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1. Imtroduction

W_Wmmﬁ%oﬂwmnoﬁﬁw_ﬂx m_.:%_a Lie m_mommm of classical type, U(yg) its enveloping
moﬂmm/\mm X .%%mwm_rom:o: of H.:w primitive spectrum Prim U/(g) of U(g) was mﬁmﬂ
wehieved mw 0 % % type An ([14, 16]; see also [33]) and by Barbasch and
.wmwgmo:-<0ﬁ o Qf m Eﬁ D: [3]. Garfinkle has substantially simplified the
par _qc:m_m_zmwaﬁmm mwm” cation [7, 8, @ 10]. In all of these papers, the starting point
' (dominant) .m:m:.:wanWW_oﬁm:WWmewwa wuwwmmzw_ﬂom ﬁwm” M_:m b T o e
highest weight modules 7, indexed by mm: MMLMMH ewmomwsmﬂw w_ywﬂoa R
. . . . .. @ & .. :
.Mn_.oﬁ___.. H_w:m o_mmm:qf:m _u::,::Sw ideals of infinitesimal o:m_‘momwﬂ_ wqwﬁowﬂhﬂm
| ciding for nmm: w,w € W whether or not I, = I.,/. This is done by attachi
nwﬂm_mﬁonwwgzmﬁoma invariant T\, to w depending only on I,,, so :Mman 1, oIEmmw
mc_wm%.:p w_\ﬁ_:oﬁoglw_‘ ﬂEr In mmu:u.o Ay, T, tumns out to be a standard Young mﬂ + mw\-
5 m_, : ypes Ty, is a standard Young 2n-tableau with special symbot
1 m.mﬁm:ama domino n-tableau of special shape in [7]
,HI,:W equivalence classes under the relation defined by w ~ w’ if and only if
. oo_ﬂ‘@ M_M WW_M_%MH.W Mﬂwmmmw HEMR ozm.m:muq defined by Kazhdan and Lusztig
bove is a consequence of the mmwrmww.nﬁM.M%:MMM.WMEH anm:;ﬁ: Toceph b
ven a weaker definition of cell [14], which Wmm M: :_mdw. Amm%:on ..qomom_._ o
Vogan [34]; the modified aomi:om turns out to o%:n&%ﬂﬂ%oa b D
| nl: ; a1 the above
%ﬂw %_M.Mmmww“ MMmﬁﬂm Mu:m not in general.) A fundamental property of left om:mo MM
s at they span vector spaces which carry the natural structure
or 1 120) H.oww Mwo,mﬂ %,Mwmoﬁwwmq Mum“ modules over the Hecke algebra H of
. , : modulo a conjecture later proved by Vi
Prim U/(g) also carrics a W-module structure. Usin Frables of Alve
. ! . . g some tables of Alvis i
.,:mﬁwwocw_%_:m%mnﬂmwmwwﬂmwwzﬁw MMM.OOBHMEMM the &\ -module structure of every _mm
122, 26]. ing Kaz - ig pi , i
uite beautiful (at least in the Qmmmmmm_ ommmm.,ww mﬁmmMﬂmymmﬁnﬁaﬁwﬂ”wm%mmn%_”mnm

=
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the Barbasch-Vogan-Garfinkle picture; no one knew how to compute W-module
structure from Garfinkle’s algorithms.

The purpose of this paper is'to remedy this gap by showing that the ¥ -module
structure of a left cell can in fact be read off very simply from its standard domino
tableau of special shape, using bijections between Wey! group representations and
symbols on the one hand and symbols and partitions on the other, We also show that
the operators Ty,p and Sap used to define Vogan’s generalized T-invariant, which
play a fundamental role in Garfinkle’s classification of the primitive spectrum,
may be lifted to W-module maps between left cells (or actually H-module maps).
Furthermore, the operators Tap, Sap (plus a substitute §p for Sap in type D)
generate enough intertwining operators between left cells to enable one in principle
to write down Kazhdan-Lusztig bases for every irreducible W- or H-submoduie
of a left cell {(Theorem 4.3), We conclude the paper by showing how to compute
explicitly the product of two basis vectors of Lusztig's asymptotic Hecke algebra
J ([25, 29]) whenever this product is a third basis vector. As a consequence we
get explicit formulas for the socle of the bimodule of Ad g-finite maps between
two simple highest weight modules in many cases and for the behavior of special
unipotent representations under the tensor product.

The paper is organized as follows. In Section 2, we recall Lusztig's theory
of classical left cells, regarded as modules. Our exposition is a slight variant of
that in [23, chs. 4, 5]. We also set up the correspondences between Weyl group
representations, symbols, and partitions that we will need in the next section. In
Section 3, we show how to read off the W-module structure of a left cell from its
tableaux. In the next section, we recall the definitions of the maps Top, Sep, and
Sp on left cells and observe that they induce /f-module maps. We then use these
intertwining operators to produce basis vectors for irreducible H-representations.
Finally, in the last section, we develop the applications promised above to bimod-

ules of maps between simple highest wei ght modules and tensor products of special
unipotent representations.

2. Left cells as modules

Throughout we consider only Weyl groups of types BC and D, as all of our results
are trivial in type A. So et W, be the Weyl group of type BC,,; it acts in the
usual way on C* by permuting and changing the signs of the coordinates. Let
W, C W, be the Weyl group of type Dy, consisting of all permutations and even
sign changes. We begin by recalling the standard parametrization of irreducible
W.,.- and W} -representations.

PROPOSITION 2.1.  There is a I-1 correspondence (df) — wag between
ordered pairs (d,£) of partitions the sums 1d|, |f| of whose parts add 10 n, and
irreducible representations of W,. We have T, g_v & (g, ® sgn, where _u.
denotes the transpose of the partition b, and sgn denotes the sign representation,
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PROPOSITION 2.2. There is a correspondence (d,f) — mag between unordered
pairs (d,£) of partiions with |d| + |f| = n and irreducible representations of ﬁ.\—\c.
The correspondence is 1-1 except when d = £, in that case two representations
T4 Fag are attached to (d,£). As in type BC, we have T gt 2 g ¢ ® sgn. If
« representation is wisted by the outer automorphism of Sﬁ .h._;n.:nm& .\..EE the
symmetry of its Coxeter graph, the resulting representation is isomorphic to Rm
original one, unless the latter has a numeral, in which case the new representation

has the opposite mnmeral.

