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ASYMPTOTIC BEHAVIOUR OF MATRIX COEFFICIENTS
OF THE DISCRETE SERIES

DRAGAN MILICIC

Introduction. Let G be a connected semisimple Lie group with finite center.
The set of equivalence classes of square-integrable representations of @ is called
the discrete series of (. The discrete series play a crucial role in the representa-
tion theory of G, as can be seen from Harish-Chandra’s work on the Plancherel
formula [8].

In the following we suppose that (7 has nonempty discrete series. Therefore,
by a result of Harish-Chandra, (7 has a compact Cartan subgroup H. Let K be
a maximal compact subgroup of ¢ containing H. The K-finite matrix coefficients
of discrete series representations are analytic square-integrable functions on G.
Moreover, Harish-Chandra has shown that they decay rapidly at infinity on
the group. For various questions of harmonic analysis on ( it is useful to have
a better knowledge of their rate of decay. This problem was studied by P. C.
Trombi and V. S. Varadarajan [16]. They have found a simple necessary
condition on a discrete series representation having the K-finite matrix coeffi-
cients with certain rate of decay. Our main result is that their condition is
sufficient too. In turn, this gives a precise characterization of discrete series
representations whose K-finite matrix coefficients lie in L°(G) for 1 < p < 2.

To describe this result we must recall Harish-Chandra’s parametrisation of
the discrete series representations. Let g, , f, and b, be the Lie algebras of G,
K and H, and g, f and § their complexifications, respectively. Denote by &
the root system of (g, §). A root @ € & is called compact if its root subspace is
contained in f and noncompact otherwise. Let W be the Weyl group of (g, b)
and W, its subgroup generated by the reflections with respect to the compact
roots. The Killing form of g induces an inner product ( | ) on #h*, the space of
all linear forms on § which assume imaginary values of §, . An element \ of
2ho* is singular if it is orthogonal to at least one root in &, and nonsingular
otherwise. The differentials of the characters of H form a lattice A in 7h,*.
Let p be the half-sum of positive roots in ®, with respect to some ordering on
ih,*. Then A + p does not depend on the choice of this ordering.

Harish-Chandra has shown that to each nonsingular A € A + p we can attach
a class m, of discrete series representations, m, is equal to =, if and only if A and u
are conjugate under W, and the discrete series are exhausted in this way [8].

Roughly speaking, our result shows that the rate of decay of K-finite matrix
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coeflicients of , is determined by the distance of X from the noncompact walls.
More precisely, if we put

T(a) = %ﬂ;; l@]B)], «€ &

and denote by = and ¢ the K-biinvariant functions defined in [8], we have the
following result (The implication (ii) = (i) is the result of Trombi and Vara-
darajan aluded above).

TuEOREM. For nonsingular N € A + p and k > 0 the following conditions
are equivalent:

@) |\ ] @) = «k(a) for every noncompact root « & ¥,

(i) for every K-finite matriz coeffictent ¢ of the discrete series representation
m\ there exist positive real numbers M and q such that

le(x)] < ME@)™*(1 + o(x))", z & (.

This result, combined with a result of Trombi and Varadarajan, implies
immediately that for 1 < p < 2, all K-finite matrix coefficients of m, are in
L7(@) if and only if

el > (- 1)t(e)

for every noncompact root o & ®. In the most important case, for p = 1,
this result was proved by H. Hecht and W. Schmid [11].

Our argument was highly influenced by the ideas in the paper of Hecht and
Schmid and a preprint of T. Enright considering the special case of the groups
SU(n, 1) and SO(2n, 1) [2].

The contents of the paper can be described as follows. The first part of the
paper contains certain quite technical generalizations of the results of Harish-
Chandra on tempered distributions on (. By generalizing the construction of
the Schwartz space €(() of smooth rapidly decreasing functions on G [8], we
construct a series of spaces @, (() for positive real y. All these spaces contain
the space C,"(() of smooth compactly supported functions on ¢ and are con-
tained in €,(G) = €((¥), and the inclusions are continuous. We define the rate
of growth of an invariant eigendistribution on ¢, and show that an invariant
eigendistribution has the rate of growth ¥ > 0 if and only if it extends to a
continuous linear form on @,(G). This enables us to find the estimates of the
Tourier coefficients of invariant eigendistributions with the rate of growth
v > 0, which generalize a result of Harish-Chandra stating that the Fourier
coefficients of a tempered invariant eigendistribution satisfy the weak inequality
[8].

The second part is completely independent of the first part. We study there
the asymptotic behaviour of K-finite matrix coefficients of admissible repre-
sentations of  of finite length. For a fixed minimal parabolic subgroup P of G,
we associate to an admissible representation of finite length a finite set of leading
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exponents along P which characterize the asymptotic behaviour of its K-finite
matrix coefficients. By a recent, unpublished result of W. Casselman [1] we can
associate to each leading exponent a nontrivial infinitesimal intertwining map
into a nonunitary principal series representation induced from P. Also, we can
characterize the intertwining maps associated to the leading exponents as the
“minimal”’ ones among all nontrivial intertwining maps into the nonunitary
principal series representations induced from P. An immediate consequence
is that the leading exponents depend only on the irreducible constituents of an
admissible representation of finite length and not on its finer structure. As we
understand this is an unpublished result of Casselman.

Tinally, in the last part of the paper we study the asymptotic behaviour of
K-finite matrix coefficients of discrete series representations. It is easy to see
that the condition (i) from Theorem is equivalent to the condition that the
character of m, has the rate of growth —«. Therefore, our problem can be
interpreted as the study of the relation between the rate of growth of characters
and asymptotics of K-finite matrix coefficients of the discrete series. Although
the study of this relation in the discrete series case looks quite awkward, as we
see from the first part of the paper it is quite easy to get the right estimates
for the representations with characters with positive rate of growth. To exploit
this fact we consider the whole problem in the setting of admissible representa-
tions of finite length. The characters determine completely the irreducible
constituents of such representations, hence they determine their leading ex-
ponents. The map from characters to leading exponents behaves very simply
under the tensoring with finite-dimensional representations, which “increases”
the rate of growth. This enables us to reduce the problem onto the estimates
obtained in the first part of the paper.

Our argument can be considered as a natural extension of the argument of
Hecht and Schmid [11]. The essential difference is the use of Corollary of
Theorem II. 2.1. instead of Schmid’s “complete reducibility’” theorem [14],
which obviously fails to be true for general admissible representations of finite
length. Schmid’s theorem follows easily from this result, as it is shown at
the end of the paper.

We would like to take this opportunity to express our sincere appreciation
to Wilfried Schmid for his constant encouragement and helpful suggestions
during our stay at the Institute for Advanced Study, Princeton, New Jersey
in the year 1975-76. A series of his talks on discrete series at the Institute served
as a catalyst in various phases of our work. Also we would like to thank Professor
Harish-Chandra for showing to us his unpublished work on differential equations
and asymptotics of K-finite matrix coefficients [3], [4].

Part I. Rate of growth of eigendistributions.
1. Definition of the rate of growth. The main estimate.

Let @ be a connected semisimple Iie group with finite center. Denote by
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@0 its Lie algebra, by g the complexification of g, and by & the enveloping
algebra of g. As usual, we consider the elements of & as left-invariant differen-
tial operators on . Under this isomorphism the center 8 of & is isomorphic to
the algebra of all biinvariant differential operators on G.

Let C,"(G) be the space of all smooth, compactly supported functions on G.
A distribution T on G is said to be invariant if

T =T
for every f € C,"(G) and x € @, where
Iy = fleye™), yed

A distribution T is 3-finite if the distributions 27, z & 3, span a finite-
dimensional space; if T' is an eigendistribution of all z & 3, we say simply
that T is an eigendistribution on G.

Let I = rank G and let D(z) be the coefficient of ¢’ in det (¢ + 1 — Adx),
z € @, where ¢ is an indeterminate. As usual, G’ denotes the set of all regular
points of G, i.e. the complement of the set of zeros of the function D.

By a fundamental result of Harish-Chandra [5, Theorem 2.], an invariant
B-finite distribution ® on G is represented as integration against a locally
summable function analytic on the regular set . By the abuse of language we
shall identify ® with this function in the following.

