
SOME REMARKS ON RICHARDSON ORBITS IN COMPLEX
SYMMETRIC SPACES

ALFRED G. NOËL

Abstract. Roger W. Richardson proved that any parabolic subgroup of a

complex semisimple Lie group admits an open dense orbit in the nilradical of its
corresponding parabolic subalgebra. In the case of complex symmetric spaces

we show that there exist some large classes of parabolic subgroups for which the

analogous statement which fails in general, is true. Our main contribution is
the extension of a theorem of Peter E. Trapa [8] to real semisimple exceptional

Lie groups.

1. Introduction

In this paper, unless otherwise specified, g will be a real semisimple Lie algebra with
adjoint group G and Cartan decomposition g = k⊕p relative to a Cartan involution
θ. We will denote by gC the complexification g. Then gC = kC ⊕ pC where kC and pC

are obtained by complexifying k and p respectively. K will be a maximal compact
Lie subgroup of G with Lie algebra k and KC will be the connected subgroup of the
adjoint group GC of gC , with Lie algebra kC . It is well known that KC acts on pC and
the number of nilpotent orbits of KC in pC is finite. Furthermore, for a nilpotent
e ∈ pC , KC

.e is a connected component of GC
.e ∩ pC .

Let q be a parabolic subalgebra of gC with Levi decomposition q = l⊕u. Denote by
Q the connected Lie subgroup of GC with Lie algebra q. Then there is a unique orbit
OgC

of GC on gC meeting u in an open dense set. The intersection OgC
∩ u consists

of a single Q-orbit under the adjoint action of Q on u. These facts were first proved
by Richardson [5]. Hence, OgC

is called a Richardson orbit. Since the publication in
1979 of a fundamental paper of Lusztig and Spaltenstein [3] relating Representation
Theory of gC to Richardson orbits mathematicians have paid a lot of attention to
such orbits. However, most of the work was done for complex semisimple Lie
Groups. Lately, after the proof of the Kostant- Sekiguchi correspondence [6], some
initiatives have been taken to study Richardson orbits of real Lie reductive groups.

The Kostant-Sekiguchi correspondence is a bijection between nilpotent orbits of
G in g and nilpotent orbits of KC on pC . Thus, the correspondence allows us to
study certain questions about real nilpotent orbits by looking at nilpotent orbits
of KC on the symmetric space pC . Therefore the following is a natural question:
Maintaining the above notations and assuming that q is θ-stable when does Q∩KC
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admit an open dense orbit on u∩pC? This would be the equivalent of the Richardson
theorem for the real case. It turns out that this statement is not true in general.
Patrice Tauvel gave a counter example in [7] on page 652 for gC = D4. However,
he was able to prove an interesting version of Richardson’s theorem. We shall say
more about this later. In the next section we shall give some important cases where
the equivalent of Richardson’s theorem still holds.

2. Some density results

2.1. Jacobson Morozov parabolic subalgebra. Let (x, e, f) to be a normal
sl2-triple with x ∈ ik e and f ∈ pC . From the representation theory of sl2, gC has
the following eigenspace decomposition:

gC =
⊕
j∈Z

g(j)
C

where g(j)
C

= {z ∈ gC |[x, z] = jz}

The subalgebra q =
⊕
j∈N

g(j)
C

is a parabolic sub algebra of gC with a Levi part l = g(0)
C

and nilradical u =
⊕

j∈N∗
g(j)

C
. Call q the Jacobson-Morosov parabolic subalgebra of e

relative to the triple (x, e, f). Our choice of the triple (x, e, f) forces q to be θ-stable
in Vogan’s sense.

Retain the above notations. Let Q be the connected subgroups of GC with Lie
algebra q. We shall prove that if e is an even nilpotent then Richardson’s theorem
holds on u ∩ pC .

Let q be the Jacobson-Morozov parabolic subalgebra of e relative to the normal
triple (x, e, f). Then

Proposition 2.1. Q ∩ KC .e is a dense open subset of
⊕
i≥2

g(i)
C
∩ pC . Moreover if e

is even, that is g(i)
C

= 0 for i odd, then Q ∩KC
.e = u ∩ pC .

Proof. It is a result of Carter ([1] Proposition 5.7.3) that the orbit of Q on
⊕
i≥2

g(i)
C

containing e is a dense open subset of
⊕
i≥2

g(i)
C

. It follows that [q, e] =
⊕
i≥2

g(i)
C

which

implies that

[q, e] = [q ∩ kC , e]⊕ [q ∩ pC , e]
Since each g(i)

C
is θ-stable,⊕

i≥2

g(i)
C

=
⊕
i≥2

g(i)
C
∩ kC ⊕ g(i)

C
∩ pC

The fact that e ∈ pC and the previous direct sum decomposition force

q ∩ kC , e] =
⊕
i≥2

g(i)
C
∩ pC .
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Hence, the map ade : q∩ kC →
⊕
i≥2

g(i)
C
∩ pC is surjective. It is clear that

⊕
i≥2

g(i)
C
∩ pC

is a Q∩KC -module under the adjoint action. Also e ∈ g(2)
C
∩pC ⊆

⊕
i≥2

g(i)
C
∩pC . Thus

the map z → Adz(e) is a morphism from Q∩KC to
⊕
i≥2

g(i)
C
∩ pC and its differential

is the map: −ade : q ∩ kC →
⊕
i≥2

g(i)
C
∩ pC .

This map is surjective. Thus the given morphism is dominant and separable. Since
the image of such a map is open in its closure, the Q∩KC -orbit of e is a non-empty
open dense subset of

⊕
i≥2

g(i)
C
∩ pC .

If e is even then
⊕
i≥2

g(i)
C
∩ pC = u ∩ pC . Hence, Q ∩KC

.e = u ∩ pC .

�

2.2. Borel-de Siebenthal parabolic subalgebras. A complex Lie algebra gC

is said to be graded if gC =
⊕∞

k=−∞ gk
C

where gk
C

is a vector subspace of gC and
[gi

C
, gj

C
] = gi+j

C
for all integers i and j.

We shall need the following theorem of Vinberg:

Theorem 2.2. Let GC be a complex semisimple Lie group with graded Lie algebra
gC =

⊕
k gk

C
, and let G0

C
be the analytic subgroup of GC with Lie algebra g0

C
. Then

the adjoint action of G0
C

on g1
C

has only finitely many orbits. Hence one of them
must be open.

Proof. See Vinberg [9].
�

A proof of the uniqueness and denseness of such an open orbit is found in Knapp [2]
Proposition 10.1.

Let g be of inner-type, that is rank(k) = rank(g) and ∆ a Vogan 1 set of simple roots
of gC . Then ∆ can be partitioned into two disjoint sets: ∆kC

the set of compact
roots and ∆pC

the set of imaginary non-compact roots. Let αp be a non-compact

imaginary simple root such that if β =
l∑

i=1

ciαi is a positive root then 0 ≤ ck ≤ 2.

Thus,

gC = g−2
C
⊕ g−1

C
⊕ g0

C
⊕ g1

C
⊕ g2

C

is a grading of gC where gi
C

is the sum of the roots spaces for roots whose coefficient
of αk is i in an expansion in terms of simple roots in ∆. Define l = g0

C
and

u = g1
C
⊕ g2

C
. Then q = l + u is a maximal θ-stable parabolic subalgebra of gC and

is called a Borel-de Siebenthal parabolic subalgebra. Furthermore, pC = g1
C
⊕ g−1

C
.

1Vogan systems define Vogan diagrams used to classify simple real Lie Algebras. See [2] for
more information.
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Denote by Q the connected subgroup of GC with Lie algebra q. Then u∩ pC = g1
C

is
a Q∩KC -module under the adjoint action which we shall identify with its diffrential
ad : q ∩ kC → u ∩ pC

Theorem 2.3. Maintaining the above notations Q ∩KC has a unique open dense
orbit in u ∩ pC .

Proof. Observe that q ∩ kC = g0
C
⊕ g2

C
and that g2

C
acts trivially on g1

C
. Therefore,

the adjoint action of q ∩ kC on g1
C

is equivalent to that of g0
C

on g1
C
. The theorem

follows from Vinberg’s theorem.
�

3. Richardson orbits for real exceptional groups

Maintaining the above notations, we say that a nilpotent orbit Ok of KC on pC

is a Richardson orbit if there exists a θ-stable parabolic subalgebra q of gC with
Levi decomposition q = l ⊕ u such that Ok is the unique dense orbit admitted by
the saturation of KC on u ∩ pC . Following Peter Trapa we call Ok a k-form of the
GC -orbit O if Ok ⊆ O ∩ pC . In the case where GC is a classical complex semisimple
Lie group Peter Trapa [8] proves the following theorem:

Theorem 3.1. Fix a special nilpotent orbit O of GC on gC . Then there exists a
real form G such that some irreducible component of O ∩ pC is a Richardson orbit
of KC on the nilpotent cone of pC .

The above theorem does not extend to exceptional groups. It fails for the minimal
orbits of E7 and E8. Our search of the literature reveals that there is very little
known about the vector space u ∩ pC . Trapa’s proof uses the fact that nilpotent
orbits of KC on pC are parametrized by signed Young tableaux. We do not have such
a parametrization for exceptional complex symmetric spaces. Instead we heavily
use the parametrization given by Djoković [11], [12]. Our method is algorithmic,
but does give complete information about each case. The results are given below.

The following lemma gives a necessary condition for a Richardson orbit and shows
why the above question is indeed equivalent to Richardson’s theorem in the complex
case.

Proposition 3.2. Maintaining the above notations, let q = l ⊕ u be a θ-stable
parabolic subalgebra of gC and e a nilpotent element in pC such that (Q ∩KC).e =
u ∩ pC . Then KC

.e ∩ (u ∩ pC) is open and dense in u ∩ pC .

