebra automorphism and
therefore to a involution, denoted τ again on H-modules. Notice that if X is an
H-module, then

τ(X)|W ∼= X |W ⊗ sgn,

Ω(τ(X)) = −Ω(X), τ(X)−λ ∼= Xλ, λ ∈ Ω(X).
(4.2.2)

Lemma 4.2.1. Assume H is semisimple. Suppose X is an irreducible tempered
module such that τ(X) is also tempered. Then the central character χ of X is
imaginary, i.e., χ ∈

√
−1V , and X ∼= X(χ).

Proof. Let λ ∈ Ω(X) be arbitrary. Since X is tempered, (ω,Reλ) ≤ 0 for all
dominant ω ∈ V. If τ(X) is also tempered, (ω,−Reλ) ≤ 0 as well, hence (ω,Reλ) =
0 for all ω dominant in V . Thus Reλ = 0 and so χ ∈

√
−1V , which means

X ∼= X(χ), since at imaginary central character the minimal principal series is
irreducible ([Ch], see [Op2, Theorem 1.3]). �
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4.3. A-weights. Let (π,X) be an irreducible H-module, and Ω(X) ⊂ V ∨
C

the set
of A = S(VC)-weights of X . As noted before, Ω(X) ⊂ W · cc(X). Define the
A-character of X to be the formal sum:

ΘA(X) =
∑

λ∈ΩX

(dimXλ) e
λ, (4.3.1)

where Xλ = {x ∈ X : for all a ∈ A, (π(a) − λ)nx = 0, for some n} is the general-
ized λ-weight space. Denote the multiplicity of λ in X by

m[λ : X ] := dimXλ. (4.3.2)

The following proposition is the graded Hecke algebra analogue of a result of Cas-
selman for p-adic groups, and Evens-Mirković [EM, Theorem 5.5] for the geometric
affine Hecke algebras.

Proposition 4.3.1. Let X, X ′ be two irreducible H-modules such that Ω(X) =
Ω(X ′). Then X ∼= X ′.

Proof. By hypothesis cc(X) = cc(X ′) = χ. Suppose X (and therefore also X ′) is
not tempered. By Langlands classification, X is the unique irreducible quotient of
H ⊗HM

(σ ⊗ Cν), where ΠM ( Π, ν and Ω(σ) are uniquely determined by Ω(X).
Therefore, by induction of |Π|, the claim follows for nontempered X .

Now assume that X is tempered. We use the Iwahori-Matsumoto involution and
Lemma 4.2.1: either τ(X) is not tempered and since Ω(τ(X)) = Ω(τ(X ′)), we may
finish as above, or else X (and also X ′) is the irreducible minimal principal series
X(χ) with imaginary central character χ. �

As a consequence, we deduce indirectly that every irreducible module with real
central character has a hermitian •-invariant form.

Corollary 4.3.2. Let X be an irreducible H-module. Then X admits a •-invariant
hermitian form if and only if Ω(X) = Ω(X). In particular, if X has real central
character then X admits a •-invariant form.

Proof. Since a• = a for all a ∈ S(VC), we have Ω(X•) = Ω(X), where X• is the
•-hermitian dual of X . The claim follows at once from Proposition 4.3.1. �

4.4. Linear independence. Proposition 4.3.1 says that ΘA(X) uniquely deter-
mines X . We now prove the stronger statement that {ΘA(X)} is linearly indepen-
dent.

Lemma 4.4.1. Suppose λ is a weight of the irreducible tempered H0
M -module σ

and X(σ, ν) is a standard Langlands induced module. Then

m[λ+ ν : L(σ, ν)] = m[λ+ ν : X(σ, ν)] = m[λ : σ].

Proof. By the construction of the Langlands quotient L(σ, ν), the restriction of
L(σ, ν) to HM contains the HM -module σ ⊗ Cν , hence HomA[σ ⊗ Cν , L(σ, ν)] 6= 0,
and therefore m[λ + ν : L(σ, ν)] ≥ m[λ : σ]. Thus, it is sufficient to prove that
m[λ+ ν : X(σ, ν)] = m[λ : σ].

By [BM2, Proposition 6.4], every weight in X(σ, ν)/(σ ⊗ Cν) is of the form
w(λ + ν), where λ is a weight of σ, and w 6= 1 ranges over the set JM of minimal
length representatives of W/WM .
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We claim that if w 6= 1 is such a representative, then w(λ+ν) 6= λ′+ν, for every
λ, λ′ weights of σ. Let F ⊂ {1, 2, . . . , n} be such that λ ∈ SF . Then, as before, write
Reλ = −∑i∈F diα

∨
i , di ≥ 0 and Re ν =

∑
j /∈F cjω

∨
j .

Since wα∨
i ∈ R∨,+, for all i ∈ F, we have (wReλ, ω∨

j ) ≤ 0 for every i ∈ F, j /∈ F.
On the other hand, wβj < βj for j /∈ F, so (wRe ν, βj) < (ν, βj) for some j /∈ F.
This implies that (wRe(λ+ ν),Re ν) < (Re(λ+ ν),Re ν) = (Re ν,Re ν).

�

Theorem 4.4.2. The set {ΘA(X)} where X ranges over the set of (isomorphism
classes of) simple H-modules is Z-linearly independent.

Proof. Let
∑

i

ciΘA(Xi) = 0 (4.4.1)

be a finite linear combination of A-characters, where {Xi} are distinct simple mod-
ules. Without loss of generality, we may assume that all Xi have the same central
character and moreover, that the central character is real. By Langlands clas-
sification, each Xi is the unique irreducible quotient L(Mi, σ, νi) of an induced
H⊗HMi

(σi ⊗ Cνi).
Find λ a weight in the linear combination such that λ is maximal with respect

to ≥ and no other λ′ occuring in the linear combination satisfies (λ′)0 > λ0, with
the notation as in previous subsection. There exists a unique F = F (λ) such that
λ ∈ SF , and write ΠM for the subset of Π corresponding to F , and ν = λ|V ∨,⊥

M

accordingly. Then ν = λ0. Let σ1, . . . , σk irreducible tempered H0
M -modules so

that L(M,σt, ν) occurs in (4.4.1).
We claim that if λj is any weight of a σl, l = 1, k, then every time λj + ν occurs

in (4.4.1), it occurs in a ΘA(L(M,σt, ν)) for some t = 1, k. To see this, suppose
λj + ν appears in L(M ′, σ′, ν′). Then there exists an extremal weight λ′ such that
(λj + ν) ≤ λ′, but then ν = (λj + ν)0 ≤ (λ′)0, and by assumption ν = (λ′)0 = ν′,
M =M ′ and σ′ = σt for some t.

Combining this with Lemma 4.4.1, it follows that (4.4.1) implies

k∑

j=1

cjΘA(σj) = 0. (4.4.2)

If ΠM 6= Π, we get cj = 0 by induction and continue the same process with
the remaining terms in (4.4.1). If ΠM = Π, i.e., the combination involves only
A-characters of irreducible tempered H-modules, apply the Iwahori-Matsumoto in-
volution and conclude as in the proof of Proposition 4.3.1.

�

5. Signature of hermitian forms and lowest W -types

In order to study the signature of •-invariant forms, we need to construct ex-
plicitly the forms whose existence is guaranteed by Corollary 4.3.2. We use Lang-
lands classification together with the explicit induced forms from section 3.10. To
conclude certain results about signatures, we also make use of the geometric clas-
sification of H-modules (for equal parameters).
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5.1. Tempered modules.

Lemma 5.1.1. Let X be an irreducible tempered H-module. Then X is a submodule
of a parabolically induced module I(M,σ ⊗ Cν) = H ⊗HM

(σ ⊗ Cν), where σ is a

discrete series module of H0
M and ν ∈ (V ⊥,∨

M )C with Re ν = 0.