It is possible to say much more about the structure of invariant 3-finite
distributions. To state the result we need, we must describe more precisely
the structure of Cartan subgroups of G. Let B be a Cartan subgroup of G,
b, its Lie algebra and b the complexification of b, . Denote by R the root
system of (g, b), and for every @ € R let 5, be the corresponding quasicharacter
of B. The intersection °B of kernels of all homomorphisms b + |7,(b)|, @« € R,
of B into the multiplicative group of positive real numbers is the maximal
compact subgroup of B. Let b,” be the subalgebra of b, consisting of all H € b,
such that all eigenvalues of adH are real. Then B is the direct product of °B
with the maximal vector subgroup B~ = exp b, of B.

Let R™ be the set of (restricted) roots of (go, 0,”). The multiplicity m, of a
restricted root a € R™ is Card {& € R; « | b, = a}. Fixing a Weyl chamber
D in by~ determines an order on R™, we put

Py = % Z m,-a.
a>0
The Killing form B of g defines a norm on b,” by ||H|| = B(H, H)"*, H € b,".

By [5, Lemma 31] the function b — |D(b)|'*|©(b)| extends from ("B-exp D)
M G’ to a continuous function on °B-exp . Another result of Harish-Chandra
[20, 8.3.3.3] implies that this function can be majorized by an exponential
function on °B-exp D. All this shows that the following definition is natural.

We say that an invariant 3-finite distribution ® on G has the rate of growth
v, ¥ € R, if for every Cartan subgroup B and Weyl chamber © in b,” there
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exist positive numbers M and m such that
|D(by-exp H)|"*|O(by-exp H)| < Me™ =™ (1 + ||H||)"

for every regular b = b, exp H, b, € °B and H € 9.

By the finiteness of number of conjugacy classes of Cartan subgroups in G,
it is obvious that M and m can be chosen independent of B and D.

Let K be a maximal compact subgroup of G. Denote by K the set of all
equivalence classes of irreducible finite-dimensional representations of K. Ior
each § € K, let £ be the character of 5 and d(8) the degree of 5. Put x; = d(8)&; .
For a distribution 7 on @, the convolution T'; = T * x; is called the éth-Fourier
component of 7' [20, 4.4.3.]. The Fourier components of invariant Z-finite
distributions are K-finite and 3-finite, therefore they are analytic functions on
G [20, 8.3.9].

Let & and o be the K-biinvariant functions on ( as defined in [8]. Then we
have the following theorem which relates the rate of growth of invariant 3-finite
distributions and their Fourier components.

TaeOREM 1. Let ® be an invariant 3-finite distribution on G with the rate of
growth v, v > 0. Then for every 8 & K the Fourier component O; of © is an
analytic function on G satisfying

0:(0)] < CoE@)' "L + @), zEC,
where Cs and r; are positive real numbers.

The condition that ® has the rate of growth 0 is equivalent to being tempered.
Therefore the above result can be considered as a generalization of the result
of Harish-Chandra stating that the Fourier components of tempered invariant
B-finite distributions satisfy the weak inequality. For invariant 3-finite distri-
butions with negative rate of growth our theorem does not give more information
than this result of Harish-Chandra.

The results of [5] imply easily that such distributions exist only in the case
when rank G = rank K, and that their supports contain the set of all elliptic
elements in G. Examples of such invariant eigendistributions are the discrete
series characters. In fact, the problem of finding the asymptotic behaviour of
K-finite matrix coefficients of the discrete series representations can be interpreted
as finding an analogue of the above theorem for all real v.

Obviously the above theorem is no longer true if we suppress the condition
v > 0. As was pointed out to us by W. Schmid the differences of certain discrete
series characters for SL(2, R) are supported on the elliptic set only. These
invariant eigendistributions satisfy our definition for all real v, but their Fourier
components satisfy inequalities of the above type for negative y with sufficiently
small absolute values only.

We shall show in Part III that if we suppose that © is the character of an
admissible representation of finite length, the analogue of the above result is true
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for all realy. In fact, this will prove the sufficiency of the Trombi-Varadarajan’s
condition.

The proof of the above theorem is a generalization of Harish-Chandra’s
reasoning in the case of tempered invariant 3-finite distributions. In analogy
with the Schwartz space €(G) of Harish-Chandra [8], we introduce a family of
spaces €, (), ¥y > 0, with the property that an invariant 3-finite distribution
extends to a continuous linear form on €, (() if and only if it has the rate of
growth v. This allows us to reduce the proof of Theorem 1 on the character-
ization of growth of K-finite and J-finite distributions which extend con-
tinuously to €, (G).

The main vehicle for extending the arguments of Harish-Chandra onto our
situation are some quite technical estimates collected in the next section. The
fundamental role in this estimates is played by a function on G which attaches
to each element of (G its Hilbert-Schmidt norm in a suitable finite-dimensional
representation of G. The use of this function was suggested to us by W. Schmid.

2. Some simple estimates. Let £, be the Lie algebra of the maximal compact
subgroup K of G. It determines a Cartan involution ¢ of g, , we denote by
go = B -+ b, the corresponding Cartan decomposition. The Cartan involution
¢ is the differential of an involutive automorphism of ¢ which we denote by the
same letter.

Let a, be a maximal abelian subalgebra in p, , and §, a Cartan subalgebra
of go containing a, . Denote by §) the complexification of §, , and by R the root
system of (g, §). Let R~ be the corresponding system of restricted roots of
(go, ao). Fixing a Weyl chamber € in a, determines an ordering of roots in R~
we equip R with a compatible ordering such that fora € R, o« > 0and a | a, # 0
imply that « | @y > 0. Let p be the half-sum of the positive roots in . Then
pla = pe.

Let 7 be the irreducible finite-dimensional representation of g with the highest
weight p. Since G = K-exp p,, we can define a function » on ¢ by

v(k-exp X) = (tr (exp 2¢(X)))'?), LkEK, XEv,.

Obviously, » is a positive, smooth, K-biinvariant function on G.

Passing eventually to a suitable covering of (/, we can assume that G is
acceptable [5]. Then there exist a complexification G¢ of ¢ and a holomorphic
representation of G€ the differential of which is . We denote this representation
by r again. Denote by U the maximal compact subgroup of (¢ with the Lie
algebra f, 4 ip, . There exists a unitary structure on the space W of the repre-
sentation = such that all operators 7(u), w &€ U, are unitary. For alinear operator
T on W, denote by T* its adjoint. Then for z = k-exp X, k € K, X € Do,
we have

r@)* = r(exp X)*r(k)* = r(exp X)r(k™") = (3 (@)7™").
If we denote by 7 +— |||T]|| the Hilbert-Schmidt norm on the algebra of linear
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operators on W, we have finally

llr@|]| = (tr (r(@)*r(x)))"* = (tr (exp 2r(X)))"* = »(2)

for every * € (/. Hence, passing to a suitable covering, we can interpret » as
a norm of certain finite-dimensional representation.

As we remarked before, the use of function » was suggested to us by W.
Schmid. The following result relates the asymptotic behaviour of » to that
of E and o.

LEMMA 1. There exist M > 0 and d > 0O such that
1o A+ o@)"
V(:I?) S "'4(‘”) S M V(QL') ’
forall x € G.
Proof. If we denote by A™ the closure of exp € in A4, we have the well-known
decomposition ¢ = KA'K. By the K-biinvariance of Z, ¢ and » it is enough

to prove the inequalities on A*. Harish-Chandra has shown that there exist
¢ > 0 and d > 0 such that

1 < eeE(exp H) < (1 + ||H|])"
for every H € € [20, 8.3.7]. This result, combined with the obvious inequality
™ < ylexp H) < (dim W) %’ | HE& €&
implies immediately our assertion. Q.E.D.

Another obvious consequence of the definition of » in terms of the Hilbert-
Schmidt norm is the following lemma.

LemmA 2. The function v is submultiplicative on G, i.e.

v(zy) < v()v(y)
forall z, y € G.

The importance of the function » in our study of invariant 3-finite distributions
is based on its simple behaviour on the conjugacy classes in .
For an element 2 € ( let C(x) be its conjugacy class in (.

LemMa 3. Let B be a d-stable Cartan subgroup in ( and b & B. Then v
attains in b its minimal value on C(b), i.e.

»(b) = min »(x).
zE€C(b)

Proof. The Cartan subgroup B is #-stable, therefore b & B implies 3(b)"'EB.
The relation 7(z)* = 7(¥(x)™"), * € G, implies that 7(b) and (b)* are elements
of the Cartan subgroup 7(B) of 7(G). The group 7(() is linear and its Cartan
subgroups are abelian [20, 1.4.1.5]. Therefore, 7(b) commutes with (b)*, i.e.
it is a normal operator on W.
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To finish the proof we need to recall a simple result about the equivalence
classes of normal operators on finite-dimensional Hilbert spaces. We include
its proof for the sake of completeness.