Proof. The fact that KC = K ×Q∩KC implies that KC
.e = K × (Q∩KC).e. Since

u ∩ pC is a Q ∩KC -module we must have

KC
.e ∩ (u ∩ pC) = K.e ∩ (u ∩ pC).

Suppose that there exists e′ ∈ u∩pC such that e′ 6= e and K.e′∩u∩pC is open in u∩pC

then we can find a sequence {qn} in Q such that qn(e) → e′ for (Q ∩KC).e = u∩pC .
Hence K.qn(e) → K.e′ and KC

.e ∩ (u ∩ pC) is open and dense in u ∩ pC

�
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From a geometrical point of view Richardson orbits arise as dense KC -orbits in the
moment map image of conormal bundles to certain orbits Oq defined by q. Let Aq

be the irreducible Harish-Chandra module of trivial infinitesimal character attached
to the trivial local system on Oq by the Beilinson-Bernstein equivalence. Then, in
the context of Representation theory, we may think of the Richardson orbits as
KC -nilpotent orbits of in pC which are dense in the associated varieties of modules
of the form Aq. See [8] for more details. Using the above theorem Trappa was able
to compute explicitly the annihilator of any module of the form Aq for the classical
groups. This allowed him to give new examples of simple highest weight modules
with irreducible associate varieties.

Definition 3.3. Let q = q ∩ kC ⊕ q ∩ pC be a θ stable parabolic subalgebra of gC

with Levi decomposition q = l⊕ u. Let e be a nilpotent element of u∩ pC . We say
that q is a polarization of gC at e if

2dimq = dimge
C

+ dimgC and B(e, [q, q]) = 0

where ge
C

is the centralizer of e in gC and B is the Killing form of gC .

The next proposition could be seen as a version of Richardson’s theorem for complex
symmetric spaces.

Proposition 3.4. (P. Tauvel). Maintaining the above notations, suppose that
there exists z in pC such that q is a polarization of of gC at z. Then

i. There exists a unique KC -nilpotent orbit Ok in pC such that S = u ∩ pC ∩ Ok

is an open and dense in u ∩ pC .
ii. S is a Q ∩KC -orbit.
iii. if x ∈ S then [x, kC ∩ q] = u ∩ pC , [x, pC ∩ q] = u ∩ kC an q is a polarization of

gC at x.

Proof. See [7] proposition 4.6.
�

Definition 3.5. A nilpotent e ∈ pC is polarizable if there exists at θ-stable parabolic
q such that q is a polarization of gC at e . A nilpotent orbit of KC on pC is polarizable
if at least one of its representatives is polarizable. A nilpotent orbit O of GC on gC

is polarizable if at least one of its k-forms is polarizable.

There exist non polarizable nilpotent elements. An example of such elements is
given in [7] on page 644 for gC = A1.

Our goal is to analyze to what extent Peter Trapa’s theorem fails for exceptional
groups. From now on all statements are concerned with exceptional groups.

Consider the real forms G, FI,EII,EV,EV III of G2, F4, E6, E7 and E8 respec-
tively. Then each even nilpotent orbit O of GC has a k-form Ok. The Jacobson-
Morozov parabolic subalgebra q associated with any representative e of Ok is a
polarization gC at e.

In order to decide whether a given orbit is polarizable one can compute the list of
all representatives of the KC -conjugacy classes of theta stable parabolic subalgebras
containing a representative of the orbit. Once such a list is available then one could
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look of a parabolic subalgebra with the appropriate dimension. The algorithm used
to find the theta-stable parabolic subalgebras and some implementation details in
the software LiE [10] are given in [4].

The tables below contains the following information

1. The Bala-Carter label for the complex O
2. A representative e of Ok

3. The real form of gC relative to the Cartan involution θ
4. The θ-stable parabolic q = l + u
5. When O is polarizable then the dimension of q and that of ge

C
are given.

G2.

If gC = G2 then there are no non-even special orbits. Hence Trapa’s theorem
applies. Moreover none of the two non even nilpotent orbits is polarizable. An
easy computation shows that the dimension of any θ-stable parabolic subalgebra is
either 8 or 9 while the two orbits have dimensions 6 and 8 respectively.

F4.

Proposition 3.6. Let gC = F4 and fix a special nilpotent orbit O of GC on gC .
Then there exists a real form G such that some irreducible component of O ∩ pC is
a Richardson orbit of KC on the nilpotent cone of pC .

Proof. From previous considerations, it is enough to establish the proposition for
special non even orbits. There are exactly three such orbits Ã1, A1 + Ã1 and C3.

We order the roots of F4 as in the table below and we use the Bourbaki system of
simple roots ∆ = {α1, α2, α3, α4}. The Cartan involution θ with +1-eigenspace k
and−1-eigenspace p depends on the real forms. If gR = FI then kC = sp3(C)⊕sl2(C)
and the vector space pC is the complex span of non-zero root vectors Xβ where
β = c1α1 + c2α2 + c3α3 + c4α4 with c1 = ±1. If gR = FII then kC = so9(C)
and the vector space pC is the complex span of non-zero root vectors Xβ where
β = c1α1 + c2α2 + c3α3 + c4α4 with c4 = ±1.

Positive roots of F4

1. [1,0,0,0] 9. [0,1,2,0] 17. [1,2,2,1]
2. [0,1,0,0] 10. [0,1,1,1] 18. [1,1,2,2]
3. [0,0,1,0] 11. [1,1,2,0] 19. [1,2,3,1]
4. [0,0,0,1] 12. [1,1,1,1] 20. [1,2,2,2]
5. [1,1,0,0] 13. [0,1,2,1] 21. [1,2,3,2]
6. [0,1,1,0] 14. [1,2,2,0] 22. [1,2,4,2]
7. [0,0,1,1] 15. [1,1,2,1] 23. [1,3,4,2]
8. [1,1,1,0] 16. [0,1,2,2] 24. [2,3,4,2]
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In the preceding table each vector indexed by i represents the coefficients of the ith

postive root in the Bourbaki base ∆. We use Xi or X−i to denote a non zero root
vetor in the root spaces of i and −i respectively.

The orbit labeled C3 of dimension 42 is polarizable as indicated below.

Bala-Carter Label : C3 Special
Real form : FI
Root vectors for e: 17, 18, -12 dim ge

C
= 10

Parabolic : Levi-Type: A2 dimension of parabolic = 31
Cartan subalgebra: 2,11,4,-12,
Roots vectors for Levi: ±(2, 11, 14)
Roots vectors for nilradical: 4,-12,15,-8,17,18,3,20,6,7,24,10,-5,19,-1,21,9,13,16
,22,23

The two tables that follow the proof contains the representatives of the KC -conjugacy
classes of all theta parabolic subalgebras relative to both real forms of F4. From the
first table, it is easy to check that all θ-stable parabolic subalgebra of F4 relative to
FI except q12 = l12⊕ u12 and q24 = l24⊕ u24 labeled 12 and 24 contain a nilpotent
of the form (Xα + Xβ) where the roots α and β are in pC and generate an algebra
of type Ã2 or A2 which represents KC -orbits of dimension 15. But u24∩pC contains
the following nilpotent X1 +X14 +X21 representing the orbit A1 +A1 + Ã1 which is
a k-form of A2. Moreover the product of any two roots in u12 ∩ pC is non negative,
that is, all the root vectors commute. Hence the nilpotent orbit labeled A1 + Ã1

represented by X22 + X12 in u12 ∩ pC of dimension 14 must intersect u12 ∩ pC in an
open dense set. Therefore if we fixed the orbit A1 + Ã1 then q12 will satisfy the
proposition. The above discussion is summarized below.

Bala-Carter Label : A1 + Ã1 Special
Real form : FI
Root vectors for e: 22,12
Parabolic : Levi-Type: B3

Cartan subalgebra: 1,2,3,4
Roots vectors for Levi: ±(1, 2, 3, 5, 6, 8, 9, 11, 14)
Roots vectors for nilradical: 4, 7, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

Clearly, in order to resolve the orbit of type Ã1 we need to consider the other real
form FII. From the second table below it is easy to check that all θ-stable parabolic
subalgebra of F4 relative to FII except q15 = l15 ⊕ u15 and q24 = l24 ⊕ u24 ∩ pC

labeled 15 and 24 contain a nilpotent of the form (Xα + Xβ) where the roots α

and β are in p and generate an algebra of type Ã2 which represents the K-orbit of
dimension 15. Since there are only two nilpotent classes, the other being of type
Ã1, q24 satisfies the proposition.

Bala-Carter Label : Ã1 Special
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Real form : FII
Root vectors for e: -4
Parabolic : Levi-Type: B3

Cartan subalgebra: 1,2,7,-4
Roots vectors for Levi: ±(1, 2, 7, 5, 10, 12, 16, 18, 20)
Roots vectors for nilradical: -4, 3, 6, 8, 13, 15, 9, 17, 11, 21, 14, 19, 22, 23, 24

This concludes the proof.

�

For the benefit of the reader we describe the algorithm in [4] for the case of F4.
The reader should realize that the same algorithm works for all real Lie groups of
inner-type. Some changes were needed for EIV . However since there are only two
nilpotent orbits in EIV our result for that specific group can be easily verified. The
next two tables were generated as follows:

1. For each real form we compute the KC -conjugacy classes of systems of simple
roots. Starting with a Vogan diagram we obtain the other non conjugate diagrams
by reflecting along non compact imaginary roots. Observe that the number of such
classes is W (GC )

W (KC ) where W (GC) and W (KC) are the Weyl groups of GC and KC

respectively. Hence there are 12 classes for FI and 3 for FII. For information
about Vogan diagrams consult [2].

2. For each class of simple roots ∆, we build standard parabolic subalgebras by
using the subsets of ∆. Observe that because the ranks of G and K are equal all
such parabolic subalgebras must be θ-stable. We also eliminate duplicates in the
process.

