SOME REMARKS ON RICHARDSON ORBITS IN COMPLEX
SYMMETRIC SPACES

ALFRED G. NOEL

ABSTRACT. Roger W. Richardson proved that any parabolic subgroup of a
complex semisimple Lie group admits an open dense orbit in the nilradical of its
corresponding parabolic subalgebra. In the case of complex symmetric spaces
we show that there exist some large classes of parabolic subgroups for which the
analogous statement which fails in general, is true. Our main contribution is
the extension of a theorem of Peter E. Trapa (8] to real semisimple exceptional
Lie groups.

1. INTRODUCTION

In this paper, unless otherwise specified, g will be a real semisimple Lie algebra with
adjoint group G and Cartan decomposition g = €@ p relative to a Cartan involution
0. We will denote by g, the complexification g. Then g. = €. ® p. where £. and p,
are obtained by complexifying ¥ and p respectively. K will be a maximal compact
Lie subgroup of G with Lie algebra ¢ and K. will be the connected subgroup of the
adjoint group G, of g., with Lie algebra ¢.. It is well known that K. acts on p, and
the number of nilpotent orbits of K in p. is finite. Furthermore, for a nilpotent
e € p., K.-e is a connected component of G.-e N p..

Let q be a parabolic subalgebra of g, with Levi decomposition ¢ = [@®u. Denote by
(@ the connected Lie subgroup of G with Lie algebra q. Then there is a unique orbit
(99C of G on g. meeting u in an open dense set. The intersection (’)gC N u consists
of a single @-orbit under the adjoint action of @) on u. These facts were first proved
by Richardson [5]. Hence, Oy_ is called a Richardson orbit. Since the publication in
1979 of a fundamental paper of Lusztig and Spaltenstein [3] relating Representation
Theory of g. to Richardson orbits mathematicians have paid a lot of attention to
such orbits. However, most of the work was done for complex semisimple Lie
Groups. Lately, after the proof of the Kostant- Sekiguchi correspondence [6], some
initiatives have been taken to study Richardson orbits of real Lie reductive groups.

The Kostant-Sekiguchi correspondence is a bijection between nilpotent orbits of
G in g and nilpotent orbits of K. on p.. Thus, the correspondence allows us to
study certain questions about real nilpotent orbits by looking at nilpotent orbits
of K, on the symmetric space p.. Therefore the following is a natural question:
Maintaining the above notations and assuming that q is 6-stable when does Q N K,
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admit an open dense orbit on uNp. ¢ This would be the equivalent of the Richardson
theorem for the real case. It turns out that this statement is not true in general.
Patrice Tauvel gave a counter example in [7] on page 652 for g. = D4. However,
he was able to prove an interesting version of Richardson’s theorem. We shall say
more about this later. In the next section we shall give some important cases where
the equivalent of Richardson’s theorem still holds.

2. SOME DENSITY RESULTS

2.1. Jacobson Morozov parabolic subalgebra. Let (z,e, f) to be a normal
slo-triple with € it e and f € p.. From the representation theory of sly, g. has
the following eigenspace decomposition:

g, = @gg) where géj) ={ze€g.llx,z] =jz}
JEZ
The subalgebra q = géj ) is a parabolic sub algebra of g. with a Levi part [ = géo)
JEN
and nilradical u = géj ). Call q the Jacobson-Morosov parabolic subalgebra of e
JEN*
relative to the triple (z, e, f). Our choice of the triple (x, e, f) forces q to be f-stable
in Vogan’s sense.

Retain the above notations. Let ) be the connected subgroups of G. with Lie
algebra q. We shall prove that if e is an even nilpotent then Richardson’s theorem
holds on unp,.

Let q be the Jacobson-Morozov parabolic subalgebra of e relative to the normal
triple (x, e, f). Then

Proposition 2.1. Q N K_.e is a dense open subset of ga(:i) N p.. Moreover if e
i>2

is even, that is géi) = 0 for i odd, then QN K -e = uNp..

Proof. Tt is a result of Carter ([1] Proposition 5.7.3) that the orbit of @ on géi)
i>2

containing e is a dense open subset of gg). It follows that [q,e] = P gg) which
i>2 i>2
implies that

[0, e] = [aNt.,e] & [qNp,e]
Since each g®) is f-stable,

C
Pol? =P nt.wgl Ny,

i>2 i>2

The fact that e € p. and the previous direct sum decomposition force

qmecae] = @ES) Npe.

i>2
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Hence, the map ad. : qN €, — @ g{¥) Np, is surjective. It is clear that @ g{¥ Np..
i>2 i>2

is a QN K .-module under the adjoint action. Also e € gf) Np. C P géi) Np.. Thus
i>2

the map z — Ad,(e) is a morphism from Q@ N K, to P géi) Np. and its differential
i>2

is the map: —ad. : qNeE — @ g Np..

i>2
This map is surjective. Thus the given morphism is dominant and separable. Since
the image of such a map is open in its closure, the ) N K_-orbit of e is a non-empty
open dense subset of gg) Npe.

i>2

If e is even then @ gV Np. = unp.. Hence, QN K e = uNp,.
i>2

2.2. Borel-de Siebenthal parabolic subalgebras. A complex Lie algebra g.
is said to be graded if g, = @EO:_ o gg where gg is a vector subspace of g. and
[g5,97] = g7 for all integers i and j.

We shall need the following theorem of Vinberg:

Theorem 2.2. Let G be a complex semisimple Lie group with graded Lie algebra
9. = P, g’g, and let Gg be the analytic subgroup of G. with Lie algebra gg. Then
the adjoint action of Gg on g; has only finitely many orbits. Hence one of them
must be open.

Proof. See Vinberg [9].
O

A proof of the uniqueness and denseness of such an open orbit is found in Knapp [2]
Proposition 10.1.

Let g be of inner-type, that is rank(£) = rank(g) and A a Vogan ! set of simple roots
of g.. Then A can be partitioned into two disjoint sets: A the set of compact
roots and APC the set of imaginary non-compact roots. Let a;, be a non-compact

l
imaginary simple root such that if 5 = > ¢;a; is a positive root then 0 < ¢ < 2.

=1
Thus,

g.=9.°0g ' oglag og
is a grading of g, where gé is the sum of the roots spaces for roots whose coefficient
of oy is 7 in an expansion in terms of simple roots in A. Define | = gg and
u = gé &) gg. Then q = [+ u is a maximal -stable parabolic subalgebra of g. and
is called a Borel-de Siebenthal parabolic subalgebra. Furthermore, p, = gé ® g;l.

1Vogam systems define Vogan diagrams used to classify simple real Lie Algebras. See [2] for
more information.
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Denote by @) the connected subgroup of G, with Lie algebra q. Then unyp, = gé is
a QN K .-module under the adjoint action which we shall identify with its diffrential
ad:qNE, —unp,

Theorem 2.3. Maintaining the above notations Q N K. has a unique open dense
orbit in uNp,..

Proof. Observe that g N €. = g2 @ g2 and that g2 acts trivially on g'. Therefore,
the adjoint action of q N €. on gi is equivalent to that of gg on gé. The theorem

follows from Vinberg’s theorem.
O

3. RICHARDSON ORBITS FOR REAL EXCEPTIONAL GROUPS

Maintaining the above notations, we say that a nilpotent orbit O of K. on p,
is a Richardson orbit if there exists a f-stable parabolic subalgebra q of g. with
Levi decomposition q = [ @ u such that Oy is the unique dense orbit admitted by
the saturation of K. on uNyp.. Following Peter Trapa we call Oy a k-form of the
G.-orbit O if Op C ONp,. In the case where G, is a classical complex semisimple
Lie group Peter Trapa [8] proves the following theorem:

Theorem 3.1. Fiz a special nilpotent orbit O of G. on g.. Then there exists a
real form G such that some irreducible component of O Ny, is a Richardson orbit
of K. on the nilpotent cone of p.

The above theorem does not extend to exceptional groups. It fails for the minimal
orbits of E7 and Eg. Our search of the literature reveals that there is very little
known about the vector space uNp.. Trapa’s proof uses the fact that nilpotent
orbits of K on p. are parametrized by signed Young tableaux. We do not have such
a parametrization for exceptional complex symmetric spaces. Instead we heavily
use the parametrization given by Djokovié [11], [12]. Our method is algorithmic,
but does give complete information about each case. The results are given below.

The following lemma gives a necessary condition for a Richardson orbit and shows
why the above question is indeed equivalent to Richardson’s theorem in the complex
case.

Proposition 3.2. Maintaining the above notations, let ¢ = [ @ u be a f-stable
parabolic subalgebra of g. and e a nilpotent element in p, such that (Q N K,)-e =
unp.. Then K. -eN(unp,)is open and dense in uNyp,.

Proof. The fact that K, = K x QN K, implies that K_.-e = K x (QN K_)-e. Since
unyp, is a @ N K ,-module we must have
K.en(unp.) =Ken(unp,).

