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Yang's system of particles and 
Hecke algebras 

By G. J. HECKMAN and E. M. OPDAM* 

Summary 

The graded Hecke algebra has a simple realization as a certain algebra of 
operators acting on a space of smooth functions. This operator algebra arises 
from the study of the root system analogue of Yang's system of n particles 
on the real line with delta function potential. It turns out that the spectral 
problem for this generalization of Yang's system is related to the problem of 
finding the spherical tempered representations of the graded Hecke algebra. 
This observation turns out to be very useful for both these problems. Appli- 
cation of our technique to affine Hecke algebras yields a simple formula for the 
formal degree of the generic Iwahori spherical discrete series representations. 

1. Introduction 

Consider a finite-dimensional real vector space V equipped with an inner 
product (, ). For a E V a nonzero vector we denote by 

(1.1) ra(()= _-(, av) a forall R EV 

the orthogonal reflection in the mirror V, = { E V I ((, a) = O}. Here 
av = 2(a, a)-1a is the covector of a. A root system R in V will be a finite 
set of nonzero vectors (called roots) such that Ra n R = {?a} and r,(/3) E R 
for all a, ,3 E R. The reflections r, for a E R generate a real finite reflection 
group W = W(R) C O(V). It can be shown that each reflection in W is of the 
form r, for some a E R, and therefore each mirror of the finite reflection group 
W(R) is perpendicular to two opposite roots in R. Conversely, given a finite 
reflection group W in O(V) we can find root systems R such that W(R) = W. 
For example the set of unit normals of the mirrors of W is such a root system. 

*We would like to thank Cathy Kriloff for some interesting conversations about graded Hecke 
algebras and for pointing out a miscalculation in an earlier version of this paper. 
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The root systems occurring in semisimple Lie theory satisfy the additional 
requirement 

(1.2) (3, av) E Z for all a,3 E R, 

and we refer to such R as integral root systems. However, for the purpose of 
this paper the integrality condition is unnecessary. Sometimes we shall use the 
normalization 

(1.3) (a, a) = 2(= a = av) for all a E R, 

in which case we speak of R as a normalized root system. 
The symmetric algebra SV and the algebra PV of polynomial functions 

on V can be identified by means of the inner product on V. For p E PV 
we write 0(p) E SV, and think of 0(p) as a constant coefficient differential 
operator on V. For example A = 0(( -+ ((, ()) is the Laplace operator on V, 
and 0(a) = a0(( - ((, a)) is the derivative with respect to the root a E R. We 
denote the algebras of invariants for W SVW and PVW. 

Definition 1.1. A coupling parameter k = (k,)oER for R is a collection 
of real numbers k, for a E R with kwc = k, for all a E R, w E W. Let K 
denote the R-vector space of coupling parameters for R. The Yang system for 
R with coupling parameter k E K and spectral parameter A E Vc = C OR V 
is the boundary value problem on V given by the differential equations 

(1.4) 0(p)o(() = p(A)q(() for all p E PVW, ( E V\ U V, 

and the boundary conditions 

(1.5) 0(4+ Oa) = q$((-Oa) for all ( E VO, 

(1.6) 0(a)q(( + Oa) - 0(a)o(( - Oa) = 2kio(,), for all ( E V, 

along the arrangement of mirrors UV,. 

The Yang system is the completely integrable quantum system associated 
with a particle moving in V according to the Schr6dinger operator 

(1.7) -A + E k6((a,) 
oaER 

In the case of the symmetric group Sn acting on Rn by permutations of the 
coordinates, one recovers the n-particle problem in one dimension with a delta- 
function potential as was originally studied by Yang [35], [36]. Likewise the 
case of the hyper-octahedral group C2n x Sn acting on Rn by permutations and 
sign changes of the coordinates corresponds to the (2n + 1)-particle problem 
in one dimension with a delta-function potential, and being constrained by 
the symmetry x -* -x of R. Now the coupling between the middle particle 
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(located at the origin by the constraint) and one of the remaining 2n particles 
is allowed to be different from the coupling between two of the 2n remaining 
particles. For the exceptional root systems no such interpretation is available. 
Nevertheless, from a mathematical point of view, root systems are the natural 
framework for dealing with these kinds of problems. 

The connection with analogous problems in harmonic analysis on homo- 
geneous spaces of semisimple groups will become clear in Section 2. In fact 
one might think of the Yang system as the infinitesimal version of the problem 
of decomposing L2(G/K) as a representation space of G with G a semisimple 
group over a nonarchimedean local field F and K the compact open subgroup 
of the elements that are defined over the ring of integers in F. 

Let V+ be a connected component of V\UVI, and let R+ = {E E R 
(a, a) > 0 Vf E V+} be the corresponding set of positive roots. The choice of 
the chamber V+ is fixed once and for all. 

THEOREM 1.2. Introduce the a-function for the Yang system as the ra- 
tional function on the parameter space V x K (or its complexification) given 
by the formula 

(1.8) a(Ak) = 7(A1 ) + ka 
a~ER+ (A,a) 

Let Vc,reg = Vc\UVac denote the complement in Vc of the complexified mirrors. 
For (A,k) E Vc~reg x Kc let the function O(A,k;.) on V be given by 

(1.9) q5(A,k;,) = IWK-1 E a(wA,k)e(wAX) 
wEW 

for , in the closure of V+, and extended to all of V as a W-invariant function. 
Then the function 4, has an entire extension in the parameters (A,k) E Vc x Kc, 
which is again denoted by 0. This function q5(A,k;.) is a solution of (1.4), (1.5), 
and (1.6), and is normalized by q5(A,k;O) = 1. Moreover, each W-invariant 
solution of (1.4), (1.5), and (1.6) is a multiple of OL(A,k;.). 

The proof of this theorem is straightforward and will be given in Section 2. 
The explicit formula (1.9) is analogous to Macdonald's explicit formula for the 
elementary spherical function on a p-adic semisimple group [25]. In Section 2 
we also explain the role of the graded Hecke algebra for the Yang system. 
Once this role is clear it follows that the solution of the spectral problem for 
the Yang system for general wave functions is equivalent to the same problem 
for W-invariant wave functions together with some knowledge of the repre- 
sentation theory of graded Hecke algebras. The results of this section were 
inspired by work of Drinfeld [9]. It follows that for the rest of the paper we 
can (and will) restrict ourselves to the case of W-invariant wave functions. 
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THEOREM 1.3. Suppose the coupling parameter k e K is repulsive, i.e., 
k, > 0 for all a e R. For f E C??(Vreg)W there is the inversion formula 

(1. 10) f(s) = fA {< f 4}(A,k;()d/up(A) 
AEiV nEV 

with ,uE the Euclidean measure on V, and the Plancherel measure tip on iV 
given by 

(1 .1 1) du p (A) - (27r) dIE (Im(A)) dpp (A) a(Ajk)a(-Ajk) 

The proof of this theorem is sketched in Section 3. We use a contour shift 
argument due to Van den Ban and Schlichtkrull [2], which is an adaptation 
of the Helgason-Gangolli-Rozenberg argument in the proof of the Plancherel 
theorem for a Riemannian symmetric space G/K ([15], [11]). 

We now drop the condition that k is repulsive, and fix k E K arbitrary. 
The contour shift forces one to take certain residues into account in this situ- 
ation. In order to explain the outcome we need some more notation. 

For L c V an affine subspace we put RL = {Ca E R I (L, a) = constant}. If 
VL = span(RL) then it is clear that RL = R 0 VL is a parabolic root subsystem 
of R. 

Definition 1.4. An affine subspace L C V is defined to be residual (or 
more precisely (V, R, k)-residual) by induction on the codimension of L. The 
space V itself is by definition a residual subspace. The affine subspace L c V 
with positive codimension is called residual if there is a residual subspace 
M C V with M D L and dim(M) = dim(L) + 1 such that 

(1.12) #{?a E RL\RM I (L, a) = ka} > #{oa E RL\RM I (L, a) = 0} + 1. 

A residual point is also called a distinguished (or more precisely (V, R, k) dis- 
tinguished) point. 

We have used the terminology "residual" because these are the subspaces 
where residues (caused by the poles in the Plancherel measure tup given in 
(1.11)) can be picked up when we shift the contour. The word "distinguished" 
is used in accordance with the classification of nilpotent orbits in the semisimple 
Lie algebras as given in Carter's book [6, Ch 5]. Since w(RL) = RWL for all 
w E W it is clear that the notion of residual subspace is W-invariant. For 
each affine subspace L C V it is clear that codim(L) > rank(RL). However by 
induction on codim(L) it is easy to see that codim(L) = rank(RL) for L c V 
a residual subspace. If L c V is an affine subspace with codim(L) = rank(RL) 
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then L = CL + VL with CL the center of L determined by {CL} = L n VL and 
VL the orthogonal complement of VL in V. 

It is easy to see from the above definition that an affine subspace L C V 
is (V, R, k)-residual if and only if codim(L) = rank(RL) and CL E VL is a 
(VL, RL, kL)-distinguished point. Here kL = (k,)XERL is the restriction of 
the coupling parameter k to RL. The complete determination of the residual 
subspaces therefore boils down by induction on rank(R) to the determination 
of the distinguished points. In Section 4 we will carry out the classification 
of distinguished points for each of the irreducible root systems case by case. 
For R an integral root system and k, = ka for all a,:3 this classification is 
equivalent to the classification of distinguished nilpotent orbits in semisimple 
Lie algebras by their weighted Dynkin diagram. For R of type ADE we recover 
the tables in [6]. For R of type BFI (even) with 2 coupling parameters and for 
R of type HI (odd) with one coupling parameter these results seem to be new. 

