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HERMITIAN FORMS FOR AFFINE HECKE ALGEBRAS

DAN BARBASCH AND DAN CIUBOTARU

ABSTRACT. We study star operations for Iwahori-Hecke algebras and invari-
ant hermitian forms for finite dimensional modules over (graded) affine Hecke
algebras, with a view towards a signature algorithm.

1. INTRODUCTION

In this paper, we study star operations for Iwahori-Hecke algebras and invariant
hermitian forms for the (graded) affine Hecke algebras that appear in the theory
of reductive p-adic groups. There are three main parts to our paper. We explain
them next.

1.1.  We classify the star operations (conjugate-linear involutive anti-automorphims)
for the graded affine Hecke algebra H with unequal parameters which preserve a
natural filtration of H (section [2). This can be viewed as an analogue of the prob-
lem of classifying the star operations for the enveloping algebra U(g) of a complex
semisimple Lie algebra which preserve g. The first result, Proposition 2243 says
that essentially there are only two such star operations: * and e, Definition

The anti-automorphism * is known to correspond to the natural star operation of
the Hecke algebra of a reductive p-adic group, i.e., f*(g) = f(g~1), see [BMI] [BM2].

On the other hand, the anti-automorphism e is the Hecke algebra analogue of
the “compact star operation” for (g, K)-modules studied by Adams-van Leeuwen-
Trapa-Vogan [ALTV] and Yee [Y]. The operation e also arises naturally in conjunc-
tion with Macdonald theory for affine Hecke algebras, and from this perspective, it
was studied by Opdam [Op2)].

1.2.  We investigate the basic properties of the signature of e-invariant hermitian
forms for finite dimensional H-modules (sections BHE). We prove that every irre-
ducible H-module with real central character admits a nondegenerate e-invariant
hermitian form, Corollary B.1.3] and moreover, when H is of geometric type, this
form can be normalized canonically so that it is positive definite on every isotypic
component of a lowest W-type, Corollary £.3:3] For the first claim, we explicitly
determine in Theorem the e-hermitian dual of any given simple H-module,
in terms of the Langlands datum, and we exhibit in Proposition B.9.1] an explicit
invariant hermitian form. The second claim follows by comparing the Langlands
classification with the geometric classification of simple and standard H-module
[Lu2|, together with an argument involving the “signature at infinity” of the form.

These results represent the Hecke algebra analogue of the similar results about
c-invariant forms of (g, K')-modules [ALTV]. Motivated by the algorithm of [ALTV]
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(see also [V0]), we define in section [G based on the Jantzen filtration, hermitian
Kazhdan-Lusztig polynomials (see Definition [632]). We conjecture (Conjecture
[632) a simple relation with the Kazhdan-Lusztig polynomials for graded Hecke
algebras [Lu3]. In the remainder of section [B, we offer some evidence for this
conjecture, by analyzing the case of regular central character, and the interesting
examples of the subregular central character in types By and Ga.

The algebra H has a large abelian subalgebra A. Since e preserves A (unlike
the classical %), it is interesting to consider the weight spaces for A and study
signatures of forms in this way. We prove a number of results along these lines, for
example, a linear independence result for A-characters of irreducible H-modules,
Theorem [4.2], as well as explicit formulas for the e-forms when the A-parameter
is sufficiently dominant, e.g., Corollary B.10.3] These results enter in an essential
way in our proof of Conjecture in the regular case.

1.3.  We give an explanation of the occurence of the e operation from the perspec-
tive of the theory of Bernstein projective modules (section[7]). We prove that in the
Iwahori-spherical case for split p-adic groups, when the Iwahori-Hecke algebra H
is viewed as the endomorphism algebra of a projective generator P ([Be|), then H
acquires a natural hermitian inner product and the e star operation (with respect
to right adjointness), see Theorem [[.84 We expect that a similar result holds in
the generality of [He].

2. STAR OPERATIONS

2.1. Graded affine Hecke algebra. We fix an R-root system ® = (V, R, VY, RY).
This means that V, V" are finite dimensional R-vector spaces, with a perfect bilinear
pairing (, ): V x VY = R, where R C V \ {0}, RY C V¥ \ {0} are finite subsets
in bijection

\Y

R<+— RY, a+—a’, satisfying (o, ") = 2. (2.1.1)

Moreover, the reflections

S0V =V, 55(0) =v—(v,a ), 84:VY = VY s,(0)=0~(a,v')a”, a€R,
(2.1.2)
leave R and R invariant, respectively. Let W be the subgroup of GL(V) (respec-
tively GL(VV)) generated by {s, : « € R}. We assume that the root system ®
is reduced, meaning that o € R implies 2ac ¢ R. We fix a choice of simple roots
IT C R, and consequently, positive roots R* and positive coroots RY'". Often, we
will write a > 0 or @ < 0 in place of @ € R or a € (—R™), respectively. The com-
plexifications of V' and V" are denoted by V¢ and Vi, respectively, and we denote
by ~ the complex conjugations of V¢ and V' induced by V and V'V, respectively.
Notice that
(v,u) = (T,7), forallv e V¢, ue VY. (2.1.3)

Let £ : II — R be a function such that k, = k. whenever o,a’ € II are W-
conjugate. Let C[W] denote the group algebra of W and S(V¢) the symmetric
algebra over Vg. The group W acts on S(V¢) by extending the action on V. For
every « € II, denote the difference operator by

a— sqla)

A:S(Ve) = S(Ve), Axla) = — for all a € S(V¢). (2.1.4)
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Definition 2.1.1. The graded affine Hecke algebra H = H(®, k) is the unique
associative unital algebra generated by A = S(V¢) and {t,, : w € W} such that
(i) the assignment t,,a — w ® a gives an isomorphism H = C[W] ® S(V¢) of
(C[W1, S(V¢))-bimodules;
(ii) ats, =ts, sal(a) + kaAu(a), for all « € 11, a € S(Vg).

The center of H is S(Ve)" ([Lul]). By Schur’s Lemma, the center of H acts by
scalars on each irreducible H-module. The central characters are parameterized by
W-orbits in V. If X is an irreducible H-module, denote by cc(X) € W\VY its cen-
tral character. By abuse of notation, we may also denote by cc(X) a representative
in V' of the central character of X.

If (7, X) is a finite dimensional H-module and A € V', denote

Xy={zxe X: forevery a € S(V¢), (mw(a) — (a,\))"z =0, for some n € N}.

(2.1.5)
If X\ #0, call X an A-weight of X. Let Q(X) C V¥ denote the set of A-weights of
X. If X has a central character, it is easy to see that Q(X) C W - cc(X).

Definition 2.1.2 (Casselman’s criterion). Set
Vi={weV:(w,a¥)>0, for all a € IT}.
An irreducible H-module X is called tempered if
(w,ReA) <0, for all A € Q(X) and all w € V.
A tempered module is called a discrete series module if all the inequalities are strict.

When the root system @ is semisimple, H has a particular discrete series module,
the Steinberg module St. This is a one-dimensional module, on which W acts via
the sgn representation, and the only A-weight is — 3"y kawy, where wy is the
fundamental coweight corresponding to «.

2.2. An automorphism of H. Let wg denote the long Weyl group element. Define
an assignment

I(tw) = twowwe, W EW, dw) =—wo(w), w e V. (2.2.1)

Lemma 2.2.1. Suppose kso) = kq, for all o € I1. The assignment & from (Z21)
extends to an involutive automorphism of H. When wq is central in W, 6 = Id.

Proof. Tt is clear that § is an automorphism of C[WW] and it also extends to an auto-
morphism on S(V¢), so it remains to check the commutation relation in Definition

(PRI
wts, —ts, 8a(W) =ka(w,a”), a €I, we V. (2.2.2)

Then
6(“)5(t5a) :5(w)tsé(a) = tsa(a)s5(a) (5((“))) + k5(0¢) (5((“))7 5(a)V) =
=t s500) S6(a) (§(w)) + ko (w,aV).

Notice that we have used the fact that d(a) € IT if € II. Tt is easy to see that

0(sa(w)) = s5(a) (6(w)).
Since wi =1, 62 = 1d. O

Thus, one may define an extended graded Hecke algebra H' = H x ().
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2.3. Star operations.

Definition 2.3.1. Let x : H — H be a conjugate linear involutive algebra anti-
automorphism. An H-module (7, X) is said to be x-hermitian if X has a hermitian
form ( , ) which is s-invariant, i.e.,

(r(h)x,y) = (z,n(k(h))y), z,ye X, heH.
A hermitian module X is k-unitary if the x-hermitian form is positive definite.
Definition 2.3.2. Define
U =ty-1, wEW, w*=—ty,  wo(w) - tw,, we Vg, (2.3.1)

and
te =ty-1, weW, w®=w, welg. (2.3.2)
Lemma 2.3.3. The operations x and e defined in (Z:31)) and (232), respectively,

extend to conjugate linear algebra anti-involutions of H.
Proof. Straightforward by Lemma 2211 O

Remark 2.3.4. The two star operations just defined are related as follows
h* =ty - 6(h)® - ty,, heH. (2.3.3)
In particular, when wy is central in W, they are inner conjugate to each other.

Lemma 2.3.5. For every w e W, w € V¢,

to w- by =ww)+ Y kW, BY )t - (2.3.4)
B>0,w(B)<0
In particular,
W=+ Y ks(@,B)tsy. (2.3.5)
B>0
Proof. This is [BM2] Theorem 5.6]. O

2.4. Classification of involutions. We define a filtration of H given by the degree
in S(Vc). Set degty,a = degg(y,)a for every w € W, and homogeneous element
a € S(Vg) and F;H = span{h € H : degh < i}. In particular, FyH = C[W]. Set
F_{H = 0. It is immediate from Definition ZIT.1] that the associated graded algebra
H= @izoﬁl, where H = F;H/F;_1H, is naturally isomorphic to the graded Hecke
algebra for the parameter function k, = 0.

Definition 2.4.1. An automorphism (respectively, anti-automorphim) x of H is
called filtered if x(F;H) C F;H, for all ¢ > 0. Notice that by Definition [ZT1] this
is equivalent with the requirement that «(F;H) C F;H for ¢ = 0, 1. If, in addition,
K(tw) =ty (resp., k(ty) = t,-1), we say that x is admissible.

If x is a filtered automorphism, then x induces an automorphism of the associated
graded algebra H which preserves that grading, i.e., x(H') c H'.
Lemma 2.4.2. Assume the root system ® is simple. Let k be an admissible in-
volutive automorphism (or anti-automorphism) of H which respects the grading

k(H') C H'. Then k(w) = cow, for all w € Ve, where ¢o is a constant equal to
1 or —1.
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Proof. We treat the case when « is an automorphism, the other case is completely
similar. By the assumptions on x,

Kw) =D fyw)ty, we g, (2.4.1)
yeW

where f, : Vo — V¢ is a linear function, for every y € W. Let a be a simple root.
The commutation relation in H is ts, w = so(w)ts,. Applying & to this relation, it
follows, by a simple calculation, that

Sa(fsnz(W)) = fus, (Sa(w)), for all x € W.

In particular, setting © = s, we see that

sa(fi(w)) = fi(sa(w)). (2.4.2)

Since the root system was assumed simple, this means that f; is a scalar function
fi1(w) = cow, for some ¢y € C.

Now, we use that & is an involution, x*(w) = w, which implies dwyew(fz o
fy)(W)tzy = w. Thus

Z feofer=1d, and f,o f, =0, if x #y " (2.4.3)
rzeW

Specializing y = 1 in the second relation, we see that f, = 0 if x # 1. Then the
first relation implies ¢3 = 1, and this is the claim of the lemma. il

Proposition 2.4.3. Assume the root system ® is simple. If k is an admissible
involutive automorphism or anti-automorphism (in the sense of Definition [2-4.1)),
then
k(w) =w, forallw eV,

or

K(w) =ty - 0(w) - by, for allw € V.
In particular, the only admissible conjugate linear involutive anti-automorphisms
of H are x and e from LemmalZ.3.3.