Levmma 4. Let T be a normal operator on a finite-dimensional Hilbert space W.
Then

i < sTsi
for every invertible linear operator S on W.

Proof. Let C(T) be the equivalence class containing T. It is closed in the
algebra of all linear operators on W. Therefore, there exist T'y & C(T') such that
1T/l < |IISTS7Y||| for all invertible S. Obviously, this implies that the
smooth function

Fp:it|||e®Tee "
has a minimum for ¢ = 0 for all linear operators R on W. By a direct calculation
0 =F'(0) = tr (Ty, TR + RY)).

This implies that [Ty, T'v*] = 0, hence T, is a normal operator. Since two normal
operators are equivalent if and only if they are unitary equivalent it follows that
TN = [Tl - QE.D.

Finally, we need a result about the behaviour of ¢ on conjugacy classes in G
due to Harish-Chandra [9, Lemma 12.1]. Our proof is based on Lemma 3.

Lemma 5. Let B be a d-stable Cartan subgroup in (. There exist M > 0
such that for every b & B

14 o(b) < M min (1 + o(x)).
£EC(b)

Proof. Tor every H € @, H 5 0, we have pe(H) > 0. This implies that
there exist M, , M, > 0 such that

1
3 I < ool < M, [1H]|

for every H & €. Therefore, there exists M > 0 such that
1+ ||H|| <1+ M,logv(exp H) < M(1 + ||H|]),

for every H € €. Using K-biinvariance and the decomposition ¢ = KA'K
we have finally,

1+ 0@ <14 M logviz) < M1 4+ ox))

for all z € (. This inequality, combined with Lemma 3., implies our assertion.
Q.E.D.
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3. The spaces €,(G). Let D be the algebra of all differential operators on G.
Let ©, and ®, denote the subalgebras consisting of left-invariant and right-
invariant operators respectively. Let ®, be the subalgebra of © generated
by ©, U 9, .

For a smooth function f on G,y > 0, D € D, , and r € R, put

po. ") = sup (L + o@) =@ (DN@)]-

Let ¢,(G) be the space of all smooth functions f such that py,,"(f) < « for
allD € 9yand r & R. We topologize €, (G) by means of the set of semi-norms
Pp.., D E Dy, r ER.

In the case vy = 0, the space @(() is the Schwartz space €(G) of Harish-
Chandra.

We list some of the properties of these spaces in the following theorem.

TaEOREM 1. (i) ©,(G) is a Fréchet algebra under convolution.

(ii) The regular representations of G on @, (G) are differentiable.

(iii) The inclusion mapping of C,"(G) into C,(G) is continuous and the tmage
s dense in C,(G).

iv) If 0 < v, < 75, €C,,(() is a dense subspace of €,,(() and the inclusion
mapping s continuous.

The facts that €,(G) are Fréchet spaces and that inclusions in (iii) and (iv)
are continuous are obvious. The density of C,”(G) in €,(() follows as in the
case of €(() [9, §15]. This completes the proof of (iii) and (iv). The statement
(i) follows by trivial modifications of the argument of Harish-Chandra in the
case of (@) [7, §10].

It remains to check that €, (G) are topological algebras under convolution.
This is an immediate consequence of the following lemma, which generalizes
Lemma 14.2 of [9] onto our situation.

We fix » > 0 such that

[ 270 + o) ds < o,
it exists by [8, §6].

Lemma 1. There exists C > 0 such that for any two real numbers p and q
such that |p| + ¢ < — r — 2vd, we have

[ 202620 + o)+ o) dy < C-E@A + @)
Ja
Proof. By Lemmas 2.1 and 2.2 we have

+ o)’ + oy )"
v(y) vy~ x)”

< M 1+ v(y))""g)j- aly'a)"" < M7E@EA + o@) (L + oy ).

=) =) < u &
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Therefore

/(, E@)"E@ )1 + o)’ 4+ olyT') dy

< M@ [ ZQEGTD0 + o)+ ol R dy,

where |p + vd| + ¢ + vd < |p| + ¢ + 2vd < —r. Our assertion follows by
applying now Lemma 14.2 of [9]. Q.LE.D.

The subspace of all K-biinvariant functions in €,(() was studied closely
in [15].

By Theorem 1 every continuous linear form on €, () defines a distribution
on (. Conversely we say that a distribution is of type v if it extends to a
continuous linear form on €, (G).

A distribution 7" on G is said to be K-finite if both left and right translates of 7'
by elements of K span a finite-dimensional space. We recall that a K-finite and
B-finite distribution is an analytic function on G [20, 8.3.9.].

We now characterize K-finite and 3-finite distributions of type y. In the
case y = 0 this result reduces onto the result of Harish-Chandra that a K-finite
and 3-finite distribution is tempered if and only if it satisfies the weak inequality
[9, Theorem 14.1], [20, 8.3.8.7.]. Our argument is a simple modification of
Harish-Chandra’s.

THEOREM 2. Let T be a K-finite and B-fintte distribution on G. Then the
following conditions are equivalent

(i) T s of type,
(ii) there exist M > 0 and m > 0 such that
IT@)| < ME@)'™"(1 + o(x)", z e G

Proof. Obviously (ii) implies (i).

Suppose that T is of type y. By repeating the reasoning of Harish-Chandra
(see the proof of [9, Theorem 14.1] or [20, 8.3.8.7.]), we show that there exists
a positive real number m > yd such that

¢ = L IT@)| E@)'"1 + o(@)™ " de < .

By Theorem 1 of |7] there exist a function { & C,"((7) such that 7" = T * [.
Hence

T'@)| = i[o Tyx){(x™") de

< c[ Ta)| Z@)" (L + @)™ de.

where ¢, = sup.eq 2@)” (1 + o(@)" /)] -
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By Lemmas 2.1 and 2.2 it follows that

E(y~'x) M My(y)
T+ o D) Sl S i)

Therefore

< M1 + oy))’ ;—% . ey €.

W) < e f @) 202" (A + oly'2) " de

< e+ o@)'EW [ 7@ BT DR (L + ol ) d,

where ¢, = ¢,-M*". By the subadditivity of the function ¢ [7, Lemma 10.],
we have

1 < L+
1+olyz) =1+ o)’

Ty €,
what implies
T@)| < e (1 + o))" EQW)™" fa IT(x)| Z(y~" 2)E@)" -1 + o(@)™" " dur.
Now T is K-finite, so we can choose a finite subset ' C K such that
T() = [ xel® T0"2) b
where xr = Zae » x5 and dk is the normalized Haar measure on K. Therefore,
TG < el + oG)"EQW) [ TG0 20 + o)™ E ) do d
where ¢; = ¢, supex |xr(k)| . Finally,
T < es (1 + o) EW)™" fo IT(@)| E@)" (1 + o)™ " fK E(y~'kz) dk dz,
and by using the doubling principle [9, §10]
IT@)] < est + o™= [ [T@)] 5@ + o)™ do

= M1 + o(y)"EW)"

where M = c,-c. Q.E.D.
Finally, we have the following important characterization of invariant
B-finite distributions of type v.

THEOREM 3. Let © be an tnvariant B-finite distribution on (. Then the
following conditions are equivalent for v > 0
(i) © has the rate of growth v,
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(ii) there exist M > 0 and m > O such that
[D@)|'? |©)| < ME@)™"(1 + o)™, x E G,
(iii) O s of type .

Proof. Suppose that ® has the rate of growth v. By the definition, there
exist ¢ > 0 and & > 0 such that for every Cartan subgroup B of (¢ and Weyl
chamber ® in b,”, we have

[D(bo-exp H)|'* [©(by-exp H)| < c-e”*2"(1 4 [|H||)"

for all regular b = b,-exp H, b, € °B, H € ©. We can choose a finite number of
d-stable Cartan subgroups B, , 1 < 7 < p, such that ¢/ is the disjoint union of
G, = \JaB/ 27, 1<:<p,

€6
where B, = B, M G’ [20, 1.4.1.7.]. Then above relations immediately imply that
DO 100)] < ()L + o), b E B/,
and by Lemmas 2.3 and 2.5 there exists ¢; > 0 such that
D@ 10@@)] < ew(@)"A + @), =€ .