The computation was implemented in the software LiE. It is easy to see that the final
lists must contain a representative of each K-conjugacy class of θ-stable parabolic
subalgebras relative to each real form.

To find the pairs of roots generating a nilpotent of type Ã2 or A2 we traverse
the nilradical of each parabolic subalgebra in our lists and look for appropriate
pairs of short and long roots. This is easily done in LiE using built-in-functions.
Information on LiE is found in [10].

θ-stable parabolic subalgebras relative to FI

1. h = (1, 2, 3, 4)⊕ u = 1, 2,3,4,5,6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24
2. l = h⊕±(1)⊕ u = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24
3. l = h⊕±(2)⊕ u = 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24
4. l = h⊕±(3)⊕ u = 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24
5. l = h⊕±(4)⊕ u = 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24
6. l = h⊕±(1, 2, 5)⊕ u = 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24
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7. l = h⊕±(1, 3)⊕ u = 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24
8. l = h⊕±(1, 4)⊕ u = 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24
9. l = h ⊕ ±(2, 3, 6, 9) ⊕ u = 1, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24
10. l = h⊕±(2, 4)⊕ u = 1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24
11. l = h⊕±(3, 4, 7)⊕ u = 1, 2, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24
12. l = h⊕±(1, 2, 3, 5, 6, 8, 9, 11, 14)⊕ u = 4, 7, 10, 12, 13, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24
13. l = h ⊕±(1, 2, 5, 4)⊕ u = 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24
14. l = h ⊕±(4, 3, 7, 1)⊕ u = 2, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24
15. l = h⊕±(4, 3, 2, 7, 6, 10, 9, 13, 16)⊕ u = 1, 5, 8, 11, 12, 14, 15, 17, 18, 19, 20,
21, 22, 23, 24
16. l = F4 ⊕ u = 0
17. h = (−1, 5, 3, 4)⊕ u = -1, 5, 3, 4, 2, 8, 7, 6, 11, 12, 9, 10, 15, 14, 13, 18, 17,
16, 19, 20, 21, 22, 24, 23
18. l = h⊕±(5)⊕ u = -1, 3, 4, 2, 8, 7, 6, 11, 12, 9, 10, 15, 14, 13, 18, 17, 16, 19,
20, 21, 22, 24, 23,
19. l = h⊕±(3)⊕ u = -1, 5, 4, 2, 8, 7, 6, 11, 12, 9, 10, 15, 14, 13, 18, 17, 16, 19,
20, 21, 22, 24, 23
20. l = h⊕±(4)⊕ u = -1, 5, 3, 2, 8, 7, 6, 11, 12, 9, 10, 15, 14, 13, 18, 17, 16, 19,
20, 21, 22, 24, 23
21. l = h⊕±(5, 3, 8, 11)⊕ u = -1, 4, 2, 7, 6, 12, 9, 10, 15, 14, 13, 18, 17, 16, 19,
20, 21, 22, 24, 23
22. l = h⊕±(5, 4)⊕ u = -1, 3, 2, 8, 7, 6, 11, 12, 9, 10, 15, 14, 13, 18, 17, 16, 19,
20, 21, 22, 24, 23
23. l = h⊕±(3, 4, 7)⊕ u = -1, 5, 2, 8, 6, 11, 12, 9, 10, 15, 14, 13, 18, 17, 16, 19,
20, 21, 22, 24, 23
24. l = h ⊕ ±(4, 3, 5, 7, 8, 12, 11, 15, 18) ⊕ u = -1, 2, 6, 9, 10, 14, 13, 17, 16, 19,
20, 21, 22, 24, 23
25. h = (2,−5, 8, 4) ⊕ u = 2 -5 8 4 -1 3 12 6 11 7 14 10 15 9 17 18 13 20 19 16
21 24 22 23
26. l = h ⊕ ±(2) ⊕ u = -5, 8, 4, -1, 3, 12, 6, 11, 7, 14, 10, 15, 9, 17, 18, 13, 20,
19, 16, 21, 24, 22, 23
27. l = h ⊕ ±(8) ⊕ u = 2, -5, 4, -1, 3, 12, 6, 11, 7, 14, 10, 15, 9, 17, 18, 13, 20,
19, 16, 21, 24, 22, 23
28. l = h ⊕ ±(4) ⊕ u = 2, -5, 8, -1, 3, 12, 6, 11, 7, 14, 10, 15, 9, 17, 18, 13, 20,
19, 16, 21, 24, 22, 23
29. l = h⊕±(2, 8)⊕ u = -5, 4, -1, 3, 12, 6, 11, 7, 14, 10, 15, 9, 17, 18, 13, 20, 19,
16, 21, 24, 22, 23
30. l = h⊕±(2, 4)⊕ u = -5, 8, -1, 3, 12, 6, 11, 7, 14, 10, 15, 9, 17, 18, 13, 20, 19,
16, 21, 24, 22, 23
31. l = h⊕±(8, 4, 12)⊕ u = 2, -5, -1, 3, 6, 11, 7, 14, 10, 15, 9, 17, 18, 13, 20, 19,
16, 21, 24, 22, 23
32. l = h⊕±(4, 6, 12, 2)⊕ u = -5, -1, 3, 6, 11, 7, 14, 10, 15, 9, 17, 18, 13, 20, 19,
16, 21, 24, 22, 23
33. h = (2, 11,−8, 12)⊕ u = 2, 11, -8, 12, 14, 3, 4, 6, -5, 15, -1, 17, 7, 9, 10, 18,
19, 20, 13, 24, 21, 16, 22, 23
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34. l = h ⊕ ±(2) ⊕ u = 11, -8, 12, 14, 3, 4, 6, -5, 15, -1, 17, 7, 9, 10, 18, 19, 20,
13, 24, 21, 16, 22, 23
35. l = h ⊕ ±(11) ⊕ u = 2, -8, 12, 14, 3, 4, 6, -5, 15, -1, 17, 7, 9, 10, 18, 19, 20,
13, 24, 21, 16, 22, 23
36. l = h ⊕ ±(12) ⊕ u = 2, 11, -8, 14, 3, 4, 6, -5, 15, -1, 17, 7, 9, 10, 18, 19, 20,
13, 24, 21, 16, 22, 23
37. l = h ⊕ ±(2, 11, 14) ⊕ u = -8, 12, 3, 4, 6, -5, 15, -1, 17, 7, 9, 10, 18, 19, 20,
13, 24, 21, 16, 22, 23
38. l = h⊕±(2, 12)⊕ u = 11, -8, 14, 3, 4, 6, -5, 15, -1, 17, 7, 9, 10, 18, 19, 20 13,
24, 21 16 22 23
39. l = h ⊕ ±(11, 12) ⊕ u = 2, -8, 14, 3, 4, 6, -5, 15, -1, 17, 7, 9, 10, 18, 19, 20,
13, 24, 21, 16, 22, 23
40. l = h⊕±(2, 11, 14, 12)⊕ u = -8, 3, 4, 6, -5, 15, -1, 17, 7, 9, 10, 18, 19, 20, 13,
24, 21, 16, 22, 23
41. h = (14,−11, 3, 12) ⊕ u = 14, -11, 3, 12, 2, -8, 15, 6, -5, 4, 9, 17, 7, -1, 19,
18, 10, 24, 13, 20, 21, 22, 16, 23
42. l = h⊕±(14)⊕ u = -11, 3, 12, 2, -8, 15, 6, -5, 4, 9, 17, 7, -1, 19, 18, 10, 24,
13, 20, 21, 22, 16, 23,
43. l = h⊕±(3)⊕ u = 14, -11, 12, 2, -8, 15, 6, -5, 4, 9, 17, 7, -1, 19, 18, 10, 24,
13, 20, 21, 22, 16, 23
44. l = h⊕±(12)⊕ u = 14, -11, 3, 2, -8, 15, 6, -5, 4, 9, 17, 7, -1, 19, 18, 10, 24,
13, 20, 21, 22, 16, 23
45. l = h⊕±(14, 3)⊕ u = -11, 12, 2, -8, 15, 6, -5, 4, 9, 17, 7, -1, 19, 18, 10, 24,
13, 20, 21, 22, 16, 23
46. l = h⊕±(14, 12)⊕ u = -11, 3, 2, -8, 15, 6, -5, 4, 9, 17, 7, -1, 19, 18, 10, 24,
13, 20, 21, 22, 16, 23