Proof. Suppose k is an admissible involutive automorphism. (The argument is
identical if k is an antiautomorphim). By the admissibility condition, x induces an
admissible involutive automorphism of H. Lemma implies that k(w) = cow
mod F{H. Therefore, k must be of the form:

K(tw) =tw, weW; K(w) = cow + Z gy(w)ty, we Vg,
yew

where g, : Vo — C, y € W, are linear.
Since x has to preserve the commutation relation

te.w — Sa(W)ts, = ka(w,a’), a € ,w e V¢,
we find that
cots,w — cosa(W)ts, + Z Gy(W)ts,y — Z 9z (Sa(W))tes, = ka(w,av),

yeW zeW
or equivalently,

Z Gy(W)ts,y — Z 9z (S0 (W))tzs, = ka(l = co)(w,a"). (2.4.4)

yeW zeW
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This implies that
Gsayse (W) = gy(sa(w)), for alla € I,y € W,y # sq, and w € Vg, (2.4.5)
and
Gs (W) = gsa ($a(w)) = ka(1 = co)(w,a”),
from which one easily concludes that
gs, (@) = ko(1 —¢p), a € IL (2.4.6)

We first show that g, = 0 unless y = sg for some positive root 3. If y = 1,
relation ([2.4.5)) shows that g, = 0, so assume y # 1. The automorphism s must
also satisfy k(w1)k(we2) = k(w2)k(wy) for all wi,ws € V. This implies that

Gy (wa) (w1 —y H(w1)) = gy(w1) (w2 —y H(wa)), for all y € W, wi,ws € V. (2.4.7)
If A1, A2 are eigenvalues of y !, then for w; € Vi, w2 € Vi,
gy(w1)(1 = A2)wz = gy(w2)(1 — Ar)wr. (2.4.8)
Set \; = 1. Then

gy(w1)(1 = A2)wa = 0 for any wy € Vi,.

Because y~! # 1, it has an eigenvalue Ay # 1, so g, is 0 on the 1—eigenspace of y 1.

Similarly, relation (ZZ.8]) implies that if A # 1, any wy,ws € V) must be multiples
of each other. So dim V), <1 for any A # 1.

Because y is an automorphism of the real space V, if A is an eigenvalue, so is
. From relation (ZZ48), we see that unless A = ), g, = 0 on these eigenspaces.
The only remaining case, when g, # 0, is when y~! has eigenvalues 41, and the
—1—eigenspace has dimension 1. It follows that g, = 0 unless y = sg for a root 3.

In conclusion,

K(w) = cow + Z s, (W)ts,, where ¢§ = 1.
B>0

Now we use that x? = Id, which immediately implies that

w=rw) =w+ (1+c0) > gap(W)tss- (2.4.9)
B>0

When ¢y = 1, we necessarily have g,, = 0, and therefore x(w) = w.
Suppose now ¢g = —1. We wish to prove that, in this case, K(w) = ty, - I(W) * Ty -
Specialize in [247) y = sg, for f € RT. Then

gsg(WQ)(Wlaﬁv)ﬁ = gsg(wl)(w27ﬁv)ﬁ7 wi,w2 € VCa

and therefore g, (w) = cg(w, ), for some cg € C. When = a € II, [Z40)
with ¢g = —1, implies that ¢, = k,. If 8 is not a simple root, we can use (2.4.1)
inductively to check that cg = kg.

O

Remark 2.4.4. There may be many more (up to inner conjugation) filtered au-
tomorphisms k that preserve, but are not the identity on W. Every filtered auto-
morphism & is, in particular, an automorphism of C[W], so a first question would
be to classify the group of outer automorphisms of C[WW], a subgroup of which is
Out(W), and this can be nontrivial (e.g., when W = Sg, Out(Sg) = Z/2Z). But if
we require that x preserves the root reflections, then s is obtained from one of the
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two automorphisms in Proposition 2.4.3] by composition with an automorphism of
H coming from the root system.

3. INVARIANT HERMITIAN FORMS

In this section, we study invariant hermitian forms for H-modules with respect
to the two star operations e and % from section

3.1. Relation between the forms. The relation between e and x from (Z3.3)
reflects into a relation between the invariant hermitian forms, when they exist, on
a given simple H-module X. This relation is more easily expressed in terms of the
extended Hecke algebra H'-modules.

Lemma 3.1.1. An H'-module (7, X) admits a e-invariant form { , )e if and only
if it admits a *-invariant form (, ). In this case, the forms are related by

<’U1,’U2>* = <’U1,7T(tw06)’1)2>.. (311)

Proof. Suppose (, )o exists on X. We verify that the x-form from (I.T]) is indeed
invariant. For h € H, we use (Z33):

(m(h)v1, va)s = (m(h)v1, T(Wed)va)e = (V1, T(Atyd)v2)e
= (01, T (w0 (R*)0)v2)e = (U1, T (tw,0)T (R )v2)e (3.1.2)
= (v1, (R )va)s.
The invariance under 7(d) is immediate since 6* = ¢ and § commutes with t,,,. O

Suppose (7, X) is a simple H-module. Define the d-twist of X to be (7°, X?),
where X% = X as vector spaces and 7°(h) = 7(6(h)). Suppose X admits a e-
invariant form. Then, as in Lemma B.I.1] we get a %-invariant pairing between X
and X via

() XOX X = C, (u,0)y = (U, Tty )0)e, u € X% v e X. (3.1.3)

This implies that, under the hypotheses, X admits also a x-invariant form if and
only if X = X?. Notice that if there exists an H-isomorphism 7% : (7%, X?) —
(7, X), then X can be lifted to a simple H'-module, where ¢ acts by 7%. In section
B3l we will see that when H is of geometric type, these isomorphisms admit a
canonical normalization. Then the e and x-forms on X are related by

(01,025 = (U1, T(twy ) T% (12))e- (3.1.4)

The above analysis has an important application to the relation between the
signatures of the form on W-isotypic components of X. Since d acts by conju-
gation by wy on W, it is clear that X°|y = X|u . Suppose p is an irreducible
W-representation, and let X (u) denote the p-isotypic component of p in X. In
particular, X°(u) = X (u). The pairing (B13) descends to a W-invariant pairing

(oM X)) x X (1) = C, (uy ) = (u, 7ty )0)es u,v € X (3.1.5)
If X% 2 X as H-modules, the H-isomorphism Tg( induces isomorphisms Tg((u) :
X°%(u) — X (p), so composing with 7% (1) in (FL5), we find a W-invariant pairing
on X (p). We have proved:
Lemma 3.1.2. If (7, X) is a simple H-module admitting a e-invariant form then

(1) X admits also a x-invariant form if and only if X° = X, and in this case,
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(2) the signatures of the two forms on a W-isotypic space X (u), p € /V[7, are
related by T(tw,) o 7% (1), i.e., by the action of ty,d.

3.2. The elements R,,. Let O(V¢) denote the ring of rational functions on V¢,
and consider the completion of H

H =H &g O(V). (3.2.1)
Following [Lull BM3], we define for every o € II the element of

o ko
t — . 3.2.2
ko —a ko, —a ( )
The reason for the normalization k, — « is so that for k, > 0, the intertwining
operator has no poles when evaluating on a negative weight like wov. In that case

ko — a(wor) > ko > 0.

R, =

If x € W has a reduced expression = 54, - Sa, * - * Sq,, et
R, =R, Rs,, ... Rs, .
k
Notice that
@
R, = Ztyay, a, € O(Ve) and a, = H o
y<w rz—1la<0
Lemma 3.2.1.
(1) The element R,,, w € W, does not depend on the choice of reduced expres-
sion for w.
(2) For every a € O(Vg), we W
a-Ry =Ry w'(a). (3.2.3)

(3) For every w e W,
tw - Ruy = (1) @Ry, - 6(ty). (3.2.4)
(4) RgRy = Ryy, x,y € W.
Proof. Claims (1) and (2) are in [BM3], Lemma 1.6]. For (3), it is sufficient to verify
that when o € I, L5, - Ry, = —Ruyts,, where B = —wo(a). Write wy = wsq = sgw.
It follows that R, = Ry Rs, = Rs, Ry, and therefore Ry, Rs, = Rs,Ry,. Then
(tsyB — kg)Ruy = Ru,(ts,a — ko), and since ko = kg, Ry,ts,a = ts,BRy, =
tsy Ruwowo(B) = —ts, Ry, Claim (4) follows immediately from RI = (t, o —
ko) ez = 1. O

Lemma 3.2.2. The elements R, satisfy

ko —
1 ° _ (1 (z) B & .
O O I
rz~ta<0
ko —
— (—1)4=) o
(2) RE = (=1)"tu, Rs(a)— H T tuwg -
6(z)~ta<0

Proof. Claim (2) follows from (1) by [23.3). For (1), we need to compute R .
We have RS = [(ts,o — ka)(ka — @) 7t]* = (ko — @) Hots, — ko) = —(ka —

a) 'R, (ko — a) = —R,, Zzlg

O
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3.3. Minimal principal series. We wish to define invariant hermitian forms on
irreducible H-modules. It is instructive to consider first the case of minimal prin-
cipal series. Every element h € H can be written uniquely as h = >y twluw,
ay € S(V). Define the C-linear map

ea:H— S(Ve), ealh)=a.

If v € V¥, let C, denote the character of S(V¢) given by evaluation at v. For
a € H, denote by a(v) the evaluation of a at v. The minimal principal series with
parameter v is X (v) = H®g(y) C,.

If x is any conjugate linear anti-involution of H, and L, R are arbitrary elements
of H, and " € Vi, the assignment

<h1, h2> = EA(LIi(hg)th)(l/l), hi,ho € H, (331)

defines a k-invariant (not necessarily hermitian) pairing on H viewed as an H-
module under left multiplication. For such a form to descend to a k-invariant
hermitian form on X (v), it must satisfy:

(H1) (hia,ha) = a(v){(hi,hsa), for all a € S(V¢);

(H2) <h,1, h2a> = (V)<h1, h2>, for all a € S(V(C),

(H3) (h1,h2) = (ha, hi).
Of course, (H1) and (H3) imply (H2), but in practice it will be convenient for us
to check (1) and (2) first, which will then reduce the verification of (3) on the basis
{tw € W} of X(v).

We show this for k = e and the pairing

<h1,h,2>. = eA(twohEthwg)(wOV)- (332)

Let
«Q ko

ko +a B ko +a’
and for = $q, ... Sa,,, define R, = [[Rq,. The R, have the same properties as
the R,, except

Reo =t

ko +a

o __ ( 1\{=)
RS = (1) @R, R s (3.3.3)
Let
Vg ={r eV : (a,v) #0 for any o € RT}.
For v € V4, a basis of X (v) is given by
{Re @ 1, }aew. (3.3.4)

Notice that R, is not in H, but in H. However it makes sense to express R, =
Y- tyay with af € O(Vc), and then evaluate at v. The fact that v € V., allows one
to solve for the t, ® 1, in terms of the R, ® 1,; so indeed (B34) is a basis. (Note
that we have assumed that ko > 0.)

Lemma 3.3.1. The vector R, ® 1, is an A-weight vector of X (v) with weight xv.

Proof. Since a-R, = Ry -z~ (a), a € S(V¢), it follows that in X (v), a- (R, ®1,) =
a(zv)(Ry @ 1,). O
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We show that (H1)-(H3) hold for 8:34) and v € V,Y,. Since the relations (and

reg*
the change of basis matrices to the ¢,) are rational in v, and V¥, contains an open

reg
set in V¢, they will hold in general.
The first identity holds by [B23):

<h1a, h2>. = <h,1, h2>.a(l/).
For the second identity,
(Res Rya)e = (Ra, Ry)e(wor™ y)(a®) (wor) = (Ra, Ry)e (2™ y) (a®) (v).

Suppose = y. Then this formula implies (H2) (with hy = ho = R,) if and only if
a®(v) = a(v) which is equivalent to v =7, i.e., v € V.

Suppose = # y. We show that each of the two sides of (H2) are zero because
€A(twoyR:Ru,) = 0 unless z = 1:

€4 (tw, (Rya)*ReRu,) = €a twoa(_l)l(y)Ry*1 H aR ol | =
y~la<0

ko + wozr la

= ea (twoRy—12Rup) - (=)@ (woz " y)(a) [} =0, and
y~la<0
ko + wor o
° l(x &3
€A (twoRyRIRWO) a=ca (twoRy”ero) (1) v 1 ma =0
y~la<0
So (H2) is verified.
We also record the formula
ko —0(z 1)
€T ]11/ T ]11/ ° £(x) P S
(Re @1, Ry @1,)¢ = ( k —- J] P la)>(wou)
a>0 = la<0
1)A (a,v) — kq
H (o, v) +k g (o, V) + ko
(3.3.5)

The equivalence of the two formulas can be easily seen by the substitution z 7 'a i «
in the second product. Notice that the factor (—1)% [Toso % is independent
of z, so we may divide the form uniformly by it. The resulting normalized hermitian
form has the property that (R ® 1,,, Ry ® 1,,) = 1.