Now Lemma 2.1 implies that © satisfies (ii).
Since there exists ¢ > 0 such that

[ 1ID@” 20 + o) da < =

[20, 8.3.7.6.], an invariant 3-finite distribution satisfying (ii) is of type -

It remains to prove that ® has the rate of growth v if it is of type y. The proof
of this fact is a simple modification of the argument-of Harish-Chandra proving
that a tempered invariant Z-finite distribution has the rate of growth 0 {7, §19].
Passing eventually to a covering of ¢, we can suppose that G is acceptable.
Reasoning as in the proof of Lemma 30 in [7] we can show that an invariant
distribution of type v is continuous with respect to the topology defined on €., ((¥)
by the set of semi-norms p,,,", D € D, , r € R. Then we can modify the
remaining part of Harish-Chandra’s argument, as it was done on pages 273-274
in [16] (our situation corresponds to x = —+ in the argument of Trombi and
Varadarajan, while they suppose that «x > 0, but this causes no difficulties).
The modification being purely formal, we shall spare the details here. Q.E.D.

The statement of Theorem 1.1 is an immediate consequence of Theorems
2 and 3.

Part II. Asymptotics of admissible representations of finite length.

1. Category of admissible representations.
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It is the purpose of this section to collect various preliminaries about repre-
sentations of semisimple Lie groups, and to establish some notation.

Let G be a connected semisimple Lie group with finite center. Let K be a
maximal compact subgroup of . Denote by K the set of all equivalence classes
of finite-dimensional irreducible representations of K. For each s € K, let
£ and d(8) denote the character and the degree of the elements of § respectively,
and put x; = d(6)¢ . We denote by dk the normalized Haar measure on K.

Let 7 be a continuous representation of (¢ on a Banach space V. Ior every
5 € K, the map P; = Jx xs(k)m (k) dk is a continuous projection in V. Itsrange
V5 is the space of vectors in V the linear span of whose K-orbit is finite-dimen-
sional and splits into irreducible K-modules of type 6. We say that = is an
admissible representation if all V; , 8 € K, are finite-dimensional.

Let g, be the Lie algebra of G, g its complexification and & the enveloping
algebra of g. For an admissible representation = on a Banach space V denote
by U the space of all K-finite vectors in V. Then = defines a structure of com-
patible (&, K)-module on U [13]. We denote the corresponding infinitesimal
representation of & on U also by .

Let =, and =, be two admissible representations of ¢ on Banach spaces V,
and V, , and let U, and U, be the corresponding (¢, K)-modules of K-finite
vectors in V, and V, respectively. We denote by Hom g ,(m, , ;) the set
of all (&, K)-morphisms of U, into U, . Elements of Hom g, &) (7, , m2) are
infinitesimal intertwining operators of =, with =, .

In the following we shall consider the category of admissible representations
of @, whose objects are admissible representations and morphisms infinitesimal
intertwining operators. If two representations are isomorphic in this category
we say that they are infinitesimally equivalent.

An admissible representation = of V is of finite length if there exists a chain

oy=v,CVv,C---CV, =7V
> = =

of closed invariant subspaces of V such that the representations on V,/V,_; ,
j=1,2, - n,are irreducible.

Let P be a minimal parabolic subgroup of G. Denote by N its unipotent
radical. If ¢ is the Cartan involution of G determined by K, L = P M &(P) is
a Levi subgroup of P and P = LN. If A is the split component of L and M =
L N K, we have the Langlands decomposition P = MAN and the Iwasawa
decomposition G = KAN [9, §4]. Let % , m, , ao , 1, be the Lie algebras of
K, M, A, N respectively, and let f, m, a, n be their complexifications. Let Z be
the system of (restricted) roots of (g, @,). Foraroota € Zput g,” = {X € go ;
[H, X] = a«(H)X, H € a,}. Denote by =" the set of positive roots « € Z such
that go" Cn,. Let pp = 2 trad|mn,.

Let log : A — a, be the inverse of the exponential map exp : a, — 4. Denote
by a* the space of all complex linear forms on a. For every unitary representa-
tion ¢ of M on a finite-dimensional Hilbert space U and N € a* let 3Cp ,,\ be the
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Hilbert space of all classes of functions f : ¢ — U such that
1) f(manz) = o(m)e™ " *Vf(z) forall mE&E M, a€ A, n EN
and = € (G,

2 [ i<

with the inner product

(o= [ 6@ gt .

We define a representation 7p ., of G on 3p .\ by

(mp.en@N@) = fyx), 2,y € QG

By the general results of Harish-Chandra it follows that =5, are admissible
representations of finite length.

Let M be the set of all equivalence classes of irreducible unitary representations
of M. The representations s . , ¢ & M, X\ € a*, are called the nonunitary
principal series (associated to P). They are unitary if and only if @ — ¢"'>* © is
a unitary representation of 4, i.e. if \ attains pure imaginary values on a, .

2. Leading exponents and infinitesimal intertwining operators with nonuntary
principal series.

Let = be an admissible representation of finite length of G on a Banach space V.
In this section we shall describe a close relationship between the asymptotic
behaviour of the matrix coefficients of = and the infinitesimal intertwining
operators of = with the nonunitary principal series.

To formulate this result we must recall some old, unpublished results of
Harish-Chandra [4] which are recently reproduced in [20]. Although these
results were formulated and proved for irreducible representations only, and
we need to apply them on admissible representations of finite length, the exten-
sion is purely formal and we shall spare the proofs here. These results have been
recently reinvestigated by W. Casselman in an unpublished work [1].

Let G, K and P be as in Section 1. We denote by € the ‘‘positive’” Weyl
chamber associated to =*. Let @ = —e and A~ the closure of exp €™ in 4.
Then we have the Cartan decomposition ¢ = KA™K.

If v is a K-finite vector in V and # a continuous K-finite linear form on V,
the matrix coefficient

¢.5(x) = (m(x)v, V)

is an analytic function on . The asymptotic behaviour of ¢, ;is determined by
the behaviour of its restriction to A~ because of the above decomposition.

Let 3 be the center of the enveloping algebra &. The finite length of =
implies that I = ker (r | 3) is an ideal of finite codimension in 3. If we consider,
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as usual, @ as the algebra of all left invariant differential operators on G, I
becomes an ideal of finite codimension in the algebra of all biinvariant differen-
tial operators on G, and the matrix coefficients c,,; of = satisfy the system of
differential equations D¢, ; = 0, D &€ I. Now it is possible to transform this
system into a system of differential equations for restrictions ¢, ; to the interior
of A™ [4], [20, 9.1]. By applying the results of Harish-Chandra on differential
equations (3], [20, Appendix 3], a refinement and considerable simplification of
the proof is given recently by N. Wallach [18]) it is possible to obtain an expansion
of ¢, ; in the interior of A~, which we shall describe now.

Let L be the lattice generated by the roots of £ in a*. Denote by L* the
elements of L which are sums of positive roots. We say that \, u & a* are
integrally equivalent if A — u € L. Also we define an order relation >> on a* by
A pif N — p € L™,

Then there exist linear forms u, , - -+ , u, € a* which are mutually integrally
nonequivalent, polynomials p, , - -+ , p, on a, and complex numbers ¢, , for
i=1,2 ---,r,NE L andk = 1,2, ---, ¢, all depending on v and , such that

Cv.i(a) — epp(logu) th(log a)eu,'(loga) Z cui+)\'ke)\(loga)
ik AELT

in the interior of A~. The inner sums converge absolutely on the interior of 4~
and uniformly on the subsets A,” = {a € 4;a(loga) < —¢,a € 27}, ¢ > 0.
If we put, for every up € a¥,

Cv‘;;‘n(a) — ePp(loga) Zcu.kplc(log a)eu(loga),
k

in the interior of A7, the functions ¢, ;.. , ©« € a¥, are uniquely determined by
c,;and ¢, ; = 2.,¢.5,. Wesay that uisan exponent of ¢, ; along Pif ¢, 5,,5%0.

Finally, denote by &p(w) the union of all exponents along P of all K-finite
matrix coefficients of =. We call the minimal elements &;°(w) with respect to
the order << in &,(w) the leading exponents of = along P.

Two infinitesimally equivalent admissible representations of finite length have
obviously the same set of K-finite matrix coefficients. Therefore their leading
exponents along P are the same.