47. l = h ⊕ ±(3, 12, 15) ⊕ u = 14, -11, 2, -8, 6, -5, 4, 9, 17, 7, -1, 19, 18, 10, 24,
13, 20, 21, 22, 16, 23
48. l = h ⊕ ±(3, 12, 15, 14) ⊕ u = -11, 2, -8, 6, -5, 4, 9, 17, 7, -1, 19, 18, 10, 24,
13, 20, 21, 22, 16, 23
49. h = (2, 11, 4,−12)⊕ u = 2, 11, 4, -12, 14, 15, -8, 17,, 18, 3, 20, 6, 7, 24, 10,
-5, 19, -1, 21, 9, 13, 16, 22, 23
50. l = h⊕±(2)⊕ u = 11, 4, -12, 14, 15, -8, 17, 18, 3, 20, 6, 7, 24, 10, -5, 19, -1,
21, 9, 13, 16, 22, 23
51. l = h⊕±(11)⊕ u = 2, 4, -12, 14, 15, -8, 17, 18, 3, 20, 6, 7, 24, 10, -5, 19, -1,
21, 9, 13, 16, 22, 23
52. l = h⊕±(4)⊕ u = 2, 11, -12, 14, 15, -8, 17, 18, 3, 20, 6, 7, 24, 10, -5, 19, -1,
21, 9, 13, 16, 22, 23
53. l = h⊕±(2, 11, 14)⊕ u = 4, -12, 15, -8, 17, 18, 3, 20, 6, 7, 24, 10, -5, 19, -1,
21, 9, 13, 16, 22, 23
54. l = h⊕±(2, 4)⊕ u = 11, -12, 14, 15, -8, 17, 18, 3, 20, 6, 7, 24, 10, -5, 19, -1,
21, 9, 13, 16, 22, 23
55. l = h⊕±(11, 4, 15, 18)⊕ u = 2, -12, 14, -8, 17, 3, 20, 6, 7, 24, 10, -5, 19, -1,
21, 9, 13, 16, 22, 23
56. l = h⊕±(2, 11, 4, 14, 15, 17, 18, 20, 24)⊕ u = -12, -8, 3, 6, 7, 10, -5, 19, -1, 21,
9, 13, 16, 22, 23
57. h = (−14, 2, 3, 12)⊕ u = -14, 2, 3, 12, -11, 6, 15, -8, 9, 17, -5, 4, 19, -1, 7, 24,
10, 18, 13, 20, 21, 22, 23, 16
58. l = h⊕±(2)⊕ u = -14, 3, 12, -11, 6, 15, -8, 9, 17, -5, 4, 19, -1, 7, 24, 10, 18,
13, 20, 21, 22, 23, 16
59. l = h⊕±(3)⊕ u = -14, 2, 12, -11, 6, 15, -8, 9, 17, -5, 4, 19, -1, 7, 24, 10, 18,
13, 20, 21, 22, 23, 16
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60. l = h⊕±(12)⊕ u = -14, 2, 3, -11, 6, 15, -8, 9, 17, -5, 4, 19, -1, 7, 24, 10, 18,
13, 20, 21, 22, 23, 16
61. l = h⊕±(2, 3, 6, 9)⊕ u = -14, 12, -11, 15, -8, 17, -5, 4, 19, -1, 7, 24, 10, 18,
13, 20, 21, 22, 23, 16
62. l = h⊕±(2, 12)⊕ u = -14, 3, -11, 6, 15, -8, 9, 17, -5, 4, 19, -1, 7, 24, 10, 18,
13, 20, 21, 22, 23, 16
63. l = h⊕±(3, 12, 15)⊕ u = -14, 2, -11, 6, -8, 9, 17, -5, 4, 19, -1, 7, 24, 10, 18,
13, 20, 21, 22, 23, 16
64. l = h⊕±(12, 3, 2, 15, 6, 17, 9, 19, 24)⊕ u = -14, -11, -8, -5, 4, -1, 7, 10, 18, 13,
20, 21, 22, 23, 16
65. h = (14,−11, 15,−12)⊕ u = 14, -11, 15, -12, 2, 4, 3, 17, 18, -8, 24, 6, 7, 20,
19, -5, 10, 9, 21, -1, 13, 22, 16, 23
66. l = h⊕±(14)⊕ u = -11 15, -12, 2, 4, 3, 17, 18, -8, 24, 6, 7, 20, 19, -5, 10, 9,
21, -1, 13, 22, 16, 23
67. l = h⊕±(15)⊕ u = 14, -11, -12, 2, 4, 3, 17, 18, -8, 24, 6, 7, 20, 19, -5, 10, 9,
21, -1, 13, 22, 16, 23
68. l = h⊕±(14, 15)⊕ u = -11, -12, 2, 4, 3, 17, 18, -8, 24, 6, 7, 20, 19, -5, 10, 9,
21, -1, 13, 22, 16, 23
69. h = (−14, 2, 15,−12)⊕ u = -14, 2, 15, -12, -11, 17, 3, 4, 24, 6, 18, -8, 19, 20,
7, 9, 10, -5, 21, -1, 13, 22, 23, 16
70. l = h⊕±(2)⊕ u = -14, 15, -12, -11, 17, 3, 4, 24, 6, 18, -8, 19, 20, 7, 9, 10, -5,
21, -1, 13, 22, 23, 16
71. l = h⊕±(15)⊕ u = -14, 2, -12, -11, 17, 3, 4, 24, 6, 18, -8, 19, 20, 7, 9, 10, -5,
21, -1, 13, 22, 23, 16
72. l = h⊕±(2, 15, 17, 24)⊕ u = -14, -12, -11, 3, 4, 6, 18, -8, 19, 20, 7, 9, 10, -5,
21, -1, 13, 22, 23, 16
73. h = (14, 18,−15, 3)⊕ u = 14, 18, -15, 3, 24, 4, -12, 17, -11, 7, 2, 19, -8, 20, 6,
-5, 21, 9, 10, 22, 13, -1, 16, 23
74. l = h ⊕ ±(14) ⊕ u = 18, -15, 3, 24, 4, -12, 17, -11, 7, 2, 19, -8, 20, 6, -5, 21,
9, 10, 22, 13, -1, 16, 23
75. l = h ⊕ ±(18) ⊕ u = 14, -15, 3, 24, 4, -12, 17, -11, 7, 2, 19, -8, 20, 6, -5, 21,
9, 10, 22, 13, -1, 16, 23
76. l = h ⊕ ±(3) ⊕ u = 14, 18, -15, 24, 4, -12, 17, -11, 7, 2, 19, -8, 20, 6, -5, 21,
9, 10, 22, 13, -1, 16, 23
77. l = h⊕±(14, 18, 24)⊕ u = -15, 3, 4, -12, 17, -11, 7, 2, 19, -8, 20, 6, -5, 21, 9,
10, 22, 13, -1, 16, 23
78. l = h⊕±(14, 3)⊕ u = 18, -15, 24, 4, -12, 17, -11, 7, 2, 19, -8, 20, 6, -5, 21, 9,
10, 22, 13, -1, 16, 23
79. l = h⊕±(18, 3)⊕ u = 14, -15, 24, 4, -12, 17, -11, 7, 2, 19, -8, 20, 6, -5, 21, 9,
10, 22, 13, -1, 16, 23
80. l = h⊕±(14, 18, 24, 3)⊕ u = -15, 4, -12, 17, -11, 7, 2, 19, -8, 20, 6, -5, 21, 9,
10, 22, 13, -1, 16, 23
81. h = (−14, 24,−15, 3)⊕ u = -14, 24, -15, 3, 18, 17, -12, 4, 2, 19, -11, 7, 6, 20,
-8, 9, 21, -5, 10, 22, 13, -1, 23, 16
82. l = h ⊕ ±(24) ⊕ u = -14 -15, 3, 18, 17, -12, 4, 2, 19, -11, 7, 6, 20, -8, 9, 21,
-5, 10, 22, 13, -1, 23, 16
83. l = h ⊕ ±(3) ⊕ u = -14, 24, -15, 18, 17, -12, 4, 2, 19, -11, 7, 6, 20, -8, 9, 21,
-5, 10, 22, 13, -1, 23, 16
84. l = h ⊕ ±(24, 3) ⊕ u = -14, -15, 18, 17, -12, 4, 2, 19, -11, 7, 6, 20, -8, 9, 21,
-5, 10, 22, 13, -1, 23, 16
85. h = (24,−18, 4, 3) ⊕ u = 24, -18, 4, 3, 14, -15, 7, 17, -11, -12, 20, 19, -8, 2,
21, -5, 6, 22, 10, 9, 13, 16, -1, 23
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86. l = h⊕±(24)⊕ u = -18 4, 3, 14, -15, 7, 17, -11, -12, 20, 19, -8, 2, 21, -5, 6,
22, 10, 9, 13, 16, -1, 23
87. l = h⊕±(4)⊕ u = 24, -18, 3, 14, -15, 7, 17, -11, -12, 20, 19, -8, 2, 21, -5, 6,
22, 10, 9, 13, 16, -1, 23
88. l = h⊕±(3)⊕ u = 24, -18, 4, 14, -15, 7, 17, -11, -12, 20, 19, -8, 2, 21, -5, 6,
22, 10, 9, 13, 16, -1, 23
89. l = h⊕±(24, 4)⊕ u = -18, 3, 14, -15, 7, 17, -11, -12, 20, 19, -8, 2, 21, -5, 6,
22, 10, 9, 13, 16, -1, 23
90. l = h⊕±(24, 3)⊕ u = -18, 4, 14, -15, 7, 17, -11, -12, 20, 19, -8, 2, 21, -5, 6,
22, 10, 9, 13, 16, -1, 23
91. l = h ⊕ ±(4, 3, 7) ⊕ u = 24, -18, 14, -15, 17, -11, -12, 20, 19, -8, 2, 21, -5, 6,
22, 10, 9, 13, 16, -1, 23
92. l = h ⊕ ±(3, 4, 7, 24) ⊕ u = -18, 14, -15, 17, -11, -12, 20, 19, -8, 2, 21, -5, 6,
22, 10, 9, 13, 16, -1, 23

