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GEOMETRIC LANGLANDS DUALITY AND REPRESENTATIONS
OF ALGEBRAIC GROUPS OVER COMMUTATIVE RINGS

I. MIRKOVIC AND K. VILONEN

1. Introduction

In this paper we give a geometric version of the Satake isomorphism [Saf]. As such,
it can be viewed as a first step in the geometric Langlands program. The connected
complex reductive groups have a combinatorial classification by their root data. In
the root datum the roots and the coroots appear in a symmetric manner and so the
connected reductive algebraic groups come in pairs. If G is a reductive group, we write
G for its companion and call it the dual group G. The notion of the dual group itself
does not appear in Satake’s paper, but was introduced by Langlands, together with its
various elaborations, in [L1, [L2] and is a corner stone of the Langlands program. It also
appeared later in physics [MO, [GNO]. In this paper we discuss the basic relationship
between G and G.

We begin with a reductive G and consider the affine Grassmannian Gr, the Grass-
mannian for the loop group of G. For technical reason we work with formal algebraic
loops. The affine Grassmannian is an infinite dimensional complex space. We consider a
certain category of sheaves, the spherical perverse sheaves, on Gr. These sheaves can be
multiplied using a convolution product and this leads to a rather explicit construction
of a Hopf algebra, by what has come to be known as Tannakian formalism. The result-
ing Hopf algebra turns out to be the ring of functions on G. In this interpretation, the
spherical perverse sheaves on the affine Grassmannian correspond to finite dimensional
complex representations of G. Thus, instead of defining G in terms of the classification
of reductive groups, we provide a canonical construction of G, starting from G. We can
carry out our construction over the integers. The spherical perverse sheaves are then
those with integral coefficients, but the Grassmannian remains a complex algebraic
object. The resulting G turns out to be the Chevalley scheme over the integers, i.e.,
the unique split reductive group scheme whose root datum coincides with that of the
complex G. Thus, our result can also be viewed as providing an explicit construction
of the Chevalley scheme. Once we have a construction over the integers, we have one
for every commutative ring and in particular for all fields. This provides another way
of viewing our result: it provides a geometric interpretation of representation theory
of algebraic groups over arbitrary rings. The change of rings on the representation
theoretic side corresponds to change of coefficients of perverse sheaves, familiar from
the universal coefficient theorem in algebraic topology. Note that for us it is crucial
that we first prove our result for the integers (or p-adic integers) and then deduce the
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theorem for fields (of positive characteristic). We do not know how to argue the case
of fields of positive characteristic directly.

One of the key technical points of this paper is the construction of certain algebraic
cycles that turn out to give a basis, even over the integers, of the cohomology of
the standard sheaves on the affine Grassmannian. This result is new even over the
complex numbers. These cycles are obtained by utilizing semi-infinite Schubert cells
in the affine Grassmannian. The semi-infinite Schubert cells can then be viewed as
providing a perverse cell decomposition of the affine Grassmannian analogous to a cell
decomposition for ordinary homology where the dimensions of all the cells have the
same parity. The idea of searching for such a cell decomposition came from trying to
find the analogues of the basic sets of [GM] in our situation.

The first work in the direction of geometrizing the Satake isomorphism is [Lu] where
Lusztig introduces the key notions and proves the result in the characteristic zero case
on a combinatorial level. Independently, Drinfeld had understood that geometrizing the
Satake isomorphism is crucial for formulating the geometric Langlands correspondence.
Following Drinfeld’s suggestion, Ginzburg in [Gil, using [La1], treated the characteristic
zero case of the geometric Satake isomorphism. Our paper is self-contained in that it
does not rely on [Lu] or [Gi] and provides some improvements and precision even in
the characteristic zero case. However, we make crucial use of an idea of Drinfeld, going
back to around 1990. He discovered an elegant way of obtaining the commutativity
constraint by interpreting the convolution product of sheaves as a “fusion” product.

We now give a more precise version of our result. Let G be a reductive algebraic
group over the complex numbers. We write G for the group scheme G(C][z]]) and
Gr for the affine Grassmannian of G(C((2)))/G(C][z]]); the affine Grassmannian is an
ind-scheme, i.e., a direct limit of schemes. Let k be a Noetherian, commutative unital
ring of finite global dimension. One can imagine k to be C, Z, or F,, for example.
Let us write Pg, (9r,k) for the category of G-equivariant perverse sheaves with k-
coefficients. Furthermore, let Repg, stand for the category of k-representations of Gy;

here Gy denotes the canonical smooth split reductive group scheme over k whose root
datum is dual to that of G. The goal of this paper is to prove the following:

(1.1) the categories Pg, (Gr,k) and Repg, are equivalent as tensor categories .

We do slightly more than this. We give a canonical construction of the group scheme Gy
in terms of P, (Gr, k). In particular, we give a canonical construction of the Chevalley
group scheme Gz in terms of the complex group G. This is one way to view our theorem.
We can also view it as giving a geometric interpretation of representation theory of
algebraic groups over commutative rings. Although our results yield an interpretation
of representation theory over arbitrary commutative rings, note that on the geometric
side we work over the complex numbers and use the classical topology. The advantage
of the classical topology is that one can work with sheaves with coefficients in arbitrary
commutative rings, in particular, we can use integer coefficients. Finally, our work can
be viewed as providing the unramified local geometric Langlands correspondence. In
this context it is crucial that one works on the geometric side also over fields other
than C; this is easily done as the affine Grassmannian can be defined even over the
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integers. The modifications needed to do so are explained in section [d This can then
be used to define the notion of a Hecke eigensheaf in the generality of arbitrary systems
of coefficients.

We describe the contents of the paper briefly. Section [} is devoted to the basic
definitions involving the affine Grassmannian and the notion of perverse sheaves that
we adopt. In section [Jl we introduce our main tool, the weight functors. In this section
we also give our crucial dimension estimates, use them to prove the exactness of the
weight functors, and, finally, we decompose the global cohomology functor into a direct
sum of the weight functors. The next section Hl is devoted to putting a tensor structure
on the category P, (9r,k); here, again, we make use of the dimension estimates of
the previous section. In section [ we give, using the Beilinson-Drinfeld Grassmannian,
a commutativity constraint on the tensor structure. In section Bl we show that global
cohomology is a tensor functor and we also show that it is tensor functor in the weighted
sense. Section [ is devoted to the simpler case when k is a field of characteristic zero.
The next section B treats standard sheaves and we show that their cohomology is
given by specific algebraic cycles which provide a canonical basis for the cohomology.
In the next section @l we prove that the weight functors introduced in section B are
representable. This, then, will provide us with a supply of projective objects. In section
[[ we study the structure of these projectives and prove that they have filtrations whose
associated graded consists of standard sheaves. In section [[1l we show that Pg, (9r,k)
is equivalent, as a tensor category, to Repé]k for some group scheme Gy. Then, in the

next section [[? we identify Gy with Gi. A crucial ingredient in this section is the work
of Prasad and Yu [PY]. We then briefly discuss in section [[3 our results from the point
of view of representation theory. In the final section [[4 we briefly indicate how our
arguments have to be modified to work in the étale topology.

Most of the results in this paper appeared in the announcement [MiV2]. Since our
announcement was published, the papers [Br] and [Na] have appeared. Certain tech-
nical points that are necessary for us are treated in these papers. Instead of repeating
the discussion here, we have chosen to refer to [Bi] and [Na] instead. Finally, let us
note that we have not managed to carry out the idea of proof proposed in [MiV2] for
theorem [[Z] (theorem 6.2 in [MiV2]) and thus the paper [MiV2] should be considered
incomplete. In this paper, as was mentioned above, we will appeal to [PY] to prove
theorem 211

We thank the MPI in Bonn, where some of this research was carried out. We also
want to thank A .Beilinson, V. Drinfeld, and D. Nadler for many helpful discussions
and KV wants to thank G. Prasad and J. Yu for answering a question in the form of
the paper [PY].

2. Perverse sheaves on the affine Grassmannian

We begin this section by recalling the construction and the basic properties of the
affine Grassmannian Gr. For proofs of these facts we refer to §4.5 of [BD]. See also,
[BLI] and [BL2]. Then we introduce the main object of study, the category Pg, (9r,k)
of equivariant perverse sheaves on Jr.
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Let G be a complex, connected, reductive algebraic group. We write O for the formal
power series ring C[[z]] and X for its fraction field C((z)). Let G(X) and G(O) denote,
as usual, the sets of the K-valued and the O-valued points of G, respectively. The
affine Grassmannian is defined as the quotient G(X)/G(0O). The sets G(X) and G(0),
and the quotient G(X)/G(0) have an algebraic structure over the complex numbers.
The space G(O) has a structure of a group scheme, denoted by G, over C and the
spaces G(X) and G(X)/G(O) have structures of ind-schemes which we denote by Gy
and Sr = Yrg, respectively. For us an ind-scheme means a direct limit of family of
schemes where all the maps are closed embeddings. The morphism 7 : Gy — Gr is
locally trivial in the Zariski topology, i.e., there exists a Zariski open subset U C Gr
such that 771(U) 2 U x Go and 7 restricted to U x G is simply projection to the
first factor. For details see for example [BLIJ, [LS]. We write Sr as a limit

(2.1) 9r = lim Sy,

where the Gr,, are finite dimensional schemes which are G g-invariant. The group G
acts on the Gr,, via a finite dimensional quotient.

In this paper we consider sheaves in the classical topology, with the exception of
section [[4 where we use the etale topology. Therefore, it suffices for our purposes to
consider the spaces G, G, and Gr as reduced ind-schemes. We will do so for the rest
of the paper.

If G = T is torus of rank r then, as a reduced ind-scheme, Gr = X, (T') = Hom(C*,T),
i.e., in this case the loop Grassmannian is discrete. Note that, because T is abelian,
the loop Grassmannian is a group ind-scheme. Let G be a reductive group, write Z(G)
for the center of G and let Z = Z(G)" denote connected component of the center. Let
us further set G = G/Z. Then, as is easy to see, the map Grg — Grg is a trivial
covering with covering group X,(Z) = Hom(C*, Z), ie., rg = Grgz x X,(Z), non-
canonically. Note also that the connected components of Gr are exactly parameterized
by the component group of Gy, i.e., by G /(Gg)°. This latter group is isomorphic to
m1(G), the topological fundamental group of G.

The group scheme G acts on Gr with finite dimensional orbits. In order to describe
the orbit structure, let us fix a maximal torus T C G. We write W for the Weyl group
and X, (7T) for the coweights Hom(C*,T"). Then the G-orbits on Gr are parameterized
by the W-orbits in X,(T'), and given A € X,(T) the Go-orbit associated to WA is
Gr* = Go- Ly C Gr, where L) denotes the image of the point A € X,(T) CGyx in
Gr. Note that the points L) are precisely the T-fixed points in the Grassmannian. To
describe the closure relation between the G g-orbits, we choose a Borel B D T and write
N for the unipotent radical of B. We use the convention that the roots in B are the
positive ones. Then, for dominant A and p we have

(2.2) Gr* € Gr* ifand only if A —p is a sum of positive coroots.

In a few arguments in this paper it will be important for us to consider a Kac-Moody
group associated to the loop group Gy. Let us write A = A(G,T) for the root system
of G with respect to T', and we write similarly A = A(G, T) for the coroots. Let T' = C*
denote the subgroup of automorphisms of KX which acts by multiplying the parameter
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z € X by s € C* =T'. The group I' acts on G and Gx and hence we can form the
semi-direct product Gg< = Gg< x T. Then T =T x I is a Cartan subgroup of Gg< “An
affine Kac-Moody group Gg< is a central extension, by the multiplicative group, of Gg<7
note that the root systems are the same whether we consider évx or é\g( Let us write
je X *( I') for the character which is trivial on T’ and identity on the factor I' = C*
and let 6 € X,.(T ) be the cocharacter C* 2T C T x I' = T. We also view the roots A
as characters on T, which are trivial on I'. The T—elgenspaces in gqc are given by

(2 3) (ggc)k5+a = Z ga, ke Z ac AU {O}

and thus the roots of G are given by A = {a+kd € X*(T) | « € AU{0}, k € Z} —{0}.

Furthermore, the orbit G - L) is isomorphic to the flag manifold G/Py, where Py,
the stabilizer of Ly in G, is a parabolic with a Levi factor associated to the roots
{a € A | M(«a) = 0}. The orbit Gr* can be viewed as a G-equivariant vector bundle
over G/Py. One way to see this is to observe that the varieties G - L) are the fixed
point sets of the G,,-action via the cocharacter 4. In this language,

(2.4) Gr* = {zer| lin})g(s)az €G- Ly}

In particular, the orbits Gr* are simply connected. If we choose a Borel B containing
T and if we choose the parameter A\ € X,(T) of the orbit Gr* to be dominant, then
dim(Gr*) = 2p()\), where p € X*(T), as usual, is half the sum of positive roots with
respect to B. Let us consider the map evy : Gy — G, evaluation at zero. We write
I = evo ~}(B) for the Iwahori subgroup and K = evy ~1(1) for the highest congruence
subgroup. The I-orbits are parameterized by X.(T'), and because the I-orbits are
also evg ~}(IV)-orbits, they are affine spaces. This way each Gp-orbit acquires a cell
decomposition as a union of I-orbits. The K-orbit K - L) is the fiber of the vector
bundle §r* — G /Py. Let us consider the subgroup ind-scheme G of G whose C-
points consist of G(C[z7!]). The G-orbits are also indexed by W-orbits in X, (T)
and the orbit attached to A € X,(T) is G - Lx. The G g-orbits are opposite to the
G -orbits in the following sense:

(2.5) Gy Ly = {z€5r| lim 0(s)z € G- Ly}.
The above description implies that
(2.6) (Gg-L)NGA = G- Ly

The group G4 contains a negative level congruence subgroup K_ which is the kernel
of the evaluation map G(C[z7!]) — G at infinity. Just as for G, the fiber of the
projection Gy - Ly — G/Pyis K_ - L.

