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Annals of Mathematics, 145 (1997), 139-173

Yang’s system of particles and
Hecke algebras

By G. J. HECKMAN and E. M. Oppam*

Summary

The graded Hecke algebra has a simple realization as a certain algebra of
operators acting on a space of smooth functions. This operator algebra arises
from the study of the root system analogue of Yang’s system of n particles
on the real line with delta function potential. It turns out that the spectral
problem for this generalization of Yang’s system is related to the problem of
finding the spherical tempered representations of the graded Hecke algebra.
This observation turns out to be very useful for both these problems. Appli-
cation of our technique to affine Hecke algebras yields a simple formula for the
formal degree of the generic Iwahori spherical discrete series representations.

1. Introduction

Consider a finite-dimensional real vector space V equipped with an inner
product (-,-). For @ € V' a nonzero vector we denote by

(1.1) ra(§) =€ —(£,a")a forall €€V

the orthogonal reflection in the mirror V, = {£ € V | ({,a) = 0}. Here
a" = 2(a, ) la is the covector of @. A root system R in V will be a finite
set of nonzero vectors (called roots) such that RaN R = {£a} and ro(B8) € R
for all a, 3 € R. The reflections r,, for @ € R generate a real finite reflection
group W = W(R) C O(V). It can be shown that each reflection in W is of the
form r,, for some o € R, and therefore each mirror of the finite reflection group
W (R) is perpendicular to two opposite roots in R. Conversely, given a finite
reflection group W in O(V) we can find root systems R such that W(R) = W.
For example the set of unit normals of the mirrors of W is such a root system.

*We would like to thank Cathy Kriloff for some interesting conversations about graded Hecke
algebras and for pointing out a miscalculation in an earlier version of this paper.
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The root systems occurring in semisimple Lie theory satisfy the additional
requirement

(1.2) (B,0¥)€Z forall o,B€R,

and we refer to such R as integral root systems. However, for the purpose of
this paper the integrality condition is unnecessary. Sometimes we shall use the
normalization

(1.3) (a,a) =2(&a=0aY) forall acR,

in which case we speak of R as a normalized root system.

The symmetric algebra SV and the algebra PV of polynomial functions
on V can be identified by means of the inner product on V. For p € PV
we write 8(p) € SV, and think of d(p) as a constant coefficient differential
operator on V. For example A = 9(§ — (&,€)) is the Laplace operator on V,
and (o) = 8(§ — (&, @)) is the derivative with respect to the root a € R. We
denote the algebras of invariants for W SVW and PVW.

Definition 1.1. A coupling parameter k = (kqo)acr for R is a collection
of real numbers ko, for o € R with kyoq = ko for all @« € Ry,w € W. Let K
denote the R-vector space of coupling parameters for R. The Yang system for
R with coupling parameter k¥ € K and spectral parameter A € V, = CQr V
is the boundary value problem on V given by the differential equations

(1.4) B(p)p(€) =p(N$() forall pe PV, eeV\UV,
and the boundary conditions
(1.5) d(€+0a)=¢(—0a) forall &ecV,,

(1.6) 0(a)p(€ + 0a) — O(a)p(€ — 0a) = 2kqp(€), for all € € V,
along the arrangement of mirrors UV,.

The Yang system is the completely integrable quantum system associated
with a particle moving in V' according to the Schrédinger operator

(1.7) ~ A+ ) kab((a,)).
a€ER

In the case of the symmetric group S, acting on R™ by permutations of the
coordinates, one recovers the n-particle problem in one dimension with a delta-
function potential as was originally studied by Yang [35], [36]. Likewise the
case of the hyper-octahedral group C3 xS, acting on R™ by permutations and
sign changes of the coordinates corresponds to the (2n + 1)-particle problem
in one dimension with a delta-function potential, and being constrained by
the symmetry £ — —z of R. Now the coupling between the middle particle
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(located at the origin by the constraint) and one of the remaining 2n particles
is allowed to be different from the coupling between two of the 2n remaining
particles. For the exceptional root systems no such interpretation is available.
Nevertheless, from a mathematical point of view, root systems are the natural
framework for dealing with these kinds of problems.

The connection with analogous problems in harmonic analysis on homo-
geneous spaces of semisimple groups will become clear in Section 2. In fact
one might think of the Yang system as the infinitesimal version of the problem
of decomposing L?(G/K) as a representation space of G with G a semisimple
group over a nonarchimedean local field F' and K the compact open subgroup
of the elements that are defined over the ring of integers in F'.

Let V; be a connected component of V\UV,, and let Ry = {a € R |
(&,a) > 0 V€ € V. } be the corresponding set of positive roots. The choice of
the chamber V. is fixed once and for all.

THEOREM 1.2. Introduce the é-function for the Yang system as the ra-
tional function on the parameter space V x K (or its complezification) given
by the formula

(1.8) sk = [ Q) the

a€Ry >\ a)

Let Vereg = Ve\UVy e denote the complement in V, of the complexified mirrors.
For (\k) € Voreg x K. let the function ¢(Ak;-) on V be given by

(1.9) SOKE) = W1 S E(wA ) e
weWw

for & in the closure of Vi, and extended to all of V' as a W -invariant function.
Then the function ¢ has an entire extension in the parameters (A\k) € Ve x K,
which is again denoted by ¢. This function ¢(\k;) is a solution of (1.4), (1.5),
and (1.6), and is normalized by ¢(A,k;0) = 1. Moreover, each W -invariant
solution of (1.4), (1.5), and (1.6) is a multiple of ¢(\k;).

The proof of this theorem is straightforward and will be given in Section 2.
The explicit formula (1.9) is analogous to Macdonald’s explicit formula for the
elementary spherical function on a p-adic semisimple group [25]. In Section 2
we also explain the role of the graded Hecke algebra for the Yang system.
Once this role is clear it follows that the solution of the spectral problem for
the Yang system for general wave functions is equivalent to the same problem
for W-invariant wave functions together with some knowledge of the repre-
sentation theory of graded Hecke algebras. The results of this section were
inspired by work of Drinfeld [9]. It follows that for the rest of the paper we
can (and will) restrict ourselves to the case of W-invariant wave functions.
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THEOREM 1.3. Suppose the coupling parameter k € K is repulsive, i.e.,
ko >0 for all a € R. For f € C(Vieg)"W there is the inversion formula

10) g =[_ { [ foeAkmdun(n) } o0 kdue (3

with ug the Euclidean measure on V, and the Plancherel measure pp on iV
given by

(2m) "dpp(Im(X))
ENREA—NE)

(1.11) dup(X) =

The proof of this theorem is sketched in Section 3. We use a contour shift
argument due to Van den Ban and Schlichtkrull [2], which is an adaptation
of the Helgason-Gangolli-Rozenberg argument in the proof of the Plancherel
theorem for a Riemannian symmetric space G/K ([15], [11]).

We now droﬁ the condition that £ is repulsive, and fix k¥ € K arbitrary.
The contour shift forces one to take certain residues into account in this situ-
ation. In order to explain the outcome we need some more notation.

For L C V an affine subspace we put Ry, = {a € R | (L, &) = constant}. If
Vi = span(Ry) then it is clear that Ry, = RNV, is a parabolic root subsystem
of R.

Definition 1.4. An affine subspace L C V is defined to be residual (or
more precisely (V, R, k)-residual) by induction on the codimension of L. The
space V itself is by definition a residual subspace. The affine subspace L C V
with positive codimension is called residual if there is a residual subspace
M C V with M D L and dim(M) = dim(L) + 1 such that

(1.12) #{a € R.\Ry | (L,a) = ko} > #{a € R{\Ry | (L,a) =0} + 1.

A residual point is also called a distinguished (or more precisely (V, R, k) dis-
tinguished) point.

We have used the terminology “residual” because these are the subspaces
where residues (caused by the poles in the Plancherel measure pp given in
(1.11)) can be picked up when we shift the contour. The word “distinguished”
is used in accordance with the classification of nilpotent orbits in the semisimple
Lie algebras as given in Carter’s book [6, Ch 5]. Since w(Ry) = R, for all
w € W it is clear that the notion of residual subspace is W-invariant. For
each affine subspace L C V it is clear that codim(L) > rank(R). However by
induction on codim(L) it is easy to see that codim(L) = rank(Ry) for LC V
a residual subspace. If L C V is an affine subspace with codim(L) = rank(Rp)
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then L = c;, + VL with ¢f, the center of L determined by {ct} = LN VL and
V'L the orthogonal complement of V7, in V.

It is easy to see from the above definition that an affine subspace L C V
is (V, R, k)-residual if and only if codim(L) = rank(Rr) and ¢ € Vi is a
(Vi, Rr, k)-distinguished point. Here k1 = (ka)acr, is the restriction of
the coupling parameter k£ to R;. The complete determination of the residual
subspaces therefore boils down by induction on rank(R) to the determination
of the distinguished points. In Section 4 we will carry out the classification
of distinguished points for each of the irreducible root systems case by case.
For R an integral root system and ko = kg for all o, 8 this classification is
equivalent to the classification of distinguished nilpotent orbits in semisimple
Lie algebras by their weighted Dynkin diagram. For R of type ADE we recover
the tables in [6]. For R of type BFI (even) with 2 coupling parameters and for
R of type HI (odd) with one coupling parameter these results seem to be new.

