7 Induced Nilpotent Orbits

In Chapter 4, we constructed three canonical nilpotent orbits in any simple Lie
algebra g, essentially from nothing, In this chapter we show how to construct
new nilpotent orbits from old ones (in smaller algebras), following Lusztig and
Spaltenstein. More precisely, given a nilpotent orbit Oy in a Levi subalgebra {
of g, we will produce a nilpotent orbit O, in g called the orbit induced from
;. The definition of O seems to depend on a choice of parabolic subaigebra p
with Levi subalgebra I, but we will prove that ¢J; is actually independent of this
choice. In §7.2 we show that every nilpotent orbit in si,, is induced from the 0
orbit in some Levi subalgebra and give a formula for the partition of any induced
orbit. This formula is generalized in the next section to any classical algebra g.
We also give a simple partition criterion due to Kerpken and Spaltenstein for a
classical orbit to be rigid (that is, not induced from any other orbit).

Basic Results

The results in this section are taken from [62]. Let p be a parabolic subalgebra of
a semisimple Lie algebra g with Levi decomposition {@ n. Let O be a nilpotent
orbit in [. The basic idea is to generalize the construction of the principal orbit
in Chapter 4. If p happens to be a Borel subalgebra, then we know that O has
to be the zero orbit. In this case we have seen that, although Geg - 1 is not a
single Geg-orbit, it does admit a unique open dense suborbit, Motivated by that
fact, we look for a nilpotent orbit in g meeting O + n in a dense set.

Theorem 7.1.1. Retain the above notation and let Pyy be the connected Lie subgroup
of Ggq with Lie algebra p. Then there is a unique nilpotent orbit Oy in g meeting
O, +n in an open dense set. We have dim &, = din & + 2 dimr; in fact, Oy is
also the unique orbit in g of this dimension which meets Op +n. The intersection
Oy N (O + n) consists of a single Pag-orbit,

Proof. Let Loq be the connected Lie subgroup of Gyy with Lie algebra [ By
(3.8.1}, there is a Borel subalgebra b of | such that b; 4 n is a Borel subalgebra b
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of g (in fact, any Borel subalgebra of [ has this property). Given X & O, we can
conjugate it via L,g to an element of the nilradical n of by (by {3.2.1) and (3.2.2)}.
Since Lgg stabilizes n, it follows that every element in the afine space X + 1
is L,g-conjugate to an element of the nilradical of . Hence I 1= Oy +a QM
the nilpotent cone in g Since A is (fgq-stable, we also have Gag U TN
Consequentty V = (F,q - U 35 a finite union of orbits, at least one of which must
have the same dimension as V iteelf, and thus be open. But now O, and
V are all irreducible as varieties, the latter two because (gy is irreducible. It
foliows that V has a unique suborbit O, which is also dense. Since any other
orbit meeting 14 lies in the closure of Oy, this orbit & alse the nnique one of its
dimension meeting I{. Assume for & moment that dimV = d ;= dim Oy +2dimn
and let X € @y N4, Then the dimension of the tangent space (g, X] of Oy at X
is the sum of the dimensions of [p, X! and [R, X] (notation (3.8.6}). Since both
g and ® are ady-stable, the former space {p, X] sits inside the tangent space af
Oy + n at X ,while the latter one [f1, X} has dimension bounded ab:ove by that of
n. It follows at once that dim P,y - X = dim Uf, whence Py - X is open in I4; it
is also dense because If s irredueible. Hence Oy N1 is o single Pyy-orbit; there
is o room Lo accommodate a second orbit.

Tt only remains to compute the dimension of V. The above paragraph shows
that dim ¥V < d, 80 we need only prove the other inequality. X € Oy N4, then
(Gaq- X meets I in a dense set, so by differentiation [g, X] > Tx D n, where Ty 1s
the tangent space of I{ at X, Since the centralizer g% is orthogonal to the tangent
space [g, X] under the Killing form, while n and  are paired nondegenerately by
this form, it follows that 7 = 0. Consequently, there is a Zariski-open subset
O NU of U consisting of clements X with dim [, X ] = dim @, Now if we can
pick out a dense subset of (J; NI consisting of elements X such that [fi, X] does
not overlap with [p, X], then it will follow that dimV > d, as required. To this
end, let I denote the set of ¥V € If such that

w10 (L] +n) =0,

Arguing as in the proof of (3.4.12), we see that I’ is a Zariski-open subset af
1. Tt is not empty since an easy calculation shows that ¥ + X, € U whenever
Y & (9 and X, is a simple root vector in n (velative to b}, Thus, the intersection
@, Nl has the desired properties. This concludes the proof. ]

Remark. One way to remeruber the dimension formula for Oy is to recall the
discussion of symplectic manifolds in §1.4. The submanifold Oy NI of O carries
a symplectic form on each of its tangent spaces whose radical has dimension equal
to that of n, by (7.1.1) and the definition (1.4.5) of the symplectic form. Thus,
this submanifold needs to pick up dimn more dimensions before it can become
the symplectic manifold ,. An easier way to remember the dimension formula
s given in {7.1.4}.