Suppose that there exists ¢/ € uNp,. such that €’ # e and K-¢/NuNp, is open in uNp,
then we can find a sequence {g,} in @ such that g, (e) — €’ for (Q N K,)-e = uNp,.
Hence K-qp(e) — K-¢' and K_.-e N (uNp,) is open and dense in u N p,,

O
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From a geometrical point of view Richardson orbits arise as dense K_-orbits in the
moment map image of conormal bundles to certain orbits O defined by q. Let A,
be the irreducible Harish-Chandra module of trivial infinitesimal character attached
to the trivial local system on Oy by the Beilinson-Bernstein equivalence. Then, in
the context of Representation theory, we may think of the Richardson orbits as
K_.-nilpotent orbits of in p. which are dense in the associated varieties of modules
of the form A,. See [8] for more details. Using the above theorem Trappa was able
to compute explicitly the annihilator of any module of the form A, for the classical
groups. This allowed him to give new examples of simple highest weight modules
with irreducible associate varieties.

Definition 3.3. Let q = qN €, ® qNp. be a § stable parabolic subalgebra of g.
with Levi decomposition q = [ @ u. Let e be a nilpotent element of uNp, . We say
that q is a polarization of g, at e if

2dimq = dimg{ + dimg, and  B(e,[q,q]) =0

where g¢ is the centralizer of e in g, and B is the Killing form of g..

The next proposition could be seen as a version of Richardson’s theorem for complex
symmetric spaces.

Proposition 3.4. (P. Tauvel). Maintaining the above notations, suppose that
there exists z in p. such that q is a polarization of of g. at z. Then

i. There exists a unique K_-nilpotent orbit Oy in p. such that S =unp. N Ok
is an open and dense in uNp,.

ii. Sisa @ N K -orbit.

ili. if x € S then [z, Ng] =unp,, [z,p. Ng] =uNt. an q is a polarization of
gc at x.

Proof. See [7] proposition 4.6.
O

Definition 3.5. A nilpotent e € p, is polarizable if there exists at f-stable parabolic
q such that q is a polarization of g, at e . A nilpotent orbit of K. on p,. is polarizable
if at least one of its representatives is polarizable. A nilpotent orbit O of G on g,
is polarizable if at least one of its k-forms is polarizable.

There exist non polarizable nilpotent elements. An example of such elements is
given in [7] on page 644 for g. = A;.

Our goal is to analyze to what extent Peter Trapa’s theorem fails for exceptional
groups. From now on all statements are concerned with exceptional groups.

Consider the real forms G, FI,EII,EV,EVIII of Gy, Fy, Eg, E7 and Eg respec-
tively. Then each even nilpotent orbit O of G, has a k-form Oj. The Jacobson-
Morozov parabolic subalgebra ¢ associated with any representative e of Oy is a
polarization g, at e.

In order to decide whether a given orbit is polarizable one can compute the list of
all representatives of the K_-conjugacy classes of theta stable parabolic subalgebras
containing a representative of the orbit. Once such a list is available then one could
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look of a parabolic subalgebra with the appropriate dimension. The algorithm used
to find the theta-stable parabolic subalgebras and some implementation details in
the software LiE [10] are given in [4].

The tables below contains the following information

. The Bala-Carter label for the complex O

. A representative e of Oy,

. The real form of g, relative to the Cartan involution 6

. The f#-stable parabolic q =1+ u

. When O is polarizable then the dimension of q and that of g¢ are given.

T W N =

Ga.

If g. = G then there are no non-even special orbits. Hence Trapa’s theorem
applies. Moreover none of the two non even nilpotent orbits is polarizable. An
easy computation shows that the dimension of any #-stable parabolic subalgebra is
either 8 or 9 while the two orbits have dimensions 6 and 8 respectively.

Fy.

Proposition 3.6. Let g. = F, and fix a special nilpotent orbit O of G. on g..
Then there exists a real form G such that some irreducible component of O Ny, is
a Richardson orbit of K. on the nilpotent cone of p...

Proof. From previous considerations, it is enough to establish the proposition for
special non even orbits. There are exactly three such orbits Ay, A; + A; and Cj.

We order the roots of Fy as in the table below and we use the Bourbaki system of
simple roots A = {a1, ag, a3, a4}. The Cartan involution 6 with +1-eigenspace £
and —1-eigenspace p depends on the real forms. If g, = FI then £, = sp;(C)Psly(C)
and the vector space p. is the complex span of non-zero root vectors Xz where
B = cioq + caaz + csaz + cgay with ¢; = £1. If g, = FII then &, = s09(C)
and the vector space p. is the complex span of non-zero root vectors Xz where
0 = craq + coan + c3az + cqay with ¢4 = £1.

Positive roots of F)

1. [1,0,0,0] 9. [0,1,2,0] 17. [1,2,2,1]
2. 0,1,0,0] 10. [0,1,1,1] 18. [1,1,2,2]
3. [0,0,1,0] 11. [1,1,2,0] 19. [1,2,3,1]
4. 10,0,0,1] 12. [1,1,1,1] 20. [1,2,2,2]
5. [1,1,0,0] 13. [0,1,2,1] 21. [1,2,3.2]
6. [0,1,1,0] 14. [1,2,2,0] 22. [1,2,4,2]
7. 0,0,1,1] 15. [1,1,2,1] 23. [1,3,4,2]
8. [1,1,1,0] 16. [0,1,2,2] 24. [2,3,4,2]
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In the preceding table each vector indexed by 4 represents the coefficients of the "
postive root in the Bourbaki base A. We use X; or X_; to denote a non zero root
vetor in the root spaces of ¢ and —i respectively.

The orbit labeled C3 of dimension 42 is polarizable as indicated below.

Bala-Carter Label : (s Special
Real form : FI

Root vectors for e: 17, 18, -12 dim g¢ = 10
Parabolic : Levi-Type: A, dimension of parabolic = 31

Cartan subalgebra: 2,11,4,-12,

Roots vectors for Levi: £(2,11,14)

Roots vectors for nilradical: 4,-12,15,-8,17,18,3,20,6,7,24,10,-5,19,-1,21,9,13,16
22,23

The two tables that follow the proof contains the representatives of the K -conjugacy
classes of all theta parabolic subalgebras relative to both real forms of 4. From the
first table, it is easy to check that all #-stable parabolic subalgebra of Fy relative to
FI except q12 = l12 ®uy2 and qoq = log B ugy labeled 12 and 24 contain a nilpotent
of the form (X, + Xj3) where the roots a and  are in p_ and generate an algebra
of type A, or Ay which represents K -orbits of dimension 15. But uaq Np,. contains
the following nilpotent X7 + X714+ X5 representing the orbit A; + A; + A; which is
a k-form of A;. Moreover the product of any two roots in u12 N p. is non negative,
that is, all the root vectors commute. Hence the nilpotent orbit labeled A; + A;
represented by Xoo + Xi2 in uj2 Np, of dimension 14 must intersect uj2 Np. in an
open dense set. Therefore if we fixed the orbit A; + A; then q12 will satisfy the
proposition. The above discussion is summarized below.

Bala-Carter Label : A; + 4, Special
Real form : FI
Root vectors for e: 22,12
Parabolic : Levi-Type: Bs
Cartan subalgebra: 1,2,3,4
Roots vectors for Levi: £(1,2,3,5,6,8,9,11,14)
Roots vectors for nilradical: 4, 7, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

Clearly, in order to resolve the orbit of type A; we need to consider the other real
form F'I1. From the second table below it is easy to check that all #-stable parabolic
subalgebra of Fy relative to FII except qi5 = l15 ® 15 and qoa = log D ugg N P,
labeled 15 and 24 contain a nilpotent of the form (X, + Xg) where the roots «
and (3 are in p and generate an algebra of type A, which represents the K-orbit of
dimension 15. Since there are only two nilpotent classes, the other being of type
fll, 24 satisfies the proposition.

Bala-Carter Label : A, Special
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Real form : FII
Root vectors for e: -4
Parabolic : Levi-Type: Bs
Cartan subalgebra: 1,2,7,-4
Roots vectors for Levi: +(1,2,7,5,10,12,16,18,20)
Roots vectors for nilradical: -4, 3, 6, 8, 13, 15, 9, 17, 11, 21, 14, 19, 22, 23, 24

This concludes the proof.
|

For the benefit of the reader we describe the algorithm in [4] for the case of Fy.
The reader should realize that the same algorithm works for all real Lie groups of
inner-type. Some changes were needed for ETV. However since there are only two
nilpotent orbits in ETV our result for that specific group can be easily verified. The
next two tables were generated as follows:

1. For each real form we compute the K_.-conjugacy classes of systems of simple
roots. Starting with a Vogan diagram we obtain the other non conjugate diagrams
by reflecting along non compact imaginary roots. Observe that the number of such

classes is WEIC;E; where W(G,.) and W(K_) are the Weyl groups of G. and K,

respectively. Hence there are 12 classes for FI and 3 for FII. For information
about Vogan diagrams consult [2].

2. For each class of simple roots A, we build standard parabolic subalgebras by
using the subsets of A. Observe that because the ranks of G and K are equal all
such parabolic subalgebras must be #-stable. We also eliminate duplicates in the
process.

The computation was implemented in the software LiE. It is easy to see that the final
lists must contain a representative of each K-conjugacy class of #-stable parabolic
subalgebras relative to each real form.