There is a twofold reason for actually doing this classification. On the
one hand the sum }"; in formula (1.14) below becomes more explicit for a
given R. On the other hand we are able to prove several properties of resid-
ual subspaces—easily stated in general root system terminology and crucially
needed in the proof of the result below—only by verification using the classifi-
cation. Although the concept of residual subspace is simple enough it seems
that some understanding is lacking.

THEOREM 1.5. Suppose the coupling parameter k is attractive, i.e. kg
< 0 for all o € R. For each residual subspace L C V the residue formula

(1.13) v = (—2mi) 4 Dresy (up)

defines a nonnegative analytic measure on cr, +iVE, and for f € Cf°(Vreg)W,
w1 1©=5 [ AL, Smecrrmism | oorga)

with Y_; denoting the sum over all the residual subspaces.

The meaning of the residue formula (1.13) will be explained in Section 3,
where the theorem is also proved. It follows that the Plancherel measure vp =
>-p vr is a W-invariant measure on V, with support contained in Ur {c, +iVL}.
However the support of vp can be strictly smaller. Because the measure vy,
is analytic with respect to the Euclidean measure on ¢y, + iVL we have either
vy, =0 or supp(vy) = c +iVE.

Definition 1.6. Let L C V be a residual subspace. The real affine subspace
cr,+iVL of V, is called spherical tempered (or more precisely (V, R, k)-spherical



144 G. J. HECKMAN AND E. M. OPDAM

tempered) if supp(vz) = cr +iVL. If in addition L = {c;} has dimension 0
then cy, is called a spherical cuspidal (or more precisely (V, R, k)-spherical
cuspidal) point.

Being a spherical tempered subspace is clearly W-invariant. Similarly as
with the notion of residual subspace we have that cy + iV’ is a (V, R, k)-
spherical tempered subspace if and only if ¢;, € V, is a (Vy, Ry, k1 )-spherical
cuspidal point. Therefore the determination of the spherical tempered spec-
trum reduces by induction on the rank of R to the determination of the spheri-
cal cuspidal points. In Section 3 we will show that A € V is a spherical cuspidal
point if and only if ¢(\, k;-) € L3(V, ug).

THEOREM 1.7. If R is an integral root system and ko = kg < 0 for
all o,B € R then for each residual subspace L C V the subspace cr, + iV is
spherical tempered.

This theorem follows from the work of Kazhdan and Lusztig on the geo-
metric classification of the irreducible representations of affine Hecke algebras
[18]. For A € Ve a distinguished point there is an easy criterion for A to be
spherical cuspidal. However for singular A the actual residue computation can
be very cumbersome. For all irreducible root systems with the exception of B,
and H; we have been able to give the classification of the spherical cuspidal
points. For type B, we can only handle the case of regular and subregular
points and for type Hy we left the singular distinguished points aside. All
these results are given in Section 4. As a consequence of the tables it follows
that Theorem 1.7 need no longer be true for R of type H or of type BFI (even)
with two possibly distinct negative coupling parameters.

Finally let us return to the case of the symmetric group acting on R"
by permutations of the coordinates. In this case with an attractive coupling
parameter k < 0 the > ; in the inversion formula (1.14) reduces to a sum
over the partitions of n. Each partition n = n; + --- + n, gives a separate
r-dimensional contribution to the spectrum. The interpretation is that each
group of m; particles is internally bounded and only its center of mass has
unbounded motion. This outcome was already obtained by Yang as a result of
his computation of the scattering matrix [36]. A mathematically more rigorous
derivation of this result was given by Oxford in his thesis [30]. From the point
of view of our paper the root system of type A,—1 is particularly simple because
singular distinguished points are absent. Of the other irreducible root systems
only the dihedral type I (odd) and the icosahedral type Hs have the same
simplifying feature.
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2. Graded Hecke algebras

We keep the notation of the introduction. For f € C*°(V) a smooth
function on V define I(a)f € C*(V) for a € R by the formula
&
(21) VGRS

4

(329
A f§—ta)ydt (£€V).

Let W act on C®°(V) as usual: wf(€) = f(w™€). Let au, ..., an be the set of
simple roots in Ry, and 71,...,m, the corresponding set of simple reflections.
Define operators Q(r;, k) on C*°(V) by Q(r;, k) = r; + k;I(c;) with k; = kq;.
An easy computation shows that Q(r;, k)2 =1.

THEOREM 2.1. If m;; denotes the order of the element rir; € W then
(2.2) Qrik)Qrs k) - = Qry R)Q(rak) ... (i #7)
with m; ; factors on both sides.

In the case of the symmetric group this result goes back to Yang [35]
and the general case is due to Gutkin [12]. An immediate consequence of the
presentation of W as a Coxeter group on the generators ri,...,r, (see for
example [4] or [16] for the necessary background on reflection groups) is that
for w € W with w =74, ... 7, a reduced expression, the operator

(23) Q(w7 k) = Q(riuk) s Q(Tipa k)

on C*° (V) is well defined independently of the choice of the reduced expression.
The map w — Q(w, k) defines a representation of W on C*®°(V). It is easily
verified that

(24) Q(ri, k)O(€) — 9(ri(€))Q(rs, k) = ki(€, )
for r; € W a simple reflection and £ € V.

Definition 2.2. The graded Hecke algebra H(R4,k) is the C-vectorspace
S(V.)® C[W] equipped with the unique associative algebra structure such that
S(Ve) ® 1 ~ S(V.) and 1 ® C[W] ~ C[W] have their usual algebra structure
and

(2.5) i & —ri(€) i = ki€, o)
for r; € W a simple reflection and £ € V.

This algebra structure was introduced independently by Drinfeld as the
degenerate Hecke algebra [9] and by Lusztig as the graded Hecke algebra [22].
In this paper we use the latter terminology. Observe that our notation differs
slightly from the one in [29]: positive and negative roots have been inter-
changed, and we use roots instead of coroots.
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COROLLARY 2.3. The map w — Q(w,k), & — 0(§) defines a representa-
tion of the graded Hecke algebra H(R4,k) on C*°(V).

To each f € C*®°(V) we associate a continuous function f, € C(V) by
means of the formula

(2.6) Fa(w™€) = Q(w, k) f(€)

for w € W and € in the closure of V. It is easy to see that fi is smooth
on Vieg and satisfies the boundary conditions (1.5) and (1.6) along the mirrors
UV,. Moreover f — fy is an injective linear map. Define an inner product
(+, )k on C*®° (V) depending on k by

@) (hoh =) =Y [ Q) f€Q0w Big@dus(©)

Here (-,-) denotes the ordinary inner product for functions on V. This
turns {f € C®°(V) | (f,f)r < oo} into a pre-Hilbert space. Consider the
*-structure on H(R,,k) defined by w* = w™! for w € W and &* = —wy -
wp(€) - wp for £ € V and extended to all of H(R4, k) as an anti-linear anti-
involution. Here wg € W is the longest element.

THEOREM 2.4. The representation of H(R4,k) on the space C(V k) =
{feC>®WV)| (B)f,0p)f)r < oo for allp € P(V)} is (pre)unitary.

Proof. As a consequence of the relations for the graded Hecke algebra (cf.
[29, Prop. 1.1]) we have

Qw)-8(§) - Qw™h) =0we) — Y ka(wE a¥)Q(ra)

a>0,wla<0
and

Q(wwo) - O(wo) - Qwow™) =d(we) — Y ka(wé,a")Q(ra).

a>0,w—1a>0

Hence for §,n € V and f,g € C*°(V) we get

Z{Q(w)a(f)f(ﬂ) (w)g(n) + Q(w)f(n )Q(wwo)a(woﬁ)Q(wo)g(n)}

- > {ewpe0w o) )@
+ Q(w)f<n>@<wwo>a<wos)cz<wow-1)W}
= 3~ {0006) (@) () QTIgT) + Q) (e QTlg) |
=2 X ka(wg a")Q(raw) f(mQw)g(n)

W a>0,wla<0
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3 S ka(wé, @")Qw) f()Q(raw)g(n)

w a>0,wla>0

= Y 0(we) (Q(w) f(m)Qw)g(m))

using the substitution w — rqw in the second term to obtain the cancellation.
Hence if { € V' and f, g € C(V, k) we get (writing hw (7) = Q(w)f(n)Q(w)g(n)):

D)9k + (f, Qwo)d(wol) Quo)g)k = . /V B(wE)hay (1) dpia ()
- /a iy ()6, ) )

by Stokes theorem. Here v is an outer normal and og the Euclidean volume
element for the boundary OV,. In turn this can be rewritten as

SN[ s 2

wzl +V°‘7,

S5 B ) SR RIS

—1ai>0

|>+ > byt z,)}dam)

| ;<0

and the two terms cancel when we use the substitution w — r;w in the second
term (taking into account that Q(r;)h = h on Vg, for h € C*(V)). O

The center of the graded Hecke algebra H(Ry,k) is equal to S(V.)".
Therefore the space E()\) = {¢ € C®(V) | d(p)¢ = p(\)¢ ¥p € P(V)W} car-
ries a natural representation of H (R4, k), which is called the eigenspace rep-
resentation of H(Ry, k) with spectral parameter (or central character) A € VL.
Note that E(X) = {3, pue" | p, is a W-harmonic polynomial Vi € WA}
has dimension |W|, and as a C[W]-module (by restriction of the module E()\)
to the subalgebra C[W] of H(R4,k)) it is equivalent to the regular represen-
tation of W. Indeed, this is obvious when £ = 0 and A is regular and the
representation theory of the finite group W only admits trivial deformations.