There is a twofold reason for actually doing this classification. On the 
one hand the sum ZL in formula (1.14) below becomes more explicit for a 
given R. On the other hand we are able to prove several properties of resid- 
ual subspaces-easily stated in general root system terminology and crucially 
needed in the proof of the result below-only by verification using the classifi- 
cation. Although the concept of residual subspace is simple enough it seems 
that some understanding is lacking. 

THEOREM 1.5. Suppose the coupling parameter k is attractive, i.e. kc 
< 0 for all a E R. For each residual subspace L c V the residue formula 

(1.13) 1VL = (-27ri)codim(L)reSL(AP) 

defines a nonnegative analytic measure on CL ? iVL, and for f E CC??(Vreg)W, 

(1.14) f()=EZ +iVJ f( f)(-A k;77)duE(1) I q(A,k;)dvL(A) 
L CLiV VL 

with EL denoting the sum over all the residual subspaces. 

The meaning of the residue formula (1.13) will be explained in Section 3, 
where the theorem is also proved. It follows that the Plancherel measure vp = 
ZL VL is a W-invariant measure on V, with support contained in UL{CL+iVL}. 
However the support of vp can be strictly smaller. Because the measure vL 
is analytic with respect to the Euclidean measure on CL + iVL we have either 
vL = 0 or supp(VL) = CL + iVL. 

Definition 1.6. Let L C V be a residual subspace. The real affine subspace 
CL +iVL of V, is called spherical tempered (or more precisely (V, R, k)-spherical 
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tempered) if SUPP(VL) = CL + iVL. If in addition L = {CL} has dimension 0 
then CL is called a spherical cuspidal (or more precisely (V, R, k)-spherical 
cuspidal) point. 

Being a spherical tempered subspace is clearly W-invariant. Similarly as 
with the notion of residual subspace we have that CL + iVL is a (V, R, k)- 
spherical tempered subspace if and only if CL E VL is a (VL, RL, kL)-spherical 
cuspidal point. Therefore the determination of the spherical tempered spec- 
trum reduces by induction on the rank of R to the determination of the spheri- 
cal cuspidal points. In Section 3 we will show that A E V is a spherical cuspidal 
point if and only if ob(A, k;.) E L2(V, ,uE). 

THEOREM 1.7. If R is an integral root system and k, = k, < 0 for 
all a,43 E R then for each residual subspace L C V the subspace CL + iVL is 
spherical tempered. 

This theorem follows from the work of Kazhdan and Lusztig on the geo- 
metric classification of the irreducible representations of affine Hecke algebras 
[18]. For A E Vreg a distinguished point there is an easy criterion for A to be 
spherical cuspidal. However for singular A the actual residue computation can 
be very cumbersome. For all irreducible root systems with the exception of Bn 
and H4 we have been able to give the classification of the spherical cuspidal 
points. For type Bn we can only handle the case of regular and subregular 
points and for type H4 we left the singular distinguished points aside. All 
these results are given in Section 4. As a consequence of the tables it follows 
that Theorem 1.7 need no longer be true for R of type H or of type BFI (even) 
with two possibly distinct negative coupling parameters. 

Finally let us return to the case of the symmetric group acting on Rn 
by permutations of the coordinates. In this case with an attractive coupling 
parameter k < 0 the ZL in the inversion formula (1.14) reduces to a sum 
over the partitions of n. Each partition n = n1 + . + nr gives a separate 
r-dimensional contribution to the spectrum. The interpretation is that each 
group of nj particles is internally bounded and only its center of mass has 
unbounded motion. This outcome was already obtained by Yang as a result of 
his computation of the scattering matrix [36]. A mathematically more rigorous 
derivation of this result was given by Oxford in his thesis [30]. From the point 
of view of our paper the root system of type An-1 is particularly simple because 
singular distinguished points are absent. Of the other irreducible root systems 
only the dihedral type I2 (odd) and the icosahedral type H3 have the same 
simplifying feature. 
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2. Graded Hecke algebras 

We keep the notation of the introduction. For f E C' (V) a smooth 
function on V define I(cx)f E C'(V) for a E R by the formula 

r (W V) 
(2.1) 1(ax)f(( f(,ta)dt ( E V). 

Let W act on C?(V) as usual: wfQ() - f (w-'t). Let a, ..., an be the set of 
simple roots in R+, and ri, ... ., rn the corresponding set of simple reflections. 
Define operators Q(rj, k) on C'(V) by Q(rj, k) = rj + kjI(oaj) with kj = koj. 
An easy computation shows that Q(rj, k)2 - 1. 

THEOREM 2.1. If mij denotes the order of the element rirj C W then 

(2.2) Q(ri,k)Q(rj,k)... = Q(rj,k)Q(ri,k)... (i + j) 

with mij factors on both sides. 

In the case of the symmetric group this result goes back to Yang [35] 
and the general case is due to Gutkin [12]. An immediate consequence of the 
presentation of W as a Coxeter group on the generators rl,... , rn (see for 
example [4] or [16] for the necessary background on reflection groups) is that 
for w C W with w = ri1 . . . rip a reduced expression, the operator 

(2.3) Q(w, k) = Q(ri1, k)... Q(rip, k) 

on C' (V) is well defined independently of the choice of the reduced expression. 
The map w -- Q(w, k) defines a representation of W on C' (V). It is easily 
verified that 

(2.4) Q(ri, k)&(() - &(ri(())Q(ri, k) = ki(= l i 

for ri c W a simple reflection and c C V. 

Definition 2.2. The graded Hecke algebra 7((R+,k) is the C-vectorspace 
S(V) 0C [W] equipped with the unique associative algebra structure such that 
S(Vc) 0 1 S(Vc) and 1 0 C[W] -- C[W] have their usual algebra structure 
and 

(2.5) ri - ri(() rj = ki(, a') 

for ri C W a simple reflection and c C V. 

This algebra structure was introduced independently by Drinfeld as the 
degenerate Hecke algebra [9] and by Lusztig as the graded Hecke algebra [22]. 
In this paper we use the latter terminology. Observe that our notation differs 
slightly from the one in [29]: positive and negative roots have been inter- 
changed, and we use roots instead of coroots. 
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COROLLARY 2.3. The map w -- Q(w,k), ( -- 0(Q) defines a representa- 
tion of the graded Hecke algebra 7-(R+,k) on C?(V). 

To each f C C?(V) we associate a continuous function f+ c C(V) by 
means of the formula 

(2.6) f+(w 1;) = Q(w, k)f(;) 

for w c W and ( in the closure of V+. It is easy to see that f+ is smooth 
on Vreg and satisfies the boundary conditions (1.5) and (1.6) along the mirrors 
UVA. Moreover f -- f+ is an infective linear map. Define an inner product 
(, ,)k on C'(V) depending on k by 

(2.7) (f,9)k = (f+,g+) = EJ- Q(w, k)f(()Q(w, k)g ()duE d ) 

Here (,.) denotes the ordinary inner product for functions on V. This 
turns {ff C C?(V) I (fYf)k < oo} into a pre-Hilbert space. Consider the 
*-structure on NH(R+, k) defined by w* = w-1 for w C W and C* = -wo 
wo (() wo for ( C V and extended to all of NH(R+, k) as an anti-linear anti- 
involution. Here wo C W is the longest element. 

THEOREM 2.4. The representation of 7t(R+,k) on the space C(V,k) = 
{f C C??(V) I (&(p)f,0(p)f)k < oc for allp c P(V)} is (pre)unitary. 

Proof. As a consequence of the relations for the graded Hecke algebra (cf. 
[29, Prop. 1.1]) we have 

Q(w) &Q( ) Q(w-1) = O(w) - E k,(w;, aV)Q(ra) 
a>Ow- 1a<O 

and 

Q(wwo) &3(wof) Q(W0W-1) = &(W) - I, k (wf, aV)Q(ra). 
a>O,w-1 a>o 

Hence for (, C V and f, g c C' (V) we get 

Z{Q(w)a(O)f ()Q(w)0(0) + Q(w)f (rq)Q(wwo)0(wo0)Q(wo)g(r) } 
= Z{Q(w)a(()Q(w1l)Q(w)f(()Q(w)g(() 
w 

+ Q(w)f (?])Q(wwo)&(wof)Q(wow-1)Q(w)g(r,)} 

- Z{3(wO)(Q(w)f(rq))Q(w)g(rq) + Q(W)f(r00(wOW000 

W -E kcff(w(, aV)Q(rcew)f (r1)Q(w)g(r1) 
w ,>o,w-1a<0 
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-E E k, (w;, a'V)Q(w)f(rq)Q(ra w)g (r) 
W a>O'w-1a>O 

= 5a3(w() (Q(w)f(>i)Q(w)g(r,)), 
w 

using the substitution w -* raw in the second term to obtain the cancellation. 
Hence if ( c V and f, g c C(V, k) we get (writing hw(rq) = Q(w)f(r,)Q(w)g(rq)): 

(O(O)f, Y)k + (f, Q(Wo)&0(Wo0)Q(Wo)g)k = 1 (w() hw (q)dME (E) 
W 

= h (q) (w, v)duE d ) 
W O(V+) 

by Stokes theorem. Here v is an outer normal and UE the Euclidean volume 
element for the boundary &V+. In turn this can be rewritten as 

E E~vn hw(,q)(w,5 aih)d(hi(,)) 
i=1 V+ n v {-lo (r)W, lal)+ wt)(f'i } 

and the two terms cancel when we use the substitution w - riw in the second 
term (taking into account that Q(ri)h = h on Vai for h C C' (V)). LI 

The center of the graded Hecke algebra NH(R+, k) is equal to S(Vc)w. 
Therefore the space E(A) ={q c COO(V) I 0(p)> = p(A)q$ Vp C P(V)w} car- 
ries a natural representation of 7-(R+, k), which is called the eigenspace rep- 
resentation of 7-(R+, k) with spectral parameter (or central character) A c Vc. 
Note that E(A) = {Ep,1e" I p,1 is a W,1-harmonic polynomial V8u C WA} 
has dimension IWJ, and as a C[W]-module (by restriction of the module E(A) 
to the subalgebra C[W] of Nt(R+, k)) it is equivalent to the regular represen- 
tation of W. Indeed, this is obvious when k = 0 and A is regular and the 
representation theory of the finite group W only admits trivial deformations. 