To find the pairs of roots generating a nilpotent of type As or Ay we traverse
the nilradical of each parabolic subalgebra in our lists and look for appropriate
pairs of short and long roots. This is easily done in LiE using built-in-functions.
Information on LiE is found in [10].

f-stable parabolic subalgebras relative to F'I

. p=(1,2,3,0)ou=1,234506,7,8,09,10, 11, 12, 13, 14, 15, 16, 17, 18, 19
20, 21, 22, 23, 24
2. [=hot()du=23,4,5,6,7,8,0,10, 11, 12, 13, 14, 15, 16, 17, 18, 19
20, 21, 22, 23, 24
3. [=hoLx(2du=1,3,4,5,6,7,8,0,10, 11, 12, 13, 14, 15, 16, 17, 18, 19
20, 21, 22, 23, 24
1. [=hox(3)du=1,245,6,7,8,0,10, 11, 12, 13, 14, 15, 16, 17, 18, 19
20, 21, 22, 23, 24
5. [=hoxr@ou=122305,6,7,23,09,10, 11, 12, 13, 14, 15, 16, 17, 18, 19
20, 21, 22, 23, 24
6. [=haL(,2,5)du=3,4,6,78,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19
20, 21, 22, 23, 24
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7. [=he=£(1,3)®ou=2,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24

8. [=hp+(1,9)pu=2,3,5,6,7 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24

9. [=h®+£(2,3,6,9)du=1,4,5, 7,8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24

10. =paa£(2,9)u=1,3,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24

11. = £3,4,7)eou=1,2,5,6,8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24

12. [=had=£(1,2,3,5,6,8,9,11,14) eu =4, 7, 10, 12, 13, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24

13. [=hd+(1,2,5,)u=3,6,7,38,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24

14. [=ho+(4,3,7,1)u=2,5,6,8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24

15. [=hd=+(4,3,2,7,6,10,9,13,16) ®u =1, 5, 8, 11, 12, 14, 15, 17, 18, 19, 20,
21, 22, 23, 24

16. [=F,5u=0

17. h=(-1,5,3,H)vu=-1,5,3,4,2,8,7, 6, 11, 12, 9, 10, 15, 14, 13, 18, 17,
16, 19, 20, 21, 22, 24, 23

18. [=hoEt(B)ou=-1,3,4,2,8,7,6, 11, 12, 9, 10, 15, 14, 13, 18, 17, 16, 19,
20, 21, 22, 24, 23,

19. =peEB)ou=-1,542,8,7,6, 11, 12,9, 10, 15, 14, 13, 18, 17, 16, 19,
20, 21, 22, 24, 23

20. [=ho+t(@)eu=-1,5,3,2,8,7,6, 11, 12, 9, 10, 15, 14, 13, 18, 17, 16, 19,
20, 21, 22, 24, 23

21. [=ha£(53,81)du=-1,4,2,7,6, 12,9, 10, 15, 14, 13, 18, 17, 16, 19,
20, 21, 22, 24, 23

22. I=pp£(G,49)pu=-1,3,2,8,7 6,11, 12,9, 10, 15, 14, 13, 18, 17, 16, 19,
20, 21, 22, 24, 23

23. [=h£(3,4,7)du=-1,5,2,8, 6, 11, 12, 9, 10, 15, 14, 13, 18, 17, 16, 19,
20, 21, 22, 24, 23

24. [=ho+£(4,3,5,7,8,12,11,15,18) du = -1, 2, 6, 9, 10, 14, 13, 17, 16, 19,
20, 21, 22, 24, 23

25. h=(2,-5,84)du=2-584-1312611 71410159 17 18 1320 19 16
21 24 22 23

26. [=he+(2)eu=-58,4, -1, 3,12, 6, 11, 7, 14, 10, 15, 9, 17, 18, 13, 20,
19, 16, 21, 24, 22, 23

27. [=ha£®)cu=2-54 -1, 3,12, 6, 11, 7, 14, 10, 15, 9, 17, 18, 13, 20,
19, 16, 21, 24, 22, 23

28. [=poLt(@d)du=2 -5 8,-1, 3,12, 6, 11, 7, 14, 10, 15, 9, 17, 18, 13, 20,
19, 16, 21, 24, 22, 23

29. [=he£(2,8)du=-54,-1, 3,12, 6, 11, 7, 14, 10, 15, 9, 17, 18, 13, 20, 19,
16, 21, 24, 22, 23

30. [=hd£(2,4)du=-58, -1, 3, 12,6, 11, 7, 14, 10, 15, 9, 17, 18, 13, 20, 19,
16, 21, 24, 22, 23

31. =pp£8,4,12)pu=2,-5,-1, 3,6, 11, 7, 14, 10, 15, 9, 17, 18, 13, 20, 19,
16, 21, 24, 22, 23

32. [=h&+(4,6,12,2) u=-5,-1, 3,6, 11, 7, 14, 10, 15, 9, 17, 18, 13, 20, 19,
16, 21, 24, 22, 23

33. h=(2,11,-8,12) au = 2, 11, -8, 12, 14, 3, 4, 6, -5, 15, -1, 17, 7, 9, 10, 18,
19, 20, 13, 24, 21, 16, 22, 23
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(=he+(2)@u=11,-8, 12, 14, 3, 4, 6, -5, 15, -1, 17, 7, 9, 10, 18, 19, 20
24, 21, 16, 22, 23

35.
13

[=ho £(1]) du=_2,-8, 12, 14, 3, 4, 6, -5, 15, -1, 17, 7, 9, 10, 18, 19, 20,
24, 21, 16, 22, 23

36.
13,

[=ho £(12) dDu=_2, 11, -8, 14, 3, 4, 6, -5, 15, -1, 17, 7, 9, 10, 18, 19, 20
24, 21, 16, 22, 23

37.
13

(= 0@ £(2,11,14) du =8, 12, 3, 4, 6, -5, 15, -1, 17, 7, 9, 10, 18, 19, 20
24, 21, 16, 22, 23

38.
24

(=he£(2,12)Gu=11,-8, 14, 3, 4, 6, -5, 15, -1, 17, 7, 9, 10, 18, 19, 20 13,
21 16 22 23

39.
13,

(=0 £(11,12) u =2, -8, 14, 3, 4, 6, -5, 15, -1, 17, 7, 9, 10, 18, 19, 20
24, 21, 16, 22, 23

40.
24

(=hoL(211,14,12)6u=_3,3, 4, 6,5, 15, -1, 17, 7, 9, 10, 18, 19, 20, 13
21, 16, 22, 23

41.
18

b= (14, —11,3,12) du = 14, -11, 3, 12, 2, -8, 15, 6, 5, 4, 9, 17, 7, -1, 19
10, 24, 13, 20, 21, 22, 16, 23

1.
13,

[=hodL(14) du=-11, 3, 12, 2, -8, 15, 6, -5, 4, 9, 17, 7, -1, 19, 18, 10, 24,
20, 21, 22, 16, 23,

43.
13

(=hoL£(3) du= 14, -11, 12, 2, -8, 15, 6, -5, 4, 9, 17, 7, -1, 19, 18, 10, 24,
20, 21, 22. 16, 23

44.
13

(=ho+£(12) du=14, -11, 3, 2, -8, 15, 6, -5, 4, 9, 17, 7, -1, 19, 18, 10, 24,
20, 21, 22, 16, 23

15.
13,

(=ho+£(14,3) du=-11, 12, 2, -8, 15, 6, -5, 4, 9, 17, 7, -1, 19, 18, 10, 24
20, 21, 22, 16, 23

46.
13

(=ho£(14,12) ®u=_-11, 3, 2, -8, 15, 6, -5, 4, 9, 17, 7, -1, 19, 18, 10, 24
20, 21, 22, 16, 23

47.
13

(=ho £(3,12,15) @ u= 14, -11, 2, -8, 6, -5, 4, 9, 17, 7, -1, 19, 18, 10, 24,
20, 21, 22, 16, 23

1s.
13,

[(=§o£(3,12,15,14) du =-11, 2, -8, 6, -5, 4, 9, 17, 7, -1, 19, 18, 10, 24,
20, 21, 22, 16, 23

49.
-5

h=(2,11,4,—12)du=2, 11, 4, -12, 14, 15, -8, 17,, 18, 3, 20, 6, 7, 24, 10,
19, -1, 21, 9, 13, 16, 22, 23

90.
21

(=h&+£(2) du= 11, 4,-12, 14, 15, -8, 17, 18, 3, 20, 6, 7, 24, 10, -5, 19, -1,
9,13, 16, 22, 23

51. [=hat(1l)du=2 4,-12, 14, 15, -8, 17, 18, 3, 20, 6, 7, 24, 10, -5, 19, -1,
21, 9, 13, 16, 22, 23

52. [=hoL(d)du=2, 11,12, 14, 15, -8, 17, 18, 3, 20, 6, 7, 24, 10, -5, 19, -1,
21, 9, 13, 16, 22, 23

53. (=0 (211,14 du=4,-12, 15, -8, 17, 18, 3, 20, 6, 7, 24, 10, -5, 19, -1,
21, 9, 13, 16, 22, 23