Let 3_ be the center of the enveloping algebra of m @ a. Then there exists
a natural homomorphism x : 8 — B_ and 8_ is a free module of finite rank over
©(38) [20, 9.1.2). Therefore u(I)3_ is an ideal of finite codimensionin 3_ . Since
the enveloping algebra ¥ of a is contained in 3_ , we can consider 3_/u(I)3-asa
finite-dimensional a-module. For A € a* denote by (3-/u(I)3-)"" the space of
all 2z € 3_/u(I)3_ such that there exists a positive integer m such that
(H — NH))"z = 0 for all H € a. Denote by S; the finite set of all X &€ a*
such that (3_/u(I)8-)™ # {0}. Then a simple modification of the argument
in [20, Vol. II, p. 310] proves the following statements:

(i) the set &,°(w) of leading exponents of = along P is contained in S;,

(ii) every exponent along P of a K-finite matrix coefficient of = is contained
in &,°(r) + L*.
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The following theorem describes a precise relationship between the leading
exponents of = and infinitesimal intertwining operators of = with nonunitary
principal series.

Denote by I,(r) the set of A & a* such that Hom g &, (r, 7p.,2) # {0}
for some ¢ € M.

THEOREM 1. Let m be an admissible representation of finite length. Then the
set &p°() of leading exponents of = along P is equal to the set of minimal elements
in I P (7!' )

We shall prove this theorem in Section 3.

The connection between the asymptotics of representations and infinitesimal
intertwinings with nonunitary principal series was observed firstly by Harish-
Chandra in a proof of his celebrated ‘‘subquotient theorem’ ([4], [20, 5.5.1.5]).
Recently, Casselman has given a very simple argument showing in fact that
8p°(x) is contained in I»(x). As a corollary it gives the existence of infinitesimal
embeddings of irreducible admissible representations into the nonunitary
principal series [1], sharpening the original result of Harish-Chandra.

Our theorem has a very straightforward, but important consequence, which is,
as we understand, an unpublished result of Casselman. In the moment of
writing we are unaware of his argument.

Let 7 be an admissible representation of finite length on a Banach space V.
Take a maximal chain

o =v,cv,C---CV,=7V
> = >

of closed invariant subspaces, and denote by =, the irreducible representation
on the quotient V,;/V,_, ,5 = 1,2, -+, m. The representation =r,, = =, @ - --
@ =, is called the semisimplification of =. By [20, 4.5.6.2] 7,, is (up to the
infinitesimal equivalence) independent of the choice of the composition series.
Every K-finite matrix coefficient of =, is a K-finite matrix coefficient of =, what
implies that &p(r,,) C &p(w). Also, it is obvious that Ip(x) C Ip(w,,). This
immediately implies the following result.

CoroLLARY. The set of leading exponents &p°(x) of = along P is equal to the
set of leading exponents &p°(w,,) of m,, along P.

This result implies that the asymptotic behaviour of K-finite matrix coeffi-
cients of admissible representations of finite length is completely controlled
by their irreducible constituents. It is a basic fact in our study of the relation
between the rate of growth of characters and the asymptotics of representations
in Part ITI. It gives also a very simple proof of Schmid’s complete reducibility
theorem for representations whose irreducible constituents are the discrete
series representations [14, Theorem 1.6}, as we shall show at the end of this paper.

3. Proof of Theorem 2.1. ~ As we remarked before, W. Casselman has given, in
an unpublished work announced in [1], a simple argument showing that &.°(r)
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C Ip(w) for every admissible representation = of finite length. Although only
the corollary of this result, the fact that every irreducible admissible represen-
tation embeds infinitesimally into a nonunitary principal series representation
is stated in [1], it is easy to reconstruct the argument indicated there and see that
it really proves the above statement. This reduces the proof of Theorem 2.1
onto the characterization of &,°(r) as the set of minimal elements of I,(r).

The essential point in the proof of this statement is the following theorem
which is a refinement of a result of Langlands [12, Lemma 3.13], although the
proof is essentially the same.

Let (A, w) — (A | w) be the inner product in a, defined by the Killing form of g, )

TuEOREM 1. Leto € M and \ € a* be such that Re (\ | @) < 0 foralla € =7,
Then the nonunitary principal series representation wp , » has & unique irreductble
subrepresentation vp ., and \ 1s a leading exponent of vp , ) along P.

The statement of Theorem 2.1 for A € I(r) satisfying Re (A | @) < 0 for all
a € =% is in fact an immediate consequence of the above theorem. By the
tensoring with finite-dimensional representations the general case can be easily
reduced to this situation as we shall see later. Firstly we shall prove Theorem 1.

Define the analytic maps « : G — K and H : G — q, such that for every x € G
we have x = «(z) exp H(x)n with n € N. Let P = #(P) be the parabolic
subgroup opposite to P, the Langlands decomposition of P is P = M AN where
N = 8(N). We fix a Haar measure dii on N by the condition

— H(n —
fe 2p p(H(n)) dii = 1.
N

If Re (A | @) < 0 for all « € =* by a standard result from the theory of
intertwining operators [19] we know that the operator J,, _x defined by

U@ = [ f) di, @ €6,

is a continuous intertwining operator of rp , _x with 75 , s .

In the following, it is convenient to identify the spaces 3Cq .\ for a minimal
parabolic subgroup @, ¢ € M and N & a* with the Hilbert space 3¢, of all
square-integrable functions g : K — U satisfying g(mk) = o(m)g(k), m € M,
k € K, by the mapping f +— f | K. This map is an isomorphism of K-modules
if we consider 3¢, as a K-module induced from ¢. We denote the induced action
of Kon3, by (k, ) » k-f,k EK,fE %, .

The main step in the proof of Theorem 1 is the following lemma.

LemMa 1. Let Re A\ | @) < O for every o € =*. For K-finite functions f,
g &€ 3, , f # 0, the following assertions are equivalent

@) N is a leading exponent of the matrix coeflicient ci,.; x,., Of Tp .. for some
ki, k, € K,

(i) J,,-xg = 0.
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Proof. In order to prove the lemma we shall use the following relation.
For every K-finite functions f, ¢ € 3¢, and H € €~ we have

lim e™* 7w, o \(exp tH)f | g) = (f1) | (Jo.-59)(1)).

t—oo

This is (up to trivial modifications) a classical formula due to Harish-Chandra
[4], [20, 9.1.6.1]. We sketch the argument for the convenience of the reader.
Put a, = exp tH. Then

(rren@)f [ 0) = [ €00 P00 (R | (k7)) db
K
Using the standard integral formulas we can transfer the integration over
K to the integration over N X M and using simple properties of the functions «
and H we get

lim et ™2 D o (@)f | 9)

t—o

= lim / e—()\+pp)(H(az"!;Za.'))e()\—py)(H(;))(f(x(al—lﬁat)—l) | g(c(@)™")) da.
too JR

After checking the conditions of Lebesgue’s dominated convergence theorem

as in [20, 9.1.6.1], we can interchange the limit and the integration what finally

eads to

lim ¢! P a(@)f | g) = [ 07U | glet) ) di

= (/1) | (Jo.-29)(1)).

This finishes the proof of the above relation. It implies immediately that \ is
a leading exponent of ¢,.; .., if and only if (f(k,) | (J..-59)(k2)) # 0. Hence
(i) implies (ii). In order to prove the converse it remains to see that
(Jley) | (Jo.-59)(ks)) = O for all k, , k; € K implies J,,_sg = 0. Suppose that
this is not true. Then, there exists a K-finite function ¢ & 3¢, such that
Jo._59 # 0and (k) | (J,.-59)(ks)) = O forall k, , k, € K. Choosing k, and k,
so that f(k,) # 0 and (J,._zg)(ks) % 0, we get (c(m)f(k:) | (Jo,-59)(k2)) = O
for all m &€ M, what contradicts the irreducibility of o. Q.E.D.

Now we can prove Theorem 1. Denote by .., the orthogonal complement
of the kernel of J, _5 . Obviously the kernel of J, -z is an invariant subspace
for 75,5 . The relation

(WP,a.)\(x)f | WP.V.—X(x)g) = (f I g)y z e G; f, g e 3¢, )

and the fact that J, _s # 0 implies that g,., is a closed invariant subspace for
Tp.o different from zero. Denote by »5,,,, the subrepresentation of 7, on
9o . It remains to show that it has the properties stated in Theorem 1.