Proof. Let ωi ∈ V , i = 1, n, denote the fundamental weights of the root system.
For every weight λ ∈ Ω(X), define

F(λ) = {i : (ωi,Reλ) < 0}. (5.1.1)

Since X is assumed tempered, we necessarily have (ωj ,Reλ) = 0 for all j /∈ F(λ).
We assumed that the root system is semisimple, therefore,

Reλ = −
∑

i∈F(λ)

diα
∨
i , where di > 0.

Choose now λ ∈ Ω(X) such that F := F(λ) is minimal with respect to set inclusion.
Set

ΠM = {αi : i ∈ F}.
Using the decomposition V ∨ = V ∨

M ⊕ V ⊥,∨
M , let ν be the projection of λ onto

(V ⊥,∨
M )C. Since Reλ ∈ V ∨

M by construction, it follows that Re ν = 0.
Let Y be an irreducible consituent of the restriction of X to HM , such that

S((V ⊥
M )C) acts on Y by ν. Then Y ∼= Y 0 ⊗ Cν , where Y

0 is an irreducible Hss
M -

module. We claim that Y 0 is a discrete series H0
M -module. To see this, let µ ∈

(V ∨
M )C be a S((VM )C)-weight of Y 0, write Reµ = −∑i∈F ziα

∨
i , and we want to

prove that all zi > 0. The sum µ + ν is a weight of X and Re(µ + ν) = Re(µ) =
−∑i∈F ziα

∨
i , in particular, zi ≥ 0. Notice that if j /∈ F , then j /∈ F(µ+ ν), hence

F(µ+ ν) ⊆ F . By the minimality of F , F(µ+ ν) = F , and therefore zi > 0 for all
i. Setting σ = Y 0, the lemma is proved.

�

The following statement is well-known.

Proposition 5.1.2. Every irreducible tempered H-module is ∗-unitary.
Sketch of proof. When the Hecke algebra H appears in the representation theory of
p-adic groups (i.e., it is “geometric type” in the sense of Lusztig [Lu2]), the claim
follows from the unitarizability of tempered representations of the p-adic group, see
for example [BM1].

For Hecke algebras with arbitrary positive parameters, the statement is known
from [Op1] in the setting of affine Hecke algebras, together with the fact that
Lusztig’s reduction from affine to graded affine Hecke algebras [Lu1] preserves tem-
peredness and unitarity. �

Corollary 5.1.3. Every irreducible tempered H-module with real central character
admits a •-invariant hermitian form.

Proof. Let X be an irreducible tempered module. If Xδ ∼= X, then we can define
a •-hermitian form, using the ∗-hermitian form 〈 , 〉∗ from Proposition 5.1.2, as
before, by setting 〈x, y〉• = 〈π(tw0)x, δ(y)〉∗, x, y ∈ X. We claim that Xδ ∼= X
for every irreducible tempered H-module with real infinitesimal character. For
this, we use that the restriction to W of the set of tempered modules with real
central character is linearly independent in the Grothendieck group of W . When
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the parameter function k of H is geometric in the sense of Lusztig, this (and more)
follows from the geometric classification, see section 5.3. For arbitrary positive
parameters k, this result is proved in [So].

IfX is irreducible tempered with real central character, thenXδ is also tempered.
This is because Ω(Xδ) = −w0(Ω(X)), and if ωj is a fundamental weight, then so
is −w0(ωj), hence the non-positivity conditions for weights are preserved.

Also X |W ∼= Xδ|W . By the W -linear independence mentioned above, X ∼= Xδ,
as H-modules. �

5.2. Signature at infinity. Assume 〈ν, α〉 > 0 for all α ∈ R+ \R+
M and denote

σt = σ0 ⊗ Ctν , t > 0.

We consider the signature of the form on X(M,σt) as t→∞. We can use the basis
{Rx⊗vi}, so that the form is block-diagonal with respect to x ∈ JM . By Corollary
3.10.3, in the diagonal block (of the normalized form) for Rx, we have

〈Rx ⊗ v1,Rx ⊗ v2〉•,t =
〈
σt

( ∏

α>0,xα<0

α− kα
α+ kα

)
v1, v2

〉

σt,•

.

As t → ∞, the expression σt

(∏
xα<0

α−kα
α+kα

)
goes to the identity, which means

that

lim
t→∞
〈Rx ⊗ v1,Rx ⊗ v2〉•,t = 〈v1, v2〉σ0,•. (5.2.1)

We have proved

Theorem 5.2.1. The •−signature of X(M,σt) at ∞ is the induced signature of
the •−signature of (σ0, Uσ0).

5.3. Lowest W -types. In this section, we assume that the graded Hecke alge-
bra H has equal parameters. More generally, analogous results hold whenever the
parameters of H are of geometric type, in the sense of [Lu2].

Suppose H is attached to a root system Ψ and constant parameter function k.
Let g be the reductive Lie algebra with root system Ψ. In particular, we identify
a Cartan subalgebra h of g with V ∨

C
, so that the roots R live in h∗ ∼= VC. Let

N ⊂ g denote the nilpotent cone. Let G be a complex connected Lie group with
Lie algebra g; for our purposes, we may choose G to be the adjoint form. If S is a
subset of g, denote by ZG(S) the mutual centralizer in G of the elements in S and
A(S) the group of components of ZG(S).

We summarize the results from [KL, Lu2] that we need for signatures.
One attaches a standard geometric H-module X(s, e, ψ) to every triple

(s, e, ψ), s ∈ g semisimple, e ∈ N such that [s, e] = ke, ψ ∈ Â(s, e)0, (5.3.1)

where Â(s, e)0 is the set of irreducible representations of A(s, e) which appear in
the permutation action on the top cohomology Htop(Bse,C). Here, Bse denotes the
variety of Borel subalgebras of g containing e and s. Morever,

X(s, e, ψ) ∼= X(s′, e′, ψ′) if and only if g · (s, e, ψ) = (s′, e′, ψ′), for some g ∈ G.
(5.3.2)

Consequently, we may assume, without loss of generality, that s ∈ h. Under the
identification h = V ∨

C
, write s = s0 +

√
−1s1 with s0, s1 ∈ V ∨.
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On the other hand, recall that the Springer correspondence realizes every irre-
ducible W -representation as the φ-isotypic component

µ(e, φ) := HomA(e)[φ,H
top(Be,C)] (5.3.3)

of the top cohomology group of the Springer fiber Be. Denote by Â(e)0 the set
of irreducible representations of A(e) which appear in the action on Htop(Be,C).
Moreover µ(e, φ) ∼= µ(e′, φ′) if and only if there exists g ∈ G such that g · (e, φ) =
(e′, φ′).

The inclusion ZG(s, e) → ZG(e) descends to an inclusion A(s, e) → A(e). The
standard module X(s, e, ψ) has the property that

HomW [µ(e, φ) : X(s, e, ψ)] = HomA(s,e)[ψ : φ|A(s,e)], (5.3.4)

for all φ ∈ Â(e)0.
Definition 5.3.1. We call µ(e, φ) a lowest W -type of X(s, e, ψ) if HomA(s,e)[ψ :
φ|A(s,e)] 6= 0.

Theorem 5.3.2 ([KL, Lu2]).

(1) The standard module X(s, e, ψ) where (s, e, ψ) is as in (5.3.1) has a unique
composition factor L(s, e, ψ) such that L(s, e, ψ) contains every lowest W -
type of X(s, e, ψ) with full multiplicity [ψ : φ|A(s,e)].