51 [=hoL(2,d)@u=11,-12, 14, 15, -8, 17, 18, 3, 20, 6, 7, 24, 10, -5, 19, -1,
21, 9, 13, 16, 22, 23

55. [=Hho L£(11,4,15,18) du =2, -12, 14, -8, 17, 3, 20, 6, 7, 24, 10, -5, 19, -1,
21, 9, 13, 16, 22, 23

56. [1=ha& (2, 11,4,14,15,17,18,20,24) & u = -12, -8, 3, 6, 7, 10, -5, 19, -1, 21
9,13, 16, 22, 23

57. b= (-14,2,3,12)@u=-14, 2, 3, 12, -11, 6, 15, -8, 9, 17, -5, 4, 19, -1, 7, 24,
10, 18, 13, 20, 21, 22, 23, 16

58. [=ho=L(2) du=-14, 3, 12, -11, 6, 15, -8, 9, 17, -5, 4, 19, -1, 7, 24, 10, 18,
13, 20, 21, 22, 23, 16

59. [=hdL(3) du=-14, 2, 12, -11, 6, 15, -8, 9, 17, -5, 4, 19, -1, 7, 24, 10, 18

13

20, 21, 22, 23, 16
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60. [=he+(12)eu=-14,2, 3, -11, 6, 15, -8, 9, 17, -5, 4, 19, -1, 7, 24, 10, 18,
13, 20, 21, 22, 23, 16

6. [=ho£(23,6,9) ®u=_-14, 12, -11, 15, -8, 17, -5, 4, 19, -1, 7, 24, 10, 18
13, 20, 21, 22, 23, 16

62. [=hoL(2,12)@u=_-14,3,-11, 6, 15, -8, 9, 17, -5, 4, 19, -1, 7, 24, 10, 18,
13, 20, 21, 22, 23, 16

63. [=hoL(3,12,15)@u=_-14, 2, -11, 6, -8, 9, 17, -5, 4, 19, -1, 7, 24, 10, 18
13, 20, 21, 22, 23, 16

64. [=hd*(12,3,2,15,6,17,9,19,24) du = -14, -11, -8, -5, 4, -1, 7, 10, 18, 13,
20, 21, 22, 23, 16

65. b= (14,—11,15,—12) @ u= 14, -11, 15, -12, 2, 4, 3, 17, 18, -8, 24, 6, 7, 20
19, -5, 10, 9, 21, -1, 13, 22, 16, 23

66. [=hdL(Id) du=-11 15, -12, 2, 4, 3, 17, 18, -8, 24, 6, 7, 20, 19, -5, 10, 9,
21, -1, 13, 22, 16, 23

67. [=haL(I5)@u=14,-11,-12, 2, 4, 3, 17, 18, -8, 24, 6, 7, 20, 19, -5, 10, 9,
21, -1, 13, 22, 16, 23

68. [=hoL(14,15) du=-11,-12, 2, 4, 3, 17, 18, -8, 24, 6, 7, 20, 19, -5, 10, O,
21, -1, 13, 22, 16, 23

69. b= (—14,2,15,—12)&u=-14, 2, 15, -12, -11, 17, 3, 4, 24, 6, 18, -8, 19, 20
7,9, 10, -5, 21, -1, 13, 22, 23, 16

70. [=hd+(2)du=-14, 15,-12, -11, 17, 3, 4, 24, 6, 18, -8, 19, 20, 7, 9, 10, 5
21, -1, 13, 22, 23, 16

7. [=hdL(5)du=-14, 2,-12, -11, 17, 3, 4, 24, 6, 18, -8, 19, 20, 7, 9, 10, -5
21, -1, 13, 22, 23, 16

72. [=§a (2 15,17,24) du = -14, -12, -11, 3, 4, 6, 18, -8, 19, 20, 7, 9, 10, -5,
21, -1, 13, 22, 23. 16

73. b= (14,18,-15,3) @ u = 14, 18, -15, 3, 24, 4, -12, 17, -11, 7, 2, 19, -8, 20, 6,
-5, 21,9, 10, 22, 13, -1, 16, 23

74 =@ £(14) ou= 18, -15, 3, 24, 4, -12, 17, -11, 7, 2, 19, -8, 20, 6, -5, 21,
9, 10, 22, 13, -1, 16, 23

75. [=h o L(18)@u = 14, -15, 3, 24, 4, -12, 17, -11, 7, 2, 19, -8, 20, 6, -5, 21,
9,10, 22, 13, -1, 16, 23

76. (=0 £(3)du =14, 18, -15, 24, 4, -12, 17, -11, 7, 2, 19, -8, 20, 6, -5, 21,
9,10, 22, 13, -1, 16, 23

T7. [=h®£(14,18,24) du=-15, 3, 4, -12, 17, -11, 7, 2, 19, -8, 20, 6, -5, 21, 9,
10, 22, 13, -1, 16, 23

78. (=0 £(14,3)@u=18,-15, 24, 4, -12, 17, -11, 7, 2, 19, -8, 20, 6, -5, 21, 9,
10, 22, 13, -1, 16, 23

79. [=ha£(18,3)&u= 14, -15, 24, 4, -12, 17, -11, 7, 2, 19, -8, 20, 6, -5, 21, 9,
10, 22, 13, -1, 16, 23

80. [=ho£(14,18,24,3) du=-15, 4, -12, 17, -11, 7, 2, 19, -8, 20, 6, -5, 21, 9,
10, 22, 13, -1, 16, 23

81. Dh=(—14,24,—15,3) ®u=_-14, 24, -15, 3, 18, 17, -12, 4, 2, 19, -11, 7, 6, 20
8,9, 21, -5, 10, 22, 13, -1, 23, 16

82. [=Dho+(24) &u=_-14-15, 3, 18, 17, -12, 4, 2, 19, -11, 7, 6, 20, -8, 9, 21,
-5, 10, 22, 13, -1, 23, 16

83. (=0 £(3)Du=-14, 24, -15, 18, 17, -12, 4, 2, 19, -11, 7, 6, 20, -8, 9, 21,
-5, 10, 22, 13, -1, 23, 16

84 [=0® £(24,3) ®u=-14, -15, 18, 17, -12, 4, 2, 19, -11, 7, 6, 20, -8, 9, 21,
-5, 10, 22, 13, -1, 23, 16

85. h=(24,-18,4,3)du =24, -18, 4, 3, 14, -15, 7, 17, -11, -12, 20, 19, -8, 2,
21, -5, 6, 22, 10, 9, 13, 16, -1, 23
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86. [=bhe+(24)®u=-184,3, 14, -15, 7, 17, -11, -12, 20, 19, -8, 2, 21, -5, 6,

22, 10, 9, 13, 16, -1, 23

87. [=hd +t(4) du=24,-18, 3, 14, -15, 7, 17, -11, -12, 20, 19, -8, 2, 21, -5, 6,

22, 10, 9, 13, 16, -1, 23

88. [=ho£(3)du=24,-18, 4, 14, -15, 7, 17, -11, -12, 20, 19, -8, 2, 21, -5, 6,

22, 10, 9, 13, 16, -1, 23

89. (=heo £(24,4) du=_-18, 3, 14, -15, 7, 17, -11, -12, 20,

22, 10, 9, 13, 16, -1, 23

19, -8, 2, 21, -5, 6,

90. [(=ho +(24,3) du=_-18, 4, 14, -15, 7, 17, -11, -12, 20

22, 10, 9, 13, 16, -1, 23

19, -8, 2, 21, -5, 6,

9I. [=0h® +(4,3,7) ®u= 24, -18, 14, -15, 17, -11, -12, 20,

22, 10, 9, 13, 16, -1, 23

19, 8, 2, 21, -5, 6,

92. 1=0&L(3,4,7,24) ®u =18, 14, -15, 17, -11, -12, 20, 19, -8, 2, 21, -5, 6,

22, 10, 9, 13, 16, -1, 23

f-stable parabolic subalgebras relative to FI]

The first 16 parabolic subalgebras are listed in previous table in the same order.