Let 3¢’ be a closed 75, ,-invariant subspace in 3¢, . Let g be a K-finite func-
tion in 3¢, orthogonal to 3¢’. Then for every K-finite function f in 3¢’ the matrix
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coefficient c¢i,.; 1,., , k1 , k2 € K, of 7p . is equal to zero. By Lemma 1. this
implies that g is in the kernel of J,,_5s . Therefore, 3¢’ contains g, , and vp .., is
the unique irreducible subrepresentation of 75, . Applying again Lemma 1
we see that for each nonzero f, ¢ € ¢, there exist k, , k, & K such that A is a
leading exponent of the matrix coefficient c,.; 1,., of ¥» ., . This finishes the
proof of Theorem 1.

To prove Theorem 2.1 we need some preparation on the tensoring with finite-
dimensional representations. Let = be an admissible representation of G of
finite length on a Banach space V. Let 7 be an irreducible finite-dimensional
representation of G with the lowest restricted weight —u. The tensor product
m & 7 is again an admissible representation of finite length. The next two
lemmas relate I»(7) and &:°(r) to Ip(r @ 7) and &:°(r ® ) respectively.

LEMMA 2. Ip(n) — u C Ip(x Q) 7).

Proof. Let W be the space of . Denote by W, the weight subspace corre-
sponding to a restricted weight v. Denote by P : W — W_, the projection
associated to the decomposition W = W_, + >.,._, W, . Let « be the repre-
sentation of M on W_, . Then obviously

Pr(man) = ¢ *"**“w(m)P
forevery m € M,a € A andn € N.
For f € 3Cp ,» and w € W define o(f, w) : G — U Q W_, by
off, w)(@) = [(x) @ Prlx)w, =z€E€G
Then

f(manx) @ Pr(manz)w
= R 1050 (5 (YE(2)) R (w(m)Pr(x)w)
= PR or ) (6 ) W) (m)e(f, w)(x),

forallm € M,a € 4,n € N and x € G. It follows that ¢ is a continuous
bilinear map from 3Cp,,,,» X W into 3Cp ,gu.r-x . Denote by & the corresponding
linear map from 3p ,» @ W into 3p ,gu.r-x . Then it is easy to see that &
intertwines mp o2 Q 7 With 75 g0 s -

Suppose now that A\ € Ip(x) and let T be a nontrivial infinitesimal inter-
twining operator of = with 7 ,.». Put S = ® o (T ® 1), then S is an infinites-
imal intertwining operator of # ) 7 with 75 ,gu.a-, . Suppose S = 0. Then
for every K-finite vector v € V and w & W we have

0= (8w = (2(Tv Q@ w)(z) = (T)(x) ® Prlx)w, z&€ G

This clearly implies that T = 0, contradicting to our assumption. Therefore
S is nontrivial. If ¢ @ w is the direct sum of irreducible representations
o1, , 0 0f M, 7p ogu -, i8 the direct sum of 7p 4, -, , 7 = 1,2, --- , k. By

¢(f, w)(manz)
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the above result there exists at least one j, 1 < j < k, such that

Hom x) (r @ 7, 7p,0;2-0) # {0},
Therefore A\ — u € Ip(r @ 7). Q.E.D.
Lemma 3. 8°(r) — u = &’(x X 7).

Proof. It is obvious that the set of exponents of + coincides with the set of
all restricted weights of  shifted by —p, . Henve —u — pp is the only leading
exponent of 7 along P. Because all K-finite matrix coefficients of = ) = are
sums of products of K-finite matrix coefficients of = with matrix coefficients
of 7 the relation

(@) &r(r ® 1) C 8°(x) — u + L* is obvious.

Also, if A € &;,°(w) there exist K-finite v and # such that the matrix coefficient
¢,,; of w has \ as one of its exponents, and w and @ such that the matrix coefficient
v, of has —u — pp as its exponent. This implies that the matrix coefficient
Codw. 505 = C».5'Cw.5 Of T X 7 has X — u as one of its exponents, i.e. the relation

(b) &°(r) — u C &(r @ 1)
holds. Now (a) and (b) imply immediately that &:°(x) — u C &’(xr &Q 7).
Let A\ — u € (@ 7). By (a) there exists » € 8°(r) such that y — u <K X — g,
and by (b) we haver — u € 8p(r X 7). By the minimality of X — u this implies
N =y, ie. N E & (x). Therefore &:°(r Q) 7) C &5°(x) — . Q.E.D.

Now we can finish the proof of Theorem 2.1. Let N € Ip(r). We can choose 7
suchthat Re A\ — u|a) < Oforalla € =*. By Lemma 2.\ — u € Io(r Q) 7),
therefore there exists a nontrivial infinitesimal intertwining operator of = &) =
with 7p .., for some ¢ € M. By Theorem 1 the representation vp ..., is
infinitesimally equivalent to an irreducible constituent of # & r. This implies
that A — uis an exponent of # X . Hence there exist v << A such that v — u €
&°(r ® 7). By Lemma 3., » € 85°(r) and Theorem 2.1 is proved.

Part III. Characters and asymptotics.

1. Characters and leading exponents.

Let G be a connected semisimple Lie group with finite center and K a maximal
compact subgroup of G. Let C,"(G@) be the convolution algebra of smooth
functions with compact support on G. Denote by C,”(G) the dense subalgebra
of K-finite functions in C*(G). If = is an admissible representation of G on a
Banach space we can associate to every f & C,”(G) a bounded linear operator

w() = [ fon(@) o,

where dx is a Haar measure on G. The mapping f — =(f) is a representation
of C;°(G). For every f € C,°(Q) the operator =(f) is of finite rank. Therefore
the linear form f +— tr = (f) is well-defined on C,” (G), we shall call it the character
of = and denote by O, .
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By Casselman’s ‘‘subrepresentation theorem’’ [1] every irreducible admissible
representation is infinitesimally equivalent to a subrepresentation of a non-
unitary principal series representation, hence it is infinitesimally equivalent to
an irreducible admissible representation on a Hilbert space. Since the characters
of infinitesimally equivalent admissible representations are equal, the character
of an irreducible admissible representation extends to an invariant eigendistri-
bution on @ [20, 4.5.8.6]. If = is an admissible representation of finite length,
its character is the sum of the characters of its irreducible constituents. There-
fore, it extends to an invariant 3-finite distribution on G.

By the previous discussion to every object in the category of admissible
representations of finite length of G we can associate its character which is an
invariant 3-finite distribution. Two admissible representations of finite length
have the same character if and only if their semisimplifications are infinitesimally
equivalent [20, 4.5.8.1]. Combining this result with Corollary of Theorem I1.2.1
it follows that admissible representations of finite length with the same character
have the same leading exponents along any minimal parabolic subgroup of G.
Therefore, it should be possible, at least in principle to read off the leading
exponents of admissible representations of finite length from their characters.
Although in this stage this looks like a formidable task, the following result shows
that growth conditions on the characters are equivalent to simple conditions
on the leading exponents.

Let P be a minimal parabolic subgroup of G. As in Part IT denote by €~ the
corresponding ‘‘negative’”’ Weyl chamber in q, , and by & the set of all complex
linear forms x on a such that Re u(H) < 0 for every H € @™,

THEOREM 1. Let m be an admissible representation of finite length of G and
v € R. Then the following conditions are equivalent

(i) the character ©, of = has the rate of growth v,

(ii) every leading exponent of w along P lies in —vypp + &.

The proof of this theorem will be given in the next section.

By an unpublished result of Harish-Chandra [3, Theorem 4] the asymptotic
behaviour of K-finite matrix coefficients is controlled by the leading exponents.
Hence, the implication (i) = (ii) represents an extension of Theorem I.1.1
holding for all real v, but under the assumption that the invariant 3-finite
distribution is the character of an admissible representation of finite length.

Obviously, Theorem 1 .reduces the problem of asymptotic behaviour of
K-finite matrix coefficients of discrete series representations onto the deter-
mination of the rate of growth of their characters. This will be considered
in the last section.

2. Proof of Theorem 1.1. The main idea in the proof of Theorem 1.1 is that
it is enough to prove its assertion for sufficiently large positivey. This reduction
is established by the following simple lemma.

Without any loss of generality we can suppose that @ is acceptable. Denote
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by 7 the finite-dimensional representation of @ introduced in Section 1.2 and
by 7" its n-th tensor power.

Lemma 1. Let 7 be an admissible representation of finite length of G. Then,
forn €N,

(i) the character ©, of = has the rate of growth v if and only if the character of
T & 7" has the rate of growth v + n,

(i) 8,°(r @ ") = &°(x) — npp .

These assertions are obvious consequences of the definitions and Lemma, 11.3.3.

