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Introduction. In this paper we will restate and reprove several old, but largely
unpublished results of Harish-Chandra ([11], [12], [13], [22]) regarding the
behavior at infinity of matrix coefficients of certain representations of reductive
Lie groups. Our methods are rather different from those of Harish-Chandra.
Very briefly put, the difference is that we make a coordinate change that allows
us to formulate things in terms of systems of complex differential equations and
thus apply elegant but elementary results of Deligne [8].
More precisely, let G be a reductive group in what we call the Harish-Chandra

class (see Section 1), K a maximal compact subgroup and the complexified Lie
algebra of G. Suppose that (r, V) is a smooth representation of G annihilated by
an ideal I of finite codimension in (), the center of the enveloping algebra
() of . We will be concerned with a description of the matrix coefficient
(r(x)v, t) as x G tends to infinity, where t is a K-finite vector in V and a
K-finite vector in the dual V of V. If 0 is a Cartan involution of G associated to
K and A a maximal 0-stable closed vector subgroup of G, then G KAK; so
that, because of the K-finiteness assumption one may as well assume x A.
Loosely put, the K-finiteness of t and , together with the assumption that 1
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annihilates V, imply that on A the matrix coefficient (r(a)v, ) satisfies a certain
system of differential equations which extend onto the complex torus one gets
from A by base field extension from FI to G. The solutions of this system are
related to the horizontal sections of a certain holomorphic connection in the
sense of [8], and this connection turns out to have regular singularities at infinity,
which enables us to prove Harish-Chandra’s results with almost no explicit
calculations.

Rather than state here the main results (Theorem 5.6 and 6.2) precisely, we will
look here at the simplest example: G SL(2,1q). Suppose r to contain a
nontrivial vector fixed by K SO(2) and suppose also that the Casimir element
acts on V by the scalar . Choose 4:0 fixed by K in V. Then the function
(r(x)v, 6) may be considered as a function F on the upper half-plane
% (z Gllm(z)>0) which is an eigenfunction for the non-Euclidean
Laplacian. Since V may be written as a sum of eigenvectors with respect to K,
one may as well assume that v is an eigenvector with respect to non-Euclidean
rotations around i; or that in non-Euclidean polar coordinates, if q0 is the angular
variable, the function F satisfies (/0q0)F= inF for some n Z. Now, if
r radial (non-Euclidean) distance from i, the Laplacian may be expressed as

tanh r 0r sinh2r

so that if F F(r, e) f(r)e i,, the function f satisfies

d2f df n
dr2 tanh r dr sinhr f-- ?’f"

This is how Harish-Chandra would express things (see [22, 9.1. Heuristics]). What
we do is use not (r, 9) but (y, q) as our coordinates, where y e r. The equation
above becomes

d 2 + y2 d n2YYY I--;i YY (l-y2)

(compare with 3.7). This looks a little more complicated, but in making the
coordinate change y e r, the irregular singularities of the first equation at

___
z

become regular singularities at 0, . Thus one may apply the classical theory of
Frobenius and--for examplemthe convergence of Harish-Chandra’s series is, in
some sense, explained naturally. (We recall that the natural context of
differential equations with regular singularities is the theory of complex variables,
even though the original equation was considered only for real values of y, and
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that it is this which lets one prove things painlessly.) Thus, for generic values of, one deduces the existence of functions f, f2 holomorphic in the open disc
I)’1 < in ( such that

f(y) +

where s,s2 are the roots of the indicial equation

S2M S=)k.

(This is true when s- s Z. In general one must introduce some terms
involving log y as well. For example, when s s2 1/2 then there exist f, f2 as
above with

f(y) y/2f(y) + y/Zlog y f2(Y).)

It is precisely this sort of analysis that we will carry out for arbitrary reductive
groups. To simplify things slightly, assume G is semi-simple, and let A be a choice
of simple positive roots--i.e, multiplicative homomorphisms of A into Iq_. Then
one can imbed A into t2a via the map a(a(a), a A). Modulo certain
technicalities, K-finite matrix coefficients, when restricted to A, will satisfy a
certain system of differential equations which extend to all of C;a, with
singularities on the hyperplanes a 0 (a A) and the hypersurfaces 7:= (7
any root). For our purposes the crucial point will be that this system has regular
singularities along the hyperplanes a 0 (a A), which are, in some sense, the
points at infinity on A. (Note that all points at infinity on A are transforms under
the Weyl group of these.) This will imply, at least around the points of these
hyperplanes which are not on the hypersurfaces 72 (and in particular around
the origin), an expansion analogous to the one found above for SL(2, Iq).

Perhaps a picture will help. Let G SL(3, Iq). Then

A= a. 0
0 a

a > 0, aa.a

The simple roots may be chosen as a a/a2, fl a2/a3; and the only other
positive root is aft a/a3. Thus one may picture A, as well as a neighborhood
in Iqa, as shown on Fig. 0.1 (the shaded region represents A with all the
singularities intersecting A drawn in also). The dotted circle is a neighborhood of
the identity element in A. We have indicated it in order to contrast our
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coordinate system with that of Harish-Chandra, where our coordinate lines are at
infinity and the curves , become lines meeting at the origin (as for SL(2, Iq),
the relation between the two is exponentiation).

In this example, the regularity of singularities gives expansions around all
points on the coordinate lines except (0, 1) and (1,0). In fact these points may
also be dealt with (as well as their analogues for other groups, of course). This is
an important matter: one is able to deduce properties of the matrix coefficients
everywhere on G from properties around the origin in G6. For example, suppose
that a matrix coefficient (r(a)v,) vanishes as (a)0 for c z in a
neighborhood of the origin. Then in fact it vanishes whenever c(a)0 for c c A.
One can deal similarly with integrability and growth properties (see Section 7).
This part of the theory is called the asymptotics "along the walls" because the
hyperplanes a (c c A) are the walls of the "negative" Weyl chamber
A-= (a CA [(a)< for c CA} in A. Some version of this is due to
Harish-Chandra, but has only been written down in a well known but
unpublished and rather intricate manuscript [12]. In our context, these results
follow (in Section 6) form the earlier ones (in Section 5) by monodromy
arguments in C;6. These arguments appear to us considerably simpler to follow
(although we have not often convinced our colleagues of this simplicity). In
particular, we do not need for this part of the argument any special information
about the nature of the singularities of our system of differential equations on the
root hypersurfaces ,/2= 1. In fact, we know these to be regular ([3], [4]), but we
will not prove this in this paper, nor shall we refer to it in the body of the paper.
Note that for SL(2, Iq) the equation we write for f clearly has a regular singularity
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at y 1; the consequence we wish to point out is that although f has no
singularity at y 1, the two functions f and f2 will in general have singularities
at this point. Getting around this possibility in general is something that must be
taken into account (see the beginning of Section 6); it forces us to state the
behavior of matrix coefficients separately on certain subsets of C; indexed by
subsets of A.

If this paper appears long, it is because we have tried to make it as
self-contained as possible. In Sections 2 and 3 we restate, in a different language,
well known results (see [13], [22, Ch. 9]) on the "radial components" of
differential operators in ()--the analogue of expressing the non-Euclidean
Laplacian in the coordinates (y,q). In Section 4 we show that the matrix
coefficients satisfy a system of first order complex differential equations of the
type considered in [8]. Our main results, as already mentioned, appear in
Sections 5 and 6, and consequences appear in Sections 7 and 8. We include also
a rather lengthy appendix expressing results of Deligne [8] in down-to-earth
terms.

This paper is an outgrowth of some parts of unpublished manuscripts [4] and
[161.
We would like to thank Professor Harish-Chandra for showing to one of us

(D.M.) the manuscripts [12] and [13] during his stay at the Institute for
Advanced Study in 1975/76.

1. Generalities on reductive groups. Let G be a Lie group with the Lie algebra
%. Denote by the complexification of ,q0, and by Ad the adjoint representation
of G in ,q. Let G O be the identity component of G and GI its commutator
subgroup. Let G be the group of all inner automorphisms of . The group G is
said to belong to the Harish-Chandra class if

(i) ,q is a reductive Lie algebra,
(ii) [G:G] is finite,
(iii) Ad(G) c Go,
(iv) the center of G1 is finite.
Connected semisimple Lie groups with finite center and groups of real-valued

points on Zariski-connected reductive algebraicgroups defined over Iq belong to
this class. What is crucial is a hereditary property: if G belongs to this class than
so do Levi components of parabolic subgroups of G. For more about such
groups, see II.1, 11.6 of [20].

In the following we fix, once for all, a group G in the Harish-Chandra class.
All maximal compact subgroups of G are conjugate by the elements of G. We

fix a maximal compact subgroup K of G. Denote by f0 its Lie algebra and by f
the complexification of f0.

Let 0 be a Cartan involution of G corresponding to K, i.e. an involutive
automorphism of G whose set of fixed points is equal to K. We denote its
differential, which is an involutive automorphism of q, by the same letter.
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There exists a G-invariant bilinear form B:go go --> R which is symmetric
and nondegenerate and has the following properties

(i) B(OX, Y)- B(X, OY) for all X, Y .q0,
(ii) the Lie algebra of G is orthogonal to the Lie algebra of the center ZG of G

with respect to B,
(iii) the bilinear map

(X,Y)+-B(X, OY)
is a positive definite inner product for g0.

This inner product extends uniquely to a Hermitian inner product on g.
We fix such a bilinear form B in the following. In the case of a semisimple

group G we can take for B the Killing form of g0.
Let P be a minimal parabolic subgroup of G. Denote by N the nilpotent

radical of P and put L-P N O(P). Then L is the unique 0-stable Levi-
component of P, and P is the semidirect product of L and N. The subgroup
M L K is the maximal compact subgroup of L and if we denote by A the
maximal 0-stable closed vector subgroup of L, we have the direct product
decomposition L MA.
We have the following well-known decompositions

G KAN (Iwasawa decomposition)

G=KAK (Cartan decomposition)

P MAN (Langlands decomposition)

of G, respectively P.
Let to, I0, too, ao, no be the Lie algebras of P, L, M, A, N and t), I, m, a, n their

complexifications, respectively.
The group A acts on g by the adjoint action. The linear operators Ad a, a A,

are self-adjoint with respect to the Hilbert space structure on g. Therefore, if we
denote for a positive character a’A -->

.q, {X .q (Ada)X a(a)X, Va A

we get an orthogonal decomposition

Obviously, .q i. If .q 4: {0} for some a 4:1 we say that a is a root of .q with
respect to A. We denote by E the set of all roots of g with respect to A.
We fix an ordering on Z so that the set of all positive roots E + is equal to
a E l.q, c n }. Let A be the corresponding set of simple roots.
Let

Areg {a A c(a) =/= 1, Va E}
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be the set of regular elements in A. It is the disjoint union of connected Weyl
chambers. We put

A- {a A I(a) < 1, a X)

for the "negative" Weyl chamber corresponding to P. We have a stronger form
of the Cartan decomposition

G K.Cl(A-). K.

Finally we shall recall some well-known results about the universal enveloping
algebras.

Let (),(f) etc. be the universal enveloping algebras of q,f, etc.
respectively, equipped with their canonical filtrations. Let %(q),%(1) be the
centers 6f the universal enveloping algebras )(.q), ).1() respectively, with the
induced filtrations.
As it is well-known, the algebras Gr(), Gr() are canonically isomorphic

to the symmetric algebras S(),S() of , 1, respectively. Under this isomorphism
the algebras Gr(,q) and Gr:(l) correspond to the algebras I(),I() of
-, -invariants in the symmetric algebras S(), S(I). Looking at the adjoint action
of A in @(g), it is easy to conclude that

Let o ()- %() be the projection map with respect to this decomposition. This
map o is an algebra homomorphism compatible with the filtrations on () and
Z() (compare [2, Ch. VIII., [}6, no. 4]). Also Gr o: l(q)- I() is the restriction of
the orthogonal projection of S() onto S() with respect to the natural inner
product structure on S() defined by the Hilbert space structure on . We
include a proof of the following result for the sake of completeness.

PROPOSITION 1.1. The algebra I()
Gr o(I()).

is a finitely generated module over

Proof. Let be a Cartan subalgebra of . Hence it is a Cartan subalgebra of
too. Denote by WI, W2 the Weyl groups of , respectively , with respect to ;
and by S()W’,s()w2 the corresponding algebras of invariants. By a result of
Chevalley [2, Ch. VIII, 8, no. 3, Corollary 2. of Theorem 1] the orthogonal
projection of S() onto S() defines an algebra isomorphism of I(),I(][) onto
S()W’,s()w2 respectively. Now, [1, Ch. V, 1, no. 9, Theorem 2.] implies our
assertion. Q.E.D.

By [1, Ch. III, 2, no. 9, Corollary 1. of Proposition 12.] we have the following
consequence.

COROLLARY 1.2. The algebra 7.() is a finitely generated module over o(E(g)).

By the Poincar6-Birkhoff-Witt theorem, the Iwasawa decomposition of the
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Lie algebra implies the following decomposition of the universal enveloping
algebra (),

Let X: ()6g(a) be the projection map corresponding to this decomposition.
We have I= m@a. The projection map of onto c induces an algebra

homomorphism w: ()(). It is evident that the restriction of X to %() is
equal to 0 o, therefore X ()() is an algebra homomorphism. Obviously
we have Grx= Groa Gro, so 1.1 and the fact that Groa: I(I)S() is
surjective imply the following result.

COgOLLARY 1.3. The algebra S() is a finitely generated module over
Gr X(I(.q)).

