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Rings of regular functions on nilpotent orbits
and their covers

William M. McGovern*
Mathematical Sciences Rescarch Institute, Berkeley, CA 94720, USA

Summary. Let G be a complex semisimple algebraic group with Lie algebra
g- Let #=g be a nilpotent G-orbit, R(®) its ring of regular functions. We
derive a formula for R(®) as a G-module and prove some partial results
on R(),& a cover of @ We then relate this formula to various existing
multiplicity formulas for K-types in Harish-Chandra bimodules of 6.

§ 1. Introduction

Let G be a complex semisimple algebraic group, g its Lie algebra. In this paper,
we study rings of regular functions on G-orbits of nilpotent elements in g, concen-
trating attention on their G-module structure. Although understanding such
rings is important for studying algebro-geometric questions relating to the nor-
mality of orbit closures and the birationality of moment maps, our primary
motivation comes from conjectures of Vogan in [V1] and [V2], which state
that certain finitely-generated admissible Harish-Chandra bimodules over G hav-
ing also the structure of associative algebras should be realizable as deformations
of rings of regular functions. Such algebras are called Dixmier algebras in [M1]
and [V2]; they are extensively studied in [Mi] and [M2]. Vogan’s conjectures
actually apply only to Dixmier algebras corresponding to nilpotent orbits in
some sense; such algebras are called “unipotent”, (Their precise definition has
not been standardized.) We focus here on the G-action rather than the algebra
structure hecause Vogan's conjectures allow a wide latitude in the algebra struc-
ture of Dixmicr algebras, but imply that their G-module structure must agree
with that of the regular functions on some orbit cover,

In what follows T will denote a maximal torus of ¢ with Lie algebra t, 4%
a choice of positive t-roots in g, W the Weyl group, &: W— 41 the sign represen-
tation, and p the half-sum of the positive roots. If let* exponentiates to a
character of T, we denote this character by ¢*. Let ¢ denote the set of irreducible
{inite-dimensional representations of G: identify these with their corresponding
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modules, If ¥ is any (possibly infinite} direct sum of elements of G and EeG
then we call dimg Homg (E. ¥) the multiplicity of £ in V and denote it by [V: E].
IM[V:E]=+0 wecall £ a K-type of ¥ We extend this notation to representations
of Levi subgroups of G,

§ 2, Two preliminary lemmas

Let geq be nilpotent. We will describe R(G-¢), the ring of regular functions
on the orbit of ¢, in lerms ol algebraically induced building blocks. More precise-
ly. let L be a Levi subgroup of G and F an clement of L. We define Ind§(F)
to he the unique sum ¥ of clements in G such that [¥: E]=[E: F] for any
EeG. We extend the definition of Ind¥(F) to F lying in the Grothendick group
gencrated by L in the ohvious way, also allowing oursclves to write Ind%(zF)
and = Indf(F) for zeZ and F in this Grothendieck group, The formula in the
next scclion will express R(G )l as a finite weighted sum of various Ind§{e?).
As motivation for using these particular building blocks, we may cite first a
result of Kostant [K] that if ¢ is principal. then R(G @)= Ind$(e"™: the Weyl
character formula. which implies that il e =0, then R(G-¢) = M £(w) Ind¥(e" —¥o),
we W

and finally & very general result of Vogan [V3], which implies that for any
e. R(G-¢) must be cxpressible as a finite combination of Ind$ (e,

Embed ¢ in a standard triple (hoe.f} satisfying the bracket relations of
the usual basis of £/(2, @) by the Jacobson-Morozov thearem. Then h defines
a Z-gradation on g via g;=i-cigenspace of adh, as il is well known that all
eigenvalues of adh are integral (our standard triples have [he]==2¢). Put q
= M ;. the standard parabolic subalgebra attached to e, and let g=I+u be

iz0
its Levi decomposition: then clearly [=g,, u= ) g;. Put Q=LU=expaq, the
iz
corresponding parabolic subgroup of G. Since all standard triples with a fixed
¢ are G-conjugate. the conjugacy class of @ is independent of the choice of
standard triple [K]. Our first resull relates Ind¥ to sheal cohomology of G/Q.