For proofs see, e.g., [30,31]; these papers also give a precise a%:::o:.ow.
the labels 1 and 2 and show how these labels change when the corresponding
representations are tensored with sgn (cf. [3]). o

We now recall Lusztig’s well-known method for rewriting the perametrizations
of Propositions 2.1 and 2.2. Henceforth it will be convenient to treat the Weyl
groups of types B and (' separately (for Lie-theoretic reasons), even 5.o:m: these
groups are of course isomorphic, Following [21], we define a symbol in type B,
(resp. () to be an arrangement

m oo P ?tu (2.3)
] 4r

of non-negative numbers such that 3=.(2p;+ 1)+~ 2¢;5 = 2n+1+4(2r41) (tesp.
Ci2mi+ Qe+ D =2ntr2r+1))andp < < peg, 11 <00 < g
Define a symbol in type D), to be an arrangement

peL P (2.4)
h (fr

of non-negative integers such that 3°,(2p; + 1) + 37, 2¢; = m_;.+ r(2r — 1) and
P1 < < Py < -0 < g We introduce an equivalence relation ~ on symbols
as the transitive closure of the ‘shift relations’

o et A 0 p+1 oot v
(m, R
and
P P zm 0 p+l ?tv. 2.5(6)
a4 g 0 ¢ +1 Gyl

In type D,,, we further extend ~ by decreeing that

mff: ?vzmq_:.svw (2.5(c))
3] gy Y4l Pr
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furthermore, if a symbol in type D,, has p; = g; for all ¢, then we attach a numeral
lor2toit

There are injective maps =, from partitions of 2n 4 1 (resp. 2n, 2n) to symbols
in type By, (resp. Cp, Dy), defined as follows: given a partition p, add a zero part
to it if necessary to make it have an odd number of parts (resp. an odd number of
parts, an even number of parts) and arrange these paris in increasing order, Obtain
anew partition p’ (of a number larger than 2n + 1) by adding zero to the first part of

{0 z.sg p, one to its second part, two to its third, and so on. Enumerate the odd parts of p’ as

Zp Al < < 2 T (resp 2+ 1 < < 2 F 1,20k L < ek < 2ps+ 1
and its even parts as 2¢; < .-+ < 2¢, (resp. 2p; < -+ < s, 201 < o0 < 2.
Assume that s = r 1 (resp. s = v + 1,5 = »); that is, restrict the domain of
#y, to partitions for which this condition holds. Then one may form a symbol as
in (2.3) (resp. (2.3),(2.4)) out of the pi and ¢;. Take this symbol as the image of
p under ;.. In case the original partition p is very even in the usual sense that its
terms are all even and occur with even multiplicity, then we attach a numeral 1 or
2 1o p and the same numeral (o its image under «J,, While the domain of 7/, does
hot contain every partition of 2n -+ [ (resp. 2n, 2n), it does contain every partition
corresponding to a nilpotent orbit in the appropriate Lie algebra. In particular, it
contains the partitions corresponding to the special orbits; these are just the ones for
which the associated symbol is special in the usual sense that P1Eg S s
The map , is one-to-one in types B,,C, and on very even partitions in type
D,; for other partitions in type D, it is two-to-one (thanks to the identification
(2.5(c))). Similarly, there are bijections ,, from symbols in type 3, (resp. C'y, Dy}
lo representations of W, (resp. W, W), obtained as follows. Given a symbol as
in {2.3) (resp. {(2.3),(2.4), subtract i — 1 from p; and ¢; to obtain an ordered (resp.
ordered,unordered) pair of pariitions (p!), (¢;) the sums of whose parts add to n.
Attach a representation of W, (resp. W,,, W) to this pair as in Proposition 2.1
(resp. 2.1, 2.2). This representation is the image of the symbol under 7,; in type
13, if the symbol has a numeral attached to it, then the representation has the same
numeral. If we set 7 = =, and restrict its domain to partitions corresponding to
nilpotent orbits in the appropriate Lie algebra, then it induces a map from nilpotent
orbits to Weyl group representations which coincides with {part of} the Springer
correspondence (3, 24].

We now recall Lusztig’s definition of left cells in {22] (where they are called
‘packets’; their coincidence with the left cells of [20] is demonstrated in [26], using
the theory of primitive ideals in U(g)).

DEFINITION 2.6. The left cells of W, or W, are the smallest class of representa-
tions containing the trivial one and closed under truncated induction from parabolic
subgroups and tensoring with sgn.

We do not need to recall the definition of trancated induction here; it suffices to
cile the formula from {22] for the representation truncatedly induced from a given
irreducible one. Thanks to the transitivity of truncated induction and its well-known
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Gedixvior in type A, it suffices to show how to induce an irreducible representation
w of W io W(= W, or W) when W' is a maximal parabolic subgroup whose
npe A component acts by sgn on 7',

PROPOSITION 2.7. ([22]). With the above notation, suppose that the type A com-
ponent of W' has rank v — 1. Assume that the symbol s has at least r (not
necessarily distinct) terms, using the shift relations as necessary. Then the induced
representation w is irreducible if and only if the »th largest term in ' occurs only
once; in that case the symbol s of 7 is obtained from s by adding one to the v
largest terms of the latter. Otherwise m has length two and the two svmbols s, $2 of
the constituents of = are obtained from s' by adding one to the r — 1 largest parts
and to each of the two parts tied for rth largest in turn. In case W is of type I and
W itself is of type A, then the symbol of T can have either numeral, depending
on the choice of W', Otherwise this symbol has either no numeral or the same
numeral as §', ‘

We will also need to record the effect on symbols of tensoring with sgn.

PROPOSITION 2.8. ([22]). With notationas in Proposition 2.7, let i be the largest
number occurring in the symbol s of a representation w of W. Ther: the top row of
the symbol s' of ™ ® sgn is obtained by listing the integers from 0 to m, omiiting
m — u whenever a occurs in the bottom row of s. Similarly, the botiom row of 8 is
obtained by listing the integers from 0 to m, omitting m — a whenever a occurs in
the tap row of s.

As mentioned above, there is also a rule for determining the numeral of s in
Proposition 2.8 if s has a numeral, but we will not need it. We now reformulate
Propositions 2.7 and 2.8 in terms of partitions.

LEMMA 2.9. Under the hypotheses of Proposition 2.7, les p be the partition
corresponding to ©' when the latter is restricted to the non-type A component
of W!. Writep = [p1,...,ps| withp, 2 --+ > p, and assume that s =7, byadding
zero parts to p as necessary. Let pr_oy1, ..., Pryy enumerate the parts of p equal
t0pr. Setp' = [pr+2, . pe 2, Py, Db D = (D142 Pt 2, p+
Lyt -+ U prgay o, s} Then either m is irreducible and corresponds to p', or
 has length two and its constituents correspond to p' and p”. In type B,  is
irreducible if and only if either a is even, or b = 0 and p, #£ 0. Inppe C, iy
irreducible if and only if either « and p, have oppesite parity, or o is even and
b= 0. Intype D, m is irreducible if and only if « and P have the same parity, or o
is even and b = 0.

Proof. This is a simple direct calculation from Proposition 2.7 and the corre-
spondence between symbols and partitions, O
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LEMMA 2.10. [fa representation w has partition p, then the representation T ®sgn
has partition pt, the transpose of p.