(2) The module X(s, e, ψ) is tempered if and only if s0 = kh for a Lie triple
(e, h, f) of e. In this case, X(s, e, ψ) = L(s, e, ψ). The module X(s, e, ψ) is
a discrete series if in addition e is a distinguished nilpotent element.

Notice that, in particular, there is a one-to-one correspondence between tempered
H-modules with real central character and (G-conjugacy classes) of pairs (e, φ)

where e ∈ N and φ ∈ Â(e)0.
According to the parabolic Langlands classification recalled in Theorem 4.1.1,

for every irreducible tempered H0
M module σ0 and every ν ∈ V ∨,⊥

M such that ν is
dominant, i.e., (α, ν) > 0 for all α ∈ Π \ ΠM , the standard parabolically induced
module

X(M,σ0, ν) = H⊗HM
(σ0 ⊗ Cν), (5.3.5)

has a unique irreducible quotient L(M,σ0, ν).
The relation with the geometric classification is as follows. The tempered H0

M -
module σ0 is parameterized by a triple (sM , eM , ψM ). Here sM ∈ (V ∨

M )C, eM
is a nilpotent element in the corresponding Levi subalgebra m ⊂ g and ψM is a
representation of AM (sM , eM ). Set

s = sM + ν ∈ VC = h, e = eM .

Since ν commutes with sM and e = eM , AG(s, e) = AG(sM , eM ). The embed-

ding AM (sM , eM ) → AG(sM , eM ) = AG(s, e) induces a surjection ÂG(s, e) →
ÂM (sM , eM ), and let ψ the pull-back of ψM . Then

X(M,σ0, ν) ∼= X(s, e, ψ) and L(M,σ0, ν) ∼= L(s, e, ψ). (5.3.6)

Thus, we may speak of the lowest W -types of X(M,σ0, ν) (and of L(M,σ0, ν).
Denote by LWT(M,σ0) the set of lowest W -types of X(M,σ, ν). Since AG(s, e),
s = sM + ν does not change for all dominant ν, this set does not change with ν,
hence the notation. Then Theorem 5.3.2(1) implies that L(M,σ0, ν) contains all
the W -types in LWT(M,σ0) with full multiplicity.
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Moreover, let µ0 be the unique lowestWM -type of σ0. For every µ ∈ LWT(M,σ0),
we have

HomW [µ,X(M,σ0, ν)] = HomW (M)[µ|W (M), σ0] = HomW (M)[µ|W (M), µ0].
(5.3.7)

The form 〈 , 〉σ0,• can be normalized so that it is positive on the µ0-isotypic com-
ponent. Then Theorem 5.2.1 implies the following corollary.

Corollary 5.3.3. The •-signature on the lowest W−types of the standard module
X(M,σ0, ν) is given by Theorem 5.2.1 for all dominant ν. In particular, the •-
form on L(M,σ0, ν) can be normalized so that the signature is positive definite on
all lowest W -types.

Remark 5.3.4. Suppose L = L(M,σ0, ν) also carries a ⋆-invariant hermitian form.
Since ν is real, this is the case precisely when δ(M) = M and w0ν = −ν. (We
have L(M,σ0, ν)

δ = L(δ(M), σ0, δ(ν)).) As in section 3.1, in order to compare ⋆-
signatures with •-signatures, we need first to choose an isomorphism τδL : Lδ → L.
It is an empirical fact that always L has one lowest W -type that appears with
multiplicity 1, and we normalize τδL to be +1 on the isotypic space of this lowest
W -type.

From Corollary 5.3.3 and Lemma 3.1.2, we see that the ⋆-signature on each
isotypic space L(µ) of a lowest W -type µ of L(M,σ0, ν) is also independent of
(dominant) ν. Moreover, this signature is given by the action of tw0 ◦ τδL on L(µ).
In particular, if w0 is central in W (so δ = 1) or if dimL(µ) = 1, the ⋆-form can be
normalized so that the ⋆-signature on L(µ) equals

(−1)h(µ) dimL(µ),

where h(µ) is the lowest degree in which µ occurs in harmonic polynomials on V .
In fact, when the root system is simple, the only case when there exists a lowest

W -type µ such that dimL(µ) > 1 is as follows. The root system is of type E6

and the standard module is X(M,σ0, ν), where M is of type D4 and σ0 is the
subregular discrete series of D4. In Theorem 5.3.2, this corresponds to a nilpotent
element e of type D4(a1) in E6, whose centralizer has component group A(e) = S3.
The standard module X(M,σ0, ν) has three lowest W -types denoted 80s, 90s, and
20s with multiplicities 1, 2, and 1, respectively. One can compute the ⋆-form on the
two-dimensional isotypic component of 90s and find that the signature is (1,−1),
cf. [Ci2, page 458].

6. Jantzen filtration and hermitian Kazhdan-Lusztig polynomials

6.1. Jantzen filtration. We follow [Vo, section 3]. Let E be a complex vector
space endowed with an analytic family 〈 , 〉t of hermitian forms, such that 〈 , 〉t
are nondegenerate for t 6= t0, close to t0. The Jantzen filtration of E ([Ja]) is a
filtration of vector subspaces

E = E0 ⊃ E1 ⊃ E2 ⊃ · · · ⊃ EN = 0,

defined as follows. For every n ≥ 0, x ∈ E is in En if and only if there exists ǫ > 0
and a polynomial function fx : (t0 − ǫ, t0 + ǫ)→ E with the properties:

(i) fx(t0) = x;
(ii) 〈fx(t), y〉t vanishes at least to order n at t = t0.
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Set

〈x, y〉n = lim
t→t0

1

(t− t0)n
〈fx(t), fy(t)〉t; (6.1.1)

this definition is independent of fx, fy.

Theorem 6.1.1 (Jantzen [Ja, 5.1], cf. Vogan [Vo, Theorem 3.2, Corollary 3.6]).
The pairing 〈 , 〉n is a hermitian form on En with radical En+1. In particular,

(a) Rad〈 , 〉0 = E1;
(b) 〈 , 〉n is a nondegenerate hermitian form on En/En+1.

Suppose (pn, qn) is the signature of 〈 , 〉n on En/En+1. If (p
+, q+) is the signature

of 〈 , 〉t for t > t0 and (p−, q−) is the signature of 〈 , 〉t for t < t0, then

(c) p+ = p− +
∑

n odd
pn −

∑
n odd

qn and q+ = q− +
∑
n odd

qn −
∑
n odd

pn.

Let X = X(M,σ, ν) be a standard module as in Theorem 4.1.1 with Langlands
quotient X = L(M,σ, ν). Consider a polynomial in t family of parameters νt, such
that ν1 = ν and Xt = X(M,σ, νt) is irreducible for t 6= 1 in some small interval
centered at 1. Suppose σ is a tempered module with real central character, and
ν is real. By Corollary 5.1.3, every Xt admits a •-invariant nondegenerate form
〈 , 〉t,• that we assume, as we may by Corollary 5.3.3, to be positive definite the
lowest W -types of Xt. Notice that the W -structure and lowest W -types of Xt are
independent on t. Therefore, we may think of the modules Xt as being realized on
the same vector space E with the analytic family of hermitian forms 〈 , 〉t,•, and
the previous discussion applies. We have the Jantzen filtration of X :

X = X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ XN = 0, (6.1.2)

with the following properties, cf. [Vo, Theorem 3.8]:

(a) the filtration (6.1.2) is a filtration by H-modules;
(b) X0/X1 is the Langlands quotient X;
(c) The form 〈 , 〉n• on Xn/Xn+1 is nondegenerate and •-invariant. Let (pn, qn)

be its signature. If (p±, q±) is the signature of the 〈 , 〉•,t for t < 1,
respectively t > 1, then p+ = p− +

∑
n odd pn −

∑
n odd qn and q+ =

q− +
∑

n odd qn −
∑
n odd pn.