Following [62], we say that the orbit Oy is induced from O and denote it by
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Ind2 (). (7.1.2)

I Oy =0, then we call O, a Richardson orbit; its existence and basic properties
were proved in [72] before the paper [62] appeared. For example, it follows from
(4.1.6) that the principal orbit Oprin is a Richardson orbit; it is induced from
the zero orbit in any Cartan subalgebra of g. We have not quite completed the
proof of {4.2.1}, but you will readily observe that the subregular orbit Ogypreg 18
also a Richardson orbit; in fact, our proof of its existence used this property in
a crucial way.

“Since we saw in §3.8 that g has a large collection of nonconjugate parabolic
subalgebras, induction of orbits is a powerful tool for constructing a large number
of nilpotent orbits in g. Several questions immediately arise.

Questions. Which nilpotent orbits in g are induced? Which orbits in g are
Richardson orbits? Is it possible for a nilpotent orbit te be induced in two
different ways? Can we describe the weighted Dynkin diagram of an induced
orbit in terms of the weighted diagram of the inducing orbit? Can we describe
the partition of an induced orbit in terms of that of the fuducing orhit?

We will ultimately discuss all these questions, bul frst we want o make
the very important observation that the orbit induced from a particular € de-

pends only on the Levi subalgebra 1, not on the choice of parabolic subalgebra p
containing it.

Theorem 7.1.3. Let p = (@ n and ¢ = [ @' be iwo parabolic subalgebras of g

with the same Levi subalgebra [, and let (3 be a nilpotent orbit in . Then,
Endﬁ(o{) = Indgf (D).

Proof. Let Op = Indd(O1). It suffices to describe (O in a way that does not
involve n. We first claim that

B, =0 i= Gy (T + 1),

Indead, since (0 is G, g-stable, it clearly contains 0%, To see that equality holds.
it is enough to show that OF i closed in g. Now @) -+ n is clearly a closed cone
in p, 8o it projects to a compact subvariety € of the projectivization Pg of the
vector space g. The homogeneous space Gug/ FPaq is compact [79, 7.2.6}, and the
projection of OF to Py is the image under projection (o thie second coordinate of
the closed subset {(gP., Cal iz € gPoq (01 +n), 5 € Gou} of the compact space
Ged/ Paq » Pg. Hence, this projection is compact, and OF is closed, as desired
{cf. [79, 7.2.11(9)]).
Now let 3 be the center of I. Our next claim is that

Ga,d . (3 —+ C);) = Gad . {3 S EQM; -+ Ti}.
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The proof that OF is closed also shows that the right side is elosed. Choose a
representative of Oy inside a fixed Borel subalgebra of | and an element Z of
3 such that w(Z) # 0 if o is a root of n. Arguing as in the proof of Kostant’s
conjugacy theorem (3.4.10), we see that the left side, which contains Pye-(3+01),
also contains 3 + Oy + n. Hence, the two sides coincide, as desired.

Now the result follows easily. We know that 0y is the unique open dense
suborbit of _5g (recall the introduction to §4), so it suflices to describe 5g in a
way that does not involve n. The proof of {7.1.1} shows that every element of
O 4+ n is nilpotent. If conversely an element X of 3 4+ @ + n is nilpotent, then
we see by repeatedly bracketing X with an appropriate simple root vector in n
that its component from 3 must be ¢. Thus we have Oy = N N Guq - GF0O).
This is the required description of O. O

The preceding argument is due to Borho (for the zero orbif it appeared
sarlier in {42]); the proof in [62! is longer and relies on some messy case-by-
case calculations. As a consequence of this theorem, we may use the notations
Ind () and Indf (©) interchangeably. The next proposition gives an easy way to
remember the dimension formula for an induced orbit and shows that induction
of orbits is transitive. Note that its proof completes the proof of (4.2.1).

'roposition 7.1.4. Let p = 1@ n he the Levi decomposition of a parabolic subalgebra

of g and G a nilpotent orbit in L

{1} codim{Ch} = codim, (Indf (O0).

{ii) Let !, and s be two Levi subalgebras of g with{; C ly. Then Ind} (Eﬂdﬁ (O )

= Ind} (Oy,).

Proof. Assertion (1) follows from a simple caleulation:

codimy {Ind? ()} = dim(g} ~ dim(Indf{O) 7
= dim(l) + 2dim{n) -~ dim() — 2dim(n)
= codim{ ).