2. The infinitesimal Cartan decomposition. In this section we study a
decomposition of the universal enveloping algebra () closely related to the
Cartan decomposition of the group G. Its full importance cannot be fully
appreciated before Section 3 where it will play a crucial role in the study of the
action of () on spherical functions on G.

Let a A. For X o-?j() we put X (Ada-1)X. Define the trilinear map
B L(ct) X 6L(t) X 6L()-- L(.q) by

Ba(H,X, Y)= XaHy

for H (a), X, Y (f). Obviously for Z (m) we have

Ba(H, XZ, Y)= Ba(H,X, ZY ).

Regarding the first (f) as a right (m)-module by right multiplication and the
second (f) as a left (m)-module by left multiplication, the map B, induces a
linear map

such that

F,,(H (R) X (R) Y)= X"HY

for every H J(c), X, Y J(f).
In the following we put

viewed as a complex linear space.
We have the following infinitesimal version of the Caftan decomposition for

the universal enveloping algebra

THEOREM 2.1. For a Areg, r’ -+ .L(.q) is a linear isomorphism.

To prove the above theorem we need a few preliminary remarks.
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LEMMA 2.2. Let y be a root, Z gv
U= Z+ OZ f and

and a A such that y(a) 4=1. Then

"f(a)
y(a)2 ( Ua "(a) U)

Proof. Since 0 acts as inversion on A, 0gv
the relation U Z + OZ implies

for every root ,. Therefore,

Ua= "(a)-lz -I-- y(a)OZ,

which immediately implies our assertion. Q.E.D.

Let cl be the image of (I + 0)’n- f. This is the orthogonal complement to rn
in f.

COROLLARY 2.3. For an), a A reg

q cla ( Ct () f.

Proof. By 2.2 and the Iwasawa decomposition g f@a @rt it follows
immediately that g is spanned by cta, a and f. Now

dim cl + dim a + dim f dim cl + dim ct + dim f

dim rt + dim n + dim f dim g

which implies g ft (D cI (D f. Q.E.D.

To conclude the proof of Theorem 2.1, apply Poincar6-Birkhoff-Witt.
Denote by 6. the algebra of functions on A reg generated by a, a A, and

(1 y2)-1, y Z. For each a A reg there is a unique linear map of (R) into
fft(.q) which takes f (R) X, f 6, X ’J, into f(a)Fa(X ). We denote this map by
F, too.

THEOREM 2.4. For each X (.q) there exists a unique 1-I(X) (R) d such
that Fa(H(X))= X for ever); a Areg.

Proof. By 2.1 the uniqueness is obvious. We prove the existence of H(X) by
the induction in the degree of X. If X is of the degree zero the assertion is
obvious.

Let X .t,,+(.q), nZ+. By Poincar6-Birkhoff-Witt and the lwasawa
decomposition of .q we have the decomposition
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Therefore, there exists X0 l(c)l(f) such that X- X0 rt%, (.q). It follows
immediately that we have to prove the assertion only for the elements of rt%, (.q).
In addition, we can suppose that X is of the form ZY, where Z .q, for 3’ Z+
and Y 1 (.q). By 2.2 we have

ZY=
y(a)
y(a)

(U’Y- y(a)YU- y(a)[ U, Y])

for every a A reg" Applying the induction assumption to Y, U, Y] Jn (.q), the
assertion follows immediately. Q.E.D.

The adjoint action of M on #t(tf) defines a natural action of M on ) @ c by

rn .(f(R) H (R) X (R) Y)=f(R) H (R) (Adm)X (R) (Adm)Y
for mM, f., H )l(c) and X,Yql(f). If we consider l(.q) as a
M-module under the adjoint action we have the following result.

PROPOSITION 2.5. The linear map H l(.q) . (R) is a M-module homomor-
phism.

Proof. For every m M, f , H 1 (ta) and X, Y )t(f) we have

F.(m(f (R) H (R) X (R) Y))= f(a)((Adm)X)aH(Adm)Y
(Adm)(f(a)XaHy) (Adm)ro(f (R) H (R) X (R) Y),

which immediately implies our assertion. Q.E.D.

The filtration on the universal enveloping algebra (a) induces a filtration of
.(R) by

for n Z. We call it the -filtration and the corresponding degree the -degree.
The linear map H:()# @ is obviously compatible with filtrations on
() and # @ .

Denote by the ideal in generated by the functions a, a .
Paooso 2.6. (i) If X (), n Z+, then the o-degree of H(X) is

less than or equal to n,
(ii) ]f x (), then H(X) @ .
Proof. We can suppose that X ZY where Z , E +, and Y ().

Then by 2.2 we conclude that

x
rta ( av_ V, V]).
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That Y and [U, Y] lie in 9, () immediately implies (i). The assertion (ii) is also
obvious from the above relation. Q.E.D.

Example 2.7. Let G SL(2, R) and choose

K={( cosq sinq)-sin99 cosq0

N=
0 xR}.

With this, the Cartan involution 0 takes an element of to its negative transpose,
and the single positive root c is given by

0 ) 2.
0 -1

As a basis of one has the elements

H= 0 -1

(0 1)Y=
0 0"

The center (q) of the enveloping algebra () is generated by the Casimir
element

C=H2-H Y.OY.

By 2.2, for a A reg one has

c(a)
c(a)2 o(a)X ).

After a short calculation it follows that

a(a)2

.)2 2)_ a(a)(1 + a(a)2) xax,C=H-- l+a(a):H+ ((X +X
a(a) (1 a(a):): (1 a(a):):
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for a A reg; which implies

II(C) (R) H2) (R) 1+o2
(R)H(R)I(R)I

2 a(1 ++ c (R) (R)(X2(R) + l(R)X2) (R)I(R)X(R)X.
(1 c2)2

(1 c2)2

3. The --radial components. Let (-,E) be a finite-dimensional smooth
representation of K K. A r-spherical function on G is a smooth function
F" G E such that

F(kf- ’xk) (k,,k)-’F(x)
for every x G, k l,k u_ K. We denote by C(G) the linear space of all
z-spherical functions on G.

For example, "r might be the representation of K K on E Homc(U2, U)
arising from a pair of finite-dimensional smooth representations (’r;, U), 1,2,
of K:

k,k K,

for every T E. In this case a z-spherical function F on G satisfies

F(k xk2) ,r k )F(x),rz( k2)
for every k, k K, x G.

Let Eg be the linear space of M-invariants in E, with M inbedded diagonally
into K K.

Recalling the Caftan decomposition of G we see that a z-spherical function F
is completely determined by its restriction F Areg to Areg. Also, it is evident that
the restriction F] A,.eg is a smooth Eg-valued function on A reg. Therefore, the
restriction map Res" F F Areg is a linear injection of the space C(G) into the
space C(Areg; E M) of smooth Eg-valued functions on Areg.
The elements of the universal enveloping algebra () act as left-invariant

differential operators on G. Therefore the element X (q) maps a z-spherical
function F on G into a smooth E-valued function X. F on G. Our main aim in
this section is to find an expression for Res(X. F), X (.q), F C(G), in
terms of Res F. To accomplish that we shall use the results on the infinitesimal
Cartan decomposition from Section 2.

Let X-,X’ be the principal antiautomorphism of L(), i.e. the anti-
automorphism extending the map X-- X on q.

Let . 67() (R) ()_ Homc(Eg, E) be the linear map defined by

(X (R) Y)(T)= (X (R)
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for X, Y (f) and T EM. Then

.(XZ (R) Y)= .(X (R) ZY)

for all Z (m) and X, Y (f). Therefore (, induces a linear map from
(f) (R)(,,)(f) into Homc(EM, E) which we denote also by .

Further, ,’(f)(R)(m)%(f)-->Homc(EM, E) defines a linear map ,/ (R)
(R) from (R) d c (R) (a) (R) (f) (R) (,,,) (f) into (R) (a) (R) Homc(EM,

E).
Finally, we put

II n II t() (R) a(ct) (R) Homc(EM, E).

Considering the elements of (a) as invariant differential operators on A, the
elements of (R) (a)(R) Homc(EM, E) can be viewed as differential operators
on A reg mapping smooth E M-valued functions into smooth E-valued functions
by the rule

(f (R) H (R) S)F= f H(SF)
where f , H (a), S Hom(EM, E) and F C(Areg; EM).

It follows that 1-I is a linear map attaching to every left-invariant differential
operator X on G a differential operator H(X) on Areg. Because of the following
result we call I-I(X) the r-radial component of X.

TH.OR.M 3.1. For every r-spherical function F on G and X (.q) we have

Res(X. F) H(X ). Res F.

Proof. Let C (G; E) be the space of all smooth E-valued functions on G. Let
L and R be the left and right regular representations of G on C(G;E)
respectively. By definition, RxF X. F for every X () and F C(G; .E).
Also

(RxF)(1) (Lx,F)(I)
for every X (.q) and F C(G; E). This immediately implies

(X F)( g) (Rr, ,RxRcF)( g) (RxRgF)(1)
(Lx,RgF)(1) (RcLx,F)(1) (Lx,F)(g)

for all X l<(.q), g G and F C(G; E).
If we take now F C(G), X, Y (f), H (a) and a A we get

(Xa" H" Y. F)(a)= (H. Lx,. Y. F)(a)= "r(X (R) Y’)(H. F)(a)

-(X (R) Y)(H. F)(a).
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By 2.4 we have X Fa(H(X)) for every a E A
the above equality we see immediately that

reg and X E (g). Therefore, by

(X. F)(a) (Fa(H(X))F)(a) (I-I(X) Res F)(a)
for every X (q), F C(G) and a mreg, proving our assertion. Q.E.D.
Denote by j()g the M-invariants in (g) with respect to the adjoint action.

PROPOSITION 3.2. The map 1-I maps l(.q)g into @ (R)(a)(R) Home(E M,
EM).

Proof. This follows immediately from 2.5. Q.E.D.
Put

@ @ 6L(cI) @ Homc(EM, EM ).

It is easy to check that @ is a subalgebra of the algebra of all differential
operators on Areg mapping C(Areg; E M) into itself.

Let (g)K be the algebra of K-invariants in (,q) with respect to the adjoint
action. It is obvious that for every X (g)K and F C(G) the function
X. F is again a r-spherical function, i.e. C(G) has a natural (g)K-module
structure. By 3.2 the map fI, maps l(g): into 6. Moreover, we have the
following result showing that the restriction map is compatible with the natural
module structures.

THEOREM 3.3. The map 1-I (ft)K- @ is an algebra homomorphism.

Proof. Let X, Y j(g)K and F C(G). As we remarked before Y. F
C(G). Therefore

Res(X. Y.F)= I-I(X). Res(Y. F)= II(X). fie(Y). ResF,

by 3.1. This proves that FI(X Y)- H(X)FI(Y) annihilates the restrictions of
all r-spherical functions on A reg
By the Cartan decomposition the map (kl,k2,a)-+ kak is a differentiable

map of K K A- onto an open dense submanifold G’ of G. If we consider M
as diagonally imbedded into K K, this map induces a diffeomorphism of
[(K K)/M] A- onto G’.

Let be a compactly supported smooth EM-valued function on A-. By the
above remark, setting

F(k"ak2) r(k,,k2)- ’q(a
for k, k2 K and a E A-, defines a smooth E-valued function F on G’. Putting
F equal to zero outside G’ we get a r-spherical function F on G such that
FIA- q.
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By the previous discussion, the differential operator 1-I(X Y)- II(X)II(Y)
annihilates q. This implies that the support of H(X. Y)-II(X)II(Y) is
disjoint from ,4 -. Now the fact that its coefficients are rational functions of roots
clearly implies that the differential operator 1-[(X Y)- 1-I(X)II(Y) is zero on
Areg. Q.E.D.
The space @ (R) l(ct)(R) Homc(E’,E is canonically filtered by the degree of

the differential operators. The map r/ "@ (R) d oJ (R) (a)(R) Homc(E’, E) is
evidently compatible with the filtrations. Therefore the map II’(,q)-@ (R)
)J(ct) (R) Hom(EM, E) as well is compatible with the filtrations. Moreover, we
have the following direct consequences of 2.6.

PROPOSITION 3.4. (i) /f X rt (,q), n Z +, then the degree of II(X) is less
than or equal to n.

(ii) If X no)l(q), then H(X) 31L (R) (ct) (R) Homc(E’, E).
It is evident that

Gr( (R) &() (R) Homc(Eg, E)) (R) S() (R) Homc(Eg, E),

where the grading on (R) S(c0 (R) Hom(EM, E) is inherited from the grading of
S(n); moreover

Gr@ (R) S(a) (R) Homc(EM, EM ),

as a graded algebra. Therefore the map II, defines a map

GrH" S(q) . (R) S(c)(R) Hom(EM, E).

The homomorphism H’)l(.q)"-6 being compatible with the filtrations,
Gr He" Gr "(L(.q)K---) Gr@ is an algebra homomorphism.

COROLLARY 3.5. We have

(Gr H)X (R) (Gr x)X (R)

for every X S(g).

Proof. Let Y n (g). By the definition of X we have

Y- X(Y) nn_ ,(g) + ._
From 3.4 we immediately conclude that the degree of H,( Y- X(Y)) is less than
or equal to n 1, which implies our assertion at once. Q.E.D.

Finally ;(I) is contained in (g)" which, by 3.2, implies that II, maps ;(I)
into

PROPOSITION 3.6. The map H" %(I)- (R) is an algebra homomorphism.
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Proof.

and

Obviously E(I) E(rrt)(ct). If X E(m) and H (a) we have

,YI(X. tt (R) H (R) X (R)

I-I(X. H)F= r(X (R) 1)(H. F)

for F C(Areg; EM). This immedately implies our assertion. Q.E.D.