We will recall briefly the notion of perverse sheaves that we will use in this paper
IBBD]. Let X be a complex algebraic variety with a fixed (Whitney) stratification
8. We also fix a commutative, unital ring k. For simplicity of exposition we assume
that k is Noetherian of finite global dimension. This has the advantage of allowing us
to work with finite complexes and finitely generated modules instead of having to use
more complicated notions of finiteness. With suitable modifications, the results of this
paper hold for arbitrary k. We denote by Dg(X, k) the bounded 8-constructible derived
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category of k-sheaves. This is the full subcategory of the derived category of k-sheaves
on X whose objects JF satisfy the following two conditions:

i) HY(X,F) =0 for|k|>0,
i) HF (F)|S s a local system of finitely generated k-modules
for all S € 8.

As usual we define the full subcategory Pg(X,k) of perverse sheaves as follows. An
F € Dg(X, k) is perverse if the following two conditions are satisfied:

i) HEG*F) =0 for k> —dimc S forany i:S— X,S€8,
i) HE('F) =0 for k < dimeS forany i:S<— X,5¢€8.

As is explained in [BBD], perverse sheaves Pg(X, k) form an abelian category and there
is a cohomological functor

PHY : Dg(X, k) — Pg(X, k).

Given a stratum S € 8§ and M a finitely generated k-module then Rj,M and jiM
belong in Dg(X,k). Following [BBD] we write ?j,M for PH°(Rj,M) € Pg(X,k) and
P4 M for PHO(jiM) € Pg(X,k). We use this type of notation systematically throughout
the paper. If Y C X is locally closed and is a union of strata in § then, by abuse of
notation, we denote by Ps(Y,k) the category P3(Y,k), where T={S € 8|S CY}.

Let us now assume that we have an action of a connected algebraic group K on X,
given by a : K x X — X. Fix a Whitney stratification 8§ of X such that the action of
K preserves the strata. Recall that an F € Pg(X, k) is said to be K-equivariant if there
exists an isomorphism ¢ : a*F = p*F such that qﬁ!{l} x X =id. Herep: K x X — X
is the projection to the second factor. If such an isomorphism ¢ exists it is unique. We
denote by Px (X, k) the full subcategory of Pg(X,k) consisting of equivariant perverse
sheaves. In a few instances we also make use of the equivariant derived category
D (X, k), see [BLI.

Let us now return to our situation. Denote the stratification induced by the G-
orbits on the Grassmannian Gr by 8. The closed embeddings Sr,, C Gr,,, for n < m
induce embeddings of categories P, (Gry,k) — Pg, (Srm, k). This allows us to define
the category of Gg-equivariant perverse sheaves on Gr as

Pgy (Or.k) =aer limPe, (St k) -

Similarly we define Pg(9r, k), the category of perverse sheaves on Gr which are con-
structible with respect to the Gg-orbits. In our setting we have

2.1. Proposition. The categories Pg(Gr, k) and Pg, (Gr,k) are naturally equivalent.

We give a proof of this proposition in appendix [Al the proof makes use of results of
section Bl

Let us write Aut(O) for the group of automorphisms of the formal disc Spec(O). The
group scheme Aut(O) acts on Gy, G, and Gr. This action and the action of G on
the affine Grassmannian extend to an action of the semidirect product G x Aut(0O)
on Gr. In the appendix [Al we also prove
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2.2. Proposition. The categories P sau(0)(97: k) and Pg, (S, k) are naturally equiv-
alent.

2.3. Remark. Ifk is field of characteristic zero then propositions [Z1 and [Z2 follow
immediately from lemma [71).

Finally, we fix some notation that will be used throughout the paper. Given a Ggo-
orbit Gry, A € X,(T'), and a k-module M we write Jj(\, M), J.(\, M), and Iy (A, M)
for the perverse sheaves ?jy(M[dim(Gr*)]), ji (M[dim(Sr)]), and 25, (M[dim(Gr)]), re-
spectively; here j : Gr* — Gr denotes the inclusion.

3. Semi-infinite orbits and weight functors

Here we show that the global cohomology is a fiber functor for our tensor category.
For k = C this is proved by Ginzburg [Gi] and was treated earlier in [Lul, on the level of
dimensions (the dimension of the intersection cohomology is the same as the dimension
of the corresponding representation).

Recall that we have fixed a maximal torus 7', a Borel B O T and denoted by N
the unipotent radical of B. Furthermore, we write Ny for the group ind-subscheme of
Gg whose C-points are N(X). The Ngc-orbits on Gr are parameterized by X.(T'); to
each v € X, (T) = Hom(C*,T) we associate the Ng-orbit S, = Ny - L,. Note that
these orbits are neither of finite dimension nor of finite codimension. We view them
as ind-varieties, in particular, their intersection with any Gr* is an algebraic variety.
The following proposition gives the basic properties of these orbits. Recall that for
w, A € Xi(T) we say that p < X if A — p is a sum of positive coroots.

3.1. Proposition. We have

(a) S, = Up<u Syp-

(b) Inside S,,, the boundary of S, is given by a hyperplane section under an embedding
of §r in projective space.

Proof. Because translation by elements in T is an automorphism of the Grassmannian,
it suffices to prove the claim on the identity component of the Grassmannian. Hence,
we may assume that G is simply connected. In that case G is a product of simple
factors and we may then furthermore assume that G is simple and simply connected.

For a positive coroot ¢, there is T-stable P! passing through L,_gs such that the
remaining A' lies in S, constructed as follows. First observe that the one parameter
subgroup Uy for an affine root ¢ = a + kd fixes L, if h—lar)g  fixes Lo, ie., if
k > {(a,v). So, for any integer k < (o, v), (gx)y does not fix L,, but (gg)—y does. We
conclude that for the SLs-subgroup generated by the one parameter subgroups U4
the orbit through L, is a P! and that Uy L, = Al lies in S, since o > 0. The point
at infinity is then L, for the reflection s, in the affine root ¢. For k = (a,v) — 1
this yields L,_g as the point at infinity. Hence S,_5CS,, for any positive coroot & and
therefore U,<, S, C S,.

To prove the rest of the proposition we embed the ind-variety Gr in an ind-projective
space P(V) via an ample line bundle £ on Sr. For simplicity we choose L to be the
positive generator of the Picard group of Gr. The action of Gy on Gr only extends to
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a projective action on the line bundle £. To get an action on L we must pass to the
Kac-Moody group Gy associated to G, which was discussed in the previous section.
The highest weight Ay of the resulting representation V = H0(9r, L) is zero on T and
one on the central G,,. Thus, we get a Gy-equivariant embedding ¥ : Gr — P(V)
which maps Lo to the highest weight line V},. In particular, the T-weight of the line
U(Lg) = Vy, is zero.

We need a formula for the T-weight of the line W(L,) = v - ¥(Ly) = v - Vj,. Now,
v-Va, = Vip,, Where v is any lift of the element v € X, (T) to @, the restriction to

Tg< of the central extension Gg< of Gg< by G,,. Fort € T,
(3.1) (T No)(t) = Ao(T D) = Ap(v Mt ™),

since Ag(t) = 1. The commutator z,y +— zyz 'y~' on Tg< descends to a pairing of

Ty x Ty to the central G,,. The restriction of this pairing to X.(T) x T' — G,,, can
be viewed as a homomorphism ¢ : X, (T) — X*(T), or, equivalently, as a bilinear form
(,)s on X,(T). Since Ag is identity on the central G,, and since v~ 'tvt~! € G,,, we
see that

(3.2) (T-No)(t) = vt = (w)()7t,
ie,v-Ayg=—w onT. We will now describe the morphism ¢.

The description of the central extension of gy, corresponding to Gy, makes use of
an invariant bilinear form ( , ) on g, see, for example, [PS]. From the basic formula

for the coadjoint action of G (see, for example, [PS]), it is clear that the form ( , ).
above is the restriction of (, ) to t = C® X,(T'). The form ( , ) is characterized by the
property that the corresponding bilinear form ( , )* on t* satisfies (0,60)* = 2 for the
longest root 6. Now, for a root a« € A we find that

2 0,0)*
3.3 Y = = ae{l,2,3
39 4T T fmap S tRIe
We conclude that ((ZA)NZ AL = (Z AL), e
(3.4) v <mn isequivalent to v < for v,m € X.(T).

Let us write V5_,,CV>_,, for the sum of all the T-weight spaces of V' whose T-
weight is bigger than (or equal to) —w. Clearly the central extension of Ny acts by
increasing the T" weights, i.e., its action preserves the subspaces V~._,, and V~_,,,. This,
together with (B4)), implies that U,<, S, = V"1(P(V>_,,)). In particular, Uy<, S, is
closed. This, with U,<, S;, C S,, implies that S, = Up<v Sy, proving part (a) of the
proposition.

To prove part (b), we first observe that U<, S, = V"1 (P(V5_,,)). The line ¥(L,)
lies in V>_,, but not in V5_,,. Let us choose a linear form f on V which is non-
zero on the line W(L,) and which vanishes on all T-eigenspaces whose eigenvalue is
different from —wv. Let us write H for the hyperplane {f = 0}CV. By construction,
for v € ¥(L,), and any n in the central extension of Ny, nv € C*-v+ Vi_,,. So
v # 0 implies f(nv) # 0, and we see that S, N H = (). Since Uy, S;, C H, we conclude
that S, N H = U, <, Sy, as required.

d
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Let us also consider the unipotent radical N~ of the Borel B~ opposite to B. The
N-orbits on Gr are again parameterized by X, (T): to each v € X,(T') we associate
the orbit T, = Ny - L, . The orbits S, and T, intersect the orbits Gr* as follows:

3.2. Theorem. We have
a) The intersection S, N G s non-empty precisely when L, € S and then

S, N 9—7’\ is of pure dimension p(v+ \), if X is chosen dominant.
b) The intersection T, N S s non-empty precisely when L, € S and then
T, NG is of pure dimension — p(v+ \), if X is chosen anti-dominant.

3.3. Remark. Note that, by Z2), L, € Gt if and only if v is a weight of the irreducible
representation of Gc of highest weight \; here G is the complex Langlands dual group
of G, i.e., the complex reductive group whose root datum is dual to that of G.

Proof. Tt suffices to prove the statement a). Let the coweight 2p : G,, — T be the
sum of positive coroots. When we act by conjugation by this coweight on Ny, we see
that for any element n € Ny, lims_02p(s)n = 1. Therefore any point x € S, satisfies
lims_02p(s)z = L,. As the L, are the fixed points of the G,,-action via 2p, we see
that

(3.5) S, = {x€fr| lin%) 2p(s)xr =Ly} .

Hence, if z € S, N Gr* then, because Gr' is T-invariant, we see that L, € Gr. Thus,
S, N Gr* is non-empty precisely when L, € Gr). Recall that, as was remarked above,
we then conclude, by (23), that S, N Gr* is non-empty precisely when v is a weight of
the irreducible representation of G¢ of highest weight X. Let us now assume that v is
such a wait.

We begin with two extreme cases. We claim:
I-L, ifvis dominant

(3.6) S, NG = NO-L,,:{

{L,} if v is anti-dominant

We see this as follows. We first observe that Noc = Ng - (Ng N K_). Then we can write

(3.7) S,NGrY = No(NgeNK_)-L, N ¥ = No- (NxNK_)vNnGr”) .

But now (N«NK_)-L, C K_-L, and by (8] we know that G, -L, N9r* = G-L, and
because K_- L, is the fiber of the projection G- L, — G- Ly, we get K_-vNGrrA =L
Thus we have proved the first equality in B8). If v is antidominant, then N stabilizes
L,. If v is dominant then N stabilizes L, and then I-L, = Bo-Ng - L, = Bo- L, =
Ng - L,.

From (BH) we conclude that the theorem holds in the extreme cases when v = \ or
v = wp - A, where wy is the longest element in the Weyl group. Let us now consider
an arbitrary v such that L, € Gr*, v > wp - A and let C be an irreducible component
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of S, N Gr*. We will now relate this component to the two extremal cases above and
make use proposition Bl

Let us write Cy for C, d for the dimension of C', and H, for the hyperplane of
proposition Bl (b). Let us consider an irreducible component D of Co N H,. By
proposition Bl the dimension of D is d — 1 and D C U,«,S,. Hence there is an
vy < v =1 such that C; = DN .S,, is open and dense in D. Of course dimCy =d — 1.
Continuing in this fashion we produce a sequence of coweights vy, kK = 0,...,d, such
that v < vg_1, and a corresponding chain of irreducible components Cy, of S,, N Gr?
such that dimC, = d — k. As dimension of Cy is zero, we conclude that vg; > wgA.
Hence, we conclude that

(3.8) dimC =d < p(v—wp - A).