For A € V, regular one finds the expression

(2.8) (N k) = W[ Qw, k) (&) = W[ Y E(wA, ke,

Indeed, it is easy to check by induction on I(w) that
('lU)\, Of) + ka A
Qw, k)(eY) = { I
a>0,w~1a<0 (w)\’ a)

modulo terms e”* with v € W and v < w in the Brithat ordering. Hence
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the coefficient of e** in (2.8) is correct, and (2.8) follows by W-invariance in
the spectral parameter. Note that the function (2.8) is the unique spherical
vector in E(\) normalized to be 1 at the origin. The usual argument shows
that the H(R4, k)-module U(\, k) generated by the spherical vector (2.8) is
the unique submodule of E(X). In particular, U(A, k) is irreducible. It will
be shown in Section 3 (Corollary 3.8) that the spherical vector ¢(\, k;-) is in
L2(V,ug) if and only if A is a spherical cuspidal point. Theorem 1.7 therefore
states that if R is integral and the root labels are equal and negative then all
distinguished points give rise to a spherical cuspidal module U (A, k) for the
graded Hecke algebra. As was mentioned before, this is not true in general.
One might conjecture that it is still true in general that distinguished points
correspond to the existence of cuspidal subquotients of E(A) which are no
longer necessarily spherical. Indeed, when )\ is regular it is not hard to show
this using Rodier’s theorem [33].

The content of Theorem 1.2 from the introduction is clear now. The
above also justifies the statement made right after this theorem about the
reduction of the case of general wave functions to the case of W-invariant ones.
Indeed the additional knowledge required is the C[W]-type decomposition of
the irreducible modules U (), k).

3. The contour shift

Let V be a real Euclidean space of dimension n and V, its complexification.
Let 'H be a finite affine hyperplane arrangement in V. For each H € H choose
(k) € V x Rsuch that H ={{ € V | (§,ay) = ku}. Let £ denote the
lattice of intersections of elements from H, ordered by inclusion (and containing
V itself). For L € L the center ¢y, is defined as the unique point of L with
minimal distance to O = cy. Write C = {cr, | L € L}, and let V' be the linear
subspace of V such that L = ¢, + VL.

Let w be a rational n-form on V. with poles in UH, only. Fix an orientation
on V (with an induced orientation on v+ 3V for all v € V\UH), and consider
the linear functional

(3.1) Xy, : PW(V,) = C, Xy (F)= / Fu
y+iV

on the space PW(V,) of Paley-Wiener functions on V, (which are rapidly de-
creasing in the imaginary direction and of exponential type in the real direc-
tion).
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LEMMA 3.1. There exists a unique collection of tempered distributions
Xc (c€C) on iV such that

(1) supp(X,.) C UiVE (union over L € L with cf, = c),

(2) X, has finite order,

(3) Xy (F) = Yoce Xo (F(c + ‘)> for all F € PW(V,).

Proof. The existence follows by induction on n = dim(V'). If n = 0 there
is nothing to prove. Suppose the lemma holds for dim(V) = n — 1. Choose a
path in V from = to the origin which intersects each H € H transversally in at
most one point yy. We may assume that vy ¢ H' for all H' € H, H' # H if
v # O. When we pass a hyperplane H at vy we apply Cauchy’s theorem to
obtain an extra contribution of the form (with d 4 1 the pole order of w along
H):

Z'XH’)’H 8(@[—[ F|Hc)

with
G / Gw;
XKo@ = [ Gy

for some rational (n — 1)-form w; on H, which is regular outside Uprxp
(H' N H).. The induction hypothesis takes care of these contributions. Fi-
nally when we approach O along the path we have to take a boundary value
of a meromorphic function with moderate growth.

We now prove the uniqueness. Suppose we are given a collection of tem-
pered distributions Y. (c € C) on iV such that

(1) supp(Y.) C UiV (union over L € £ with cf, = ¢),

(2) Y. has finite order,
(3) Deec YC<F(c+ )) =0 for all F € PW(V,).

We show that Y, = 0 for ¢ € C by induction on |c|. Assume ¢ € C and Y =0
for all ¢ € C with |/| < |¢|. For each L € L with ¢;, # ¢ and |er| > || we
can choose (8r,lr) € V x R such that (L,0) =l and (¢, 1) # lr. Hence
the polynomial p(-) = [1((-, Br) — I1) with the product taken over all such L
satisfies p(c +i\) # 0 for all A € V and p(L;) = 0 for all L € £ with ¢, # ¢
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and |cr| > |c|. Hence if N € N is large enough we get for all F' € PW (V,):

0=Y" Yc/(pNF(Cl-i- ~)> = Yc<pNF(C+ '))

cec
which in turn implies Y, = 0. O

Remark 3.2. We call X, (c € C) the local contribution at ¢ for the contour
shift of the integral (3.1). If U € V is a ball containing C and ~y then it is clear
that the above lemma also holds for functions F' of the form F = rG with
G € PW(V,) and r rational and regular inside the tube U + V. This can be
used to calculate the local contribution X, at ¢ as follows. Let U be a small
ball with center ¢ such that HNU = () for H € H with ¢ ¢ H. Let v/ and O’
be the images of v and O under a central contraction with center ¢, such that
7', O' € U. When we take paths from v to 7' and from O to O’ and carry out
the contour shift as in the above lemma we will get no contributions to X..
Indeed, by choosing appropriate paths we only pass hyperplanes H € ‘H with
c ¢ H. It follows that we can calculate X. by applying Lemma 3.1 to

/ F'W'
v 4V

with respect to the new origin O’. Here w = rw’ with r regular inside U + iV
and containing all poles of w outside U + iV, and F’ = rF. The conclusion is
that in order to calculate the local contribution X, it suffices to consider the
associated central arrangement {H € H | ¢ € H} only.

LEMMA 3.3. Let H = {H} be a finite hyperplane arrangement in V,
L = {L} its intersection lattice, and C = {c, | L € L} the centers as before.
Assume that for each L € L one has c;, € H for some H € H if and only
if L C H (in particular O = cy lies outside UH). If H' = {H € H |
H separates v and O} and H" = H\H/, then for ¢ € C, X. = 0 unless c €
Ynen Rycrm + X genr R-cp.

Proof. By the previous remark it suffices to consider the case that H
is a central arrangement with center c. Moreover we can also assume that
NH = {c}, and that w has the form
_ dX

(O an) — kg)t=

for certain integers dy > 1. In fact we can assume that dy = 1 for all H, and
UH is a divisor with normal crossings. Indeed, the differential form

_ dA
My T2 (N o) — ky — jen)’

(3.2) w

We
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with € = (eg) € R™ a perturbation parameter, satisfies

lim Fuw, = Fuw

=0 Jy4iv YV
for all FF € PW(V,). For € generic this reduces (again by Remark 3.2) to the
case that UH is a divisor with normal crossings and w a form with simple poles
along H.

Let D = {D} be the hyperplane arrangement centered at ¢ dual to H:
DeD& ceDand DLL for some L € L with dim(L) = 1. Again UD is a
divisor with normal crossings. Both VA\UH and V\UD consist of 2" connected
components (called hyper-octants), which are open convex simplicial cones.
These two sets of hyper-octants are in natural duality. Clearly the outcome
of X, as far as v is concerned depends only on the hyper-octant C; of V\UH
containing v (Cauchy). On the other hand if the origin moves in the hyper-
octant Cy of V\UD containing O then the points ¢y move on UL without
confluence. This implies that as far as O is concerned, X, depends only on the
hyper-octant Cy (Cauchy). Also observe that it follows from our assumptions
that O actually lies in the complement of UD.