Example 3.7. The r-radial components of the Casimir element for SL(2, Iq).
We follow the notation from 2.7. Let

cos qo sin qo ) e incp,% sin qo cos qo

for n 7. Then an irreducible smooth representation r of K K has the form

r(k,k) r.(k,)rm(k2), k,,k2 K,

for some n,m 7. Therefore, by 2.7, the r-radial component of the Casimir
element C is given by

2 0/(1 -- O2)
1-I( C H 2 + a2

H (n2 q-" m2) -nm
1-- a (1- a2) (1- O2)2

If we identify A with R_ via the map a" A - R_, the differential operator H
on A corresponds to the differential operator x(d/dx) on Iq_. Under this
identification 1-I(C) defines a holomorphic differential operator

d )2 "+" Z d n Z z(1 + z 2)
I-I(C)= Z-z l_zZZzz -( + m2) -nm

(1 z2) (1 z2)
on C\ 1, }. It is easy to check that it has regular singularities at 0, 1, and

Let F be a r-spherical function on G annihilated by a nonzero ideal I in
%(q) C[C]. The ideal I being generated by a polynomial P(C) in the Casimir
element C, this is equivalent to the differential equation P(C). F 0 on G.
Now, by 3.1 and 3.3, it follows that the restriction Res F of F to A reg Iq_ \

satisfies

P(H(C )). Res F 0,

and, by the above remark, this differential equation has regular singularities at
0, 1, and m. Therefore, using classical results on such equations [7, Ch. 4], we
can find the expansion of Res F on A- (0, 1).
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As we remarked in the Introduction, this classical remark suggests the
approach taken in the next sections, to the analysis of r-spherical functions in
general, as a natural one.

4. Differential equations satisfied by spherical functions. The space C(G) of
all r-spherical functions on G has a natural (f0-module structure. We say that a
r-spherical function F is ()-finite if it generates a finite-dimensional
()-invariant subspace of C(G). Let A(G) be the subspace of all %()-finite
r-spherical functions on G. A simple argument using the regularity theorem for
elliptic operators proves that the elements of A(G) are in fact real analytic
functions on G (see for example [20, p. 134]).
A r-spherical function F on G is ()-finite if and only if its annihilator I in

() is an ideal of finite codimension. For an ideal I of finite codimension in
%() Je denote by A(G; I) the subspace of all %()-finite r-spherical functions
on G annihilated by I.

All elements F A(G; I) satisfy the differential equations

Z.F=0, ZI,

on G. Therefore, by 3.1, their restrictions to Areg satisfy

H(Z). ResF= 0,, Z I,

on A reg" The main point in this study of %()-finite r-spherical functions on G is
that this system of differential equations, because of the results of Section 3, has
a number of nice properties.
The following result is crucial for all that follows.
Let 1 be an ideal in (.q). We denote by 0 the left ideal in (R) generated by

H(I).

THEOREM 4.1. If the ideal I has finite codimension in (,q), the 6.-module
6/6 is finitely generated.

To prove 4.1 we need first a simple lemma.

LEMMA 4.2. Let I be an ideal of finite codimension in 7(.q). Then Grx(GrI)
generates an ideal of finite codimension in S(ct).

Proof. If we equip I and (.q)/I with induced and quotient filtrations
respectively, the exact sequence

gives the exact sequence

OGr I Gr() Gr((.q)/I) 0
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by [1, Chapter IIl, 2, no. 4, Proposition 2]. The space 9Z(.q)/l being
finite-dimensional, Gr((.q)/l) is finite-dimensional too, which implies that Gr I
is an ideal of finite codimension in GrZ(g)= l(.q). By 1.3, S(a) is finitely
generated as a module over Grx(l()), which clearly implies our assertion.

Q.E.D.

Now we can prove 4.1. If we equip @ and @/@ with the induced and
quotient filtrations respectively, by [1, Chapter III, 2, no. 4, Proposition 2] we
get an exact sequence

0- Gr@ --) Gr @ - Gr(@/@)--) 0

of .-modules. By [1, Chapter III, 2, no. 9, Proposition 12] it is enough to show
that the -module Gr @/Gr@ is finitely generated.

Let H(1) be equipped with the induced filtration. Then Gr@ is the left ideal
in Gr@ generated by Gr(H(1)). The homomorphism H:(.q)-@ being
compatible with the filtrations, we have

(Gr H)(Gr I c Gr(H(I )).
Let .q be the left ideal in Gr@ generated by (Gr H)(Gr I). Then obviously Gr@
contains ,q. But, by 3.5, we have

(R) S(a).Grx(Grl) (R) Homc(EM, E M),
and by 4.2 we conclude that Gr(R)/, is a finitely generated -module. This
immediately proves 4.1, Gr(R)/Gr@l being a quotient of Gr(R)/.

Let AA {a A ]c(a) 1, Va A). Obviously, A6 is a maximal 0-stable
closed vector subgroup of the center ZG of G, and

A =(A O GI) XA,x.

Let A be a finite set of characters 7’ A FI_ such that
(i) A C A,

(ii) the characters ? A\A are trivial on A GI,
(iii) the differentials of X A form a basis of the linear dual of ct.

Let (H,; 7 A) be the corresponding dual basis of a, i.e. such that

d(H)=6 if ,A.

Let F be a (l)-finite r-spherical function on G annihilated by an ideal I of
finite codimension in (). By 4.1 there exist D 1, D_ De @ such that
their images in (R)/(R)/ generate it as a -module. Then there exist functions
gxo , ’ A, < i,j < p; such that

P
HxOi- gxoDj 6"0,

j=l

for every),A, < i< p.
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By its definition (R)z annihilates Res F. Therefore, if we put

DRes F
=

DeRes F
and

gx! gx2 gxe]

] (R) ltr,
gxe gx2

for A, we see that the real analytic (EM)p-valued function on A
the system of differential equations

reg satisfies

Hxt} Gxt}, h A.

Let _" A C be the imbedding of A into OA defined by

h__(a) ((a); A)
for every a A.
The functions from eL extend to rational functions on CA holomorphic on the

complement of the union Y of the hypersurfaces

for y Z.
The differential operators Ha, ) A, correspond naturally, to the holomorphic

differential operators zxOx, , A, on GA. Therefore, the elements of 9
correspond to holomorphic differential operators on the complement of Y in 0a.
The function F, being real analytic on A, extends to a holomorphic function

on an open set in (C*)A containing A, with values in E M, which we denote also
by F.

Therefore the corresponding function extends to a holomorphic function on
\ Y with values in (EM)p, which satisfies the system of first order differential
equations

zx)x Garb, , A,

on \ Y, where Gx, , A, are holomorphic matrix valued functions on cA\ Y.
We shall see in the following sections that the study of the above system of

differential equations will enable us to describe the asymptotic behavior of
z-spherical functions inside the negative Weyl chamber A- (Section 5) and
"along the walls" of A- (Section 6).
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5. Asymptotic behavior of r-spherical functions on A -. In this section we shall
study the asymptotic behavior of a r-spherical function F from A(G; I) inside
the negative Weyl chamber A- using the differential equations studied in the last
section. By the procedure described there we associate to F a holomorphic
function on an open set 2\ Y in Ga\ Y, with values in (EM)p, which satisfies
the system of first order differential equations

zx0xO Gx, , A,

on 2\ Y; where G,, X A, are holomorphic matrix valued functions on Ca\ Y.
Let D be the unit disc in G and D* D \{0}. Then obviously

(D6oA\6)(’I Y=O,
that implies that the functions Gx, X A, are holomorphic on D CA\a. It
follows that the function satisfies on 2 C (DA Ga\a) the system of
differential equations of the type considered in the Appendix. By A.1.2 we know
that extends to a multivalued solution of this system on (D*)a (G*)a\a; and
by Deligne’s result [A.1.6] we know that (I) has the unique canonical form

Os,mzSlogmz

on (D*) (C*)a\a.
ForsCa andmZ+ we put

(Xs)(a) H X(a)’
and

(1ogmX)(a) H (lgX(a))m
,A

for a A. Using this notation, the fact that F is the first component of gives us
the existence part of the following preliminary form of the main result of this
section. The uniqueness follows from A.1.7.

LEMMA 5.1. There exist
(i) a finite set S of mutually integrally inequivalent elements of Ca, and
(ii) for each s S a finite set Fs.m, mZa+, of nontrivial holomorphic

E M-valued functions on D Ga\a such that on each of the coordinate hyperplanes
at least one of them is not identically zero, such that

F F.mMlogm)t

on A-.
This S and the F. are unique.
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Let

)k

be the power series expansion of Fs, on A-. Then

F Cl,mllogm
I,m

on A and such an expansion is unique. If CI,m =/= 0 for some m ZA+ we say that
is an exponent of F.
We say that t, s IA are A-integrally equivalent if t s Za. Also we put

t<as if s-tZ+.
We call this relation the A-order on GA.
The minimal elements of the set of all exponents of F with respect to the

A-order are called the leading exponents of the r-spherical function F.
If t GA is a leading exponent of F we say that the cor.responding character

kt:A --> G* of A is a leading character and

Ft Z Ct,mtlgmk
m

is a leading term of the ,r-spherical function F.
The fact that the r-spherical function F is annihilated by the ideal I imposes a

severe restriction on the leading terms and leading characters of F. They are
consequences of the following theorem.

THEOREM 5.2. Let F A(G; I). Then all leading terms of F are annihilated by

Firstly we need a simple fact which follows by direct computation. Let
e zA+ by such that all its coordinates are zero except the/x-th coordinate which
is equal to one.

LEMMA 5.3. Let ! A, CA and m ZA+. Then

I,X log X + m,? log e,LX.log )k

To prove 5.2 we observe first that by 3.4 for every Z %(6) we have

ri (z) rI (o(z)) (R) (R) Homc(E , Eu ).

By 5.3 this implies that for Z ;(g) we have

))F, n (Z )F,

modulo terms involving XSlog%k where t < as, s 4 t. Also, the fact that t is a
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leading exponent coupled with 5.3 implies that

H(Z )F, = 1-I( Z )F

modulo terms involving ’logm?, s 4= t. This immediately implies that

n(o(Z))F,=O
for all Z I, that proves 5.2.

Let U be a finite-dimensional A-module. For a character w A (3* we denote
by U, the submodule of U defined by

U,o u U (a w(a))’’u O for some n N and all a A ).

The submodule U,o is called the w-component of U. If U,o : {0}, w is called an
A-weight of U. Of course, U is the sum of its various w-components.
The ideal I being of finite codimension in (g), by 1.2 the ideal (0o(I)

generated by o(I) in (I) is of finite codimension. Therefore, ()/()o(I) is a
finite-dimensional a-module, and because A is simply-connected it has a natural
structure as A,module.

If w is an A-weight of 6Z()/7()o(I) we say that it lies over I.

PROPOSITION 5.4. If F A(G; I), all leading characters of F lie over I.

Proof. Let t be a leading exponent of F. By 5.2

H(o(1))F, 0;

and by 3.6 we see that the annihilator J of F in (I) is an ideal containing
Z(l)o(1). Therefore (1)/J is a quotient of the finite-dimensional c-module
Z(I)/(Oo(l ). Obviously, an A-weight of 7()/J is also an A-weight of
(0/(0o(1), i.e. it lies over 1.
The differential dJk of the character ;kt:A (3* is a O-linear form on a. By

5.3 we have

H d?’)(H ))";k’logm;k 0

for all H a and sufficiently large n N. This implies that for sufficiently large
nN

(H l-l ))"F, o,

for all H a; i.e.

(H-(dX’)(H))"J
for all H . This obviously implies that ;k is the only A-weight of 7()/J, and
by the above remark it ties over I. Q.E.D.
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Remark 5.5. By 5.4 there are only finitely many possible leading characters
for all spherical functions on G annihilated by an ideal I of finite codimension in
(.q). This finite set is independent of the representation " of K K.
Now we can formulate the final version of the main result of this section. It is

a slight improvement of the result of Harish-Chandra [13], [22, Vol. II, 9.1.1.1].
Put _’A Cx defined by

(a) (a(a); a A).

THEOREM 5.6. Let F be a r-spherical function on G annihilated by an ideal I of
finite codimension in 75(). Then there exist

(i) a finite set S6 of mutually A-integrally inequivalent elements of GA,
(ii) for each s Sx a finite set Fas,m, m ZA+ of nontrivial holomorphic

E M-valued functions on D such that on each of the coordinate hyperplanes at least
one of them is not identically zero, such that

on A-.
This S

F- ( Fs,m a)YkSlogmX

and the Fs.m are unique.

Proof. By the definition, all exponents of F are contained in the union

U (t +
where t varies in the set of all leading exponents of F. By 5.5 there are just
finitely many terms in this union, which implies that the holomorphic functions
F, appearing in the expression for F in 5.1 depend polynomially on the
variables zx, A\A; i.e.

Fs, ’ Gs+ k,mZ
k

where k 7A\A the EM-valued functions Gtm are holomorphic on D a and the
sum is finite. This proves the existence of the above expansion. The uniqueness
follows from the uniqueness of 5.1. Q.E.D.
Remark 5.7. There is a simple relation between the leading exponents of F

and the elements of $6. To each class of A-integrally equivalent leading
exponents we associate an element s Sa, whose coordinates are the minima of
the corresponding coordinates of the leading exponents in this class.