When v is dominant, k, + (a,v) > 0, so the denominator does not vanish, and
it is always positive (we have assumed ko > 0).

The arguments also imply that (ho, h1)e = (h1, h2)e for hi,he € {R, @1, }rew,
so also in general. In conclusion, we have proved the following result.

Proposition 3.3.2. The form
(h1,h2)e := €A(twoh3hi Ruy, ) (wor)
defines a e-invariant hermitian form on X (v) if and only if v = v, i.e., v € VV.
The case of x follows by formal manipulations. Set

<h1, h2>* = €A (hgthwo) (’LUOV). (336)
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The relation between the forms is
(h1,h)s = €a (h5hiRuyy) (wor) = €4 (tuo0(2) tws b1 Ruy ) (wor)
= (twoh1,0(h2))e;
compare with (BI4).

We also note the following formulas for the signatures.

(3.3.7)

Proposition 3.3.3. Write Ry, = ) ,cw twlw-
(1) The signature of (, )e is given by the signature of the matriz {a, -1, }m,yeW'
(2) The signature of { , )x is given by the signature of the matriz {am—ly}m7yew.

Proof. Straightforward. O
Corollary 3.3.4. For every w € W,
e (buRuy) = €4 (0(t—1) Ru)
Proof. The left hand side is
€A (twotwotwRuw,) s
while the right hand side is
€A (twotw—1twe Ruy)

Evaluating at wov, the left hand side is (fw,, tw)s,, While the right hand side is
(tw,twy)e,v- The fact that the two are equal follows from the fact that ( , )e is
symmetric for v real. O

As a consequence of the relation [B.3.7) between e and * forms and Proposition
B32 we have the following corollary.

Corollary 3.3.5. The pairing

<h1, h2>* — €A (hgthwo) (’LUQV)
defines a x-invariant hermitian form on X (v) if and only if wov = —7.
3.4. Parabolic subalgebras. Let II); be a subset of simple roots of IT and R}\L/[
the positive roots spanned by IIj;. Denote by Wj, the parabolic subgroup of W
generated by {s, : o € IIps} and by wo ar the long Weyl group element in Wjy,.

Let Hj; be the subalgebra of H generated by {t,, : w € Wy} and S(V¢). The
star operations x;; and e, as in Definition 2.3.2] for Hj, are:

B =tyo1, wE Wi, W™ = —tyy  Wom (W) tuwg s wE VE, (3.4.1)
28—t w e W, WM =w, we V. o

As before, from Definition B2T.0] every element of H can be written uniquely as
h =73, cw twaw, where a,, € S(V¢). Denote

Jum = the set of coset representatives of minimal length in W/W(M); (3.4.2)

recall that in every coset W (M) there exists a unique element of minimal length.
Then, more generally, every h € H can be written uniquely as

h = Z twMay, My € Hay.
wE T
Define the C-linear map

ev cH — Hy,  epr(h) =my. (3.4.3)
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In particular, epr(hm) = epr(h)m, for all m € Hyy. It is also easy to see that
S(ent()) = e5any(3(h)), h € H, (3.4.4)

where I35y = d(Ilpr), and § is the automorphism from Lemma 22T We need
the relation between x and %j;.

Proposition 3.4.1 ([BM3| Proposition 1.4]). For every h € H, epr(h*) = epr(h)*™.
Corollary 3.4.2. For every h € H, e5(ar)(tw,h®tw,) = 6(enr(h))*o0n.
Proof. Since ty,,h®tyw, = d(h)*, the claim is immediate from Proposition B4l and

B.44. O

3.5. Induced modules. Let II;; C II be given, and consider the subalgebra H,
of H. If (¢,U,) is an Hjs;-module, consider the induced module

X(M,0) =H®g,, Uy, (3.5.1)

where H acts by left multiplication. The goal is to construct invariant hermitian
forms on X (M, o) provided that o admits such a form for Hy,. For this, we need
to describe the H-module structure m, on X (M, o) more explicitly.

A basis for X (M, o) is

{ts @i}, z=€Tm, v €BU,),

where B(U,) is a basis of U,.
Every z € W can be written uniquely

z=c(z) -m(z), (3.5.2)

where ¢(z) is the element of Jys in the coset zW (M) and m(z) € W(M).
Lemma 3.5.1. The action 7, on X(M,c) is given by

(t:)(te @ v) = le(er) ® o(m(22))v;

W)t @) =ta @o(@ ' W)v+ Y (@,8Y) te(spa) ® o(m(spz))v, (3.5.3)

B>0
27 1B<0
for every z € W and w € V.
Proof. For z € W,
T(t.)(te @) =ty @V = te(zg) @ o(m(2x))v.
For w € V¢,
m(w)(ty @ v) = wly @ .
The claim follows from Lemma 235 i.e.,
wty =tz (W) + Z (w, BY)tssa-

B8>0
z71B<0
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3.6. Action on the hermitian dual to an induced modules. Let (0,U,) be
a module for Hy; as in section B8l Let (0*, U%) be the hermitian dual of (o, U,)
and (7%, X (M, o)"), the hermitian dual of (7,, X (M, o)) with respect to the star
operation e. A basis for the hermitian dual X (M, )" of X (M, ) is

{th @}, where 2 € Jyr and v € U dual to the basis B(U,) = {v;}. (3.6.1)
We calculate the action 78 of H on X (M, 0)". For z € W,
7 () @ )ty @ v) = (£ © o) (o @ 05). (3.62)

Then [3.6.2) is nonzero if and only if c(2~1y) = z, so

27y = xm(z7y), or equivalently, zz = ym(z~1y) "t
We conclude that m(zz) = m(z71y)~!, and so
7 (L) @ o) = th ) @ 0 (m(za))ol (363

For w € V¢,
m* (W)(ty ® ) (b, @ v;) = (th © vf)(wty © ;).
Using Lemma [2.3.5]

Wty = tyyil(w) - Z (w, y'}/v)tysa, = tyyil(w) + Z (w, ﬂv)tSBy’
v>0 B>0
yy<0 y~1B<0

we find that the expression is zero unless either z =y, or ¢(sgy) = . In this latter
case,

spy = x - m(sgy), equivalently spz = ym(sgx), so m(sgz) =m(spy) .
The conclusion is

w'(w)(t;” ® Ulh) = t}; ® 0'(96_1(4;.)))1)?— Z (w, BY) te(spa) @ 0° (m(slgw))vlh.
B>0
c(sBz)715<0

Notice that since y € Jar, if y~!B < 0, then in fact y='3 € R~ \ Rj;. We show
that

c(sgr)"tB < 0if and only if 27 '3 € R\ Ry.

We have sgz = ym for some m € W(M). Then y~' = ma~'sg, and 27! =
m_ly_lsg.
If z7'8 € R\ Ru,

Yy ip = m_lx_l(—ﬁ) € R™\ Ry,.

Soy 1B <0.
If y~18 < 0 then as observed earlier, y '3 € R~ \ R, so

' B=m ly (=B) e m T (RT\ R};) = R\ R},

In conclusion, we have proved the following formulas for the action 7.
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Lemma 3.6.1. The H-module action on the -hermitian dual module (78, X (M, o)")
is given by:
T (t2)(ty @ 0') = th(g) ® 0% (m(z2))07,
m @)t vl =th @@ W)l = D (@,8Y) te(sye) © 0 (m(sp))f-
B>0
+~'BeERT\R],
(3.6.4)

3.7. Hermitian dual of an induced module. Retain the notation from the

previous sections. In particular, write wq for the long Weyl group element of W,

wo, M Wo,5(ar) for the corresponding long elements in the Levi components, and set
w?w = ’LUowO)(;(M) = Wo,MWo-

This element is minimal in the cosets woWsar), and Waswp.
Let (0,U,) be an Hjy;—module. Recall that (o, U") is the module on the her-
mitian dual with respect to the e action.

Lemma 3.7.1. The map ¢ given by
O(tm) == t(wﬂl)*lmwﬂlv m € Wyy,
d(w) = (wl) Hw), weg,
is an isomorphism between Hy and Hs(ary and it interchanges ey with e5(yyy.

Proof. Straightforward. O

Definition 3.7.2. In light of Lemma B71], to each Hjps-module (o, U, ), we asso-
ciate the Hs(yp—module (ao, Uss) given by

Uso = Uy, and (ac)(m’) := o(wlym/(wh,) ™), m" € Hy(ur).- (3.7.1)
Proposition 3.7.3. The element x € W is minimal in Wy if and only if zw$,
is minimal in ;vwg/[W(;(M).

Proof. We observe that wo(RJi( M)) = RJ,. Then

WoWo,§( M) (R;'_(M)) = wo(Ré_(M)) = R]T/I'
The claim follows,

z(Rf;) € RY if and only if zwf, (Rsar)) C RY.

Corollary 3.7.4. In the notation of (3.2.2):

csn (awly) = ear(z)wly,  maan (zwly) = (W)~ ma(z)w,

for every x € W.
Theorem 3.7.5. The map
O(th @ oh) i=t,0 @ a”
M

is an H— equivariant isomorphism between (73, X (M,0)") and (7o, X (6(M), ac™))

where the action on o" is given by o5(M)-
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Proof. Using Lemma B6.1] we have
Ot (1) (ty ® V")) = Q7 2oy © 0* (M(22)0"] = Loy sy @ alo® (mar(z2))0"],
RO 0] = 7(8) o © av ] benty ety © (a0) [(maap (zzu®))av'],
Next
B[ (@)(t @ 0] =ty @ alo®(zw)o]—

- Z (wv ﬂv)tCM(sgm)wo Y a[g. (mM (Sﬁx))vh]
B>0
z 7' BERT\RY,

PP @ 0] = 1) © "] =ty ® (a0)* ()~ w)ar™ +
+ Z (wa ’YV) tc(;(M)(slgzwoM) ® (QU).(mﬁ(M) (Sﬁxw?W))av

>
(zw®)~ 1'y€R+\R5(M)

The corresponding expressions are equal because of Corollary B.7.4] and the fact
that w?(RT\R},) = R*\R(;_(M). O

Example 3.7.6. A particular case of Theorem [3.7.0]is that of minimal principal se-
ries. The hermitian dual (7*, X (v)") of a minimal principal series module identifies
with (7, X (we?)) via
P(th @ 1,) = trw, @ Ly

In particular, this means that X (v) admits an invariant e form if and only if wov
is W-conjugate to v, equivalently if 7 is W-conjugate to v. Thus, for example, if
wy is not central in W, X (v) does not admit a e-form for generic purely imaginary
values of v.

3.8. Second form of Frobenius reciprocity. As an application of Theorem
B7H we obtain the following lemma, which is the H-analogue of the second form
of Frobenius reciprocity.

Lemma 3.8.1. If Hys is a parabolic subalgebra of H, V' an H-module and U an
H s -module, then

HomHM [V|HM , U] = }IOIDH[V7 H ®H5(M) CL(U)] (381)

Proof. Theorem[B.7.5 computed the hermitian dual of a parabolically induced mod-
ule. The same exact statement and proof hold of course for contragredient modules.
We use here the same notation V' to denote the contragredient (rather than the
hermitian dual) with respect to the involution e. We will also use twice the tauto-
logical isomorphism
Hom[A, B®] = Hom[B, A®]. (3.8.2)
We have:
Homp,, [Va U] = Homg,, [Vv (U.).] = Homg,, [U.a V.]

= Hompy[H ®g,, U®,V°*] (by first Frobenius reciprocity)

= HOIIIH[V, (H ®m,, U.).]

= Homy[V,H ®u, ,,, a(U)]  (by Theorem B.7H).