Proof. Let s be the symbol of 7 and let 5| > --- > s; enumerate the distinct
terms in s. Let s’ be the symbol of 7 @ sgn. Gather the terms of s into groups, the
ith of which consists of the terms equal to s; or s;41 (note that each term appears
at most twice in s). One can easily work out an explicit correspondence between
groups of terms in s, in p, in p%, and in s’. Now the result follows by an casy
calculation with the terms in each group. a

We will also need to see how to the inductive constructions of Definition 2.6
behave on the level of subsets of Weyl groups,

PROPOSITION 2.11, If w € W represents the left cell C (regarded as a module),
then wyw represents the left cell obtained from C by tensoring with sgn, where wq is
the tongest element of W. If W' is a parabolic subgroup of W and w' represents a
left cellC" of WY, then wowpw' represents the left cell obtained from C' by truncated
induction, where wy, is the longest element of W',

Proaf. Both assertions follow from [23, ch. 5]; cf. also [13, 14.17). [

Now we are ready to head towards Lusztig’s characterization of left cells in the
classical case. This appeared first in [22] and was reformulated in [23] and [28].
Here we modify the treatment in [23] slightly. We have mentioned above that a
symbol is said to be special if it is equivalent to one of the form (2.3) or (2.4) with
P £ ¢t £ pa £ -+~ We will attach a family of left cells to each special symbol,
then the totality of left cells will simply be the union of the families,

Givenaspecial symbols, let 5| < - -+ < s, enumerate the terms appearing only
once ins. Let T = {{),...,6,} (resp. B = {b1,...,,} consist of the s; appearing
in the top (resp. bottom) row of s, with the ¢; and ; labelled in increasing order.
Then one easily checks that p = ¢ 4 1 in type B or C, while p = ¢ in type
1. The Cartesian product P(T") x P(B) of the power sets of 7" and 5 becomes
a vector space over the field Iy of two elements if addition is defined via the
symmetric difference and scalar multiplication in the obvious way. We now define
two subspaces [, and 1 of P(1") x P(B) and set up a perfect pairing (-, -) between
them. Take L' (resp. R) to be the span of all £; = (¢;,4;) with 1 < { < ¢ (resp.
all vy 1= (L, b)) with 1 <4 < min(g, p — 1)); here we are identifying singleton
subsets {«} with their unique elements z. If s is of type D,,, so that p = g, let L be
the quotient of L' by the span of 3 {; = (T, B); otherwise, let L = L/, We define
the pairing (-, -) by decreeing that two basis vectors £;, rj are orthogonal if and
only if the cotresponding singletons are all disjoint. Thus {{;,7;) = 1 ifj = i or
J =i — land {(;,r;) = 0 otherwise. It is easy to see that (-,-) is indeed a perfect
pairing.

Define a subspace 5 of L or R to be smooth if it is spanned by sums of
consecutive basis vectors £; or +;. For example, if p = 4, then I has exactly one
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nonsmooth subspace, spanned by | + r3. We say that 5 is supersmooth if both §
and its (-, -)-orthogonal 51 are smooth. If p = 4, then R has exactly one smooth
but not supersmooth subspace, spanned by 7y + r2 and »2 + r3 (its orthogonal is
spanned by £y + {4).

At last we are ready to characterize the left cells.

THEOREM 2.12. {[23]). Given a special symbol s, the left cells in the family {or
double cell) of s are parametrized by supersmooth subspaces of the space L {or
equivalently the space ) defined above. Given such a subspace S, the left cell C
corresponding to 5 consists of the representations with the following symbols: for
each (X,Y) € 5+ S+, transfer the elements of X from the top to the bottom row
of s, and similarly transfer the elements of Y from the bottom to the top row of s. In
type Dy, if s has equal rows and a numeral, then each of the two representations
with the symbol s lies in a left cell by itself

For example, if

(0 2 4

v= P03
then the double cell corresponding to s has exactly five (isomorghism types of)
feft cells, corresponding to the five subspaces of L (all of which turn out to be

supersmooth). The symbols of the representations in the left cell attached to L
itself are

0 2 4 1 2 4 0 3 4 i 3 4
1 3 0 3 1 2 0 2
while those in the left cell attached 1o the subspace F2fy (whose orthogonal is
spanned by r| + r3) are

0 2 4 0 3 4 0 1 3 0 ! 2

A i 3 v m i 2 v A 2 4 v h 3 4 v ’
The last of these symbols was computed by observing that vy + 13 + 43 = (4, 1).

Of course the analogous result to Theorem 2.12 holds for right cells. Theorem
2.12 enables us to put an obvious structure of elementary abelian 2-group on the
representations in a left or right cell, or on the representations comm on to a left and
aright cell. We will use this group structure in Section 5. For now, we note that any
fzmily (or double cell) contains two distinguished left cells Cp, Cp, corresponding
zzspectively to the supersmooth subspaces 0, L of L. From the formulas for the
Sprnger correspondence in {24], one can check that in types B and L (resp. type ),
zwell Cp (resp. Cp) consists exactly of the representations attached by Springer
:#he nilpotent orbit in the Lie algebra g whose (special} symbol coincides with
@i of the family. We therefore call these cells Cf, or Cy Springer cells. Following
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Joseph, whenever Cy, (resp. Cp) is a Springer cell, we call the ‘opposite’ cell Cg
(resp. Cp) a Lusztig cell. In general, Lusztig attaches an elementary abelian 2-group
to every family of left cells and a subgroup of this group to every left cell in the
family (123, 28]); this subgroup is the whole group exactly when the cell is Lusztig
in the above sense. Note that any Lusztig cell has only the special representation
in common with the corresponding Springer cell. It turns out that an analogue of
the Springer cell can be attached to nen-Lusztig cells as well.

PROPOSITION 2.13. Given any left cellC, there is another left cell C' in the family
D of C that has only the special representation in common with (.

Proof. In general, if C),C; are any two left cells in D, corresponding to the
supersmooth subspaces 5, 52 of L via Theorem 2.12, then one easily checks that
representations common to C; and C; are parametrized by elements of (5; N S2) +
(Si-N .85 ). Hence it suffices to locate a supersmooth subspace of L complementary
to the one (call it 5) corresponding to C. Extend a basis of S to a basis of I by
adding vectors of the form {; + .- -+ ;. Let 5" be the span of the added vectors.
Since F(¢y + -+ + £;)* is spanned by the r; with § 5 4, it follows that 57 is
supersmooth, as desired. O

In [32, 6.9] it was claimed that the C* of Proposition 2.13 is unique (when
regarded us a W -module}; this actually holds only for Lusztig and Springer cells,
However, these cases suffice for the applications in that paper (cf. [1, Sect. 5]).
We conclude this section with a characterization of supersmooth subspaces that we
will need in Section 4.

LEMMA 2.14. Retain the above notation. A subspace S of L is supersmooth if
and only if it is spanned by a set of sums €; 4 - - -+ {; of consecutive £y, such that, if
i oooeb €5, G+ - o < €y are two sums in the set, then the intervals [i, 31, [, 4}
are either one contained in the other or disjoint.

Proof. Onecomputes that Fp(£;+- - -+£;)* is spanned by all 7, with & # i~1, 7,
together with ;¢ - r; if ¢ > 1. Thus if the intervals [4, ], [¢', 5] overlap but nei-
ther is contained in the other, then a sum of consecutive ry, is orthogonal to both
G+t Land by - 4 £+ 1f and only if it involves all or none of the indices
¢ — 1,i" ~ 1,4,7". By contrast, an arbitrary sum of r,'s is orthogonal to both of
these sums jf and only if it involves both or none of the indices ¢ — 1, 7, and both
or none of the indices #/ — |, 7. Now the necessity of the stated condition is clear,
and its sufficiency is easy to check as well, O