17. h=(1,2,7,-4)ou=1,2,7 -4,5,10, 3, 12, 16, 6, 18, 8, 13, 20, 15, 9, 17,

11, 21, 14, 19, 22, 23, 24

8. [=hot(l)du=2 7, 4,5, 10,3, 12, 16, 6, 18, 8, 13, 20, 15, 9, 17, 11, 21,

14, 19, 22, 23, 24

10. [=ho*(2)du=1,7, 4,5, 10, 3, 12, 16, 6, 18, 8, 13, 20, 15, 9, 17, 11, 21,

14, 19, 22, 23, 24

20. [=haei(Nau=1,2 405, 10,3, 12, 16, 6, 18, 8, 13, 20, 15, 9, 17, 11, 21,

14, 19, 22, 23, 24

2. [=ho*(1,2,5)@u="7, -4, 10, 3, 12, 16, 6, 18, 8, 13, 20, 15, 9, 17, 11, 21,

14, 19, 22, 23, 24

2. [=haL(,7)@du=2 4,5, 10,3, 12, 16, 6, 18, 8, 13, 20, 15, 9, 17, 11, 21,

14, 19, 22, 23, 24

23. [=hoL(2,7,10,16)@u=1, 4,5, 3, 12, 6, 18, 8, 13, 20, 15, 9, 17, 11, 21,

14, 19, 22, 23, 24

24, [=h& £(1,2,7,5,10,12,16,18,20) @ u = -4, 3, 6, 8, 13, 15, 9, 17, 11, 21,

14, 19, 22, 23, 24

25. B=(1,16,—7,3)@u=1, 16,7, 3, 18, 10, -4, 12, 2, 13, 5, 15, 6, 20, 8, 9, 21,

11, 17, 22, 19, 14, 23, 24

26. [=hdE(l)du=16, -7, 3, 18, 10, -4, 12, 2, 13, 5, 15, 6, 20, 8, 9, 21, 11,

17,22, 19, 14, 23, 24

27. [=h@+£(16)du=1,-7, 3, 18, 10, -4, 12, 2, 13, 5, 15, 6, 20, 8, 9, 21, 11,

17,22, 19, 14, 23, 24

2. [=hdL(3) du=1,16,-7, 18, 10, -4, 12, 2, 13, 5, 15, 6, 20, 8, 9, 21, 11,

17, 22, 19, 14, 23, 24

29. [=hd=x(1,16,18) du=-7, 3, 10, -4, 12, 2, 13, 5, 15, 6, 20, 8, 9, 21, 11, 17

22, 19, 14, 23, 24

30. [=hoL(1,3)@u=16,-7, 18, 10, 4, 12, 2, 13, 5, 15, 6, 20, 8, 9, 21, 11, 17

22, 19, 14, 23, 24

3. [=hoL(16,3)du=1,-7, 18, 10, 4, 12, 2, 13, 5, 15, 6, 20, 8, 9, 21, 11, 17

22, 19, 14, 23, 24

32. [=ho=£(1,16,18,3)du=-7, 10, -4, 12, 2, 13, 5, 15, 6, 20, 8, 9, 21, 11, 17

22, 19, 14, 23, 24
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Es.

Proposition 3.7. Let g. = Es and fix a special nilpotent orbit O of G, on g..
Then there exists a real form G such that some irreducible component of O Ny, is
a Richardson orbit of K. on the nilpotent cone of p...

Proof. We order the roots of Fg as in the table below and we use the Bourbaki
system of simple roots A = {ay, as, ag, a4, a5, ag}. The Cartan involution § with
+1-eigenspace £ and —1-eigenspace p depends on the real forms. If g, = EI] then
t. = sl5(C) @ sl(C) and the vector space p,. is the complex span of non-zero root
vectors Xg where 8 = cioq + coap + csas + caas + csas + coog with co = £1. If
g, = EIIT then £, = 5019(C) @ C and the vector space p, is the complex span
of non-zero root vectors Xz where 8 = cia1 + caan + cs3as + caay + csos + c06
with c¢g = £1. If g, = ETV then £, = Fj. In this case there are no non-compact
imaginary roots. The compact imaginary roots are:

:‘:Olg

:‘:014

:t(ag + a4)

i(ozg + oy + 045)

(oo + a3 + g + )

(012 + Qa3 + 2044 + Oé5)

(a1 +as 4+ as + as + ag)

(a1 4 g + az + ag + a5 + )
(a1 +a2+a3+2a4+a5+a6)
(041 + o + 2a3 + 204 + 205 + 046)
(041 + [6%) + 20[3 + 30[4 + 20&5 + OLG)
12 +(a1 + 20 + 2a3 + 3aq + 25 + )

1
2
3
4
5.
6.
7
8
9.
1

while the other roots are complex and g, = €. ® p. with:

£

= 3 CX. P > C(Xa +0(Xa))

a compact imaginary (a,0cr) complex pairs

Pe = 5¢ @@ Z (C(Xa _H(Xa))

(a,0cr) complex pairs

Here X, is a non zero vector of the root space g&'. An imaginary root « is compact
(non compcat) if its root space g2 lies in £, (p.). The fundamental Cartan sublgebra
is h. = t. P s.. See [2] for more details.

Positive roots of Ejg

1. [1,0,0,0,0,0] 13. 0,1,1,1,0,0] 25. [0,1,1,1,1,1]
2. 0,1,0,0,0,0] 14. 0,1,0,1,1,0] 26. [1,1,1,2,1,0]
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3. [0,0,1,0,0,0] 15. 0,0,1,1,1,0] 27. [1,1,1,1,1,1]
4. [0,0,0,1,0,0] 16. 0,0,0,1,1,1] 28. [0,1,1,2,1,1]
5. [0,0,0,0,1,0] 17. [1,1,1,1,0,0] 29. [1,1,2,2,1,0]
6. [0,0,0,0,0,1] 18. [1,0,1,1,1,0] 30. [1,1,1,2,1,1]
7. [1,0,1,0,0,0] 19. [0,1,1,1,1,0] 31. [0,1,1,2,2,1]
8. [0,1,0,1,0,0] 20. 0,1,0,1,1,1] 32. [1,1,2,2,1,1]
9. [0,0,1,1,0,0] 21. [0,0,1,1,1,1] 33. [1,1,1,2,2,1]
10.[0,0,0,1,1,0] 22. [1,1,1,1,1,0] 34. [1,1,2,2,2,1]
11.[0,0,0,0,1,1] 23. [1,0,1,1,1,1] 35. [1,1,2,3,2,1]
12.[1,0,1,1,0,0] 24. 0,1,1,2,1,0] 36. [1,2,2,3,2,1]

As before it is enough to consider non even special orbits in Eg. The next table
shows which of them are polarizable and therefore by Tauvel’s lemma satisfy the
proposition.

Polarizable orbits of Ej

Bala-Carter Label : A; ® 24, Special
Real form : EII

Root vectors for e: 27,-2,31,29 dim g¢ = 28
Parabolic : Levi-Type: Ay + A dimension = 53

Cartan subalgebra: 1,4,13,5,-14,20

Roots vectors for Levi: £(1,13,5,4,17,19,10,22,24,26) + (20)

Roots vectors for nilradical: -14,-8,6,-2,3,11,7,9,16,25,12,27,15,28,18, 30,31
,29,33,21,36,23,32,34,35

Bala-Carter Label : A3 Special
Real form : EII

Root vectors for e: -2, 24, 27 dim g¢ = 26
Parabolic : Levi-Type: A, dimension = 52

Cartan subalgebra: 1,-2,3,8,5,6

Roots vectors for Levi: +(1,3,8,5,7,13,14,17,19, 22)

Roots vectors for nilradical: -2,6,4,11,9,10,20,12,15,16,25,18,27,24,21,
26,23,28,29,30,31,32,33,34,36,35

Bala-Carter Label : A4 ® A Special
Real form : EII

Root vectors for e: 27, 28,29-17.-19 dim g¢ = 16
Parabolic : Levi-Type: A & A1 & A dimension = 47

Cartan subalgebra: -17,24,22,-19,3,20

Roots vectors for Levi: +(3,20,25), +(24), +(22)

Roots vectors for nilradical: -17,-19,5,4, 1,-14,-13,26,9,7,6,10,-8,29,28,27,
15,11,12,36,-2,31,30,18,16,32,33,21,34,23,35

Bala-Carter Label : Ds(a;) Special
Real form : EII

Root vectors for e: -13,28,22,27,-14,-20 dim g = 14
Parabolic : Levi-Type: A @& A, dimension = 46

Cartan subalgebra: 17,4,-13,19,6,-20
Roots vectors for Levi: £(19,4,24), +(17)
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Roots vectors for nilradical: -13,6,-20,1,5,25,-14,22,10,28,11,3,26,27,16,9,-8,
30,7,31,-2,36,12,15,33,29,21,18,32,23,34,35

We shall now deal with the remaining orbits of interest. They are labeled as follows:
Aq, 2A1, Ao + Aq. In each case we will exhibit a real form and a theta stable
parabolic subalgebra q = [ @ u such that the given orbit intersect uNp. in an open
dense set.

In the case of A1 we see below that unp, = C(X32 — X33). Hence the K_-orbit of
(X392 — X33) is the K_-saturation of unp..

Bala-Carter Label : A, Special
Real form : EIV
Root vectors for e: 32,33
Parabolic : Levi-Type: Ds
Cartan subalgebra: 1,2,3,4,5,6
Roots vectors for Levi: +(6,5,4,2,3,11,10,8,9, 16, 14, 15,13, 20,
21,19,25,24,28,31,1,7,12,17, 18, 22, 26, 29)
Roots vectors for nilradical: 23, 27, 30, 32, 33, 34, 35, 36

In the case of the orbit labeled 24; we use the real form EII and a theta-stable
parabolic subalgebra q = [ @ u such that the Cartan product of all roots in uNp,
is non negative an there are no instances of three orthogonal roots.

Bala-Carter Label : 24, Special
Real form : EII
Root vectors for e: 20,32
Parabolic : Levi-Type: Ds
Cartan subalgebra: 1,2,3,4,5,6
Roots vectors for Levi: £(1,3,4,2,5,7,9,8,10,12,13,15,14,17, 18,19,
22,24, 26,29)
Roots vectors for nilradical: 6, 11, 16, 20, 21, 23, 25, 27, 28,
30,31, 32, 33, 34, 35, 36

In the case of the orbit labeled A5+ A; we use the real form EIIT and a theta-stable
parabolic subalgebra g = [ @ u such that u N p. contains no representatives of the
orbits labeled 245 or As. But we can find a representative of Ay + A; in unNp..
This is the largest orbit intersecting uNyp,..