Example 5.8. As we remarked in the Introduction, the functions Fm, in
general, have singularities on the boundary of D A, SO that the expansion from 5.6
does not hold for regions of A larger than A-. The simplest example of this
general phenomenon is in the case of SL(2, Iq). In the following, we use the
notation and results of 2.7 and 3.7.
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Assume that F is a nonzero r-spherical function on SL(2, Iq) satisfying

)2_C.F- F,4

where C\Z. Then the restriction of F to A satisfiesreg

)2_ ResFI-IT(C ). Res F 4

and the indicial equation at 0 is

s2_s_k2-1
4

i.e. possible leading exponents are 1/2(1 + X) and 1/2(1 -)k). Therefore on A- we
have

F= F+ a l/2(l+;k) -- F a l/2(l-x)

and a more detailed inspection shows that F+ and F_ are nonzero. The roots of
the indicial equation at are _+ (n + m); therefore F is, up to a constant factor,
the only solution of the above equation on A regular at 1. This evidently implies
that both F+ and F_ have singularities at this point.

6. Asymptotic behavior of r-spherical functions along the walls of A-. Let F
be a r-spherical function on G annihilated by an ideal I of finite codimension in
;(). Theorem 5.6 gives an expression for F on K. A- K which describes the
behavior of F(x) as x passes off to infinity in certain ways. For example, if
a A-, then it yields a perfectly satisfactory description of the asymptotic
behavior of F(a t) as > 0 goes to infinity. On the contrary, if a A is a
boundary point of A-, it doesn’t give us any information about the behavior of
F(at). Roughly speaking, 5.6 describes the behavior of F(a) completely if
a A- "stays far away" from the boundary of A- as it goes to infinity.
Unfortunately, for many purposes what is needed is a description of the behavior
of F(x) as x goes to infinity more or less arbitrarily; and in such cases 5.6 is
clearly insufficient. Therefore, we must give expressions for F on the closure of
the Weyl chamber A-. In a perhaps ideal situation we would be able to replace
the open polydisc D a in 5.6 by its closure; this would certainly yield the
uniformity we require. However, even in the case of SL(2, Iq), as we remarked in
5.8, the functions Fa

s,m are not defined in general on CI(A ). What we are forced
to do, is to cover CI(A by (overlapping) subsets indexed by 19 c_ A and give for
each 19 a grouping of the terms FmXSlogmX with the property that the sum of
terms in a group is defined on the corresponding subset. In some sense, by this
grouping procedure we cancel out the singularities of FA along the wall of A-
corresponding to 19. What we will have, then, is not a single expansion good on
all of CI(A- ), but on each of the elements of the cover a different expansion.
However, all of these expansions, as it will be obvious from the construction, are
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completely determined by the expansion inside A- given by 5.6, which
corresponds to 19 O. For SL(2, R), for example, the cover has only two
elements: one is A- itself and the other is CI(A- ). On A- there is no grouping
of terms necessary, but on CI(A-) it is only the sum of all the FmMlogm which
we know to be defined.

Let (R) be a subset of the set of simple roots A. Put

Aft (a A la(a) 1, a O; a(a) < 1, a A\O).
We call Aft the wall of A- determined by O. We have

A =A-;

the walls A, ) C_ A, are mutually disjoint; and

CI(A-)= U Aft.

Now we can define the cover of CI(A-) we alluded to above. We put

A ()) a C A a(a) < 1, a C O; a(a) < l, a c A\O).
Evidently A- (19) is a neighborhood of the wall Aft in CI(A- ), and

A-(O)= U
in particular

A- (A) CI(A
Now we shall describe the grouping procedure. First, let’s recall the statement

of 5.6. If F is a r-spherical function on G annihilated by I, there exist
(i) a finite set SA of mutually A-integrally inequivalent elements of cA;
(ii) for each s S a finite set FA A

s,m, m Z+, of nontrivial holomorphic
functions on D , such that on each of the coordinate hyperplanes at least one of
them is not identically zero, with

F=] FA( s,m a).SlogmX
$,111

on A-" and SA and Fa
s,m are unique.

In the following, we shall consider CA\ as naturally imbedded into GA.
Generalizing the definitions from the last section we say that t,s GA\ are
(A\ (R))-integrally equivalent if t-s ZA\, and we put

t < a\os if s- t 7A\O"

we call this relation the (A\(R))-order on CA\. Let PrA\o be the projection map
from CA onto CA\.
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The set PrA\o(Sa) splits into a finite number of classes of (A\(R))-integrally
equivalent elements. To each equivalence class we associate an element s CA\O
whose coordinates are the minima of the corresponding coordinates of the
elements in the equivalence class. We denote the set of all such s (36\o by Sa\o.
Evidently, the elements of SA\O are mutually (A\O)-integrally inequivalent.

Let s SA\O and m ._+TA\O. We put

F E Ft,m+,,z’-Slg"z
where the sum is taken over all t SA such that PrA\O(t is (A\)-integrally
equivalent to s and n . Evidently t s 2 G; hence this function is
well defined on D (0, 1) and it extends to a holomohic function on any
simply connected open set in D (D*) containing D (’) (0, 1).
From A.1.7 and the corresponding statement for the functions F, it follows

immediately that for each s Saxo and any coordinate hypelane in
corresponding to an element of 0, there exists m 7Axo such that Faxo is not
identically zero on this coordinate hypelane.

Also, by the construction, we have

F= E (F, )Slgm,

where s S and m _+7A*, onA -.
To summarize this discussion, we have the following version of the expansion

from 5.6 "relative to ":
There exist
(i) a finite set S of mutually (AO)-integrally inequivalent elements of

ca;
(ii) for each s S. a finite set , m _+ of nontrivial holomohic

functions on a neighborhood of D* (0, 1)* in D* (D*), such that on
each of the coordinate hypelanes corresponding to an element of AO at least
one of them is not identically zero, with

F\ a_.)hSlogmX
on A-.

If O O this expansion is exactly the same as in 5.6, but in the other cases the
functions Fa. can be holomorphically continued to a larger region giving us
control over F on CI(A- ).
More specifically, we have the following crucial result.

LEMMA 6.1. There exists a domain C(O) in Da\(C*) containing
DA\ (0, 1] such that the functions FA\ extend to holomorphic functions on
c(o).
We postpone the proof of 6.1 for a moment. Recallying the definition of the

elements of our cover A- (), c_ A, of Cl(A- ), we see that 6.1 immediately
implies the following crucial result, which gives us control over the behavior of F
on all of CI(A- ).
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THEOREM 6.2. Let F be a z-spherical function on G annihilated by an ideal I of
finite codimension in (g). For any set (9 C_ A we have

/’FA\ o a)SlogmkF= s,m

on A- (0).
It remains to prove 6.1. It is nontrivial only in the case when O O. Therefore,

in the following, we fix a proper subset (R) of A.
We denote by Xo the subset of X consisting of all roots which are products

of elements of O, i.e. of roots 3’ such that A Yr"
Let0<e<l and put

Evidently X (0, 1] intersects Yv if and only if 3’ Xo. Therefore, there exists
the largest positive number 6 such that, if we put

x2 (z 10 < Rez < + *, Ilmz=l < *, O)
and

X(O, IE) X X X2 ( CA,
the following condition holds: for each y Z, Yv N X(O, e) 4:0 implies
.(see Figure 6.1).

FIGURE 6.1
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It is obvious that the union of all X(O,e), 0 < e < 1, is a domain in
D\ ((3*) contianing DA\ (0, 1]. Therefore, to prove 6.1 it is enough to
show that the functions F,A extend to holomorphic functions on X X(O, ).
The proof of this statement consists of two steps.

In the first step of the proof we show that the z-spherical function F extends to
a multivalued holomorphic function on the complement of coordinate hyper-
planes in X. The proof of this assertion is based on a careful study of the system
of differential equations for F from Section 4 and monodromy transformations
around its singularities.

Let Y1 be the union of the intersections of X with the coordinate hyperplanes,
i.e.

Y z X zx O for some X A\O)

Y. the union of the intersections of X2 with the root hypersurfaces Yv
i.e.

and

{z X2Iy(z)2 for some

for y Xo,

X] X\ Y, X’ X2\ Y2.
Finally we put X* X’ X’. We fix a base point x0 (x l, x2) X* fq A of

S*.
We can realize the universal covering space X] of X as

(x GAXOlRex, < 1og, a AO),
the covering map’X X being the ordinary exponential map. We fix a
base point of X as the point above x with real coordinates.

Let X be the universal covering space of X2 and 2 its base point above x2.
Then

x*= x

is the universal covering space of X* with the base point Y0 (Y, Y2).
Now we invoke the results and notation of Section 4. The restriction of our

r-spherical function F on A is real analytic, so it extends to a hoiomohic
function on an open set in (G*)a containing A, which we denote by F too. w
corresponding function extends to a holomohic function on k Y which
satisfies there the system

zxOx Gx, X A,

of first order differential equations, where Gx, X A, are holomohic matrix
valued functions on Cak Y. In particular, Gx, X A, are holomorphic on X*.
Therefore, the function satisfies this system on X* a.
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By shrinking f if necessary, we can assume that X n f is connected. Then
X* n f, as a complement of a proper analytic set in X , is connected too. Let
U be the connected component of its inverse in X* containing the base point Y0.
By A.1.2 the pull-back of to U extends to a multivalued solution of our system
on X*. This implies, in p.articular, that the pullback of F to U extends to a
holomorphic function in X*. Abusing notation slightly, we denote it by F too.
The critical point, which enables the whole argument to work, is that

"//’l(X*, X0)-- ’7/’I(X,xI) X "//’l(X ,X2)
as the direct product of groups. Roughly speaking, the loops around coordinate
hyperplanes corresponding to A\I9 and around the singularities Yv, 3’ 20,
commute.
The structure of Y2 implies immediately that each element of rl(X’,x2) is

represented by a loop lying in ((Xl) X’) n f. Therefore the monodromies with
respect to the elements of El(X’,x2) act trivially on F, and F can be viewed as a

X* X’.holomorphic function on..
Now we can consider X’ X’ as imbedded in X’ X_, which is in a natural

way the universal covering space of X’ X2. Let V be the connected component
of the inverse of (X( X2)n f in X X. containing the base point ()l,X2).
Then F extends to a holomorphic function on (X’ X’) U V.
The complement of X’ X’ in X’ X is ju,st X’ Y2. Obviously each

connected component.of the set of points where X’ Y2 is nonsingular and of
codimension one in X’{ X2 intersects V. Therefore, by A.1.8, the function F
extends to a holomorphic Et-valued function on ’ X. This concludes the
first part of the proof.

In the second part of the proof we show that the functions F, extend to
holomorphic functions on X.

First, we decompose X X; CA\a, where

We put X’
is equal to

x { z < ,, a\o }.
X; X2. The intersection of X’ with D x, viewed as a subset of Ga,

It is obvious from the previous discussion that the functions Fa\ extend to
holomorphic functions on X’ n D a, and the function F is given by

F= a\F, z log

on ,’ x (D o n x0. Now, it is easy to rearrange this expression to

F Gt,mztlogmz
t,ill
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where t 0A\O are mutually integrally inequivalent and

Gt,m X ,-,A\O s-/ ,rn Z

where s- t 7A\a By A.1.7 the functions G m extend to holomorphic functions
on X. This evidently implies that the functions FaxU extend to holomorphic
functions on X, which concludes the proof of 6.1.

7. Leading characters and growth estimates on the group. By combining the
results of Sections 5 and 6 we are now able to describe various aspects of the
asymptotic behavior of z-spherical functions on the group G solely in terms of
their leading characters.
We equip E with inner product such that - is unitary. In this case obviously

IIF(k,akz)ll IIF(a)ll, k,k2 K, a A.

Therefore, by the Cartan decomposition, the growth of F is completely
determined by the behavior of IIFII on CI(A- ).

Before formulating our results we need some notation. We define an ordering
relation on positive characters of A:

X X2 if X l(a) < x2(a) for all a A -.
Obviously Xl < X2 implies xllAa x2lAa. Also we put

Xi<X2 if x(a)<x2(a) for all aCI(A-)\AA.

THEOREM 7.1. Let F be a z-spherical function on G annihilated by an ideal I of
finite codimension in () and w a positive character of A. Then the following
conditions are equivalent:

(i) for every leading character v of F we have

(ii) there exist M > 0 and m > 0 such that

IlF(a)ll < Mw(a)(1 + [[logal[)

for all a CI(A- ).

Proof. Let t RA be such that t. Then the condition (i) is equivalent to

Rest> t, aA,

Re sx x A AkA,

for all leading exponents s of F, or by 5.7 to

Re SA C_ t + Iq+
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Therefore if (i) holds we have

Re SA\O C PrA\O(t + Ina\..+
for all 6) c A.
We fix0<e< and put

A:-((9)= {aAle< a(a) 1, a(9, a(a)< e,aA\O},
(Fig. 7.1), then obviously

Also, by 6.2, for (9 C A,

C (A ) LI A,-

F\F= E(_ s,m

on A,-(O), and by 6.1 the functions F, a_ are bounded on A,-(O). This
implies that there exist Mo > 0 and mo > 0 such that

IIF(a)l[ < Moo(a)(1 / Ilogall)m

for all a A,-(O). This clearly implies (ii).
Suppose (ii) holds. Let a A. Fix points p (0, 1)a\() and q (Pl]_)A\A. Let

FIGURE 7.1
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r a be a map from (0, 1) into A- such that

a(ar) r, fl(ar) p for

’(ar) qx for A\A.