6.2. Kazhdan-Lusztig polynomials. We recalled in Theorem 5.3.2 the geomet-
ric classification of standard and simple H-modules. We record now the known
results about the composition factors of a standard module. Retain the notation
from section 5.3. In particular, let s ∈ h be the semisimple parameter, and let IrrsH
denote the irreducible H-modules with central character W · s. Denote

G(s) = {g ∈ G : Ad(g)s = s}, g1(s) = {x ∈ g : [s, x] = x}. (6.2.1)

It is well-known that G(s) acts on g1(s) with finitely many orbits. Let C(s) denote
the set of orbits. Theorem 5.3.2 can be rephrased as saying that there is a natural
bijection:

IrrsH↔ {(O,L) : O ∈ C(s), L irr. local system of Springer type supported on O}.
(6.2.2)

Let L(O,L) denote the irreducible H-module and X(O,L) the corresponding stan-
dard module. In this setting, the Kazhdan-Lusztig conjectures take the following
form.
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Theorem 6.2.1 ([Lu2, Theorem 8.5]). In the Grothendieck group of H-modules,

X(O,L) =
∑

(O′,L′)

P(O,L),(O′,L′)(1) L(O′,L′),

where

P(O,L),(O′,L′)(q) =
∑

i≥0

[L : H2iIC(O′,L′)|O] · qi; (6.2.3)

here H•IC( ) denote the cohomology groups of the intersection cohomology complex.

The polynomials P(O,L),(O′,L′)(q) can be computed using the algorithms in [Lu3].
In fact, [Lu3] computes the related v-polynomials

c(O,L),(O′,L′)(v) = vdimO′−dimO · P(O,L),(O′,L′)

(
1

v2

)
. (6.2.4)

These polynomials enter in the Jantzen conjecture for H.

Conjecture 6.2.2 (Jantzen conjecture). Let X0 ⊃ X1 ⊃ . . . be the Jantzen filtra-
tion (6.1.2) of X = X(O,L).

(a) For every n ≥ 0, the H-module Xn/Xn+1 is semisimple.
(b) The multiplicity of the irreducible module L(O,L) in Xn/Xn+1 equals the

coefficient of vn in the polynomial c(O,L),(O′,L′)(v) defined in (6.2.4), or
equivalently,

(b’)

P(O,L),(O′,L′)(q) =
∑

n≥0

m(O,L),(O′,L′)(n) q
dim O

′
−dim O−n
2 , (6.2.5)

where m(O,L),(O′,L′)(n) denotes the multiplicity of the irreducible module
L(O′,L′) in Xn/Xn+1.

6.3. Hermitian Kazhdan-Lusztig polynomials. As in the previous subsection,
letX = X(O,L) be a standard module with Jantzen filtrationX = X0 ⊃ X1 ⊃ . . . .
Suppose in addition that s is real, i.e., s ∈ hR.

Let

grX =
⊕

n≥0

Xn/Xn+1

denote the associated graded H-module. In section 6, we have defined a nondegen-
erate •-invariant form 〈 , 〉n• on each Xn/Xn+1. Let 〈 , 〉X• be the direct sum form⊕

n≥0〈 , 〉n• on grX.

By Corollary 5.3.3, every irreducible module L(O′,L′) has a canonical •-invariant
form 〈 , 〉(O

′,L′)
• which is positive definite on every lowest W -type. Fix such a form

for every L(O′,L′). Assuming the truth of Conjecture 6.2.2(a), the form 〈 , 〉n• on
Xn/Xn+1 induces a nondegenerate form on the isotypic component of L(O′,L′) in
Xn/Xn+1 whose signature is

(p(O,L),(O′,L′)(n), q(O,L),(O′,L′)(n));

of course, p(O,L),(O′,L′)(n) + q(O,L),(O′,L′)(n) = m(O,L),(O′,L′)(n). With this nota-
tion, we have

(Xn/Xn+1, 〈 , 〉n• ) =
∑

(O′,L′)

(p(O,L),(O′,L′)(n)−q(O,L),(O′,L′)(n))
(
L(O′,L′), 〈 , 〉(O

′,L′)
•

)
.

(6.3.1)
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Definition 6.3.1. Analogous to [ALTV], define the hermitian Kazhdan-Lusztig
polynomials

P h(O,L),(O′,L′)(q) =
∑

n≥0

(p(O,L),(O′,L′)(n)− q(O,L),(O′,L′)(n)) q
dim O

′
−dimO−n
2 . (6.3.2)

From the definition, it is clear that

(grX, 〈 , 〉X• ) =
∑

(O′,L′)

P h(O,L),(O′,L′)(1)
(
L(O′,L′), 〈 , 〉(O

′,L′)
•

)
. (6.3.3)

The question is to compute the polynomials P h(O,L),(O′,L′)(q). We make the fol-

lowing conjecture, motivated by the main theorem of [ALTV].

Conjecture 6.3.2. For every (O,L), there exists an orientation number ǫ(O,L) ∈
{±1}, such that

P h(O,L),(O′,L′)(q) = ǫ(O,L)ǫ(O′,L′) P(O,L),(O′,L′)(−q).
In the rest of the section, we present some examples in support of this conjec-

ture and determine the explicit form of the orientation number in some cases. In
particular, we prove Conjecture 6.3.2 in the case of regular central character, see
Proposition 6.6.1.

6.4. Regular central character. Let H be a graded Hecke algebra with param-
eter function k. Recall the minimal principal series X(ν) with real parameter
ν ∈ V ∨. Suppose ν is dominant, i.e., (α, ν) > 0 for all α ∈ R+. A basis of X(ν) is
given by the A-weight vectors {Rx⊗11ν}x∈W from (3.3.4), and every A-weight space
has multiplicity 1. In particular, this means that every irreducible subquotient of
X(ν) occurs with multiplicity 1.

If we normalize the form 〈 , 〉• on X(ν) so that

〈R1 ⊗ 11ν ,R1 ⊗ 11ν〉 = 1,

by (3.3.5), we have

〈Rx ⊗ 11ν ,Rx ⊗ 11ν〉• =
∏

β>0,xβ<0

(β, ν)− kβ
(β, ν) + kβ

. (6.4.1)

In particular, one gets the following well-known result:

Lemma 6.4.1. If ν is dominant, X(ν) is reducible if and only if there exists β > 0
such that (β, ν) = kβ .

Moreover, (6.4.1) allows us to determine easily the levels of the Jantzen filtration
of X(ν). For every x ∈W , set

τ(x, ν) = {β > 0 : xβ < 0 and (β, ν) = kβ}. (6.4.2)

Lemma 6.4.2. Suppose ν is dominant. The n-th level in the Jantzen filtration
(6.1.2) of X(ν) is

X(ν)n = span{Rx ⊗ 11ν : τ(x, ν) ≥ n},
where τ(x, ν) is as in (6.4.2).

Proof. This is immediate from (6.4.1), since the order of zero of 〈Rx ⊗ 11ν ,Rx ⊗
11ν〉• = τ(x, ν) and the form 〈 , 〉• is diagonal in the basis {Rx ⊗ 11ν}. �
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6.5. Now suppose that the parameter function for the Hecke algebra is constant
k = 1. We analyze first the case ν = ρ∨. Consider the one-parameter family X(νt),
νt = tρ∨, t close to 1. For every positive root β, the positive integer (β, ρ∨) is the
height of β. We have (β, ρ∨) = 1 if and only if β is a simple root. Then

〈Rx ⊗ 11νt ,Rx ⊗ 11νt〉• =

(
t− 1

t+ 1

)τ0(x) ∏

β>0,xβ<0,(β,ρ∨)>1

t(β, ρ∨)− 1

t(β, ρ∨) + 1
> 0. (6.5.1)

where

τ0(x) = {α simple root : xα < 0}. (6.5.2)

This implies that the n-th level of the associated graded of the Jantzen filtration
at ρ∨ is given by

Xn/Xn+1 = span{Rx ⊗ 11ρ∨ : τ0(x) = n}, (6.5.3)

and n ranges from 0 to |Π|, the number of simple roots. The classification of
simple H-modules with central character ρ∨ is well-known: there are 2|Π| simple
H-modules, one for each subset of the simple roots, and each one occurs with multi-
plicity 1 in X(ρ∨). Formula (6.5.1) implies that each irreducible module contributes
+1 to the •-form in the level of X(ρ∨) where it occurs.