We claim that the local contribution X, = 0 unless C; and Cy are antidual
hyper-octants: ¢+ A € Cj for some A € V & (A, u) < 0 for all 4 € V with
c+ p € Cy. Indeed if Cq and Cs are not antidual then there exists L € £ with
dim(L) =1 and ¢y, € C1\{c}. Let D € D with D_LL and D’ the hyperplane in
V through cy, parallel to D. Following the path [y, c1]U[cr,, O] the computation
is reduced to one in the hyperplane D’. The only residues possibly picked up
under the contour shift are those whose centers lie in D’. Hence X, =0. 0O

Remark 3.4. In the notation of the proof of the lemma suppose that
(v, ag) < ky for all H € H and that UH is a divisor with normal crossings such
that NH = {c}. Number the elements of H and assume the basis {ay | H € H}

is positively oriented with respect to the fixed orientation on V. When we take
-1/2

for dX the positively oriented Euclidean n-form (det(a Hy Q) Ag dag,

the outcome of the local contribution X, in the case where C; and C5 are
antidual hyper-octants is given by (with w given by (3.2) and dg = 1 for all
H):

-1/2
(3.3) X, (F(c + .)) — (—2mi)" (det(aH, aH/)) Flo)
for all F' € PW(V,). For example for n = 1 we have indeed
[y, (FOY [ Elk:

ifa>0and y<c=k/a<D0.
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Now let us consider the Fourier-Yang transform

(3.49) FOLN) = [ fme(->kyimdus(n)
nev
for f € C°(Vzeg)", and the candidate inversion operator
_ —-n \E) dpg(Im))
(35) TWFEQ = @n™ [ PO LIRS

for F € PW(V.)V. Here ¢ € V; and v € V_ far away from walls, and J (k) F is
extended to all of V as a W-invariant function. For f € C2°(V;e)" it is clear
from the Euclidean Paley-Wiener theorem that F(k)f € PW(V;). Moreover
if IC(k) denotes the composition [J (k) o F(k) then K(k)f is smooth on V. As
in Helgason’s proof of the Paley-Wiener theorem for Riemannian symmetric
spaces [15], sending v off to infinity shows that the support of (k) f has to be
contained in the convex hull of the support of f. Suppose now that we are in
the repulsive case ko > 0 for all @ € R. In this situation we are also allowed
to simply shift v towards the origin without picking up residues. It is easy to
see that we may now rewrite (3.5) as follows:

(36) TWF© = [ FOSOkiE)dur(Y)
by the W-invariace of F' and pp. From (3.6) we easily derive the formula
(37) (K)f.0) = [ F)FNF Rl dup()

for f,g € C°(Vieg)", which shows that K(k) is a (formally) symmetric op-
erator. Together with the above mentioned Paley-Wiener theorem this shows
that in the repulsive case K (k) is a support-preserving operator. By Peetre’s
theorem [31] we now know that KC(k) is a differential operator on Vieg. It is
clear that K(k) commutes with all W-invariant differential operators on V,
and therefore IC(k) is itself a constant coefficient differential operator. Finally
a scaling argument shows that K(k) = Id. This proves Theorem 1.3. For more
details on this argument of van den Ban and Schlichtkrull, see [2], [14], [13]
and [29].

Let us now return to the general, not necessarily repulsive case. Clearly
the formulas (3.6) and (3.7) are no longer valid because we have to take into
account the residues that one picks up when moving the contour of integration.
However the inversion formula still holds:

PRrROPOSITION 3.5. K(k) =1d for allk € K.

Proof. 1t is easy to see that J(k)F is holomorphic in k (for all F' €
PW (V)W fixed) and that F(k)f is a polynomial in &k (for all f € C°(Vieg)"”
fixed). Hence the general result follows from the repulsive case. O
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In the remainder of this section we shall derive the formulas that replace
(3.6) and (3.7) when we are dealing with the purely attractive case ko < 0 for
all & € R. Hence from now on in this section we shall assume we are in the
purely attractive case. We are going to study the linear functionals X. and Y,
on PW(V;) defined by (v € Vieg):

(cf. (3.5)) and
. falf)= /A67+z'v F(A)g(%—gl%\?ﬁ

Let H, = {A €V | (\,a) = ko} for @ € R, and put H = {H, | @ € R}.
Clearly H = Hy UH_ with Hy ={Hy |a € Ry} and H_ = {H, |a € R_}.
Write £, L4 and C, C4 for the intersection lattices and their centers of H and
H respectively. Clearly H, £, and C are W-invariant, and CNV_ =C, NV_
(indeed, H,NV_ = @ for a € R_ since k, < 0). For ¢ € C let X, and Y, denote
as before the local contributions of (3.8) and (3.9) at ¢ (with the convention
Xc.=0for c € C\C4). For c € V let W, denote the stabilizer subgroup of ¢ in
W, and let A, denote the following operator on meromorphic functions:

(3.10) AF(N) = W[ Y &(wh, k)F(wA).

weW,
Notice that if F' is holomorphic on a small tubular neighbourhood U + iV of
¢+ 1V then A.F also extends holomorphically on this tubular neighbourhood
U+iV.

PROPOSITION 3.6. ForceCNV_ andw € W,

(3.11) Xpe=Yeow ! o Aye.

Proof. Clearly both sides of (3.11) depend only on the left coset of w mod-
ulo W, and therefore we can assume w to be a minimal length representative
in this coset. The segment [y, wy] only intersects those H, € H4 for which
w~la € R_. For these o’s we get (we,a) = (c,w™la) > 0 since ¢ € V_, and so
we € H,, since kq < 0. Hence the local contributions of Xy, and Xy, at wc
are the same. On the other hand the local contribution of Yy, at wc is equal
to Y, o w1 with Y, the local contribution of Yy, at c. Therefore it suffices to
show that

Xv,w,yl = YV,'w'y’ [0 ch

if 4/ is a point of the form 7/ = ey+ (1 —¢)c with € very small (cf. Remark 3.2).
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Now if F € PW(V,) then:

dpp(Im))
X ;= bt 7
v /m'+z'v F) é(—\ k)
_ dup(ImA
= |W,| 1/ f‘E( m)\)
Une Waye (vwy' +4V) é(=2A, k)
- . dpp(ImA)
— W / &0\ k) F(\) ——HECDY)
Wl ety VG oA, B

dpg(ImA)
- ApcF( ) —M——"—
Lo 5 F O AT
= YV,wy’(chF)-

Here we have used the fact that all points vw~’ lie in the same connected
component of V\UH,, (union over o € R, for which ¢ € H,), and that A,.(F)
is holomorphic near wc+ ¢V. This completes the proof of the proposition. [

COROLLARY 3.7.  For c € C, write _V° = 3,50, (a,c)=k, R—. Observe
that _ V¢ C _V if _V denotes the closure of the antidual _V = YasoR-a
of the positive chamber V. Let c € CNV_ and w € W with we & _V™¢. If
A € c+supp(Ye) then AwcF(wA) =0 for all F € PW(V,).

Proof. Suppose AycF(w)) # 0 for some F € PW(V,). Then the
We-invariant distribution A,.F(w(c + -))Y.(-) does not vanish identically on
iV, and therefore Y, (AycF(w(c+-))G(w(c+-))) # 0 for some G € PW (V,)Wee,
However, if we & _V™¢ then

Yo(AuweF (w(c+))Gw(c+1)) = Ye(w ™ (Auwe(FG))(we+ -))
= Xuc(FG(we++)) =0
by (3.11), and Lemma 3.3. It should be remarked here that we have not checked
the validity of the technical assumption on the hyperplane arrangement that is
necessary in order to apply Lemma 3.3. This verification is not straightforward

and depends on our classification of distinguished points. This point will be
addressed in Remark 3.14. O

COROLLARY 3.8.  Write the wave function ¢p(\k;€) for € € Vi as
(3.12) SAKE) = D alpki)ed

HEW A
with a(\k;€) € PV a W,-harmonic polynomial given by

. — =1y - (w57£)
(3.13) a(pks€) = W]~ lim ;, &(p + we,k)et ™.
weWu

If X € c+supp(Ye) for c € CNV_ then a(uk;) = 0 for all p € WX and
Re(u) ¢ _V*™¢ (in particular, ¢(\,k;€) has at most moderate growth in ¢ in
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this situation. If A = ¢, a distinguished point for which Y, # 0, then ¢(\,k;€)
even has exponential decay).

Proof. Let A € ¢+ supp(Y,) for c € CNV_ and w € W with wec ¢ _V¥°,
Choose F € PW (V,)Wwe with F(w)) # 0. By the previous corollary we get
forall £ € V:

0= Auwc(F()et) (wX) = F(w)) Y a(y, k; €)el®)

with the sum over all g € WA with Re(u) = we. Hence a(u, k;-) = 0 for all
such . 0

At this moment we only know that Y, is a distribution with support con-
tained in WiV'' (union over L € L with ¢, = c). The following two results
play a crucial role to arrive at the conclusion that Y. is in fact a nonnegative
measure. Recall the concepts of residual subspace and distinguished points in
V' as given in Definition 1.4.

THEOREM 3.9. If M CV is a residual subspace then
(3.14) #{a€ RL\Ry | (L,a) = ko} < #{a € RL\Ry | (Lya) =0} + 1
for each affine subspace L C M with dim(L) = dim(M) — 1.

THEOREM 3.10. For L CV a residual subspace, —c, €W (Rp)cr,.