Then by (ii) we have, for some M(p, q) > 0,

IIF(ar)[I Mo,(p,q)r(1 + [llogrl[)

for all r (0, 1).
Also, by the discussion from the beginning of Section 6, for O--A\ a), we

know that on A- we have

F= E (F2,) --a)XlgmX

where s S{.} c C{"} x CA\a and m Z(+"} x _+TA\A. We put

s (s, s’) and m (m, m’),

where s (/, s’ GA\, m Z(+/ and m’ _+7A\zx. Then

F(ar) _F(’)(P,r)qS’lgm’qs,m rS"lgm’r

for all r (0, 1). By A.2.1, if

F {"} 0)q’logm’q 0,s,,,s’) ,( m,,m’) P =/=
s’,m’

we must have Re s, > t.
By the properties of F, for each s, and s’ there exists m (m, m’) such that

F(p,O)vO for some p(0,1)a\. By the linear independence of the
functions q q’logm’q there exist q (lq)A\a such that the above expression is
different from zero. This implies that Res > t. The relation of S with Sa
now implies that Res > t., a A, for each s S.
Take now/ A\A. Fix a point p (0, 1)A and q (Iq_)A\(AtA )). Let ra

be a map from FI_ into A- such that

Ot (ar) Pa for Ct A, (ar) r,

,(a,) qx for ) A\(A tO (/)).

Then by (ii) we have, for some M,(p, q) > 0,

IIF(ar)ll < Mt(P,q)rt"(1 + [[logrll)

for all r (FI_).
Also, by the discussion from the beginning of Section 6, for 19 A we know
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that on A- we have

F= E(F s,m _a)XSlgmx
where s So c (A\a and m ...+TA\A. We put

s=(s,,s’) and m=(m,,m’),
where s G "}, s’ Oax(au{}), m Z") and m’ Zx(ao{ ")). Then

F(ar) Fm(p)q’log=’q rS,logm,r,

for r R.
Obviously for each s S there exists m such that F.m(p) 0 for some

p (0, 1). Now by the linear independence of the functions q q’log=’q, for
each s, we can find m, and q (R)ax(av{ ,}) such that

F( (.,,,),( m,=,))(p)q’logm’q O.
s’,m’

By A.2.1 this implies Res t for 11 . The relation of S wih now
implies that

for 11 s . Q.E.D.
Let be the positive character of A defined by

(a) det(Ad(a) n), a A.

Put m(a)= dim fi for a Z. Then

a A.

Following Harish-Chandra we say that F is tempered if there exist M 0 and
m 0 such that

Ilr(a)ll < M6’/Z(a)(1 + I]logall)

for a A-. By 7.1 we have the following result.

COOLLaV 7.2. Let F be a -spherical function on G annihilated by an ideal I
offinite codimension in (). The function F is tempered if and only if

for eve leading character of F.
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Let Zo be the center of the group G. Then Zo is the direct product of its
maximal compact subgroup K fq Zo and Aa.

Let F be a z-spherical function on G. The character " of Zo is called the
central character of F if

F( x) f x 6, z

LEMMA 7.3. Let F be a r-spherical function on G annihilated by an ideal I of
finite codimension in (g) with the central character . Then the expansion of F in
A has the form

F= E ( Fas,m o _a)Slogm
where the restrictions of s, s Sa, to A a are equal to f lA, and m

Proof. This follows immediately from 5.6 and the linear independence of the
functions Xtlognh, t t2A\a, n Z+. Q.E.D.
We say that a function f on A with values in a normed linear space vanishes at

infinity in A- if for every ,/> 0 there exists e, 0 < e < 1, such that 8(a)
implies IIf(a)ll < */for a A-.

THEOREM 7.4. Let F be a r-spherical function on G annihilated by an ideal I of
finite codimension in () with the central character . Let o be a positive character
of A. Then the following conditions are equivalent.

(i) for every leading character v of F we have

(ii) the function -F vanishes at infinity in A-.

Proof. Suppose that (i) holds. Let t FIA be such that 0 t holds. Then the
condition (i) is equivalent to

Res, > t,

Re sx x , A\A,

for all leading exponents s of F. This implies that there exists a positive character
of ,4 such that

and to <t.

Now we can find r/> 0 such that

By 7.1 this implies that

o(a)-’. IIF(a)ll < MS’(a)(1 + Illogall)m, aA-,
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for some M > 0 and rn > 0. Now by 7.3 we know that

Therefore, the function o -. ]]FII is constant on A a-cosets in A. Therefore we
can restrict ourselves to looking at it on A N G. In this case we can find c > 0
such that

Illogall < cllogd(a)l, aA- fqG.

This easily implies that 0-. F vanishes at infinity in A-.
Suppose (ii) holds. Let , 0 < < 1, be such that a A- and 8(a) < e imply

o-t(a). llF(a)ll < 1.

Then for a’ A a, we have

IYl(a’)o-’(a’)o-(a)llF(a)ll o-’(a’a) llF(a’a)ll <
because 8(a’) 1. Hence it follows that a’ --)[’l(a’)0-l(a’) is a bounded positive
character of A a, i.e. equal to 1. This, by 7.3, implies that IA olA a for every
leading exponent , of F.
Now we use the notation from the proof of the implication (ii) (i) in 7.1. Fix

a A, p (0, 1)a\{ } and q (Iq)A\a and define the map r a as there. Then
we have

limr’llf(a)ll- O.
r--)O

As in the above mentioned proof, using also 7.3, we have

limr t,, F ’}tp,r)rS.logmr O.s,m ,
r--O

F(}By A.2. l, s,m (P 0) v 0 implies that Res > t for s S{). By the relation of
S{ } with Sa it follows that

Rest> t,

for all s Sa. The above discussion implies also

Resz t, A\A.

By 5.7, (i) follows immediately. Q.E.D.
Let F be a z-spherical function on G with unitary central character ’. Then the

function x---)IIF(x)ll is constant on Zo-cosets of G, i.e. we can consider it as a
function on G/Zo.

Let p [1, + oo). We say that the z-spherical function F is p-integrable modulo
center if the function x---) IIF(x)llp is integrable as a function on G/Zo.
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THEOREM 7.5. Let F be a z-spherical function on G annihilated by an ideal I of
finite codimension in 7(g), with a unitary central character , and p [1, + c).
Then the following conditions are equivalent,

(i) for every leading character v of F we have

(ii) F is p-integrable modulo center.

Proof. By 7.3, restrictions of leading characters to Aa are unitary. Therefore

IIIA= 1,,

for all leading characters v. By [20, II. 1.3, Prop. 11] there exists a closed
subgroup G of G of Harish-Chandra’s class such that G is the direct product of
G and A A. The center of G is compact, therefore the above theorem is
equivalent to the corresponding statement for FIG, where p-integrability
modulo center in (ii) is replaced with p-integrability. Therefore, without any loss
of generality we can assume that A A (1).

Suppose (i) holds. Then we can find a positive character 0 of A such that

and 0</P

for every leading character v of F. Therefore, by 7.1, there exist M > 0, m > 0
such that

IIF(a)ll < Mw(a)(1 + Ilog(a)l)

for a CI(A ).
Now we have to recall the well-known integral formula connected with the

Cartan decomposition

faf(x) dx fK f(klak2)D (a) dk, da dk2
CI(A -) K

where dx, dk and da are Haar measures on G, K and A respectively, and

D(a)= I-[ (a(a)-l a(a))m(a)

aY

for a A. This implies that [[FIIP is integrable on G if

fc IIF(a)llPO(a)da< + "I(A -)

Obviously

D(a) 8(a)-’, a C CI(A );
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therefore

fc IIF(a)llPO(a)da
I(A -)

< Mfc,(A -)
(a)p8(a)- 1(1 + IIg 6 (a)l)m da <

because of uP8- < 1.
Suppose now that (ii) holds. Then by the above integral formula

fc IIf(a)lll"O(a) da < + o.
I(A -)

Fix , 0 < e < 1. There exists c, 0 < c < 1, such that

D(a) > cS(a)-’, a A,- (0).
Therefore the above fact implies that

L IIF(a)llP(a)- da < +
,-(o)

Now we use the notation from the proof of the implication (ii) (i) in 7.1. We
fix a A and q (0, 1)a\{") We define the map r--> a from (0, 1) into A- as
there.
By Fubini’s theorem the above relation implies

fo,llF(ar)ll?r-m<,) drr < + o

for almost all q (0, e)a\{ ).
Now we can represent F as

F E (Fs!n) a)aSlgma

where s S{) C C; and m Z+. Then it follows that

fO’[[ E F{a}s,m (q,r)r-(m(>/e>lgmrll drr < +,
for almost all q (0, )a\(). This obviously implies that all matrix coefficients of
the function

F "--) E F{s,ma} ( q, r)rS-( m(a)/p> logmr
are in Le((O,],dr/r) for almost all q. By A.2.1 we now have

Res > 0
P
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for s S(). This implies that for s Sa we have

Res > 0
P

for all a A, or lu[8- /P < for allleading characters u of F, which implies (i).
Q.E.D.
Comparing 7.4 and 7.5 we see immediately the following result.

COROLLARY 7.6. Let F be a z-spherical function on G annihilated by an ideal I
offinite codimension in () with a unitary central character , and p [1, + o).
Then the following conditions are equivalent:

(i) F is p-integrable modulo center;
(ii) - /. F vanishes at infinity in A-.

Remark 7.7. In the case Aa=(1) and p=2 we see that a z-spherical
function F on G is square-integrable if and only if 8- /:. F vanishes at infinity
in A-. In Harish-Chandra’s terminology this means that F is "rapidly
decreasing" on G. This is one of the crucial results of his theory of discrete series.

8. Admissible representations and their matrix coefficients. Now we want to
apply the results about the asymptotic behavior of spherical functions to
representation theory. We restrict ourselves, in this paper, to very modest
applications culminating in the proof of the subrepresentation theorem (compare
[6]).
An admissible representation (r, V) of (,K) consists of a pair of representa-

tions of fi and K simultaneously on V such that:
(AI) the representation of K is an algebraic direct sum of irreducible

finite-dimensional smooth representations, each isomorphism class occurring
with finite multiplicity;

(A2) the representation of f as a subalgebra of coincides with the differential
of the representation of K;

(A3) for any X (g) and k K,

r(Adk(X)) r(k)r(X)r(k-’).

Remark 8.1. Let (rr, V) be a (g, K)-bimodule satisfying (A 3)" A vector v V
is K-finite if its K-orbit spans a finite-dimensional linear subspace of V. Let Vo be
the linear space of all K-finite vectors in V. Then V0 is obviously a K-submodule.
We claim that it is also a g-module. If v V0 we have

r(k)rr(X )v r(Ad k(X ))rr(k)v, kK, X g,

by (A3); this obviously implies that r(X)v is K-finite, proving that V0 is
g-invariant.
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Now let (r, V) be an admissible representation of (g,K). Let V* be the
algebraic dual of V. It is a (g,K)-bimodule with respect to the contragredient
action which obvi.ously satisfies (A3). Applying 8.1 we get a pair of
representations (7, V) of g and K on the space V of all K-finite linear forms of V.
It is easy to check that (7, V) satisfies (A) and (A2), i.e. it is an admissible
representation of (g, K)--the contragredient representation for (..r, V).

There exist natural (g x g, K x K)-bimodule structures on V (R) V and Coo(G).
For X,X2 g, kl, kg_ K, we put

(Xl,X2)( () t)) (Xl) ()t 4- (,’//’(S2)/)

(kl, k2)(g (R)v) 7(k,)t @r(k2)v

forg V,v V; and

(Xl,g2)f Lx,f + Rx2f
(kl, k2)f Lk,R2f

for f C(G).
A matrix coefficient map c" V (R) V C(G) for (r, V) is a linear map such

that
(MC1) c is a (g g, K K)-biodule morphism;
(MC) for any v V and g V,

c(g(R)v)(1)=<v,g>.

The function Cv, c(g (R)v) is called a matrix coefficient of v V and 6 V.

Remark 8.2. Let (r,X) be an admissible representation of the group G on
complete locally convex space X. Then the representations of g and K on the
linear space of all K-finite vectors in X define an admissible representation of
(g, K). The map c defined by

Cv, (x) e>
for K-finite vectors v X and K-finite linear forms g on X is a matrix coefficient
map. This explains the above definition.

The next result relates matrix coefficient maps to sph.erical functions.
Let (r, V) be an admissible representation and c" V (R) V Coo(G) a matrix

coefficient map for (r, V). Suppose that (,E) is a finite-dimensional smooth
representation of K X K such that its contragredient (q,E) is a K X K-
submodule of I? (R) V. Let i"/- 1 (R) V be the canonical imbedding; then
c i" if, Coo(G) is a K K-module morphism.
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LEMMA 8.3. There exists a unique z-spherical function F such that

for all w E.