One can analyze similarly the Jantzen filtration at ρ∨ for every standard module.
Notice that the standard modules at ρ∨ are precisely of the form IndH

HJ
(St⊗CνJ ),

where νJ = ρ∨ − ρ∨J .
This is consistent with the geometric picture at ρ∨. There are 2|Π| orbits of G(ρ∨)

on g1(ρ), each orbit is of the form ⊕α∈JC× ·Xα, for a unique J ⊂ Π; hereXα denote
root vectors for α ∈ Π. In particular, the closure relations of orbits coincide with
the inclusion of subsets J , and the KL polynomials are PJ,J′(q) = 1 if J ⊂ J ′, and
0 otherwise. In conclusion, at central character ρ∨, we have

P hJ,J′(q) = PJ,J′(q) =

{
1, J ⊂ J ′,

0, otherwise.
(6.5.4)

6.6. Now suppose that s is an arbitrary regular dominant central character. The
structure of the composition series at s reduces to a parabolic subalgebra as follows.
Let

∆s = {β ∈ R+ : (β, s) = 1}.
Theorem 5.3.2 implies in this case that the simple H-modules with central character
s are in one-to-one correspondence with G(s) = H-orbits on g1(s) = {x ∈ g :
[s, x] = x} = span{xβ : β ∈ ∆s}, where xβ is a root vector for β. There exists
w ∈ W such that w∆S ⊂ Π, i.e., a subset of simple roots, so denote w∆s = ΠM ,
for some Levi subgroup M .

Set s′ = w−1s. Then s′ = ρ∨M + ν, where (α, ν) = 0 for all α ∈ ΠM . It is
equivalent to determine G(s′) = H-orbits on g1(s) = span{xα : α ∈ ΠM}, but this
reduces the problem to thecase of composition series at ρ∨M in HM . Thus the orbits
are in one-to-one correspondence with

{J ⊂ ΠM} ↔
∑

α∈J

C× · xα =: OM (J).

Since every OM (J) has smooth closure, as before, all KL polynomials are 0 or 1
depending on inclusion J ′ ⊂ J.
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Fix J ⊂ ΠM . Suppose that we have a standard module X(J, νJ) = IndHHJ
(StJ ⊗

CνJ ) with Langlands quotient L(J, νJ). We want to know the level and orientation
number of L(J, νJ). Since all A-weights have multiplicity one, L(J, νJ) is uniquely
determined by the A-weight

λL(J,νJ ) := −ρ∨J + νJ ;

here νJ is dominant with respect to Π\J. Inside the minimal principal series X(s),
the A-weight vector with weight −ρJ + νJ is of the form Rx ⊗ 11s. Since Rx ⊗ 11s
has A-weight xs, it follows that

xs = λL(J,νJ ). (6.6.1)

By (6.4.1), the form on Rx ⊗ 11s is

∏

β>0,xβ<0

(β, s) − 1

(β, s) + 1
.

The contribution of Rx⊗11s to the hermitian form in the associated graded module
for X(s) is obtained by replacing s with st, 0 < t < 1, and taking limt→1 . The sign
is

ǫ(L(J, νJ)) := (−1)ℓ0(x), where ℓ0(x) = #{β > 0 : 0 < (β, s) < 1 and xβ < 0},
(6.6.2)

or equivalently,

ℓ0(x) = #{β > 0 : xβ < 0 and 0 < (xβ, λL(J,νJ )) < 1} (6.6.3)

In order to establish the truth of Conjecture 6.3.2 at regular central character,
it remains to verify that the normalization of •-form on L(J, νJ) is given by the
requirement that Rx ⊗ 11s be positive. This is indeed the case as follows. The
canonical •-form on a simple H-module is normalized so that it is positive definite
on all W -types. For L(J, νJ) this is equivalent with the normalization which as
νJ → ∞ has the form positive definite on all of L(J, νJ). But by Corollary 3.10.3,
this is the normalization where the A-weight vector corresponding to the leading
weight λL(J,νJ ) = −ρ∨J + νJ is positive. Thus:

Proposition 6.6.1. Conjecture 6.3.2 holds in the case of regular central character
with the orientation numbers given by (6.6.2).

6.7. Subregular orbit in B2. Consider the semisimple element s = (1, 0) in type

B2. There are three G(s)-orbits in g1(s), which we denote by 0, A1, and Ã1 (the
notation is compatible with the labeling of their G-saturations). The orbits have
dimension 0, 2, and 3, respectively, and the closure ordering is the obvious total
order. The local systems that enter are trivial for 0 and A1, so we drop them

from notation, and there are two local systems Ltriv and Lsgn for Ã1. The matrix of
polynomials P , computed in [Ci1] using the algorithms of Lusztig [Lu3], is in Table
6.7.

We only need to compute the Jantzen filtration and signatures for X(A1) and
X(0). For this, we do a computation with the intertwining operators and the W -
structure of standard modules. There are 5 W -types, with the notation in terms
of bipartitions as in [Ca]. The W -structure of the standard and the irreducible
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Table 1. KL polynomials: B2, s = (1, 0).

Dim. 0 2 3 3

Orbits 0 A1 (Ã1,Ltriv) (Ã1,Lsgn)
0 1 1 1 q
A1 0 1 1 0

(Ã1,Ltriv) 0 0 1 0

(Ã1,Lsgn) 0 0 0 1

modules at s = (1, 0) is as follows (the ∗ indicates the lowest W -type):

X(0) = C[W (B2)], L(0) = 2× 0∗ + 1× 1;

X(A1) = 11× 0 + 1× 1 + 0× 11, L(A1) = 11× 0∗;

X(Ã1,Ltriv) = L(Ã1,Ltriv) = 1× 1∗ + 0× 11;

X(Ã1,Lsgn) = L(Ã1,Lsgn) = 0× 2∗.

(6.7.1)

For the case A1, we consider the induced module X(A1, (−1/2 + ν, 1/2 + ν)) =

IndB2

A1
(St ⊗ Cν), ν > 0, whose central character is (−1/2 + ν, 1/2 + ν). A direct

calculation with the intertwining operator shows that at ν = 1/2, the Jantzen

filtration is given by L(A1) at level 0, and L(Ã1,Ltriv) at level 1. The signature of
the •-form on each W -type for 0 ≤ ν < 1/2 is given by the parity of the lowest
harmonic degree, and thus it is + for 11× 0 and − for 1× 1. The normalization of
the •-forms implies then that at ν = 1/2, the forms on level 1 are related by:

(X(A1)1, 〈 , 〉1•) = (L(Ã1,Ltriv), 〈 , 〉(Ã1,Ltriv)
• ), (6.7.2)

and thus P h
(A1),(Ã1,Ltriv)

(q) = q
3−2−1

2 = 1.