We now start from the opposite end. Let us write Ag = SxNGr*. Then, Ay = Gr* and
dim Ag = 2p()\). Let us proceed as before, and consider A9 N Hy. As C' C Gr*, we can
find a component D of Ay N H)y such that C C D. Arguing just as above, there exists a
p < X and a component A; of S,NSr* such that A; = D. Of course, dim A; = 2p(\)—1.
Continuing in this manner we can produce a a sequence of coweights ug, k =0,..., e,
with pg = A, pe = v, such that up < pgp_1, and a corresponding chain of irreducible
components Ay of S, N Gr* such that dim Ay = 2p(\) — k and A, = C. From this we
conclude that

(3.9) codimgxC =e < p(A —v).
The fact that
(3.10) dim C + codimgzC' = dimGr* = 2p(}),
together with the estimates (B) and ) force
(3.11) dimC' = p(v —wo - A) and  codimgxC = p(A —v),
as was to be shown. O

The corollary below will be used to construct the convolution operation on perverse
sheaves in the next section.

3.4. Corollary. For any dominant A € X«(T) and any T-invariant closed subset X C
Gr* we have dim(X) < max; cxr p(A+ v), where XT stands for the set of T—fized
points of X.

Proof. From the description ([BH) we see that X NS, is non-empty precisely when
L,e X. As

(3.12) X = Upexr XNS, C Upcxr ST NS,
we get our conclusion by appealing to the previous theorem. O

Let us write Mody for the category of finitely generated k-modules.
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3.5. Theorem. For all A € Pg,(9r,k) we have a canonical isomorphism
(3.13) HE(S,,A) = HE (Gr4)
and both sides vanish for k # 2p(v) .
In particular, the functors F, : Pg, (Gr,k)— Mody, defined by F,,déf Hzp(u)(S,,, —-) =
Hgf:('j)(gr, —), are ezxact.

Proof. Let A € Pg, (91,k). For any dominant n the restriction .A‘Sr” lies, as a complex
of sheaves, in degrees < —dim(Gr") = —2p(n), i.e., A‘Qr” € D==2r)(Gr" k). From
the dimension estimates [E:2 and fact that H*(S, NGr", k) = 0, for k& > 2dim(S, NGr") =
2p(v +n) we conclude:

(3.14) HE(S, NG A) = 0 if k> 2p(v).

A straightforward spectral sequence argument, filtering Gr by Gr”, implies that
H?(S,, A) can be expressed in terms of H}(S, N 9r”, A) and this implies the first of
the statements below:

HE(S,,A) = 0 if k> 2p(v)
HE (Gr,A) = 0 ifk < 2p(v).
The proof for the second statement is completely analogous.

It remains to prove (BI3]). Recall that we have a G,-action on Gr via the cocharacter
2p whose fixed points are the points L,, v € X, (T'), and that

(3.15)

(3.16) S, = {x€8r| lin%) 2p(s)x = Ly}
(3.17) T, = {x €9r| slingo 2p(s)x = Ly} .

The statement [BI3)) now follows from theorem 1 in [Bi.
O

We will denote by F': Pg, (9r,k)— Mody the sum of the functors F,, v € X.(T).
3.6. Theorem. We have a natural equivalence of functors
H = F = @ HFS,-) : Pg,(Srk) — Mody .
veX.(T)
Furthermore, the functors F,, and this equivalence are independent of the choice of the

pair T C B.

Proof. The Bruhat decomposition of Gy for the Borel subgroups By, By gives de-
compositions §r = U S, = U T, and hence two filtrations of Gr by closures of S,’s
and T,’s. This gives two filtrations of the cohomology functor H*, both indexed by

X.(T'). One is given by kernels of the morphisms of functors H* — H’(S,, —) and
the other by the images of HZ—(Sr,—) — H*. The vanishing statement in im-

plies that these filtrations are complementary. More precisely, in degree 2p(v) we get
;_p(”)(Sr, -) = H?Fi(y)(Qr, =), Hzp(y)(S_,,,—) = ng(”)(S,,, —), and the composition of

the functors H2T’: (V)(Sr, —) — H2W) _ g2 (V)(S,,, —) is the canonical equivalence in
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3.0l Hence, the two filtrations of H* split each other and provide the desired natural
equivalence.

It remains to prove the independence of the equivalence and the functors Fj, of the
choice of T' C B. Let us fix a reference Ty C By and a v € X,(Tp) which gives us the
SY = (No)x - v. The choice of pairs T' C B is parameterized by the variety G /Tp. Note
that there is a canonical isomorphism between T and Tp; they are both canonically
isomorphic to the “universal” Cartan By/No = B/N. Consider the following diagram

Gr «—2— Grx G/T) 5

(3.18) ql l
G/Ty —— G/Tp.

Here p, q,r are projections and S = {(z,¢Tp) € Gr x G/Ty | * € ¢S, }. For a point in
G /Ty, i.e., for a choice of T' C B the fiber of r is precisely the set S, of the pair. Now,
for any A € Pg,(Gr,k) the local system Rg.jij*p*A is a sublocal system of Rg.p*A.
As the latter local system is trivial, so is the former and hence the functors F, are
independent of the choice of T C B. O

3.7. Corollary. The global cohomology functor H* = F' : Pg, (Gr, k) — Mody is faithful
and exact.

Proof. The exactness follows from B and B& If A € Pg,(Gr,k) is non-zero then
there exists an orbit Gr* which is open in the support of A. If we choose A\ dominant

then T N @ is a point in Gr* and we see that F\(A) # 0. As H* does not annihilate
non-zero objects it is faithful. O

3.8. Remark. The decompositions for N and its opposite unipotent subgroup N~ are
explicitly related by a canonical identification H@V(ST,A) = H%JO_V(ST,A), given by the
action of any representative of wy, the longest element in the Weyl group.

From the previous discussion we obtain the following criterion for a sheaf to be
perverse:

3.9. Lemma. For a sheaf A € Dg,(9r,k), the following statements are equivalent:

(1) The sheaf A is perverse.

(2) For all v € X.(T) the cohomology group H:(S,,A) is zero except possibly in
degree 2p(v).

(3) For all v group Hg (Gr,A) is concentrated in degree —2p(v).

Proof. By and B8 and an easy spectral sequence argument one concludes that
ng(”)(S,,, HF(A)) = Hzp(y)Jrk(S,,, A). This forces A to be perverse. O

Finally, we use the results of this section to give a rather explicit geometric descrip-
tion of the cohomology of the standard sheaves Jy(\, k) and J, (A, k).

3.10. Proposition. There are canonical identifications

F 5\ k)] = k[Irr(§ran Sy)] = F[I.(\K)];
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here k[[rr_(‘j—m N S,)] stands for the free k-module generated by the irreducible compo-
nents of Gry NS, .

Proof. We will give the argument for Jy(\, k). The argument for J, (), k) is completely
analogous. We proceed precisely the same way as in the beginning of the proof of
Let us write A = Jy(\, k). Consider an orbit Gr” in the boundary of Gr*. Then
A|9r’7 € D= dim(8)=2(G" k). The estimate BI4 implies that H*(S, N 91", A) = 0 if
k > 2p(v) — 2. Therefore, we conclude by using the spectral sequence associated to the
filtration of Gr by Gr” that H2"")(S,,A4) & H2" (S, NG, A). Finally,

(3.19) H2W(S, NG, A) = H2E (S, NGt k) = H2ImENS) (g A G k).

As the last cohomology group is the top cohomology group, it is a free k-module with
basis Irr(Sr* NS,). O

4. The Convolution product

In this section we will put a tensor category structure on Pg, (9r,k) via the con-
volution product. The idea that the convolution of perverse sheaves corresponds to
tensor product of representations is due to Lusztig and the crucial proposition 4.1, for
k = C, is easy to extract from [Lu]. In some of our constructions in this section and
the next one we are lead to sheaves with infinite dimensional support. The fact that it
is legitimate to work with such objects is explained in section 2.2 of [Nal.

Consider the following diagram of maps

(4.1) Grx Gr & Gy x Gr L Gy x g, Gr — Gr.

Here G x g, 9r denotes the quotient of G x Gr by G where the action is given
on the Gy-factor via right multiplication by an inverse and on the Gr-factor by left
multiplication. The p and ¢ are projection maps and m is the multiplication map. We
define the convolution product

~ L
(4.2) AixAs = Rm,A  where ¢"A = p*(PHY(A;XA,)).

To justify this definition, we note that the sheaf p* (PH° (.Aléﬂg)) on GxxGris GoxGo-
equivariant with the first G¢ acting on the left and the second G acting on the Ggc-
factor via right multiplication by an inverse and on the Gr-factor by left multiplication.
As the second Gg-action is free, we see that the unique A in ([E]) exists.

4.1. Lemma. Ifk is a field, or, more generally, if one of the factors H*(Gr, A;) is flat
L
over k, then the outer tensor product A1XAs is perverse.

When k is a field this is obvious on general grounds. When H*(Gr, A;) is flat over k
one sees this by applying Lemma to the Grassmannian GrxSGr of GxG. First, as

H*(Gr, A;) is flat, so are its direct summands HZ (Vi)(S,,i,AZ-). Now we have

L L
(4.3) HE(Sy, X Sy ABA,) = @D HE(S,,, A1) @HE(S,,, As) .
ki1+ko=k
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By the flatness assumption the tensor product on the right has no derived functors.

L L
Hence, H’IS(S,,1 X Sy,, AiA2) = 0 if k # 2p(v1 +1v2). Therefore, by Lemma B0, A;XA»

is perverse.
4.2. Proposition. The convolution product A1 *xAs of two perverse sheaves is perverse.

To prove this, let us introduce the notion of a stratified semi-small map. To this end,
let us consider two complex stratified spaces (Y, 7T) and (X,8) and amap f:Y — X.
We assume that the two stratifications are locally trivial with connected strata and that
f is a stratified with respect to the stratifications 7 and 8, i.e., that for any T € T the
image f(7') is a union of strata in 8§ and for any S € § the map f‘f‘l(S) S fHS) — S
is locally trivial in the stratified sense. We say that f is a stratified semi-small map if

a) for any T € T the map f|T is proper

b) for any T € T and any S € § such that S C f(T) we have
(4.4)

dim(f Y (z) NT) < =(dim f(T) — dim S)

1

2
for any (and thus all) z € S'.

Let us also introduce the notion of a small stratified map. We say that f is a small

stratified map if there exists a (non-trivial) open dense stratified subset W of ¥ such
that

a) for any T € T the map f‘T is proper
b) the map f|W : W — f(W) is finite and W = FHfw)
(4.5) ¢) for any T € T and any S € 8 such that S C f(T) — f(W)

we have dim(f~'(z)NT) < =(dim f(T) — dim S)

1

2
for any (and thus all) z € S.

The result below follows directly from dimension counting;:

4.3. Lemma. If f is a semi-small stratified map then Rf.A € Pg(X,k) for all A €
Py(Y,k). If f is a small stratified map then, with any W as above, and any A €
P(W, k), we have RfyjiA = jufolh, where j: W <Y and j : f(W) — X denote the
two inclusions.

We apply the above considerations, in the semi-small case, to our situation. We
take Y = Gy X, Gr and choose T to be the stratification whose strata are 9~r)\’u =
pH(Gr) Xy Gr#, for A\, u € X, (T). We also let X = Gr, § the stratification by Go-
orbits, and choose f = m. Note that the sheaf A is constructible with respect to the

stratification T. To be able to apply and conclude the proof of L2, we appeal to
the following

4.4. Lemma. The multiplication map Gx xg, 97 2 Gris a stratified semi-small map
with respect to the stratifications above.
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Proof. We need to check that for any G g-orbit Gr” in 9r/\—+“, the dimension of the fiber
m~L, N 9~r)\’# of m: 9~r>\’u—>w at L,, is not more than %codimWSr,,. We can
assume that v is anti-dominant since Gr*"7 = Gr'7, w € W. Since for any dominant 7,
dim Gr" = 2p(n), the codimension in question is:

codimg 3, 51" = 2p(A + ) — 2p(wov) = 2p(A+ p+v).
Therefore, we need to show that
(4.6) dim(m™L, N 9}“) < p(A+p+v).
Let p be the projection Gg x¢, Gr — Gr given by (¢9,hGo) — gGo, and consider

~

the isomorphism (p,m) : G Xg, 9r = Gr x Gr. The mapping (p,m) carries the fiber

5 Ay . . .
m~'L, to Gr x L,. The set p(m~*L, N Gr M) is T-invariant, and hence we can apply
corollary B4l to compute its dimension. To do so, we need to find the T-fixed points in

p(m~'L, N 9~r>\’u) C Gr*. The T-fixed points in m~1L, N 9}”‘ are precisely the points
(22, 2YG o) such that ¢ and 1 are weights of L()\) and L(x) and ¢ + 1) = v. Hence,

the set T-fixed points in m~'L, N 9~r)\’u consists of the points of the form (2%, 2¥G)

with ¢+ = v and ¢ and 1 weights of irreducible representations L(\') and L(u') for

some dominant X',/ such that ' <\, y/ < u. For ¢, 9, i’ as above, we have
pPA+0) < p(A+0) +p+ 1) = p(A+v+p) < p(A+v+p).