3. Standard domino tableaux and W -module structure

We turn now to our recipe for computing the W -module structure of a left cell from
Garfinkle’s standard tableaux. We begin by summarizing the basic properties of
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these tableaux [7, 8,9, 10]. Given an element w of ¥, or W), Garfinkle constructs
an ordered pair of standard domino tableaux (Tr(w), Tr(w)) of the sane shape
in such a way that w can be recovered from the pair (Tr(w), Tr(w)). A domino
tableau in type ' or D is simply an arrangement of numbered horizontal and
vertical dominos having the same shape as a Young tableau such that domino
labels increase as one moves downward or to the right. {The definition in type
B is slightly different: there domino tableaux consist of dominos as above plus
a single square in the upper left corner, always numbered 0.) A domino tableau
is called standard if the domino labels are precisely the integers from 1 to n for
some 7, each occurring once. The procedure for constructing (T {w}, Tr(w))
from w is similar to the Robinson-Schensted insertion algorithm {where w is first
replaced by the sequence w(l,...,n) of signed integers), but involves a more
complicated kind of ‘bumping’, as dominos may be horizontal or vertical and may
change their orientations when subsequent dominos are added. As in type A, we
have Tr(w) = Tr(w™"'), but this time we do not have I, = I, if and only if
Tr(w) = Ty(w") (in the notation of Section 1). The decomposition of W,, and W,
by left domino tableaux is strictly finer than the left cell decomposition (we hope
to study it in a future paper). Thus one must infroduce an equivalence relation ~
on tableaux, as follows. The dominos in a tableau can be grouped into ‘cycles’,
some of which are called ‘open’ and the others ‘closed’. For each open cycle,
there is a procedure called *moving the tableau through the cycle’, which involves
changing the positions of the dominos in the cycle (but no others). Moreover, the
set of squares involved in moving through one open cycle is disjoint from the
corresponding set for any other, so that it is possibie to move through any set of
open cycles simultaneously. For any two tableaux T4, T3, we say that Ty ~ T5 if
it is possible to get from T to 1 by moving through open cycles. The symmetry
of this relation is guaranteed because moving through the same open cycle twice
always leads back to the original tableau. Now the classification theorem states that
Ty = I, if and only if Tr{w) = Tr(w'). Garfinkle actually expresses this result
slightly differently: she picks a distinguished representative in every s-equivalence
class, namely the one with ‘special shape’ in her terminology, and then classifies
primitive ideals by domine tableaux of special shape. The definitions of special
shape and open cycle depend on the type B,C, or D of the tableau. We will
use a different representative in each equivalence class in §5. For now, we need a
preliminary result. Recall the notion of extended open cycles of one tableau relative
to another {(of the same shape) [8, 2.3.1).

LEMMA 3.1. Let D be a double cell containing a left cell C and a right cell R. Let
T3,y be the standard domino tableaux of special shape corresponding 1o C,R.
ﬂmlm: the number of elements in the intersection C N 'R equals 270 =1) yhere
m is the number of extended open cycles of Ty, relative to Ty,

Progf. Assume first that we are in type B or C. The possible left tableaux Ty, (w)
{resp. right tableaux Tr(w)) of elements w of the given intersection are obtained



36 WILLIAM M, MCGOVERN

from 1 (resp. T'r) by moving through open cycles, none of which can involve the
upper left corner of the tableau (since it must not be vacated in type €' or occupied
by a domino in type B). Conversely, a pair of tableaux (T, T’} obtained as in the
fast sentence arise from a Weyl group element w, necessarily lying in the relevant
intersection, if and only if they have the same shape. Since the upper left corners
of T¢, T'r always belong Lo open cycles [7, Sect. 5], the result follows at once from
the definition of extended open cycles. In type D, one must work a little harder.
All of the above reasoning goes through, except that (1) the element w of W,
corresponding to a given pair (T, T2) of tableaux of the same shape need not lie in
W7, and (2) the upper left corner of a tableau is always occupied by a domino and
never vacated in the course of moving the tableau through open cycles. Thus one
gets exactly 2™ elements v of W, with left and right tableaux equivalent to T, T,
respectively, and it suffices to show that exactly half of these lie in W}, To this
end, let ¢ € W,\W/ act on C" by changing the sign of the first coordinate, Then
[ 10} shows that the left tableaux of w and cw are z-equivalent whenever w € W),
where of course the open cycles of cw are defined relative to type D even though
cw ¢ W, As lor the right tableaux of w and cw, they either coincide or differ only
by moving the domino labelled | through its closed cycle, up to =-equivalence.
So if the domino labelied 1 in 7, belongs to an open cycle, then elements ¢ of W,
as above come in pairs {w, cw} and the desired result follows. So assume that this
domino belongs to a closed cycle ¢ instead and let T, be obtained from T'r by
moving through e. Then there are clearly just 2™ elements v’ of W, with left and
right tableaux equivalent to I¢, T4. Elements v as above not lying in W), corre-
spond bijectively to elements v’ as above lying in W, under the map w — cw, and
vice versa, Thus, of the 27! elements v or v/ as above, exactly 2™ of them lie in
M7’ . The tableau 7% also has special shape, and the right cell R’ corresponding to
it is obtained from R as a module by twisting every representation by conjugation
by ¢. It follows from Proposition 2.2 and Theorem 2.12 that R’ is isomorphic to
R as a W/ -module, unless R consists of a single representation with a numeral. If
R = R, then € NR,CN TR have the same cardinality [23, 12.15], and the desired
result follows. If 2 consists of a single representation with a numeral, then [23,
12.15] applies again and shows that C N R is a singleton while C N R’ is empty. It
follows that m = 0 in this case. Hence Lemma 3.1 holds in all cases. o

Now we are ready to compute W-module structure from domino tableaux.
Given a tableau T, let 17,..., 7% enumerate the tableaux obtained from T by
moving through open cycles and of the same type as T (so not involving the upper
left corner of T, if it lives in type B or C'). For 1 <4 < £, let p; be the partition
corresponding to the shape of T}. In case p; is very even and 175 lives in type D, then
we also attach a numeral 1 or 2 to p;, according as the number of vertical dominos
in 77 is congruent to 0 or 2 modulo 4. Whenever two tableaux have exactly the
same set of partitions p; and numerals attached to them by the above recipe, then
we say they are module equivalent. The terminology is justified by
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THEOREM 3.2. Retain the above notation and let C be the left cell corresponding
to T'. Then the constituents of C, when regarded as a W -module, are precisely those
corresponding to py,...,p,. via the map w of Section 2. In types B and C, each
constituent appears exactly once in the list w(p,), ..., 7(py) and the munber of w
in C (regarding the latter now as a set) with left tableau T; equals the dimension of
w(p; ). In type D, the list w(p|),...,m(p,) contains each constituent of C exacily
twice, unless k = 1. The number of w € C such that the left tableau of w or we is
T; again equals the dimension of 7(p;).

Proaf. By Lemma 3.1, the definition of open cycle, and [23, 12.15], we see
that two left cells C,C’ are isomorphic as W-modules if and only if their standard
tableaux 7", 7" of special shape are module equivalent. The first assertion thus
follows in general if it can be checked for one left cell in each W-module equiv-
alence class. Thanks to Definition 2.6 and Proposition 2,11, we have an inductive
recipe for producing one left cell in each such equivalence class, together with a
representative of each cell. Applying the definition of open cycle to each of these
representatives and the formulas for truncated induction and tensoring with s¢gn on
the level of partitions (Lemmas 2.9 and 2.10), we see that the first assertion holds
in all cases. We remark that we took ¢ € W,,\W/ to change the sign of the first
rather than the last coordinate because Garfinkle makes a nonstandard choice of
positive roots in type [, in [10].