θ-stable parabolic subalgebras relative to FII

The first 16 parabolic subalgebras are listed in previous table in the same order.

17. h = (1, 2, 7,−4)⊕ u = 1, 2, 7, -4, 5, 10, 3, 12, 16, 6, 18, 8, 13, 20, 15, 9, 17,
11, 21, 14, 19, 22, 23, 24
18. l = h⊕±(1)⊕ u = 2, 7, -4, 5, 10, 3, 12, 16, 6, 18, 8, 13, 20, 15, 9, 17, 11, 21,
14, 19, 22, 23, 24
19. l = h⊕±(2)⊕ u = 1, 7, -4, 5, 10, 3, 12, 16, 6, 18, 8, 13, 20, 15, 9, 17, 11, 21,
14, 19, 22, 23, 24
20. l = h⊕±(7)⊕ u = 1, 2, -4, 5, 10, 3, 12, 16, 6, 18, 8, 13, 20, 15, 9, 17, 11, 21,
14, 19, 22, 23, 24
21. l = h⊕±(1, 2, 5)⊕ u = 7, -4, 10, 3, 12, 16, 6, 18, 8, 13, 20, 15, 9, 17, 11, 21,
14, 19, 22, 23, 24
22. l = h⊕±(1, 7)⊕ u = 2, -4, 5, 10, 3, 12, 16, 6, 18, 8, 13, 20, 15, 9, 17, 11, 21,
14, 19, 22, 23, 24
23. l = h⊕±(2, 7, 10, 16)⊕ u = 1, -4, 5, 3, 12, 6, 18, 8, 13, 20, 15, 9, 17, 11, 21,
14, 19, 22, 23, 24
24. l = h ⊕ ±(1, 2, 7, 5, 10, 12, 16, 18, 20) ⊕ u = -4, 3, 6, 8, 13, 15, 9, 17, 11, 21,
14, 19, 22, 23, 24
25. h = (1, 16,−7, 3)⊕ u = 1, 16, -7, 3, 18, 10, -4, 12, 2, 13, 5, 15, 6, 20, 8, 9, 21,
11, 17, 22, 19, 14, 23, 24
26. l = h ⊕ ±(1) ⊕ u = 16, -7, 3, 18, 10, -4, 12, 2, 13, 5, 15, 6, 20, 8, 9, 21, 11,
17, 22, 19, 14, 23, 24
27. l = h ⊕ ±(16) ⊕ u = 1, -7, 3, 18, 10, -4, 12, 2, 13, 5, 15, 6, 20, 8, 9, 21, 11,
17, 22, 19, 14, 23, 24
28. l = h ⊕ ±(3) ⊕ u = 1, 16, -7, 18, 10, -4, 12, 2, 13, 5, 15, 6, 20, 8, 9, 21, 11,
17, 22, 19, 14, 23, 24
29. l = h⊕±(1, 16, 18)⊕ u = -7, 3, 10, -4, 12, 2, 13, 5, 15, 6, 20, 8, 9, 21, 11, 17,
22, 19, 14, 23, 24
30. l = h⊕±(1, 3)⊕ u = 16, -7, 18, 10, -4, 12, 2, 13, 5, 15, 6, 20, 8, 9, 21, 11, 17,
22, 19, 14, 23, 24
31. l = h⊕±(16, 3)⊕ u = 1, -7, 18, 10, -4, 12, 2, 13, 5, 15, 6, 20, 8, 9, 21, 11, 17,
22, 19, 14, 23, 24
32. l = h⊕±(1, 16, 18, 3)⊕ u = -7, 10, -4, 12, 2, 13, 5, 15, 6, 20, 8, 9, 21, 11, 17,
22, 19, 14, 23, 24
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E6.

Proposition 3.7. Let gC = E6 and fix a special nilpotent orbit O of GC on gC .
Then there exists a real form G such that some irreducible component of O ∩ pC is
a Richardson orbit of KC on the nilpotent cone of pC .

Proof. We order the roots of E6 as in the table below and we use the Bourbaki
system of simple roots ∆ = {α1, α2, α3, α4, α5, α6}. The Cartan involution θ with
+1-eigenspace k and −1-eigenspace p depends on the real forms. If gR = EII then
kC = sl6(C) ⊕ sl2(C) and the vector space pC is the complex span of non-zero root
vectors Xβ where β = c1α1 + c2α2 + c3α3 + c4α4 + c5α5 + c6α6 with c2 = ±1. If
gR = EIII then kC = so10(C) ⊕ C and the vector space pC is the complex span
of non-zero root vectors Xβ where β = c1α1 + c2α2 + c3α3 + c4α4 + c5α5 + c6α6

with c6 = ±1. If gR = EIV then kC = F4. In this case there are no non-compact
imaginary roots. The compact imaginary roots are:

1. ±α2

2. ±α4

3. ±(α2 + α4)
4. ±(α3 + α4 + α5)
5. ±(α2 + α3 + α4 + α5)
6. ±(α2 + α3 + 2α4 + α5)
7. ±(α1 + α3 + α4 + α5 + α6)
8. ±(α1 + α2 + α3 + α4 + α5 + α6)
9. ±(α1 + α2 + α3 + 2α4 + α5 + α6)
10. ±(α1 + α2 + 2α3 + 2α4 + 2α5 + α6)
11. ±(α1 + α2 + 2α3 + 3α4 + 2α5 + α6)
12. ±(α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6)

while the other roots are complex and gC = kC ⊕ pC with:

kC = tC ⊕
∑

α compact imaginary

CXα

⊕ ∑
(α,θα) complex pairs

C(Xα + θ(Xα))

pC = sC ⊕
⊕ ∑

(α,θα) complex pairs

C(Xα − θ(Xα))

Here Xα is a non zero vector of the root space gα
C
. An imaginary root α is compact

(non compcat) if its root space gα
C

lies in kC (pC). The fundamental Cartan sublgebra
is hC = tC ⊕ sC . See [2] for more details.

Positive roots of E6

1. [1,0,0,0,0,0] 13. [0,1,1,1,0,0] 25. [0,1,1,1,1,1]
2. [0,1,0,0,0,0] 14. [0,1,0,1,1,0] 26. [1,1,1,2,1,0]
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3. [0,0,1,0,0,0] 15. [0,0,1,1,1,0] 27. [1,1,1,1,1,1]
4. [0,0,0,1,0,0] 16. [0,0,0,1,1,1] 28. [0,1,1,2,1,1]
5. [0,0,0,0,1,0] 17. [1,1,1,1,0,0] 29. [1,1,2,2,1,0]
6. [0,0,0,0,0,1] 18. [1,0,1,1,1,0] 30. [1,1,1,2,1,1]
7. [1,0,1,0,0,0] 19. [0,1,1,1,1,0] 31. [0,1,1,2,2,1]
8. [0,1,0,1,0,0] 20. [0,1,0,1,1,1] 32. [1,1,2,2,1,1]
9. [0,0,1,1,0,0] 21. [0,0,1,1,1,1] 33. [1,1,1,2,2,1]
10.[0,0,0,1,1,0] 22. [1,1,1,1,1,0] 34. [1,1,2,2,2,1]
11.[0,0,0,0,1,1] 23. [1,0,1,1,1,1] 35. [1,1,2,3,2,1]
12.[1,0,1,1,0,0] 24. [0,1,1,2,1,0] 36. [1,2,2,3,2,1]

As before it is enough to consider non even special orbits in E6. The next table
shows which of them are polarizable and therefore by Tauvel’s lemma satisfy the
proposition.

Polarizable orbits of E6

Bala-Carter Label : A2 ⊕ 2A1 Special
Real form : EII
Root vectors for e: 27,-2,31,29 dim ge

C
= 28

Parabolic : Levi-Type: A4 + A1 dimension = 53
Cartan subalgebra: 1,4,13,5,-14,20
Roots vectors for Levi: ±(1, 13, 5, 4, 17, 19, 10, 22, 24, 26)± (20)
Roots vectors for nilradical: -14,-8,6,-2,3,11,7,9,16,25,12,27,15,28,18, 30,31
,29,33,21,36,23,32,34,35

Bala-Carter Label : A3 Special
Real form : EII
Root vectors for e: -2, 24, 27 dim ge

C
= 26

Parabolic : Levi-Type: A4 dimension = 52
Cartan subalgebra: 1,-2,3,8,5,6
Roots vectors for Levi: ±(1, 3, 8, 5, 7, 13, 14, 17, 19, 22)
Roots vectors for nilradical: -2,6,4,11,9,10,20,12,15,16,25,18,27,24,21,
26,23,28,29,30,31,32,33,34,36,35

Bala-Carter Label : A4 ⊕A1 Special
Real form : EII
Root vectors for e: 27, 28,29,-17,-19 dim ge

C
= 16

Parabolic : Levi-Type: A2 ⊕A1 ⊕A1 dimension = 47
Cartan subalgebra: -17,24,22,-19,3,20
Roots vectors for Levi: ±(3, 20, 25),±(24),±(22)
Roots vectors for nilradical: -17,-19,5,4, 1,-14,-13,26,9,7,6,10,-8,29,28,27,
15,11,12,36,-2,31,30,18,16,32,33,21,34,23,35

Bala-Carter Label : D5(a1) Special
Real form : EII
Root vectors for e: -13,28,22,27,-14,-20 dim ge

C
= 14

Parabolic : Levi-Type: A2 ⊕A1 dimension = 46
Cartan subalgebra: 17,4,-13,19,6,-20
Roots vectors for Levi: ±(19, 4, 24),±(17)
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Roots vectors for nilradical: -13,6,-20,1,5,25,-14,22,10,28,11,3,26,27,16,9,-8,
30,7,31,-2,36,12,15,33,29,21,18,32,23,34,35

We shall now deal with the remaining orbits of interest. They are labeled as follows:
A1, 2A1, A2 + A1. In each case we will exhibit a real form and a theta stable
parabolic subalgebra q = l⊕ u such that the given orbit intersect u∩ pC in an open
dense set.

In the case of A1 we see below that u ∩ pC = C(X32 −X33). Hence the KC -orbit of
(X32 −X33) is the KC -saturation of u ∩ pC .

Bala-Carter Label : A1 Special
Real form : EIV
Root vectors for e: 32,33
Parabolic : Levi-Type: D5

Cartan subalgebra: 1,2,3,4,5,6
Roots vectors for Levi: ±(6, 5, 4, 2, 3, 11, 10, 8, 9, 16, 14, 15, 13, 20,
21, 19, 25, 24, 28, 31, 1, 7, 12, 17, 18, 22, 26, 29)
Roots vectors for nilradical: 23, 27, 30, 32, 33, 34, 35, 36

In the case of the orbit labeled 2A1 we use the real form EII and a theta-stable
parabolic subalgebra q = l ⊕ u such that the Cartan product of all roots in u ∩ pC

is non negative an there are no instances of three orthogonal roots.