Suppose now that M > 0 and that Theorem 1.1 holds for all y > M. TFor
every real ¥ we can choose n € N such thaty + n > M. Since by Lemma 1
the assertions (i) and (i) for (r, v) and for (r ® 7", v + n) are equivalent, our
theorem holds for all real v.

Now we shall show that the implication (i) = (i) for vy > 0 is an easy conse-
quence of the results of Part I. Let = be an admissible representation of finite
length of G whose character ©, has the rate of growthy > 0. Letm, ,mp, -+, m
be the pairwise infinitesimally inequivalent irreducible admissible representations
of G on Banach spaces V,,V,. - -+, V, respectively, such that every irreducible
constituent of = is infinitesimally equivalent to some 7, , 1 < j < k. Denote
by ©; the character of w; , 1 < j < k. Then

0, = 0, + 1,0, + - + 0,0, y

where n; € N is the multiplicity of «; in = for 1 < j < L.

Fix 6 € K. Let C;°(G) be the subalgebra of C,” (G) consisting of those f which
verify the relation f = %, * f * x; . Obviously, the spaces V; ; ,1 < j < k, are
invariant under the action of =;(f), f € C,;”(G). Denote the corresponding
representations of C;”(G) by w;; , 1 < j < k. By [20, 4.5.1] the nontrivial
representations w; ; are irreducible and pairwise inequivalent. Hence, there
exist f; ; € C;7(G), 1 < j < k, such that

mi5(fis) = 1, m;.5(fis) = 0, for ¢ #j.
Put g; ;(x) = f;;(™"), 2 € G. Then
0, *g;5 =n0;%g;,;, =n,0,,,

for every 1 < j < k. By Theorem 1.3.3. @, is an invariant 3-finite distribution
of type y. This implies immediately that ©, ; is a K-finite and 3-finite distri-
bution of typey for1 < j <k, s € K.

A trivial modification of the argument in [7, p. 53] implies now that all K-finite
matrix coefficients of =, , 1 < j < k, are K-finite and 3-finite distributions
of type v. Therefore, Theorem 1.3.2 implies that for every K-finite matrix
coefficient ¢ of the semisimplification =,, of = there exist M > 0 and p > 0,
such that

le@)| < ME@)'7"(1 + o(@))", 2 E€G.
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Now, the asymptotic of = [20, 8.3.7.4] implies the existence of N > O and ¢ > 0
such that

Ic(a)| S Ne(l—’Y)Pp(loga)(l + HIOg aH)a’ ae A_‘

This obviously implies that all leading exponents of =,, along P are contained
in —ypp + F. Our assertion follows now from Corollary of Theorem II.2.1.

It remains to prove the implication (ii) = (i). In this case we shall suppose
that v > 1. Also we can assume that = is an irreducible admissible representa-
tion. As we shall see in a moment the following estimate implies easily our
assertion.

LeMmma 2. Let 7 be an irreducible admissible representation of G. Suppose
that all its leading exponents along P lie in —ypp + F,v > 1. Then there exist
C > 0 and s > 0 such that the Fourier components ©, ; of its character ©, satisfy

10, .:@)| < C-d)’E@)'"A + o@)’, &G,
forall 5 € K.

Assuming the lemma for a moment we shall now finish the proof of Theorem 1.1.
Let X, ,X,, -+, X, beabasis of f, orthonormal with respect to — B restricted
to f, , where B is the Iilling form of ¢ , and put

Q=1- (X12+X22+ +Xr2)~

Obviously @ is an element of the center of the enveloping algebra of . Now
the results of §3 of [7] imply that for every § &€ K there exists a real number
¢(8) > 1 such that

Q®7r.6 = C(a)G)r,B
and m & N such that

s
‘= a§€ 0(5)m < .

Then for f & C,"(G) we have

0.0 = 3 | 0@ dr = T c—(él)—m [ @ @i dz
1 ™ ,
- % | e da

Therefore
I&WSWLWW@W@MU+WW%

where ¢; = C-¢, . If we choose » > 0 such that

@=Lamhwmwm<m
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we have finally

l®1r(f)l S Mpﬂ'".a+r7(f)

where M = ¢, -c, , what implies that ©, is of type v. Now, Theorem 1.3.3.
implies that ©, has the rate of growth v, what finishes the proof of Theorem 1.1.

It remains to prove Lemma 2. The leading exponents of 7 are contained
in § if and only if 7 is tempered. In this case by the main result of [17] or
Lemma 4.10 of [12] « is a unitary representation and the assertion is obvious.
Therefore we can assume that = is nontempered. In this case we shall use the
classification of such representations due to Langlands [12] to obtain our estimate.

Let P, be a parabolic subgroup of @ containing P. Denote by P, = M,A,N,
its Langlands decomposition. Obviously M C M, , A D A, and N D N, .
Let my, , a5, and 1y, be the Lie algebras of M, , A, and N, and m, , a, and n, their
complexifications respectively. Denote by *a, = my, M a, and *a = m; N a.
Obviously a = *a @ a;, . We shall consider the linear forms on a, as linear
forms on a trivial on *a.

Define the analytic functions u : G — exp (my; M po) and H, : ¢ — a,, such
that © = k(x)u(x) exp H,(2)n, n € N, , for all x € G. 1t is easy to see that

H(z) — Hi(@) € "o, 2E€G.

Finally, we define p, = pp, € a,* by p(H) = & tr (adH | n,), H € q, .

Let o be an irreducible unitary representation of M, on a Hilbert space U and
u € a,* Asin IL.1. we define the Hilbert space 3C,,, of classes of functions
{ : G — U satisfying

i) f(manz) = o(m)e* e y) foralm E M, ,a € A, ,n € N, and
x € G,

G) [ H@IF < -,

with the inner product (f | ¢) = [« (f(k) | g(k))dk, and the representation =, ,
of G on 3¢, , by

(e u@N) = flyx), =,y € G

Leta* = {NEa*;Re (N |a) <0, € =7}.

By the Langlands’ theory [12], for a nontempered irreducible representation =
satisfying the conditions of Lemma 2, there exist a parabolic subgroun P,
containing P, an irreducible tempered representation ¢ of M, and u & a,*
such that

(i) uis contained in (—vypp + F) M a_*

(ii) = is infinitesimally equivalent to a subrepresentation of =,,, .

This reduces our problem onto the estimates of matrix coefficients of ., .

Take f € 3C,,, such that ||f|| = 1 and its K-orbit spans an irreducible K-module
of type 8. Choose an orthonormal basis f, , f, -+ , fas for this module such
that f = f, ; and denote its matrix coefficients in this basisby a.; , 1 < <, j < d(5).
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Then

d(d)

f(kh) = 20 apn(Wfi(k), K, h € K.

Therefore, by the use of orthogonality relations

a(s)

S | £,0k)- [ ai(Ra () dh

1,i=1

L NICOl

1 a(d)

) Z,: .0, kEK.

This implies that
)] < Vd(s), k€EK.

Now we can estimate the function z — (=, ,(x)f | f). It is obvious that

@ 1) = [ () | 102

— j;( 6—-(u+p.)(I-I,(:"Ic))(U(u(x—lk)—l)f(K(x—lk)-l) l](k-l)) ("C,

for all 2 € . Therefore, the fact that o is a unitary representation and the above
estimate imply immediately that

(e, u(@)f | D] < d(8) / T (Rewran U T g

(4
YK

([(6) [ e—(llc ptp) (H(x—1k)) (”(./, P E G,
JK
Denote by ¢, the zonal spherical function
‘P)\(‘I)) — [ e()\—-Pp)(H(rk)) dlc, T E (lv
JK

Then by [20, 6.2.2.1]

‘(‘"’v'u(x)f | f)l < d(6)<PRe u+p.—pp(x)y z € G

Applying Lemma 3.6 of [12] and the conditions on u and v we easily see that
there exist ¢ > 0 and p > 0 such that

Prourpipp(@) < ceTVPPUED (L 4 llog al])’, @ € A7

Now, the asymptotic of E [20, 8.3.7.4] implies the existence of C > 0 and s > 0
such that

|(meu@) [ H] < CA@EE@) A + o)), 2 EG.

Since the multiplicity of §in =, , is less or equal to d(5), this estimate immediately
implies the assertion of Lemma, 2.
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3. Applications to the discrete series. In this section we shall apply our results
to the discrete series representations.