Lemma 2.1 Y (- D H{G/Q. G % o[Si0/g)® F1) = nd$(F) for any Fe L, extended

to a Q-module by letting U act trivially. Here S(a/q) is the symmetric algebra
on the pector space afu.

Pronf. We have a standard identification Ind§ Fz H®(G/L, G x, F) realizing
Indfl F* as a space of globat sections of a vector bundle. The projection morphism
e GIL—G/Q is alline with liber U, Hence HYG/L. Gx F)= HY(G/Q. p (G
% FN=IP{GIQ. G x o RIVY®F), R(U), the algebra of regular functions on U.
Since G/L is affine. HYG/L, G =, F) vanishes in positive degree, so H°(G/L,
Gx ;. F)is the Euler characteristic of G x o(R(U)RF) over G/Q. The @-modutes
- R{U) and R(u) are isomorphic when restricted to L{u being nilpolent), so by
the additivity of Euler characteristic HY(G/L, Gx, F)=Y (—1YH(G/Q, G
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%o R(W@F). But R( )=8(u* illi i
0 , U)=8(u*} and the Killing fo i * wi
the result follows. Q.E.D. § orm identifies u” with /e so
. The above proof was communicated to me
give a computational proof by using Kostant’
m:”a the Bott-Borel-Weil theorem, The other r
will require some notation. Put Ve ¥

e izz

?2 Q.w.,-._wué_dm::omxom::: _HN.._;LQNH
n: Z—G e given by projection to the first fa
Let w, be the canonical line bundle on Z

The vanishing result is

by Michel Brion. Ope can also
s multiplicity formula for weights
esult is a vanishing theorem which
a;: then V is a vector space which is

G x o V. We have maps P Z~G/Q,
ctor and the G-action, respectively,
(the top exterior power of T* Z).

Lemma 2.2. Rz, w,=0 for i >0,

Proof. This is a speciat case of Satz 2.4 in [GR]. QE.D

§3, The multiplicity formula
Qur main result is

Theorem 3.1. With the above notations, we hape
R(G-e)z=g3 (- YIndf(d'g)

where we decree that A ®q, =T even i g =0,

.ﬂ_.aaﬁ I first claim that the fiber of % Over any xeG e is a singleton. Indeed
i MH&.FI_ then this fiber g (g, EmQxﬂ\_w.cur.&\@..& &;Amm
mu.%nﬂﬁm%zm h-eeV}eG/Q. Now G°=Q since G°= UG5, G the oazqmu_mwnq of
Tf,m.: mn __w:u_m {hef} ﬁw<u“_,.wo dim @-y=dim Q-elor any yeG-e. Hence
o Mw m .o:waa% of Q-¢, being a union of orbits of dimension less than
P m Jom not meet G-e. It follows that {8Qlg™ h-ee ¥}
o_m_.m:eaw ._,:H:Mmmmm Wn ,qutquQ UmQ@H?DW. So the fiber is a singleton, as
‘ H\. s o] )= normalization of R(G-e)=R(G-¢), since G-e and

¥ g ¥ are smooth [F]; we also have R(G-e)=TI(X, 00,), where X is the normal-

ization of Z,®,, the sir
U ucture sheaf, and I" denotes glob i
& Koszul resolution of R(¥VYas a 0-module: gobal sections. We have

S(a/a)@A4=ror g, =S@/a)@4 g, - ..
= S(0/0}®A4°g, - R(V)

where we note that 174 =
=4,;. From general nonsense w., = 4100 /%
corresponds to the character Ay i@;.a&M q vlw_%mu oW@@ﬁMﬂrmo
bi 13 Hif= 38 . us

ig -2 iz

get a resoluti = ° i
ion of PeWz=G X H(R(V@ A" "at) by replacing cach term W in
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i ; "Pa¥). Si c I sharacteristic is addi-
the above reselution hy G x (W& A™Pa¥). Since the Euler char h
tive. we deduce that