Apparently if M C V is a residual subspace and L C M is an affine
subspace of codimension one then L is residual if and only if

(3.15) #{a€ R \BRym | (L,a) =kq} =#{a € Rt\Rym | (L,a) =0} + 1.
By induction on codim(L) it follows that
(3.16) #{a€ Ry | (L,a)=ka}=F#{a € Ry | (L,a) =0} + codim(L)

for each residual subspace L C V, and in particular for L = {c} a distinguished
point we find

(3.17) #{a€R|(c,a) =kq} =#{a € R | (c,a) =0} +n.
Remark 3.11. It is quite likely that for all points c € V,
(3.18) #{aeR|(c,a)=kot <#{a€R|(c,a) =0}+n

with equality if and only if ¢ is a distinguished point. For R an integral root
system and ko = kg for all o, € R this can be derived from Richardson’s
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dense orbit theorem [6, Ch. 5]. In turn this would imply that for each subspace
LcV,

(3.19) H#{aeRr|(L,a) =k} <#{a€ Ry | (L, a)=0}+ codim(L)
with equality if and only if L is a residual subspace.

Remark 3.12. It is also quite likely that the map L — ¢y, is a bijection
between residual subspaces and their centers. Once again, for R integral and
ko = kg for all o, 8 € R this is known to be true.

In the next section we shall carry out the classification of the finite set of
distinguished points for each of the irreducible root systems case by case, and
thereby obtain a proof of the above theorems by inspection. In principle it
should be possible also to check the questions posed in the two above remarks
by a case by case analysis. However the work becomes still more elaborate,
and since the results of Theorem 3.9 and Theorem 3.10 are sufficient for our
purposes we have put these questions aside.

THEOREM 3.13.  For ¢ € CNV_ the local contribution Y, of (3.9) at c
can be written as

(3.20) .= ) Y
LeLl,cr=c

with Y7, an analytic measure on iVY, and Y;, = 0 unless L is a residual
subspace. If Yg, ., denotes the local contribution at the Ry -distinguished point
¢ = cr € Vi, of the lower rank integral Yg, v, ~, and Yr, ., ({0}) denotes its
total mass, then

(3.21)  Yi(F) = Yrpe,({0})

; (cr,a)? + (\a)?
" //\EVL F(’L}\) aelg[\RL (CL,a) - ka)2 + ()\,a)zdﬂE()\)

for all test functions F on iV (here ug denotes the Lebesque measure on V%).

Proof. 1t is clear from the proof of Lemma 3.1 and by Theorem 3.9 that the
only L € L for which nonzero residues are picked up are the residual subspaces.
Now let L be a residual subspace with ¢;, € V_ (and let Ry, V = Vi, @ VI,
L =cp + VT, be as before). For A € VL

H (cL +iX )

3.22
(3:22) (cL + i\, &) + kg

a€R\Ry,
. (e + 1A, @)

- aell;\[RL (cp + i\ o) — ko
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((er, @) + i\, @) (e, —a) + i(\, —))

= aefg\RL ((ep,@) — ko + (N, @))((cp, —0) — kg +i(A, —a))

(

(

((ez, @) +i(A @))(

11 (
(

(

(
(
(cr,wra) — (A, wra))
(cL,wra) — ko — (A, wLa))
(

(

((e, @) — ko + (A, @)

- I ((cr, @) +i(\ @) ((cr, @) = i(\, @)
((en, @) — ko +i(N, ) ((cr, @) — kq — i(A, @)

a€R\RL,

a€R\RL,
M o wePeo?
a€R4\RL ((CL, Oé) - ka)2 + ()\, 05)2 -

since the longest element wy of W(Ry) satisfies wrer, = —cp (by Theo-
rem 3.10), wyA = A and wr(Ry\Rr) = Ry \Rr. We claim that the expression
(3.22) is smooth for A € VE. If B2 = {a € R{\Ry | (cr,a) = 0} and
RE ={B € R{\Ry. | (cL,B) = kg} we have to show that the function

II e IT A3~

aERj_ ﬁeRi

is smooth for A € VL. The only way this can happen is for the denominator
of this rational function to divide the numerator. Writing VI = {\ € VI |
(A\,a) = 0} for @ € R\Ry, we have V' = V{ & 8 € (RN (Ra + Vi))\RL.
Hence the parabolic subsystem S = (RN (RS + VL)) of R (containing Ry, as
a corank one subsystem) for 8 € RE is the relevant root system to consider
for the above question of divisibility. Replacing R by S we can assume that
dim(VL) = 1, and the divisibility holds if and only if #(R%) > #(RE). By
Theorem 3.9 we have

#{B € R\Ry | (cr,B) = kg} < #{B€ R\Ry | (c1,B8) =0} +1

and since —wy, fixes cf, and interchanges R4\ Ry, and R_\ Ry, we find 2#(RE ) <
2#(R%) + 1 & #(R2) > #(R%). Hence (3.22) is smooth indeed for A € V£,
When we actually carry out the contour shift in (3.9) by moving v through
the hyperplanes H € H with L € H it suffices by the above to only con-
sider the local contribution Yg, ., of the lower rank integral Yg; v, , at the
Ry -distinguished point ¢ = ¢;, € Vi. If this is a measure with support at
the origin of Vi, then clearly Y7, is given by (3.21). In the remaining case of
a distinguished point the inequality (3.17) ensures that the local contribution
is indeed a measure with support in the origin (cf. Algorithm 3.15), and this
finishes the proof of this theorem. O

Remark 3.14. If LGM are both residual subspaces then |cz| > |ca| (in
particular ¢y, # cpr). This is clear from the fact that (3.22) is smooth for
X\ € VL. This justifies the use of Lemma 3.3 in the proof of Corollary 3.7.



158 G. J. HECKMAN AND E. M. OPDAM

Algorithm 3.15.  Assume c € V_ is a distinguished point. If R* = {a €
R | (c,a) =0} and RP = {B € R | (¢, ) = kg} then #RP = #R* + n with
n = dim(V). The local contribution Y. of (3.9) at ¢ can now be computed
by induction on #R?. The case #R? = 0 yields a residue computation for
the normal crossings situation as dicussed in Remark 3.4. If #R? > 1 then
take oo € R* and write a = Y ¢;08; with ¢; € R and {fi,...,08,} C RP a
basis of V. Substitution in the integrand yields a sum of at most n similar
local contribution computations but with #R? diminished by one. Iterating
this procedure we can therefore compute the local contribution Y, as a sum
over at most n#f° normal crossings situations. In principle this algorithm for
computing Y, is simple , but in practice it can be very cumbersome (if #R? is
large). For example if R is of type Eg there exists a ¢ with #R? = 32.

Ezxample 3.16. Let ¢ € V_ be a regular distinguished point, and put
B={8€ Ry |(c,8) =kg}={b1,...,0n}. If we write

(3.23) c=UPi+ ...+ b

with I1,...,l, € R then Y, = 0 unless l1,...,{, < 0. In the latter case we find
using Remark 3.4 that for all FF € PW(V,.):

(=2m)"F(c) [Taxo(c, @)
(det (i, 8))1/2é(c, k) [1ger, \B((c, B) — kg)

(3.24) Ye(F(e+:) =

Notice that dug(Im) is the measure associated to the n-form (—2)"dA\.

Definition 3.17. For L C V a residual subspace vy, is the unique measure
on V, with support inside cr, + iV’ and also formally denoted by

(3.25) vy = (—27ri)00dim(L)resL(;up),

characterized by [ Fdvy = (2m) ™Y (F(cg+")) for all F € PW (V.) ifc, € V_
and by the requirement that vp = "; vy, is a W-invariant measure.

The next theorem will give a proof of formula (1.14) when combined with
Proposition 3.5.

THEOREM 3.18. For F' € PW (V)W the inversion operator (3.5) can be
written in the symmetric form

B2 IJWFO=Y L FOSORE)d ).
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Proof. Indeed, for F € PW (V)W and ¢ € V.

JkFE) = @m™ Y XC<F(c+-)e(C+'v5))

ceCy

= e ¥ (5 Aw(Pluler o))
cecnv_ weW/We

= @™ 3 1@<F(c+~>|wc|‘1 Zé(w(c+-),k)e(“’(°+')’f)>
ceCnV_ wew

= e D Wh(Fes o+ o)

ceCNV_ cl

= e X {5 (R ot ki) )

cecnV_ ~ Lyer=c

=3 / FONGO ks €)dvr (V)

which proves the theorem. d

COROLLARY 3.19. For f,g € C°°(V}eg)W’

620 [ FO0Ohe© =3 [ FOINFEINdr ).

Proof. Theorem 3.10 implies that ¢(\, k; &) = ¢(—\, k; €) for A € cp+iV'L.
Now use Proposition 3.5 in order to write

[ 1©5@dus©) = [ (K®)1©)s@due)
v 1%
= [ (sw(F®1©) )a@dus(e)
Now use the previous theorem and change the order of integration (which is

allowed as one easily checks). O

In order to complete the proof of Theorem 1.5 it remains to be shown
that the measures vy are nonnegative. This will also allow us to interpret
Corollary 3.19 as a Plancherel formula. From the positivity of (3.22) it follows
that it is sufficient to show that v, > 0 for ¢ a distinguished point.

