
CLOSURES OF K-ORBITS IN THE FLAG VARIETY FOR U(p, q)

WILLIAM M. MCGOVERN

Abstract. We classify the GLp × GLq-orbits in the flag variety for GLp+q

with rationally smooth closure, showing that they are all either already closed
or are pullbacks from orbits with smooth closure in a partial flag variety.

1. Introduction

Let G be a complex reductive group with Borel subgroup B. The question of
which Schubert varieties in the flag variety G/B are smooth has received a great
deal of attention, particularly in recent years [BilLak00, BilWar03, BilPos05]. Less
well studied, but very important for representation theory, are the closures of orbits
in G/B under the action of the fixed point subgroup K := Gθ of G, where θ is an
involutive automorphism of G [LusVog83]. Such orbit closures have been called
symmetric varieties by Springer and are studied by him in [Spr92]. In this paper
we use his techniques to decide which symmetric varieties are smooth in the special
case G = GL(p+ q, C), K = GL(p, C)×GL(q, C). We will give a pattern avoidance
criterion for rational smoothness, along the lines of the well-known one for rational
smoothness of Schubert varieties in type A. We will also show that all rationally
smooth symmetric varieties in this case are either closed orbits or pullbacks of
smooth varieties in partial flag varieties and so in particular are smooth.
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2. Preliminaries

Now let G = GL(n, C), where n = p + q, and take θ to be conjugation by a
diagonal matrix on G with p eigenvalues 1 and q eigenvalues −1, so that K = Gθ =
GL(p, C)×GL(q, C). This group may also be viewed as the complexification of the
maximal compact subgroup U(p) × U(q) of the real form U(p, q) of G. Let B be
the subgroup of upper triangular matrices in G. Recall that K-orbits in G/B are
parametrized by clans, which are sequences γ = (c1, . . . , cn) of n symbols ci, each
either + or − or a natural number, such that every natural number occurs either
exactly twice in γ or not at all [MatOsh88, Yam97]. We further require that the
number of + signs plus distinct numbers among the ci be exactly p. We identify
two clans if they have the same signs in the same positions and pairs of equal
numbers in the same positions (so that for example (1, +, 1,−) is identified with
(2, +, 2,−), but not with (1, +,−, 1)). We say that the clan γ = (c1, . . . , cn) includes

the pattern (d1, . . . , dm) if there are indices i1 < . . . < im such that the (possibly
shorter) clans (ci1 , . . . , cim

) are identified. We say that γ avoids (d1, . . . , dm) if it
does not include it. These notions of pattern inclusion and avoidance are motivated
by the corresponding ones for permutations in one-line notation, which Lakshmibai
and Sandhya used to characterize rationally smooth Schubert varieties in type A
[LakSan90] and Billey later extended to the other classical types [Bil98].
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K-orbits are partially ordered by containment of their closures. On the level of
clans, this order includes the following operations: replace a pair of (not necessarily
adjacent) opposite signs by a pair of equal numbers; or interchange a number with
a sign so as to move the number farther away from its equal mate in the clan; or
interchange a pair a, b of distinct numbers with a to the left of b, provided that
the mate of a lies to the left of the mate of b ([RicSpr90, 5.12],[Yam97, 2.4]). Thus
(the orbit corresponding to) (1, +1,−) lies below (1, 2, 1, 2) and (1, +,−, 1), while
(1, 2, 1, 3, 2, 3) lies below (1, 3, 1, 2, 2, 3)) but not below (1, 3, 1, 3, 2, 2). (These op-
erations include but do not coincide with the ones generating the Matsuki-Oshima
graph [MatOsh88].) In particular, the closed orbits are exactly those whose clans
have only signs, while the open orbit has clan (1, 2, . . . , q, + . . . , +, q, q − 1, . . . , 1),
with p − q plus signs, if p > q.