L= HGIQwy wi) = S~ VS~ 1V IF(GIQ. G x oS (Wa@A's, @A g1].

i

. - i s
Now the standard symplectic form on T.(G-¢) pairs q, with itself, mw_ mm n_:,
even-dimensional. It follows that the right side above oo:nmwoaﬁ_m .8 :m o
the theorem, by Lemma 2.1, so we nced only show the same is true of th

left side. There is a Grothendieck spectral sequence {G]
HYNGQ. R p, wims HPH(Z, ).

The direct images R? with ¢>0 arc 0 since 0 is affine, so the spectral sequence
collapses and we get an isomorphism

HAUGIO, G x o{RINDA™ g1 = HM(Z, Wik
Simifarly. there is a spectral sequence
HAG e  RMwyp)es P H0( 7, W)

and now since G-¢ is affine. the cohomology H7(+) with p>0 vanishes. Hence
there is an isomorphism

HO(G e RPw,) 2 TRy HMZ, W) H(GIQ, G % o R(V)® A™ ),

By Lemma 2.2, the H?(Z. wy) vanish in positive degree, so we :MQM M;;_Wm %MM
that #%(Z, w)xT(x, ), since we observed above that X, %mu ¥ nm.&.; ' N ™
it follows from what we have shown so far that wy has a nonzero f.::.:w:w:.
section ¢b. We have maps J: Oy wy, f: ﬁ_\,.li..."x. rl: rez, ‘%NVI.J%“.M‘N Zoﬁ
T(X, 00— [(Z,w,), the last two defined _.mm_unc:su.c_ by ﬁl.ﬁ.s. .Hl.: .:. Row
riris o.vs.ocma\ injective, so I'j is. To sce 5m|. Fj Is surjective, note \._,v e
¢ is not the zero section, any clement of r(z, :.N\u is of ::.u form mw._a ,ﬁ cre
£ is a rational function {possibly with poles) on X¥. We must m:os_m. 1 .m.;w,ﬂ
no poles. By the G-invariance of $og rmm. no peles on the open T::::;_,Eu
preimage of G-¢ on X (under the composition of :ﬂ.n :o:sm__.wm:o_.ﬂ _:mm. _E\_m»
7). m;:r:a complement of this set is a union of orbits of codimension at le

2,50 by the normality of X, g has no poles there cither, Q.E.D.

I do not know whether the map J occurring in the m.voé w:woﬁ is _mz.
tsomorphism. If so, we would obtain a vanishing result ooémo::a@ in [MI]:
HYG/O Gx o R(V)=0 for i>0. [ would like to thank Eckart Viehweg for

inging i ial i i : f to my attention, -
bringing certain crucial ideas in the above proo My . ) N

gm_:m formula for R(G-¢) has a number of nice cogﬂ_u_:hpﬁozmm properties.
We may rewrite it {as promised above) in terms of the Tnd$(e?):

i O px diere denates the z-root
Corollary 3.2. R(G .¢)x, Ind§ Y. (€=M, where g,
aed
space of g, Ao zzan o
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Proof. Ttis clear that the format character of (1Y A'q, is given by T (e®—e),

Ba=m
The above formula then follows immediately from this formula, the Weyl denom-

inator formula for L, and a corollary of the Weyl character formula enabling
one to rewrite any Ind{(F) in terms of Indf(e’. Q.ED,

We can also describe the L-action on 91 By a result of Dynkin, we may
assume that each simple root Space (relative to A7) belongs to 90: G3, OF g,;
then g, is generated as on L-module by the simple root Spaces in g,. It is
easy to see that thege root spaces are [-lowest weight spaces (so they are aj|
the L-lowest weight spaces). From the classification of Dynkin diagrams, we
sce that the corresponding highest welghts are sums of fundamenta] dominant
weights for simple components of {511, The multiples are usually 1 and the
weights are usually minimal in the standard partial order in t*, so the exterior
powers are quite small and casy to decompose over £,