Therefore,

@7 dim(p(m 'L, NG") < max (P(A+ @) < pA+ v+ ).
L¢6p(m*1LV09~r/\’“)T

This implies () and concludes the proof.
O

In completely analogy with [Z), we can define directly the convolution product
of three sheaves, i.e., to A, Ag, A3 we can associate a perverse sheaf A; x Ao x Ags.
Furthermore, we get canonical isomorphisms Aj x Agx A3 = (Ag xAg)* Az and Aq x Ag *
Az =2 Ay x(AgxAg). This yields a functorial isomorphism (A;*Ag)*As = Ajx(Aa*xAs).

Thus we obtain:

4.5. Proposition. The convolution product [EZ) on the abelian category Pg, (G, k) is
assoctative.

5. The commutativity constraint and the fusion product

In this section we show that the convolution product defined in the last section
can be viewed as a “fusion” product. This interpretation allows one to provide the
convolution product on P, (Gr, k) with a commutativity constraint, making P, (9r, k)
into an associative, commutative tensor category. The exposition follows very closely
that in [MiV2]. The idea of interpreting the convolution product as a fusion product
and obtaining the commutativity constraint in this fashion is due to Drinfeld and was
communicated to us by Beilinson.
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Let X be a smooth complex algebraic curve. For a closed point x € X we write O,
for the completion of the local ring at x and X, for its fraction field. Furthermore, for
a C-algebra R we write Xp = X x Spec(R), and X}, = (X —{z}) x Spec(R) . Using the
results of [BLI), BL2, ILS] we can now view the Grassmannian 9r, = G, /G, in the
following manner. It is the ind-scheme which represents the functor from C-algebras
to sets :

R — {F a G-torsor on Xp, v: G X X}}—&"‘y a trivialization on X5 }.
R

Here the pairs (F,v) are to be taken up to isomorphism.

Following [BDJ] we globalize this construction and at the same time work over several
copies of the curve. Denote the n fold product by X™ = X x --- x X and consider the
functor

(5.1) R {(xl,...,xn)eXn(R), F a G-torsor on Xpg, }
. N |

V(ey,..) @ trivialization of F on Xp — Uz;
Here we think of the points x; : Spec(R) — X as subschemes of X by taking their
graphs. This functor is represented by an ind-scheme Gryn. Of course Grx» is an
ind-scheme over X™ and its fiber over the point (z1,...,x,) is simply Hle Gry, , where
{y1,.- - yx} = {x1,..., 2}, with all the y; distinct. We write Gry1 = Gry.

We will now extend the diagram of maps ([Il), which was used to define the con-

volution product, to the global situation, i.e., to a diagram of ind-schemes over X?2:

(5.2) Gry x Gry < Srmrx 2 GryxGry Oryz — X2,

Here, Sry x Gry denotes the ind-scheme representing the functor

53) R { (z1,72) € X*(R); F1,F, G-torsors on Xg; v; a trivialization of }
' - —

Fi on Xgp —x;, for i = 1,2; p a trivialization of 7 on (Xg),,

—

where (X R)m2 denotes the formal neighborhood of x5 in Xr. The “twisted product”
Gry xGry is the ind-scheme representing the functor

(x1,29) € X2(R); F1,F G-torsors on Xg; vy a trivialization }

(5.4) R~
of Fion Xp—z1;n:F

‘(XR_SUZ) - 9:|(
It remains to describe the morphisms p, ¢, and m in (B2). Because all the spaces in
(E32) are ind-schemes over X2, and all the functors involve the choice of the same point
(r1,72) € X?(R), we omit it in the formulas below. The morphism p simply forgets
the choice of w1, the morphism ¢ is given by the natural transformation

XRr—22)

(F1,v1, 1 Fo,v2) = (F1,v1, T, 1),

where F is the G-torsor gotten by gluing F1 on Xr — x9 and Fy on (Xg),. using the

)
isomorphism induced by v5 o ,ul_l between F; and Fy on (Xp — x2) N (XR)wz' The
morphism m is given by the natural transformation

(?17V17?7n)H(?7V)7
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where v = (o v1)|(Xg — z1 — 22).
The global analogue of G is the group-scheme G x» ¢ which represents the functor

( { (x1,...,2n) € X"(R), T the trivial G-torsor on Xp, }

[(zy,...xy) @ trivialization of F on (Xg) (4, 0.0z,

Proceeding as in section llwe define the convolution product of By, B2 € Pg, , (Irx, k)
by the formula

~ ~ L
(5.6) Bi*x By = Rm. B  where ¢*B = p*(PH(B;XB,)).

To make sense of this definition, we have to explain how the group scheme Gx ¢ acts
on various spaces. First, to see that it acts on Gry, we observe that we can rewrite the
functor in (B1l), when n = 1, as follows:

(5.7) R x € X(R), F a G-torsor on (X/;)
* = —_—
vy a trivialization of F on (Xg), —

x

Thus we see that Gx o acts on Gry by altering the trivialization in (&) and hence

we can define the category Py ,(Grx,k). As to Gry x Grx, two actions of Gx ¢ are

relevant to us. First, let us view G'x ¢ as group scheme on X 2 by pulling it back for the
second factor. Then Gy ¢ acts by altering the trivialization p; in (B3). This action is

free and exhibits p : Grx x Grx — Grx x Grx as a Gx ¢ torsor. To describe the second

action we rewrite the definition of Grx x Grx in the same fashion as we did for Gry,

i.e., Srxy x Grx can also be viewed as representing the functor

(z1,22) € X*(R); for i = 1,2 F; is a G-torsor on (X/;)xi,
(5.8) R — { v; a trivialization of F; on 6(\3):02- — T4, )

and g is a trivialization of F; on (Xg) o

We again view Gx ¢ as a group scheme on X 2 by pulling it back from the second

factor. Then we can define the second action of Gx ¢ on Gry x Gry by letting G'x ¢ act
by altering both of the trivializations @1 and 1. This action is also free and exhibits

q:Gry x 9rxy — GryxGry as a Gx,o torsor. Thus, we conclude that the sheaf B in
(B exists and is unique.

Let us note that the map m is a stratified small map — regardless of the stratification
on X. To see this, let us denote by A C X? the diagonal and set U = X2 — A. Then
we can take, in definition 3, as W the locus of points lying over U. That m is small
now follows as m is an isomorphism over U and over points of A the map m coincides
with its analogue in section ll which is semi-small by proposition EE4

We will now construct the commutativity constraint. For simplicity we specialize
to the case X = A'. The advantage is that we can once and for all choose a global
coordinate. Then the choice of a global coordinate on A!, trivializes Grx over X; let us
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write 7 : Grx — Gr for the projection. By restricting Gry(2) to the diagonal A = X and
to U, and observing that these restrictions are isomorphic to Gry and to (Srx x Gr X)|U ,
respectively, we get the following diagram

9rX % 91‘X2 <—J— (9I‘X ><9rX)‘U

& | l

X — X2 — Uu .
Let us denote 7° = 7*[1] : Pg, (9r,k) — Py o (9rx,k) and i® = i*[-1] : Pg, , (Frx,k) —
Pg, (Gr,k). For Ay, Ay € Pg, (9r,k) we have:

L
(5.10) a)  TOApkx T0As 22 g <pH0(T°A1®T°A2)\U>

b) TO(.Al *.AQ) = iO(TO.Al *x TO.AQ) .

Part a) follows from smallness of m and lemma 3, and part b) follows directly from
definitions.
Utilizing the the statements above yields the following sequence of isomorphisms:

L
TO(A] * Ag) =2 %), <PHO(T°A1®T°A2)|U>
(5.11)

L
= %), (PHO(1° Ao A ) |U) = 7°(Ag * Ay) .

Specializing this isomorphism to (any) point on the diagonal yields a functorial iso-
morphism between Aq * As and As x Ay. This gives us a commutativity constraint
making P, (Gr,k) into a tensor category. In the next section we modify this commu-
tativity constraint slightly. The modified commutativity constraint will be used in the
rest of the paper.

5.1. Remark. One can avoid having to specialize to the case X = A' here, as well as
in the next section. This can be done, for example, following [BD)] and dealing with all
choices of a local coordinate at all points of the curve X. This gives rise to the Aut(O)-
torsor X — X. The functor 7° : Pg, (§r,k) — PGy o (G7x,k) is constructed by noting
that Grx — X is the fibration associated to the Aut(O)-torsor X — X and the Aut(O)-
action on Gr. By proposition [Z2, sheaves in Pg, (9, k) are Aut(O)-equivariant and
hence we can transfer them to sheaves on Grx.

6. Tensor functors

In this section we show that our functor
(6.1) H = F = @ HF(S,,-) : Pg,(Srk) — Mody
is a tensor functor. In the case when k is not a field, the argument is slightly more
complicated and we have to make use of some results from section 10. However, the

results of this present section are used in section 7 only in the case when k is a field
and not in full generality till chapter 11.
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Let us write Mody, for the tensor category of finitely generated Z/2Z - graded (super)
modules over k. Let us consider the global cohomology functor as a functor H* :
Pa, (91, k) — Modj; here we only keep track of the parity of the grading on global
cohomology. Then:

6.1. Lemma. The functor H* : Pg, (G, k) — Mody, is a tensor functor with respect to
the commutativity constraint of the previous section.

Proof. We use the interpretation of the convolution product as a fusion product, ex-
plained in the previous section. Let us recall that we write 7 : Gry2 — X?2 for the
projection and again set X = Al!. The lemma is an immediate consequence of the
following statements:

(6.2a) R (70(A1) xx 79(A2))|U is the constant sheaf H*(Gr,.A;) ® H*(Gr,As).
(6.2b) R, (79(Aq1) #x 70 (A2))|A = 70 (H*(Gr, Ay * A2)).
(6.2¢) the sheaves RFm,(79(A1) xx 7°(Az)) are constant .

From (EI0) we immediately conclude (62H) in general and (GZal) when k is field. To
prove (.2al) in general, we must show:

(6.3) H* (Gr x Gr, PHO(A18A,)) = H*(Gr, A1) @ H*(Gr, As)

We will argue this point last and deal with (62d) next. Let us write 7 : Gry xGrx — X2
for the natural projection. Then 7 = 7 o m. Thus, in order to prove ([E2d) it suffices
to show:

(6.4) RF7,B is constant;

recall that here ¢*B = p*(° (.Al)éTO (A2)). To do so, we will show that the stratification
underlying the sheaf B is smooth over X?2. Recall that by a choice of a global coordinate
on X = A! we get an isomorphism Gry = Grx X. Thus, the sheaves 7°(A;) and 7°(A5)
are constructible with respect to the stratification 9r§‘( which correspond to Gt x X
under the above isomorphism; here, as usual, A € X, (T'). These strata are smooth over
the base X by construction. Thus, we conclude that the sheaf B is constructible with
respect to the strata 91@‘(;9#}‘(, for A\, u € X, (T), which are uniquely described by the
following property:

(6.5) g (Srx xGrl) = p~'(Sry x Grk).

In other words, the strata 91& x Srf;( are quotients ofp_1 (91& X Srf;() by the second G'x o

action on Gry x Sry defined in section [l which makes g : Gry x Gry — GrxxSryx a
G x o torsor. Assuch, the 9r§( X Grly are smooth. Furthermore, the projection morphism
T 9r3\(§9r§ — X2 is smooth. This can be verified either by a direct inspection or
concluded by general principles from the fact that all the fibers of 7 , are smooth and
equidimensional. This, then, lets us conclude ([G2d).

It remains to argue (E3)). Let us first assume that one of the factors H*(Gr, A;) is

L
flat over k. Then, by Lemma (@II), the sheaf A;XA5 is perverse. Then, again using
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the flatness of H*(Gr, A;), we get

(6.6) H*(Sr x 9r,PH0(A1§A2)) = H*(Sr x 9r,A1§A2) =

H*(Sr, A1) éH*(ST,Az) = H*(Sr, A1) ® H"(Gr, As) .

To argue the general case we make use of Corollary and Proposition TOT1
Corollary allows us to write any A € Pg,(Gr,k) as a quotient of a projective
P € Pg,(Z,k) and Proposition [0l tells us that H*(Gr, P) is free over k; here Z is any
G e-invariant finite dimensional subvariety of Gr which contains the support of A. Let
us consider a resolution of Ay by such projectives:

(6.7) Q—-P—-A —0.
L
As the functor A — PHY(ARA,) is right exact, we get an exact sequence

L L L
(6.8) PHO(QXA,) — PHO(PRIA,) — PHO(A1XA,) — 0.

Because cohomology is a an exact functor and making use of the fact that we have
already proved (B3 for the first two terms, we get an exact sequence

(6.9) H*(Sr, Q)@ H* (Gr, As) — H*(Gr, P)@H* (Sr, As) —

— H*(Sr x 9r,PH0(A1§A2)) —0.
Comparing this exact sequence to the one we get by tensoring the exact sequence
(6.10) H*(Sr, Q) — H*(Sr,P) — H*(Gr, A1) — 0
with H*(Gr, A2) concludes the proof. O

6.2. Remark. The statements in [62) hold for an arbitrary curve X. This can be seen
by utilizing the Aut(O)-torsor X — X of remark [21l and proposition [Z3; for details
see [Nal.