Bala-Carter Label : A, ® A Special
Real form : EIII
Root vectors for e: 23, -6, 36
Parabolic : Levi-Type: Dy
Cartan subalgebra: 23, 3, 2, -25, 28, 5,
Roots vectors for Levi: £(3,—25,28,2,—20,4,—-21,9,-16,8,13, —11)
Roots vectors for nilradical: 23, 5, 27, 31, 1, 10, 7, 30, 15, 14, 32, 33, 19, 12, 34,
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-6, 17, 18, 24, 22, 35, 36, 26, 29

This concludes the proof.
|

If G, is of type Ey or Eg then the minimal orbit is not polarizable. This fact can
be verified by showing that the dimension of each theta parabolic subalgebra will
not satisfy the above definition. Moreover, all theta-stable parabolic subalgebras
relative to each real form contain a nilpotent A; + A;. Hence no theta-stable
parabolic subalgebra q = [ @ u will satisfy the analogue of Trapa’s theorem. Again
this fact can be checked easily using the algorithm given in [4].

Er.

Proposition 3.8. Let g, = E7 and fix a non minimal special nilpotent orbit O of
G, on g.. Then there exists a real form G such that some irreducible component
of O Nyp,. is a Richardson orbit of K. on the nilpotent cone of p..

Proof. We order the roots of F7 as in the table below and we use the Bourbaki
system of simple roots A = {a1, as, a3, a4, as, ag,ar}. The Cartan involution 6
with +1-eigenspace £ and —1-eigenspace p depends on the real forms. If g, = EV
then €. = slg(C) and the vector space p. is the complex span of non-zero root
vectors Xg where 3 = ciaq +cap +c3az + ca0 + cs s + cg g 4 crory with cp = £1.
If g, = EVI then t, = 5012(C) ®sl2(C) and the vector space p,, is the complex span
of non-zero root vectors Xg where 8 = ciaq +caag+czaz+caas+csas +cgog+crar
with ¢; = £1. If g, = EVII then €. = ¢5(C) @ C and the vector space p, is the
complex span of non-zero root vectors Xz where 3 = cioq + coa + c3az + caaq +
csas + cgag + crar with ¢p = £1.

Positive roots of E-

1. [1,0,0,0,0,0,0] 22. [0,1,1,1,1,0,0] 43. [1,1,1,2,2,1,0]
2. [0,1,0,0,0,0,0] 23. [0,1,0,1,1,1,0] 44. [1,1,1,2,1,1,1]
3. [0,0,1,0,0,0,0] 24. 0,0,1,1,1,1,0] 45. [0,1,1,2,2,1,1]
4. [0,0,0,1,0,0,0] 25. [0,0,0,1,1,1,1] 46. [1,1,2,2,2,1,0]
5. [0,0,0,0,1,0,0] 26. [1,1,1,1,1,0,0] 47. [1,1,2,2,1,1,1]
6. [0,0,0,0,0,1,0] 27. [1,0,1,1,1,1,0] 48. [1,1,1,2,2,1,1]
7. [0,0,0,0,0,0,1] 28. [0,1,1,2,1,0,0] 49. [0,1,1,2,2,2,1]
8. [1,0,1,0,0,0,0] 29. [0,1,1,1,1,1,0] 50. [1,1,2,3,2,1,0]
9. [0,1,0,1,0,0,0] 30. [0,1,0,1,1,1,1] 51. [1,1,2,2,2,1,1]
10.[0,0,1,1,0,0,0] 31. [0,0,1,1,1,1,1] 52. [1,1,1,2,2,2,1]
11.[0,0,0,1,1,0,0] 32. [1,1,1,2,1,0,0] 53. [1,2,2,3,2,1,0]
12.[0,0,0,0,1,1,0] 33. [1,1,1,1,1,1,0] 54. [1,1,2,3,2,1,1]
3 0,0,0,0,0,1,1] 34. [1,0,1,1,1,1,1] 55. [1,1,2,2,2,2,1]

14.[1,0,1,1,0,0,0] 35. 0,1,1,2,1,1,0] 56. [1,2,2,3,2,1,1]

15.[0,1,1,1,0,0,0] 36. [0,1,1,1,1,1,1] 57. [1,1,2,3,2,2,1]

16.[0,1,0,1,1,0,0] 37. [1,1,2,2,1,0,0] 58. [1,2,2,3,2,2,1]

17.[0,0,1,1,1,0,0] 38. [1,1,1,2,1,1,0] 59. [1,1,2,3,3,2,1]
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18.[0,0,0,1,1,1,0] 39. [1,1,1,1,1,1,1] 60. [1,2,2,3,3,2,1]
19.[0,0,0,0,1,1,1] 40. [0,1,1,2,2,1,0] 61. [1,2,2,4,3,2,1]
20.[1,1,1,1,0,0,0] 41. [0,1,1,2,1,1,1] 62. [1,2,3,4,3,2,1]
21.[1,0,1,1,1,0,0] 42. [1,1,2,2,1,1,0] 63. [2,2,3,4,3,2,1]

As before it is enough to consider non even special orbits in E7. The next table
shows which of them are polarizable and therefore by Tauvel’s lemma satisfy the
proposition.

Polarizable orbits of E-;

Bala-Carter Label : Dy(a;) ® A, Special
Real form : EV

Root vectors for e: 37,-16,43,38,45,41 dim g = 37
Parabolic : Levi-Type: As dimension = 85

Cartan subalgebra: 1,4,15,5,6,7,-30

Roots vectors for Levi: £(1,15,5,6,7,20,22,12,13, 26,29, 19, 33, 36, 39)
Roots vectors for nilradical: 4,-30,11,-23,28,18,-16,32,35,25,-9,38,40,41,
-2,3,43,44,8,45,10,53,48,14,49,17,56,52,21,24,58,37,27,31,60,42,34,61
,46,47,50,51,54,55,57,59,62,63

Bala-Carter Label : A; ® A Special
Real form : EV

Root vectors for e: 26,38,45,-15,-16 dim g° = 29
Parabolic : Levi-Type: Ay & A, dimension = 81

Cartan subalgebra: 20,-28,5,4,3,23,7

Roots vectors for Levi: £(7,23, 3,4, 30,29, 10, 36, 35,41) £ (20)
Roots vectors for nilradical: -28,5,26,-22,11,32,-15,-16,17,1,37,-9,6,40,
8,53,-2,12,13,45,14,33,56,18,19,21,38,39,24,25,43,42,44,31,46,48,
47,49,50,51,58,27,54,60,34,61,52,62,55,57,59,63

Bala-Carter Label : Ds(a;) Special
Real form : EV

Root vectors for e: 39,42.-16,-20,32,40 dim g¢ = 27
Parabolic : Levi-Type: Ay dimension = 80

Cartan subalgebra: -20,-28,26,4,3,23,7

Roots vectors for Levi: £(4,3,23,7,10,29, 30, 35, 36, 41)

Roots vectors for nilradical: -20,-28,26,5,-22,32,11,1,-16,37,-15,17,8,6,53,
-9,40,14,33,13,56,-2,12,45,38,39,21,18,19,42,44,43,24,25,47,46,48,
31,58,50,51,49,27,54,60,34,61,52,62,55,57,63,59

Bala-Carter Label : D5 ® A, Special
Real form : EV

Root vectors for e: 32,33,41,-20,-22,-23 dim g = 19
Parabolic : Levi-Type: A; @ Ao dimension = 76

Cartan subalgebra: -20,28,26,6,-29,3,30

Roots vectors for Levi: £(28,6,35) + (3, 30, 36)

Roots vectors for nilradical: -20,26, -29,5,33,-22,-23,12,53,4,1,-16,7,40,-15,
32,10,8,13,11,-9,38,37,41, 39,18,17,19,42,56,43,24,45,14,58,46 -2,49,44,21,
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60,25,47,27,48,31,50,52,51,61,55,62,34,54,57,63,59

Bala-Carter Label : Dg(a;) Special
Real form : EV

Root vectors for e: 30,37,33,36,-22,-20,-16 dim g =19
Parabolic : Levi-Type: A3 dimension = 76

Cartan subalgebra: -20,-28,26,4,3,23,7

Roots vectors for Levi: £(4, 3,23, 10,29, 35)

Roots vectors for nilradical: -20,-28,26,7,5,-22,32,30,11,1,-16,37,36,-15,17
,8,6,563,41,-9,40,14,33,13,56,-2,12,45,38,39,21,18,19,42,44,43,24,25,47,46,48
,31,58,50,51,49, 27,54,60,34,61,52,62,55,57,63,59

We shall now deal with the remaining orbits of interest. In each case we will exhibit
a real form and a theta stable parabolic subalgebra q = [ & u such that the given
orbit intersect u N p. in an open dense set.

In the case of the orbit labeled 24, we use the real form EVII and a theta-stable
parabolic subalgebra q = [ @ u such that the Cartan product of all roots in uNp,
is non negative an there are no instances of three orthogonal roots.