We will need a formula for the dimension of the orbit Oγ corresponding to the
clan γ = (c1, . . . , cn) [Yam97, 2.3]. Set dp,q := 1

2 (p(p− 1)+ q(q − 1)). Then dimOγ

is given by

dp,q +
∑

ci=cj∈N,i<j

(j − i − #{k ∈ N : cs = ct = k for some s < i < t < j})

In particular, the closed orbits all have the same dimension dp,q.
We conclude this section by recalling and slightly generalizing the well-known

derived functor module construction on the level of K-orbits. For this purpose let
G be any complex reductive group and K its fixed points under an involution θ. Let
Q be any θ-stable parabolic subgroup of G, containing the θ-stable Borel subgroup
B. If q is the Lie algebra of Q, then the orbit K · q identifies with a closed orbit
in the partial flag variety G/Q. Its preimage π−1(K · q) in G/B under the natural
projection π : G/B → G/Q is the support of a derived functor module; we call the
open orbit in this preimage a derived functor orbit. Its closure fibers smoothly over
K · q with fiber the flag variety Q/B of Q, so is smooth. More generally, let OQ

be any K-orbit in G/Q with smooth closure ŌQ. The preimage π−1(ŌQ) fibers
smoothly over ŌQ with fiber Q/B, so is again smooth. We also call the open orbit
O in this preimage a derived functor orbit; to avoid trivialities, we assume that
Q 6= B in the more general setting, unless OB is already closed in G/B.

3. Main result

Now we can characterize the K-orbits with rationally smooth closure.

Theorem. If the clan γ = (c1, . . . , cn) includes one of the patterns (1, +,−, 1),
(1,−, +, 1), or (1, 2, 1, 2), then the orbit Oγ does not have rationally smooth closure.

Otherwise Oγ is a derived functor orbit, so that its closure is smooth.

Proof. Suppose first that γ includes one of the above patterns. If it includes
(1, +,−, 1), replace the 1s by − and +, in that order; if it includes (1,−, +, 1),
replace the 1s by + and −, in that order; if it includes (1, 2, 1, 2), replace these
four symbols by (+,−,−, +). In all three cases, continue by replacing every pair
a, . . . , a of equal numbers in γ by +, . . . ,−. We obtain a clan corresponding to a
closed orbit O below Oγ in the partial order. Now Springer has defined an action
of the noncompact root reflections in the Weyl group Sn on the closed orbits, send-
ing each such orbit to a higher orbit whose clan has exactly two numbers [Spr92,
3.1,4.1]. One easily checks that more than dimOγ − dp,q of these reflections send
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O to an orbit lying between it and Oγ , whence Oγ is not rationally smooth, as
claimed [Spr92, 3.2,3.3].

Now suppose that γ avoids the above patterns. Then the intervals [s, t] of indices
s, t with cs = ct ∈ N are such that any two of them are one contained in the other
or disjoint. Moreover, all signs lying between any pair of equal numbers in γ are
the same. If γ has a sign not lying between a pair of equal numbers, let Q be
the parabolic subgroup of G corresponding to the simple roots not involving the
coordinate of the sign. Deleting this sign from γ, we obtain one or two clans,
one consisting of the coordinates of γ to the left of this sign, the other of the
coordinates of γ to the right of it. By induction on the length of γ, we may
assume that the orbits corresponding to these clans have smooth closure. One
checks that the image of Oγ under π identifies with the closed orbit K · q in G/Q
(where q is the Lie algebra of Q), whence Ōγ fibers smoothly over this orbit via the
projection π : G/B → G/Q with smooth fiber. Hence Ōγ is smooth, as desired. If
γ consists of at least two blocks of coordinates flanked by pairs of equal numbers
not lying between any other pair of equal numbers, with no signs lying between
the blocks, then a similar argument shows that Oγ has smooth closure, taking Q
to be the parabolic subgroup corresponding to the simple roots whose coordinates
lie in the same block. Otherwise the first and last coordinates of γ are a pair of
equal numbers. Taking Q to be the parabolic subgroup of G corresponding to the
remaining coordinates, we now find that the image of Ōγ under π is the full flag
variety G/Q and the restriction of π to this orbit closure has smooth fibers, as
usual. Hence in all cases this orbit closure is smooth. If Oγ is not already closed,
let ci = cj = a be a pair of equal numbers in γ with no numbers between them. Let
Q be the parabolic subgroup of G corresponding to the coordinates weakly between
i and j. Then the image of Ōγ under π is smooth in G/Q and Oγ is the derived
functor orbit obtained from this image, as desired. ˜

In future work we hope to find similar pattern avoidance criteria for rational
smoothness of K-orbit closures in the flag varieties of other classical groups. There
are four nonsmooth orbit closures for GL(4, R), none for SU∗(4), and one for
SU∗(6).
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