To prove (i}, it suffices by (7.1.1} to show that the two sides both meet Oy + 1y
and have the same dimension, where p; = [y + n; is a parabolic subalgebra
with Levi subalgebra {;. The first of these properties follows at once from the
definition of an induced orbit; the equality of dimensions follows from (i}, 0

It is easy to exhibii nilpotent orbits that are induced in two essentially
different ways. Indeed, such orbits arise whenever two nonconjugate parabolic
subalgebras of g have conjugate Levi subalgebras, by (7.1.3). For example, we
saw in the proof of (4.2.1) that the subregular orbit is induced from the zere
orbit Oy in any Levi subalgebra whose derived subalgebra has rank one; there
are many nonconjugate parabolic subalpebras whose Levi subalgebras have this
property (by (3.8.1)). Moreover, we will see in the next chapter that if [; and ly
are lwo Levi subalgebras of g, then Indf (Og) ::”(nd?2 {Og) does not imply that [
and Iy are conjugale, or even that they are isomorphic,

7.1 Basie Hesults 108

The dimension formula implies that not every nilpotent orbit is induced;
this answers another one of our questions. Any nilpotent orbit in g thal 8 not
induced from any proper parabolic subalgebra is called rigid. Tt is clear that the
zero orbit Oy is rigid. To see an example of a nonzero rigid orbit, take g = sp,.
By {4.3.5), the minimal orbif Om;, has dimension 4. On the other hand, (7.1.4)
implies that nontrivially induced orbits in g have dimension 6 or 8. Thus O
is rigid. In fact, the following stronger result is true,

Lemma 7.1.8. Let g be simple and not isomorphic to sl,. Then O,y Is rigid.

Proof.  Let a¥ be the highest root relative to a fixed positive system of roots
&+, It is enough to show that the equality

1+ #{acdi(e,a®) # 0} = dim(O) + 2dimn

is never satisfied for any parabolic subalgebra p = I + n and any nilpotent orbit
O in I. We leave this calculation to you. U

Remark. The rigidity of the minimal orbit in sp,, may ultimately be used $o
show that a certain important unitary representation of Spa, attached to this
orbit and called the metaplectic representation is also rigid; that is, it cannot be
ohtained by unitary (or even cohomological parabolic) induction from a unitary
representation of a proper parabelic subgroup. Thus, this representation may
be regarded as fundamental in some sense among unitary representations. For

this reason (and many others), it has been studied extensively by both mathe-
maticians and physicists.

We now address the question of which orbits are induced. The following
theorem gives a powerful sufficient condition for an orbit to be induced and
moreover gives a formula for the weighted Dyokin diagram of an induced orbit
in terms of that of the inducing orbit in some important cases.

'heorem 7.1.6. Let g be a semisimple Lie algebra, b a Borel subalgebra, Iy a Cartan

subalgebra contained in b. Let &1, A be the respective choices of positive and
simaple roots corresponding to b and h.

{i} Suppose that the weighted Dynkin diagram D of a nilpotent orbit & in g
has vertices vy, ..., labeled 2. Then O takes the form Ind§(O,)} for some
orbit O in I, where p = pg = [ +n is the parabolic subalgebra containing b
and indexed by the subset © = A\ {vy,...,v:} of A {notation {3.8)). Here
of course [+ n = lg + ne is the Levi decomposition of p relative to b,

(ii) Let D' be the subdiagram of D} obtained by retaining only the vertices

corresponding to roots in ©. Suppoese that IV is the weighted diagram of
a nilpotent orbit O in i, Then O = Ind¥{Q).

Proof. By {3.2.2) and (3.8.1) there is a representative X € O of the form
Yo+ 2, where ¥ olies tn the istersection of [ and the nilradical of b and Z € n.
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By (4.1.4) there is a Zariski-open subset #’ of n such that ¥ + Z' € O whenever
Z' e n'. If g lies in the adjoint group Leg of [, then g - Z € n while g - ¥ lies in
the orbit Oy through Y in [ By {(4.1.4) again, it follows that O meets Oy +n
in a dense set. Now (i) follows from (7.1.1). To prove (i}, it suffices to exhibit a
representative Y’ + 2’ of O with Y’ € ', Z € n. Let H, H; € b be the neutral
elements of standard triples in g, [, respectively, corresponding to the diagrams
D, D' recall from §3.5 that the clements H, H are uniquely determined even
though the standard triples are not. Now let {H, X, Y}, {Hy, X,, ¥i} run over all
possible standard triples in g, | with neutral elements H, H;. Define the subspaces
gs, 12 of g, [ as in §3.4. Since D' is » subdisgram of D, we have I = go N and
g2 = lz@{gzNn). The proof of (3.4.12) shows that X, X range over Zariski-open
subsets P, P of ga, Iz, Since gz and [ are irreducible as varieties, there must
be a standard triple {H, X, Y} in g such that X projects to an element ¥ of
P; relative to the decomposition ga = [z @ (ga Nn). Writing X as ¥’ + Z’ with
Z' € n, we arrive at a representative of O of the desired form. 4

‘orollary 7.1.7. Any even nilpotent orbit is a Richardson orbit. In particular, we have

Oprin = Indi{Op)}, where Oppir, is the prineipal orbit in g and b is any Borel
subalgebra of g.