THEOREM 3.20. If c is a distinguished point and v, # 0 then ¢(c,k;) €
L2(V,ug) and

(328) Z Vd({d}) = (¢(c,k;-),¢(c,k;-))_1

deWe
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Proof. By induction on the rank of R together with the positivity of (3.22)
we may assume that vz, > 0 for all L a residual subspace with dim(L) > 1.
Let ci,...,cy be the set of distinguished points in V_ with v, # 0, and
put ¢; = ¢(ci, k;+) for i = 1,...,N. By Corollary 3.8 we know that ¢; has
exponential decay, and in particular lies in L?(V, ug). Put

R = {feCCWVie)V | (f,0:)=0 Vi=1,...,N}.

Now it follows from (3.27) that if {f,} is an L2-converging sequence in CZ}
then the sequence {F(k)fnl|.,4ivz} converges in L%(cp + iV, vp) if L is a
residual subspace of positive dimension for which vy > 0. And of course we
have that F(k)fn(c;) = 0 for all ¢ by the very definition of C2j. We can choose
S () Vieg)" such that (¢,¢7) = §; ;. Indeed, choose gb’ E COO(V}eg) such
that (¢z, ¢>7) is a nonsingular matrix, which is possible by choosing ¢* close to
¢; in L2(V, ). Now take the basis dual to the linear functionals (-, ¢;) in the
space @;C¢ = CN,

Choose a sequence { fin} C C°(Vieg)" such that ¢ f; , — ¢¢; in L2(V, up)
for each function ¢ which has moderate growth (we can do this because ¢; has
exponential decay). Then F(k)fin(A) — O for each A\ € ¢ +iVF if L is a
residual subspace of positive dimension for which v;, > 0. We claim that in
fact F (k) finle, 1ove — 0 in L?(cg, +iVE,vp) for such L.

To see this consider the sequence fz n="Fin—2_;(fims ¢;)¢’ € C3 o0 converg-
ing to ¢;— (¢, ¢;)¢* in L?(V, ug). Hence the sequence {f(k)fz,n|cL+WL} con-
verges in L?(cg, +iV%,v1). Therefore the original sequence {F (k) finlc, vz}
has to converge in L2(cr, + iV, vp) as well.

On the one hand (f; n, fin) — (¢i, ¢:), and on the other hand (f; n, fin) —
|W/ W, |ve,({ci}) (@i, ¢i)%. This proves the theorem. O

Remark 3.21. It follows that the Fourier-Yang transform extends to a
unitary injection of Hilbert spaces

2 F (k) 2 2 y7L W
3:29) (Vi) o D)V = (@ L+ V)
L

with the direct sum taken over those residual subspaces L for which vy > 0
as a measure on cr, +1VL. Tt is quite likely that (3.29) is in fact a unitary
isomorphism of Hilbert spaces.

Ezample 3.22. Define the vector p(k) € V by

(3.30) 2p(k) = Y koo =li(k)ay + - - + ln(K)an

a>0
with {a;} = B a basis of simple roots and /;(k) € R_. Now it is easy to see
that p(k) is a distinguished point, and

(3.31) d(p(k), k, &) = eP®E)  forall ¢e V.
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This wave function is square integrable as it should be since v,4) > 0 by
direct computation. The L?-norm of this function can be computed in two
different ways now. The first way is a direct evaluation using the formula
I e!®dx = —1~1if | < 0. The second way is by doing the residue computation
at p(k) as in (3.24) and using (3.28). Comparison of the two answers yields a
nontrivial identity. In case R is a normalized root system and k, = kg for all
a, B € R one finds:

ht(a)

(3.32) det (s, 05)l1 ... ln = W] ] ht(a) — 1

a€R+\B
with 2p = > s oa = > ; lias, and ht(a = Y, w504) = Y ; x;. For R integral
this identity is an exercise in [4, Ch. VI, Sec. 4, Ex. 6] with the invitation to
the reader to do the excercise case by case!

Remark 3.23. For R of type BFI (even) we have two independent cou-
pling parameters, one for each orbit of roots. We hope that the method of this
section can be suitably adapted so as to cover also the case with one positive
and one negative coupling parameter.

4. Distinguished points and spherical cuspidal points

In this section we will classify the distinguished points for each of the
individual irreducible root systems case by case. The method uses induction
on the rank of R, and therefore the collection of residual lines is assumed to
be known. Now for each point L on a given residual line M we just verify that
(with Ry, = R):

#{a € RI\Ry | (Lya) = ko} < #{a € RI\Ry | (L,a) =0} +1
and the points L € M for which equality holds are by definition the distin-

guished points. This is how Theorem 3.9 is proved, and in the end Theo-
rem 3.10 is easily checked by going through the list of distinguished points.

PROPOSITION 4.1. Let V = R™ with standard basis eq,...,en. Let R =
R(An-1) = {a € Z" | (ma) = 2, (o, X&) = 0} = {ei —¢; | i # j} and
W =W (An—1) = Sn. For k € K, k # 0 there are no distinguished points and
up to the action of Sy there is just a single residual line

(4.1) L={z=Mmk+t(n—1k+t,....k+1t)|teR}

Proof. The first statement is clear since the rank of R is n — 1. By induc-
tion on n it follows that the residual planes are conjugated by S, to planes of
the form

M={z=@pk+t,p—Dk+t,....k+tgk+s,....,k+s)]|s,teR}
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with p,q > 1 and p + ¢ = n. Observe that Ry has type A,_; + Aq—1 and
R\Ry = {£(es —¢j) | 1 <i<pp+1<j<n} Thelines L in M to be
analyzed are those for which ik +t—jk—s=k < s=(i—j— 1)k +1t for
some i=1,...,pand 7 =1,...,q. Assume that exactly r coordinates of the
first p and the last ¢ coordinates coincide for some r > 0. Then we find that
#{a € Ri\Ry | (Lyo) = kot =r+1(ifr<p,r<gq),r (ifr=p,r<gqor
r<pr=gq),r—1(@Gifr=p=ygq), and #{a € RL\Ry | (L,a) = 0} = 2r.
Clearly r +1 < 2r + 1 with equality if and only if » = 0. Hence the only
distinguished line we find up to the action of S, is (4.1) O

Definition 4.2. Let V = R™ with standard basis eq,...,e,. Let R =
R(By) = R(Dp) U {%ey1,...,xen} = {a € Z" | (a,&) = 1 or 2} and W =
W (By,) = C¥xS, the hyperoctahedral group. The coupling parameter (k,k') €
K with k = ke,+e; (i # j) and k' = ke, is called generic if

2(n—1)
(4.2) k' [ (k+2K")(jk —2K') # 0.
j=1

PROPOSITION 4.3.  For generic coupling parameters the distinguished
points of type By, are conjugated under the action of W to the points

(4.3) c(NEE) € R, c(\kE )y = c(x)k + K

where X\ ranges over the set of partitions of weight n and x = (i,j) € X\ ranges
over the set of boxes of A. If A= (A1,... . A\p) with Ay > Ao >--- >N\ >114sa
partition of length [(X) =1 and weight |\| =Y \; = n then we identify A with
its Young diagram (with A1 bozes in the first row, Aa bozes in the second row,
etc.). For z = (i,j) € A& 1 < j < \; the number c(z) := j—i is the content of
the box x. For example, if A\ = (5,4,4,1) then c(\k,k') = (4k + k' ,3k + k' 2k +
K 2k+k k+K k+K k+Kk KKK ~k+k,—k+k,—2k+k,—3k+k) c RY.

Diagram A
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Proof. By induction on the rank we have to consider the situation of a
parabolic subsystem of type A,_1 + By with p+ ¢ =n.

We have to consider a diagram as indicated below, composed of a Young
diagram with ¢ boxes and a folded strip of p boxes. Let m; be the multiplicity
of the content i in the boxes of this new diagram.

Young diagram with
q boxes

| 1]

L

folded strip with p boxes

Diagram B
Now with c¢(k, k") € R™ as before,

#{a € R| (c(k, k), 0) = ka} =m0+ Y mimis1

and

#{a € R| (c(k,K'),a) = 0} = 3 _mi(m; — 1).

Therefore we verify that
mo + Zmimiﬂ <n+ Zml(ml -1 = ng

with equality if and only if the new diagram is a Young diagram (i.e., mj;1 =
m; or m; —1if 4 > 0, and m;_1 = m; or m; — 1 if ¢ < 0). This is an immediate
consequence of the following lemma. O

LEMMA 4.4. Let m; € N for i € Z with m; =0 for |i| large. Then,

max(m;) + Zmimi+1 < me
B i

with equality if and only if (say mo = max(m;) by shifting the index set)
mir1 =m; or m; — 1 if 1 >0, and mi_1 =m; or my — 1 if i <O0.
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Proof. Since 23, m? — 2%, mimit1 = >;(m; — miy1)? the statement
follows from

A2+ +F+->at+btct-

if a,b,c,... are integers, with equality if and only if a,b,c,... € {0,1}. O
PROPOSITION 4.5. If k' = (¢ + %)k, k # 0, for some ¢ =0,1,...,p and
m= (mp+%, e ,m%_) € NP1 with |m| = 3, m; = n then the point
1 1 1 3.1 1
4. EE) = =)k, ... = —)k,...,=k,=k,...,=k
( 4) C(m, Y ) ((p+2)k’ ’(p+2)k’( 2)k7 ’2 72 b )2 )
N ———
m, +_%_ times m% times
e R"

is distinguished if and only if m;t1 = m; or my — 1 for i > q + % (with the
convention that my 1= 0 and m; =0 for i > p-i-%) and m;_1 = m; or m;—1
for i = %, R % All distinguished points for these coupling parameters are
obtained in this way up to the action of W.