Turning now to the proef of the second assertion, let ¢, R be arbitrary left and
right cells lying in the same double cell D. As w runs over the intersection ¢ N'R,
its left tableau T (w) must always have a shape corresponding v:a 7 to a repre-
sentation in C, and the right tableau T’r{w) must behave similarly with respect to
K. In type D, similar results hold for we, by the facts mentioned in the proof of
Lemma 3.1 about its tableaux in terms of those of w. But the left and right tableaux
of any element have the same shape. Furthermore, there cannot be distinct tableaux
Tp{w) for w € C NR of the same shape, since each Tr{w) is ~z-equivalent to
a fixed tableau of special shape. It follows that, in types B and C, the commen
shapes of I’ (w), Tr(w) as w runs over the relevant intersection parametrize the
representations common to C and R bijectively. In type I2, the common shapes of
Tr(w), Tr(w) and Tp{we), Tr(we) parametrize the representations common to
C and R in a two-to-one fashion. In all cases, holding C fixed and letting ‘R run
through all the right cells in D, we get the desired result by [23, 12.15]. 0

Of course the analogous result holds for right and double cells. Theorem 3.2
allows one to attach representations of W to elements of one-sided cells € ina
manner consistent with the module structure of the cell. In partcular, in types
% and C, we get an injective map from € N C~! to a subset of W that carries
2 natwral structure of elementary abelian 2-group, by the remarks afier Theorem

242, We could use this map to transfer the group structure to C 1 €', Now we

% sze in Section 5 that Lusztig has also defined a natural elementary abelian
aup structure on € 1 C~F, which is unfortunately niof the same (in general) as
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the one just described. We will describe the difference between these two structures
precisely in Section 5. In type D, matters are more complicated, for the map m from
partitions to representations is (generically) two-to-one. Let T be a tableau and T
the tableau obtained from T' by moving through all of its open cycles. Then one
easily checks that the shapes of T' and T parametrize the same representation, If
w € W) belongs to the intersection CN'R of the left cell € and right cell R, then any
other v € C N'R has left tableau Tz (v} obtainable from T¢.{w) by moving through
an even number of cycles. Thus the map from a typical intersection ¢ N C~! to W
coming from Theorem 3.2 is injective if and only if the tableau corresponding to C
has an odd number of open cycles (or no open cycles at all),

We also remark that Theorem 3.2 shows that the open orbit in the associated
variety of a typical primitive ideal L, in the classical case may be read off from
the shape of its corresponding (left) tableau T' of special shape (unless this orbit
lives in type D and is very even, in which case one must also look at the number
of vertical dominos in 1", as mentioned above).

4. Wall-crossing functors and Hecke module equivalences

[n Joseph's classification of primitive ideals in type A, a crucial (and often over-
looked) role is played by a simple set of generators discovered by Knuth for the
equivalence relation of having the same Robinson-Schensted left tableau. Ana-
logues of the Knuth generators in types B, C, D were discovered by Joseph [14]
and Vogan [34). Joseph showed that they furnish simple sufficient conditions for
two elements to lie in the same left cefl; Vogan then observed that they can be
turned around to furnish necessary conditions as well, using T-invariants, The key
to Garfinkle’s classification of primitive ideals in types B, C', D lies in her discov-
ery that these necessary and sufficient conditions coincide in these types. Although
the statement of this coincidence does not invelve domino tableaux, its proof relies
on them inacrucial way {8, 9, 10]. We now define the (dual) Knuth map 7', g (which
makes sense in any classical type) and two analogues S,3, 5p (which make sense
in types BC' and D, respectively) and show that they have the properties asserted
of them in the introduciion.

Let o, 8 be simple roots spanning a subsystem of type A». The wall-crossing
operator Tz is defined on Weyl group elements w whose T-invariant contains
exactly one of « and # where w is uniquely defined by the following properties:
first, w € wW’, where W' is the parabolic subgroup of W generated by the
reflections s, sg through o, §; second, u and w have different lengths; and third,
the T-invariants of v and w meet {e, 8} in disjoint singletons. Then T, 5 may also
be defined on simple highest weight modules (or simple Harish-Chandra modules
over some real group) via a composite of translation functors, whence it also
induces a well-defined order-preserving map on primitive ideals [34].

In type A, the various maps T,z suffice to classify the primitive spectrum as
a set, and even (conjecturally) as an ordered set as well. In types B, and (',
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however, these maps fail to take account of the short or long simple root at the
extreme right end of the Dynkin diagram. One therefore needs to define a substitute
for Top if «v, § are simple roots spanning a subsystem of type B. Although the
paper [34] does actually define a map that it calls Tp in this case as well, it turns
out that the correct analogue of the map T, 5 of the last paragraph is a map defined
in a later paper {35) and called 5,4 there. Like the map Ty, its domain consists
of all w € W whose r-invariant meets {«, 3} in a singleton, but now the second
and third requirements to specify the image u of w under Sap arz different, The
second one now states that the length difference between u and w should be even
in any event and nonzero if possible. The third one states that the T-invariants of
u and w should meet {er, #} in the same singleton. Then S, (unlike the Top of
[34]) is a well-defined single-valued map that can also be defined on simple highest
weight or Harish-Chandra modules by translation functors. Like the T, i of the last
paragraph, it induces an order-preserving map on primitive ideals 35).

Intype D, things are more complicated. Although there is only one root length,
the maps 15, fail to generate the right cells, even if n = 4 [34]. So let the simple
roots ¢, 3,7, 6 span a subsystem of type D4 with o the inner root, (It does not
matter how we label the outer roots 2, v, &; moreover, the choice of {a, 3, 7, 8} is
unique if g is simple. This is why we will suppress it from the notation.) Assume
that w € VW belongs to the set $ of elements satisfying hypothesis D of [11],s0
that in particular the 7-invariant of w meets {a, 3, , 6} precisely in {}; note that
the r-invariant of {11] coincides with the leff r-invariant of [8]) in this situation.
We now define a map Sp on elements w as above via Sp(w) := u, where u € S is
uniquely specified by the requirement that it also satisfy hypothesis D, differ from
w if possible, and lie in a common diagram with w of type 8-2 or 8-¢, in the sense of
[11]. Using the main theorem of [11], one checks that Sp, like T2 and 5,5, may
be defined on simple highest weight or Harish-Chandra modules by a composile
of translation functors. Hence Sp, like 17,5 and S, induces an order-preserving
map on primitive ideals.