(3.8.3)



16 DAN BARBASCH AND DAN CIUBOTARU

3.9. Sesquilinear Form. A e-invariant sesquilinear form on X (M, o) is equivalent
to defining an H-equivariant map

T:(m, X(M,0)) — (7°, X (M,0)"). (3.9.1)

We call Z hermitian if Z" = T or equivalently Z(v)(w) = Z(w)(v), for all v,w €
X(M,o). Recall M,§(M), and wy = w?wwoﬁ(M) = wo,pywy,; with wl, minimal in
woW;. To simplify notation, write M = §(M ), and
0_ .0 0._
w” =wy, R =Ry . (3.9.2)
Furthermore,
Adwl : Wi — Wy, o(m) = o(wl;m(w’)™1).
If x = cpr(z)mas (), then 2w, = epr(z)wl, (wl,) T (zwh,), so
er(@)wlly = cgp(zwyy), (W) " mar(@)wh, = mag(zw},). (3.9.3)
Assume that there is an H;-equivariant isomorphim
v:(0,Uy) — (o®, UM
defining a e-invariant hermitian form on (o, U,). The same map gives an isomor-
phism ¢, : (ao,U,) — (ac®, UM).
Write R® = % t,m% with 2 minimal in ZW (M) and m2 € Hy;.
Define 7 to be the composition of the maps

X(M,0) 2% X (M, a0) 24 X (M, a0™) 2 X (M, 0)".

where:
(1)
Lpo:t,@v—=t,RO@v= Ztcﬂ(ﬁ) ® ao(my;(xZ)m)v
(ii) Ind ¢, maps it to
Indig o Lpo i t, @ v — Z te—(23) ® talaoc(myp(zz m2)v].
(ii) Applying ®~! we get
T:t, Qv+ Ztgﬁ(ﬁ)(w“)*l ® tolac[myz(xZ)mv] =

= Z th(mE(wo),l) ® talac(myz(zZ)m2)v].
Thus
(tz @ Vg, ty @ vy) = <aa(mﬂ(xz mg)vz,vy>
with cpr(2Z(w®)~1) = y. This equation gives
2Z(w) 7 =y ma (2Z(w®) ) © 2 = a7 lyma (2Z(w?) T & 2 =2 lyump(az) &
oy’ =Zmg(22) 7" © 7= cp(ayw?), mg(az) = mg (e yw’) Tl
The final answer is
1

<t1 ® Vg, ty ® Uy> = (aa[mﬂ(x_lywo)_ mgﬁ(wflywo)]v17vy>'

Compare and contrast this with

GM(t(wO)—lty—ltmRO) = GM(Z t(wO)—lty—ltwtgmg) =m- mg
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where (w®)~ly~lzZ = m. So

ey’ =zZm T e T = cpp(a ), mo=mgp(a yw)
In conclusion, we have proved the following result.

Proposition 3.9.1. Suppose (o,Uy) has a e-invariant hermitian form (, )s.e. The
form

(h1 ® v1,ha ®V2)e = <aU[6M(t(w0)—1h5h1R0)]U1,’l}2>g7.

on X(M, o) is e-invariant and sesquiliniar.
We prove in the next section that the form is also hermitian.

3.10. Symmetry. The parabolic Hecke subalgebra Hj; of H is attached to the
non-semisimple root system (V, Ry, VY, RY,). Let Vis be the R-span of Ry in V,
Vy; the R-span of RY, in V'V, and

Vii={veV:(va¥)=0, forall a € Ry},
VA\?J- ={vYeVV:(a,vY)=0, forall &« € Ry }.
Then V = Vi @ Vi, VYV =V, @ V7. Let HY, denote the graded Hecke algebra

attached to the semisimple root system (Vas, Rar, V3, RY;) by Definition 2111
Then there is an algebra isomorphism

Hy = HYy ®c S(Vip)- (3.10.1)
Assume ¢ = 0o ® C,, where o is an H},-module, and v € (Vy;)c.

Lemma 3.10.1. There is a set V]\j’;/sg containing an open set of Vj\jv such that
{R.®v;} with x minimal in the coset tW (M) and {v;} a basis of U, forms a basis
of X(M, o).

Proof. This follows from the formula

Re=t. [] kaia + 3 tyme,

z—la<0 y<z

The leading term for R, ¢ H - O_:_ , is invertible for generic v. The
(wd)~ta<0 ¢ @
claim follows from the fact that the expression of R, is upper triangular in the

ty. O

Theorem 3.10.2. The form in Proposition [3.91] is hermitian, and therefore, it
gives a e-invariant hermitian form on the induced module X (M, o).

Proof. The claim follows (on V]é[:v first, and thus always) from the formula

reg
EM(t(w())flR;RIRO) =0 unless x = y.

O

As above, when v € (V]\j’r\ég)c, a basis of X (M, o) is given by {R, @ v}, where x

ranges in Jjs, and v ranges over a basis of gy. In this case, one obtains a simpler
formula for the signature of the e-form.
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Corollary 3.10.3. When v € (V]\jxsg)c, the signature of the o form on X (M, o),
o=o09®C,, is given by

0, T #Y,
<Rm ®U17Ry®v2>.: f(CC(U)) <U< H a;:a>vlav2> , T=Y,

«
a>0,za<0

(3.10.2)

where x,y € T, v1,v2 € Uy, and f(cc(o)) = (—1)|R+\R;f| H %.
a€ERT\RY,

Proof. The first claim follows as in the proof of Theorem [3.10.21 For the second

claim, one uses formula 333)) for RS and the same substitution as in the second

formula of (B.3.3]). O

Since the factor f(cc(o)) is common for all x, it makes sense to normalize the
hermitian form by dividing by it. The resulting form has the property that

<R1 ®Rv1,R1 ® ’U2>. = <’U1, ’U2>g7.. (3103)

Remark 3.10.4. In the particular case when oy = triv (so that o is the one-
dimesional character C, ) and v is large, we recover a result of Opdam Theo-
rem 4.1]. In that case, the induced module X (M,v) = H ®y,, C, is A-semisimple
with a basis given by {R, ® 1, : © € Jar}, and in the normalization (BI0.3), the
form is

(o, v) — kg

Rz @1, Ry @1y)e =gy H m

a>0,za<0

(3.10.4)

It is easy to verify that this formula agrees (switching the between roots and coroots)
with the one in Theorem 4.1.(4)], after taking the scaling factor a(\, k) =
[I.20(1 = Eko/A(@Y)) in the notation therein.

3.11. We have analyzed the construction of induced e-invariant forms. The same
type of discussion works for x-invariant forms, or otherwise, the result for x-invariant
forms can be deduced via formal manipulations as in section[3.1l We only state the
result and skip more details. A similar result was obtained in [BM3], section 1.8].

Proposition 3.11.1. Suppose (0,U,) has a *-invariant hermitian form ( , )y .
The pairing
<h1 ® V1, h,2 ® 1)2>* = <aU[EM(h§h1RO)]’Ul, v2>g,*

on X (M, o) is a hermitian, *-invariant (sesquiliniar) form.

4. LANGLANDS CLASSIFICATION AND A-WEIGHTS

We use Langlands classification to deduce certain results about the A-weights of
irreducible H-modules. As a consequence, we show that every irreducible H-module
with real central character admits a e-invariant hermitian form.

4.1. Langlands quotient. Retain the notation from section B.10] The following
form of Langlands classification is proved in [Ev].
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Theorem 4.1.1. (i) Let L be an irreducible H-module. Then L is a quotient
of X(M,v) = H®mn,, (0 ®C,), where o is an irreducible tempered HY, -
module, and v € Vﬁ such that Rev is dominant, i.e., (Rev,a) > 0, for all
aell \ II,,.

(ii) If o,v are as in (i), then H®py,, (0 ® C,) has a unique irreducible quotient
L(o,v).
(i) If L(o,v) 2 L(o',V'), then M =M', 0 2 0o’, andv =1/'.
We need to review the construction of Iy, o and v from L.

Let {wyY,...,wy} be the basis of VV consisting of fundamental coweights, i.e.,
the basis dual to IT C V. For every subset F' C {1,2,...,n}, let

Sp={>_cjw/ =Y diay :¢; >0,d; >0} C VY.
jEF ieF
A lemma of Langlands, cf. [Evl Lemma 2.3] says that for every v € V'V, there
exists a unique subset F' such that v € Sp. Denote this subset by F(v). If v =

Y jer Cw) — 2 ep dicyf, then set
W0 = Z cjwjv.
J¢F
On V'V define the order relation > by v > v if v — v’ € RZQ@V’+. Then, see for
example Lemma 2.4,
v1 > v implies v > v). (4.1.1)

Choose A € Q(L) such that Re A is maximal with respect to > among the real parts
of weights of L. Then
v= A|V1C/I,L, (4.1.2)

and o is an irreducible H?w-module such that o ® C, occurs in the restriction of L
to Hp = HY, ® S(VjF). Moreover the weights of o are:

Qo) = Ny : N €QUL), Ny =v, F(ReXN) =TIy} C Viy.  (4.13)

4.2. Twahori-Matsumoto involution. The Iwahori-Matsumoto involution 7 of
H is defined on the generators of H by:

T(ts,) = —ts,, a« €I, 7(a) = —a, a € V. (4.2.1)

It is immediate that this assignment extends to an algebra automorphism and
therefore to a involution, denoted 7 again on H-modules. Notice that if X is an
H-module, then

T(X)lw = X|w @ sgn,

Q(r(X)) = —QX), 7(X)_r =Xy, A€ QX). (4.2.2)

Lemma 4.2.1. Assume H is semisimple. Suppose X is an irreducible tempered
module such that 7(X) is also tempered. Then the central character x of X is
imaginary, i.e., x € V—1V, and X = X (x).

Proof. Let A € Q(X) be arbitrary. Since X is tempered, (w,Re\) < 0 for all
dominant w € V. If 7(X) is also tempered, (w, —ReA) < 0 as well, hence (w,Re \) =
0 for all w dominant in V. Thus ReA = 0 and so x € y/—1V, which means
X = X(x), since at imaginary central character the minimal principal series is

irreducible ([Ch], see Theorem 1.3]). O
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4.3. A-weights. Let (7, X) be an irreducible H-module, and Q(X) C Vi the set
of A = S(V¢)-weights of X. As noted before, Q(X) C W - cc(X). Define the
A-character of X to be the formal sum:

Ou(X) = > (dimX,) e, (4.3.1)
AEQx

where Xy ={z € X : foralla € A, (w(a) — \)"z =0, for some n} is the general-
ized A-weight space. Denote the multiplicity of A in X by

m[A : X] := dim X,. (4.3.2)

The following proposition is the graded Hecke algebra analogue of a result of Cas-
selman for p-adic groups, and Evens-Mirkovié¢ [EM| Theorem 5.5] for the geometric
affine Hecke algebras.

Proposition 4.3.1. Let X, X' be two irreducible H-modules such that Q(X) =
Q(X'). Then X =2 X',

Proof. By hypothesis cc(X) = cc(X') = x. Suppose X (and therefore also X’) is
not tempered. By Langlands classification, X is the unique irreducible quotient of
H ®g,, (0 @ C,), where IIj; C II, v and (o) are uniquely determined by Q(X).
Therefore, by induction of |II|, the claim follows for nontempered X.

Now assume that X is tempered. We use the Iwahori-Matsumoto involution and
Lemma 2Tl either 7(X) is not tempered and since Q(7(X)) = Q(7(X”)), we may
finish as above, or else X (and also X’) is the irreducible minimal principal series
X () with imaginary central character x. O

As a consequence, we deduce indirectly that every irreducible module with real
central character has a hermitian e-invariant form.

Corollary 4.3.2. Let X be an irreducible H-module. Then X admits a e-invariant

hermitian form if and only if Q(X) = QX). In particular, if X has real central
character then X admits a e-invariant form.

Proof. Since a®* = @ for all a € S(V¢), we have Q(X*®) = Q(X), where X* is the
e-hermitian dual of X. The claim follows at once from Proposition 311 O

4.4. Linear independence. Proposition [L3.1] says that ©4(X) uniquely deter-
mines X. We now prove the stronger statement that {©4(X)} is linearly indepen-
dent.