PROPOSITION 4.6. If k=0, k0 (R of type D) and m = (my,...,mo)
€ NP with |m| = n, then the point

(4.5) c(m,k,0) = (pk,...,pk,(p—1)k,... .k, 0,...,0) € R"
NS — N —
myp times mg times

is distinguished if and only if mp, =1 and m;1 = m; or my —1 for i > 1 and
mo = [3(my + 1)]. All distinguished points for these coupling parameters are
obtained in this way up to the action of W.

PROPOSITION 4.7. If k' = gk, k # 0, for some ¢ = 1,...,p and m =
(mp, . ..,mo) € NPT with |m| = n then the point (4.5) is distinguished if and
only if mp =1 and m;y1 =m; or m; — 1 for i > q and m;—1 =m; or m; —1
fori=2,...,q and my = [%ml] All distinguished points for these coupling
parameters are obtained in this way up to action of W.

The proofs of these propositions are similar to the proof of Proposition 4.3,
and therefore will be skipped. The case k' = —%—k corresponds to the split
Cp-case, and k' = k corresponds to the split B,-case. For these two cases the
outcome can be compared to the results of [1] or [6, pp. 174-175]. For type Ej,
the list of distinguished points can be derived directly from the tables in [6,
pp. 176-177]. For k # 0 there are 3, 6 and 11 distinguished points for n =6, 7
and 8 respectively (modulo the action of W).
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Definition 4.8. For R of type Fy let k = k,, for o long and k' = k,, for o
short. The coupling parameter (k,k') is called generic if

(4.6) kK (3k+K)(2k £ K')(3k £ 2K')(k + k') (5k + 6K)(3k £ 4K")
-(2k £ 3K')(3k & 5k") (k & 2k") (k + 3K") (k + 4K") (k £ 6K") # 0.

PROPOSITION 4.9. For generic (k,k') of type Fy there are 8 distinguished
points as given in Table 4.10 (with a1 = e1 — e, e = €2 — €3, a3 = €3, A4 =
%(—el —eg—e3+ey) the simple roots and wy = e1+ey4, wo = e1 +ex+2e4, wg =
e1 + ez + es + 3eq, wy = 2e4 the dual basis of fundamental coweights). For
nongeneric (k,k') there are no distinguished points other than those obtained
as the limit of a generic distinguished point.

The proof is by direct (though rather lengthy) computation, and will be
skipped (since it does not seem to be very instructive).

Table 4.10. The distinguished points for type Fj.

No. c(k, k') c(k, k") distinguished iff
1. kwy + kwy + K'ws + K'wy (2k + 3K")(3k + 4K')
(3k + 5K')(5k + 6K’) # 0
2. kwi +kws+ (—k + K)ws + K'wy (k £ 6KYK' #£0
3. kwi+kws+ (—k+ k/)w3 + kwy (3k + Qk’)(k + 3]47’)

(2k + 3K')(3k + 4k') # 0
(2k — 3k')(3k — 4K')

(3k — 5k')(5k — 6k) # 0
(3k £ 2k/)(k £ 3K') # 0

4. kwy + kwy + (—2k + k' ws + K'wy
5. kwy + kwy + (—2k + K )ws + 2kwy
(3k — 2K) (k — 3K

(2k — 3k")(3k — 4k') # 0
7. kw4 kwy + (—=2k + K)ws + (3k — K)wy  k(3k £ k') £ 0

6. kwi + kwa + (—2k + K )ws + kwy

8. kwy+ (—k+ k)ws kk' #0

Remark 4.11.  For type Fy the map (k, k') — (2k/, k) is a natural involu-
tion of the situation corresponding to the interchange of long and short roots.
For R of type D4 we have two distinguished points (3k, 2k, k,0) and (2k, k, k, 0)
for k # 0. They can be viewed as the specialization k' = 0 of No. 1 and No. 3
respectively.

PROPOSITION 4.12. For k # 0 and R of type Hs there are 4 distinguished
points, which are all regular. For k # 0 and R of type Hy there are 17
distinguished points, 12 of which are reqular.
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The results are listed in Tables 4.13 and 4.14. Here the numbering of
the basis wi,ws,ws(,ws) dual to the basis ai, g, as(,aq) of simple roots is
according to the nodes from left to right in the Coxeter diagrams

5

o ——— 0 — — ©

and

respectively, and 7 = %(1 +/5).

Table 4.13. Distinguished points for type Hs.

No. point c(k)

kwy + kws + kws

(14 7) L (kwy + kws + kTws)

(14 7) 7L (kwy + kwa + k(1 + 7)ws)
(24 37) " k(1 + T)wy + kTws + kws)

- W=

Table 4.14. Distinguished points for type Hj.

2,
©

point c(k)

kwy + kwy + kws + kwy

(1+ T)—l(ku.u + kws + kTws + kwy)

(1 + 7)Y (kwy + kwa + kTws + k(1 + T)ws)

(14 7)Y (hwy + kwa + k(1 4 7)ws + k(1 + T)ws)
(24 37) "1 (k(1 + T)wy + krws + kws + k(1 4 27)wy)
(24 37) k(1 + T)w1 + kTws + kws + k(1 + 37)wy)
(24 37)7L(k(1 + T)wy + kTws + kws + k(2 + 37)wy)
(34 57) " H(k(1 4 27wy + kTws + kTws + kTwy)

(2 4 47) " H(kwy + kTws + kTws + kwy)

(24 37) "L (kwy + kws + kTws + kwy)

(34 57) " H(kTwy + kTws + kws + kTws)

(54 87) " H(kwy + k(1 + 27wy + kw3 + kTwy)
(1+27) "L (kwe + krws + kTwy)

(2 4 37) 7L (kTwa + kTws + kwy)

(14 7)"L(kwy + kwy + k(1 + 7)wy)

(1 + 27')‘1(l<:w2 + kng)

(14 7) " Lkws

© XN W

—
== O

S VG G UG
NS oA
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PROPOSITION 4.15. Let R be the normalized dihedral root system of type
I(m) with simple roots a1,00. For j =1,2,...,[%] let 51,02 € Ry be defined
by

LT . m) Lo —1
sin—0@; = sin —jal + sin ﬂ—)ag,
m m m
.o Com(g—1 . T
sin—pfy = sin —(j——)ﬂl + sin —ja2,
m m m

with dual basis (7,05 of the form

2sin? W(2J )ﬁl = (1 +cos (% = ),327
e T2 D) gy oo 2= -V,
m

For ki = kg,, ky = kg, with (ky + kz cos T&=1) )(k:l cos TE=L 4 k) £ 0, the
point

(4.7) c(ki,k2) = k187 + k233
is distinguished, and all distinguished points are conjugated under W to these.
Proof. This is straightforward. O

As mentioned before, with the complete enumeration of the distinguished
points for each of the irreducible root systems at hand, the proofs of Theo-
rem 3.9 and Theorem 3.10 can be carried out by inspection. We now discuss
which of these distinguished points are spherical cuspidal, i.e. correspond to
a square integrable wave function. For the rest of this section we will assume
that ko < 0 for all o € R.

If ¢ € V is a regular distinguished point the criterion for ¢ to be spherical
cuspidal is easy, and was described in Example 3.16. However for singular
distinguished points it can be very difficult, with our approach, to actually
check whether the residue vanishes or not.

PROPOSITION 4.16. Let ) be the partition A = (i+1,19) with i+j =n—1
and © > 0,7 > 0,n > 2. The distinguished point c(\,k,k") given by (4.3) is
spherical cuspidal if and only if in case j =0 (i.e. c(\k,k') = p(k,k)),

(4.8) K < min (—%(n — 1)k, — (n— 1)k> ,
and in case j > 1,

1
(4.9) 2O+Dk<y 3G = k.

Let p be the partition p = (i + 12,107 with i +j =n -2 and i > 1, j
> 1, n > 4. The distinguished point c(\k,k") given by (4.3) is spherical
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cuspidal if and only if
(4.10) %jk < k' < min (%(y - i)k,O) .

Proof. For the partition A this is clear from Example 3.16. For the parti-
tion p just use Algorithm 3.15. Details are left to the reader. d

PROPOSITION 4.17. Let R be of type Fy. For which (k,k') the previously
found distinguished points are spherical cuspidal is given in the next table. For
a given No. 1 up to 8 the point c(k,k’) is spherical cuspidal for (k,k') in a
nonempty open convex cone.