Bala-Carter Label : 2A1 Special
Real form : EII
Root vectors for e: 20,32
Parabolic : Levi-Type: D5

Cartan subalgebra: 1,2,3,4,5,6
Roots vectors for Levi: ±(1, 3, 4, 2, 5, 7, 9, 8, 10, 12, 13, 15, 14, 17, 18, 19,
22, 24, 26, 29)
Roots vectors for nilradical: 6, 11, 16, 20, 21, 23, 25, 27, 28,
30,31, 32, 33, 34, 35, 36

In the case of the orbit labeled A2+A1 we use the real form EIII and a theta-stable
parabolic subalgebra q = l ⊕ u such that u ∩ pC contains no representatives of the
orbits labeled 2A2 or A3. But we can find a representative of A2 + A1 in u ∩ pC .
This is the largest orbit intersecting u ∩ pC .

Bala-Carter Label : A2 ⊕A1 Special
Real form : EIII
Root vectors for e: 23, -6, 36
Parabolic : Levi-Type: D4

Cartan subalgebra: 23, 3, 2, -25, 28, 5,
Roots vectors for Levi: ±(3,−25, 28, 2,−20, 4,−21, 9,−16, 8, 13,−11)
Roots vectors for nilradical: 23, 5, 27, 31, 1, 10, 7, 30, 15, 14, 32, 33, 19, 12, 34,
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-6, 17, 18, 24, 22, 35, 36, 26, 29

This concludes the proof.

�

If GC is of type E7 or E8 then the minimal orbit is not polarizable. This fact can
be verified by showing that the dimension of each theta parabolic subalgebra will
not satisfy the above definition. Moreover, all theta-stable parabolic subalgebras
relative to each real form contain a nilpotent A1 + A1. Hence no theta-stable
parabolic subalgebra q = l⊕ u will satisfy the analogue of Trapa’s theorem. Again
this fact can be checked easily using the algorithm given in [4].

E7.

Proposition 3.8. Let gC = E7 and fix a non minimal special nilpotent orbit O of
GC on gC . Then there exists a real form G such that some irreducible component
of O ∩ pC is a Richardson orbit of KC on the nilpotent cone of pC .

Proof. We order the roots of E7 as in the table below and we use the Bourbaki
system of simple roots ∆ = {α1, α2, α3, α4, α5, α6, α7}. The Cartan involution θ
with +1-eigenspace k and −1-eigenspace p depends on the real forms. If gR = EV
then kC = sl8(C) and the vector space pC is the complex span of non-zero root
vectors Xβ where β = c1α1 +c2α2 +c3α3 +c4α4 +c5α5 +c6α6 +c7α7 with c2 = ±1.
If gR = EV I then kC = so12(C)⊕sl2(C) and the vector space pC is the complex span
of non-zero root vectors Xβ where β = c1α1+c2α2+c3α3+c4α4+c5α5+c6α6+c7α7

with c1 = ±1. If gR = EV II then kC = e6(C) ⊕ C and the vector space pC is the
complex span of non-zero root vectors Xβ where β = c1α1 + c2α2 + c3α3 + c4α4 +
c5α5 + c6α6 + c7α7 with c7 = ±1.

Positive roots of E7

1. [1,0,0,0,0,0,0] 22. [0,1,1,1,1,0,0] 43. [1,1,1,2,2,1,0]
2. [0,1,0,0,0,0,0] 23. [0,1,0,1,1,1,0] 44. [1,1,1,2,1,1,1]
3. [0,0,1,0,0,0,0] 24. [0,0,1,1,1,1,0] 45. [0,1,1,2,2,1,1]
4. [0,0,0,1,0,0,0] 25. [0,0,0,1,1,1,1] 46. [1,1,2,2,2,1,0]
5. [0,0,0,0,1,0,0] 26. [1,1,1,1,1,0,0] 47. [1,1,2,2,1,1,1]
6. [0,0,0,0,0,1,0] 27. [1,0,1,1,1,1,0] 48. [1,1,1,2,2,1,1]
7. [0,0,0,0,0,0,1] 28. [0,1,1,2,1,0,0] 49. [0,1,1,2,2,2,1]
8. [1,0,1,0,0,0,0] 29. [0,1,1,1,1,1,0] 50. [1,1,2,3,2,1,0]
9. [0,1,0,1,0,0,0] 30. [0,1,0,1,1,1,1] 51. [1,1,2,2,2,1,1]
10.[0,0,1,1,0,0,0] 31. [0,0,1,1,1,1,1] 52. [1,1,1,2,2,2,1]
11.[0,0,0,1,1,0,0] 32. [1,1,1,2,1,0,0] 53. [1,2,2,3,2,1,0]
12.[0,0,0,0,1,1,0] 33. [1,1,1,1,1,1,0] 54. [1,1,2,3,2,1,1]
13.[0,0,0,0,0,1,1] 34. [1,0,1,1,1,1,1] 55. [1,1,2,2,2,2,1]
14.[1,0,1,1,0,0,0] 35. [0,1,1,2,1,1,0] 56. [1,2,2,3,2,1,1]
15.[0,1,1,1,0,0,0] 36. [0,1,1,1,1,1,1] 57. [1,1,2,3,2,2,1]
16.[0,1,0,1,1,0,0] 37. [1,1,2,2,1,0,0] 58. [1,2,2,3,2,2,1]
17.[0,0,1,1,1,0,0] 38. [1,1,1,2,1,1,0] 59. [1,1,2,3,3,2,1]
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18.[0,0,0,1,1,1,0] 39. [1,1,1,1,1,1,1] 60. [1,2,2,3,3,2,1]
19.[0,0,0,0,1,1,1] 40. [0,1,1,2,2,1,0] 61. [1,2,2,4,3,2,1]
20.[1,1,1,1,0,0,0] 41. [0,1,1,2,1,1,1] 62. [1,2,3,4,3,2,1]
21.[1,0,1,1,1,0,0] 42. [1,1,2,2,1,1,0] 63. [2,2,3,4,3,2,1]

As before it is enough to consider non even special orbits in E7. The next table
shows which of them are polarizable and therefore by Tauvel’s lemma satisfy the
proposition.

Polarizable orbits of E7

Bala-Carter Label : D4(a1)⊕A1 Special
Real form : EV
Root vectors for e: 37,-16,43,38,45,41 dim ge

C
= 37

Parabolic : Levi-Type: A5 dimension = 85
Cartan subalgebra: 1,4,15,5,6,7,-30
Roots vectors for Levi: ±(1, 15, 5, 6, 7, 20, 22, 12, 13, 26, 29, 19, 33, 36, 39)
Roots vectors for nilradical: 4,-30,11,-23,28,18,-16,32,35,25,-9,38,40,41,
-2,3,43,44,8,45,10,53,48,14,49,17,56,52,21,24,58,37,27,31,60,42,34,61
,46,47,50,51,54,55,57,59,62,63

Bala-Carter Label : A4 ⊕A1 Special
Real form : EV
Root vectors for e: 26,38,45,-15,-16 dim ge

C
= 29

Parabolic : Levi-Type: A4 ⊕A1 dimension = 81
Cartan subalgebra: 20,-28,5,4,3,23,7
Roots vectors for Levi: ±(7, 23, 3, 4, 30, 29, 10, 36, 35, 41)± (20)
Roots vectors for nilradical: -28,5,26,-22,11,32,-15,-16,17,1,37,-9,6,40,
8,53,-2,12,13,45,14,33,56,18,19,21,38,39,24,25,43,42,44,31,46,48,
47,49,50,51,58,27,54,60,34,61,52,62,55,57,59,63

Bala-Carter Label : D5(a1) Special
Real form : EV
Root vectors for e: 39,42,-16,-20,32,40 dim ge

C
= 27

Parabolic : Levi-Type: A4 dimension = 80
Cartan subalgebra: -20,-28,26,4,3,23,7
Roots vectors for Levi: ±(4, 3, 23, 7, 10, 29, 30, 35, 36, 41)
Roots vectors for nilradical: -20,-28,26,5,-22,32,11,1,-16,37,-15,17,8,6,53,
-9,40,14,33,13,56,-2,12,45,38,39,21,18,19,42,44,43,24,25,47,46,48,
31,58,50,51,49,27,54,60,34,61,52,62,55,57,63,59

Bala-Carter Label : D5 ⊕A1 Special
Real form : EV
Root vectors for e: 32,33,41,-20,-22,-23 dim ge

C
= 19

Parabolic : Levi-Type: A2 ⊕A2 dimension = 76
Cartan subalgebra: -20,28,26,6,-29,3,30
Roots vectors for Levi: ±(28, 6, 35)± (3, 30, 36)
Roots vectors for nilradical: -20,26, -29,5,33,-22,-23,12,53,4,1,-16,7,40,-15,
32,10,8,13,11,-9,38,37,41, 39,18,17,19,42,56,43,24,45,14,58,46,-2,49,44,21,
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60,25,47,27,48,31,50,52,51,61,55,62,34,54,57,63,59

Bala-Carter Label : D6(a1) Special
Real form : EV
Root vectors for e: 30,37,33,36,-22,-20,-16 dim ge

C
= 19

Parabolic : Levi-Type: A3 dimension = 76
Cartan subalgebra: -20,-28,26,4,3,23,7
Roots vectors for Levi: ±(4, 3, 23, 10, 29, 35)
Roots vectors for nilradical: -20,-28,26,7,5,-22,32,30,11,1,-16,37,36,-15,17
,8,6,53,41,-9,40,14,33,13,56,-2,12,45,38,39,21,18,19,42,44,43,24,25,47,46,48
,31,58,50,51,49, 27,54,60,34,61,52,62,55,57,63,59

We shall now deal with the remaining orbits of interest. In each case we will exhibit
a real form and a theta stable parabolic subalgebra q = l ⊕ u such that the given
orbit intersect u ∩ pC in an open dense set.