Let Mody denote the category of finite dimensional vector spaces over k. To make
H* : Pg, (Gr,k) — Mody into a tensor functor we alter, following Beilinson and Drin-
feld, the commutativity constraint of the previous section slightly. We consider the
constraint from section [ on the category Pg, (9r,k) ® Modj, and restrict it to a sub-
category that we identify with P, (Gr, k). Divide Gr into unions of connected compo-
nents §gr = Gry U Gr_ so that the dimension of Gy-orbits is even in Gr, and odd in
Gr_. This gives a Zy-grading on the category Pg, (9r,k) hence a new Zs-grading on
Pa, (9r,k) ® Mody. The subcategory of even objects is identified with P, (Gr,k) by
forgetting the grading. Hence, we conclude from the previous lemma:

6.3. Proposition. The functor H* : Pg,(9r,k) — Mody is a tensor functor with
respect to the above commutativity constraint.

Let us write Modg (X« (T"))) for the (tensor) category of finitely generated k-modules
with a X, (T')-grading. We can view I' = @,¢x, (1) F, as a functor from Pg, (9r,k) to
Modg(X4(T))). Then we have the following generalization of the previous proposition:
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6.4. Proposition. The functor F : Pg, (G, k) — Mody(X.(T'))) is a tensor functor.

Proof. The notion of the subspaces S, and T, can be extended to the situation of
families, i.e., to the global Grassmannians Gry». Recall that the fiber of the projection
Ty @ Grxn — X™ over the point (z1,...,x,) is simply Hle Gry, , where {y1,...,yx} =
{z1,...,2,}, with all the y; distinct. Attached to the coweight v € X, (T') we associate
the ind-subscheme

k
(6.11) H Sy, C ngyi:rgl(xl,...,a:n)

vit-trp=v =1

These ind-schemes altogether form an ind-subscheme S, (X™) of Gryn. This is easy to
see for n = 1 by choosing a global parameter, for example. By the same argument
we see that outside of the diagonals S, (X™) form a subscheme. It is now not difficult
to check that the closure of this locus lies inside S, (X™). Similarly, we define the
ind-subschemes T, (X"™). Let us write s, and ¢, for the inclusion maps of S, (X™) and
T,(X™) to Grxn, respectively. We have the action of G, on Srx» via the cocharacter
2p. The fixed point set of this action consists of the locus of products of the fixed
points in the individual affine Grassmannians, i.e., above the point (z1,...,x,) where
{z1,...,xn} ={y1,...,yr}, with all the y; distinct, the fixed points are of of the form

k
(6.12) (Luys- - L) € [ ] Gryis
=1

recall that we write L, for the point in Gr corresponding to the cocharacter v € X, (T).
We write C), for the subset of the fixed point locus lying inside S,(X™), i.e.,

(6.13) C,NryNwy, ... x,) = U {@u.-. L)}
vi+-trv+k=v

Let us write i, : S,(X™) — Gryn and ky, : T,,(X™) — Grxn« for the inclusions. By the
same argument as in the proof of theorem we see that

(6.14) Sy(X™) = {z€8Grxn| ll_)l% 2p(s)z € C,}

and

(6.15) T,(X") = {z€ Grxn | Sli_)lgo 2p(s)z € Cp}.

Let us write p, : S,(X™) — C), and ¢, : T,,(X") — C,, for the retractions:
(6.16) pu(z) = ;%Qﬁ(s)z for z € S,(X")

(6.17) @w(z) = slingo 2p(s)z for z € T,(X").
Furthermore,

(6.18) C, = S,(X")NT,(X").

By Theorem 1 of [Br] we conclude that
(6.19) isiB = kit,B  for BEPgy.,(Srxn.k).
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Rephrasing this result in terms of the contractions p, and ¢, gives:
(6.20) R(p)is;B = Rlqy):t,B  for B EPgy,,(Grxn,k).

Let us now, for simplicity, choose X = Al. Let Ay, A2 € Pg,(Gr,k). We write

B1 = 7°Aq and By = 7°Ag and form the convolution product B; * By = Rm,B. By
statement (G.2d) we see:

The sheaf Rkﬂ*Rm*i’) on X2 is constant with fiber

(6.21) HE(Gr, Ay« Ay) = @D HM(Sr,Ar) ® H*(Gr, Ay) .
k1+ko=k
Let us now consider the sheaves
(6.22) L];(Al,flg) = Rkﬂ'*R(py)!Ssz*% = Rkﬂ*R(q,,)*tLRm*@;

here we have used ([@20) to identify the last two sheaves. Let us calculate the stalks of

this sheaf. First, by definition,
HE(S,, Ay * Ay) if 21 = a9
(6.23) L’Izj(-A17-A2)(x1,:c2) = i 0 L
@ul—i-uzzuHc (S,,l X SV2,pH (.Alg.AQ)) if 1 # xo.

Arguing in the same way as in the proof of [G3) we see that

(624)  HI(S,, X S0y PHOABA,)) = HI(S,, A1) @ HA(S,, Az)
We conclude that

(6.252) LHALA) @10 = 0 ifk#2p(v),

and

(6.25b)  L2PW) (A}, As)

(z1,22)
ng(u)(S,,,.Al * Ag) if x1 = @9
{®V1+u2:qup(yl)(5u17A1) ® ng(VQ)(SV27‘A2) if 21 # z2.
We now proceed as in the proof of theorem B4 Let us consider the closures S, (X™)
and 7,,(X™) of the ind-subschemes S, (X") and T,,(X") and let us write i, : S, (X") —

Gryn and k, : TV(X") — Grxn» for the inclusions. Let us write B = Rm,B. Then we
have the following canonical morphisms

(6.26a) R7.B = RmB — Rm3s, B
(6.26D) Rm,B «— Rm,t.B.

These morphisms give us two filtrations of Rkﬂ*Rm*’E, one by kernels of the the mor-
phisms

(6.27) RFr,B — RFm3,*B
and the other by images of the morphisms

(6.28) RFr%,'B — RFr.B.
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By the discussion above, these filtrations are complementary and hence yield the fol-
lowing canonical isomorphism

(6.29) Rim,Rm,B = P LE(A1Ad).
2p(v)=k

By (6Z1) the sheaf on the left hand side is constant. Therefore the sheaves L5 (A1, As)
must be constant. Appealing to ([E25]) completes the proof.
]

7. The case of a field of characteristic zero

In this section we treat the case when the base ring k is a field of characteristic zero.
This case was treated already in [Gi] when k = C. Here we make use of Tannakian
formalism, using [DM] as a general reference. In section [[l, where we work over an
arbitrary base ring k, we carry out the constructions explicitly without referring to the
general Tannakian formalism.

7.1. Lemma. If k is a field of characteristic zero then the category Pg, (9r,k) is
semisimple. In particular, the sheaves Jj(\, k), J1.(A k), and J.(A\ k) are isomorphic.

Proof. The parity vanishing of the stalks of J), (A, k), proved in [Lul, section 11, and
the fact that the orbits Gr* are simply connected implies immediately that there are no
extensions between the simple objects in Pg(Sr,k). Thus, there are no extensions in
the full subcategory Pg, (9r,k) (which then, obviously, coincides with Pg(SGr,k)). O

7.2. Remark. The use of the above lemma can be avoided. One must then ignore
this section and first go through the rest of the paper in the case when k is a field of
characteristic zero. The arguments of sectionId, in a greatly simplified form, then give
theorem [T.3,

The constructions above and the properties we established suffice for verifying the
conditions of the proposition 1.20 in [DM] and then also the conditions of the theorem
2.11 in [DM], which are summarized by the phrase “(Pg, (Gr,k), *, F') is a neutralized
Tannakian category’. Hence, by theorem 2.11 of [DM], we conclude:

there is a group scheme G over k such that
(7.1) the category of finite dimensional k-representations of G

is equivalent to Pg, (9r,k), as tensor categories .

We will now identify the group G. Let us write G for the dual group of G, i.e., G is
the split reductive group over k whose root datum is dual to that of G.

7.3. Theorem. The category of finite dimensional k-representations of G is equivalent
to Pg, (Sr.k), as tensor categories.

Before giving a proof of this theorem we discuss it briefly from the point of view of
representation theory. We can view the theorem as giving us a geometric interpretation
of representation theory of G. First of all, as we use global cohomology as fiber functor,
it follows that the representation space for the representation Vi, associated to F €
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Pa, (91,k), is the global cohomology H*(Gr, F). As the proof of the theorem will show,
T, the dual torus of T, is a maximal torus in G. The decomposition of Vg into its
T-weight spaces is then given by theorem B.6:

(7.2) H'(Sr,9) = @ HF(S,,T).

veX*(T)

Given a dominant A\ € X, (T) = X*(T) we can associate to it both the highest weight
representation L(\) of G' and the sheaf J,.(\, k) € Pg, (Sr,k). Obviously, Vi) 18
irreducible and by the formula above we see that it is of highest weight A. Hence,
Vi..(0x) = L(A). Combining this discussion with lemma [Tl and proposition BT gives:

7.4. Corollary. The v-weight space L(\), of L(A) can be canonically identified with
the k-vector space spanned by the irreducible components of GraNS,. In particular, the
dimension of L(\), is given by the number of irreducible components of Gry NS, .

The rest of this section is devoted to the proof of theorem [[3 We begin with an
observation:

(7.3) the group scheme Gis a split connected reductive algebraic group

To see that G is algebraic, we observe that it has a tensor generator. Let A1,..., A,
be a set of generators for the dominant weights in X, (7). As a generator we can then
take @J1.(A;, k). It is tensor generator because for any dominant A the sheaf Jy. (A, k)
appears as a direct summand in the product

(7.4) j!*()q,]k)*kl %ok J!*O\T,]k)*k”" :

here A = > kiA; + -+ + k. A.. Thus, by [DM], proposition 2.20, G is an algebraic
group. As there is no tensor subcategory of Pg, (Gr,k) whose objects are direct sums
of finitely many fixed irreducible objects the group G is connected by [DM], corollary
2.22. F1nally, as Pg, (Gr,k) is semisimple, G is reductive, by [DM], proposition 2.23.

To see that G is split, we exhibit a split maximal torus in G. By proposition B.4 the
fiber functor F' = H* factors as follows:

(7.5) F =H":Pg,(5r,k) = Modi(X.(T))) — Mody .

This gives us a homomorphism 7' — é here T is the torus dual to T'. As any character
A € X*(T) = X,(T) appears as the direct summand Fj(J,(\,k)) in F(J,(\k)) w
conclude that T is a split torus in G. Tt is clearly maximal as the representation ring
of G is of the same rank as 7. _

It now remains to identify the root datum of G with the dual of the root datum of
G. Recall that we have also fixed a choice of positive roots, i.e., a Borel B such that
T C B C G. The root datum of G is then given as (X*(T), X.(T),A(G,T),A(G,T)),
where A(G,T) C X*(T) are the roots and A(G,T) C X.(T) are the coroots of G with
respect to 7. Because X*(T) = X, (T) and X, (T) = X*(T), it suffices to show that

(7.6) AG,T)=A(G,T) and A(G,T)=A(GT).
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To this end we note that theorem B2 corollary B3, and proposition imply that:

The irreducible representations of G are

@7 parameterized by dominant coweights A € X, (T).
and

The T-weights of the irreducible representation L())
(7.8) associated to \ are the same as the T-weights

of the irreducible representation of G associated to \.

We now argue using the pattern of the weights. For clarity we spell out this familiar
structure. From (Z8) we conclude:

(7.9a) The weights of L(\) are symmetric under the Weyl group W.

For « a simple positive root of GG, with the corresponding coroot ¢, the
(7.9b)  weights of L(\) on the line segment between s5(A) and X are the weights

on that segment which are of the form A — k&, with k£ an integer.

Note that the choice of a Borel subgroup of G is equivalent to a consistent choice
of a line, the highest weight line, in each irreducible representation of G. The choice
Fy(J1.(\, k) in F(J1,(A, k) for all dominant A € X, (T) yields a Borel subgroup B of G
such that the dominant weights of Gin X *(T) coincide with the dominant coweights

of G in X,(T). This implies that the simple coroot directions of the triple (T , B , é)
coincide with the simple root directions of (T, B, G). The statements ([Z3) above now

imply that the simple roots of the triple (T, B, G) coincide with the simple coroots of
(T, B,G). This, finally gives (ZH).
8. Standard sheaves

In this section we prove some basic results about standard sheaves which will be
crucial for us later. Let us write D for the Verdier duality functor.

8.1. Proposition. We have

(a) B\ K) = J!(A,Z)ék
(b) LK) = L(A,Z)(%lk
(c) DIOK) =T\ K).

Proof. The proofs of (a) and (b) are analogous and hence we will only prove (a). Because

L L
(5.1) HI(S,, DA Z)EK) = Hi(S, 00, Z) 3k
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and, by proposition B0, H}(S,,J1(A,Z)) is a free abelian group in degree 2p(v) we
L

conclude that H}(S,,J1(\, Z)®k) is nonzero only in degree 2p(v). Hence, by lemma
Z

L
B3 we see that Jy(\, Z)®k is perverse. There is a canonical map
Z

(8.2) TN, k) — Jg(/\,Z)éﬂk,

which is an isomorphism when restricted to Gr*. Therefore, applying the functor F, to
the morphism ¢ and using the proposition B0 yields an isomorphism

(8.3) F,(h(\K)) = K[Irr(Sryn S,)] FV—M>Z[ITT(9—UHSV)]<§>E§ _ FI,(J!(A,Z)ék).