Bala-Carter Label : 24, Special
Real form : EVII
Root vectors for e: 34,56
Parabolic : Levi-Type: Dg
Cartan subalgebra: 1,2,3,4,5,6,7
Roots vectors for Levi: £(76,5,4,2,3,13,12,11,9,10,19, 18, 16,17,
15,25,23, 24,22, 30, 31, 29, 28, 36, 35,41, 40, 45, 49)
Roots vectors for nilradical: 1 8, 14, 20, 21, 26, 27, 32, 33, 34, 37, 38, 39, 42,
43, 44, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63

In the case of the orbit labeled A5 + A; we use the real form EVII and a theta-
stable parabolic subalgebra q = [ @ u such that u N p_. contains no representatives
of the orbits labeled 245 or A3. But we can find a representative of As + A; in
uNyp.. This is the largest orbit intersecting u N p..

Bala-Carter Label : A5 @ A; Special
Real form : EVII
Root vectors for e: -13, 45, 52
Parabolic : Levi-Type: Ds & A
Cartan subalgebra: 1,2,3,4,19,-13,6
Roots vectors for Levi: £(1,3,4,2,19,8,10,9,25,14,15, 31,
30, 20, 34, 36, 39,41, 44,47, 6)
Roots vectors for nilradical: -13 ,5,-7, 11,12 ,16 ,17 ,18 , 21 , 22 |
23,24 ,26,27,28 ,29,32,33,45,35,37,48,38,49,51,42, 52,
40,54 ,55,43,56,57,46 ,58 ,50,53,59,60, 61,62, 63

In the case of the orbit labeled A; + 2A; we use the real form EV I and a theta-
stable parabolic subalgebra q = [ @ u such that uNp, contains no representatives
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of the orbits labeled 245 or As. But we can find a representative of Ay + 2A; in
uNyp,. This is the largest orbit intersecting u N p..

Bala-Carter Label : A; ® 24, Special
Real form : EVI
Root vectors for e: 55, -20, 43, 56,
Parabolic : Levi-Type: Ag
Cartan subalgebra: 3, -20, 4, 2, 21, 6, 7
Roots vectors for Levi: £(3,4,2,21,6,7,10,9,26,27,13,15, 32,
33,34,37,38,39,42,44,47)
Roots vectors for nilradical: -20 ,-14 ,-8 ;5 ,-1,11,12 17,16, 18,
19,22 ,24,23,25,28,29,31,43,
30,35,46 ,36,48 ,50,41,51,52,53,
54 , 55,40 ,56 ,57 ,45,58 ,49 ,63,59,60, 61, 62

In the case orbit labeled A3 we use the real form EVII and a theta-stable parabolic
subalgebra q = [@u such that uNp, contains no representatives of the orbits labeled
245 or A3+ Ay or Ay. But we can find a representative of As in uNyp.. This is the
largest orbit intersecting unp..

Bala-Carter Label : Aj Special
Real form : EVII
Root vectors for e: -30, 49, 56
Parabolic : Levi-Type: Aj;
Cartan subalgebra: 1, -30, 31, 2, 4,5, 6
Roots vectors for Levi: £(1,31,2,4,5,34,36,9,11,
39,41,16, 44, 45, 48)
Roots vectors for nilradical: -30 , 6 ,-25,12,3,-19,18,8,10,-13, 23,
14,15 ,17,-7,49,20,21,52,22,24 , 47,26, 27,
28,29 ,51,32,33,35,54,55,38,40, 56,
57,43 ,37,58 ,59,42 /60,46 ,61,50, 53,62, 63

Finally for the orbit labeled A3 + Ay we use the real form EV I and a theta-stable
parabolic subalgebra g = [ @ u such that u M p. contains no representatives of the
orbits labeled 2A3 or A4 or any higher dimensional orbits. But we can find a
representative of As + Ao in uNp,.. This is the largest orbit intersecting uNyp,.

Bala-Carter Label : A3 @ 2A4, Special
Real form : EVI
Root vectors for e: 50, 55 ,-33 ,-21, 48
Parabolic : Levi-Type: A; & Ay
Cartan subalgebra: 3 ,5,32,6,-33,2,34
Roots vectors for Levi: £(3,32,6,5,37,38,12,42,43, 46, 2, 34, 39)
Roots vectors for nilradical: -33 , -26 ,-27 ,-20,4,-21,7,10,11,-14,
9,13,17,15,18,16, 19, 44,24, 22,
47,23 ,48 ;50,29 ;51 ,-8,52,53,-1,55,25,28 63,31, 30,
35,54 ,36,40,57,56,59,58,60,41,45,49,61, 62
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This concludes the proof.

Es.

All theta-stable parabolic subalgebras relative to the two real forms of Eg contains
a representative of the nilpotent orbit labeled 3A4;. Hence 2A4; cannot be the K-
saturation or any q. However the next proposition shows that most special orbits
of Fg are Richardson.

Proposition 3.9. Let g. = Ej and fix a special nilpotent orbit O of G on g, such
that O is either even or is one of the orbits given below . Then there exists a real
form G such that some irreducible component of O N p. is a Richardson orbit of
K, on the nilpotent cone of p._..

Proof. We order the roots of Fg as in the table below and we use the Bourbaki
system of simple roots A = {a1, as, az, a4, s, ag, ay,ag}. The Cartan involution
0 with +1-eigenspace € and —1-eigenspace p depends on the real forms. If g, =
EVIIT then t, = s5016(C) and the vector space p. is the complex span of non-zero
root vectors Xg where 8 = c1aq + coan + c3a3 + caoy + csas + cgag + crar + cgag
with c1 = +1.

Positive roots of Fjg

1. [1,0,0,0,0,0,0,0] 41. [0,1,1,1,1,1,1,0] 81. [1,2,2,3,2,1,1,1]
2. 0,1,0,0,0,0,0,0] 42.[0,1,0,1,1,1,1,1] 82. [1,1,2,3,3,2,1,0]
3. [0,0,1,0,0,0,0,0] 43.[0,0,1,1,1,1,1,1] 83. [1,1,2,3,2,2,1,1]
4. [0,0,0,1,0,0,0,0] 44. [1,1,2,2,1,0,0,0] 84. [1,1,2,2,2,2,2,1]
5. [0,0,0,0,1,0,0,0] 45. [1,1,1,2,1,1,0,0] 85. [1,2,2,3,3,2,1,0]
6. [0,0,0,0,0,1,0,0] 46. [1,1,1,1,1,1,1,0] 86. [1,2,2,3,2,2,1,1]
7. [0,0,0,0,0,0,1,0] 47. [1,0,1,1,1,1,1,1] 87. [1,1,2,3,3,2,1,1]
8. [0,0,0,0,0,0,0,1] 48. [0,1,1,2,2,1,0,0] 88. [1,1,2,3,2,2,2,1]
9. [1,0,1,0,0,0,0,0] 49. [0,1,1,2,1,1,1,0] 89. [1,2,2,4,3,2,1,0]
10.[0,1,0,1,0,0,0,0] 50. [0,1,1,1,1,1,1,1] 90. [1,2,2,3,3,2,1,1]
11.[0,0,1,1,0,0,0,0] 51. [1,1,2,2,1,1,0,0] 91. [1,2,2,3,2,2,2,1]
12.[0,0,0,1,1,0,0,0] 52. [1,1,1,2,2,1,0,0] 92. [1,1,2,3,3,2,2,1]
13.[0,0,0,0,1,1,0,0] 53. [1,1,1,2,1,1,1,0] 93. [1,2,3,4,3,2,1,0]
14.[0,0,0,0,0,1,1,0] 54. [1,1,1,1,1,1,1,1] 94. [1,2,2,4,3,2,1,1]
15 [0,0,0,0,0,0,1,1] 55. [0,1,1,2,2,1,1,0] 95. [1,2,2,3,3,2,2,1]