For the case 0, we consider the minimal principal series X(ν1, ν2), 0 = ν2 ≤ ν1 ≤
1. The levels of the Jantzen filtration at (1, 0) are given by the order of zeros of the

intertwining operator as follows: L(0) in level 0, L(Ã1,Lsgn) at level 1, L(A1) at

level 2, and L(Ã1,Ltriv) at level 3. Using again that the signature of W -types for
0 ≤ ν1 < 1 is given by the parity of the lowest harmonic degree, we see that forms
on levels 1–3 are related by:

(X(0)1/X(0)2, 〈 , 〉1•) = −(L(Ã1,Lsgn), 〈 , 〉(Ã1,Lsgn)
• );

(X(0)2/X(0)3, 〈 , 〉2•) = (L(A1), 〈 , 〉A1
• );

(X(0)3, 〈 , 〉3•) = (L(Ã1,Ltriv), 〈 , 〉(Ã1,Ltriv)
• ).

(6.7.3)

Thus, P h(0),(A1)
= q

2−0−2
2 = 1, P h

(0),(Ã1,Ltriv)
= q

3−0−3
2 = 1, and P h

(0),(Ã1,Lsgn)
=

(−1)q 3−0−1
2 = −q.

In conclusion, for the subregular s in B2, P
h
(O,L),(O′L′)(q) = P(O,L),(O′L′)(−q).

6.8. Subregular orbit in G2. We choose simple roots for G2: αs =
1
3 (2,−1,−1)

and αl = (−1, 1, 0) and fundamental coweights ω∨
1 = (1, 1,−2) and ω∨

2 = (0, 1,−1).
Let s1 and s2 be the simple reflections corresponding to αs and αl, respectively.
There are 6 irreducible Weyl group representations, which we label as 11 (the
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trivial), 12 (the sign), 13 (s1 = 1, s2 = −1), 14 (s1 = −1, s2 = 1), 21 (the
reflection representation), and 22 = 21 ⊗ 13.

Let s be one half of a neutral element for the subregular nilpotent orbit in G2.
In our coordinates, we choose s = (0, 1,−1).

There are four G(s)-orbits on g1(s), labeled 0, Al1, A
s
1, G2(a1), of dimensions 0,

2, 3, and 4, respectively. The local systems that enter for 0, Al1, A
s
1 are trivial, but

there are two local systems of Springer type for G2(a1), that we denote Ltriv and
Lrefl. The matrix of polynomials P , computed in [Ci1], is in Table 6.8.

Table 2. KL polynomials: G2, subregular s.

Dim. 0 2 3 4 4

Orbits 0 Al1 As1 (G2(a1),Ltriv) (G2(a1),Lrefl)
0 1 1 q + 1 1 q

Al1 0 1 1 1 0
As1 0 0 1 1 1

(G2(a1),Ltriv) 0 0 0 1 0
(G2(a1),Lrefl) 0 0 0 0 1

The W -structure of the standard and the irreducible modules at s = (0, 1,−1)
is as follows (the ∗ indicates the lowest W -type):

X(0) = C[W (G2)], L(0) = 1∗1 + 21;

X(Al1) = 1∗3 + 21 + 22 + 12, L(Al1) = 1∗3;

X(As1) = 2∗2 + 21 + 14 + 12, L(As1) = 2∗2;

X(G2(a1),Ltriv) = L(G2(a1),Ltriv) = 2∗1 + 12;

X(G2(a1),Lrefl) = L(G2(a1),Lrefl) = 1∗4.

(6.8.1)

For the case As1, we consider the standard induced module IndG2

As
1
(St ⊗ Cν),

of central character − 1
2 (2,−1,−1) + ν(0, 1,−1). The relevant reducibility point is

ν = 1
2 .We can analyze the Jantzen filtration and signature of the forms in the same

way as for B2 and find:

(X(As1)0/X(As1)1, 〈 , 〉0•) = (L(As1), 〈 , 〉
(As

1)
• );

(X(As1)1, 〈 , 〉1•) = (L(G2(a1),Ltriv), 〈 , 〉(G2(a1),Ltriv)
• ) + (L(G2(a1),Lrefl), 〈 , 〉(G2(a1),Lrefl)

• ),

(6.8.2)

and so P h(As
1),(G2(a1),Ltriv)

(q) = P h(As
1),(G2(a1),Lrefl)

(q) = q
4−3−1

2 = 1.

For the case Al1, we consider the standard induced module IndG2

Al
1
(St ⊗ Cν), of

central character − 1
2 (−1, 1, 0)+ν(1, 1,−2). The relevant reducibility point is ν = 1

2 ,
where we find:

(X(Al1)0/X(Al1)1, 〈 , 〉0•) = (L(Al1), 〈 , 〉
(Al

1)
• );

(X(Al1)1/X(Al1)2, 〈 , 〉1•) = (L(As1), 〈 , 〉
(As

1)
• );

(X(Al1)2, 〈 , 〉2•) = (L(G2(a1),Ltriv), 〈 , 〉(G2(a1),Ltriv)
• ),

(6.8.3)

and so and so P h
(Al

1),(A
s
1)
(q) = q

3−2−1
2 = 1, and so P h

(Al
1),(G2(a1),Ltriv)

(q) = q
4−2−2

2 = 1,

and P h
(Al

1),(G2(a1),Lrefl)
(q) = 0.
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Finally, we have the case 0, where we consider the minimal principal series with
central character ν(0, 1,−1). The relevant reducibility point is ν = 1. We compute
the Janzten filtration and the signature of the forms using the normalized long
intertwining operator on W -types. The only case where more care is needed is the
W -type 22 appearing with multiplicity 2 which corresponds to the factor L(As1). The

2×2 matrix giving the operator on this isotypic space has determinant
( 1
2−ν)(1−ν)

4

( 1
2+ν)(1+ν)

4

and trace (1−ν)(1+3ν2)

(1+ν)3( 1
2+ν)

. In particular, this implies that one copy of 22 (and hence of

L(As1)) occurs in level 1 of the Jantzen filtration and the other copy in level 3. For
the signatures, we analyze the eigenvalues. We find the following structure of the
filtration together with signatures:

(X(0)0/X(0)1, 〈 , 〉0•) = (L(0), 〈 , 〉(0)• );

(X(0)1/X(0)2, 〈 , 〉1•) = −(L(As1), 〈 , 〉
(As

1)
• );

(X(0)2/X(0)3, 〈 , 〉2•) = (L(Al1), 〈 , 〉
(Al

1)
• )− (L(G2(a1),Lrefl), 〈 , 〉(G2(a1),Lrefl)

• );

(X(0)3/X(0)4, 〈 , 〉3•) = (L(As1), 〈 , 〉
(As

1)
• );

(X(0)4, 〈 , 〉4•) = (L(G2(a1),Ltriv), 〈 , 〉(G2(a1),Ltriv)
• ).

(6.8.4)

The corresponding hermitian KL polynomials are: P h
(0),(Al

1)
= q

2−0−2
2 = 1, P h(0),(As

1)
=

(−1)q 3−0−1
2 + q

3−0−3
2 = 1 − q, P h(0),(G2(a1),Ltriv)

= q
4−0−4

2 = 1, P h(0),(G2(a1),Lrefl)
=

(−1)q 4−0−2
2 = −q.

In conclusion, for the subregular s in G2, P
h
(O,L),(O′L′)(q) = P(O,L),(O′L′)(−q),

and Conjecture 6.3.2 is verified in this case.

7. Bernstein’s projective modules

In this section, we explain how the •-form for affine Hecke algebras appears
naturally when the Iwahori-Hecke algebras are viewed as endomorphism algebras
of the Bernstein projective modules [Be], see also [He]. The notation in this section
is independent of the previous sections.

7.1. Sesquilinear Forms. Let V be a complex vector space,

V h :=

{
λ : V −→ C : λ(α1v1 + α2v2) = α1λ(v1) + α2λ(v2)

}
.