For A C Vc regular one finds the expression 

(2.8) b(Aj k;) = I -1 E Q(w, k)(eA) -IWI-1 E (wA, k)ewA. 
w w 

Indeed, it is easy to check by induction on 1(w) that 

Q (W k) (eA) = { H (wA, a) + ke } ewA 
cw>Ow 1A <O a) 

modulo terms evA with v C W and v < w in the Bruhat ordering. Hence 
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the coefficient of ewoA in (2.8) is correct, and (2.8) follows by W-invariance in 
the spectral parameter. Note that the function (2.8) is the unique spherical 
vector in E(A) normalized to be 1 at the origin. The usual argument shows 
that the NH(R+, k)-module U(A, k) generated by the spherical vector (2.8) is 
the unique submodule of E(A). In particular, U(A, k) is irreducible. It will 
be shown in Section 3 (Corollary 3.8) that the spherical vector b(A, k; ) is in 
L2(V, HE) if and only if A is a spherical cuspidal point. Theorem 1.7 therefore 
states that if R is integral and the root labels are equal and negative then all 
distinguished points give rise to a spherical cuspidal module U(A, k) for the 
graded Hecke algebra. As was mentioned before, this is not true in general. 
One might conjecture that it is still true in general that distinguished points 
correspond to the existence of cuspidal subquotients of E(A) which are no 
longer necessarily spherical. Indeed, when A is regular it is not hard to show 
this using Rodier's theorem [33]. 

The content of Theorem 1.2 from the introduction is clear now. The 
above also justifies the statement made right after this theorem about the 
reduction of the case of general wave functions to the case of W-invariant ones. 
Indeed the additional knowledge required is the C[W]-type decomposition of 
the irreducible modules U(A, k). 

3. The contour shift 

Let V be a real Euclidean space of dimension n and V, its complexification. 
Let NH be a finite affine hyperplane arrangement in V. For each H c H choose 
(GaH, kH) C V x R such that H = f tC V I ((, aH) = kH}. Let L denote the 
lattice of intersections of elements from Nt, ordered by inclusion (and containing 
V itself). For L c L the center CL is defined as the unique point of L with 
minimal distance to 0 = cv. Write C = {CL I L c L}, and let VL be the linear 
subspace of V such that L = CL + VL. 

Let w be a rational n-form on V, with poles in UH, only. Fix an orientation 
on V (with an induced orientation on -y + iV for all y c V\UH), and consider 
the linear functional 

(3.1) Xv : PW(V,) -C, Xv,((F) =j Fw 

on the space PW(VC) of Paley-Wiener functions on V, (which are rapidly de- 
creasing in the imaginary direction and of exponential type in the real direc- 
tion). 
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LEMMA 3.1. There exists a unique collection of tempered distributions 
Xc (c C C) on iV such that 

(1) SUpp(X,) C UiVL (union over L C L with CL = C), 

(2) Xc has finite order, 

(3) Xv,_(F) = Ecc Xc (F(c+.)) for all F C PW(Vc). 

Proof. The existence follows by induction on n = dim(V). If nr= 0 there 
is nothing to prove. Suppose the lemma holds for dim(V) = n- 1. Choose a 
path in V from ay to the origin which intersects each H C 7( transversally in at 
most one point /YH* We may assume that -YH X H' for all H' C 1l, H' $ H if 
YH $8 0. When we pass a hyperplane H at -YH we apply Cauchy's theorem to 
obtain an extra contribution of the form (with d + 1 the pole order of w along 
H): 

d z XiyH (@aYH)jFIHC) 
j=O 

with 
X ,YH (G) = / G HV j 

for some rational (n - 1)-form wj on Hc which is regular outside UH/#,H 
(H' n H). The induction hypothesis takes care of these contributions. Fi- 
nally when we approach 0 along the path we have to take a boundary value 
of a meromorphic function with moderate growth. 

We now prove the uniqueness. Suppose we are given a collection of tem- 
pered distributions Yc (c c C) on iV such that 

(1) supp(Yc) C UiVL (union over L C L with CL = C), 

(2) Yc has finite order, 

(3) LEc Yc(F(c + )) = 0 for all F C PW(Vc). 

We show that Yc = 0 for c C C by induction on Icl. Assume c C C and Ycd = 0 
for all c' c C with Jc'j < Icl. For each L c L with CL $4 c and ICLI > Icl we 
can choose (/3L,IL) C V x R such that (L, /L) = IL and (c, /L) # IL. Hence 
the polynomial p(.) = H((' /L) -IL) with the product taken over all such L 
satisfies p(c + iA) $8 0 for all A C V and p(Lc) = 0 for all L C L with CL #8 c 
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and |CL! > Icl. Hence if N C N is large enough we get for all F c PW(V,): 

0= Z YjpNF(c?+*)) = Y (PNF(c +)) 

which in turn implies Yc = 0. L 

Remark 3.2. We call Xc (c C C) the local contribution at c for the contour 
shift of the integral (3.1). If U C V is a ball containing C and ay then it is clear 
that the above lemma also holds for functions F of the form F = rG with 
G C PW(Vc) and r rational and regular inside the tube U + iV. This can be 
used to calculate the local contribution Xc at c as follows. Let U be a small 
ball with center c such that H n U = 0 for H C Nt with c X H. Let -y' and O' 
be the images of ay and 0 under a central contraction with center c, such that 
A', O' C U. When we take paths from ay to Ay' and from 0 to O' and carry out 
the contour shift as in the above lemma we will get no contributions to Xc. 
Indeed, by choosing appropriate paths we only pass hyperplanes H E 'H with 
c X H. It follows that we can calculate Xc by applying Lemma 3.1 to 

F'w I+iv 

with respect to the new origin 0'. Here w = rw' with r regular inside U + iV 
and containing all poles of w outside U + iV, and F' = rF. The conclusion is 
that in order to calculate the local contribution Xc it suffices to consider the 
associated central arrangement {H Et I c C H} only. 

LEMMA 3.3. Let NH = {H} be a finite hyperplane arrangement in V, 
L= {L} its intersection lattice, and C = {CL I L c ?} the centers as before. 
Assume that for each L C L one has CL C H for some H C H if and only 
if L C H (in particular 0 = cv lies outside UH). If NH' = {H C NH | 
H separates ay and 0} and 'H" = N\N', then for c C C, Xc = 0 unless c C 

LHcE-( R+CH + ZHc7-(" R-CH. 

Proof. By the previous remark it suffices to consider the case that NH 
is a central arrangement with center c. Moreover we can also assume that 
nH = f{c}, and that w has the form 

dA 
(3.2) w f 11H ((A, a~H) - kH) dH 

for certain integers dH > 1. In fact we can assume that dH = 1 for all H, and 
UH is a divisor with normal crossings. Indeed, the differential form 

dA 
w - HH H= ((A, ) - kH j A'H)' 
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with 6 = (6H) c RH a perturbation parameter, satisfies 

lim / Fw=j Fw 
E?-O +iv a+iv 

for all F C PW(V,). For 6 generic this reduces (again by Remark 3.2) to the 
case that UH is a divisor with normal crossings and w a form with simple poles 
along X. 

Let D = {D} be the hyperplane arrangement centered at c dual to X: 
D C D X> c D and D IL for some L C L with dim(L) = 1. Again UD is a 
divisor with normal crossings. Both V\UH and V\UD consist of 2n connected 
components (called hyper-octants), which are open convex simplicial cones. 
These two sets of hyper-octants are in natural duality. Clearly the outcome 
of Xc as far as -a is concerned depends only on the hyper-octant Ci of V\UH 
containing ay (Cauchy). On the other hand if the origin moves in the hyper- 
octant C2 of V\UD containing 0 then the points CL move on UL without 
confluence. This implies that as far as 0 is concerned, Xc depends only on the 
hyper-octant C2 (Cauchy). Also observe that it follows from our assumptions 
that 0 actually lies in the complement of UD. 