In the case of the orbit labeled 2A1 we use the real form EV II and a theta-stable
parabolic subalgebra q = l ⊕ u such that the Cartan product of all roots in u ∩ pC

is non negative an there are no instances of three orthogonal roots.

Bala-Carter Label : 2A1 Special
Real form : EVII
Root vectors for e: 34,56
Parabolic : Levi-Type: D6

Cartan subalgebra: 1,2,3,4,5,6,7
Roots vectors for Levi: ±(76, 5, 4, 2, 3, 13, 12, 11, 9, 10, 19, 18, 16, 17,
15, 25, 23, 24, 22, 30, 31, 29, 28, 36, 35, 41, 40, 45, 49)
Roots vectors for nilradical: 1 8, 14, 20, 21, 26, 27, 32, 33, 34, 37, 38, 39, 42,
43, 44, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63

In the case of the orbit labeled A2 + A1 we use the real form EV II and a theta-
stable parabolic subalgebra q = l ⊕ u such that u ∩ pC contains no representatives
of the orbits labeled 2A2 or A3. But we can find a representative of A2 + A1 in
u ∩ pC . This is the largest orbit intersecting u ∩ pC .

Bala-Carter Label : A2 ⊕A1 Special
Real form : EVII
Root vectors for e: -13, 45, 52
Parabolic : Levi-Type: D5 ⊕A1

Cartan subalgebra: 1,2,3,4,19,-13,6
Roots vectors for Levi: ±(1, 3, 4, 2, 19, 8, 10, 9, 25, 14, 15, 31,
30, 20, 34, 36, 39, 41, 44, 47, 6)
Roots vectors for nilradical: -13 , 5 , -7 , 11 , 12 , 16 , 17 , 18 , 21 , 22 ,
23 , 24 , 26, 27 , 28 , 29 , 32 , 33 , 45 , 35 , 37 , 48 , 38 , 49, 51 , 42 , 52,
40 , 54 , 55 , 43 , 56 , 57 , 46 , 58 , 50 , 53 , 59 , 60 , 61 , 62 , 63

In the case of the orbit labeled A2 + 2A1 we use the real form EV I and a theta-
stable parabolic subalgebra q = l ⊕ u such that u ∩ pC contains no representatives
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of the orbits labeled 2A2 or A3. But we can find a representative of A2 + 2A1 in
u ∩ pC . This is the largest orbit intersecting u ∩ pC .

Bala-Carter Label : A2 ⊕ 2A1 Special
Real form : EVI
Root vectors for e: 55, -20, 43, 56,
Parabolic : Levi-Type: A6

Cartan subalgebra: 3, -20, 4, 2, 21, 6, 7
Roots vectors for Levi: ±(3, 4, 2, 21, 6, 7, 10, 9, 26, 27, 13, 15, 32,
33, 34, 37, 38, 39, 42, 44, 47)
Roots vectors for nilradical: -20 , -14 , -8 , 5 , -1 , 11 , 12 , 17 , 16 , 18 ,
19 , 22 , 24 , 23 , 25 , 28 , 29 , 31 , 43 ,
30 , 35 , 46 , 36 , 48 , 50 , 41 , 51 , 52 , 53 ,
54 , 55 , 40 , 56 , 57 , 45 , 58 , 49 , 63 , 59 , 60 , 61 , 62

In the case orbit labeled A3 we use the real form EV II and a theta-stable parabolic
subalgebra q = l⊕u such that u∩pC contains no representatives of the orbits labeled
2A2 or A3 +A1 or A4. But we can find a representative of A3 in u∩ pC . This is the
largest orbit intersecting u ∩ pC .

Bala-Carter Label : A3 Special
Real form : EVII
Root vectors for e: -30, 49, 56
Parabolic : Levi-Type: A5

Cartan subalgebra: 1, -30, 31, 2, 4, 5, 6
Roots vectors for Levi: ±(1, 31, 2, 4, 5, 34, 36, 9, 11,
39, 41, 16, 44, 45, 48)
Roots vectors for nilradical: -30 , 6 , -25 , 12 , 3 , -19 , 18 , 8 , 10 , -13 , 23 ,
14 , 15 , 17 , -7 , 49 , 20 , 21 , 52 , 22 , 24 , 47 , 26 , 27 ,
28 , 29 , 51 , 32 , 33 , 35 , 54 , 55 , 38 , 40 , 56 ,
57 , 43 , 37 , 58 , 59 , 42 , 60 , 46 , 61 , 50 , 53 , 62 , 63

Finally for the orbit labeled A3 + A2 we use the real form EV I and a theta-stable
parabolic subalgebra q = l ⊕ u such that u ∩ pC contains no representatives of the
orbits labeled 2A3 or A4 or any higher dimensional orbits. But we can find a
representative of A3 + A2 in u ∩ pC . This is the largest orbit intersecting u ∩ pC .

Bala-Carter Label : A3 ⊕ 2A2 Special
Real form : EVI
Root vectors for e: 50 , 55 , -33 , -21 , 48
Parabolic : Levi-Type: A4 ⊕A2

Cartan subalgebra: 3 , 5 , 32 , 6 , -33 , 2 , 34
Roots vectors for Levi: ±(3, 32, 6, 5, 37, 38, 12, 42, 43, 46, 2, 34, 39)
Roots vectors for nilradical: -33 , -26 , -27 , -20 , 4 , -21 , 7 , 10 , 11 , -14 ,
9 , 13 , 17 , 15 , 18 , 16 , 19 , 44 , 24 , 22 ,
47 , 23 , 48 , 50 , 29 , 51 , -8 , 52 , 53 , -1 , 55 , 25 , 28 , 63 , 31 , 30 ,
35 , 54 , 36 , 40 , 57 , 56 , 59 , 58 , 60 , 41 , 45 , 49 , 61 , 62
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This concludes the proof.
�

E8.

All theta-stable parabolic subalgebras relative to the two real forms of E8 contains
a representative of the nilpotent orbit labeled 3A1. Hence 2A1 cannot be the KC -
saturation or any q. However the next proposition shows that most special orbits
of E8 are Richardson.

Proposition 3.9. Let gC = E8 and fix a special nilpotent orbit O of GC on gC such
that O is either even or is one of the orbits given below . Then there exists a real
form G such that some irreducible component of O ∩ pC is a Richardson orbit of
KC on the nilpotent cone of pC .

Proof. We order the roots of E8 as in the table below and we use the Bourbaki
system of simple roots ∆ = {α1, α2, α3, α4, α5, α6, α7, α8}. The Cartan involution
θ with +1-eigenspace k and −1-eigenspace p depends on the real forms. If gR =
EV III then kC = so16(C) and the vector space pC is the complex span of non-zero
root vectors Xβ where β = c1α1 + c2α2 + c3α3 + c4α4 + c5α5 + c6α6 + c7α7 + c8α8

with c1 = ±1.

Positive roots of E8

1. [1,0,0,0,0,0,0,0] 41. [0,1,1,1,1,1,1,0] 81. [1,2,2,3,2,1,1,1]
2. [0,1,0,0,0,0,0,0] 42. [0,1,0,1,1,1,1,1] 82. [1,1,2,3,3,2,1,0]
3. [0,0,1,0,0,0,0,0] 43. [0,0,1,1,1,1,1,1] 83. [1,1,2,3,2,2,1,1]
4. [0,0,0,1,0,0,0,0] 44. [1,1,2,2,1,0,0,0] 84. [1,1,2,2,2,2,2,1]
5. [0,0,0,0,1,0,0,0] 45. [1,1,1,2,1,1,0,0] 85. [1,2,2,3,3,2,1,0]
6. [0,0,0,0,0,1,0,0] 46. [1,1,1,1,1,1,1,0] 86. [1,2,2,3,2,2,1,1]
7. [0,0,0,0,0,0,1,0] 47. [1,0,1,1,1,1,1,1] 87. [1,1,2,3,3,2,1,1]
8. [0,0,0,0,0,0,0,1] 48. [0,1,1,2,2,1,0,0] 88. [1,1,2,3,2,2,2,1]
9. [1,0,1,0,0,0,0,0] 49. [0,1,1,2,1,1,1,0] 89. [1,2,2,4,3,2,1,0]
10.[0,1,0,1,0,0,0,0] 50. [0,1,1,1,1,1,1,1] 90. [1,2,2,3,3,2,1,1]
11.[0,0,1,1,0,0,0,0] 51. [1,1,2,2,1,1,0,0] 91. [1,2,2,3,2,2,2,1]
12.[0,0,0,1,1,0,0,0] 52. [1,1,1,2,2,1,0,0] 92. [1,1,2,3,3,2,2,1]
13.[0,0,0,0,1,1,0,0] 53. [1,1,1,2,1,1,1,0] 93. [1,2,3,4,3,2,1,0]
14.[0,0,0,0,0,1,1,0] 54. [1,1,1,1,1,1,1,1] 94. [1,2,2,4,3,2,1,1]
15.[0,0,0,0,0,0,1,1] 55. [0,1,1,2,2,1,1,0] 95. [1,2,2,3,3,2,2,1]
16.[1,0,1,1,0,0,0,0] 56. [0,1,1,2,1,1,1,1] 96. [1,1,2,3,3,3,2,1]
17.[0,1,1,1,0,0,0,0] 57. [1,1,2,2,2,1,0,0] 97. [2,2,3,4,3,2,1,0]
18.[0,1,0,1,1,0,0,0] 58. [1,1,2,2,1,1,1,0] 98. [1,2,3,4,3,2,1,1]
19.[0,0,1,1,1,0,0,0] 59. [1,1,1,2,2,1,1,0] 99. [1,2,2,4,3,2,2,1]
20.[0,0,0,1,1,1,0,0] 60. [1,1,1,2,1,1,1,1] 100.[1,2,2,3,3,3,2,1]
21.[0,0,0,0,1,1,1,0] 61. [0,1,1,2,2,2,1,0] 101.[2,2,3,4,3,2,1,1]
22.[0,0,0,0,0,1,1,1] 62. [0,1,1,2,2,1,1,1] 102.[1,2,3,4,3,2,2,1]
23.[1,1,1,1,0,0,0,0] 63. [1,1,2,3,2,1,0,0] 103.[1,2,2,4,3,3,2,1]
24.[1,0,1,1,1,0,0,0] 64. [1,1,2,2,2,1,1,0] 104.[2,2,3,4,3,2,2,1]
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25.[0,1,1,1,1,0,0,0] 65. [1,1,2,2,1,1,1,1] 105.[1,2,3,4,3,3,2,1]
26.[0,1,0,1,1,1,0,0] 66. [1,1,1,2,2,2,1,0] 106.[1,2,2,4,4,3,2,1]
27.[0,0,1,1,1,1,0,0] 67. [1,1,1,2,2,1,1,1] 107.[2,2,3,4,3,3,2,1]
28.[0,0,0,1,1,1,1,0] 68. [0,1,1,2,2,2,1,1] 108.[1,2,3,4,4,3,2,1]
29.[0,0,0,0,1,1,1,1] 69. [1,2,2,3,2,1,0,0] 109.[2,2,3,4,4,3,2,1]
30.[1,1,1,1,1,0,0,0] 70. [1,1,2,3,2,1,1,0] 110.[1,2,3,5,4,3,2,1]
31.[1,0,1,1,1,1,0,0] 71. [1,1,2,2,2,2,1,0] 111.[2,2,3,5,4,3,2,1]
32.[0,1,1,2,1,0,0,0] 72. [1,1,2,2,2,1,1,1] 112.[1,3,3,5,4,3,2,1]
33.[0,1,1,1,1,1,0,0] 73. [1,1,1,2,2,2,1,1] 113.[2,3,3,5,4,3,2,1]
34.[0,1,0,1,1,1,1,0] 74. [0,1,1,2,2,2,2,1] 114.[2,2,4,5,4,3,2,1]
35.[0,0,1,1,1,1,1,0] 75. [1,2,2,3,2,1,1,0] 115.[2,3,4,5,4,3,2,1]
36.[0,0,0,1,1,1,1,1] 76. [1,1,2,3,2,2,1,0] 116.[2,3,4,6,4,3,2,1]
37.[1,1,1,2,1,0,0,0] 77. [1,1,2,3,2,1,1,1] 117.[2,3,4,6,5,3,2,1]
38.[1,1,1,1,1,1,0,0] 78. [1,1,2,2,2,2,1,1] 118.[2,3,4,6,5,4,2,1]
39.[1,0,1,1,1,1,1,0] 79. [1,1,1,2,2,2,2,1] 119.[2,3,4,6,5,4,3,1]
40.[0,1,1,2,1,1,0,0] 80. [1,2,2,3,2,2,1,0] 120.[2,3,4,6,5,4,3,2]