Proof. For any x G there exists a unique F(x) E such that the above
relation holds for all w E. It is evident that the function F" G E is smooth.
Also, for k l, k2 K and x G, we have

(F(k-lxk2), w> [(co i)(w)](k{-lxk2)

[(co i)(r(k,,k2)w)](x)

<r(k,,k)-’F(x),w>
for all w E. Therefore, F is a r-spherical function. Q.E.D.
We say that F is a spherical function associated to the matrix coefficient map c

for (r, V).
A vector v V is 7;(g)-fi’nite if it generates a finite-dimensional ;(g)-invariant

subspace of V. Because ;(g) commutes with K, it takes every K-isotopic
component of (r, V) into itself, so that by the definition of admissibility it
follows:

PROPOSITION 8.4. Every vector in V is (lg)-finite.
Therefore the annihilator in Z(g) of a finite-dimensional linear subspace of V

is an ideal of finite codimension in (g).
Let F be a z-spherical function associated to the matrix coefficient map c for

(, V) Then there exists a finite-dimensional subspace U of V such that
E c V (R) U. Let I be the annihilator in (g) of the linear space U. It follows that
for Z I, we have

Z. Cv, o

for all v U and 6 V. This implies, in particular, that for all Z I, we have

<(Z. F)(x), w> (Z[ (co i)(w)])(x) O, xG,

for all w /. Therefore, the ideal I annihilates F; i.e. F A,(G;I).
By the above discussion, it follows that any spherical function F associated to

a matrix coefficient map for an admissible representation of (g, K) is annihilated
by an ideal of finite codimension in ;(g). This fact, combined with the remarks
at the beginning of Section 4, proves that all such spherical functions F are
analytic. Therefore, we have:
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PROPOSITION 8.5. Let c be a matrix coefficien, map for an admissible
representation (r, V) of (,K). Then for an); w V (R) V the function c(w) is
analytic on G.

This result has the following important consequence.

PROPOSITION 8.6. Let (qr, V) be an admissible representation of (,K). Then
there exists at most one matrix coefficient map c for (, V).

Proof. Let v V and 6 . By 8.5, the function c(6 @v) is analytic on G.
Therefore there exists a neighborhood U of zero in 0 such that c(6 @v) can be
represented by its Taylor series, i.e.

(v))(1)c(6@v)(expX) E (X’. c
n=O

(@ ) ()= c (X" v)
n=0

for X U. Therefore the matrix coefficient of. v V and 6 V is uniquely
determined in a neighborhood of identity in G. Applying 8.5 again we see that it
is unique on the identity component G of G. Finally, the fact that G G. K
[20, II.1, Theorem 14] implies our assertion. Q.E.D.

Finally, we have

THEOREM 8.7. Eve admissible representation (, V) of (,K) has a unique
matrix coefficient map.

Therefore we can always talk about the matrix coefficients of an admissible
representation.
The existence of a matrix coefficient map for irreducible admissible

representations of connected semi-simple groups follows from 8.2 and Lepow-
sky’s version [15] of Harish-Chandra’s subquotient theorem. The general result
was proved, a number of years ago, by the first author using results on systems of
differential equations with regular singularities [3], [4]. As we remarked in the
Introduction, the differential equations for spherical functions have regular
singularities along the root hypersurfaces in A; in particular at the identity. One
of the main results of [3], in analogy with the classical situation [7, Ch. 4], states
that every "formal" solution at a regular singularity converges. Therefore,
roughly speaking, formal "Taylor series" for matrix coefficients at the identity
given by the action of () converge. It was observed by several people
independently (D. Vogan pointed out this to us), that it is possible to deduce the
existence in general from the above special case, using later results in this section.
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This argument, although not as elegant as the first one, is very elementary. We
include it, for the convenience of the reader, at the end of this section.
Now we shall, using 8.3, relate the matrix coefficients of admissible

representations to spherical functions and study their asymptotic behavior along
the negative Weyl chamber A-.

Let (r, V) be a finitely generated admissible representation of (g, K). Then 8.4,
combined with the fact that E(g) commutes with g and K, implies that
I ker(r E(g)) is an ideal of finite codimension in (g). Also, it follows from
previous discussion that all spherical functions associated to (rr, V) are
annihilated by I.

Let $I be the set of all s GA such that the character Xs lies over I. Then by
5.4 and 5.6 we have the following result.

THEOREM 8.8. There exist unique linear forms Cs,m V t V--) C, for s SI 4-
Z+,m zA+, such that for any w (" (R) V we have

(W) E Cs,m(W)’Slogm’

on A-.

We say that s CA is an exponent of v V if there exists m ZA such that+
Cs,m] V (R)v v 0. We denote by ExPv(r the set of all exponents of v.
We say that s (A is an exponent of (r, V) if there exists m ZA+ such that
4: 0. We denote by Exp(r) the set of all exponents of (r, V).

The following inclusions are obvious

ExPv(r) c Exp(rr) C S + Z+

for any v V.
We denote by Exp(r) the set of all minimal elements of Exp(r) with respect

to A-order. The elements of Exp(r) are the leading exponents of (r, V). The
corresponding characters of A are the leading characters of (r, V).
THEOREM 8.9. Let (r, V) be a finitely generated admissible representation of

(g, K) and I ker(cr (g)). Then the leading characters of (or, V) lie over I.

Proof. Let/ ?, s GA, be a leading character of (r, V). Then there exists
m zA+ such that C.m 4: 0. Therefore we can find v V and 6 I? such that
C,m(6(R)V) 4=0. Now 8.3 implies that there exists a z-spherical function F
associated to (r, V) such that # is its leading character. The assertion follows
from the fact that F A(G; I) and 5.4. Q.E.D.
COROLLARY 8.10. The set of all leading characters of a finitely generated

admissible representation is finite.
Therefore to each finitely generated admissible representation (r, V) we

associate a finite set of its leading characters which, by the results of Section 7,
determines the qualitative asymptotic behavior of its matrix coefficients.
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Although the transition is purely formal, for the sake of completeness, we shall
reformulate some results of Section 7 in more representation theoretic terms.

Firstly, 7.1 implies

THEOREM 8.11. Let (r, V) be a finitely generated admissible representation of
(, K) and to a positive character of A. Then the following conditions are equivalent"

(i) for every leading character , of (r, V) we have

(ii) for any v V and there exist M > 0 and m > 0 such that

ICv,(a)l < Mto(a)(1 + Illogall)

for all a CI(A- ).
We say that a finitely generated admissible representation (rr, V) is tempered if

for any e V and g V there exist M > 0 and m > 0 such that

Icv,(a)l < M /2(a)(1 4-IIlogal[)

for a A-. Then we have the following direct consequence of 8.11.

COROLLARY 8.12. A finitely generated admissible representation (or, V) is
tempered if and only if all its leading characters , satisfy

lul < /-

As we remarked before, the center ZG of G is the direct product of its maximal
compact subgroup K N Zo and .4 a. Because Zo commutes with K, its Lie
algebra and K N Zo take every K-isotopic component of (r, V) into itself.
Therefore, by the simply-connectedness of .4 a, the representations of g and K on
V determine a representation of ZG on V. If Zo acts on V by a character

’ Z --)(3* we call ’ the central character of (or, V).
Now 7.4 implies the following result.

THEOREM 8.13. Let (or, V) be a finitely generated admissible representation of
(,K) with a central character. Let to be a positive character of A. Then the
following conditions are equivalent

(i) for every leading character , of (rr, V) we have

(ii) for an), v V and 17" the function to-l Cv, vanishes at infinity in .4-.

Let (or, V) be a finitely generated admissible representation of (,K) with a
unitary central character. The functions x---> Icv, (x)l, v v, v, are constant
on Z-cosets of G; i.e. we can consider them as functions on G/Z.
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Let p [1, + o). We say that (, V) is p-integrable modulo center if the
functions x Icv;(x)lp, v v, v, are integrable as functions on G/Z.
Now 7.5 implies the following result.

THEOREM 8.14. Let (r, V) be a finitely generated admissible representation of
(g,K) with a unitary central character and p [1, + ). Then the following
conditions are equivalent

(i) for every leading character t, of (r, V) we have

< l/p;

(ii) (r, V) is p-integrable modulo center.

Finally 8.13 and 8.14 imply

COROLLARY 8.15. Let (r, V) be a finitely generated admissible representation of
(g,K) with a unitary central character and p [1, + c). Then the following
conditions are equivalent

(i) (r, V) is p-integrable modulo center,
(ii) for any v V and 6 17" the functions 8- /P. cv. vanish at infinity in A-.

As we remarked in 7.7, in a special case, this is one of the crucial results of
Harish-Chandra on the discrete series representation.
Now we want to study some more algebraic consequences of the expansions of

matrix coefficients.
Let (r, V) be a finitely generated admissible representations of (g, K). Let

then obviously

Put

m.>k},
Exp(rr) C Exp(r) + L.

V(,) (v V ExPv(rr C Exp(rr) + L,+ ).
Then it is evident that (V(k); k Z+ is a decreasing linear space filtration of V.
Moreover we have the following result.

LEMMA 8.16. (i) The decreasing filtration (V(k); k 7+ ) is a (,M)-bimodule
filtration;

(ii) For an), k 7+, we have

(X)V(k C. V(k+l) Xrt.

Proof. For X g and a A we have

C(x)v,(a c(6 (R)r(X )v)(a) Rxc(6 (R)v)(a) L(Ada)(x)C( (R)v)(a).
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If X we have

which implies that

C(x)v,(a) Cv,(x) (a),

Exp(x)v(r) c ExPv(rr)

aA;

and therefore r(X)V(,) c V(k
If X gv, E+, we have

C(x)v, (a) " (a)Cv,(x) (a), aA;

which implies that, if am, m Za+, we have

Exp(x)v(r) c ExPv(r) + m.

Therefore, rr(X)V(k C V(k+,), which proves (ii).
Finally, for m M, we have

Crr(m)v,(a) C( (R)rr(m)v)(a) RmC( (R)v)(a)

Lm-,C(g (R)v)(a) c(’(m-’)6 (R)v)(a)
Cv,(m-,)6(a), a A;

which implies

Exp(m)v(r) C Expv(

and r(m) V(,) C V(g). Q.E.D.
The filtration (V,); k Z+ ) is called the asymptotic filtration of (r, V).

THEOREM 8.17. Let (r, V) be a finitely generated admissible representation of
(g,K). Then the asymptotic filtration is Hausdorff.

Proof. The assertion means that

N
k-O

Let v r,lkOO=o V(k Then by the definition of V(k) the set of exponents of v is
empty. This obviously implies that Cv, 0 for all 6 V and therefore v 0.

Q.E.D.
It is possible to define a similar decreasing (,M)-bimodule filtration (rt*V;
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k Z/ of (r, V), while lXkV is the linear span of vectors

q’/’(Xl)q’/’(X2) q’l"(Xk )t, Xl,X2, Xk 12, t V

[5]. This filtration is called the n-adic filtration of (,r, V).
The following result follows immediately from 8.16 (ii) by induction.

THEOREM 8.18. Let (,r, V) be a finitely generated admissible representation of
(,K). Then for any k Z+, we have

nkV C V( ,)

Therefore the n-adic filtration is finer than the asymptotic filtration.
From 8.17 and 8.18 it follows

COROLLARY 8.19. Let (r, V) be a finitely generated admissible representation of
(g, K). Then.-,the n-adic filtration of (r, V) is Hausdorff.
From [6, 2.4] we know that the homology group H0(n, V) of a finitely gen-

erated admissible representation (r, V) is a finite-dimensional L-module. Now
8.18 implies the following non-vanishing result.

COROLLARY 8.20. Let (,r, V) be a finitely generated admissible representation of
(, K). Then H0(n, V) is a nontrivial finite-dimensional L-module.

Let (to, U) be a finite-dimensional smooth representation of P. Let
Ind(to P, G) be the space of all smooth functions f: G---) U such that

(i) f is right K-finite,
(ii) f(px) o(p)f(x) for all p P, x G.

Then the right regular actions of and K define on Ind(to P, G) the structure of
an admissible representation of (,K) [6]. It is called the representation induced
from (to, U). For irreducible representations (to, U) of P, which are evidently
trivial on N, the representations Ind(to] P, G) are called the principal series
representations.
Now, as in [6], 8.20 implies the following "subrepresentation" theorem which

strengthens Harish-Chandra’s "subquotient" theorem.

THEOREM 8.21. Let (r, V) be an irreducible admissible representation of (g, K).
Then there exists an irreducible finite-dimensional smooth representation (to, U) of
P such that (r, V) may be imbedded into Ind(to[ P, G).

In fact we can extract more information about H0(n, V) from the previous
discussion. This gives us more information about the imbeddings of irreducible
admissible representations into the principal series.

THEOREM 8.22. Let (r, V) be a finitely generated admissible representation of
(g, K). Then the leading characters of (r, V) are A-weights of Ho(rt, V).

Proof. For an A-weight /.t of H0(n, V), let m, be the dimension of the
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#-component of H0(n, V). Let

P(H) (H (dld,)(H))m_.. 6cI)

for H a. The P(H) annihilates HoOt, V) for all H ct. Therefore

P(H)V c rtV

and by 8.18

P(H)V C V(,)
for all H @ a.
Lt t b a leadin xponnt of (r, V). Thn thr exist v V and V such

that

ev,6 E Cs,m(l () v)kSlOgmk

on A and Ct,m(t I)t) 5/= 0 for some m zA+.
By the previous remark, for H a, we have

P(H)cv, Ce<H)v, Cs,m(l (e(H)v)Slogm

on A and Ctm(6 (R) P(H)v) 0 for all m ZA Therefore, by 5.3, we easily see+
that h must be an A-weight of H0(rt, V). Q.E.D.

It remains to prove 8.7.
First we remark that if an admissible representation (r, V) of (ft, K) has the

matrix coefficient map so do its sub- and quotient-representations. Therefore, the
existence of matrix coefficient maps being evident for induced representations
IndCo] P, G) by 8.2, the "subquotient" theorem [15] implies their existence for
irreducible admissible representations of connected semi-simple groups. This, in
turn, implies that 8.20 holds in this situation.
Now, assume that G is from the Harish-Chandra class. The commutator

subgroup Gl of its identity component G o is a connected semi-simple Lie group.
Then fll--[fl, fl] is the complexified Lie algebra and K K (3 Gl a maximal
compact subgroup of G I. Also, it is evident that rt c fl, and it is the complexified
Lie algebra of the nilpotcnt radical N of the minimal parabolic subgroup
Pl P fq GI of GI.