Firstly we shall review some results of Harish-Chandra on the discrete series.
Without any loss of generality we can suppose that G is acceptable. We fix a
compact Cartan subgroup H of G such that H C K. Let §, be the Lie algebra
of H and § its complexification. Denote by ® the root system of (g, ) and by
&, and &, the sets of compact and noncompact roots respectively. Let W be
the Weyl group of (g, §) and W, the subgroup generated by reflections with
respect to the compact roots. The Killing form of g induces an inner product
(1) on abo*.

Denote by A the lattice of differentials of characters of H. An element A & A
is nonsingular if (\ | a) # 0 for every « € ®. Denote by A’ the set of nonsingular
elements in A. To each N & A’ a discrete series representation m, is attached
and 7, = m, if and only if there is w &€ W, such that wx = u.

For every root « & ® we put

le(e) = %ﬂg l(a | B)].

Then our main result can be stated as follows.

TaEOREM 1. Let k > 0. For every N\ & A’ the following conditions are equiv-
alent

@) |\ | @) = «k(a) for every noncompact root e,

(ii) for every K-finite matriz coefficient ¢ of the discrete series represenlation
m there exist M > 0 and ¢ > 0 such that

le@)| < ME@)'™ 1+ o@),, &G

By Theorem 7.5 of [16] the above result implies immediately the following
corollary.

CoroLLARY, Let 1 < p < 2. For every N € A’ the following conditions are
equivalent

i) [N @) > 2/p — D)k(a) for every noncompact root «,

(i) every K-finite matrix coefficient of the discrete series representation w, 1s

in LP(G).

The implications (ii) = (i) in the above results are due to Trombi and Vara-
darajan [16]. Our argument is different from theirs. The converse implication
of Corollary, for the most interesting case p = 1, was proved by Hecht and
Schmid [11]. In the special case of the groups SO(2n, 1) and SU(n, 1) these results
were obtained by T. Enright [2]; however, his proof appears to be incomplete.

Let ©, be the character of the discrete series representation m, for X & A'.
The main step in the reduction of Theorem 1. to Theorem 1.1. is the following
result which shows that the condition (i) is essentially a growth condition on
the character ©, .
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TaEOREM 2. Let k > 0. Then for every N € A’ the following conditions are
equivalent

) [\ | @)| = k() for every noncompact root «,

(ii) the tnvariant eigendistribution ©, has the rate of growth —«.

Assuming this result for a moment we can finish the proof of Theorem 1.
Theorem 2 and Theorem 1.1 imply that the following assertions are equivalent
for k > 0, N € A’ and a minimal parabolic subgroup P:

(i) |\ | @)| > «k(a) for every noncompact root «,

(ii) all leading exponents of =, along P lie in kxpp + &.

By an unpublished result of Harish-Chandra [3, Theorem 4] it follows that
(ii) is equivalent to

(ii’) for every K-finite matrix coefficient ¢ of , there exist N > 0 and s > 0

such that

@] < Ne" 2001 4 [[logally, o € A

Now, the asymptotics of & [20, 8.3.7.3, 8.3.7.4] implies that (ii’) is equivalent
to the condition (ii) of Theorem 1.

It remains ro prove Theorem 2. It is a consequence of deep results of Harish-
Chandra on the structure of ©, [6]. The implication (ii) = (i) is an immediate
consequence of the formula for ©, on the sets of regular elements of Cartan sub-
groups with one-dimensional split components, as was explained in [16, p. 275].

The implication (i) = (ii) is much harder to establish, because we must control
the expressions for ©®, on all noncompact Cartan subgroups. Our argument is
based on remarkable ‘‘coherence” properties of the invariant eigendistributions
0, , this type of argument was used extensively by Hecht and Schmid in their
work on the Blattner’s conjecture [10].

Firstly, from the expressions for ®, on noncompact Cartan subgroups of G
given in Lemma 57 of [6] (more specifically from the fact that the constants
co(s it AT) appearing there do not depend on \ but only on the Weyl chamber
containing \), the following lemma immediately follows.

LEmma 1. Let « > 0 and n & N. The following assertions are equivalent
(i) O, has the rate of growth —«,
(i) ©, has the rate of growth —n«.

Now we shall use Lemma 1 to reduce the proof on the case of linear groups.
This reduction is inessential, but it enables us to use directly the results of
Hecht and Schmid [10].

Let Z be the center of G. Obviously Z C H and by Lemma 51 of [6] we have

0,(zz) = m-,(@)B\(x), 2€Z, z& (G,

where 7, is the character of H whose differential is u € A. Let Z, C Z be the
intersection of the kernels of all finite-dimensional representations of G. Then
G/Z, is a linear group (20, Vol. I, p. 195]. Also, 7,(2) = 1 for every z € Z, .
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Therefore, if n is the order of Z, ,
@,,)\(zx) = ®nk(x)7 zE Zl y X € Gy

and we can consider 0,, as an invariant eigendistribution on G/Z,. By Lemma 1
we see that it is enough to establish our assertion for the discrete series characters
of G/Z, .

Therefore, in the following we can assume that G is a linear group which lies
in its simply connected complexification. In this situation A is the lattice
of weights of .

Let A € A’ and « > 0 be such that |(\ | )| > «k(a) for every « & &, . We
fix a set ¥ of positive roots in ® such that X is dominant with respect to ¥.
Following Hecht and Schmid [10] we can construct a family (¥, u), 0 € A,
of invariant eigendistributions with the following properties:

(i) ©(¥, u) depend ‘“coherently’” on u & A (see §2 of [10]),
(i) O(¥, u) = 0, for all x € A’ dominant with respect to V.

The basic fact about ©(¥, x) on which our argument is based is

@(ii) if (u] @) > Oforall « € &, N ¥, O(YL, p) is a tempered invariant eigen-
distribution [10, Lemma 3.1].

Now we can finish the proof of Theorem 2. Let p be the half sum of the
elements in ¥. Then

A a) > «h(a) 2 k(wp | @), a& & NY,
for all w & W. Therefore we see that
N — xwp | o) >0, weEW, a&E P NV,

Take a positive rational number » = p/q such that » < xand (A — rwp | 8) # 0
forallw & W, & & Then (A — rwp|a) > Oforallw & Wand o« € &, M V.
Therefore for all w € W,

(a) g» — pwp € A/,
and by (iii),

(b) O(¥, g — pwp) is a tempered invariant eigendistribution.

It is easy to see from the expression (2.5) of [10] for (¥, u) that (a) and (b)
imply that ©(¥, g\) = O, has the rate of growth —p. By Lemma 1 it follows
that ©, has the rate of growth —r. Since we can choose r arbitrary close to « we
see that ©, has the rate of growth —«. This ends the proof of Theorem 2.

At the end we want to compare our argument with the argument of Hecht
and Schmid [10]. Asremarked before, our idea is similar to theirs, in the following
way. They tensor a discrete series representation m, for A “‘sufficiently far” of
noncompact walls with a suitable finite-dimensional representation so that all
irreducible constituents of the tensor product remain infinitesimally equivalent
to discrete series representations. Then by a result of Schmid {14, Theorem 1.6]
this tensor product is completely reducible. Therefore it is a tempered repre-
sentation and all its K-finite matrix coefficients satisfy the weak inequality,
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what gives the right estimates for K-finite matrix coefficients of the discrete
series representation m, .

Instead of reducing to the tempered case, what is impossible in our situation,
we have extended Harish-Chandra’s results to the eigendistributions with
positive rate of growth, and used Corollary of Theorem I1.2.1 instead of Schmid’s
complete reducibility theorem.

Although in the situation when all irreducible constituents are infinitesimally
equivalent to discrete series representations Corollary of Theorem II.2.1 is
apparently weaker then Schmid’s result, it actually implies this result. Com-
pared to Schmid’s original argument the following argument uses only very weak
results about discrete series representations.

TreEoREM 3. (Schmid, [14]) Let = be an admissible representation of finite
length. If all irreducible constituents of m are infinttestmally equivalent to discrete
series representations, w 1s infinitesimally equivalent to its semisimplification.

Proof. By assumption, there exists x > 0 such that the character of = has the
rate of growth —«. As in the proof of Theorem 1 and its corollary this implies
that all K-finite matrix coefficients of 7 are square-integrable. This fact can be
also deduced from the theory of constant term [9] and Corollary of Theorem
11.2.1 without any use of results on characters.

Let U be the space of K-finite vectors of =. It is easy to see that there exist
K-finite linear forms #, , ¥, , - - - , ¥, on U such that

Olw =3 [ @ dr

is an inner product on V. Itis obviously (&, K)-invariant, hence U is completely
reducible as a (®, K)-module, what proves our assertion.
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