We claim that the local contribution Xc = 0 unless Ci and C2 are antidual 
hyper-octants: c + A C C1 for some A E V X (A, [t) < 0 for all [11 C V with 
c + /1 C C2. Indeed if C0 and C2 are not antidual then there exists L C L with 
dim(L) = 1 and CL c C0\{c}. Let D C D with D IL and D' the hyperplane in 
V through CL parallel to D. Following the path [y, CL] U [CL, 0] the computation 
is reduced to one in the hyperplane D'. The only residues possibly picked up 
under the contour shift are those whose centers lie in D'. Hence Xc = 0. LI 

Remark 3.4. In the notation of the proof of the lemma suppose that 
ay, C1H) < kH for all H C 'H and that UH is a divisor with normal crossings such 

that nH = {c}. Number the elements of NH and assume the basis { aH I H C N} 
is positively oriented with respect to the fixed orientation on V. When we take 

for dA the positively oriented Euclidean n-form (det(caH, AH/)) AH dOaH, 

the outcome of the local contribution Xc in the case where Ci and C2 are 
antidual hyper-octants is given by (with w given by (3.2) and dH = 1 for all 
H): 

(3.3) Xc(F(c+.)) = (-27ri) (det(acH, aclH) F(c) 

for all F C PW(V,). For example for n = 1 we have indeed 

j+i0 (z) -z ( 27ri)resc( F(z) + 
f+ F(z)dz 

-i0 az - k azz-k -io az-k 

if ai > 0 and oy < c = k/ca < 0. 
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Now let us consider the Fourier-Yang transform 

(3.4) TF(k) f (A) = f (Xq) Q(-A, k, ; r)duE (E) 

for f C CC(Vreg)W, and the candidate inversion operator 

(3.5) J(k)F(Q) = (2r) J +iV F(A)e(A ) d(-A, k) 

for F C PW(V,)w. Here ( E V+ and ay C VI far away from walls, and J(k)F is 
extended to all of V as a W-invariant function. For f C CC?(Vreg)W it is clear 
from the Euclidean Paley-Wiener theorem that TF(k)f C PW(V,). Moreover 
if AC(k) denotes the composition J(k) o F(k) then 1C(k)f is smooth on V+. As 
in Helgason's proof of the Paley-Wiener theorem for Riemannian symmetric 
spaces [15], sending ay off to infinity shows that the support of 1C(k)f has to be 
contained in the convex hull of the support of f. Suppose now that we are in 
the repulsive case ka > 0 for all ar c R. In this situation we are also allowed 
to simply shift ay towards the origin without picking up residues. It is easy to 
see that we may now rewrite (3.5) as follows: 

(3.6) J(k)F(5) = j F(A) 0(A, k; )dilp(A) 

by the W-invariace of F and IUp. From (3.6) we easily derive the formula 

(3.7) (AZ(k)f, g) = F(k)f(A)F(k)g(A)dlup(A) 

for f, g c CC??(Vreg)W, which shows that IC (k) is a (formally) symmetric op- 
erator. Together with the above mentioned Paley-Wiener theorem this shows 
that in the repulsive case AZ(k) is a support-preserving operator. By Peetre's 
theorem [31] we now know that AC(k) is a differential operator on Vreg. It is 
clear that AC(k) commutes with all W-invariant differential operators on V, 
and therefore AZ(k) is itself a constant coefficient differential operator. Finally 
a scaling argument shows that AC(k) = Id. This proves Theorem 1.3. For more 
details on this argument of van den Ban and Schlichtkrull, see [2], [14], [13] 
and [29]. 

Let us now return to the general, not necessarily repulsive case. Clearly 
the formulas (3.6) and (3.7) are no longer valid because we have to take into 
account the residues that one picks up when moving the contour of integration. 
However the inversion formula still holds: 

PROPOSITION 3.5. AC(k) = Id for all k C K. 

Proof. It is easy to see that J(k)F is holomorphic in k (for all F C 

PW(V,)w fixed) and that TF(k)f is a polynomial in k (for all f C CC?(Vreg)W 
fixed). Hence the general result follows from the repulsive case. RI 



YANG'S SYSTEM OF PARTICLES AND HECKE ALGEBRAS 153 

In the remainder of this section we shall derive the formulas that replace 
(3.6) and (3.7) when we are dealing with the purely attractive case ka < 0 for 
all ae C R. Hence from now on in this section we shall assume we are in the 
purely attractive case. We are going to study the linear functionals Xc and Y, 
on PW(VC) defined by (-y C Vreg): 

(3.8) Xv (F) = I F(A) ( (A) 
JAG Y+iV a(-Aj k) 

(cf. (3.5)) and 

(3-9) YI7I\ fF A dUE (ImA) 
IV>yYU) ]AeY+iV A (Aj k)E(-A, k) 

Let Ha = {A c V I (A,a) = ka} for a C R, and put H = {HE I a C R}. 
Clearly Nt =N+ U Nt_ with NH+ ={ Ha I ca C R+} and N_ = {H, I a C R_}. 
Write L, L+ and C, C+ for the intersection lattices and their centers of Nt and 
Nt+ respectively. Clearly Nt, L, and C are W-invariant, and C n V_ = C+ n V 
(indeed, Ha n v_ = 0 for ar C R- since k, < 0). For c C C let Xc and Y, denote 
as before the local contributions of (3.8) and (3.9) at c (with the convention 
Xc = 0 for c C C\C+). For c C V let W, denote the stabilizer subgroup of c in 
W, and let A, denote the following operator on meromorphic functions: 

(3.10) AcF(A) = JWcj-1 E 6(wA, k)F(wA). 

Notice that if F is holomorphic on a small tubular neighbourhood U + iV of 
c + iV then AcF also extends holomorphically on this tubular neighbourhood 
U+iV. 

PROPOSITION 3.6. For c C C n vI and w C W, 

(3.11) Xwc = Yc o w- o Awc 

Proof. Clearly both sides of (3.11) depend only on the left coset of w mod- 
ulo Wc, and therefore we can assume w to be a minimal length representative 
in this coset. The segment [y, wey] only intersects those Ha c NX+ for which 
w-lo C R-. For these a's we get (we, ca) = (c, w-1c) > 0 since c C V, and so 
WC 0 Ha since k, < 0. Hence the local contributions of Xv,? and Xvww at wc 
are the same. On the other hand the local contribution of Yvww at we is equal 
to YC o w-1 with Yc the local contribution of Yv,? at c. Therefore it suffices to 
show that 

Xvw-y = Yvw-y ? Awc 

if -y' is a point of the form -y' = &-y + (1-,E)c with 6 very small (cf. Remark 3.2). 
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Now if F c PW(V,) then: 

X [ F(A) d/uE(ImA) VW?'= IwY'+iv (A) a(-A, k) 

= f1- F(A) d/-E(ImA) 
JUvEwwc(vw-y+iV) c(-A, k) 

= C1 f 6(A, k)F(A) d/-uE(JmA) 
JUvEwwc(vw-y+iV) a(A, k)a(-A, k) 

= f ~AwcF(A) d/-uE(JmA) 
JwIY+iv ( (A, k)a(-A, k) 

= YvW (AwcF). 

Here we have used the fact that all points vw-y' lie in the same connected 
component of V\UH, (union over ar C R+ for which c C Ha), and that Awc(F) 
is holomorphic near we + iV. This completes the proof of the proposition. LI 

COROLLARY 3.7. For c C C, write 
R-V 

= La>O:(axc)=k. Rco. Observe 
that -Vc C -V if -V denotes the closure of the antidual -V = E>j,> Rc a 
of the positive chamber V+. Let c C C n V and w C W with we 0 -Vwc. If 
A C c + supp(Yc) then AwcF(wA) = 0 for all F C PW(Vc). 

Proof. Suppose AwcF(wA) $ 0 for some F C PW(VC). Then the 
Wc-invariant distribution AwcF(w(c + .))Yc(.) does not vanish identically on 
iV, and therefore Yc(AwcF(w(c+?))G(w(c+?))) zh 0 for some G c PW(Vc)wwc. 
However, if we 0 -VWc then 

Yc(AwcF(w(c+ ))G(w(c+ ))) = Yc(w-(Awc(FG))(wc+ )) 
- Xwc(FG(wc + )) = 0 

by (3.11), and Lemma 3.3. It should be remarked here that we have not checked 
the validity of the technical assumption on the hyperplane arrangement that is 
necessary in order to apply Lemma 3.3. This verification is not straightforward 
and depends on our classification of distinguished points. This point will be 
addressed in Remark 3.14. LI 

COROLLARY 3.8. Write the wave function q(fA,k;;) for ( C V+ as 

(3.12) O(A,k;() = E a(pu,k;()e("L'() 
pGcWA 

with a(A,k;() C PV a W,1-harmonic polynomial given by 

(3.13) a(pu,k;() = IWI-1 lim E a(u + w,k)e(w` (). 

If A C c + supp(Yc) for c C C n v_ then a(Iu,k;.) = 0 for all ,t C WA and 
Re(pu) X -Vwc (in particular, q(A,k;() has at most moderate growth in ( in 
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this situation. If A = c, a distinguished point for which Y, $8 0, then b(A,k;,) 
even has exponential decay). 

Proof. Let A C c + supp(Y,) fore c CV n v and w C W with we 0 _Vwc. 
Choose F C PW(V,)Wwc with F(wA) $8 0. By the previous corollary we get 
for all C: 

0 = Awc(F )e( ')(wA) = F(wA) E a(lu, k; ()e("'() 

with the sum over all [1 C WA with Re(yu) = we. Hence a(/u, k;*) = 0 for all 
such [. LI 

At this moment we only know that Yc is a distribution with support con- 
tained in UiVL (union over L C 1 with CL = c). The following two results 
play a crucial role to arrive at the conclusion that Yc is in fact a nonnegative 
measure. Recall the concepts of residual subspace and distinguished points in 
V as given in Definition 1.4. 

THEOREM 3.9. If M C V is a residual subspace then 

(3.14) #oat C RL\RM I (L,a) = kit} < #{ac c RL\RM I (Loa) = O} + 1 

for each affine subspace L C M with dim(L) = dim(M) - 1. 

THEOREM 3.10. For L c V a residual subspace, -CLcW(RL)CL. 