Praaf. Recall from (3.8.8) that an orbit is even if and only if its weighted
diagram has only (s and 2's. Now the result follows at once from (7.1.6). O

For your convenience, we formally restate a fact already observed.

emma T.1.8. Let g be a vimple Lie algebra. The subregular orbit &,yppey i8 a Richard-

son orbit; it is induced from the zero orbit of any Levi subalgebra whose derived
subalgebra has rank one.

We warn you that it is possible for an orbit to be nontrivially induced even
if ite weighted diagram has no 2's. (For example, we will see in the next section
that every nilpotent orbif in sf, is a Richardsen orbit.} Furthermore, even if the
hypothesis of (7.1.6)(3} is satisfied for a given orbit (O and some choice of vertices
#1,.. ., v, the hypothesis (7.1.6)(ii) need not be; in that case there is no simple
way to compute the weighted diagram of the orbit O in (i). It is an empirical
fact, however, thas if one removes all the vertices labeied 2 from the weighted
diagram of a nilpotent orbit, one obtains the weighted diagram of another orbit.
Thus, any orbit whose weighted diagram has a 2 may be realized 28 an induced
orbit in a very explicit way.

7.2 Induced Nilpotent Orbits in Type A

In this section we show that every nilpotent orbit in sl is a Richardson orbit.
This is a result of Guzeki and Wakimoto [T1}; we follow the exposition in Kraft’s
paper [55]. Kraft actually gives a formula for the partition of any Richardson
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orbit in sl,; he then observes that any nilpotent orbit can cceur on the right-
hand side of his formula. We are able to shorten the arguments of [35] at several
points, thanks to our work in §6.2.

Recall from §5.2 that we may realize the root system of g 1= sl, as
{ei—e;|1<4,5<n, i 5}

where €y,...,e, is the standard basis of C™. As a set of positive roots we take

ot = {e; ~e; |t Ci<j<n}
The corresponding set of simple roots is

Aoy ~e9,. . ,8p1 — € b

The diagonal matrices in g form a Cartan subalgebra §. The Borel subalgebra t
corresponding to b and our choice of @ consists of the upper triangular matrices
in g. Whenever i # j, the matrix unit E,; defined in §5.2 is an (¢ — e;)-roof
vector of f.

Now let d = [dy,...,d.] be a partition of n. We begin by atiaching 2
parabolic subalgebra p(d) to d. We take p{d) to be the subalgebra containing &
and corresponding to the subset

{81 82841 T By Edy 31 T By 42y - -5 Edydy -1 7 €dy4odg

Cdytdz+1 ™ €dy+dat 2+ 1 Edyobda oty =1 ~ Cds g+ bdn ]

of A. We can define p{d) in » more elegant way, as follows. We may identify the
gpan of the e; with the standard representation V of g; then the vector g; alsc
has weight e; (abusing notation). Define a fag {Vi} of subspaces of ¥V via

ay £
Vi = @Cek where §; = Zdj, {7.2.1;
k=1 F=1
and put V5 = 0. Then one checks divectly that
pd)= {X esl, | X(V)C Vi 1<i<nl,
n(d)= {Xesh, | X(V) TV, 1<i<n},

where n(d) is the nilradical of p(d).
Our aim is now to compute the Richardson orbit attached to p{d). Let
X € n(d). Then the i matrix power X% of X clearly kills ¥, whence we have
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rank (X9 < n—-dimV,=n Zdj. (7.2.2)
=1

We claim that there is an X' € n(d) for which equality holds in (7.2.2) for all .
To see this put

5

k
W; = @ €; whereskad; ifj>0and sg=10.

F=ag.+1 i=i

Then V is the direct sum of the W, and we have dimW,; = d; > dimW;.,.
Hence, there is a nilpotent matrix X' sending W; to 0 and embedding each W;
with ¢ > 0 into W;..;. We can easily check that X' has the required properties.