§4. Covers of G-

Let G7e be the simply connected cover of G-e; recall that 71 (G-e} is just the
component group G/GE of Goif G is simply connected (assume this henceforth

for simplicity). The largest and most tnteresting Dixmier algebras should corre-

R(G-e) in some sense, There is a formula for R(Ge) having the same general
shape as the formuly in Theorem 3.1, More precisely, we have

Theorem 4.1, Wihy the above notations, there gre Sinite dimensionaj representations
A, .. of L (not necessarily irreducible) such that

qu&mMT Y Indf(4'g, @ F).

Proof. The first SEep is to realize Ge ag 3 {(noncoadjoint) orbit in its own right,
As noted above, we have G*= pye ¢, where G* is the ceatratizer of the standard
triple {, ¢, 1. By Chevalley’s lemma, we can find 4 finite dimensional representa-
tion W' of G ang e W’ such that the isotropy subgroup G” of  is UG;. Then
the orbit of (2,0} In gPRW is aoao_ﬁ:_.o to G7e. The orbit closure ._vnm.?. v)
is a finite cover of the vector space P Qe and Just as in the proof of Theo-
rem 3.1, we gt a proper map G x g V= G which is birational over the open
orbit, Now R(¥}is a finite R(V)-algebra, by virtue of the pullback of the natural
map ¥ V. As such if js graded, since ¥ injects into G2 and G-e has a natural
C*-action (which lifts to GTe via g finite cover of C*). By the Hilbert chain-of-
Syzygies theorem, any free resolution of R(7) may be terminated after dim(y,)
steps. We obtain one such reselution by starting with the resolution for R(V)
and then inductively replacing each term by a free module of larger rank whose
canonical basis maps onto a Q-invarjant set of generators for the next term
to the right. Now g, typical term of our New  resolution looks ke
_m.S\a®A_.:_.®m. Lemma 2.1 carries over “.S:._ma_.ma_w to this new resclution,
s0 it suffices to show that the analogue of Lemma 2.2 carries over. This follows
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easily from the proof of Satz 2.4 in [GR]: it is deduced _.._.,oa mM:.N 2.3, ,ﬁn__.w”
carries over to generically finite maps (sce [Ko, Thm. 2.1{ii}]). This concludes

the proaf, Q.E.D,

. . o
Unfortunately, it is far from clear just what ﬁ.:o modules F o:m:“ _Moonr
we cannet cxpect them fo be naturally constructible from the L-modules g;.
Ag an example, we mention the following

Te)z IndS(Ze?), where the X rw
Conjecture 4.2. [f G-e is principal, then R(GTeyz=Ind7(Ze®), where :HJ \..w,“.u
E,E.. the Ta_:::.:a.i integral weights that are minimal in the standard partial order.

H Fiy A

This is reasonable because it can _u.a shown :x:. R(G7e) osﬂnw_:m ::Hm.m‘ Mow
by using first-order deformations. which we now _;:.o,azoa.. % ‘ew_muc.ﬁﬂ.zf
¥ be any finite-dimensional G-module. Define 4 Map exp X _p.:z_. o ._._su.u:n
manian of ¥ to itself. as follows: (exp wox)- 8= fim {exp ax)-S. This limit always

n=t-r .
exists in the Grassmannian of ¥ (and has :ﬂ same dimension as 5) ﬁ”ﬁmmm
that no two distinct cigenvalues of exp x acting on V mzwﬁ.u H:.o mmﬁm_.._o,ﬁc.,:w
value [H]. The map exp =« x is called a first-order n_mﬁo‘ﬂ._:p:o:, Ew..ﬁ. ,<<a ,3:
use if only in the case where x is nilpotent, .E:Ed it m_ssv_m Mﬂ_rowmmosi.ﬁ:
gven give an explicit formula for exp Sy...t if wﬂﬂcﬁ_m w:m.w:mw ik _m_n_,m.oﬂ
is just ©x*-p, where x¥e U{g). the o:.<n_o§:w algebra o a. ms. a ¢ lrgest
integer such thal x*-p=0. The most important J_..M_ﬂmﬂw.. ommgmmw.o.omﬁmﬂmﬂm::mm:

ions for our purposes is the following one, vali s e (jrass
“_m:n._w_wﬂ.m: m:mﬂ_uo%, _w\.” [{exp Si.&.mﬁnzm c0x)-S]e(exp 8.&. (=-8). ,,Hﬁ_u:w_.ﬁmwn_wﬂﬂ_w
_._d_.:nn:m:n_w_ from the definition. Equality need not hold, as we

01 I 0

5 - s= . S=Cx. Qur main
following examplé: g=s/{2), V=g, x= 00 ¢ C 0 —1

result on deformations is the following

vt
Proposition 4.3, Let ceq be ailpotent. Suppose thai the centralizer o' of ¢ :w
q is o deformation (=image under a finite sequence of first-order deformations
s ) ~ G
of w reductive subalgebra ni. Then R(G7e) > Indf; < oy (©).

Proof. By Frobenius reciprocity (as peinted out in EAU we _.:::.w x_a.&
= Indf: () = Ind% (€). where the last two terms are defined in the obvious way.
= aell.)= MLt N

Then the result follows tnmediately from the property of first-order deformations
just mentioned. Q.E.D.

. . - . > need
To prove the above assertion about R(GTe) when e is principal, we nee
a slight refinement of this proposition,

Proposition 4.4, Retain the hypotheses of F.:_:m.._.:q.a:.a.u. mﬂ:ﬁa.,.m. :“\.A”“.“z_%ﬁm
that the deformation mapping m into o° maps .,.ahzc ,,.\:?..__wn.u.._“:::w _\h I into
Z{a®. the vemter of §*= Lic G*. Then R(GTe)D :E.._AM...:V_ .E F:. ; H.... »\ ey
the one-dimensional representations of wm on which m' acts trivially and \

“flattened induction fimetor ', is defined as foliows

- .

_Tﬂ Mo=@1 i [E: Vo]0 , M

TN e T s 1
[(de (1) EF = I FLE: V=0 but[E:V3£0  jorsome
~ 0 otherwise,
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Progf. We need only show that any E with [E: V]+0 for some 4 appears
in R{G%e). Let'w Span a copy of V, in E; then (7§ acts on the image of Cw.
Its reductive part G* acts trivially since both Z(G") and [G°, 6] do. Its unipotent

radical U* acts unipotently and thus trivially also. The conclusion fol-
lows. Q.E.DD.

We also need the following useful criterion for realizing a centralizer g°
as a deformation.

Proposition 4.5, [n the notation of §2, let s=Spang(h, e.f). Let g=@q' be the
decomposition of g into irreducible s-modules. Suppose that there is a subalgebra
moof g such that wmm g is one-dimensional for each i. Then (exp coe)- m>ge.

Proof. This follows immediately from the definition of exp coe, together with
the above formula for exp e of a one-dimensional space. Q.E.D.

This proposition applies to any even ¢ (one for which all the h-eigenspaces
4ol §2 are 0 for i odd), for then we may take m=g,=1 Now we can prove
one containment of Conjecture 4.2, Tt is well known that for any FeG we have
[F: e*+0 for a unique minimal 1 (regarding F as T-module); let F, denote
the Jl-weight space of F. Then Gupta has shown [Gu] that (exp ae)-F, is the
sum of exp coe applied to certain one-dimensional subspaces of F; (recall that
e is now principal). The proof of Propositions 4.4 and 4.5 {with m=t) now
combine to show that g¢ kills (exp coe)- F,, whence R(G7e)>Ind§(Z e,