By corollary B the functor F' = &@F), is faithful and thus we conclude that ¢ is an
isomorphism.
The proof of part (c) proceeds in a similar fashion. First we observe that

(84) H;V(QLD j'()‘vk)) = D(H:(Tuaj'(/\7k))) = D(H:(SU)O'VaJ!(/\’k))) :

Because H}(Syyv,J1(A,k)) is a free k-module concentrated in degree 2p(wg-v), we con-
clude that D(HZ, (Sr,J1(),k))) is a concentrated in degree —2p(wo-v) = 2p(v). Thus,
we conclude that D Ji(\, k) is perverse. Furthermore, we note that

HY, (G1,D 9\ k) ——  D(HA(T,5(\k)))

(8.5) l lg
HA (S0, D 9(A, k) —— D(HX(T, N G, 3\ K))),

which implies that the left hand arrow is also an isomorphism. We have a canonical
map

(8.6) D 5(\k) —= J.(\ k)
To show that this map is an isomorphism it suffice to show that the maps F,(¢) are
isomorphisms. Restricting to Gr* gives us the following commutative diagram:

HE (G, D 5\ k) — 12 (Gr,9.(0 k)

(8.7) gl lg

HE, (51, D 3\ k) —— Hj, (§,9.(\, k).

In this diagram the bottom arrow is an isomorphism because ¢ restricted to Gr* is an
isomorphism, the left vertical arrow is an isomorphism by (83, and finally, the right
vertical arrow is an isomorphism by proposition B0 (or, rather, by the proof thereof).
This shows that F},(¢) is an isomorphism.

O

8.2. Proposition. The canonical map J(\,Z)— J1.(\,Z) is an isomorphism.
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Proof. Let us consider the following commutative diagram:

Ih(NZ) —=— I,(\2Z)

(8.8) l l

The bottom map is an isomorphism by lemma [l Let us apply the functor F,, to this
diagram. The columns become inclusions by proposition and the bottom arrow is
an isomorphism as we just observed. Therefore, F,,(«) is an inclusion and then so is .
This implies that the canonical surjection Jy(\,Z)— Ji.(\,Z) is an isomorphism. O

9. Representability of the weight functors

In section §3 we showed that the functors F,,déf Hzp(u)(S,,, ) = Hf (Gr,—)[2p(v)],
from Pg, (Gr,k) to Mody, for v € X, (T), are exact. Hence, one would expect them to
be (pro) representable. Here we prove that this is indeed the case:

9.1. Proposition. Let Z C Gr be a closed subset which is a finite union of G o-orbits.
The functor F, restricted to Pg,(Z,k) is represented by a projective object Pz(v,k) of
Pao (Z,k).

Proof. We make use of the induction functors. Let us recall their construction. For
more details see, for example, [MiV1]. Let A be an algebraic group acting on a variety
Y and let B be a subgroup of A. The forgetful functor 34 : Da(Y,k)— Dp(Y,k) has
a left adjoint v4 : Dp(Y,k)— D4(Y,k) which can be constructed as follows. Consider
the diagram

(9.1) Zl AxzZ -1 AxpZz 257,

The maps p and ¢ are projections, and a is the action map. The group A x B acts
on the leftmost copy of Z via the factor B, on A x Z and A xg Z by the formula
(a,b)-(a’,z) = (a-a’-b~1,b-2), and on the leftmost copy of Z via the factor A. The left
adjoint v is now given by

(9.2)  AA(A) = aA where A is defined via ¢'A = p'A;for A € Dp(Y,k)

Let O, = 0/z""! and let us write G, for the algebraic group whose C-points
are G(0,). We use analogous notation for other groups. Now choose n >> 0 so
that the Ge-action on Z factors through the action of Gy,. We write Pz(v,k) =

pHO(’Y{G;?n (kr,nz[—2p(v)])). We claim:

(9.3) the functor F, : Pg, (Z,k) — Mod is represented by Pz(v, k)

To see this, let A € Pg,(Z,k), and then:
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(9.4) F,(A) = HX(Z,4) =
Extdy i (kr,nz[~20 ()], F (5" A) =
G
Exthg (23 (Vey knnz[=20@)], A).
Let us write F = "}/{G;inkTVﬂZ[—2p(V)]. Then

(9.5) the sheaf F lies in pDég (Z,k).

n

To see this, let us write d for the largest integer such that pHd(ff) # 0. Then, we see,

as in (@), that
(9:6) 0 Hompy, (75(F,PH(T)[~d]) =

— ~ v)—d
Bxtpd (T PHY@) = HEY U2, PHY).

According to theorem B this forces d = 0 and we have proved (I3]). This immediately

implies ([@3).
U

9.2. Corollary. The category Pg,(Z,k) has enough projectives.

Proof. Let A € Pg,(Z,k). Choose finitely generated k-projective covers f, : P,—F,(A).
Then

(9.7) Hom(P, ®k Pz(v,k),A) = Homg[P,,Hom(Pz(v,k),A)] = Homg[P,, F,(A)].

By construction, the map p, € Hom(P,®k Pz (v, k), A) corresponding to the k-projective
cover f, : P,—F,(A) satisfies F),(p,) = f,. Since &,F, = F is exact and faithful,
@, P, ® Pz(v,k) is a projective cover of A.

O

We can describe the sheaf Py (v, k) = pHO(’ygg" (kr,nz[—2p(v)])) rather explicitly as
follows. Let us consider the following diagram:

z - Geo,xzZ sz
o5 ] T
T,NZ —— Go, x (T,NZ) —— Z

and use it to calculate ’yf@?” (kr,nz[—2p(V)]):

(9.9) 73" (kr,nz[-2p(v)]) = Rarp'inkr,nz[~2p(v)] =
Ran'kr,nz(-2p(v)] = Rike,, (1,022 dim(Go,) - 2p(v)].

Let us consider a point L, € Z, where we again choose n € X,(7") dominant. Then
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9.3. Lemma. The dimension of the fiber a='(L,) is dimGo, — p(v +n) if n > v,
otherwise it is empty.

Proof. We have

(9.10) @ '(Ly) = {(9:2) €Go, x (T,NZ)|g-z2=n} =
{(9:2) € Go, x (I, NGx") [ g-z=mn}.

By theorem B2, we see that E_I(L,]) is empty unless 7 > v. Furthermore, from theorem
B2 we see that if n > v then

(9.11) dima ‘(L) =
p(n—v)+dim((Go,)y) = p(n—v)+dim(Go,) —dim 5" =
p(n —v) +dim(Go,) — 2dimp(n) = dim(Go,) —p(n+v).

In other words, Pz(v,k) is the zero perverse cohomology of the -image of a (shift
of) a constant sheaf under an “essentially semi-small” map. Here “essentially semi-
small” means that the the dimensions of fibers have the correct increment but the
generic fiber is not finite.

10. The structure of projectives that represent weight functors

In this section we analyze the projective Pz(k) = @, Pz(v,k) which represents the
fiber functor F on Pg, (Z,k). As in the previous section, Z is closed subset of Gr which
is a union of finitely many G g-orbits.

10.1. Proposition. (a) Let Y C Z be a closed subset consisting of Go-orbits. Then
Py(k) = PHO(Pz(k)|Y),
and there is a canonical surjection
Pz(k) — Py (k).
(b) The projective Pz (k) has a filtration such that the the associated graded
Gr(Pzk)) = @ FIL.\K]* @d(N k).
gricz

In particular, F(Pz(k)) is free over k.

(¢) Pz(v,k) Py(v, Z)@k

Proof. We begin with (a). We write ¢ : Y< Z for the inclusion. The identity
Hom (P (k), i.—) = Hom(i* Pz (k), —) shows that the complex Py(k)[Y" € PDg/ (Y, k),
represents F' on the subcategory Pg,, (Y, k), and hence so does PHO(Pgz(k ‘Y € PGO (Y, k).
Thus, Py (k) = PH°(Pz(k)|Y). For any A € Pg, (Y,k) we have the identity Hom(Pz(k), A) =
Hom(Py (k),A). This gives a canonical surjection Pz(k) — Py (k).
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Now we will prove parts (b) and (c) simultaneously. We will argue (b) by induction
on the number of Gg-orbits in Z. Let us assume that Gr* is an open Gg-orbit in Z
and let Y = Z — Gr. Let us consider the following exact sequence:

(10.1) 0— K — Pz(k) — Py(k) — 0,

where K is simply the kernel of the canonical map from (a). Let M be a k-module and
let us take RHom of the exact sequence above to J, (A, M):

(10.2) 0 — Hom(Py (k),J«(\, M)) — Hom(Pz(k),Js(N\,M)) —
Hom(K,J, (A, M)) — Ext!(Py(k),J.(\, M)).
By adjunction the first and last terms are zero and so we get, again by adjunction,
(10.3) Hom(K|[gn, Mga[2p(N)]) = Hom (K, I, (A, M)) =
Hom(Pz(k),J.(\, M)) = F(J.(\,M)) .
We can view ([[IL3) as a functor from k-modules to k-modules
(10.4) M — F(J.(\,M)).

This functor is, by the results in § represented by the free k-module F'(J,(\, k))*. As
it is also represented by K \er, we conclude:

(10.5) Klgp = F(I.(\K)" @k kg [20(0)]

Now we claim:

(10.6) K = FO,\K)* @ T\ k) = T, F(I.(0K))").

To prove this claim, let us consider the following exact sequence

(10.7) 0— K — F(I.(\k)* @ I(\k) - K — C—0.

The kernel K’ and the cokernel C are supported on Y. If we take RHom of the exact
sequence ([]) to C, we get

(10.8) 0 — Hom(Py (k),C) < Hom(Pz(k),C) — Hom(K, C) — Ext'(Py(k),C).

Because C' is supported on Y the map « is an isomorphism and the last term vanishes.
Therefore C' must be zero. To prove that K’ is zero, we first assume that k = Z. Then,
by B2, Jy(\,Z) = 31.(\,Z). As J.(\,Z) has no subobjects supported on Y, K’ = 0.
Using (L) and ([I0@), and proceeding by induction on the number of G g-orbits, we
obtain (b) when k = Z.

L
We will now prove (c). Because k%ﬂl()\,Z) = J,(\, k) and because (b) holds for
k = Z, we see that k ®z Pz(Z) is perverse. By formula (2.6.7) in [KS], we see that for
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any A € Pg, (Z,k) we have

(10.9) Homy(k ®z Pz(Z),A) = Homgz(Pz(Z),R Hom(k,A)) =
Homyz(Pz(Z),A) = H*(Gr,A).

Thus, k ®z Pz(Z) represents the functor F' on Pg,(Z,k) and hence we must have
k ®z Pz(Z) = Pz (k).

Finally to get statement (b) for an arbitrary ring k, it suffices to use (c), (b) for the

L
case k = 7Z, and the fact that k (%J!(/\, Z) = 01(\ k).
O

Let us write Pﬂé;p "1 (Z,k) for the subcategory of Pg, (Z,k) consisting of sheaves
A € Pg,(Z,k) such that H*(Gr, A) is k-projective. Note that, by lemma B3, the
category Pﬂé;p "1 (Z,k) is closed under Verdier duality. Because Py (k) € Pﬂé;p "1 (Z, k),
its dual Iz(k) = D(Pz(k)) also belongs in Pﬂé;pmj(Z, k). The sheaf I7(k) is an injective
object in the subcategory Pﬂéz)p roj (Z,k). Note that the abelianization of the exact
category Pﬂé;pmj(gr, k) is precisely Pg, (9r,k).

11. Construction of the group scheme

In this section we construct a group scheme ék such that Pg, (9r,k) is the category
of its representations. We proceed by Tannakian formalism, see, for example, [DM].
Unlike [DM] we work over an arbitrary commutative ring k. This is made possible by
the fact that F/(Pz(k)) is free over k, [0.T]

11.1. Proposition. There is a group scheme Gy over k such that the tensor category
of representations, finitely generated over k, is equivalent to Pg, (G, k). Furthermore,

the coordinate ring k|Gx] is free over k and Gi = Spec(k) Xgpec(zy Gz -
Proof. We view P, (Gr, k) as a direct limit lim Pg, (Z,k); here Z runs through finite
— 7

dimensional Gg-invariant closed subsets of the affine Grassmannian Gr. Let us write
Az (k) for the k-algebra End(Pz(k)) = F(Pz(k)). The algebra Az(k) is free of finite
rank over k. Let us write Mod 4 , (i) for the category of Az(k)-modules which are finitely
generated over k. Because Pz(k) is a projective generator of Pg, (Z,k), we see that
the restriction of the functor F' to Pg, (Z,k)—Mod lifts to an equivalence of abelian
categories:

(11.1)  the categories Pg, (Z,k) and Mod 4, () are equivalent as abelian categories.

As Az (k) is free of finite rank over k, its k-dual Bz(k) is naturally a co-algebra.
Furthermore, let us consider a k-module V. Because

(11.2) Hom]k(AZ(k) RV, V) = Homk(V, Bz(k) Rk V) ,

we see that it is equivalent to give to V a structure of an Az(k)-module or to give it
a structure of a Byz(k)-comodule. Let us write Comodp,, () for the category of Bz (k)-
comodules which are finitely generated over k.
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From the previous discussion we conclude:

the categories Pg,, (Z,k) and Comodp,, )

11.3
( ) are equivalent as abelian categories.