By (6.2.1} and (6.2.5), the orbit Ox through X' strictly dominates any
other nilpotent orbit meeting n(d}, so Oxs must be the Richardson orbit we are
looking for. It only remains to compute its partition. Let db = [df,... d%] be the
transpose partition of d. As noted in the last chapter, we have df = {{jd; > i}
for all . We compute directly that if X represents a nilpotent orbit ¢ in sl, with
partition p, then the kernel of X% has dimension equal to the sum of the first
i parts of the transpose partition pt. In particular, the kernel of (X'} has the
same dimension as that of the ** power of any nilpotent matrix with partition
at. By (6.2.1), the partition of Ox+ must be d.

We summarize the above discussion in the following result.

worem 7.2.3 (Kraft, Ozeki, Wakimoto). With notation as above, the partition

of Tnd®? ( d)(O(]) is d¥. In particular, every nilpotent orbit in si, is a Richardson
p

orhit.,

Prouf. The first assertion was proved above. The second follows since the
g o o db is an involution. Note that every nongero nilpotent orbit in sl is
noutrivially induced; but to realize the zere orbit as a Richardson orbit, we must
fiduce it from ifself. [}

l:y 7.2.4. The dimension of the orbit Oy with partition d is n* — Z;.;l{d;)Q.

fanf. We proved this formula in another way in §6.2, but now we can also
gihine the dimension formula from (7.1.1) with the above result and an easy
puintion of the dimension of n(dt)‘ |

At firsd. glance, it seemns that our discussion of induced orbits in type A
ik guite complete, for it is certainly false that every parabolic subalgebra p
sobtabiing me fixed Borel subalgebra b takes the form p(d) for some d. Recall,
limwever, from (7.1.3) that whenever two parabolic subalgebras py, ps have con-
jugade Levi subadgebras, the orbits induced from nilpotent orbits in these Levi
mxf;niﬁvhrfw are exactly the same {even if py, po are not themselves conjugate).
Naow Mo an easy exercise to show that any parabelic subalgebra of g has Lovi
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subaigebra conjugate to that of p(d) for a unique partition d (see (3.8.1)(v)).
Thus (7.2.3) actually gives a formula for the partition of any Richardson erbit
in sl,. Moreover, thanks to the transitivity of induction (7.1.4)(iii), we can work
out the partition of any induced orbit in sl,. Our next result (taken from i80})
does this explicitly; we will need it in the next section. To state it, we need
some notation, Let p be a parabolic subalgebra of g. As observed previously, we
may assume that p = p(d) for some partition d = [dy,... Jd,jof n, Let @ he g
nilpotent orbit in a Levi subalgebra I = I(d) of p. Let r be the largest index with
dy > 1. Then we may write O = 010 @ O, where each ({; is a nilpotent orbit
in sly, and as suclrcorresponds to s partition PGy ={pl,...,pL] of d;. {In case
d; == 1, the corresponding partition is understood to be [1]. We assume without

loss of generality that p(i) has n parts, by adding 0 parts to it as necessary.)
Then we have

emma 7.2.5 (Kempken). With notation as above, we have Ind";"‘ (O) = Ogp, where
Ep denotes the partition with i* part p! + p? 4+ - + g,

Proof, By (7.2.3), we see that O is itself induced from the 0 orbit in the
parabolic subalgebra p’ of | indexed by the r-tuple

(p(1F,...,p(r)Y)

of partitions {as in the discussion before (7.2.1)). By the transitivity of induction,
we have Indj(0) =Ind?, (Op). But now it is not difficult to check that if one
concatenates the parts of all the p(i)t, rearranges the resulting sequence of

numbers in nonincreasing order, and then takes the transpose of the resulting
partition of n, one obtains the partition Ep. The result follows. 3

.3 Induced and Rigid Orbits
in the Classical Algebras

Following Kempken and Spaltenstein [50], [76, ch.Il], we now generalize the
results of the last section to give a formula for the partition of any induced
orbit in a classical algebra g. We also derive a partition criterion for & classical
nilpotent orbit to be rigid. (Recall that we showed in the proof of (7.2.3) that
the only rigid nilpotent orbit in sl, is the zero orbit.}

In what follows we assume that g is sp ~ ot son; if g = spy, then we of
course assumne that V is even, Let X be the Cartan type of g, so that X = B, (',
or ). Thanks once again to the transitivity of induction, to study induced
orbits in g we may resirict attention to maximal Levi subalgebras (that is, Levi
subalgebras not contained in any other proper Levi subalgebra} of g. By (3.8.1)

1
we check that any such Levi subalgebra takes the form
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o (7.3.1)

where g is classical and of the same type as g. If the standard representation of
g has dimension N, then we have 24 +r = N, where r is the dimension of the
standard representation of g'. (If g = soy and N iz even, then we have r # 2;
otherwise, £ and r can be any pair of positive integers with 2 + r = N.} For
brevity we say that a Levi subalgebra of this form has type (£;7). The proof of
our main result rests primarily on the following one.

rmma 7.3.2. Regard g as a subalgebra of sly in the natural way.