Lemma 4.4.1. Suppose \ is a weight of the irreducible tempered HS,-module o
and X (o,v) is a standard Langlands induced module. Then

mA+v:Lio,v)] =mA+v:X(o,v)] =m[\: o]

Proof. By the construction of the Langlands quotient L(o,v), the restriction of
L(o,v) to Hys contains the Hjys-module o ® C,, hence Homy[o ® C,,, L(o,v)] # 0,
and therefore m[A + v : L(o,v)] > m[X : o]. Thus, it is sufficient to prove that
mA+v: X(o,v)] =m[\: o]

By [BM2, Proposition 6.4], every weight in X(o,v)/(c @ C,) is of the form
w(A + v), where X is a weight of o, and w # 1 ranges over the set Jys of minimal
length representatives of W/Wjy.
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We claim that if w # 1 is such a representative, then w(A+v) # X + v, for every
A, N weights of 0. Let FF C {1,2,...,n} be such that A € Sp. Then, as before, write
Red = -3 cpdic, di > 0and Rev =37, pcjw).

Since way’ € RY-*, for all i € F, we have (wRe A, wy) < 0 foreveryi € F, j ¢ F.
On the other hand, wg; < g, for j ¢ F, so (wRev, ;) < (v, ;) for some j ¢ F.
This implies that (wRe(A 4+ v),Rev) < (Re(A + v),Rev) = (Rev,Rev).

(]

Theorem 4.4.2. The set {O4(X)} where X ranges over the set of (isomorphism
classes of ) simple H-modules is Z-linearly independent.

Proof. Let
> eOa(Xi) =0 (4.4.1)

be a finite linear combination of A-characters, where {X;} are distinct simple mod-
ules. Without loss of generality, we may assume that all X; have the same central
character and moreover, that the central character is real. By Langlands clas-
sification, each X; is the unique irreducible quotient L(M;,o,v;) of an induced
H ®m,, (01 ®Cy,).

Find X\ a weight in the linear combination such that A is maximal with respect
to > and no other X' occuring in the linear combination satisfies (\')? > A9, with
the notation as in previous subsection. There exists a unique F' = F'(A) such that
A € Sp, and write II); for the subset of II corresponding to F, and v = )\|V]\},J_

accordingly. Then v = A, Let oy,...,0 irreducible tempered HY,-modules so
that L(M, oy, v) occurs in ([@AT).

We claim that if \; is any weight of a 07, [ = 1, k, then every time \; + v occurs
in (E4T), it occurs in a Op(L(M,oy,v)) for some t = 1, k. To see this, suppose
Aj + v appears in L(M',o’,1"). Then there exists an extremal weight A such that
(Aj +v) <X, but then v = (); + )° < (X)%, and by assumption v = (\)° = 1/,
M = M’ and ¢’ = o; for some t.

Combining this with Lemma [4T] it follows that ([L41) implies

k
> ¢;0u(0;) =0. (4.4.2)
j=1

If Iy # 1, we get ¢; = 0 by induction and continue the same process with

the remaining terms in [AI). If Iy, = II, i.e., the combination involves only
A-characters of irreducible tempered H-modules, apply the Iwahori-Matsumoto in-
volution and conclude as in the proof of Proposition 311

O

5. SIGNATURE OF HERMITIAN FORMS AND LOWEST W-TYPES

In order to study the signature of e-invariant forms, we need to construct ex-
plicitly the forms whose existence is guaranteed by Corollary 2321 We use Lang-
lands classification together with the explicit induced forms from section To
conclude certain results about signatures, we also make use of the geometric clas-
sification of H-modules (for equal parameters).
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5.1. Tempered modules.

Lemma 5.1.1. Let X be an irreducible tempered H-module. Then X is a submodule
of a parabolically induced module I(M,c @ C,) = H®py,, (0 ® C,), where o is a
discrete series module of H, and v € (V]\jv)c with Rev = 0.

Proof. Let w; € V, i = 1,n, denote the fundamental weights of the root system.
For every weight A € Q(X), define

F(A) = {i: (wi,Re)) < 0} (5.1.1)

Since X is assumed tempered, we necessarily have (w;, Re\) = 0 for all j ¢ F(A).
We assumed that the root system is semisimple, therefore,

Red=— Y dia), where d; > 0.
i€F(N)

Choose now A € (X) such that F := F(A) is minimal with respect to set inclusion.
Set

HM:{aiZiE.F}.
Using the decomposition VYV = V3 & V]\j’v, let v be the projection of A onto
(Vﬁ’v)c. Since Re A € V}; by construction, it follows that Rev = 0.

Let Y be an irreducible consituent of the restriction of X to Hj;, such that
S((Vif)c) acts on Y by v. Then Y = Y° ® C,, where Y is an irreducible HS-
module. We claim that Y is a discrete series H},-module. To see this, let p €
(Var)e be a S((Var)c)-weight of YO, write Rep = — >, zia, and we want to
prove that all z; > 0. The sum p + v is a weight of X and Re(u + v) = Re(p) =
— Y ier zie, in particular, z; > 0. Notice that if j ¢ F, then j ¢ F(u + v), hence
F(pu+v) C F. By the minimality of F, F(u + v) = F, and therefore z; > 0 for all
i. Setting o = Y, the lemma is proved.

O

The following statement is well-known.
Proposition 5.1.2. Fvery irreducible tempered H-module is x-unitary.

Sketch of proof. When the Hecke algebra H appears in the representation theory of
p-adic groups (i.e., it is “geometric type” in the sense of Lusztig [Lu2]), the claim
follows from the unitarizability of tempered representations of the p-adic group, see
for example [BMI].

For Hecke algebras with arbitrary positive parameters, the statement is known
from in the setting of affine Hecke algebras, together with the fact that
Lusztig’s reduction from affine to graded affine Hecke algebras preserves tem-
peredness and unitarity. O

Corollary 5.1.3. Fvery irreducible tempered H-module with real central character
admits a e-invariant hermitian form.

Proof. Let X be an irreducible tempered module. If X = X, then we can define
a e-hermitian form, using the s-hermitian form ( , ). from Proposition (1.2 as
before, by setting (z,y)e = (7(tw,)z,5(y))s, 2,y € X. We claim that X° = X
for every irreducible tempered H-module with real infinitesimal character. For
this, we use that the restriction to W of the set of tempered modules with real
central character is linearly independent in the Grothendieck group of W. When
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the parameter function & of H is geometric in the sense of Lusztig, this (and more)
follows from the geometric classification, see section For arbitrary positive
parameters k, this result is proved in [So].

If X is irreducible tempered with real central character, then X? is also tempered.
This is because Q(X°) = —w(2(X)), and if w; is a fundamental weight, then so
is —wo(wj), hence the non-positivity conditions for weights are preserved.

Also X|w = X°|y . By the W-linear independence mentioned above, X = X9,
as H-modules. O

5.2. Signature at infinity. Assume (v, ) > 0 for all « € RT \ R}, and denote
o =00 Cyy, t>0.

We consider the signature of the form on X (M, 0¢) as t — oo. We can use the basis
{R.®v;}, so that the form is block-diagonal with respect to 2 € Jy,. By Corollary
BI03 in the diagonal block (of the normalized form) for R,, we have

a— kg
(Ry @1, Ry @ V2) et = <Ut < H P )Ul,vz>

a>0,za<0

Ot,®

As t — o0, the expression o (Hm <0 %) goes to the identity, which means
that
lim (R, @ v1, Ry @ V2)et = (V1,02)050,0- (5.2.1)

t—o0

We have proved

Theorem 5.2.1. The e—signature of X (M, o) at oo is the induced signature of
the e—signature of (oo, Uy, ).

5.3. Lowest W-types. In this section, we assume that the graded Hecke alge-
bra H has equal parameters. More generally, analogous results hold whenever the
parameters of H are of geometric type, in the sense of [Lu2].

Suppose H is attached to a root system ¥ and constant parameter function k.
Let g be the reductive Lie algebra with root system W. In particular, we identify
a Cartan subalgebra b of g with Vi, so that the roots R live in h* = V¢. Let
N C g denote the nilpotent cone. Let G be a complex connected Lie group with
Lie algebra g; for our purposes, we may choose G to be the adjoint form. If S is a
subset of g, denote by Z;(S) the mutual centralizer in G of the elements in S and
A(S) the group of components of Zg(S).

We summarize the results from that we need for signatures.

One attaches a standard geometric H-module X (s, e,1) to every triple

(s,e,1p), s € g semisimple, e € N such that [s,e] = ke, 1 € A(s,e)o, (5.3.1)

where A\(S, €)o is the set of irreducible representations of A(s,e) which appear in
the permutation action on the top cohomology H'"P(B:,C). Here, BS denotes the
variety of Borel subalgebras of g containing e and s. Morever,

X(s,e,0) 2 X(s',¢/,4") if and only if g - (s,e,9) = (s, ¢/,1'), for some g € G.
(5.3.2)
Consequently, we may assume, without loss of generality, that s € h. Under the
identification h = V¥, write s = so + +/—1s1 with sg,s1 € V.
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On the other hand, recall that the Springer correspondence realizes every irre-
ducible W-representation as the ¢-isotypic component

p(e, @) := Hom (e [¢, HP (B, C)] (5.3.3)

of the top cohomology group of the Springer fiber B.. Denote by A(e)y the set
of irreducible representations of A(e) which appear in the action on H*P(B,,C).
Moreover (e, ¢) = u(e’, ¢’) if and only if there exists g € G such that g - (e, ¢) =
(e, ¢").

The inclusion Zg(s,e) — Zg(e) descends to an inclusion A(s,e) — A(e). The
standard module X (s, e, ) has the property that

HomW[M(e7 ¢) : X(Su €, ¢)] = HomA(s,e) W : ¢|A(s,e)]7 (534)
for all ¢ € A(e),.

Definition 5.3.1. We call (e, ¢) a lowest W-type of X(s,e,1) if Hom 4(,¢)[t) :
¢|A(s,e)] # 0.

Theorem 5.3.2 ([KL| [Lu2)).

(1) The standard module X (s, e, ) where (s,e,1)) is as in (31 has a unique
composition factor L(s,e, 1) such that L(s,e 1)) contains every lowest W -
type of X(s,e, ) with full multiplicity [{ : | a(s,e)]-

(2) The module X (s,e,v) is tempered if and only if so = kh for a Lie triple
(e, h, f) of e. In this case, X(s,e,v) = L(s,e,v). The module X (s,e, ) is

a discrete series if in addition e is a distinguished nilpotent element.

Notice that, in particular, there is a one-to-one correspondence between tempered
H-modules with real central character and (G-conjugacy classes) of pairs (e, @)
where e € N and ¢ € A(e)o.

According to the parabolic Langlands classification recalled in Theorem FTT]
for every irreducible tempered H9, module o and every v € V]\YI’J‘ such that v is
dominant, i.e., (a,v) > 0 for all « € II \ II;, the standard parabolically induced
module

X(M, O'Q,V) =H ®mu,, (UO ®(CU), (535)
has a unique irreducible quotient L(M, oo, v).

The relation with the geometric classification is as follows. The tempered H9,-
module o is parameterized by a triple (sa,enr,¥ar). Here sy € (Vif)e, em
is a nilpotent element in the corresponding Levi subalgebra m C g and ¥,/ is a
representation of Ays(sar, enr). Set

s=sy+veVe=h, e=ey.
Since v commutes with sy, and e = ep, Ag(s,e) = Ag(sa,enr). The embed-
ding Apyr(spen) — Ac(sm,enm) = Ag(s,e) induces a surjection Ag(s,e) —
Anr(sar,enr), and let ¢ the pull-back of ¥p. Then
X(M,o0,v) = X(s,e,9) and L(M,0q,v) = L(s, e, ). (5.3.6)

Thus, we may speak of the lowest W-types of X (M, oq,v) (and of L(M,oq,v).
Denote by LWT (M, o) the set of lowest W-types of X (M,o,v). Since Ag(s,e),
s = spr + v does not change for all dominant v, this set does not change with v,
hence the notation. Then Theorem E3.2(1) implies that L(M, oo, v) contains all
the W-types in LWT (M, o¢) with full multiplicity.
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Moreover, let po be the unique lowest Wy, -type of o¢. For every p € LWT (M, oy),
we have

Homyy [p, X (M, 09, v)] = Homw (ar [lw (ar), o0] = Homw (an [lw (ar), f1o]-
(5.3.7)
The form ( , )y, can be normalized so that it is positive on the po-isotypic com-
ponent. Then Theorem [5.2.1] implies the following corollary.