Let (,r, V) be a finitely generated admissible representation of (,K). Then
there exists a finite-dimensional subspace U which is a sum of K-isotypic
components of V and generates V as a -module. Evidently, it also generates V
as a l-module. Therefore, viewed as a (l, Kl)-module, (r, V) is a finitely
generated admissible representation. Applying the above remark to its irreducible
quotient implies, in turn, that HoOt, V) is non-zero. This gives us a proof of 8.20
without using 8.7.
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Now, we shall prove 8.7 for finitely generated admissible representations using
8.20. This follows immediately from the following variant of 8.21.

PROPOSITION 8.23. Let (rr, V) be a finitely generated admissible representation
of (, K). Then there exists a finite-dimensional smooth representation (o, U) of P
such that (rr, V) may be imbedded into lnd(0 P, G).

Proof. Let k N. By 8.20 and [6, 2.3] we know that v/nkv is a nontrivial
finite-dimensional (p, M)-module. The group AN being simply-connected, it is in
fact a finite-dimensional P-module which we denote by (0k, Uk) in the following.
By the Frobenius reciprocity theorem [6, 3.1], the quotient map of V onto Uk
defines a (g,K)-module homomorphism qk of V into Ind(0k P, G). Let Wk be
the kernel of %. Then, by the definition, Wk is contained in rtkV.

Let I ker(r E(g)). Evidently, any A-weight of H0(n, V) must lie over I. As
before, let S be the set of all s GA such that the character s lies over I. Then
there exists a k0 N such that for any two A-integrally equivalent s, t S we
have

Is-tl<ko.

If we denote by Tk(n) the kth tensor power of n considered as a P-module
under the adjoint action, we have the natural surjective (p, M)-module
homomorphism

Tk (n) (R) V- nkV.

It evidently induces a surjective P-module homomorphism

r (R) I-Io( , +’v.

Therefore, an A-weight of nkV/nk+ V is also an A-weight of Tk(n)(R) H0(n, V).
Our choice of ko now implies that, for k > k0, none of the A-weights of
nkv/nk+ Iv lies over I.

Let W be a subrepresentation of (r, V) contained in rtkV for some k > k0.
Because I annihilates W, all A-weights of HoOt, W) lie over 1. The inclusion map
of W into nkv induces a P-module homomorphism of H0(n, W) into nkV/nk / Iv.
By the above remark, our choice of k0 implies that this homomorphism is zero.
Therefore W is contained in nk+ V. By induction, it follows that

W C A rtkv.
k=O

This implies that H0(n, W) is zero, by [6, 2.3] and the Artin-Rees Lemma for
(n) ([18], see also [19] for a simple and elegant argument in the case we need).
By 8.20, we now see that W must be zero.

Putting now all the pieces together, we conclude that, for k > k0, the
representation (r, V) may be imbedded into Ind(0k P, G). Q.E.D.
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It remains to prove 8.7 in the general case. Let (r, V) be an admissible
representation of (tg, K). Let oy be the family of all subrepresentations of (r, V)
which have matrix coefficient maps, ordered by inclusion. By 8.23, oy is
non-empty. Also, as it is easy to see from 8.6, it satisfies the conditions of the
Zorn Lemma. Let (0, W) be a maximal element in oy. Assume that it is different
from (r, V). Then we can find a finitely generated subrepresentation (,, U) of
(r, V) such that U is not contained in W. By 8.23, the direct sum (t, q) 0, U @ W)
has the matrix coefficent map. Therefore, the representation on the invariant
subspace U+ W of V, being a quotient of (,@O,U W), has a matrix
coefficient map. This obviously contradicts the maximality of (0, W).

This finally ends the proof of 8.7.

Epilogue 8.24. As we have seen, to each finitely generated admissible
representation (r, V) of (, K) we associate the following data:

(i) the set of leading characters, which are purely analytic in nature and
determine the asymptotic behavior of its matrix coefficients;

(ii) the set of A-weights of H0(rt, V), which are purely algebraic in nature and,
by the Frobenius reciprocity theorem [6, 3.2], are related to (,K)-morphisms
with the principal series representations.
By 8.22 there is a close relationship between these two sets of data associated

to (r, V). The complete connection between them is cleared up by [17, Theorem
II. 2.1] which states that the leading characters are the minimal A-weights of
H0(rt, V) with respect to the A-order.

If we extend formally the proof of this result, considering whole filtrations
instead of "top" graded pieces V/VI) and H0(n, V)= V/nV, we get that,
although in general different, the asymptotic and t-adic filtrations define the
same topology on V (this is equivalent to an unpublished result of H. Hecht and
W. Schmid). This gives the ultimate connection between the analysis of
asymptotic behavior of matrix coefficients and the algebra of admissible
representations.

APPENDIX

1. Systems with simple singularities. For the convenience of the reader we
collect in this appendix, with complete proofs, a few mostly well-known technical
results we need in the main text.
The main result is an elementary theorem found in Deligne [8] on first order

systems of holomorphic partial differential equations with regular singularities.
This result, whose simple proof we reproduce below, clarifies greatly the results
of Harish-Chandra on differential equations ([12], [22, Vol. II, Appendix]).

Let X be a connected complex manifold and x0 a base point of X. Let (,Y0)
be the universal covering space of X with base point Y0 considered as a complex
manifold. We denote by p’X- X the corres..ponding covering projection.
The homotopy group rl(X, x0) acts on X by covering transformations. For

7 rl(X, x0) let Tv" X- X be the corresponding covering transformation. The
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map , Tr is a hom.omorphism of qrl(X, xo) into the group of all holomorphic
diffeomorphisms of X and

p Tr p for all y r(X, Xo).
Let W be a finite-dimensional complex linear space and 0x (W) and (W)

the sheaves of germs of W-valued holomorphic functions on X and X,
respectively.
The above defined action T of rl(X, xo) on A7 induces a representation of

rl(X, xo) on the linear space F(f, i92(W)) of all W-valued holomorphic
functions on X by

T (f) f Tv-, (/ ’B’I(X, Xo))
We call T the monodromy transformation corresponding to 7.
The sheaf 0, (W) is of course just P*x (W). If is a subsheaf of x (W),

then the inverse image sheaf p* is a subsheaf of a: (W). We shall call the
global sections of p.0y the multivalued sections of on X.
Suppose now that X is a domain of Gn. Let E=Endc(W and let

Fl, F2,..., Fn be E-valued holomorphic functions on X. We consider the system
of holomorphic partial differential equations

Oif Fid) i= 1,2,..., n, (1)
on X. Local solutions of this system determine a subsheaf of x(W).
Multivalued sections of $ are called multivalued solutions of the system (1).

Let $xo be the stalk of germs of solutions of the system (1) at the point x0. The
subset

Wo {  (Xo)
is a linear subspace of W.

LEMMA A.I.1. The map q--) q)(Xo) is a linear isomorphism of Sxo onto Wo.

Proof. The map - 9)(x0) is linear and surjective by the definition. Suppose
that Sxo is such that 99(x0) 0. Then there exists an open neighborhood U of
x0 in X and F(U, $), such that 9) is its germ at x0. We may assume that
U x G [Ix Xo,il < , 0 < n for some e > 0. For x U we define a
differentiable function x :[0, 1]--> W by

*x(t) ’ (Xo + t(x Xo)).
Then

O’s(t) k (x,- Xo,i)’(Oif)(Xo + t(x- Xo))
i----1

n

E (Xi- Xo,i)’Fi(xo "" t(X XO))
i=l
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for [0, 1], and (I)x(0) 0. By the classical result on first order equations we
have tI) 0. This implies tI)(x)= (I)x(1) 0. Therefore (I)= 0 and finally 0.

Q.E.D.
The next result roughly states that every local solution of the system (1)

extends to a global multivalued solution.

THEOREM A. 1.2. The map b-cb(Yo) of the space F(X, p*) of all multivalued
solutions of the system (1) into Wo is a linear isomorphism.
We firstly consider the corresponding local problem. Let D be the unit disc

with center at 0 in (.

LEMMA A.1.3. Let X D and U a domain in X. Let d F(U, ). Then b
extends to an element of 1-’(X, ).

Proof. We may assume that U U U2 U, where Ui is a domain
in D for all < < n. By induction in k we prove the following statement:

(Ek) There exists k F(D D Uk U,, ) such that
klU=.

This assertion is true trivially for k l, so say k > 1. The function tI)k satisfies
the differential equation

Okk Fkk

on D D D Uk Un. Considering all variables zi, =/= k, as
parameters and using the classical theorem on first order systems of ordinary
differential equations depending on parameters [7], we see that k extends to a
holomorphic function on D ... D Uk+ ’’" Un. We denote this
function by (I)k +l; it obviously satisfies our system (1). This proves the induction
step. The statement (E,+ ) is exactly the statement of the above lemma. Q.E.D.
Now we can prove A.1.2. The map (I)- (I)(0) is injective by A.I.1. Put

T={(x,)l,,,xX}.
Let rr T---) X be the projection defined by rr(x, ) x for Sx, x X.
For an open subset U in X and a solution (I) F(U, $) we define a subset

S(U, ) of T by

S(U,b) {(y, qo) [y U, qo the germ of at),}.
Let e be the family of all such S(U, ). It is easy to see that @ is the basis of a
topology on T. In the following we consider T to be endowed with this topology.

It is clear that ,r’ TX is continuous. We claim that it is a covering
projection. Let x X. Let e > 0 be such that U {y O"lly; x,I < ,
< < n} is contained in X. Let y U and qo Sy. Then by A.1.3 there exists. F(U, $) such that qo is its germ. This implies that rr-(U) is the disjoint

union of open sets S( U, ), F(U, $). The map rr induces a homeomorphism
of S(U, ) onto U for every I’(U, ). Therefore r is a covering projection.
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Let w Wo. There exists tp Sx0 such that (x0) w. Let T be the connected
component of T containing (x0,tp) and r r T1. Then qrl: T1---)X is a
covering proj.ection and T is a connected cover.ing space of X. By the universal
property of X there exists a covering map Pl" X--) T such that p r o p and
p(0) (Xo, ).

Let e:T---> W be the evaluation map e(y,b)= q(y). Then e p is a
multivalued solution of the system (1) and

d(Yo) e(p,(Yo)) e(xo q)= w. Q.E.D.

Let Eo Ho,rnc(W0, IV). By A.1.2 there exists a E0-valued holomorphic
function S on X such that

(i) S(0) is the natural injection of W0 into IV,
(ii) for every w W0 the function x S(x)w on X is a multivalued solution

of the system (1).
The function S is called the fundamental matrix of the system (1).
The space F(,, p*$) of all multivalued solutions of the system (1) is invariant

under the action of all monodromy tranformations T, 3’ rl(X, x0). By A.1.2
for each , rl(X, x0) there exists a unique linear map Mr Endc(W0) such that

TS=SoMr.
It is easy to check that ,Mr is a representation of q’/’l(X, x0) on W0. We call
this representation M of r(X, xo) the monodromy of the system (1).
The system (1) is called integrable if W0 IV. By the Frobenius theorem [9,

10.9] this is equivalent to

for all i, j 1,2 n.
Now we consider a special case of the system (1). Let D* D \ (0}.
Let X D n, X* (D*)’ D n-k and Y X\X* (x Six 0 for some
< < k) where < k < n. We study the system

8i F/, i= 1,2 n, (2)
where Fi, < < n, are holomorphic E-valued functions on X*.
We denote by H (z (3lRez <,0) the left half-plane in (3. Then we can

identify the universal covering space X* of X* with H D-k via the covering
projection p" X* --) X* given by

/0(Xl, Xk,Xk+l, Xn) (e ’’ e,Xk ,, X,,)q-

for x X*.
The homotopy group "//’l(X*,x0) is isomorphic to Z. Let ")tl,’)/2 ’)tk be its

generators corresponding to the counter-clockwise loops around the coordinate
hyperplanes Zj 0}, < j < k, in X*. Let Tj Tv be the coveri,p, trasforma-
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tion corresponding to yj, < j < k. Then

Tj.(X1, Xj Xj Xj + Xn) (Xl,... Xj Xj "+ 2ri, xj+ Xn)
for x f*.

Let M be the monodromy of the system (2). We put Mj My
is easy to see that we can find a commuting family
R l, R2, Rk Endc(W0) such that

Mj exp(- 2riRj ), < j k.

Then the function

forl<j<k. It
of linear maps

(X 1, Xn)--). S(Xl, Xn)eXp(-(XlR1 + + XkRk))
on X* is invariant under all monodromy transformations T, -/ rl(X*,x0).
Therefore it defines an E0-valued holomorphic function P on X*. Hence the
fundamental matrix S has the form

S(x1, Xn) P(p(Xl,... Xn))exp(xlR + + xkRk)

for x X*.
If we denote by za the multivalued function

(xl Xn) --> exp(xlR + + xkRzc )
on X* we can write formally that

S(z) P(z)za. (3)
Now we shall extend a classical result [7, Ch. 4, Theorem 2.1] on differential

equations with regular singularities. We study the following system of first order
differential equations

d) Fj k + < j < n,
(4)

on X*, where F, F2,..., F are holomorphic E-valued functions on X. We say
that this system has simple singularities along Y. It is obvious that it defines a
system of type (2); therefore by the previous discussion its fundamental matrix
has the form S P. za.
The systems with simple singularities are generalizations of the so-called

systems with "singularities of the first kind" in the one-dimensional case. In this
case, by the classical result we mentioned, all Solutions have "moderate growth"
near the singularity, i.e. the singularity is regular.
The result of Deligne [8] we mentioned at the beginning of the appendix

generalizes this statement, i.e. we have:
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THEOREM A. 1.4. The fundamental matrix of the system (4) has the form
S(z)-" e(z)zR

where P is a holomorphic Eo-valued function on X and R Rk is a commuting
family of linear maps from Endc(W0).