16.[1,0,1,1,0,0,0,0] 56. [0,1,1,2,1,1,1,1] 96. [1,1,2,3,3,3,2,1]
17.[0,1,1,1,0,0,0,0] 57. [1,1,2,2,2,1,0,0] 97. 2,2,3,4,3,2,1,0]
18.[0,1,0,1,1,0,0,0] 58. [1,1,2,2,1,1,1,0] 98. [1,2,3,4,3,2,1,1]
19.[0,0,1,1,1,0,0,0] 59. [1,1,1,2,2,1,1,0] 99. [1,2,2,4,3,2,2,1]
20.[0,0,0,1,1,1,0,0] 60. [1,1,1,2,1,1,1,1] 100.[1,2,2,3,3,3,2,1]
21.[0,0,0,0,1,1,1,0] 61. [0,1,1,2,2,2,1,0] 101.[2,2,3,4,3,2,1,1]
22.[0,0,0,0,0,1,1,1] 62. [0,1,1,2,2,1,1,1] 102.[1,2,3,4,3,2,2,1]
23.[1,1,1,1,0,0,0,0] 63. [1,1,2,3,2,1,0,0] 103.[1,2,2,4,3,3,2,1]
24.[1,0,1,1,1,0,0,0] 64. [1,1,2,2,2,1,1,0] 104.[2,2,3,4,3,2,2,1]
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25.[0,1,1,1,1,0,0,0] 65. [1,1,2,2,1,1,1,1] 105.[1,2,3,4,3,3,2,1]
26.[0,1,0,1,1,1,0,0] 66. [1,1,1,2,2,2,1,0] 106.[1,2,2,4,4,3,2,1]
27.[0,0,1,1,1,1,0,0] 67. [1,1,1,2,2,1,1,1] 107.[2,2,3,4,3,3,2,1]
28.[0,0,0,1,1,1,1,0] 68. [0,1,1,2,2,2,1,1] 108.[1,2,3,4,4,3,2,1]
29.[0,0,0,0,1,1,1,1] 69. [1,2,2,3,2,1,0,0] 109.[2,2,3,4,4,3,2,1]
30.[1,1,1,1,1,0,0,0] 70. [1,1,2,3,2,1,1,0] 110.[1,2,3,5,4,3,2,1]
31.[1,0,1,1,1,1,0,0] 71. [1,1,2,2,2,2,1,0] 111.[2,2,3,5,4,3,2,1]
32.[0,1,1,2,1,0,0,0] 72. [1,1,2,2,2,1,1,1] 112.[1,3,3,5,4,3,2,1]
33.00,1,1,1,1,1,0,0] 73. [1,1,1,2,2,2,1,1] 113.[2,3,3,5,4,3,2,1]
34.[0,1,0,1,1,1,1,0] 74. 0,1,1,2,2,2,2,1] 114.12,2,4,5,4,3.2,1]
35.[0,0,1,1,1,1,1,0] 75. [1,2,2,3,2,1,1,0] 115.[2,3,4,5,4,3,2,1]
36.[0,0,0,1,1,1,1,1] 76. [1,1,2,3,2,2,1,0] 116.[2,3,4,6,4,3,2,1]
37.[1,1,1,2,1,0,0,0] 77. [1,1,2,3,2,1,1,1] 117.[2,3,4,6,5,3,2,1]
38.[1,1,1,1,1,1,0,0] 78. [1,1,2,2,2,2,1,1] 118.[2,3,4,6,5,4,2,1]
39.[1,0,1,1,1,1,1,0] 79. [1,1,1,2,2,2,2,1] 119.[2,3,4,6,5,4,3,1]
40.[0,1,1,2,1,1,0,0] 80. [1,2,2,3,2,2,1,0] 120.[2,3,4,6,5,4,3,2]

21

As before it is enough to consider non even special orbits in Eg. The next table
shows which of them are polarizable and therefore by Tauvel’s lemma satisfy the
proposition.

Polarizable orbits of Ejy

Bala-Carter Label : A; ® As ® A Special
Real form : EVIII
Root vectors for e: 63,71,72,73,75,-16,-30 dim g¢ = 52

Parabolic : Levi-Type: Ag @ A dimension = 150
Cartan subalgebra: 44,5,-37,4,2,31,7,8

Roots vectors for Levi: £(8,7,31,2,4,5,15,39,38,10,12,47, 46,45, 18, 54,53,
52,60,59,67), +(44)

Roots vectors for nilradical: -37,3,-30,11,-23,-24,19,17,-16,6,
25,51,-9,13,14,32,57,58,20,21,22,-1,63,64,65,26,28,29,27,69,70,72,
34,36,33,35,75,77,66,42,40,41,43,97,81,73,48,49,71,50,101,79,55,
76,56,78,104,82,62,80,83,84,85,87,86,88,89,90,92,91,61,94,95,107,
93,68,99,109,98,74,111,102,96,113,114,100,115,103,116,106,117,105,
108,110,112,118,119,120

Bala-Carter Label : Dg(a;) Special
Real form : EVIII
Root vectors for e: 64,65,67,73,-30,-47,71 dim gZ = 38

Parabolic : Levi-Type: A; dimension = 143
Cartan subalgebra: 44,-52,6,5,4,46,8,-47

Roots vectors for Levi: +£(44,6,5,4,46,51,13,12,53,57, 20, 59, 63, 66, 97)

Roots vectors for nilradical: -52,8,-47,
-45,54,-39,-37,-38,60,2,3,-30,7,67,10,11,-23,14,15,73,18,19,58,101,
21,22,-31,26,27,64,65,69,28,29,-24,71,70,72,17,36,-16,76,78,77,25,
79,-9,82,83,33,104,32,34,35,87,107,40,75,42,43,109,48,80,81,84,-1,
111,85,86,88,41,89,90,92,49,50,94,96,55,56,113,114,61,62,91,93,68,
95,98,100,99,115,103,116,106,117,74,102,118,105,108,110,119,120, 112
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Bala-Carter Label : Ag ® A; Special
Real form : EVIII

Root vectors for e: 64,65,66,67,69, -37,-38 dim gZ = 36
Parabolic : Levi-Type: A4 ® Ax ® Ay dimension = 142

Cartan subalgebra: 44,52,6,-45,4,2,39,8

Roots vectors for Levi: £(4,2,39,8,10,46,47,53,54,60), +(44,6,51), +(52)
Roots vectors for nilradical: -45,5,-37,-38,3,13,
12,-30,-31,57,11,20,18,-24,7,63,17,-23,26,59,14,15,19,69,58,-16,
66,67,22,27,25,97,65,-9,21,73,33,32,64,101,28,29,40,71,70,72,34,
36,-1,76,78,75,77,42,48,35,80,83,81,79,82,41,43,86,104,85,87,49,
50,107,89,90,56,84,55,94,109,88,61,62,111,91,93,68,92,113,98,96,
95,114,100,99,115,103,116,74,102,106,117,105,118,108,110,112,119, 120

Bala-Carter Label : D7(a2) Special
Real form : EVIII

Root vectors for e: 51,58, 60,66,67, -23,-39, -30,-31 dim g¢ = 32
Parabolic : Levi-Type: A4 & A1 & A dimension = 140

Cartan subalgebra: 44,5,-37,4,38,7,-39,47

Roots vectors for Levi: +(7,38,4,5,46,45,12,53,52,59), +(44), £(47)
Roots vectors for nilradical: -37,-39,3,-30,-31,8,11,-23,6,2,
15,19,51,13,14,10,54,57,58,20,21,18,-24,60,63,64,17,28 -16,67,22,
27,70,25,65,66,-9,29,35,97,32,72,26,36,71,-1,69,77,34,73,76,33,43,
75,101,79,82,40,41,78,104,42,48,49,83,84,81,55,87,80,88,50,85,92,
107,56,89,109,62,86,61,111,90,91,93,96,94,95,114,68,99,08,74,113,
102,100,115,103,116,106,117,105,108,110,118,119,112,120

Bala-Carter Label : Es(a1) ® A; Special
Real form : EVIII

Root vectors for e: 54, 47,63,64,66,-38,-37,-31 dim g = 30
Parabolic : Levi-Type: A, ® A dimension = 139

Cartan subalgebra: 44,-52,6,5,4,2,39,8

Roots vectors for Levi: £(39,2,4,5,46,10,12,53,18,59), +-(44)
Roots vectors for nilradical: -52,6,8,51,-45,13,47,57,-37,-38,20,54,
3,63,-30,-31,26,60,11,69,-23,-24,7,66,67,19,17,97,-16,14,15,73,27,
25,58,101,-9,21,22,33,32,64,65,28,29,40,71,70,72,34,36,48,76,78,
75,77,42,-1,82,80,83,81,79,35,85,87,86,104,41,43,89,90,107,49,50,
94,109,55,56,84,111,61,62,88,113,93,68,92,91,98,96,95,114,100,99,
115,103,116,106,117,74,102,118,105,108,110,112,119,120

Bala-Carter Label : FE;(a;) Special
Real form : EVIII

Root vectors for e: 54,57,58,60,-38,-44, -47 -45 dim g¢ = 20
Parabolic : Levi-Type: A3 dimension = 134

Cartan subalgebra: -44,-52,51,5,4,46,8,-47

Roots vectors for Levi: £(5,4,46,12,53,59)

Roots vectors for nilradical: -44, -52,51,8,-47,6,-45,57,54,-39,13,3,-38,63,60,2,
-37,20,11,7,97,67,10,-30,66,19,58,15,101,18,-23,14,73,64,65,-31,69,27,21,22,
26,70,72,17,71,28,29,-24,77,25,76,78,36,-16,104,32,82,83,33,79,-9,75,35,
87,107,40,34,81,43,109,48,80,42,84,-1,111,85,86,88,41,89,90,92,49,
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50,94,114,55,56,113,96,93,62,91,61,98,95,68,115,99,100,116,103,117,
106,102,74,118,105,108,110,119,120,112

This concludes the proof.

We end the paper with the following theorem:

Theorem 3.10. Maintaining our previous notations, let g. be a simple complex
Lie algebra other than Eg and fix a non-minimal special nilpotent orbit O of G on
g.. Then there exists a real form G such that some irreducible component of O Ny,
is a Richardson orbit of K. on the nilpotent cone of p,..

Proof. If g.. is classical then a proof is given [8], otherwise the theorem follows from
the above propositions.
|
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