Corollary 5.3.3. The e-signature on the lowest W —types of the standard module
X (M, o00,v) is given by Theorem [5.21] for all dominant v. In particular, the e-
form on L(M,0g,v) can be normalized so that the signature is positive definite on
all lowest W -types.

Remark 5.3.4. Suppose L = L(M, 0, v) also carries a *-invariant hermitian form.
Since v is real, this is the case precisely when §(M) = M and wov = —v. (We
have L(M,oq,v)° = L(6(M),00,6(v)).) As in section Bl in order to compare -
signatures with e-signatures, we need first to choose an isomorphism Ti c L9 — L.
It is an empirical fact that always L has one lowest W-type that appears with
multiplicity 1, and we normalize 7'2 to be +1 on the isotypic space of this lowest
W-type.

From Corollary and Lemma B1.2] we see that the *-signature on each
isotypic space L(u) of a lowest W-type p of L(M,o00,v) is also independent of
(dominant) v. Moreover, this signature is given by the action of t,, o 72 on L(u).
In particular, if wq is central in W (so 6 = 1) or if dim L(p) = 1, the x-form can be
normalized so that the x-signature on L(u) equals

(—1)"09 dim L(p),

where h(p) is the lowest degree in which g occurs in harmonic polynomials on V.

In fact, when the root system is simple, the only case when there exists a lowest
W-type u such that dim L(u) > 1 is as follows. The root system is of type FEg
and the standard module is X (M, og,v), where M is of type Dy and oy is the
subregular discrete series of Dy4. In Theorem [5.3.2] this corresponds to a nilpotent
element e of type Dy(a1) in Eg, whose centralizer has component group A(e) = Ss.
The standard module X (M, 0g, ) has three lowest W-types denoted 805, 905, and
20, with multiplicities 1, 2, and 1, respectively. One can compute the *-form on the
two-dimensional isotypic component of 90, and find that the signature is (1, —1),

cf. [Ci2, page 458].

6. JANTZEN FILTRATION AND HERMITIAN KAZHDAN-LUSZTIG POLYNOMIALS

6.1. Jantzen filtration. We follow [Vo| section 3]. Let E be a complex vector
space endowed with an analytic family (, ); of hermitian forms, such that ( , ),
are nondegenerate for ¢ # tg, close to 9. The Jantzen filtration of £ ([Jal) is a
filtration of vector subspaces

E=FEyDFE,DFEy, D --DFEyNy=0,

defined as follows. For every n > 0, x € F is in FE,, if and only if there exists € > 0
and a polynomial function f, : (to — ¢, to + €) — E with the properties:

(i) fz(tO) =T

(ii) (fz(t),y): vanishes at least to order n at t = to.
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Set

(9" = T ———— (£, (1), £, (0)s (6.1.1)

t—to (t — to)"

this definition is independent of f, f,.

Theorem 6.1.1 (Jantzen [Jal 5.1], cf. Vogan [Vol Theorem 3.2, Corollary 3.6]).
The pairing { , )" is a hermitian form on E, with radical Fy11. In particular,
(a) Rad< y >0 = El,’
(b) (, )" is a nondegenerate hermitian form on E, /Ey,41.
Suppose (pn,qn) is the signature of ( , )" on En/Ent1. If (pT,q") is the signature
of {, )¢ fort >ty and (p~,q~) is the signature of { , )¢ fort < to, then

(C) er =p + En oddPn — En odd In and q+ =q + En odd dn — Zn odd Pn-

Let X = X (M, o0,v) be a standard module as in Theorem LTl with Langlands
quotient X = L(M,o,v). Consider a polynomial in ¢ family of parameters v, such
that vy = v and X; = X(M,0,14) is irreducible for ¢ # 1 in some small interval
centered at 1. Suppose o is a tempered module with real central character, and
v is real. By Corollary B.1.3] every X; admits a e-invariant nondegenerate form
(', )t that we assume, as we may by Corollary B33 to be positive definite the
lowest W-types of X;. Notice that the W-structure and lowest W-types of X; are
independent on t. Therefore, we may think of the modules X; as being realized on
the same vector space E with the analytic family of hermitian forms (, )., and
the previous discussion applies. We have the Jantzen filtration of X:

X=XoDX1D2XoD---DXny=0, (612)

with the following properties, cf. [Vol Theorem 3.8]:

(a) the filtration (622 is a filtration by H-modules;

(b) Xo/X; is the Langlands quotient X;

(¢) The form (, )2 on X,,/X,4+1 is nondegenerate and e-invariant. Let (py, ¢n)
be its signature. If (p*,¢*) is the signature of the ( , )e for t < 1,
respectively ¢ > 1, then p™ = p= + > 14Pn — 2o oqa@n and ¢t =
q + Zn odd In — Zn odd Pn-

6.2. Kazhdan-Lusztig polynomials. We recalled in Theorem [5.3.2] the geomet-
ric classification of standard and simple H-modules. We record now the known
results about the composition factors of a standard module. Retain the notation
from section[5.3l In particular, let s € b be the semisimple parameter, and let lrrgH
denote the irreducible H-modules with central character W - s. Denote

G(s)={geG:Ad(g)s =s}, gi(s)={x€g:|[s,a] =2z} (6.2.1)

It is well-known that G(s) acts on g1(s) with finitely many orbits. Let C(s) denote
the set of orbits. Theorem [5.3.2] can be rephrased as saying that there is a natural
bijection:

IrrsH > {(O, L) : O € C(s), L irr. local system of Springer type supported on O}.

(6.2.2)
Let L(O, L) denote the irreducible H-module and X (O, £) the corresponding stan-
dard module. In this setting, the Kazhdan-Lusztig conjectures take the following
form.
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Theorem 6.2.1 ([Lu2l Theorem 8.5]). In the Grothendieck group of H-modules,
X(0,L) = Z Po,cy 0, (1) L(O', L),
(0',L")

where

Pio.c)(0.en(@) = Y_IC: H¥IC(D', L)|o] - ¢'; (6.2.3)
i>0
here H*IC( ) denote the cohomology groups of the intersection cohomology complex.

The polynomials Po r) (or,zy(q) can be computed using the algorithms in [Lu3].
In fact, [Lu3] computes the related v-polynomials

im O’ —dim 1
= ’Ud o d o . P(O,ﬁ),((’)’,ﬁ’) <v—2> . (624)

These polynomials enter in the Jantzen conjecture for H.

C(0,L),(0,L") (v)

Conjecture 6.2.2 (Jantzen conjecture). Let Xo D X1 D ... be the Jantzen filtra-
tion (6L2) of X = X(O, L).

(a) For every n >0, the H-module X,,/ X, 41 is semisimple.

(b) The multiplicity of the irreducible module L(O, L) in Xy /Xnt+1 equals the
coefficient of v™ in the polynomial co r) o' cy(v) defined in (6.2.4]), or
equivalently,

(b’)

dim O’ —dim O—n
Po.c).0.cn(@) =Y mo.c)0,cn(n) g > ) (6.2.5)
n>0
where Mo, ), (or,cry(n) denotes the multiplicity of the irreducible module
LO, L) in X,/ X4

6.3. Hermitian Kazhdan-Lusztig polynomials. As in the previous subsection,
let X = X(0O, £) be a standard module with Jantzen filtration X = X9 D X7 D ....
Suppose in addition that s is real, i.e., s € hg.

Let

ng = @ Xn/Xn—i-l
n>0
denote the associated graded H-module. In section [6] we have defined a nondegen-
erate e-invariant form ( , )7 on each X,,/X,+1. Let { , )& be the direct sum form
®n20< , )2 on grX.

By Corollary[5.3.3] every irreducible module L(Q’, £') has a canonical e-invariant
form (| >£O/’£/) which is positive definite on every lowest W-type. Fix such a form
for every L(O’,L"). Assuming the truth of Conjecture [.2.2)(a), the form ( , )2 on
X,/ Xn41 induces a nondegenerate form on the isotypic component of L(O’, L') in
Xp/Xnt1 whose signature is

(p(o,ﬁ),(ouy) (n), q(0,0),(0",L7) (n));
Of course, p(o)ﬁ))(o/)ﬁ/)(n) —+ q(@7£)7(0/)£/)(n) = m(07£)7(0/)y)(n). Wlth thlS nota-
tion, we have

n O’,Ll

(Xn/Xni1,()2) = Y Bo,0 (0 (W) =t(0,2),0r,en () (E(O' £), )47
(07,L")

(6.3.1)

).
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Definition 6.3.1. Analogous to [ALTV], define the hermitian Kazhdan-Lusztig
polynomials

dim O/ —dimO—n
- 2z

Plory0ren(@) =Y (00.0).(0.c/)(n) = qo,2),(0,1 (1)) @ . (6.3.2)
n>0
From the definition, it is clear that
o'.c'
(ng7< ) >i() = Z P(%,L)v(o’,ﬂ’)(l) (L(OI7£/)7< ) >£ )) : (633)

(07,L7)
The question is to compute the polynomials P(%)L))(O,)L,)(q). We make the fol-
lowing conjecture, motivated by the main theorem of [ALTV].

Conjecture 6.3.2. For every (O, L), there exists an orientation number (O, L) €
{£1}, such that

Plo.ry 0r.cn(@) = (0, L)e(O', L") Pio .00, (—4)-

In the rest of the section, we present some examples in support of this conjec-
ture and determine the explicit form of the orientation number in some cases. In
particular, we prove Conjecture in the case of regular central character, see
Proposition

6.4. Regular central character. Let H be a graded Hecke algebra with param-
eter function k. Recall the minimal principal series X (v) with real parameter
v € VY. Suppose v is dominant, i.e., (a,v) > 0 for all @« € RT. A basis of X (v) is
given by the A-weight vectors {R,®@1, }.ew from (B3.4), and every A-weight space
has multiplicity 1. In particular, this means that every irreducible subquotient of
X (v) occurs with multiplicity 1.

If we normalize the form (, ) on X (v) so that

<R1 & ]luuRl & ]l-u> = 17
by B33), we have

(ﬂ,V) - kﬁ
5>(},13<0 (Bv V) + kg

In particular, one gets the following well-known result:

Lemma 6.4.1. If v is dominant, X (v) is reducible if and only if there exists § > 0
such that (B,v) = kg.

Moreover, ([G4.T]) allows us to determine easily the levels of the Jantzen filtration
of X(v). For every x € W, set

T(x,v) ={8>0:26 <0and (8,v) = ksg}. (6.4.2)
Lemma 6.4.2. Suppose v is dominant. The n-th level in the Jantzen filtration
(E1.2) of X(v) is
X(W)p = span{R, @ 1, : 7(x,v) > n},
where T(x,v) is as in (6.4.2).

Proof. This is immediate from (G4.1]), since the order of zero of (R, ® 1,, R, ®
1,)e = 7(x,v) and the form ( , ), is diagonal in the basis {R, @ 1,}. O
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6.5. Now suppose that the parameter function for the Hecke algebra is constant
k = 1. We analyze first the case v = p". Consider the one-parameter family X (1),
vy = tpY, t close to 1. For every positive root 3, the positive integer (3, p") is the
height of 3. We have (8, p¥) = 1 if and only if 3 is a simple root. Then

t—1\7™" t(8,p¥) — 1
(Re @1y, Ry ®1L,,)0 = (—) 11 M50 ) =1 oy (65.)
t+1 t(B,pV)+1
B>0,23<0,(8,pV)>1

where

7o(2) = {a simple root : zav < 0}. (6.5.2)
This implies that the n-th level of the associated graded of the Jantzen filtration
at p¥ is given by

X0/ Xnt1 =span{R, @ 1 ,v : 1o(x) = n}, (6.5.3)

and n ranges from 0 to |II|, the number of simple roots. The classification of
simple H-modules with central character p is well-known: there are 2/ simple
H-modules, one for each subset of the simple roots, and each one occurs with multi-
plicity 1 in X (p¥). Formula (G.5.])) implies that each irreducible module contributes
+1 to the e-form in the level of X (p") where it occurs.

One can analyze similarly the Jantzen filtration at p for every standard module.
Notice that the standard modules at p¥ are precisely of the form Indf L(St®C,,),
where vy = p¥ — pY.