Apparently if M c V is a residual subspace and L c M is an affine 
subspace of codimension one then L is residual if and only if 

(3.15) #oat c RL\RM I (L, a) = kce} = #{ct c RL\RM I (L, o) = O} + 1. 

By induction on codim(L) it follows that 

(3.16) #f{a C RL I (L, ai) = ka} = #{ a c RL I (L, ao) = 0} + codim(L) 

for each residual subspace L c V, and in particular for L = {c} a distinguished 
point we find 

(3.17) # aC R I (c, a) = ki} = #{ a C R I (c, a) = 0} + n. 

Remark 3.11. It is quite likely that for all points c C V, 

(3.18) #f a R I (C, a) = kit < #I a c R I (C, a) = 0} + n 

with equality if and only if c is a distinguished point. For R an integral root 
system and kag = ko for all ai, C R this can be derived from Richardson's 
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dense orbit theorem [6, Ch. 5]. In turn this would imply that for each subspace 
LcV, 

(3.19) #{ci C RL I (L, ao) = ka} < #{ a C RL I (L, ao) = 0} + codim(L) 

with equality if and only if L is a residual subspace. 

Remark 3.12. It is also quite likely that the map L - CL is a bijection 
between residual subspaces and their centers. Once again, for R integral and 
k= ki for all a, / c R this is known to be true. 

In the next section we shall carry out the classification of the finite set of 
distinguished points for each of the irreducible root systems case by case, and 
thereby obtain a proof of the above theorems by inspection. In principle it 
should be possible also to check the questions posed in the two above remarks 
by a case by case analysis. However the work becomes still more elaborate, 
and since the results of Theorem 3.9 and Theorem 3.10 are sufficient for our 
purposes we have put these questions aside. 

THEOREM 3.13. For c C C n Vi the local contribution Y, of (3.9) at c 
can be written as 

(3.20) YC= S YL 
LGL,CL=C 

with YL an analytic measure on iVL, and YL = 0 unless L is a residual 
subspace. If YRLCL denotes the local contribution at the RL-distinguished point 
C = CL C VL of the lower rank integral YRL,VL,y, and YRL,CL ({0}) denotes its 
total mass, then 

(3.21) YL(F) = YRLiCL ({f0}) 

f F(iA) (CL,ca) 2 + (A,acQ2 dE(A 
JACVL c)R+\RL (CLa) - ka)2 + (Aa)2 IIE(A) 

for all test functions F on iV (here HE denotes the Lebesgue measure on VL). 

Proof. It is clear from the proof of Lemma 3.1 and by Theorem 3.9 that the 
only L C L for which nonzero residues are picked up are the residual subspaces. 
Now let L be a residual subspace with CL C V- (and let RL, V = VL e VL, 
L = CL + VL, be as before). For A C VL 

aC-R\RL (CL ?iA, c) + kit 

(CL +iA,ca) 

ceR\RL (CL + iA, c)-kit 
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= 1j &((CL, Ce) + i(A, Ce))((CL, -Ca) + i(A, -CO)) 

-CR;\RL ((CL,ca) - kce + i(Al ))((CL,-a) - kc + i(A,-c)) 
= l ((CL, a') + i (A, aQ))((CL, WLOa) - i(A, WLOa)) 

cCR \RL ((CL, aC) - ka + i(A, c))((CL, WLa) - k- i(A, WLOa)) 

= ((CL, c) + i(A, a))((CL, a) - i(A, a)) 

ecR+\RL ((CL, a) - ka + i(A, Ia))((CL, a) - - i((A, a)) 

= [l (CL, c)2 +(A, c)2 >0 

ac-R+\RL ((CL, ca) - ka)2 + (A, a)2 - 

since the longest element WL of W(RL) satisfies WLCL = -CL (by Theo- 
rem 3.10), WLA = A and WL(R+\RL) = R+\RL. We claim that the expression 
(3.22) is smooth for A C VL. If R+ = {aE c R+\RL I (cL,ca) = 0} and 
R+= {3 C R+\RL I (CL, !3) = kI} we have to show that the function 

fi (A, )2 fi (A, 3)-2 

is smooth for A C VL. The only way this can happen is for the denominator 
of this rational function to divide the numerator. Writing VaL - {A C VL | 
(A, a) = 0} for aE C R\RL we have V. ' V1L X /3 C (Rn (Rt + VL))\RL. 
Hence the parabolic subsystem S = (R n (R/3 + VL)) of R (containing RL as 
a corank one subsystem) for d C R+ is the relevant root system to consider 
for the above question of divisibility. Replacing R by S we can assume that 
dim(VL) = 1, and the divisibility holds if and only if #(Rz) > #(RP+). By 
Theorem 3.9 we have 

#{13 C R\RL I (CL, 13) = ko} < #{/3 C R\RL I (CL /) }= 0 + 1 

and since -WL fixes CL and interchanges R+\RL and R_\RL we find 2#(Rp+) < 
2#(Rz) + 1 X #(Rz) > #(RP+). Hence (3.22) is smooth indeed for A C VL. 
When we actually carry out the contour shift in (3.9) by moving ay through 
the hyperplanes H C Nt with L C H it suffices by the above to only con- 
sider the local contribution YRL,CL of the lower rank integral YRL,VL,Y at the 
RL-distinguished point c = CL C VL. If this is a measure with support at 
the origin of VL then clearly YL is given by (3.21). In the remaining case of 
a distinguished point the inequality (3.17) ensures that the local contribution 
is indeed a measure with support in the origin (cf. Algorithm 3.15), and this 
finishes the proof of this theorem. LI 

Remark 3.14. If LCM are both residual subspaces then JCLl > ICMI (in 
particular CL $8 CM). This is clear from the fact that (3.22) is smooth for 
A C VL. This justifies the use of Lemma 3.3 in the proof of Corollary 3.7. 
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Algorithm 3.15. Assume c C VI is a distinguished point. If R= {a c 
R I (c, c) = O} and RP {= C R I (c, f) = kg} then #RP = #RZ + n with 
n = dim(V). The local contribution Y, of (3.9) at c can now be computed 
by induction on #RZ. The case #RZ = 0 yields a residue computation for 
the normal crossings situation as dicussed in Remark 3.4. If #RZ > 1 then 
take ae C RZ and write ae = Ecjfj with Cj C R and {A31,.. . ,A3n} C RP a 
basis of V. Substitution in the integrand yields a sum of at most n similar 
local contribution computations but with #RZ diminished by one. Iterating 
this procedure we can therefore compute the local contribution Yc as a sum 
over at most n#Rz normal crossings situations. In principle this algorithm for 
computing Yc is simple , but in practice it can be very cumbersome (if #RZ is 
large). For example if R is of type E8 there exists a c with #RZ = 32. 

Example 3.16. Let c E V be a regular distinguished point, and put 
B = {I E R+ I (c, 0) = kol f {d, O. n}. If we write 

(3.23) C = 1113 + . . . + ln/n 

with 11, ... .,in e R then Yc = 0 unless li, .. ., in < 0. In the latter case we find 
using Remark 3.4 that for all F E PW(Vc): 

(3.24) Yc(F(c + .)) =(-2ir)ThF(c) 17L,>o (c, a~) 
(det (13i 1 3j)) 1/2 a(c, k) floe R\B( (B ( - ko) 

Notice that duE(ImA) is the measure associated to the n-form (-i)ndA. 

Definition 3.17. For L C V a residual subspace VL is the unique measure 
on Vc with support inside CL + iVL, and also formally denoted by 

(3.25) VL = (- 2-xi) codim(L) reSL (AP), 

characterized by f FdvL = (21f) -nYL (F(CL + *)) for all F E PW(Vc) if CL E V- 
and by the requirement that VP = ZL VL is a W-invariant measure. 

The next theorem will give a proof of formula (1.14) when combined with 
Proposition 3.5. 

THEOREM 3.18. For F c PW(VC)w the inversion operator (3.5) can be 
written in the symmetric form 

(3.26) J(k)FQt) = 
. j F(A)q5(Ak;()dvL(A). 
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Proof. Indeed, for F G PW(V,)w and ( E V+ 

J(k)F(Q) (27r)-n E Xc(F(c?+ )e(c+>()) 
cCC? 

(2 r)- c X AWC(F(W(C + ))e(J+))) 
cccnvf WCW/Wc 

(2ir)-n E Yc(F(c+ .)Wcl-K E c(w(c+ ),k)e(w(c+),0 
cccnvf wCW 

(2r<)-n E IWI$Yc(F(c+ .)0(c+ k;() 

(2ir<) 5nIWI { ? (F(c + )q(c + k; ))} 
cc-CflI LCL=C 

cl 

+iVL F(A)q(A, k; ()dvL(A) LI LiV 

which proves the theorem. D 

COROLLARY 3.19. For f ,g C C (Vreg)W, 

(3.27) Jv , 
-tE(() 

EJ+v k f 
(A)T(k)g(A)dvL(A). 

Proof. Theorem 3.10 implies that q(A, k; ;) q(-A, k; ;) for A G cL ,iVL. 
Now use Proposition 3.5 in order to write 

f| ) (g)duEQ() = K (k)f (0 g(()dAE 

- f (J(k) (f'(k)f@;))) gQ()duEQ(). 

Now use the previous theorem and change the order of integration (which is 
allowed as one easily checks). El 

In order to complete the proof of Theorem 1.5 it remains to be shown 
that the measures vL are nonnegative. This will also allow us to interpret 
Corollary 3.19 as a Plancherel formula. From the positivity of (3.22) it follows 
that it is sufficient to show that vc > 0 for c a distinguished point. 