(i} Let p = [+ n be a parabolic subalgebra of g of type (&;r), Assume for
simplicity that either r # 0 or r=0 and the numeral of | is I (using the ter-
minology iutroduced in (ii) below; actually, & similar argument also handles
the case where the numeral of [ is IT). Then there is a parabolic subalgebra
§ of sy such that p = p N g. Furthermore, there is s Levi decompasition
[+ 1 of p such that [ = {Ng,n =Aang. The subalgebra § is conjugate to
p(d), the parabolic subalgebra of sl corresponding via §7.2 to the partition
d = {£, 8,71 (or rather to the partition ebtained from [€, £, r] hy rearranging
its parts in nonincreasing order).

{il) Given an ordered pair of nonnegative integers (£,v) with 24 +r = N,
there exists a unique conjugacy class of Levi subalgebras of type (£;7),
except when g, = 863, and r=9£, so that £ = n, In that case, there are
two conjugacy classes of Levi subalgebras of type (£;0), denoted 1! and
"1, The simple roots appearing in ¥ and [T are starred helow; we follow
the conventions of §5.2 for the correspondence between nodes of a Dynkin
diagram of type D and simple roots.

® o
1 |
. {[ & B e} 0 B [II & & %
Proof. Asgertion (i) is left to you; it follows easily from the theory of §3.8.

'Tu prove (i), we must study the way that g sits inside sly. To do this it is
convenient to make a noastandard cholce of positive roots in sly. Choose Cartan
subalgebras and root vectors of sly and g as in §5.2. To aveld confusion we use
«'s to denote coordinates on the Cartan subalgebra dual of g and E’s to denote
the analogous coordinates for sly. If g = sp,,, or sos,, then we choose a set of
positive roots of sl in such a way that the corresponding set of simple roots is

{ M! - E‘As E2 o ES» e ,Enml - EnuEn - Eszzn - EZn—h L aEn-}—Z - E‘n+1}-

H g == 509, ,+, then we take
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{E2—E3,...,En—Epsy, Bpiy— By, By — Bt Bans1—Eaq, .., Eriy —Eqy2}

as our set of simple roots for sly. Our assumption on p implies that the set of
simple roots in [ is

{er —e2,. .., €50 — ey, Ee41 ™" €442, Eny — €y, Zep )
if g = spy,, or

{61 TE2 . By — ey, €f+1 7 €L, By €y En-1 + en}

if g = 503, o1
{El L SRR TN Wl -# N TR IS €f42s - ey e?l:ﬁn}

if g = 803041, {If r = 0, then the simple roots in | are {ev—ey,. . enay — ey}
since [ has the numeral Tif g is of type D.) I g = sy, or 809y, then let Fl = [+

where | has the simple roots

{Ev—E3.. . Epy —Eg Eppg - Erit Enys — Epgay oo Eyyp Ersee,

Eﬁ.-—s Tl ey Eﬂ.“l - Ena En - EQmEzn - E2u-1; Ty E2n+1-5 ™ -Ez'nws}

and s =L —1. (Ifr =g, fhen all roots on the second line above are omitted.) If
§ = 50241, then let § = [+ R where [ has the simple roots

{By—Es,... . Es— Epiry, Bnis — Enao, ... s Bttt = Boog By g~

<y Err. - En+.‘£aE1 “' E2n-@-1;E2n+l — E2ns R EE!:.-Ovst - E2n+2-3}

and 3 = i‘%l (I 7 = 1, then all the roots on the second line and the last one on
the first line are omitted.) Using the formulas in §5.2 for
readily verify by a direct calculation that p has the requir

ntl-gy

root vectors in g, we
ed properties. [N

Now let O; be a nilpotent orbit in [ Write

01 e Od @Of,

where Oy is a_nilpotent‘ orbit in sly, Op is a nilpotent orbit in @,and d and f
are the.respect;ve partitions of Oy and Of. {Recall that if g is of type 12, then
the orbit Op may also carry a { or 11 label.) Write

O;=04 804 e 0
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for the orbit inTcorrespeudiug to the ordered triple of partitions (d,d,f). Asin
§7.2, we assume that ¢ and f both have N parts, by adding 0 parts as necessary.
Define a new partition p = [p,...,pxl of N via p; = 2d; + fi, where d;, fi of
course denote the " parts of d,f. The main result is

Pheorem 7.3.3. Retain the above notation. As above, let X be the Cartan type of g,

so that X=B,C, or Il Put O = Indf{O\).

{1} The partition of O is the X-collapse px. If g = so4, and px is very even,
then py = p.