A sesquilinear form is a bilinear form 〈·, ·〉 which is linear in the first variable,
conjugate linear in the second variable. This is the same as a complex linear map
λ : V −→ V h. The relation is

〈v, w〉λ = λ(v)(w).

Such a form is called nondegenerate if λ is injective. To any sesquilinear form λ

there is associated λh : V ⊂ (V h)h −→ V h, λh(v)(w) := λ(w)(v). The form is
called symmetric, if λ = λh. A symmetric form is an inner product if λ(v)(v) ≥ 0,
with equality if and only if v = 0.
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Let G be a reductive p-adic group. If (π, V ) is a representation of G, then
(πh, V h) is the representation defined as

(
πh(g)λ

)
(v) := λ(π(g−1)v).

7.2. The projective P. Let M be a Levi subgroup of G. Denote by M0 the
intersection of the kernels of all the unramified characters ofM . Let σ̃ be a relative
supercuspidal representation of M , σ0 a supercuspidal constituent of σ̃ |M0 .

Define
(
σ, Vσ = IndMM0

σ0
)
c

induction with compact support,
(
Π, P = IndGP Vσ

)
normalized induction.

A typical element of σ is δmM0,v with m ∈ M/M0 and v ∈ Vσ0 . This is the delta-
function supported on the coset mM0 taking constant value v.

A typical element of P is given by δUxP,δmM0,v
where U ∈ G/P is a neighborhood

of the identity, the function satisfies the appropriate transformation law under P
on the right, and the value at x is δmM0,v.

If ψ ∈ HomG[P,P], then ψh ∈ HomG[P
h,Ph]. But P admits a G−invariant

positive definite hermitian form, so while P 6= Ph, nevertheless there is an inclusion
ι : P −→ Ph. More precisely, if P = IndGP σ, then the hermitian dual Ph is naturally

isomorphic to IndGP σ
h. If λ : G −→ V hσ is such that λ(xp) = σh(p−1)λ(g), and

f : G −→ V is such that f(gp) = σ(p−1)f(x), then the pairing is

〈λ, f〉 :=
∫

G/P

λ(x)(f(x))dx.

When σ is unitary (or just has a nondegenerate form so that σ ⊂ σh), we get
P ⊂ Ph via

g ∈ P 7→ λg ∈ P
h, λg(f) =

∫

G/P

〈f(x), g(x)〉dx for f ∈ P.

7.3. Inner Product. We recall two classical results.

Theorem 7.3.1 (Frobenius reciprocity, [Cas, Theorem 3.2.4]).

HomG[V,P] ∼= HomM [VN , σδ
−1
P ].

Theorem 7.3.2 (Second adjointness, [Be, Theorem 20]).

HomG[P, V ] ∼= HomM [δ−1

P
σ, VN ] ∼= HomM0 [σ0, δ

−1
P VN ].

Let P be the module induced from σ from the opposite parabolic P := MN.
The (second) adjointness theorem gives

HomG[P,P] = HomM [δ−1
P σ,PN ] = HomM0 [σ0, δ

−1
P PN ],

HomG[P,P] = HomM [δ−1

P
σ,PN ] = HomM0 [σ0, δPPN ].

Assume P and P are conjugate, and let w0 ∈W be the shortest Weyl group element
taking P to P , stabilizing M and taking N to N . Assume also that there is an
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isomorphism τ0 : (σ0, Vσ0) −→ (w0 ◦ σ0, Vσ0). Extend it to τ : Vσ −→ Vσ by
τ(δmM0,v) = δw0(m)M0,τ(v). Write τ̃ for the isomorphism

τ̃ : P −→ P,

τ̃ (f)(x) = τ(f(xw0)).

Thus given Φ,Ψ ∈ HomG[P,P], then Φ := Φ ◦ τ̃ ∈ HomG[P,P], and they give rise
to

φ ∈ HomM0 [σ0,PN ]

ψ ∈ HomM0 [σ0,PN ].

According to Casselmann [Cas, Proposition 4.2.3], there is a nondegenerate pairing
〈 , 〉N,N between PN and PN . Given v1, v2 ∈ Vσ0 , we can form

〈v1, v2〉Φ,Ψ := 〈φ(v1), ψ(v2)〉N,N .
This pairing is invariant and sesquilinear, so there is a constant mΦ,Ψ such that

〈v1, v2〉Φ,Ψ = mΦ,Ψ〈v1, v2〉σ0 . (7.3.1)

We define a sesquilinear pairing

〈Φ,Ψ〉 := mΦ,Ψ. (7.3.2)

7.4. We make the form (7.3.2) precise. Let Kℓ be an open compact subgroup with
an Iwasawa decomposition compatible with P, i.e. Kℓ = K−

ℓ ·K0
ℓ ·K+

ℓ , invariant
by w0.

Let x0, y0 ∈ V K
0
ℓ

σ0 , and x := δM0,x0 , y := δM0,y0 . Then δK+
ℓ
P,x ∈ P and δK−

ℓ
P,y ∈

P. The isomorphism τ̃ takes δK+
ℓ
P,x to δK+

ℓ
w0P,τ(x)

. So

(x0, y0)Φ,Ψ := 〈ΦN
(
δK+

ℓ
w0P,τ(x)

)
,ΨN

(
δK−

ℓ
P,y

)
〉N,N = mΦ,Ψ〈x0, y0〉σ0 .

Here ΦN and ΨN are the projection maps onto PN and PN respectively.
Let Λ ∈ A := Z(M) be such that it is regular on N and contracts it. Let a(Λ)

and a(−Λ) be the Kℓ double cosets of Λ and its inverse.
By Casselman [Cas, section 4] and Bernstein [Be, chapter III.3],

P
a(−Λ),Kℓ ∼= P

K0
ℓ

N
,

P
a(Λ),Kℓ ∼= P

K0
ℓ

N ,

because a(Λ) contracts K+
ℓ . We conclude that

δKℓP,x ∈ P
a(−Λ),Kℓ , so Φ(δKℓP,x) ∈ P

a(−Λ),Kℓ ∼= P
K0

ℓ

N
,

δKℓw0P,τ0y ∈ P
a(Λ),Kℓ , so Ψ(δKℓw0P,τ0y) ∈ P

a(Λ),Kℓ ∼= P
K0

ℓ

N .

Proposition 7.4.1. With the notation as in (7.3.1), mΦ,Ψ = mΨ,Φ. In other words,
the sesquilinear form (7.3.2) is hermitian.

Proof. Assume τ0 6= −Id, or else use −τ0. Thus there is x0 such that τ0x0 = x0.
Let fw0 := δKlw0Kl

. Then f∗
w0

= fw0 , and

Π(fw0)δKlw0P,x = δKℓP,x,

Π(fw0)δKℓP,x = δKℓw0P,x.
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Then

mΦ,Ψ < x0, x0 > =< Φ(δKℓP,x),Ψ(δKℓw0P,x) >=

=< Φ(Π(fw0)δKℓw0P,x),Ψ(δKℓw0P,x) >=

=< Φ(δKℓw0P,x),Ψ(Π(fw0)δKℓw0P,x) >=

=< Φ(δKℓw0P,x),Ψ(δKℓP,x) >=

= < Ψ(δKℓP,x),Φ(δKℓw0P,x) > =

= mΨ,Φ < x0, x0 > .

�

7.5. For a ∈ A, let Θa ∈ HomG[P,P] be given by

Θa(δKℓgP,x) = δKℓgP,θa(x), θa(x) := θa(δmM0,x0) = δmaM0,x0 . (7.5.1)

Proposition 7.5.1.

< Φ,Ψ ◦Θa >=< Φ ◦Θa,Ψ > .