As before it is enough to consider non even special orbits in E8. The next table
shows which of them are polarizable and therefore by Tauvel’s lemma satisfy the
proposition.

Polarizable orbits of E8

Bala-Carter Label : A4 ⊕A2 ⊕A1 Special
Real form : EVIII
Root vectors for e: 63,71,72,73,75,-16,-30 dim ge

C
= 52

Parabolic : Levi-Type: A6 ⊕A1 dimension = 150
Cartan subalgebra: 44,5,-37,4,2,31,7,8
Roots vectors for Levi: ±(8, 7, 31, 2, 4, 5, 15, 39, 38, 10, 12, 47, 46, 45, 18, 54, 53,
52, 60, 59, 67),±(44)
Roots vectors for nilradical: -37,3,-30,11,-23,-24,19,17,-16,6,
25,51,-9,13,14,32,57,58,20,21,22,-1,63,64,65,26,28,29,27,69,70,72,
34,36,33,35,75,77,66,42,40,41,43,97,81,73,48,49,71,50,101,79,55,
76,56,78,104,82,62,80,83,84,85,87,86,88,89,90,92,91,61,94,95,107,
93,68,99,109,98,74,111,102,96,113,114,100,115,103,116,106,117,105,
108,110,112,118,119,120

Bala-Carter Label : D6(a1) Special
Real form : EVIII
Root vectors for e: 64,65,67,73,-30,-47,71 dim ge

C
= 38

Parabolic : Levi-Type: A5 dimension = 143
Cartan subalgebra: 44,-52,6,5,4,46,8,-47
Roots vectors for Levi: ±(44, 6, 5, 4, 46, 51, 13, 12, 53, 57, 20, 59, 63, 66, 97)
Roots vectors for nilradical: -52,8,-47,
-45,54,-39,-37,-38,60,2,3,-30,7,67,10,11,-23,14,15,73,18,19,58,101,
21,22,-31,26,27,64,65,69,28,29,-24,71,70,72,17,36,-16,76,78,77,25,
79,-9,82,83,33,104,32,34,35,87,107,40,75,42,43,109,48,80,81,84,-1,
111,85,86,88,41,89,90,92,49,50,94,96,55,56,113,114,61,62,91,93,68,
95,98,100,99,115,103,116,106,117,74,102,118,105,108,110,119,120, 112
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Bala-Carter Label : A6 ⊕A1 Special
Real form : EVIII
Root vectors for e: 64,65,66,67,69, -37,-38 dim ge

C
= 36

Parabolic : Levi-Type: A4 ⊕A2 ⊕A1 dimension = 142
Cartan subalgebra: 44,52,6,-45,4,2,39,8
Roots vectors for Levi: ±(4, 2, 39, 8, 10, 46, 47, 53, 54, 60),±(44, 6, 51),±(52)
Roots vectors for nilradical: -45,5,-37,-38,3,13,
12,-30,-31,57,11,20,18,-24,7,63,17,-23,26,59,14,15,19,69,58,-16,
66,67,22,27,25,97,65,-9,21,73,33,32,64,101,28,29,40,71,70,72,34,
36,-1,76,78,75,77,42,48,35,80,83,81,79,82,41,43,86,104,85,87,49,
50,107,89,90,56,84,55,94,109,88,61,62,111,91,93,68,92,113,98,96,
95,114,100,99,115,103,116,74,102,106,117,105,118,108,110,112,119, 120

Bala-Carter Label : D7(a2) Special
Real form : EVIII
Root vectors for e: 51,58, 60,66,67, -23,-39, -30,-31 dim ge

C
= 32

Parabolic : Levi-Type: A4 ⊕A1 ⊕A1 dimension = 140
Cartan subalgebra: 44,5,-37,4,38,7,-39,47
Roots vectors for Levi: ±(7, 38, 4, 5, 46, 45, 12, 53, 52, 59),±(44),±(47)
Roots vectors for nilradical: -37,-39,3,-30,-31,8,11,-23,6,2,
15,19,51,13,14,10,54,57,58,20,21,18,-24,60,63,64,17,28,-16,67,22,
27,70,25,65,66,-9,29,35,97,32,72,26,36,71,-1,69,77,34,73,76,33,43,
75,101,79,82,40,41,78,104,42,48,49,83,84,81,55,87,80,88,50,85,92,
107,56,89,109,62,86,61,111,90,91,93,96,94,95,114,68,99,98,74,113,
102,100,115,103,116,106,117,105,108,110,118,119,112,120

Bala-Carter Label : E6(a1)⊕A1 Special
Real form : EVIII
Root vectors for e: 54, 47,63,64,66,-38,-37,-31 dim ge

C
= 30

Parabolic : Levi-Type: A4 ⊕A1 dimension = 139
Cartan subalgebra: 44,-52,6,5,4,2,39,8
Roots vectors for Levi: ±(39, 2, 4, 5, 46, 10, 12, 53, 18, 59),±(44)
Roots vectors for nilradical: -52,6,8,51,-45,13,47,57,-37,-38,20,54,
3,63,-30,-31,26,60,11,69,-23,-24,7,66,67,19,17,97,-16,14,15,73,27,
25,58,101,-9,21,22,33,32,64,65,28,29,40,71,70,72,34,36,48,76,78,
75,77,42,-1,82,80,83,81,79,35,85,87,86,104,41,43,89,90,107,49,50,
94,109,55,56,84,111,61,62,88,113,93,68,92,91,98,96,95,114,100,99,
115,103,116,106,117,74,102,118,105,108,110,112,119,120

Bala-Carter Label : E7(a1) Special
Real form : EVIII
Root vectors for e: 54,57,58,60,-38,-44, -47,-45 dim ge

C
= 20

Parabolic : Levi-Type: A3 dimension = 134
Cartan subalgebra: -44,-52,51,5,4,46,8,-47
Roots vectors for Levi: ±(5, 4, 46, 12, 53, 59)
Roots vectors for nilradical: -44, -52,51,8,-47,6,-45,57,54,-39,13,3,-38,63,60,2,
-37,20,11,7,97,67,10,-30,66,19,58,15,101,18,-23,14,73,64,65,-31,69,27,21,22,
26,70,72,17,71,28,29,-24,77,25,76,78,36,-16,104,32,82,83,33,79,-9,75,35,
87,107,40,34,81,43,109,48,80,42,84,-1,111,85,86,88,41,89,90,92,49,
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50,94,114,55,56,113,96,93,62,91,61,98,95,68,115,99,100,116,103,117,
106,102,74,118,105,108,110,119,120,112

This concludes the proof.
�

We end the paper with the following theorem:

Theorem 3.10. Maintaining our previous notations, let gC be a simple complex
Lie algebra other than E8 and fix a non-minimal special nilpotent orbit O of GC on
gC . Then there exists a real form G such that some irreducible component of O∩pC

is a Richardson orbit of KC on the nilpotent cone of pC .

Proof. If gC is classical then a proof is given [8], otherwise the theorem follows from
the above propositions.

�
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