Recall now the definition, canonical basis {1\, : w € W} and Kazhdan-Lusztig
basis {C', : w € W} of the Hecke algebra corresponding to W {20}, Following
Kazhdan and Lusztig, we take the ring A := Z[¢'/2, ¢~'/2] of Laurent polynomials
in an indeterminate ¢'/2 as the base ring of # (originally # was defined to have
base ring Z(y]). We let I denote the fraction field of A and /I the algebra obtained
from fI by extending the scalars to F. Given a left cell C, recall that the F-span
[C] {resp. the Q-span {C}) of the €', for w € C carries the natural structure of a left
H p-module (resp. left W-module); more precisely, there is an explicit formula for
the left action of T on (', whenever s € W is a simple reflection and w € € which
involves only structure constants in Z[¢'/ *| and depends only on the ¥ -graph of
C [20, 1.3]. Finally, given a left cell C and one of the maps T := Tags Sap, or §p,
recall (as noted above) that T is defined at one element of C if and only if it is
defined at every element of € and in that case it sends (’ to a single left cell ', We
extend T' to an £'-module map defined on {C] in the obvious way.
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THEOREM 4.1. IfC is a left cell and a map T' := Top, Sap or Sp, is defined on
C, then the induced map on [(C] is left Hp-equivariant,

Progf. From the discussion of Tog, Sop, Sp above we see that T is given by a
composition of right multiplication by various elements 7, with s a simple reflec-
tion, subtraction of a multiple of the identity map, projection to certain left cells,
and scalar multiplication (one needs to use the results in [11] to verify this in the
case of 5p). All of these maps respect the left I z-action. [}

This fact was already observed in [20] for the maps T4, where it was used to
show that left cells in type A, are irreducible as W-modules. For the map S, it
is implicit in [35]; for Sp it is new. If the simple roots « and /3 span a subsystem
of type H;, then we have mentioned above that Vogan has defined a map which
he denotes by T in [34]; we will however denote it by Hmn to aveid ambiguity.
It is neither injective nor single-valued, but it induces a single-valued left Hp-
equivariant map sending a typical C,, on which it is defined either to another C,
or to a sum C'y + Cp. Similarly, the map Sp may be modified to a new map Tp
with the same property as 1}, ;. The maps 17, 5 and T'p can also be defined on the
level of left cells, but even on this level they are not single-valued. A crucial result
in the program of [9, 10], appearing in [9] as Theorem 3.2.2, asserts that one can
get from any left cell to any other in the same double cell by a sequence of the
maps T3, ﬂm. and T'p. We will need the analogue of this result for Top, Sap, and
Sp.

THEOREM 4.2, Let w\,ws € W belong to the same right cell R and left cells
Cy,Ca that are isomorphic as W-modules. Then there is a sequence of maps
Taps Sap, 9p sending w to w;.

Proof. Assume first that W js of type B or C'. We imitate the proof of Theorem
3.2.21n [9], proceeding by induction on the rank of W, That proof is broken down
into a proposition (3,2.4) and a sequence of lemmas (3.2.6-3.2.9). In our sitwation
we must strengthen both the hypothesis and the conclusion of Lemma 3.2.9. The
new hypothesis states that we are given atableau 7' and an extremal position ' in
it such that there is another tableau T, module equivalent to T} having its domino
with largest label in position . The new conclusion replaces the sequence of maps
in the old conclusion with a sequence of maps T, and S.g; indeed, of course,
Garfinkle's map T3 (which coincides with Vogan’s in [34]) must be replaced by
our map S, throughout whenever « and # have different lengths. Lemma 3.2.8
must also be strengthened. Given a tableau shape S and an extremal position P in
it, there is a standard domino tableau T of shape § whose domino [ with largest
label is in position P and whose cycle structure in the sense of [8] may be any of
the possible ones for a tableau of this shape, subject only to the constraint that D
may be foreed to lie in an open cycle by itself, This is easily proved by induction
on the size of 5. Now the new versions of Theorem 3.2.2 and Proposition 3.2.4
are easily verified if » = 2 (in the notation of [9]). In general, the arguments of [9]

I
H
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can now be carried over to our situation. A similar strategy, using [10], takes care
of the case when W is of type D; there the base case is r = 4 and we replace the
map Sep by Sp. O

Unfortunately Theorem 4.2 fails for the exceptional Weyl groups; there are left
cells € in every such group such that the self-intertwining operators on C sending
basis vectors to basis vectors cannot act transitively on € N €=, The reason is
that the finite group attached by [23] to the double celt D containing C is not an
Fa-vector space in these cases (as mentioned in Section §, itisa symmetric group

instead). We are now ready for the main result of this paper.

THEOREM 4.3, The algebra Hy is semisimple Artinian. Its simple (left) modules
are all defined over I and correspond bijectively to simple W-modules over Q.
Given a simple QW -module I, realized as a constituent of some lef: cell represen-
tation (C), one can construct an explicit basis af the corresponding H p-module
whose elements are linear combinations of basis vectors C'w with coefficients +:1.
The structure constants with respect to this basis lie in A. In particular, specializing
at ¢ == 1, one obtains a canonical basis for every simple QW -modute such that W
acts on the basis by integral matrices.

Proof. The first two assertions follow at once from the Benson-Curtis-Lusztig
theorem: the algebra H is in fact isomorphic to the group algebra 1. We will
also see below that we can recover at least these two assertions without invoking
this theorem. Given a left cell C, let R be a right cell meeting C nontrivialiy.
By [23, 12.15], one knows that the elements of ¢ N R are parametrized by the
representations common to (C) and (R). More precisely, the arguments of [19,
2.8] show that the F-span [C N R] of the €, with w € C N R generates the
I p-submodule of € corresponding to the sum of these common representations.
For each constituent J of [C], we will construct a weighted sum of ', lying in J.
Repeating the construction for every right cell R with J a submodule of [R], we
get a basis of J of the desired type.

We begin by considering all compositions of maps Tup, Sap, Sp defined on
C and mapping it into itself. Each such composition induces a pennutation ¢ of
C MR, the set X of permutations obtained in this way is obviously a subgroup of
the symmetric group 5% on &k := #(C N R) letters. Note that & is a power of 2,
by Theorem 2.12. Every ¢ € T induces a linear map on [C] that maltiplies every
constiluent of the latter by a scalar, which must be a root of unity in . As the only
such roots of unity are %1, we see that ¢ must be an involution {or the identity).
Thus & must be an elementary abelian 2-subgroup of 5y acting transitively on the
& letters, by Theorem 4.2. There is only one such subgroup, up to conjugacy; it
may be described geometrically as the symmetry group of a log, ~-dimensional
parallelepiped whose edges have distinct lengths, identifying the & l=tters with the
i vertices of the parallepiped. It follows that © acts on [C ] (or (CNR)) by the
#fi regular representation, so that this space decomposes uniquely as the sum of
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one-dimensional subspaces &, each preserved by ¥ and lying in some oommn.mEoE
J as above. It only remains to decide which subspace & lies in which constituent
J. This is done by induction on the ‘complexity’ of ./, which is defined as follows.
We know from Theorem 2.12 that there are finite-dimensional IF;-vector spaces
L, It attached to C endowed with a perfect pairing (-, -} w:a canonical respective
bases {¢;}, {r;} such that J identifies withasum £+ r with L € 5, a mcwoﬂaoomr
subspace of L, and » € S+ Let ¢ be the feast number of sums of no:mm.oEEm £;in
§ adding up to £ and let « be the corresponding number for » and §=. Then the
complexity of J is defined to be ¢ + u. Assume now that Em\oms compute mxmo;w
which subspaces S lie in which submodules J' whenever J* has complexity less
than m and suppose that J has complexity exactly m. Unm:o the sum £ + 7 m.sa
integers ¢, u as above. Thanks to Lemma 2.14 we can find ¢ sums of consecutive
¢; spanning a supersmooth subspace 5 of L and adding to £. Similarly :5.3 are
sums of consecutive r; spanning a supersmooth subspace 52 of 12 NSA adding to 7.
Let .1, Ra be the right cells corresponding to 57, 52 and let {S;}, {S]} be the sets
of subspaces produced as above from the intersections Cnik,,C J\ﬁmrmscanﬁ.ﬁm
the subspaces §; that are conjugate under H r to subspaces .ml“ as 5y, &4,.... Using
Theorem 2.12, we see that all but one of the subspaces S!' lies inside submodules
of complexity less than m:, whence we can inductively identify Snm.m submodules.
The unique exceptional S lies in J, and now we can say thatan mqﬂmBQ subspace
§ lies in J if and only if it is conjugate under H g to this subspace 5;'. ,E_.mm we can
‘place’ all the subspaces & arising in the first part of the argument, and this suffices
to complete the proof. O