Proof. There is fa ∈ H(Kℓ\G/Kℓ) (namely δKℓaKℓ
) such that Θa(δKℓP,x) = Π(fa)(δKℓP,x).

Then use the fact that f∗
a = fa−1 for a ∈ A+ dominant . �

7.6. Digression about the intertwining operator. Let J : P −→ P be given
by the formula

Jf(x) :=

∫

N

τ0f(xnw0) dn =

∫

N

τ0f(xw0n) dn. (7.6.1)

This should be considered as a formal expression. When you specialize to a value

ν ∈ Â, the split part of the center of M, J will have poles.
Recall the inner product on P,

〈f1, f2〉 :=
∫

K0

〈f1(k), f2(k)〉 dk.

Proposition 7.6.1.

< Jf1, f2 >=< f1, Jf2 > .

Proof.

< f1, Jf2 >=

∫

K0

< f1(k),

∫

N

τ0f2(kw0n) dn > dk. (7.6.2)

We can move w0 and τ0 to the other side:

< f1, Jf2 >=

∫

K0

< τ0f1(kw0),

∫

N

f2(kn) dn > dk. (7.6.3)

Write n = κ(n) · n(n) ·m(n). So

< f1, Jf2 >=

∫

K0

< τ0f1(kw0),

∫

N

σ(m(n)−1)f2(kκ(n)) dn > dk =

=

∫

K0

<

∫

N

σ(m(n))τ0f1(kκ(n)
−1w0) dn, f2(k) > dk.

(7.6.4)
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Since κ(n) = n ·m(n)−1 · n(n)−1, we conclude κ(n)−1 = n(n) ·m(n) · n−1. So

< f1, Jf2 > =

=

∫

K0

<

∫

N

σ(m(n))τ0f1(kn(n)m(n)n−1w0) dn, f2(k) > dk =

=

∫

K0

<

∫

N

τ0f1(kn(n)) dn, f2(k) > dk

(7.6.5)

because σ(m(n)) is conjugated by w0 but then flipped back by τ0, and then cancels
σ(m(n)). Finally

Jf1 =

∫

N

τ0f1(kn(n)w0) dn

follows from the fact that n 7→ w0n(n)w
−1
0 is an isomorphism with trivial Jacobian.

�

7.7. Assume from now on that G is a split p-adic group. Let P = B = AN
be a Borel subgroup. Let K0 be the hyperspecial maximal compact subgroup,
and K1 ⊂ I ⊂ K0 be an Iwahori subgroup. It has an Iwasawa decomposition
I = I− · A0 · I+. Furthermore, G = KB = ∪IwB disjoint union where w ∈W.

We consider the case of the trivial representation of A0 := K0 ∩ A, σ0 = triv,
i.e, this is the case of representations with I−fixed vectors. Let H = H(I\G/I) be
the Iwahori-Hecke algebra of compactly supported smooth I-biinvariant functions
with convolution with respect to a Haar measure.

Proposition 7.7.1. In the Iwahori-spherical case, the algebra Hom[P,P] is natu-
rally isomorphic to the opposite algebra to H(I\G/I).

Proof. Recall

HomG[P,P] ∼= HomA0 [σ0,PN ]
∼= P

A0

N
∼= P

I .

The element φ1 = δI−B,δA0,11
is in PI , and it generates P. So any Φ ∈ HomG[P,P]

is determined by its value on φ1. Furthermore, Φ(φ1) ∈ P
I .

Conversely, φ ∈ HomA0 [σ0,PN ]
∼= P

A0

N
∼= PI gives rise to Φ ∈ HomG[P,P] by

the relation

Φ(δI−B,δA0,11
) = φ.

The map

h ∈ H 7→ Π(h)
(
δI−B,δA0,11

)

is an isomorphism betweenH and P
I . Let hψ ∈ I be the element inH corresponding

to ψ. Then if Φ(δI−B,δA0,11
) = φ,

Φ[ψ] = Φ[Π(hψ)(δI−B,δA0,11
)] = Π(hφ)Φ[δI−B,δA0,11

] = Π(hψ)φ.

Now let φ1, φ2 ∈ P
A0

N
. Then

(Φ1 ◦ Φ2)(δI−B,δA0,11
) = Φ1[Π(hφ2)(δI−B,δA0,11

)] = Π(hφ2)Φ1[δI−B,δA0,11
] =

= Π(hφ2)Π(hφ1)(δI−B,δA0,11
) = Π(hφ1) · Π(hφ2)(δI−B,δA0,11

).

�



38 DAN BARBASCH AND DAN CIUBOTARU

Remark 7.7.2. The opposite algebra to the Iwahori-Hecke algebra is isomorphic
to itself, e.g.,

T ◦opp θ = θ−1 ◦opp T + (q − 1)
θ − θ−1

1− θ−α
is equivalent to

θ · T = T · θ−1 + (q − 1)
θ − θ−1

1− θ−α
.

7.8. The operators Jα are defined analogously to J for each simple root, integration
is along the root subgroupNα. The operators satisfy the formula analogous to 7.6.1.

By specializing to ν ∈ Â unramified, we can prove the following result. Define

F (Θ) = (q − 1)
1

1−Θ−1
, (7.8.1)

and write Fα for F (Θα).

Theorem 7.8.1.

Tα := Jα − Fα ∈ HomG[P,P]. (7.8.2)

Tα and Θα form a set of generators of Hom[P,P] and satisfy the defining relations
in the Bernstein-Lusztig presentation ([Lu1]) for the Iwahori-Hecke algebra.

Sketch of proof. Because the group is split, this reduces to a calculation in SL(2).
The operator J has a term which is a rational function in Θα with 1−Θ−α in the
denominator, and subtracting Fα removes the singularity.

�

Remark 7.8.2. For a classical p-adic group G and any Bernstein projective mod-
ule P , it is shown in [He] that a generalization of Theorem 7.8.1 holds, namely,
EndG[P ] is naturally isomorphic to an extended affine Hecke algebra with unequal
parameters.

Proposition 7.8.3. There is fα ∈ H(Kℓ\G/Kℓ) and τα : σ −→ σ such that

< Φ(δKℓw0P,x),Ψ(Tα(δKℓP,y)) >=< Φ(δKℓw0P,x),Ψ
(
Π(fα)(δKℓP,τα(y))

)
> .
(7.8.3)

Proof. This follows from the formula of Jα as an integral. We want Tα(δKℓP,y) =
Π(fα)(δKℓP,y).

For SL(2), let Kℓ be the usual congruence subgroup. Let a :=

[
̟ 0
0 ̟−1

]
. Then

IB = I−B, and a−ℓKℓBa
ℓ = I−B. Thus

Π(a−ℓ)(δKℓB,α) = δIa−ℓB,aℓα = Π(δIa−ℓI)δIB,α.

Tα commutes with Π(δIa−ℓI) and Π(a−ℓ), and is computable on δIB,α. it can
be written as convolution with a I−biinvariant function. The conclusion of the
calculation is that Tα(δKℓB,α) can be expressed as convolution with an element Tα ∈
H(I\G/I) and composition with a Π(a±ℓ). We can then argue as in Proposition
7.5.1 to conclude that

〈Φ,Ψ ◦ Tα〉 = 〈Φ ◦ Tα,Ψ〉. (7.8.4)

�

We summarize the results.
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Theorem 7.8.4. In the case of Iwahori fixed vectors, unramified principal series,
H := Hom[P,P] inherits a natural star operation • from the unitary structure of P
satisfying

〈Φ,Ψ ◦ R〉 = 〈Φ ◦ R•,Ψ〉, Φ,Ψ,R ∈ H.
In particular,

T •
α = Tα, Θ• = Θ.
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