Returning to the case of general e, we remark that Proposition 4.5 often
leads to a formula for a (hopefulty large) piece of R(G7e) that looks quite different
from 3.1 or 4.1. For example, if g=s/(n} and e corresponds to the partition
(P, ... p,) of n via the Jordan form, then it turns out that 4.5 applies to a
certain Levi subalgebra m corresponding to the partition C TR conjugate
to (py,....p,) We may construct m as follows. Assume that the standard triple
{h.e.f} has h diagonal and ¢ in Jordan form, Then m is spanned by all matrix
units E;; having ail entries 0 except for a 1 in the ), J)-position, satisfying the
following properties: (a) i=j; (b) hi—h; is 0 or +1; and {c) if hi—h;=0, then
max(;, i) is even, As the center Z of G in this case surjects onto =, (G-e),
it can be seen that exp coe applied to the m-fixed vectors in any G-module
Vis actually G*-fixed, not merely Gi-fixed. Hence R(G-€)>Inds (). Since G.e
is induced from the 0 orbit of m in the sense of Lusztig and Spaltenstein, it
follows from [LS] that equality actually holds. (The situation for other classical
groups is unfortunately much more complicated, but 4.5 still applies to some
orbits.) The importance of these observations will become clear in the next

section,
§5. Comparison to muliiplicity formulas in Dixmier algebras

Il unipotent Dixmier algebras 4 are to be realizable as deformations of rings
of regular functions R, then the G-module structures of 4 and R must be
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isomorphic. That is, it must be possible to rewrite the above formulas for R(G-e)
and R(G7e) so that they look like character formulas for complex groups. We
therefore make the following

Conjecture 5.1. For each nilpotent e, there is formula for R(G-¢) expressing it
as a linear combination of Id$(A—w2) for a fixed 7 and we W, The same holds
iff Geeis replaced hy any cover.

Probably this can be verified case by case without too much difficulty; it
would be especially nice if the coefficient of Ind$(A—wA) turned out to be a
class function of we W for every existing character formula for unipotent repre-
sentations of complex groups has this property [BVI, 2, 3} Now both 3.2
and 4.3 provide philosophical support for Conjecture 5,1, the former becausc
it can be interproted as a ratio of products of Weyl denominators, and the
latter because it allows us o take Z=p, whencver Tnd? () fills out R(G7e)
or R(G-¢} {(Here p,, is the half-sum of the positive roots of m; note also in
this case that the coelficicnt of Ind$(4—1w2) is just £(w) or ()

Conjecture 5.1 allows us to attach clements of t*/W (which we may think
of as infinitesimal characters) 1o nilpotent orbits, Barbasch and Vogan have
already done this for the classical groups [BVI, 2], but they werc motivated
by very different (and rather maore complicated) considerations than ours. Tt
is therclore quite striking that their recipe often turns out to work well in our
situation. For example. if g is of type A,, then we have already observed that
R(G-e)= Ind$ (T for some nt, and 4.4 provides a reasonable conjectural formuia
for R(G7e), Then the Barbasch-Vogan infinitesimal character attached to G-¢
is a twist f,, of p,. A, — Wi, meels the root lattice in the same set as p,, — Wp,,
does, and g ,— W3, meets the weight lattice in exactly the set of weights 4
such that Tndf(e®) appears in the conjectural formula for R(G e} [M1, BV
g is of type Gy, then it turns oul that 5.1 rapidly leads to a unique infinitesimal
character attached to every orbit and that these characters play an important
role in [BV2]. Finally, il ¢ is principal (for any g), then the Barbasch-Vogan

— H
character attached to G-e is muﬂ_u'_l Y 4. where the 1, are exactly the 1
i=1

of 42 [V3]. In [MI] it is shown that A— W1 meets the weight lattice in
{A, ..., 4.} and the root lattice in {0} (c[. 4.2). Tt is not difficult to show that
4 is uniquely specified up to W-conjugacy by these properties.
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