This is consistent with the geometric picture at pV. There are 2/ orbits of G (p¥)
on g1(p), each orbit is of the form G,e;C* - X, for a unique J C II; here X, denote
root vectors for o € II. In particular, the closure relations of orbits coincide with
the inclusion of subsets J, and the KL polynomials are Py j/(q) =1 if J C J’, and
0 otherwise. In conclusion, at central character p¥, we have

1, JcJ,

) (6.5.4)
0, otherwise.

P}J’ (¢) =Py (9 = {

6.6. Now suppose that s is an arbitrary regular dominant central character. The
structure of the composition series at s reduces to a parabolic subalgebra as follows.
Let
As;={B€R":(B,5) =1}

Theorem 5.3 2 implies in this case that the simple H-modules with central character
s are in one-to-one correspondence with G(s) = H-orbits on gi1(s) = {z € g :
[s,x] = x} = span{zg : B € Ag}, where x3 is a root vector for 5. There exists
w € W such that wAg C II, i.e., a subset of simple roots, so denote wAg = Iy,
for some Levi subgroup M.

Set ' = w™ls. Then s’ = py; + v, where (a,v) = 0 for all a € Il It is
equivalent to determine G(s") = H-orbits on g;(s) = span{x, : a € s}, but this
reduces the problem to thecase of composition series at py, in Hp;. Thus the orbits
are in one-to-one correspondence with

{JCly} e > CFaq = OM()).
acJ

Since every OM(.J) has smooth closure, as before, all KL polynomials are 0 or 1
depending on inclusion J' C J.
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Fix J C IIps. Suppose that we have a standard module X (J,vy) = Indgj (Sty®
C,,) with Langlands quotient L(.J,vs). We want to know the level and orientation
number of L(J,v;). Since all A-weights have multiplicity one, L(.J, ) is uniquely
determined by the A-weight

AL(Jy) = =Py + Vi

here v; is dominant with respect to IT\ J. Inside the minimal principal series X (s),
the A-weight vector with weight —p; + v is of the form R, ® 1. Since R, ® 1
has A-weight xs, it follows that

s = )\L(J,VJ)' (661)
By (6-41]), the form on R, ® 14 is

H (ﬁv S) —1
B8>0,z8<0 (B,s) +1
The contribution of R, ® 15 to the hermitian form in the associated graded module
for X (s) is obtained by replacing s with st, 0 < ¢ < 1, and taking lim;_,; . The sign
is

e(L(J,vg)) := (—=1)?@ | where £o(z) = #{8 >0:0 < (8,5) <1 and 2 < 0},
(6.6.2)
or equivalently,

lo(x) =#{B>0:28 <0and 0 < (26, Ar(sp,)) < 1} (6.6.3)

In order to establish the truth of Conjecture at regular central character,
it remains to verify that the normalization of e-form on L(J,v;) is given by the
requirement that R, ® 1l be positive. This is indeed the case as follows. The
canonical e-form on a simple H-module is normalized so that it is positive definite
on all W-types. For L(J,v;) this is equivalent with the normalization which as
vy — oo has the form positive definite on all of L(J,v;). But by Corollary B10.3
this is the normalization where the A-weight vector corresponding to the leading
weight A\p(j.,) = —py + v is positive. Thus:

Proposition 6.6.1. Conjecture[6.3.2 holds in the case of reqular central character
with the orientation numbers given by (0.0.2).

6.7. Subregular orbit in Bs. Consider the semisimple element s = (1,0) in type
B,. There are three G(s)-orbits in g (s), which we denote by 0, Ay, and A; (the
notation is compatible with the labeling of their G-saturations). The orbits have
dimension 0, 2, and 3, respectively, and the closure ordering is the obvious total
order. The local systems that enter are trivial for 0 and A;, so we drop them
from notation, and there are two local systems Ly and Lggn for /Nll. The matrix of
polynomials P, computed in [Cil] using the algorithms of Lusztig [Lu3], is in Table
0.7

We only need to compute the Jantzen filtration and signatures for X (A4;) and
X (0). For this, we do a computation with the intertwining operators and the W-
structure of standard modules. There are 5 W-types, with the notation in terms
of bipartitions as in [Ca]. The W-structure of the standard and the irreducible
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TABLE 1. KL polynomials: By, s = (1,0).

Dim. 0] 2 3
Orbits 0 Al (Al, Etriv) (Al N Acsgn)
0 1] 1 1 q
Ay 01 1 0
(A, L) O] 0 1 0
(A1,Lsgn) || 0] O 0 1

modules at s = (1,0) is as follows (the * indicates the lowest W-type):

X(0) = C[W(B2)], L(0)=2x0"+1x1;

X(A) =11x0+1x1+0x 11, L(A;) = 11 x 0;

X (A1, Liiy) = L(A1, L) = 1 x 15 40 x 11;

X (A, Logn) = L(A1, Logn) = 0 x 2*.

For the case A, we consider the induced module X (Ay,(=1/2+v,1/2+v)) =
Indff (St® C,), v > 0, whose central character is (—1/2 + v,1/2 4+ v). A direct
calculation with the intertwining operator shows that at v = 1/2, the Jantzen
filtration is given by L(A;) at level 0, and L(A1, Luiy) at level 1. The signature of
the e-form on each W-type for 0 < v < 1/2 is given by the parity of the lowest

harmonic degree, and thus it is 4+ for 11 x 0 and — for 1 x 1. The normalization of
the e-forms implies then that at v = 1/2, the forms on level 1 are related by:

(X(A1)15< ’ >£) = (L(Zl7£triv)7< 5 >£gl)£’m\/)), (672)

(6.7.1)

3—2—1

and thus P(};h) (Al,ﬁmv)( q)=q¢ = =1
For the case 0, we consider the minimal principal series X (v1,12), 0 = v < vy <

1. The levels of the Jantzen filtration at (1, 0) are given by the order of zeros of the
intertwining operator as follows: L(0) in level 0, L(/Nll,ﬁsgn) at level 1, L(A;) at
level 2, and L(ﬁl, Liiv) at level 3. Using again that the signature of W-types for
0 <17 < 1is given by the parity of the lowest harmonic degree, we see that forms

on levels 1-3 are related by:

(X(0)1/X (0), (, )2) = —(L( A, Loga), { , Yy,
(X(0)2/X(0)s, ( , )2) = (L(A1), {, Y, (6.7.3)
(X(0)3,(, )3) = (L(Ay, Luw),  , Y5y,
Thus, P(%),(Al) —q¢ = =1, P(}Z)) (Ar\Lo) ¢ =1, and P(o) (A1 Log)
(-1)g" = =—q.

In conclusion, for the subregular s in Bs, P&D,L),(O’L’)(q) = Po,r),0 ) (=q)-

6.8. Subregular orbit in G>. We choose simple roots for Go: ag = %(2, -1,-1)
and oy = (—1,1,0) and fundamental coweights wy = (1,1, —2) and wy = (0,1, —1).
Let s1 and so be the simple reflections corresponding to ag and «g, respectively.
There are 6 irreducible Weyl group representations, which we label as 1; (the
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trivial), 12 (the sign), 13 (81 = 1, So = —1), 14 (81 = —1, S92 = 1), 21 (the
reflection representation), and 22 = 27 ® 13.

Let s be one half of a neutral element for the subregular nilpotent orbit in G.
In our coordinates, we choose s = (0,1, —1).

There are four G(s)-orbits on gy (s), labeled 0, A, A5, G2(ay), of dimensions 0,
2, 3, and 4, respectively. The local systems that enter for 0, A}, A are trivial, but
there are two local systems of Springer type for Ga(a1), that we denote Ly and
Lyefi. The matrix of polynomials P, computed in [Ci], is in Table

TABLE 2. KL polynomials: G5, subregular s.

Dim. 0] 2 3 4 4
Orbits 0 All Ai (GQ (al), Etriv) (GQ (al), Lreﬂ)

0 I]1 [qg+1 1 q

Al 0] 1 1 1 0

A3 0] 0 1 1 1

(GQ (al), Etriv) 0 0 0 1 0

(GQ (al), Lreﬂ) 0 0 0 0 1

The W-structure of the standard and the irreducible modules at s = (0,1, —1)
is as follows (the * indicates the lowest W-type):

X(0) = C[W(G2)], L(0) = 1} +24;
X(A) =15+21 42+ 1y, L(Al) = 12;
X(A}) =25 +21+ 14 + Lo, L(AS) = 23; (6.8.1)

X(Ga(ar), Luiv) = L(Ga(a1), Luiv) = 21 + 123
X(Ga(ar), Leen) = L(Ga(ar), Lren) = 17.

For the case Aj, we consider the standard induced module Indiif (St® C,),

of central character —%(2, —1,-1) + v(0,1,—1). The relevant reducibility point is
V= % We can analyze the Jantzen filtration and signature of the forms in the same
way as for By and find:

(X(ADo/X (A1, (,)9) = (L(AD), (, )&,

(X(AD1, (5 02) = (E(Galan), L), {5 W7 E) 4 (L(Galar), Lran), €, )7 5),
(6.8.2)
h _ ph _azs-1

and 50 Pas) (Ga(ar), £ (@) = FPlap) (@a(an). e (D = €7 = 1

For the case A!, we consider the standard induced module Indil2 (St® C,), of

1

central character —%(—17 1,0)+v(1,1,—2). The relevant reducibility point is v = %,
where we find:

(X(ADo/X (A1, )2) = (LA, (, )§™));
(X(AD1/X(AD)2, () = (L(A9), ()&M), (6.8.3)
(X(AD)2,{ )2) = (L(Gala), Lu), { , JE2) ),
and so and so P" ) .

. (AD), (A7)
and P(All))(GZ(al))L"reﬂ)(q) =0.

4t — h — _
(@) =q¢ = =1, andso P(All).,(G2(a1)-,£mv)(q) =q¢ z =1,
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Finally, we have the case 0, where we consider the minimal principal series with
central character (0,1, —1). The relevant reducibility point is v = 1. We compute
the Janzten filtration and the signature of the forms using the normalized long
intertwining operator on W-types. The only case where more care is needed is the
W-type 22 appearing with multiplicity 2 which corresponds to the factor L(A$). The

1_)(1-v)*
E§+V§E1+u§4
In particular, this implies that one copy of 22 (and hence of

2 x 2 matrix giving the operator on this isotypic space has determinant
(1—v)(14312)
(1+v)3 (5+v) °
L(A$)) occurs in level 1 of the Jantzen filtration and the other copy in level 3. For
the signatures, we analyze the eigenvalues. We find the following structure of the
filtration together with signatures:

and trace

(X(0)0/X(0)1.(, )9) = (L(0), {, )&);

(X(0)1/X(0)2, {, )b) = —(L(AD). (, )&

(X(0)2/X(0)3, ( )2) = (E(AD), ¢, ™) = (L(Galar), Len), (, W= Em),

(X(0)3/X ()4, {, )3) = (L(AF), {, )&V

(X(0)a, (, )3) = (L(Galar), Lunv), {, T2 Fum)y,
(6.8.4)

The corresponding hermitian KL polynomials are: P(ho),(All) = q27372 =1, P(%),(Ai) =
(_1)(12:5: 0 =10 Pl e =4 7 = L Py Gatantm =
(g =" =—¢

In conclusion, for the subregular s in Go, P(}b o) (O/L,)(q) = Po,c), o) (—q),
and Conjecture [6.3.2] is verified in this case.

7. BERNSTEIN’S PROJECTIVE MODULES

In this section, we explain how the e-form for affine Hecke algebras appears
naturally when the Iwahori-Hecke algebras are viewed as endomorphism algebras
of the Bernstein projective modules [Be], see also [He]. The notation in this section
is independent of the previous sections.

7.1. Sesquilinear Forms. Let V be a complex vector space,
vh.= {)\ :V—C : )\(alvl + ag’l)g) = al)\(vl) +62)\(v2)}.

A sesquilinear form is a bilinear form (-,-) which is linear in the first variable,
conjugate linear in the second variable. This is the same as a complex linear map
\:V — V. The relation is

(v, wyx = A(v)(w).