(i} If g == 504, and px = p i5 very even, but v # 0, then the numeral of & is
the same as that of Op.

(iii) If g = 804,, px = p Is very even, and r = 0, then the numeral of @ is the
same as that of Uif n is even bui differs from it if n iz odd.

Proof. We will prove (i); (}) and (ill) are toft to you. We know that the
partition of O is the unigue largest one (under dominance) of any orbit in g
meeting O + n. By (7.2.5), the unique largest partition of any orbit in siy
meeting (5;«3— fiis p. Since O lives in g, it follows from {8.3.3) that its partition
i dominated by px. To show that its partition equals px, it suffices to show
that its dimension is the same as that of the orbit with partition px. We refer
to [50] for this calculation (or you may enjoy working it out for yourself); it
amounts to an application of the dimension formula in §6.2 for orbits in classical
algebras together with an analysis of how cach reduction step in the procedure
for constructing py from p affects the dimension of the corresponding orbit in
5[;\:. 1

We warn you that in applying this result to algebras of type B, you must index
thie unique orbit of the trivial algebra so; by the partition [1], not [0]. {You may
wish (o compare this with the remarks preceding (7.2.5).) If the inducing orbii
is zero on the gl, subalgebra, we obtain the following corollary, For completeness
we also inchude the case g = aly.

‘orollary 7.3.4. Let g be a classical algebra and | = gl,®g’ a maximal Levi Subaigebm,

where ¢’ is of the same type as g. (Then | is of type (&7} if g is not of type A; if

g = sly and g’ = sl,, then £ 41 = N.) Let Oy = Oy & Op be a nilpotent orbit in
| whose component In the gl factor is the zero orbit and whose component Oy
in the ¢’ factor has partition f. Then the partition of Indf(O;) is p, where the
partition p is obtained from £ as follows.

(1) If'g = sly, add { to the first £ parts of f, adding zero parts to f as necessarv.
(1) If the Cartan type X of g is B,C,or I), then add 2 to the first £ terms of ¥,
obtaining a partition T {again adding zeros as necessary ), and then take the
Xecollapse of £. If this collapsc is nontrivial, it is obtained by subtracting
I from the & part of ¥ and adding 1 to its (£ + 1Y part. If g = so4,.
vyt and the collapsed partition is very even, then £ is also very even il
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the induced orbit inherits the I or IT Iabel of Op; if r=0, then the orbit is
labeled in accordance with {7.3.3)(iii).

- Let e = &1, a5 in §5.1. We now write down the partitions of the rigid orbits
in Pe(N). Define P7{N} to be the set of all partitions [di,...,dul in P.(N) such
that the following two conditions hold:

B 0<diys dy <djyq + 1 forall i,

(i) 14 |dy = i} # 2 i (1) = —1,
In other words, these two conditions single out partitions in which the difference
F)etween two successive parts (or between the last part and 0) is at most 1 and
in which no even part oceurs exactly twice (if £ = —1), or no odd part cccurs

exactly twice (if ¢ = 1). In particular, such partitions always have 1 as their
srnaliest nonzero part, so that they cannot be very even.

ollary 7.3.5. The orbit corresponding to a partition in P(N) is rigid if and only if

d € PN,

Progf. ffd=[d1,...,dn} & P.(N) and O is not rigid, then by (7.3.4) there

are partitions e = [e1,...,e)} € P(f}and f = [f1,...,f,] € PuAr) with 2047 = N
so that

d: Ezel+f1=-~-:2€£'7'fé’,f£+1a~-»fN]X

where X is the appropriate label B, (7, or D. We now show that d & PN by
considering two cases. First, suppose that the partition d is already in P{N}.
Let s be maximal with e, > 0. Then 2804+ fo 2 forr +2, ke, d, > dypt + 2.
This shows d ¢ PZ(N). In the second case, we assume d = ey + fi,..., 260 +
fos forrso oo, fnl € PHNY. Then there must exist & pair (forz, fagz) with fo4 =
Jssz e{—1)foti = 1. Then €s+1 > €g49 and the pair (2e,40 + fou1, 2540 + fopz)
Is replaced by (26441 fyp1 — 1, Zegyg + fsrat1) toobtaind. Ife,p: > epan+2,
then 2e,y+ fopr1—1 > 2e5 34+ fopn—1; L, dogy > doya+2and d ¢ Pr(N).IF
Cat1l = Earg bl then 2e, 14 foi1—1 = 2005+ foo0+ [ and e(—1)20u 1+ -1
¢(—1f=71 = —1. Furthermore, we have d, > dys1 = deyps > dyrg, s0 that
Hildi = 2541 + fopr} = 2. Thus d ¢ P?(N), as desired.