Actual computations of course become guite tedious as soon as & is large,
but one should note that the recipes in [9] and [10] enuble one to evaluate the
operators Tup. Sag, Sp directly on ordered pairs of standard QOBW:O. Eu.u_mm_._x,
without passing to Weyl group elements. We hope to pursue the Eu@:am:ﬁ.vsm o.m
Theorem 4.3 in a future paper; for now we mention just two of them. m_.qmr it
is clear that this theorem puts severe and explicit constraints on the behavior of
the Jacquet functor from a double cell of simple Harish-Chandra Boa:_wm over a
classical real reductive group to a right cell in ¥, since Casian and Collingwood
have shown that this functor may be viewed as a Hecke module map. mg example,
Collingwood has shown that this functor takes a certain E-&Enzﬁosu_ double
cell of SO(6,2) to a certain 10-dimensional right cell of V. Using Theorem 4.3,
one can show that the range of this map is the unique 8-dimensional m.:cBoa:wm
of this right cell, corresponding to the 8-dimensional special qomammﬁmccz of Wy
the theorem also provides a basis of this submodule. (One can identify the functor
in this case with a map Tp mentioned above.) Second, one can now attempt :w
relate the Kazhdan-Lusztig bases of irreducible (-representations of W, and W7
provided by Theorem 4.3 to other bases worked out much earlier by Young and
Frame. The paper [12) does this for W = S, where the left cells are already
irreducible. We also remark that Lusztig has attached a different basis to every
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simple left Hp-module M (for arbitrary finite or affine W) which shows that M

admits a W-graph but which does not decompose left cells into their constituents
f291.

5. Applications to the asymptotic Hecke algebra

In this section we will be working not with H but with a remarkable Z-form of
{a completion of) it, which is also a Z-form of the group algebra QW . This was
discovered by Lusztig; following him, we call it the asymptotic Hecke algebra and
denote it by J. Like H, this algebra has a cancnical basis {t,} (this time over Z)
indexed by W, but the behavior of the t,, under multiplication is much simpler than
that of the C',. Indeed, if C is a left (resp. right, two-sided) cell of W, then the span
Je of the t,, for w € C is aleft (resp. right, two-sided) ideal of J, not just a quotient
of ideals as for H. Moreover, if we write t,1, = 5 Coyatz— fora,y € W, then
the structure constants ¢ lie in N. As in the Benson-Curtis-Lusztig theorem, the
isomorphism between J @z Q and QW is complicated to write down; it does not
Justsend ¢, to C'y,. For all of these facts and the precise definition of multiplication
in J, see Lusztig’s papers [25, 27, 28, 29], which also treat the case of affine Weyl
groups ¥¥. For our purposes the main facts about J are the following ones. Given
left cells C,C’ that are isomorphic as W-modules and an element z of ¢! N (',
any produet £t or .4, is either zero or 1, for some z. We have it # 0 if and
only if y € C, in which case z lies in the same left cell as = and the same right
cell as v. A similar result holds of course for tz1y. 'The main resnlt of this section
shows how to compute z in terms of x and . To state it, we need to extend the
definition of extended open cycles of one tableau relative to another in [8] sli ghtly.
If the tableaux 7 and 73 do not necessarily have the same shape, but are equivalent
under the relation & of Section 3 to tableaux T}, T4 which do have the same shape,

then the extended open cycles of T relative to T3 are defined to be those of i
relative to 7.

THEOREM 35.1. Retain the above notation and suppose that y € C, so that tyly =
tz. Then one can compute the left and right tableaux Tr,(2), Tr(z) of z as follows.
Let d be the Duflo involution in C and let Ty(y) (resp. Tr(2)) be obtained from
Tp(d) (resp. Tr(d) = Tr(d)) by moving through the open cycles cy, . .., ci {resp.
ClyeyCp) Leter, ... e (resp. e, .., el ) be the extended open cycles containing
ClyooyCp (resp. €y, e, ) relative to Trx) {resp. to Tr(y)). Denote by U (resp.
U') the union of the extended open cycles appearing an odd number of times in
the listey, ... ey (resp. e\,...,€}). Then Tr(z) (resp. Tr()) is the right tableau
of E((Tefx), Tr(9)); U, L) (resp. of E((Tr(y), Tr(z)Y; U, L)}, in the notation
of [§8].

Proof. 1f © = d, then we know from [27] and [28] that z = y. In other words,
t4 is the unit element of the subring Jo—1n ¢ := Jo—1 NJg of J and tha right Jo— 1 ¢
module J¢ is unital. In general, we know from Theorems 4.1 and 4.2 that we can
getfrom d to @ via a sequence of maps g, Sap, Sp and that this sequence of maps
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induces a left J-equivariant map from J¢ to J¢ (by the definition of multiplication
in J and the equivariance of the induced map on [C]). So it suffices to compute
the effect of the maps Tag, Sag, Sp on the level of domino tableaux. Garfinkle
has done this in [8] and [10]. Her recipes reduce in this situation to the ones in the
theorem. a

There is a similar formula for ¢,t, whenever » satisfies the hypothesis of
Theorem 5.1. It can be proved in the same way, using the right H-equivariant
analogues of the maps Tag, Sog, Sp. We will use these analogues below. Unfor-
tunately Theorem 5.1 fails far short of determining the multiplication table of J
completely. In a subsequent paper, we will adapt the ideas of this section to compute
all the structure constants gy 5.

COROLLARY 5.2. Fix a Cartan subalgebra by and a Borel subalgebra b of g
containing b. Let A\ € b be a dominant regular integral weight. For w € W,
denote by L{w - \) the simple module of highest weight w(A + p) — p, where p
as usual is the half sum of the positive roots. Let © € W satisfy the hypothesis of
Theorem 5.1 and y be any other element of W. Then one can compute the socle of
the bimodule L(L(z - X), L(y - X)) of Ad g-finite maps from L(z - A) to L(y - A),
given a knowledge of the Duflo involution in C. This socle is simple or zero and is
nonzero if and only ify € C~L

Proof. Begin by recalling the map w +— w, introduced by Joseph in [18,
Appendix]; this map takes left cells to left cells, right cells to right cells, and Duflo

>

involutions to Duflo involutions. If we set ¢, . = €z, ,4. 2., then Joseph has
shown in {18, 4.8} that the multiplicity of the simple Harish-Chandra bimodule
with infinitesimal character (), A) and Langlands parameter z in the given socle is
€51, -1 here we warn the reader that the integers ¢y, . in [18] have the same
absolute value as the ¢y . here, but can differ from the latter by a sign. (A for-
mula for this sign is given in {18, Appendix].) For the purposes of this proof only,
enlarge the domain of the map Sp above by decreeing that it send wow to wou
whenever it sends w to u, where wy is the longest element of W (the other two
maps Top and Sap already have this property). The definition in [18, Appendix]
then shows that the map w ~» w, commutes with the maps Tyg, Sag, Sp (since
these maps commute with left multiplication by wp). Hence the same sequence
of maps Tag, Sap. Sp taking the Duflo involution d of C to 2~V also takes d, to
+7!, and similarly for y and z~'. Now the recipe for computing ¢z,y,- in Theorem
5.1 showsthatel_ 1 = Cg=i gz and computes ¢,.-1 ,, .—t in this situation. {In
fact, Joseph has shown that ¢}, , . = cyy,. forany #,y,2z € W.) The first assertion
follows; the second is an easy consequence of the first and the basic facts about the
Cx,y,- given above, ]