If our system (4) is integrable the proof of the above statement, as remarked by
Deligne, reduces easily to the corresponding classical result for the one-
dimensional case. But here it seems more suitable to repeat the classical
argument to prove the moderate growth of P in (3) when z approaches Y [7,
ibid.], which extends easily to our situation. (A similar argument was given by
N. Wallach in [21].) Let 0 < p < 1. We put Xo (z X l]zi[ < [3) and
X Xp N X*. We claim that there exists m Z+ such that the function

Z ---) zmP(z)
is bounded on X.
We put

T= {x X*lRex < log0, 0 < Imx < 2r,

and

< i< k, andlxi] <p,k+ < i< n)

TO (x X*lRex log0, 0 < Imx < 2r,

< < k, and Ix l < 0, k + < n).
Let I1" be a differentiable norm on W (i.e. such that it is a differentiable

function on W\ (0)). If is a nontrivial multivalued solution of (4) on X*, the
function I111 is a positive differentiable function on X* considered as an open
subset of FI2n. Let Re Xio Then for < < k we have

on T, where Co > 0 satisfies

for <i< kandzXp.

X Zi’z < c011ll

IIFi(z)ll < Co
Therefore

on T. By the compactness of TO there exists C >/ 0 such that logllql[ < C on T0.
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It follows that

logllO(x)ll<C0" IRexil+C1
l<i<k

for x T. Therefore there exists C2, C3 > 0 such that

IIS(x)ll < C2eC3(IRex’l+lRex21+ +lReXkl)

for x T. Also we can find C4, C 0 such that

[le-x,R, x,R, < elX,I IIR,II+ +lx, IIR,

C4eCs(IRex’l+lRex2l + +lRexl

for x T. This yields

Ile(p(x))ll < Mem(lRex’[+ .[Rex[), X T;

for sufficiently large M and m Z/. Our earlier claim follows from the obvious
fact that p(T)= X.
From the Riemann extension theorem [10] and the Hartogs extension theorem

(see A.1.8 below) it follows that the function

z - z’e(z)

entends to a holomorphic function on X. In fact, in our case we need only the
following very elementary result.

LEMMA A. 1.5. Let f be a holomorphic function on (D*)k D"- bounded in a
neighborhood of the origin. Then it extends to a holomorphic function on D’.

Proof. We prove the statement by induction in k. For k 0 there is nothing
to prove.
Assume that the assertion holds for k- 1. Let f be a holomorphic function on

(D*)k D n-k bounded on {z (n 10 ([Zi] < p, < < k, [Zi] < ), k + <
< n ). We can expand f into the Laurent series

f(z) c.,zm.
IliZk X Z_-k

If we fix z l, Zk-1 SO that 0 < [zi[ < [ for < < k and zk+ l, Zn SO

thatlzil<pfork+l <i<nthen

(Z) Z ( Z CmZnt zn*--l’Zn+l’ znn)Zm*
m,
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is a holomorphic function on D* bounded near the origin. Therefore it extends to
a holomorphic function on D. This easily implies c --0 for mk < 0. Therefore f
extends to (D*)k- Dn-k+ , and by the induction assumption to D n. Q.E.D.
Now we shall reformulate A.1.4 to describe the form of the solutions of the

system (4).
We say that the elements s, r (3 are integrally equivalent if s r Zk.
For s (3 and in Z+ we denote by zSlogmz the multivalued function

(x,,..., x)--exp(slx + + sx)x".., xff’,
on X*.

It is easy to see that the matrix coefficients of the multivalued function za are
linear combinations of functions zlogmz with s G, m Z+. Therefore A.1.4
implies that for a multivalued solution of the sytem (4) there exist

(i) a finite subset S of (3 such that no elements of S are integrally equivalent;
(ii) For each s S a finite family of nontrivial W-valued holomorphic

functions ,m, (m Z+ ), on D such that on each coordinate hyperplane
Yj z C,"lzj 0}, j k, at least one of them is not identically zero, with

s,mZSlogmz
on X*. We call the above representation of a canonicalform of the solution .

P,OVOSITION A. 1.6. Every multivalued solution dp of the system (4) has a unique
canonical form.
We have remarked already that a canonical form always exists. The

uniqueness follows from a weak form of the next result. In its strongest form it is
critical in the understanding of the "asymptotics along the walls" (see Section 6).
LEMMA A. 1.7. Let U be an open subset of X intersecting (0) D . Suppose

that dp is a multivalued W-valued holomorphic function on X* and assume that there
exist

(i) a finite set S of integrally inequivalent elements of G’,
(ii) for each s S a finite family of W-valued holomorphic functions dps,m,

(m Z+ ), on U with

s,mzSlogmz
on p-(U).

Then
(a) the functions ,m extend to holomorphic functions on D ,
(b) the above formula holds on whole X* and it determines the functions b,

uniquely.
To prove the above statement we study the action of covering transformations

on and use the following simple version of the Hartogs extension theorem.
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Let X be an open subset of G and Y a proper closed analytic subset of X. Let
Yns be the subset of Y where Y is nonsingular and of codimension one. The
complement of Yns in Y is a closed analytic subset of codimension > 2 in X [10,
p. 115]. Let X* X\Y.

LEMMA A.1.8. Let U be an open set of X which intersects every connected
component of Yns and f a holomorphic function on X* U U. Then f extends to a
holomorphic function on X.

First we prove a special, nearly trivial case of the above result.

LEMMA A.1.9. Let X= D Y where Y is a domain in Gn-, X* D* Y
and U a nonempty open subset of X intersecting (0) Y. If f is a holomorphic
function on X* 0 U it extends to a holomorphic function on X.

Proof. The function f can be expanded in the Laurent series

f(z, y)= a(y)z , z D*, y Y,

on D* Y. The coefficients a, k Z, are holomorphic functions on Y; if , is a
positively oriented loop around the origin in D* we have

f --ak(y)= f(z, y)z dz, y Y,

for every k 7. Obviously, ak(y 0 for all ), Y such that (0,),) U and
k < 0. The region Y being connected, it follows that ak 0 for k < 0. Q.E.D.
Now we can prove A.1.8. Let V be the set of all y Yns such that there exists

an open neighborhood U of y in X such that fl U X* extends to a
holomorphic function on U. It is obvious that V is open in Yns and that it
contains U q Yns" By A. 1.9 it is also closed in Yns" Our assumption therefore
implies that V-- Yns" Hence f extends to a holomorphic function on X* O Yn"
Since the complement of Yns in Y has codimension > 2 in X, the classical
Riemann extension theorem [10, I.C.8] implies the assertion of A.1.8.
Now we can prove A.1.7.
We put

Iml=m+m_+ +

for m zk+
m! m! m2! mk!

m>n if mj>nj, l<j<k,

for m, n zk+; and

ms m ls + m2s2 + + mkSk
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for s Gk, m Z+. Also we denote by

ej (0,0 ,0,1,0,..., O)

the jth standard basis vector in Ck.
For s Ck and m Z+ the covering transformation T corresponding to the

loop 7j, < j < k, acts so that

( Tj* e -2ris )zlogmz 2imje-:izlogm-"z

modulo terms involving zSlogkz, k < m- 2ej. This immediately implies that

( Tj* e 2is; )my zSlogmz (-- 2,n.i)lmlm e_ 2imSz
"--I

and

.ik.i-I ( Ty* e-2ri )m
"--I

ZIognz 0 (6)

if n is not greater or equal to m.
For s S we denote by M(s) the set of m Z+ such that the term s,mZSlOgmz

appears in the expression for on p-(U).
To prove A.1.7 we use the induction in Card S.
Firstly we assume that Card S 1. To prove the assertion in this case we use

the induction in Card M(s). If CardM(s)= the function ,m is obviously
unique and extends to a holomorphic function on X* U U given by z-Slog-"z.
By A.1.8, ,m extends to a holomorphic function on all of X.

Suppose that CardM(s)> 1. We can choose a maximal element m0 M(s).
By (5) and (6) we have on p-i(u)

)mOj(V e-2ris
"’--I

2rimoS( 2i)lmlmo!" e s,moz

and by applying the above conclusion we see that ,o
a holomorphic function on all of X. Put

is unique and extends to

xI, s,moz’logmoz,

then we can apply the induction hypothesis to xt,. Therefore the assertion holds in
the case Card S 1.

Suppose now that the assertion holds when Card S < p. We prove that it then
holds when Card S < p + by the induction in the number of terms in

s,mzSlogmz.
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Fix two different s, t S. Then there exists < j < k such that sj
(6) there exists r Z/ such that

(/Z. By

(V e 2,n-i/)r2tlOgmz 0

for all m M(t). Therefore the induction hypothesis applies to (.* e-2rritj)r(.
Evidently

( Tj* e 2ritj )zSlog,,z (e 2i. e 2i5 )zSlog’z

modulo terms involving zSlogkz, k < m ej. Therefore if m0 is a maximal element
of M(s), the coefficient of zlog’z in (Tj*- e-2ri)r is equal to (e -2ri-
e-2rig)rs,mo. It follows that ,,.0 is unique and extends to a holomorphic
function on all of X.
Now we can put

xI, tI)- ,ozlogoz
and apply the induction hypothesis again. This proves A.1.7.

2. A technical result. In this section we prove a technical result which is
needed critically in Section 7. It is almost self-evident and must be well known,
but we do not know a suitable reference.

Let s,m, S G, m Z/, be a finite family of smooth functions on [0, 1) such
that s,m (0) 4: 0. Put

alP(X) dPs,mXSlOgmx
sm

for x (0, 1). Let 0 < r/< 1.

PRO’OSITION A.2.1. (i) Suppose there exist [q and q > 0 such that for some
C > 0 we have

Then we have

I(x)l Cx’( + [logxl) q, x (o,n].

Res>

for all s, and if fs,m appears in the above formula for s such that Re s we have
m<q.

(ii) If there exists Iq such that

lim x Z(x) 0
x--)O

we have Re s > for all s.
(iii) If is an element of Lp ((0, *l], dx/x) for some < p < + oo, then Re s > 0

for all s.
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By Taylor’s theorem it is enough to prove the above statement in the case
when s,m are polynomials. We may assume that r/= 1, and we rewrite in the
form

O(x) Ps(logx)x, (s S cC),
where P are nonzero polynomials.
We start with a rather pretty lemma due to Harish-Chandra [22, A.3.2]. For

the sake of completeness we reproduce its proof here.

LEMMA A.2.2. Suppose that every s S is purely imaginary and c G. Then

Proof. Put f(x) Gx, x (0, 1]. Then by direct computation we have

if(x)l= dx c 2

and if we put M lim supx_,0 If(x)l it follows immediately that

lim 1 12 d 2

,-0 Ilogel If(x) --x < M,

which implies our assertion. Q.E.D.
Now we can prove A.2.1 (i). By dividing with x we may assume at the

beginning that l 0. Let so be an exponent in

O(x) Ps(logx)x

with the smallest real part. Suppose Re so < 0. Then

lim x-’O(x) O.
x---->0

Therefore

0 lim
x-->0

es(logx)x s-t
Res=

Let m0 max(deg Ps Re s t) and Cs,mo be the coefficient in Ps of the moth
power, then

0 lim log-mx
x-->0

_a Ps(logx)xS-t
Res=

lim E Cs,moXS-t[Res=
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By applying A.2.2 we see that Cs,mo--0 for all s, contradicting the choice of m0.
Therefore Re so > 0.

Suppose Re so 0. Then obviously we have for some C > 0

P(logx)x < C .(1 + Ilogxl)q
Res =0

for x (0, 1]. Let m0 and Cs,mo be as above. Then, if mo > q, we have

0 lim log-mx
x---)0

P(lgx)x]Res=0

=lim Cs,moXs
x---)0 Res=0

and by A.2.2 this implies Cs,mo 0 for all s with Re s 0, contradicting the choice
of mo. Therefore m0 < q, which proves (i).
To prove (ii) we remark first that by (i) we have Re s > l, and Re s implies

deg Ps 0. Therefore

0 lim x-Zl(x)l= lim
xO x-O E Psxs-l]Res--

what by A.2.2 implies that Ps 0 for Re s l. Hence Re s > l, which proves (ii).
It remains to prove (iii). We start with the observation that if s v 0 and P is a

polynomial, then

fyle (log x)x dx Q (log y)y

where Q is again a polynomial. Let so be as before. Suppose Re so < 0. Then

q (Y) axx
has, by the above remark, the form

9(x) Qo(logx) + Q(logx)x-=/: So

where deg Qo deg Po + 1, i.e. Qo is certainly not a constant.
Let < q < + oo be such that (l/p) + (1/q) 1. By the Hflder inequality we

have

fyl Re dx ;yl dXI ,(y)l < IO(x)lx --x < I (x)lT < IIlle" Ilogyl/q

for all y (0, 1]. By (i) this implies that deg Qso 0, which is impossible.
Therefore Re so > 0.
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