Proof. Again we skip the proof which is quite long but altogether straight-
forward. O

Table 4.18. The spherical cuspidal points for type Fy. Each regular
point (all cases except No. 8) c(k, k) is displayed by its coordinates with re-
spect to the set of roots {81, B2, 83,04} defined by {51,082, 83,04} = {6 € R |
(c(k, k), 8) = kg Vk,K'}

No. c(k, k) spherical
cuspidal iff

1. ((5k + 6K), 3(3k + 4K'), 6(2k + 3K'), 2(3k + 5&')) 5k 4+ 6k' <0,

3k + 5K < 0.
2. ((k+6K), (k— 6k, 18K 10k’) k—6k' <0,
K <o.
3. ((3k + 4K, (3k + 2K'), 2(k + 3K), 2(2k + 3K')) 3k+ 2K <0,
k+ 3K <O0.
4. (3(3k — 4K'), (5k — 6K, 6(—2k + 3K'), 2(=3k + 5k')) 3k — 4k’ < 0,
—2k + 3K' < 0.
5. ((3k —2K'), (3k + 2'), 2(—k + 3K), 2(k + 3K')) 3k — 2k’ <0,
—k+3K' <0.
6.  ((3k —2K), (3k — 4K'),2(—2k + 3K'),2(—k + 3K')) 3k —4k <0,
—2k+ 3K’ < 0.
7. (9k,5k,2(—3k + k'), 2(3k + k') k<0,
-3k+ K <O.
8. k<0,k <0.

PROPOSITION 4.19. For R of type Hs and k < 0 the 3 points 1, 3, and 4
of Table 4.13 are spherical cuspidal, and 2 is not spherical cuspidal. Let R be
of type Hy and k < 0. The following are the regular spherical cuspidal points:
1,2,4,5,7,8,9,12.
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At present we have not checked the singular ones (the points 13 to 17) for
spherical cuspidality.

PROPOSITION 4.20. Let R be of type Ia(m). The point (4.7) is spherical
cuspidal if and only if

2i-1)

(411) ki +kycos - -@n-zlll

<0, kycos™ +hy <0
In particular this is the case if k1 = ko <0 (e.g. if m is odd).
Proof. This is easy if we use the formulas in Proposition 4.15. O

The simplest criterion for spherical cuspidality is Theorem 1.7. How this
follows from the work of Kazhdan and Lusztig will be indicated in the next
section.

5. Perspectives

Consider the following tableau for hypergeometry associated with a root
system R.

| 1. The g-hypergeometric functions for R]

t=q* ,q—>11 lq=0,t=q‘1

2. Ordinary hypergeometric 3. Elementary spherical functions
functions for R for the affine Hecke algebra
4. Bessel functions for R 5. Elementary wave functions for

Yang’s system

Boxes 1,2,3 make sense for R an integral root system, and boxes 4,5 make sense
for R arbitrary (but finite). The nonreduced root system BC,, admits some
additional flexibility, and a few extra boxes can be added ([19], [34]). In the
first box we have the theory of Macdonald’s orthogonal g-polynomials for root
systems [24]. From the work of Cherednik the pivotal role of the affine Hecke
algebra as an indispensable tool has now become clear ([7], [8], [26]). In the
second box we have the theory of hypergeometric functions for root systems
as developed by the authors (see [14] for a survey, and [29] for some recent
results). This contains the theory of spherical functions on a real semisimple
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Lie group. In the third box we have the theory of spherical functions for the
regular representation of the affine Hecke algebra, containing (for ¢ a prime
power) the theory of spherical functions on a semisimple group of p-adic type
([25],[27]). The fourth box deals with a local version of the second box near
the identity element, and contains the theory of spherical functions for Cartan
motion groups ([10], [17], [28]). Finally in the fifth box we have the theory
dealt with in this paper. Just as box 4 is the infinitesimal version of box 2
one should think of box 5 as the infinitesimal version of box 3. The affine
Hecke algebra plays a role in box 1 and box 3, and this role is taken over by
the graded Hecke algebra in box 2 and box 5. Each of the boxes has its own
¢-function and one can speculate about the applicability of the method of this
paper in a larger context.

In box 3 there are no problems whatsoever, and the whole theory can be
applied without serious changes. Let F' be a nonarchimedean local field and
let O denote the ring of integers of F'. The cardinality of the residue field is
denoted by g. Let G be a semisimple algebraic group defined over F', which is
assumed to be of adjoint type. Let G(F') denote the group of F rational points
of G, which we assume to be split (for the sake of simplicity). We choose an
Iwahori subgroup Z C G(O) and normalize the Haar measure on G(F') so that
Vol(Z) = 1. Denote by G the Langlands dual group, and let T be a maximal
torus of ?G. Let R C Lie(T)* denote the set of roots of 4G with respect to T
The character lattice of T is the weight lattice P of R, and if A € P we denote
the corresponding character by e”.

The theory of elementary G(O)-spherical functions on G(F) leads to an
explicit Plancherel formula with completely continuous spectrum which was
studied in [25]. The Plancherel measure p has support on the compact form
T. of T, and if we normalize the spherical functions so that their value at the
identity equals 1 then this measure is given explicitly by:

N HaGR(ea(t) — 1) dt
[aer(gtex(t) — 1)

where dt is the normalized Haar measure on T, and N is the cardinality of
R.. We are to use the explicit formula of Macdonald as a starting point,
analogous to Theorem 1.3. Replace q by its reciprocal ¢~!. If we apply the
contour shift argument as explained in this paper we encounter (among other
tempered families) spherical cuspidal representations of the specialization of
the affine Hecke algebra at ¢! at points of T' where a point residue is picked
up. Via the involution 7 of the affine Hecke algebra defined by sending ¢ — ¢!
and T; — —q T} these correspond to certain cuspidal representations of the
specialization of the affine Hecke algebra at ¢, and all these modules share in
common the property that they contain the sign representation of the Hecke

algebra of the finite Weyl group W. From (5.1) it is clear that the eligible

(5.1) du(t) = W[ ¢~
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residual points s of T" have to satisfy:
(5.2) #{a € R|e*(s) =1} +dim(T) = #{a € R | e*(s) = ¢~ 1}.

But these points s are in one-to-one correspondence with the distinguished
unipotent orbits of those semisimple subgroups H of 4G which are the central-
izer of a semisimple element of ?G. From the geometric classification of the
irreducible modules of the affine Hecke algebra by Kazhdan and Lusztig [18]
it is known that these are precisely the central characters for which there exist
cuspidal modules. Moreover, it is known that to each of those points there
belongs exactly one cuspidal module that contains the sign representation of
the Hecke algebra of W. In the classification of [18] these are denoted by Mf’ L
and the corresponding cuspidal representations M, 1 of G(F') are called the
generic Iwahori spherical cuspidal representations. When s is a real point of
type (5.2), then clearly log s is a (Lie(Ty), R, k)-distinguished point if we set the
root labels k4 all equal to — log q. Here T' = T, T, is the polar decomposition of
the complex torus 7', and Lie(T) is considered as euclidean space with respect
to some W-invariant inner product (for example the Killing form). Hence there
exists a spherical cuspidal representation of the graded Hecke algebra for this
infinitesimal central character and value of k; that is, the module of the graded
Hecke algebra corresponding to (Mi 1) (here (Mf, 1)¢ denotes the module of
the specialization of the affine Hecke algebra at ¢~! obtained from the module
Mf, 1 using the involution 4 defined above). This proves Theorem 1.7.

But there are also important applications in the context of box 3 itself,
all based on the analogue of Theorem 3.20. The analogue of Example 3.22
will give the explicit formula of Bott and Macdonald for the Poincaré series
of affine Weyl groups ([3], [23]). In general, Theorem 3.20 provides us with a
method to compute the formal degree of the generic cuspidal representations,
up to an absolute constant. We use a formula of Li’s [21] saying essentially
that there exists a matrix coefficient of M, ; which is obtained from the K-
spherical function at s by replacing ¢ by ¢~!. As was explained in Reeder [32],
we need to calculate the reciprocal of the square norm of this matrix coefficient
in order to obtain the formal degree; this we do by appealing to the analogue
of Theorem 3.20. The resulting formula explains why the formal degree has
such a nice factorization in the examples that were calculated by Reeder [32].
We shall give the precise statement in the following theorem:

THEOREM 5.1.  There exists an absolute constant ¢ # 0 such that the
formal degree of Mjs 1 is given by:
~ Hacr(e*(s) = 1)
[Tocr(ge*(s) — 1)
where [ is the product over all nonzero factors, and N is the number of
positive roots.

deg(M,,1) = cq
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It is quite likely that the methods of this paper can also be transfered to
box 2. However there are some technical difficulties to overcome now, due to
the fact that the special functions are more complicated. Once these difficulties
are resolved the theory will yield a proof of the main result of [5] along the
same lines as the proof of the formula of Bott and Macdonald mentioned above
(which in [5] was used as just one of the ingredients of the proof). More
importantly, the theory will yield the L?-norm computations of other highly
transcendental functions for which the method used in [5] fails.

Finally one may even hope that the methods of this paper apply to the
first box, but at the moment this is merely speculation.
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