Let us write Iz (k) for the Verdier dual of Pz(k). Now,

(11.4) Bz(k) = Az(k)" = H*(Sr,Pz(k))* = H*(Gr,Iz(k)) = F(Iz(k)).

If Z C Z' are both closed and G-invariant then the canonical morphism Py (k) —
Pz (k) gives rise to a morphism Iz(k) — Iz(k) and this, in turn, gives a map of
co-algebras Byz(k) — Byz:(k). Hence we can form the coalgebra
(115) B(K) = lm By(k).
and we get:

(11.6) the categories Pg, (9r,k) and Comod g are equivalent as abelian categories.

It now remains to give the coalgebra B(k) the structure of an algebra and to give an
inverse in its coalgebra structure. We will start by giving B(k) an algebra structure. To
this end, let us consider the filtration of Pg, (Sr,k) by the subcategories Pg, (A, k) =
Pg, (Gra, k) indexed dominant coweights A. In the discussion that is to follow we use the
following convention. When we substitute Gry for the subvariety Z we use the following
shorthand notation Ay (k) = Agj(lk), Py(k) = Pa(k) etc. This filtration is compatible
with the convolution product in the sense that Pg, (X k) * P, (14, k)CPq, (A + 1, k).
We have:

(1L.7) Hom[Py,(k), Pa(k) Py ()] 2 FIP\ (k) By (k)] =
FIPARIOFIP(K)] = Ar(K) @5 A, ().

The element 1®1 € Ay (k) @k A, (k) gives rise to a morphism Py, (k) — Py (k) * P, (k).
Dualizing this gives a morphism I (k) * I,,(k) — In;,(k) and by applying the functor
F' a morphism

(118) B(k) @k By (k) = Basp(k)

Passing to the limit gives B(k) a structure of a commutative k-algebra; the associativity
and the commutativity of the multiplication come from the associativity and commu-
tativity of the tensor product. To summarize, we have constructed an affine monoid
Gy = Spec(B(k)) such that

(11.9) Re-pé]k is equivalent to Pg, (Gr,k) as tensor categories ;

here Repék denotes the category of representations of Gy which are finitely generated
as k-modules. B

We will show next that Gy is a group scheme, i.e., that it has inverses. To do
so, we first observe that while the ind-scheme is G4 is not of ind-finite type it is a
torsor for the the pro-algebraic group Gy, over two ind-finite type schemes Gy/Go =
Gr and Go\Gx. This gives notions of two kinds of equivariant perverse sheaves on
Gr that come with equivalences Pg, x1(Gx,k) = P(Go\Gx, k) and Pixg, (Gx, k) =
P(Gr, k). In particular one obtains two notions of full subcategories P, xc, (G, k) of
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Paox1(Gx, k) and Pixg, (G, k), but these are easily seen to coincide. Let us recall
that we write PkGZ)p roj (Gr,k) for the subcategory of Pg, (9r,k) consisting of sheaves
A € Pg, (Gr, k) such that H*(Gr, A) is k-projective. The inversion map i : Gx — G,
i(g) = 97! exchanges Pg, x1(Gac, k) and P1xq, (G, k) and defines an autoequivalence
of Pgyxae (Gx, k) which we can view as ¢* : Pg, (9r,k) — Pg,(9r,k). Now we can
define an anti-involution on PH‘GZ)*” "I (Gr, k) by

(11.10) A A* =D(i*A).
k—proj
G
generated projective k-modules, a rigid tensor category. By [Sal 11.3.1.1, 1.5.2.2, and
1.5.2.3, we conclude that Gy = Spec(B(k)) is a group scheme.

The statement Gy = Spec(k) Xgpec(z) Gz, i-e., that B(k) = k ®z B(Z), now follows
from Proposition [l part (c). The algebra B(k) is free over k by construction.

This involution makes Rep , the category of representations of Gi on finitely

12. The identification of ék with the dual group of G

In this section we identify the group scheme Ge. As Gy = Spec(k) Xspec(z) éz,
by [T, it suffices to do so when k = Z. Recall that there exists a unique split
reductive group scheme, the Chevalley group scheme, over Z associated to any root
datum ([SGA3],[Den]). Let Gz, Tz be such schemes associated to the root data dual
to that of G, T and denote Gy = Gz®zk, Tk = T7®7k for any k. We claim:

12.1. Theorem. The group scheme Gy, is the split reductive group scheme over Z whose
root datum is dual to that of G.

The rest of this section is devoted to the proof of this theorem. We first recall that
we have shown in section [1 that the above statement holds at the generic point, i.e.,
that é@ is split reductive reductive group whose root datum is dual to that of G. By
the uniqueness of the Chevalley group scheme, [Deml|, and the fact that é@ is a split
reductive reductive group whose root datum is dual to that of GG it suffices to show:

(12.1a) The group scheme Gz is smooth over Spec(Z)
(12.1b) At each geometric point Spec(k), x = [, the group scheme G, is reductive.

(12.1c) The dual (split) torus 7% is a maximal torus of Gz .

The properties ([ZIE) and [[ZIH) together with the fact that Gz is affine amount
to the definition of a reductive group. The last statement (ZId) says that Gz is split.
Note that it is not necessary to check in ([ZIH) that G,. has root datum dual to that
of G; that is automatic because it holds for (NJQ. However, to prove the fact that éz is
smooth over Spec(Z) and to deal with the fact that we do not yet know that Gy is of
finite type we end up having to calculate the root data of the G,..
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In what follows, we will make crucial use of results in [PY]. We will first recall their
theorem 1.5:

(12.2) An affine flat group scheme over the integers with all its fibers

connected reductive algebraic groups is a reductive group.

As Z[GZ] is free over Z, by proposition [Tl we see that Gy, is flat. By section [ all of
the groups G, are split with their root datum dual to that of G. Thus, to prove that
Gz is reductive, it suffices to show:

(12.3) The groups (NJZP are reductive.

In order to prove this, we will make use of the maximal torus, so we will now make a
start at proving (IZId). We begin by exhibiting 77, as a sub torus of Gz. We proceed
as in section [ The functor

(12.4) F =H":Pg,(9r,Z) — Modz(X.(T)))

gives us a homomorphism Ty — éz. This makes 7% a sub torus of éZ because for any
cocharacter v € X, (T, the v-weight space F,(J;(\,Z)) = H}(S,,31(\,Z)) is non-zero.

Let us now write kK = Fp, for p a prime, and (én)red for the reduced subscheme of
éﬁ. We note that, just as in [ we see that the group scheme éﬁ is connected because
G has no finite quotients — there is no non-trivial tensor subcategory of Pg, (Gr,F))
supported on finitely many Gg-orbits. To complete the proof of Theorem 21l we thus
must argue, in addition to (Z3), that:

(12.5) The torus T} is maximal in G, .

We will argue these two points simultaneously. A crucial ingredient will be theorem 1.2
of [PY], which we now state in a form useful to us. The formulation below has much
stronger hypotheses than in [PY]. We inserted these stronger hypotheses as they are
hold in case at hand to simplify the formulation. By theorem 1.2 of [PY], the group

Gz, is reductive if the following conditions hold:

(12.6a) ézp is affine and flat
(12.6b) é(@p is connected and reductive
(12.6¢) (Gy)req is a connected reductive group of the same type as éQp .

As has been observed before, the first two hypotheses above are satisfied. Thus, it
remains to prove ([CZ6d). To summarize, we are reduced to showing:

(12.7a) the torus T}, is maximal in (én)red and

(12.7b)  the group scheme (éﬁ)red is reductive with root datum dual to that of G .
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The two statements above are statements about the fiber at k = F,. In the rest of
this section we will be working at this fiber, but before doing so, we make one more
argument using the entire flat family. The flatness of Gz, implies that

(12.8) dim G = dim Gg, > dim(Gy)ed -

To see this, let us choose algebraically independent elements in the coordinate ring of
(GF )rea and lift them to the coordinate ring of GZ By flatness, Z [GZP] C Qp[GQp]
and hence these lifts remain algebraically independent in the coordinate ring of GQp
This gives ([[ZF)). Note that we do not a priori have an equality in ([[ZF]), as we do not
yet know that GZP is of finite type.

Now we are ready to work at x. We proceed at the beginning in the same way as we
did in section [l First, we have:

The irreducible representations of éﬁ are

12.9 5
(12.9) parameterized by dominant weights A € X*(7}) = X.(T).

We see this, just as in section [, by noting that the irreducible objects in Pg, (Gr,F,)
are given by the Ji.(\,F,), for A € X.(T) dominant. Let us write, as in section [0,
L()) for the irreducible representation of G, associated to A. First of all, because of
proposition B0, we see that the weights of the representation W (A, k) corresponding
to J)(A\, k) are independent of k. Hence, those weights are precisely the weights of the
irreducible representation of G¢ of highest weight A. On the other hand, we can write
J1«(\,Fp) in the Grothendieck group as a sum involving J(\,F,) and terms Jy(u, F)),
for u < A. Hence, we conclude:

The Ty-weights of the irreducible representation L(\) are contained

(12.10a) in the T-weights of the irreducible representation of G¢
associated to A\, and A is the highest weight in L(\).

(12.10b) The weights of L(\) are symmetric under the Weyl group W.

For « a simple positive root of GG, with the corresponding coroot
(12.10c) &, the weights of L()\) on the line segment between
sa(A) and X are all of the form \ — k&, with k& an integer.

Note that, contrary to the case of characteristic zero, not all the weights between A and
A — ké occur as weights of L()\)

Next, we approximate G by finite type quotients G* For any group scheme H let
us write Irry for the set of irreducible representations of H. We choose a quotient
group scheme G}, of G, with the following properties:

(12.11a) G is of finite type
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(12.11b) the canonical map Irrg, — Irrg s a bijection

(12.11C) (é:)red = (én)red

It is possible to satisfy the first and third conditions because any group scheme is a
projective limit of group schemes of finite type and by (ZZJ)) the group scheme (én)red
is of finite type. To ensure that ([ZIIH) is satisfied, it is enough to choose G suffi-
ciently large so that the irreducible representations L()\) associated to a finite set of
generators A of the semigroup of dominant cocharacters, are pull-backs of representa-
tions of éz For any dominant coweights \, i, the sheaf Jy, (A + N,E,) is a subquotient
of the convolution product Jy,(\,Fp) * Ji. (i, Fp) since the support of the convolution is
ﬁ)\ﬂr This shows that all irreducible representations L(\) of G, come from é*

Let us write R for the reductive quotient of (é,{)red = (G )reqa and note that, of

course, T, lies naturally in R. As any irreducible representation of (G* )red 18 trivial on
the unipotent radical we have:

(12.12) The canonical map Irrg — Irr g, is a bijection.

We now argue that in order to prove ([Z7) it suffices to show that:
(12.13a) the torus T} is maximal in R

(12.13b) the root datum of R with respect to T} is dual to that of G

Let us, then, assume ([ZI3). We conclude immediately that dim(R) = dim(G), and,
together with ([ZJ]), this gives

(12.14) dim G = dim Gg > dim(G%),eq > dim R = dim G .

Thus, we must have (é )red = R and hence (é )red 1s reductive with its root datum
dual to that of G. Since this holds for each of approximation G of G, we see that
(G )red coincides with R, has T} as its maximal torus, and its root datum dual to that

of G. This gives (Z1).
The proof of ([ZI3)) will be based on relatlng representations of G, and R (i.e., of

G* and (G )red); by considering the n'® powers of the Frobenius maps between the
k-scheme G* and its n'" Frobenius twist (G*)(") as depicted in the diagram below:

(12.15) T T

(é*)red ___) (G*)( n)

red’

Slnce G* is of finite type we see, by [DG, corollary I11.3.6.4], that it is isomorphic to
(G /(G )rea) X (GF)req as a scheme with the right multiplication action by (G )yeq, and
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that the coordinate ring of G /(G*)yeq is of the form k[X1, ..., X,]/(XP*, .., X2} for
some powers p; = p® of p. Hence, for n > e;,

(12.16) the Frobenius map Fr" : G% — (G%)™ factors through (é:)(")

red *

This implies:
the n®" Frobenius twists of irreducible representations

(12.17) _ ~
of (G})rea extend to G, .

From the previous discussion we conclude, first of all, that

(12.18) We have an injection Irrpem) < Irrg .

This means that the torus 7}, must be maximal in R, as the statement above bounds
the size of the lattice of irreducible representations of R. Furthermore, we also conclude
that

(12.19) L% (p"\) = LE(p"\) for all A € X, (T) dominant .
We will now argue the second part of (LZI3), i.e., that :
(12.20) AR, T,) =A(G,T) and A(R,T.)=A(G,T) .

The argument here is a bit more involved than the argument in characteristic zero
in section [ but the basic idea is the same: the pattern of the weights of irreducible
representations determines the root datum. N

The statement (T2ZI0) expresses the patterns of weights of the representations L& ().
The pattern of weights of the L*()\) has a similar description, as R is a reductive group.
Comparing these patterns for p"A, we conclude that that the walls of the Weyl cham-
bers of the root systems of (G,T) and (R, T}) coincide in X, (7T), and furthermore, that
the simple root directions of R coincide with the simple coroot directions of G. Recall
that in characteristic zero we obtained an equality of simple roots of R and the simple
coroots of GG, but we cannot immediately conclude this fact here, as we only have a
containment in (CZI0d). Hence, we must argue further.