THEOREM 3.20. If c is a distinguished point and vc 78 0 then q(c,k;.) e 
L2(V,,UE) and 

(3.28) 5 vdj({d}) = (0(ck; ),0(ck;))- 
dCWc 
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Proof. By induction on the rank of R together with the positivity of (3.22) 
we may assume that vL > 0 for all L a residual subspace with dim(L) > 1. 
Let C1,... , CN be the set of distinguished points in VI with vi z# 0, and 
put qi q$(ci, k; ) for i = 1,... ., N. By Corollary 3.8 we know that qi has 
exponential decay, and in particular lies in L2(V, LE). Put 

CCO = {f f E C~o'(Vreg)w W| (fL hi = 0 Vi = 1) . ... I NJ. 
Now it follows from (3.27) that if ffh} is an L2-converging sequence in CZO 
then the sequence {.F(k)fn ICL+ivL} converges in L2(CL + iVL, LVL) if L is a 
residual subspace of positive dimension for which VL > 0. And of course we 
have that F(k)fn(ci) = 0 for all i by the very definition of CC??. We can choose 

0i G C~o (Vreg)W such that (ii, hi) &jij. Indeed, choose qi C C~o (Vreg)W such 
that (qj, ?b) is a nonsingular matrix, which is possible by choosing q' close to 
qi in L2(V, [LE). Now take the basis dual to the linear functionals (, qj) in the 
space eDiC~ - . 

Choose a sequence {fi,n } C C~o (Vreg)W such that qOfi,n -> q0q0i in L2(V, [LE) 
for each function q which has moderate growth (we can do this because qi has 
exponential decay). Then f'(k)fin(A) -* 0 for each A E CL + iVL if L is a 
residual subspace of positive dimension for which VL > 0. We claim that in 
fact TF(k)fi,nl CL+iVL - 0 in L2(CL + iVL, VL) for such L. 

To see this consider the sequence fin=fin- (fi,n? q j) e CCZo converg- 
ing to Oi-( i, 0i) i in L2(V,AE). Hence the sequence {.F(k)fi,n1 cL+ivL} con- 
verges in L2 (CL + iVL, VL). Therefore the original sequence {f(k)fi,ni CL+iVL } 

has to converge in L2(CL + iVL, VLL) as well. 
On the one hand (fi,n, fi,n) -> (qi, qOi), and on the other hand (fi,n, fi,n) - 

W/WC2 vci({cI})(?i,?q C)2. This proves the theorem. El 

Remark 3.21. It follows that the Fourier-Yang transform extends to a 
unitary injection of Hilbert spaces 

(3.29) L (V, E)W L (Vcl zp)W (DL (CL + i , VL)) 

with the direct sum taken over those residual subspaces L for which VL > 0 
as a measure on CL + iVL. It is quite likely that (3.29) is in fact a unitary 
isomorphism of Hilbert spaces. 

Example 3.22. Define the vector p(k) E V by 

(3.30) 2p(k) = A, kok = 1l(k)cl + + ln(k)Ocn 
ca>O 

with {o i} B a basis of simple roots and li(k) E R_. Now it is easy to see 
that p(k) is a distinguished point, and 

(3.31) /(p(k),k, ) = e(p(k),() for all ( E V+. 
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This wave function is square integrable as it should be since Vp(k) > 0 by 
direct computation. The L2-norm of this function can be computed in two 
different ways now. The first way is a direct evaluation using the formula 
fJo e1xdx = -1-1 if 1 < 0. The second way is by doing the residue computation 
at p(k) as in (3.24) and using (3.28). Comparison of the two answers yields a 
nontrivial identity. In case R is a normalized root system and k, = ko for all 
a, 0 E R one finds: 

(3.32) det(xi, aj)l 1... ln =W lO ht(a)-1 
ac CR\Bhta- 

with 2p = E>o = Ejliaei, and ht(oa = EiZxioi) = Eixi. For R integral 
this identity is an exercise in [4, Ch. VI, Sec. 4, Ex. 6] with the invitation to 
the reader to do the excercise case by case! 

Remark 3.23. For R of type BFI (even) we have two independent cou- 
pling parameters, one for each orbit of roots. We hope that the method of this 
section can be suitably adapted so as to cover also the case with one positive 
and one negative coupling parameter. 

4. Distinguished points and spherical cuspidal points 

In this section we will classify the distinguished points for each of the 
individual irreducible root systems case by case. The method uses induction 
on the rank of R, and therefore the collection of residual lines is assumed to 
be known. Now for each point L on a given residual line M we just verify that 
(with RL = R) 

#{ a e RL\RM I (L, a) = ka} < #{fa E RL\RM I (LI a) = 0} + 1 
and the points L E M for which equality holds are by definition the distin- 
guished points. This is how Theorem 3.9 is proved, and in the end Theo- 
rem 3.10 is easily checked by going through the list of distinguished points. 

PROPOSITION 4.1. Let V = Rh with standard basis el, .. . ,en. Let R = 
R(An-l) = {a E Zn I (ai,) = 2, (a,Zei) = 0} = {ei -ej i iz j} arnd 
W = W(An-1) = Sn. For k E K, k zh 0 there are no distinguished points and 
up to the action of Sn there is just a single residual line 

(4.1) L={x= (nk+t,(n-1)k+t,...,k+t) I tE R}. 

Proof. The first statement is clear since the rank of R is n - 1. By induc- 
tion on n it follows that the residual planes are conjugated by Sn to planes of 
the form 

M= {x= (pk+t,(p-1)k+t,...,k+t,qk+s,...,k+s) I s,t c R} 
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with p, q > 1 and p + q = n. Observe that RM has type Ap-l + Aq-i and 
R\RM = {?(ei-ej) I 1 < i < p, p + 1 < j < n}. The lines L in M to be 
analyzed are those for which ik + t - jk - s = k , s = (i - j - 1)k + t for 
some i = 1, ... ,p and j = 1, ... , q. Assume that exactly r coordinates of the 
first p and the last q coordinates coincide for some r > 0. Then we find that 
#{ a e RL\RM I (L, a) = k,} = r + 1 (if r < p, r < q), r (if r = p, r < q or 
r < p, r = q), r -1 (if r = p = q), and #{oa e RL\RM I (L, a) = O} = 2r. 
Clearly r + 1 < 2r + 1 with equality if and only if r = 0. Hence the only 
distinguished line we find up to the action of Sn is (4.1) El 

Definition 4.2. Let V = Rn with standard basis el, ..., en. Let R = 

R(Bn) = R(Dn) U {?el I...?en} = {o e Zn I (aca) = 1 or 2} and W = 
W(Bn) = C2nxSn the hyperoctahedral group. The coupling parameter (k, k') e 
K with k = kejiej (i 7# j) and k' = kei is called generic if 

2(n-1) 
(4.2) kk' fi (jk + 2k')(jk - 2k') 7& 0. 

j=l 

PROPOSITION 4.3. For generic coupling parameters the distinguished 
points of type Bn are conjugated under the action of W to the points 

(4.3) c(A,k,k') C Rh, c(A,k,k')x = c(x)k + k' 

where A ranges over the set of partitions of weight n and x = (i,j) E A ranges 
over the set of boxes of A. If A = (Al, ... ,Ar) with A1 > A2 > ... > A, > 1 is a 
partition of length 1(A) = r and weight JAI = E Ai = n then we identify A with 
its Young diagram (with A1 boxes in the first row, A2 boxes in the second row, 
etc.). For x = (i,j) (E A X 1 < i < Ai the number c(x) : j-i is the content of 
the box x. For example, if A = (5,4,4,1) then c(A,k,k') = (4k + k',3k + k',2k + 
k',2k+k',k+k',k+k',k+k',k',kl,k',-k+k',-k+k',-2k+k',-3k+k') E R14. 

0 1 2 3 4 

-1 0 1 2 

-2 -1 0 1 

-3 

Diagram A 
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Proof. By induction on the rank we have to consider the situation of a 
parabolic subsystem of type Ap-1 + Bq with p + q = n. 

We have to consider a diagram as indicated below, composed of a Young 
diagram with q boxes and a folded strip of p boxes. Let mi be the multiplicity 
of the content i in the boxes of this new diagram. 

Young diagram with 
q boxes 

folded strip with p boxes 

Diagram B 

Now with c(k, k') E Rn as before, 

#{a e R I (c(k, k'), a) = k,} = mo + E nirijg 

and 

#{a E R I (c(k, k'), a) O} Z mi(mi -1). 
i 

Therefore we verify that 

mO + mimi+i < n + Mi(M-1) - Mi 
i i i 

with equality if and only if the new diagram is a Young diagram (i.e., mj+= 
mi or mi-1 if i > O. and mi-I = mi or mi-1 if i < O). This is an immediate 
consequence of the following lemma. C 

LEMMA 4.4. Let mi E N for i E Z with mi = 0 for jil large. Then, 

max(mi) + Zmimi+i < Zm2 
i i 

with equality if and only if (say mO = max(mi) by shifting the index set) 
mi+i = mi or mi - 1 if i > 0, and mi =mi or mi - 1 if i <0. 
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Proof. Since 2ZEimi - 2 E, mm+i = E,(mi -mi+)2 the statement 
follows from 

a2+b2+c2? > a+b+c+.c 

if a, b, c, ... are integers, with equality if and only if a, b, c, . . . E {O1 }. C] 

PROPOSITION 4.5. If k' (q + 1)k, k zh 0, for some q = 0,1,... ,p ard 
m = ( ,m 1) E NP+l with ImI = Zj mi = n then the point 

1 1 1 ~~~ ~~3 1 1 
(4.4) c(m,k,k') ((p +-)k,...,(p+ -)k,(p- -)k...-k, -k ...k) 2 2 2 2 2 '"2 

M 1 times m 1 times 

E Rn 

is distinguished if and only if mi+l = mi or mi - 1 for i > q + 2 (with the 
convention that mp+ 1 = 0 and mi = O for i > p?+ ) and mi- = mi or mi-1 

for i =,.. . ,q + -. All distinguished points for these coupling parameters are 
obtained in this way up to the action of W. 