Such a form is called nondegenerate if A is injective. To any sesquilinear form A
there is associated \* : V. C (VM) — VR N(v)(w) := AMw)(v). The form is
called symmetric, if A = A". A symmetric form is an inner product if A(v)(v) > 0,
with equality if and only if v = 0.
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Let G be a reductive p-adic group. If (m,V) is a representation of G, then
(7", V") is the representation defined as

(7" (9)A) (v) == A(=(g~ o).

7.2. The projective P. Let M be a Levi subgroup of G. Denote by M, the
intersection of the kernels of all the unramified characters of M. Let o be a relative

supercuspidal representation of M, oy a supercuspidal constituent of & |, .
Define

(U, V, = Ind%o Uo)c induction with compact support,
(I, = Ind% Vo) normalized induction.

A typical element of o i8 Oz, With m € M/My and v € V,,,. This is the delta-
function supported on the coset mM, taking constant value v.

A typical element of P is given by dv2p,s,,,, , Where U € G/P is a neighborhood
of the identity, the function satisfies the appropriate transformation law under P
on the right, and the value at x is d,,n1,,0-

If v € Homg[P,P], then ¢" € Homg[P", P"]. But P admits a G—invariant
positive definite hermitian form, so while P # P, nevertheless there is an inclusion
t: P — PP More precisely, if P = Indg o, then the hermitian dual P" is naturally
isomorphic to Ind% o”. If A : G — V! is such that A(zp) = o"(p~")A(g), and
f: G — V is such that f(gp) = o(p~!)f(z), then the pairing is

O fyi= [ M@
G/P
When ¢ is unitary (or just has a nondegenerate form so that o C "), we get
P C Ph via

geEP =N, P, )\g(f)z/ (f(z),g(x))dx for f e P.
G/P

7.3. Inner Product. We recall two classical results.

Theorem 7.3.1 (Frobenius reciprocity, [Casl, Theorem 3.2.4]).
Homg[V, P] = Hom s [V, 065

Theorem 7.3.2 (Second adjointness, [Bel, Theorem 20]).

Homg[P, V] = Homw[6-" 0, Viy] & Homuy, [09, 5" Vg

Let P be the module induced from o from the opposite parabolic P := MN.
The (second) adjointness theorem gives

Homg [P, P] = Homp [6p' 0, Pw] = Homay, [00, 05 ' P,

HOmg[ﬁ, fP] = HomM[(S%la, ':PN] = HOHl]w0 [0'0, 513?]\[].

Assume P and P are conjugate, and let wy € W be the shortest Weyl group element
taking P to P, stabilizing M and taking N to N. Assume also that there is an
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isomorphism 79 : (00, Vs,) — (wo © 00, Vs,). Extend it to 7 : V, — V, by
T(OmMo,v) = Ouwg(m)Mo,r(v)- Write T for the isomorphism

7P — P,

7(f)(x) = 7(f (zwo)).
Thus given ®, ¥ € Homg [P, P], then ® := ® o 7 € Homg[P, P], and they give rise

to _
¢ S }IOIH]\/[0 [0’0, Tﬁ]

¢ S HOIII]W(J [Uo, TN]

According to Casselmann [Cas, Proposition 4.2.3], there is a nondegenerate pairing
(, )y between Py and Py. Given vy, vy € V), we can form

(v1,v2) 0,5 = <¢(U1)71/)(U2)>N,N-
This pairing is invariant and sesquilinear, so there is a constant me, ¢ such that
(1, v2) 0,0 = Ma,w(V1,V2) - (7.3.1)
We define a sesquilinear pairing

(@, V) :=ma,v. (7.3.2)

7.4. We make the form (T3.2]) precise. Let K; be an open compact subgroup with
an Iwasawa decomposition compatible with P, i.e. Ky = K, - K? - K [ , invariant
by wo -
K —
Let z.anO € V(_joz s ind €T = 5M0,m0,y = 5M0,y0- Then 5K;F,m € P and 5K;P,y S
P. The isomorphism 7 takes 6K}F,z to (5K[+wOP)T($). So

(@0, Y0)o,w = (P (O + wopyra)) s N (O~ py) )7 v = 0,0(%0, Y0) o -

Here 5ﬁ and Wy are the projection maps onto Px and Py respectively.

Let A € A := Z(M) be such that it is regular on N and contracts it. Let a(A)
and a(—A) be the K, double cosets of A and its inverse.

By Casselman [Cas| section 4] and Bernstein [Be, chapter I11.3],

Ppa(—A), e o :P%?’
Ppa(r),Ke o 93]152’7
because a(A) contracts K,”. We conclude that
Sk,po € PHUAKeE, s0 (0, pa) € PUNKe = KT
SkywoPirgy € PXOHKE S50 W(0k,uy piray) € PEAIKE 2 PEL

Proposition 7.4.1. With the notation as in (7-3.1), me v = Tw,o. In other words,
the sesquilinear form (7.3-2) is hermitian.

Proof. Assume 19 # —Id, or else use —7y. Thus there is zy such that mpxg = zg.
Let fuw, := 0kjwok,- Then fi = fu,, and

H(fwo)(SKlwoP,:E - 5K[P,:E;

H(fwo)aKzP,z = 5K@woP,m-
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Then

mao,w < 2o, 20 > =< P(0x,Px) V(0K ,woPz) >=
=< (I)( (fwo)5Kewon) (5Kewon) >=
=< ®(0x wop,x), VIL(f 0)5K@wgPac) >=
=< ®(0x,wopPz), Y(6r,Pa) >
=< V(0k,Pz), P(0K,wopz) > =

=My e < o, Ty > -

7.5. Fora € A, let ©, € Homg[P, P] be given by

Ga(éKggP,w) = 5K@gP,0a(x)u Ha(x) = ea(éml\fo,mo) = 5maM0,wo- (751)

Proposition 7.5.1.
<P, VoO,>=< P00,V >.

Proof. Thereis f, € g‘f(Kg\G/Kg) (namely 5]([@[(@) such that @a((sKepyx) = H(fa)((sKepyx).
Then use the fact that f* = f,-1 for a € AT dominant. O

7.6. Digression about the intertwining operator. Let J : P — P be given
by the formula

Jf(x):= /NTOf(xnwo) dn = /ﬁTQf(,T’LUQﬁ) dm. (7.6.1)

This should be considered as a formal expression. When you specialize to a value
v € A, the split part of the center of M, J will have poles.
Recall the inner product on P,

i fo) = /K (1 (R). falk) di

Proposition 7.6.1.
< Jf17f2 >=< f17Jf2 >

Proof.
< fi1,Jfa >= / < fl(k), /_Ton(kwoﬁ) dn > dk. (762)
Ko N
We can move wg and 7y to the other side:
< fi1,Jfa >= / < Tofl(k:wo),/ fa(km) dn > dk. (7.6.3)
Ko N
Write m = k(7) - n(7) - m(7). So

< fl, Jf2 >= / < Tofl(k’wo),‘/ﬁd(m(ﬁ)il)fg(kﬁ(ﬁ)) dn > dk =
(7.6.4)

/K / m))70.f1(kk(7) " two) dm, fa(k) > dk.
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Since () =7n-m(m)~! - n(@) "1, we conclude x(m)*

<f17Jf2>:

- / < /_ o (m(7))70 1 (e (T)m (R~ wo) d7, fa(k) > d =
Ko N

=n(m) -m@)-n'. So

(7.6.5)
:/ </_Tof1(kn(ﬁ)) dm, fo(k) > dk
Ko N

because o(m(m)) is conjugated by wp but then flipped back by 79, and then cancels
o(m(m)). Finally

Jfi = /NTofl(kn(ﬁ)wo) dn

1

follows from the fact that 7 — won(m)w, ~ is an isomorphism with trivial Jacobian.

O

7.7. Assume from now on that G is a split p-adic group. Let P = B = AN
be a Borel subgroup. Let K be the hyperspecial maximal compact subgroup,
and K1 C Z C Ky be an Iwahori subgroup. It has an Iwasawa decomposition
T =717 -Ap-I". Furthermore, G = KB = UZwB disjoint union where w € W.

We consider the case of the trivial representation of Ay := Ky N A, o9 = triv,
i.e, this is the case of representations with Z—fixed vectors. Let H = H(Z\G/Z) be
the Iwahori-Hecke algebra of compactly supported smooth Z-biinvariant functions
with convolution with respect to a Haar measure.

Proposition 7.7.1. In the Iwahori-spherical case, the algebra Hom[P, P] is natu-
rally isomorphic to the opposite algebra to H(Z\G/T).

Proof. Recall
Homg [P, P] 2 Homa, [0, Py = P20 = P,

The element ¢1 = 67-p5,,, 18 in PZ, and it generates P. So any ® € Homg[P, P)
is determined by its value on ¢;. Furthermore, ®(¢;) € PL.

Conversely, ¢ € Homa,[oo, Py = ?%“ =~ PT gives rise to ® € Homg|[P, P] by
the relation

(I)((SI*B,tSAO,n) = (b
The map
he M T(h)(67-B,5ay.)

is an isomorphism between H and PZ. Let hy € I be the element in H corresponding
to 1. Then if ®(0z-p5,,,) = ¢,

P[] = IL(hy)(0z-B,5a, 1)) = IL(he)R[67-B 5.4, 4] = TL(hy) -
Now let ¢1, ¢y € PL2. Then

(@1 0@2)(0z2-B.64y0) = P1{L(h, ) (02-B.54, 2 )] = (N ) R1[02-B .54, 4] =
= H(h¢2)n(h¢1)(6I’B,5Ao,n) = H(h¢1) : H(h¢2)(6I’B,5AO,]1)'
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Remark 7.7.2. The opposite algebra to the Iwahori-Hecke algebra is isomorphic
to itself, e.g.,

1 6—6-1
Toopp =10 OOPPT+(Q_1)1—9
is equivalent to
0-T=T-0""+( —1)ﬂ
- 1T

7.8. The operators J, are defined analogously to J for each simple root, integration
is along the root subgroup N,. The operators satisfy the formula analogous to[[.G.11
By specializing to v € A unramified, we can prove the following result. Define

1
F =q—1)——— .8.1
CEIUR—— (781)
and write F,, for F(O,).
Theorem 7.8.1.
T, := Jo — F,, € Homg[P, P]. (7.8.2)

T, and O, form a set of generators of Hom[P, P] and satisfy the defining relations
in the Bernstein-Lusztig presentation ([Lull) for the Iwahori-Hecke algebra.

Sketch of proof. Because the group is split, this reduces to a calculation in SL(2).
The operator J has a term which is a rational function in ©, with 1 — ©_, in the

denominator, and subtracting F,, removes the singularity.
O

Remark 7.8.2. For a classical p-adic group G and any Bernstein projective mod-
ule P, it is shown in [He] that a generalization of Theorem [Z.81] holds, namely,
Endg[P] is naturally isomorphic to an extended affine Hecke algebra with unequal
parameters.

Proposition 7.8.3. There is fo € H(K,\G/Ky) and 7o : 0 — o such that

< q)(aszoP-,I)v\IJ(TQ((SK[P-,YJ)) >=< q)(aszoP-,I)v\IJ(H(fa)(aKzP,Ta(y))) >
(7.8.3)

Proof. This follows from the formula of J, as an integral. We want To,(0x,p,y) =
H(fa)(0x, Py)-

w 0

For SL(2), let K; be the usual congruence subgroup. Let a := [O o1

] . Then
IB =71 B, and a ‘K;Ba’ =7~ B. Thus
H(a’_g)((SKEB,Ot) = 61'(1—@37(1(0‘ = H(él'a*el)é-ZB,a-

T, commutes with T1(6z,-¢7) and TI(a~%), and is computable on drp .. it can

be written as convolution with a Z—biinvariant function. The conclusion of the

calculation is that T, (dk, B, ) can be expressed as convolution with an element T, €

H(Z\G/ZI) and composition with a TI(a**). We can then argue as in Proposition
[C51l to conclude that

(D, VoT,)=(PoT,, 7). (7.8.4)

O

We summarize the results.



HERMITIAN FORMS FOR AFFINE HECKE ALGEBRAS 39

Theorem 7.8.4. In the case of Twahori fized vectors, unramified principal series,
‘H := Hom[P, P| inherits a natural star operation e from the unitary structure of P
satisfying

(P, VoR)y=(PoR*, U), & U REH.
In particular,

T =T, ©°=6.

[e3
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