As the next step, we prove two inclusions of lattices:

(12.21) Z-AR,T,.) € Z-A(G,T) and Z-A(G,T) C Z-A(R,T}).

We do so by analyzing the centers. First of all, note that the center of the reductive
group R can be identified with the group scheme

(12.22) Hom(X™*(T})/Z-A(R, ), G ) -

On the other hand, the tensor category P¢,, (9r, E,) is naturally equipped with a grading
by the abelian group mo(Sr) = m(G) = X.(T)/Z-A(G,T), the group of connected
components of Gr. Note that this grading is compatible with the tensor structure. This
grading exhibits the group scheme

(12.23) Hom(X.(T)/Z-A(G,T), Gy )
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as a group subscheme of the center of G,.. Since this group subscheme lies in T}, it also
lies in the center of R. This inclusion of centers corresponds to a natural surjection
(12.24) X*(T,)/Z-A(R,T,,) — X, (T)/Z-A(G,T).
This gives the first inclusion in (TZZT]). Since the lattices have bases of simple (co)roots
which have the same directions the second inclusion follows from (&,a) = 2. Let us
note that by the same reasoning the proof of (IZZ0) can now be reduced to proving
either of the equalities in ([ZZ]). We will do so by building up from special cases.
First, let us observe that we are done when G is of adjoint type. In that case
Z-A(G,T) = X*(T) and so we must have Z-A(G,T) = Z-A(R,T,;). At this point we
no longer have need to argue in terms of R. In what follows we will prove directly that
G, is reductive with its root datum dual to that of G.
Next, assume that G is semi-simple and write
(12.25) G — Gaq, where Goq is the adjoint quotient of G .

We have already shown that (Gaq)x = (Gaq)s. Just as above, we note that we can

provide the category Pg,, ,(9ra, d,Fp) with a grading, as a tensor category, by the
finite group m(Gaq)/m1(G). With this grading the tensor subcategory Pg, (Srg, Fp) of

PG..0(Sra,y, Fp) corresponds to the identity coset m1(G). Thus, we obtain a surjective
homomorphism

(12.26) (Gad)r = (Gad)w — G

with a finite central kernel, given precisely by Hom(m1(Gaq)/71(G), Gy ). This implies

that éﬁ is reductive. Let us write T,q for the maximal torus in G,q. Then from
([CZZ3) we see that the roots and the coroots of the pairs (G,T') and (Gaq, Taa) coincide
under the surjection 7" — T,q and similarly, from ([[ZZH), we conclude that the roots

and coroots of the pairs (G, Tx) and ((Gad)w, (Taa)x) coincide under the surjection
(Tud)x — T,. Thus, as we know the result for the adjoint group, we conclude that the
root datum of (G, T}) is dual to that of (G, T).

Finally, consider the case of a general reductive G. Let us write S = Z(G)° for the
connected component of the center of G. Then we have an exact sequence

(12.27) 1-85—>G— Gger — 1,

where the derived group Gger of G is semisimple. This gives maps:

(12.28) Srg —— Grg —— Sraye

which exhibit Grg as a trivial cover of Grg, . with fiber Grg. By taking pushfowards of
sheaves this gives us the following sequence of functors:

(1229) PSO (9rS7 Fp) L) PGO (ng, Fp) L PGder(‘) (9ercr7Fp) I

where w is clearly an embedding and -~y is essentially surjective because of the triviality
of the cover. This, in turn, gives the following exact sequence of group schemes:

(12.30) 1— (éder),.C — G, — S, —1

The fact that we have exactness at both ends follows from the fact w is an embedding
and <y is essentially surjective. To see the exactness in the middle, let us consider the
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quotient G, / (éder),{. The representations of this groups scheme are given by objects
in Pg,(Srg, k) whose push-forward under 7 to Grg,,, consists of direct sums of trivial

representations. But these constitute precisely Pg,(Grg, ). Thus, G, is reductive.
Arguing just as in the previous step, using the fact that the roots and coroots of G and
Gger 01 one hand and those of én and (éder) « on the other, coincide, we conclude that
the root datum of é,.; is dual to that of G.

13. Representations of reductive groups

The point of view we have taken in this paper so far is that of giving a canonical,
geometric construction of the dual group. In this section we turn things around and
view our work as giving a geometric interpretation of representation theory of split
reductive groups.

As before, k is commutative ring, noetherian and of finite global dimension. Recall
the content of our main theorem [Tk

(13.1) Repg, s equivalent to Pg, (Sr,k) as tensor categories;

here Repg, stand for the category of k-representations of Gy, finitely generated over

k, and Gy stands for the canonical split group scheme associated to the root datum
dual to that of the complex group G. This way we get a geometric interpretation of
representation theory of G. The case when Char(k) = 0 was discussed in section [

Following our previous discussion we have T C Bx C Gk, a maximal torus and a
Borel in Gy. Associated to a weight A € X, (T) there are two standard representations
of highest weight A. Let us describe these representations. We extend A to a character
on By so that it is trivial on the unipotent radical of By and then induce this character
to a representation of Gi. We call the resulting representation the Schur module and
denote it by S(X). As a module it is free over k. The other representation associated
to A is the Weyl module W(A) = S(—woA)*, where wy is the longest element in the
Weyl group. There is a canonical morphism W (A) — S(A) which is the identity on the
A-weight space. We have:

13.1. Proposition. Under the equivalence ([I3J)) the diagrams W(X) — S(A\) and
J1(A) = T (N) correspond to each other.

Proof. The modules S(\) and W (\) can also be characterized in the following manner.
Let us write Repé:‘ for the full subcategory of Rep, consisting of representations whose

Ti-weights are all < A\. Then the representations S()\) and W ()) satisfy the following
universal properties:

(13.2a) for V e Repaz‘ we have Homg, (V,S(A)) = Homg (V) k)
and
(13.2Db) for V e Repaz‘ we have Homg (W(A), V) = Homg(k, Vi)

On the geometric side the category Repé:‘ corresponds to the category Pg, (A k) =

Pg, (Gra, k). Obviously, the sheaves J,(\) and J,(A\) belong Pg, (A, k) and satisfy the
universal properties ([[3:2), proving the proposition. O
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As a corollary, proposition B.10 gives:

13.2. Corollary. The v-weight spaces S(X), and W (), of S(A) and W (), respectively,
can both be canonically identified with the k-vector space spanned by the irreducible
components of GraNS,,. In particular, the dimensions of these weight spaces are given
by the number of irreducible components of Gry N S, .

Finally, let us assume that k is a field. Then we also have an irreducible representa-
tion L(A) associated to A\. Under the correspondence (I3 the irreducible representa-
tion L(A) corresponds to the irreducible sheaf Jy,(\, k).

An important motivation for our work was its potential application to representation
theory of algebraic groups. To this end, we would like to propose the following:

13.3. Conjecture. The stalks of J)(\,Z) are free.

14. Variants and the geometric Langlands program

As was stated before, in this paper we have worked with C-schemes because in this
case we have a good sheaf theory for sheaves with coefficients in any commutative ring,
in particular, the integers. It is also possible to work with other topologies. This is
important for certain applications, for example for the geometric Langlands program,
since our results can be viewed as providing the unramified local geometric Langlands
correspondence.

We will explain briefly the modifications necessary to work in the etale topology and
over an arbitrary algebraically closed base field K. To this end, let us view the group
G as a split reductive group over the integers. All the geometric constructions made in
this paper go through over the integers, in particular, our Grassmannian Sr is defined
over Z. We write Gry for the affine Grassmannian over the base field K. In a few
places in the paper we have argued using Z as coefficients, for instance, in section 2.
When we work in the etale topology, we simply replace Z by Z;, where ¢ # Char(K).

For completeness, we state here a version of our theorem for Grg:

14.1. Theorem. There is an equivalence of tensor categories
P(o)(Sri, k) = Rep(Gy).

where we can take k to be any ring for which the left hand side is defined and which
can be obtained by base change from Z,, for example, k could be Qq, Z¢, Z/0"7Z, Fy.

14.2. Remark. The previous theorem allows one to extend the notion of Hecke eigen-
sheaves in the geometric Langlands program from the case of characteristic zero coeffi-
cients to coefficients in an arbitrary field. This is used in [G] which gives a proof of de
Jong’s conjecture.

APPENDIX A. Categories of perverse sheaves
In this appendix we prove propositions 1] and 232, i.e., we will show that

A.1. Proposition. The categories Pg waut(0)(97:k), Pg, (9. k), and Ps(Sr,k) are
naturally equivalent.
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We first note that P, waut(0) (91, k) is a full subcategory of Pg,, (91, k) and Pg,, (91, k)
is a full subcategory of Pg(Sr, k); this follows from the fact that stabilizers of points are
connected for the actions of G x Aut(0) and G on Gr. The reductive quotients of
Go xAut(0), Go, and Aut(0) are G x G,,, G, and G,,, respectively. Hence, it suffices
to show that for any G g-invariant finite dimensional subvariety we have:

(A.1)  the categories Pgq(Z,k) and Pgg,,(Z,k) are equivalent to Pg(Z,k);

here Pg ¢(Z,k) and Psg,,(Z,k) denote subcategories of Pg(Z,k) consisting of sheaves
which are G and G,,,- equivariant, respectively.

We will proceed by induction in the following manner. Obviously, the statement
above holds if Z is a G-orbit. Hence, by induction, it suffices to prove (A for a
Go-invariant subset Z under the following hypotheses:

for some dominant \, the orbit Gr” is closed in Z

(A.2) \
and ([AJJ)) holds for the open set U = Z — Gr”.

To prove the above statement, we use the gluing construction of [MV], [V] for perverse
sheaves. Let us recall the construction. We write A and B be two abelian categories
and F1,G1 : A — B two functors, Fj right exact, Fy left exact, and T : Fi — Fy
a natural transformation. We define a category C(F}, F;T) as follows. The objects
of C(Fy, Fy;T) consist of pairs of objects (A, B) € Ob(A) x Ob(B) together with a
factorization F}(A) = B = Fy(A) of T(A), i.e,, nom = T(A). The morphisms of
C(Fy, F5;T) are given by pairs of morphisms (f,g) € Mor(A) x Mor(B) which make
the appropriate prism commute. The category C(Fy, Fy;T) is abelian.

We use this formalism in various situations. To begin with, let us write j : U — Z
for the inclusion and set:

A = Pg(U, k)

B = Mody
(A.3) Fy = Fy oty

Fy = Fy o?y,

T =F\"j —"Pj).
We have a functor
(A4) EPS(Zak) He(*FhF’QaCT)

which sends F € Pg(Z,k) to A = F|U, B = Fy(F) and the factorization F} (A) BN
F5(A) is the one gotten by applying Fy to pjg(&'"‘U) —-F - pj*(rf‘U). By Proposition
1.2 in [V] the functor F is an embedding. Two remarks are in order. First, in [V] we
work over a field, but this is not used in the proof. Secondly, the functor E is actually
an equivalence of categories. B

Let us now bring in the group G. We write 8 for the stratification of G x Z by
subvarieties G x Gr*. We write a : G x Z — Z for the action map and p : Gx Z — Z for
the projection. Let F € Pg(Z,k). We have an isomorphism ¢ : p*F|G x U = o*F|G x U
such that ¢|{e} x U =id. We are now to extend the ¢ to G x Z. To this end we first
construct a functor F} : P3(G x Z,k) — B, where B stands for the category of k-local



42 I. MIRKOVIC AND K. VILONEN

systems on G. Let us write §/\ = G x Sy, denote by i : §>\ — (G x Z the inclusion,
and write 7 : G X Z — G for the projection. Then F)\ = Rmi*. Furthermore, we write
j: G x U — G x G for the inclusion and set:

A = Ps(G x U,k)

B = {k-local systems on G}
(A5) Fi = Fy o)

Fy=Fyo > 1l

T = F\(Pj1 — Pj,).
As before, we have a functor
(A.6) E : P3(G x Z,k) — C(Fy, Fy; T)

which sends F € Pg(G x Z,k) to A = F|@ x U, B = F,(%) and the factorization
ﬁl(g) o, B ﬁg(;‘i) is the one gotten by applying F) to p}!(g'"‘G x U) — F -
f”}*(ff |G x U). By the same reasoning as above, the functor E is an equivalence of
categories. B B

We will now apply F to p*F and to a*F. For E(p*F) we get the data of E(F)
at {e} x Z extended across G as the constant local system. For E(a*F) we also get
the extension data of E(F) at {e} x Z. Because, by theorem B, the functors F), are
independent of the data T" C B used in defining them, we see that the extension data
for a*F restricted to {g} x Z, for any g € G, is canonically identified with the extension
data of a*F at {e} x Z. This gives us an identification of E(a*¥F) with E(p*F) and
hence an isomorphism between a*F and p*F. This shows the first part of [A]l

The case of the group G,, is even a bit simpler. Here we use the fact that G,,-action

preserves the variety Sy and hence all the G,,-translates of the functor F are identical
to F! -
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