PROPOSITION 4.6. If k'=O, k7z0 (R of type DO) and m = (mp,... ,mo) 
e NP+1 with Iml = n, then the point 

(4.5) c(m,k,O) = (pk, ... ,pk ,(p - 1)k, ... ,k, o, ... ,0) e Rn 
mp times mo times 

is distinguished if and only if mp = 1 and mi+l = mi or mi-1 for i > 1 and 
m o [(ml + 1)]. All distinguished points for these coupling parameters are 
obtained in this way up to the action of W. 

PROPOSITION 4.7. If k' qk, k 78 0, for some q 1, ... ,p and m 
(mp, ... ,mo) e NP+1 with Iml n then the point (4.5) is distinguished if and 
only if mp - 1 and mi+l - mi or mi - 1 for i > q and mi-I = mi or mi -1 
for i = 2,... ,q and mo = [ml]. All distinguished points for these coupling 
parameters are obtained in this way up to action of W. 

The proofs of these propositions are similar to the proof of Proposition 4.3, 
and therefore will be skipped. The case k' = lk corresponds to the split 
Cn-case, and k' = k corresponds to the split Bn-case. For these two cases the 
outcome can be compared to the results of [1] or [6, pp. 174-175]. For type En 
the list of distinguished points can be derived directly from the tables in [6, 
pp. 176-177]. For k 7& 0 there are 3, 6 and 11 distinguished points for na-6, 7 
and 8 respectively (modulo the action of W). 
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Definition 4.8. For R of type F4 let k = k, for ae long and k' = k, for ae 
short. The coupling parameter (k, k') is called generic if 

(4.6) kk'(3k ? k')(2k ? k')(3k ? 2k')(k ? k')(5k ? 6k')(3k ? 4k') 
*(2k ? 3k')(3k ? 5k')(k ? 2k')(k + 3k')(k + 4k')(k ? 6k') 7/ 0. 

PROPOSITION 4.9. For generic (k,k') of type F4 there are 8 distinguished 
points as given in Table 4.10 (with al = el -e2, a2 = e2 -e3, a3 = e3, a4 = 

2(-el-e2-e3+e4) the simple roots and w= el+e4, W2 el+e2+2e4, W3 = 
el + e2 + e3 + 3e4, W4 = 2e4 the dual basis of fundamental coweights). For 
nongeneric (k,k') there are no distinguished points other than those obtained 
as the limit of a generic distinguished point. 

The proof is by direct (though rather lengthy) computation, and will be 
skipped (since it does not seem to be very instructive). 

Table 4.10. The distinguished points for type F4. 

No. c(k, k') c(k, k') distinguished iff 

1. kwl + kW2 + k'W3 + k'W4 (2k + 3k')(3k + 4k') 
(3k + 5k')(5k + 6k') # 0 

2. kwl + kW2 + (-k + k')W3 + k'W4 (k ? 6k')k' 7# 0 

3. kwl + kW2 + (-k + k')W3 + kW4 (3k + 2k')(k + 3k') 
(2k+3k')(3k+4k') #0 

4. kw, + kW2 + (-2k + k')W3 + k'W4 (2k - 3k')(3k - 4k') 
(3k - 5k')(5k - 6k') # 0 

5. kw, + kW2 + (-2k + k')W3 + 2kW4 (3k ? 2k')(k ? 3k') 7# 0 

6. kwl + kW2 + (-2k + k')W3 + kW4 (3k - 2k')(k - 3k') 
(2k - 3k')(3k - 4k') 7 0 

7. kwi + kW2 + (-2k + k')W3 + (3k - k')W4 k(3k ? k') 7Z 0 

8. kW2 + (-k + k')W4 kk' 74 0 

Remark 4.11. For type F4 the map (k, k') -* (2k', k) is a natural involu- 
tion of the situation corresponding to the interchange of long and short roots. 
For R of type D4 we have two distinguished points (3k, 2k, k, 0) and (2k, k, k, 0) 
for k + 0. They can be viewed as the specialization k' = 0 of No. 1 and No. 3 
respectively. 

PROPOSITION 4.12. For k 7& 0 and R of type H3 there are 4 distinguished 
points, which are all regular. For k 7& 0 and R of type H4 there are 17 
distinguished points, 12 of which are regular. 



166 G. J. HECKMAN AND E. M. OPDAM 

The results are listed in Tables 4.13 and 4.14. Here the numbering of 
the basis WI, W2, w3(, w4) dual to the basis ZI, a2O 3(, Oa4) of simple roots is 
according to the nodes from left to right in the Coxeter diagrams 

5 

and 
5 

0 p p p 

respectively, and T = (1 + V'5). 

Table 4.13. Distinguished points for type H3. 

No. point c(k) 

1. kw1 + kW2 + kW3 
2. (1 + r)-1(kw1 + kW2 + kFw3) 
3. (1 + T)- (kw1 + kW2 + k(1 + T)W3) 

4. (2 + 3T)-1(k(l + T)Wi + kTW2 + kW3) 

Table 4.14. Distinguished points for type H4. 

No. point c(k) 

1. kwI + kW2 + kW3 + kW4 
2. (1 + r)1-(kwI + kw2 + kTw3 + kW4) 
3. (1 + T) -(kw1 + kw2 + kTw3 + k(1 + T)W4) 

4. (1 +-T)-T(kw1 + kw2 + k(1 +T)w3 + k(1 +T)w4) 
5. (2 + 3T)-1(k(l + T)W1 + kTw2 + kW3 + k(1 + 2Tr)o4) 
6. (2 + 3T)-1(k(l +Tr)W1 + kFw2 + kW3 + k(1 + 3r)W4) 
7. (2 + 3T)-1(k(l + T)Wi + kTw2 + kW3 + k(2 + 3T)W4) 

8. (3 + 57)-1(k(1 + 27)WI + kFw2 + k7w3 + kTw4) 
9. (2 + 4T)-1(kwI + kFw2 + kFw3 + kW4) 
10. (2 + 3T)-1(kwi + kW2 + kFw3 + kW4) 
11. (3 + 5T)-1(krwl + kFw2 + kW3 + krW4) 
12. (5 + 8T)-1(kwi + k(1 + 2T)w2 + kW3 + kTw4) 
13. (1 + 2T)-1(kw2 + k7w3 + kFw4) 
14. (2 + 3T)-1(kFw2 + kFw3 + kW4) 
15. (1 + r)-1(kw1 + kW2 + k(1 + T)W4) 

16. (1 + 2T)-1(kw2 + kTw3) 
17. (1 + T)-1kW2 
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PROPOSITION 4.15. Let R be the normalized dihedral root system of type 
12(m) with simple roots ala2. For j = 1,2,... .,[] let /31,12 E R+ be defined 
by 

sill-7r13 sin 7rjL~J + sin 7r(i 1) O2 

sin-I/3 = 3 sin 7(i- )a+ l +sin 2 
m m m 

with dual basis 0*,02* of the form 

2 ir(2j -1) *_r(2j -1) 2sin 13* = 131 + cos 7 /32, 

2 sin 2 7(2j -1) 02* = Cos 7r(2j -1) 01+ 2 m m 

For k1 = kgl, k2 = k:2 with (kl + k2 cos (2 -1))(ki cos (2-l) + k2) # 0, the 
point 

(4.7) c(kik2) = kI/3 + k2/3 

is distinguished, and all distinguished points are conjugated under W to these. 

Proof. This is straightforward. C 

As mentioned before, with the complete enumeration of the distinguished 
points for each of the irreducible root systems at hand, the proofs of Theo- 
rem 3.9 and Theorem 3.10 can be carried out by inspection. We now discuss 
which of these distinguished points are spherical cuspidal, i.e. correspond to 
a square integrable wave function. For the rest of this section we will assume 
that k, < 0 for all ar e R. 

If c E V is a regular distinguished point the criterion for c to be spherical 
cuspidal is easy, and was described in Example 3.16. However for singular 
distinguished points it can be very difficult, with our approach, to actually 
check whether the residue vanishes or not. 

PROPOSITION 4.16. Let A be the partition A = (i+ 1,1i) with i+j = n-1 
and i > Oj > On > 2. The distinguished point c(A,k,k') given by (4.3) is 
spherical cuspidal if and only if in case j = 0 (i.e. c(A,k,k') = p(kk')), 

(4.8) k' < min (-(n - 1)k, - (n -)k 

and in case j > 1, 
1 1 

(4.9) -(j+1)k < k' < -(j-i)k. 2 2 

Let , be the partition , = (i + 1,2,1-1) with i + j = n - 2 and i > 1, j 
> 1, n > 4. The distinguished point c(A,k,k') given by (4.3) is spherical 
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cuspidal if and only if 
1 

(4.10) -ik < k' < min (j -i)kO 22 

Proof. For the partition A this is clear from Example 3.16. For the parti- 
tion ,u just use Algorithm 3.15. Details are left to the reader. EJ 

PROPOSITION 4.17. Let R be of type F4. For which (k,k') the previously 
found distinguished points are spherical cuspidal is given in the next table. For 
a given No. 1 up to 8 the point c(k,k') is spherical cuspidal for (k,k') in a 
nonempty open convex cone. 