As with Theorem 5.1 there is of course a parallel formula for the socle of
B = L(L(y-\), L(z - A)). The most important special case of Theorem 5.1 occurs
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when z and y both lie in C~!NC for some left cell C; then z also lies inC— ' NC. More
precisely, Lusztig has shown in [28] that the ¢, for w € C™1NC form an elementary
abelian 2-group under multiplication, but he has not shown how t¢ compute this
group structure explicitly. We can now do this, using standard tableaux, We already
know that £ is the identity element of this group, where d is the Duflo involution
inC. Now let 2, 3 be any elements in C~' NC and T (z), T7,(y) their left tableaux,
which coincide with their right ones. Suppose that 77, (z), Tr(y) ate obtained from
the common left and right tablean T'{d) of d by moving through the open cycles
€1,... ¢k and ¢},..., ¢}, respectively. Then it follows from Theorem 5.1 that the
left tableau Tp(z) is obtained from 7' (d) by moving through those open cycles
appearing exactly once in the listeq, ..., ¢k, ¢} . .., c}. Recall now that we remarked
after Theorem 2.12 that the set of representations in (C), which of course coincides
with the corresponding set for (C !}, also has the natural structure of an elementary
abelian 2-group. In types B and C, each such representation corresponds to a unique
partition via the map 7 of Section 2; the resulting set of partitions consists exactly
of the tableau shapes of elements in C~! N €. Now it is not difficult to produce a
recipe for the group structure on this set of representations in terms of tableaux.
Indeed, one just follows the above recipe for the group structure on the set C~' N C,
with one crucial exception: the identity element ¢ in the group of representations
is the one whose tableau shape(= partition) is special, not the cne whose tableau
shape coincides with that of the Duflo involution. {Already in type (b, one sees
that these two elements can differ.} Thus the tableau (shape) corresponding to :
plays the role of Tz (d) above. If we regard the two group structures as living on
the same set {of tableaux, or tableau shapes), then they are conjugate to each other,
but not the same in general. In type D, as noted above, the map frem C NC~* to
W can fail to be injective, so that the two group structures need not even live on
the same set.

The above special case of Theorem 5.1 can be further specialized, namely to
left cells C containing long elements wg of parabolic subgroups Ws of W. Any
such cell has wg as its Duflo involution [17, 4.2] and is often Lusztig in the sense of
Section 2 [3]. Thus Corollary 5.2 yields an explicit formula for the socle of
L{L(w - X}, L{y - A)) for any w,y € € N C~!. Translating this formula to a
dominant infinitesimal character singular on exactly the simple roots correspond-
ing to §, we obtain a formula for Sec L{L(w' - M), L(y" - A")) valid for any
w',y" € W such that Ann L(w' - A') = Ann L(y' - \') is a maximal ideal. More-
over, it turns out that the bimodule B := L{L(w' - X}, L(y’ - A'})) coincides
with its socle [32, 4.1] and can be interpreted as a tensor product over U(g)/J/
of two simple Harish-Chandra bimodules with the same maximal left and right
annihilator /. We thus obtain

THEOREM 5.3. For any infinitesimal character p, the set of simple Harish-
Chandra bimodules with maximal left and right annihilator I, of infinitesimal char-

acter p form an elementary abelian 2-group under tensor product aver U{g)/1,,.
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The group structure is explicitly computable on the level of domino tableaux of
Langlands parameters.

The first assertion of this result was proved for special unipotent infinitesimal
characters p by Barbasch and Vogan [4] and later generalized by Barbasch to
arbitary g [1], making heavy use of the techniques of [4]. Later Joseph [19]
showed how to obtain it more elegantly using the calculations in [23] and [28].
Barbasch’s proof however does have one advantage over Joseph’s in that it yields
an explicit {but rather complicated) inductive recipe for the group structure on
the level of Langlands parameters. The contribution of the present paper is to
simplify this recipe considerably by using domino tableaux. We mention that the
techniques of [4] and [19], unlike the ones in this paper, extend beyond the case
of classical g. They show that for any infinitesimal character p in any semisimple
Lie algebra g, with two families of exceptions [2], the simple Harish-Chandra
bimodules of maximal left and right annihilator 1, tensor over U{(g)/I, like the
irreducible characters (not elements) of a finite group A, which is a direct product
of elementary abelian 2-groups (and nothing else in the classical case) and copies
of the symmetric groups 53, 54, 5s5. Again the techniques of [4), unlike those of
[19], yield explicit formulas on the level of Langlands parameters; we do not know
how to simplify them. In [28], Lusztig has generalized this result by determining
the ring structure of Jz—1p for any left cell C (not necessarily containing the long
element of a parabolic subgroup). His methods do not give explicit formulas for
multiplying the {,,.

Of course a major drawback of Theorem 5.1 is that it requires a knowledge of
the Duflo involution in the left cell C before it can be applied. Although there is
a simple criterion for deciding when a tableau has special shape [7], there is no
analogous rule for determining the tableau shape of the Dufio involution in a left
cell. We therefore conclude the paper with the following useful result.

THEOREM 35.4. As o runs over the Duflo involutions in W, the shape of Ty.(d)
depends only on the module structure of the left or right cell to which d belongs,
not on the cell itself.

Proof. Any map X = T,.g,5.p, or Sp has a ‘right analogue’ H%?.m.%m, or
5§ which sends w™! to u™! whenever X sends w to u. The maps X7 cannot
be implemented on simple highest weight modules by translation functors, but
they can be implemented on Harish-Chandra bimodules for the complex group
by right translation functors. Now apply a typical composition X o X% to the
bimodule L 1= L(L(d - A), L(d - A})), where as above A is a dominant regular
integral infinitesimal character and d is a Duflo involution. One obtains a bimodule
of the form L' ;= L(L(d'- A'), L(d'- M)}, where V' is a different integral infinites-
imal character (no longer regular) and ¢’ = X o X*(d) is an involution not yet
known to be Duflo. But now the exactness of X o X2 forces it to send the unique
simple subbimodule of L to that of L. These subbimodules have the Langlands
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parameters d,d’, so & is indeed 2 Duflo involution. Since we know from
Theorem 4.2 tha we can get from any left cell to any other with the same
module structure via sequence of maps X, it follows that the same sequence of
maps X o XF takes the Duflo involution of the first cell to that of the wmnoma.
Now Garfinkle has shown how to compute any map X on the wmw.;m_ of domino
tableaux {8, 10}. It follows from her recipes and the fact %:E Tr(w), Tr(w)
have the same shape for any w € W that any map X o X'* preserves tableau
shapes. The result follows. 0

One also has a weaker result for left cells C1,C2 with Cs o_uﬂmm?wa mz.a: Cy by
amap I%; or Tp as in Section 4; then knowledge of the Duflo involution of )
aﬁﬁ%%«m that of (2 up to a list of two candidates ([17, 5.71, [35D).
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