Proof. Again we skip the proof which is quite long but altogether straight- 
forward. EJ 

Table 4.18. The spherical cuspidal points for type F4. Each regular 
point (all cases except No. 8) c(k, k') is displayed by its coordinates with re- 
spect to the set of roots {/31, /2, /3, /4} defined by {/31, /2, /3, /4} = {f3 C RI 
(c(k,k'),/) = k0 Vk,k'} 

No. c(k, k') spherical 
cuspidal iff 

1. ((5k + 6k'), 3(3k + 4k'), 6(2k + 3k'), 2(3k + 5k')) 5k + 6k' < 0, 
3k+5k' < 0. 

2. ((k + 6k'), (k - 6k'), 18k', 10k') k - 6k' < 0, 
k' < 0. 

3. ((3k + 4k'), (3k + 2k'), 2(k + 3k'), 2(2k + 3k')) 3k + 2k' < 0, 
kA+3k' < 0. 

4. (3(3k - 4k'), (5k - 6k'), 6(-2k + 3k'), 2(-3k + 5k')) 3k - 4k' < 0, 
-2k+3k' < 0. 

5. ((3k - 2k'), (3k + 2k'), 2(-k + 3k'), 2(k + 3k')) 3k - 2k' < 0, 
-kA+3k' <0. 

6. ((3k - 2k'), (3k - 4k'), 2(-2k + 3k'), 2(-k + 3k')) 3k - 4k' < 0, 
-2k+3k' <0. 

7. (9k, 5k, 2(-3k + k'), 2(3k + k')) k < 0, 
-3k+k' <0. 

8. k < 0,k' < 0. 

PROPOSITION 4.19. For R of type H3 and k < 0 the 3 points 1, 3, and 4 
of Table 4.13 are spherical cuspidal, and 2 is not spherical cuspidal. Let R be 
of type H4 and k < 0. The following are the regular spherical cuspidal points: 
1,2,4,5,7,8,9,12. 
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At present we have not checked the singular ones (the points 13 to 17) for 
spherical cuspidality. 

PROPOSITION 4.20. Let R be of type 12(m). The point (4.7) is spherical 
cuspidal if and only if 

(4.11) k + k2 cos (2j1)< 0, ki cos +r(2j- 1) k2 < 0 
m m 

In particular this is the case if k1 = k2 < 0 (e.g. if m is odd). 

Proof. This is easy if we use the formulas in Proposition 4.15. C 

The simplest criterion for spherical cuspidality is Theorem 1.7. How this 
follows from the work of Kazhdan and Lusztig will be indicated in the next 
section. 

5. Perspectives 

Consider the following tableau for hypergeometry associated with a root 
system R. 

1. The q-hypergeometric functions for R 

t=:qk ,q- { q=Ot=q1 

2. Ordinary hypergeometric 3. Elementary spherical functions 
functions for R for the affine Hecke algebra 

4. Bessel functions for R 5. Elementary wave functions for 
______________________ _ l | Yang's system 

Boxes 1,2,3 make sense for R an integral root system, and boxes 4,5 make sense 
for R arbitrary (but finite). The nonreduced root system BCn admits some 
additional flexibility, and a few extra boxes can be added ([19], [34]). In the 
first box we have the theory of Macdonald's orthogonal q-polynomials for root 
systems [24]. From the work of Cherednik the pivotal role of the affine Hecke 
algebra as an indispensable tool has now become clear ([7], [8], [26]). In the 
second box we have the theory of hypergeometric functions for root systems 
as developed by the authors (see [14] for a survey, and [29] for some recent 
results). This contains the theory of spherical functions on a real semisimple 



170 G. J. HECKMAN AND E. M. OPDAM 

Lie group. In the third box we have the theory of spherical functions for the 
regular representation of the affine Hecke algebra, containing (for q a prime 
power) the theory of spherical functions on a semisimple group of p-adic type 
([25],[27]). The fourth box deals with a local version of the second box near 
the identity element, and contains the theory of spherical functions for Cartan 
motion groups ([10], [17], [28]). Finally in the fifth box we have the theory 
dealt with in this paper. Just as box 4 is the infinitesimal version of box 2 
one should think of box 5 as the infinitesimal version of box 3. The affine 
Hecke algebra plays a role in box 1 and box 3, and this role is taken over by 
the graded Hecke algebra in box 2 and box 5. Each of the boxes has its own 
a-function and one can speculate about the applicability of the method of this 
paper in a larger context. 

In box 3 there are no problems whatsoever, and the whole theory can be 
applied without serious changes. Let F be a nonarchimedean local field and 
let 0 denote the ring of integers of F. The cardinality of the residue field is 
denoted by q. Let G be a semisimple algebraic group defined over F, which is 
assumed to be of adjoint type. Let G(F) denote the group of F rational points 
of G, which we assume to be split (for the sake of simplicity). We choose an 
Iwahori subgroup I C G(0) and normalize the Haar measure on G(F) so that 
Vol(I) = 1. Denote by dG the Langlands dual group, and let T be a maximal 
torus of dG. Let R C Lie(T)* denote the set of roots of dG with respect to T. 
The character lattice of T is the weight lattice P of R, and if A E P we denote 
the corresponding character by e 

The theory of elementary G(O)-spherical functions on G(F) leads to an 
explicit Plancherel formula with completely continuous spectrum which was 
studied in [25]. The Plancherel measure yu has support on the compact form 
T, of T, and if we normalize the spherical functions so that their value at the 
identity equals 1 then this measure is given explicitly by: 

(5-1) dy8t) = 
1 -N HaR(e(t) - 1) dt 

where dt is the normalized Haar measure on Tc, and N is the cardinality of 
R+. We are to use the explicit formula of Macdonald as a starting point, 
analogous to Theorem 1.3. Replace q by its reciprocal q-1. If we apply the 
contour shift argument as explained in this paper we encounter (among other 
tempered families) spherical cuspidal representations of the specialization of 
the affine Hecke algebra at q-1 at points of T where a point residue is picked 
up. Via the involution i of the affine Hecke algebra defined by sending q > q-1 
and Ti -? -q-1Ti these correspond to certain cuspidal representations of the 
specialization of the affine Hecke algebra at q, and all these modules share in 
common the property that they contain the sign representation of the Hecke 
algebra of the finite Weyl group W. From (5.1) it is clear that the eligible 
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residual points s of T have to satisfy: 

(5.2) #{a E R en(s) = 1} + dim(T) = #{o E R I en(s) = q-1} 

But these points s are in one-to-one correspondence with the distinguished 
unipotent orbits of those semisimple subgroups H of dG which are the central- 
izer of a semisimple element of dG. From the geometric classification of the 
irreducible modules of the affine Hecke algebra by Kazhdan and Lusztig [18] 
it is known that these are precisely the central characters for which there exist 
cuspidal modules. Moreover, it is known that to each of those points there 
belongs exactly one cuspidal module that contains the sign representation of 
the Hecke algebra of W. In the classification of [18] these are denoted by MA1, 
and the corresponding cuspidal representations M4,J of G(F) are called the 
generic Iwahori spherical cuspidal representations. When s is a real point of 
type (5.2), then clearly log s is a (Lie(T,), R, k)-distinguished point if we set the 
root labels k, all equal to - log q. Here T = TVT, is the polar decomposition of 
the complex torus T, and Lie(Tv) is considered as euclidean space with respect 
to some W-invariant inner product (for example the Killing form). Hence there 
exists a spherical cuspidal representation of the graded Hecke algebra for this 
infinitesimal central character and value of k; that is, the module of the graded 
Hecke algebra corresponding to (M1)' (here (M1)' denotes the module of 
the specialization of the affine Hecke algebra at q-1 obtained from the module 
Mi,1 using the involution i defined above). This proves Theorem 1.7. 

But there are also important applications in the context of box 3 itself, 
all based on the analogue of Theorem 3.20. The analogue of Example 3.22 
will give the explicit formula of Bott and Macdonald for the Poincare series 
of affine Weyl groups ([3], [23]). In general, Theorem 3.20 provides us with a 
method to compute the formal degree of the generic cuspidal representations, 
up to an absolute constant. We use a formula of Li's [21] saying essentially 
that there exists a matrix coefficient of MA,J which is obtained from the K- 
spherical function at s by replacing q by q-1. As was explained in Reeder [32], 
we need to calculate the reciprocal of the square norm of this matrix coefficient 
in order to obtain the formal degree; this we do by appealing to the analogue 
of Theorem 3.20. The resulting formula explains why the formal degree has 
such a nice factorization in the examples that were calculated by Reeder [32]. 
We shall give the precise statement in the following theorem: 

THEOREM 5.1. There exists an absolute constant c 7& 0 such that the 
formal degree of MS,1 is given by: 

deg(M,1 ) = cqN HaER(ec(s)-1) 

where fH' is the product over all nonzero factors, and N is the number of 
positive roots. 
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It is quite likely that the methods of this paper can also be transfered to 
box 2. However there are some technical difficulties to overcome now, due to 
the fact that the special functions are more complicated. Once these difficulties 
are resolved the theory will yield a proof of the main result of [5] along the 
same lines as the proof of the formula of Bott and Macdonald mentioned above 
(which in [5] was used as just one of the ingredients of the proof). More 
importantly, the theory will yield the L2-norm computations of other highly 
transcendental functions for which the method used in [5] fails. 

Finally one may even hope that the methods of this paper apply to the 
first box, but at the moment this is merely speculation. 
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