Conversely, suppose that d ¢ P} (N); then we consider two cases, ench of
which will imply that 04 is not rigid.

First, suppose d = [dy,...,dy] € PAN) with d; > dipy + 2 for some 5.
Then {1,... 1} € P{J) and

[y =2,y = 2,d00, . dy] € PUN ~ 24)

i the partition of an orbit O in a Levi subalgebra [ of type {j; N — 25} with
Indf ey = Qg Finally, suppose thal d = {dy, .. vdn] € P(NY with d, 5 >
dy ey dyyy and (- D% s 2 for some 5. Then 1,....1) € P{s) and



tH

CHAPTER 7 Induced Nilpotent Qrbits
[dl - 2,. Ve ads-l ""“ 2:d5 - ]-sd-3+l - 17ds~i~23*' ' adN] € pe{N - 28)

is the partition of an orbit () in a Levi subalgebra [ of type (s; N — 25) with
Ind (Or) = Og. £

Fxamples 7.3.6. (1) In spg, the rigid nilpotent orbits are Opzey and Ty 4.
(it) In so7, the rigid orbits are Oy and Oy ga).
(it} In sog, the rigid orbits are Opsyy Opoz 1y, and Opzo2)

We conclude this chapter, as we did the last one, by making a few remarks
about the exceptional algebras. Elashvili has computed exactly which orbits iu
the exceptional algebras are induced from which others. His tables are repro-

duced in [76, ch. I}, where a reference is also given. We also mention a result of

Lusztig linking the theory of this chapter with that of the preceding one: A}}y
nilpotent orbit (in any semisimple algebra g) induced from a special one is again
special {57]. In particular, any even orbit, or more generally any Richardson
orbit, is special. Conversely, Spaltenstein has shown in unpublished work that
the closure of any special classical orbit is the intersection of the closures of two
Richardson orbits. Kempken gives a proof in [50]. {This result plays a key role
in the Borho-Brylinski proof of the Irreducibility Theorem (10.2.2) in the clas-
sical integral case.) A slightly weaker result holds for special exceptional orbits
(Spaltenstein, unpublished).

8 The Exceptional Cases

and Bala-Carter Theory

In Chapter 5, we showed how to parametrize nilpotent orbits in classical Lie alge-
bras (using partitions), but so far we have not seen how to do this for exceptional
algebras. Of course, we know from Chapter 3 that ailpotent orbits correspond
bijectively to their weighted Dynkin diagrams, but we still do not know which
labelings of the nodes constitute weighted diagrams. In this chapter, we com-
plete the program of Chapter 3 by showing how to write down all the nilpotent
orbits in any semisimple Lie algebra g in terms of data easily computed from its
Dynkin diagram. We follow the approach of Bals and Carter in [2] and [3]. Al
the results we state are due to them, though in certain cases we have modified

their proofs. The main idea is to look at nice subalgebras of g meeting a given
nilpotent orbit,

Levi Subalgebras Containing
Nilpotent Elements

We begin by asking which proper subalgebras of g contain a fixed nilpotent
element X. Of course, we do not want to look at arbitrary subalgebras: there are
far too many of them, even up to conjugacy. Since gis (in particular) reductive, it
15 reasonable to start by restricting attention to its reductive subalgebras (which
are more convenient to work with than the semisimple ones). But there are
still far too many of these. To see why, recsll from Chapter 3 that if we knew
how to classify even the copies of sly in g up to conjugacy, the classification of
nilpotent orbits would follow at once. Thus we really need to restrict to a class
of reasonably visible reduetive subalgebras of g. The first attempt to do this was
made by Dynkin. He defines a proper subalgebra gl of g to be regular if it is
spanned by a Cartan subaigebra b of g together with some (but not all) of its
root spaces [27]. 1t is not difficalt to check that sueh 4 g* 18 reductive if and only
i its sek of B-roots ©(gh B) is a subroot system of the root system & = B{p, b
uf g.
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Now it 1s natural to divide nilpotent orbits of g into two classes: those that
meet regular reductive subalgebras and those that do not. The former can be
classified by deing calculations in smaller algebras, and it turns out that there
are sufliciently few of the latter to be tractable. This program is carried out in
{27} the first list of the weighted diagrams of the exceptional orbits appears there
{bui has mistakes}. Unfortunately, the resulting classifieation is stiil somewhat,
wysleriouy; it does not yield & nice parametrization of the orbits. Bala and
Clarter’s fundamental insight was that such a parametrization can be obtained
il one repeats the above program using Levi subalgebras (which are regular and
reduetive) instead of arbitrary regular reductive subalgebras. Given an orbit Oy,
it turns out that there is a canonical conjugacy class [1] of Levi subalgebras of g
meeting Ox. The corresponding statement for regular subalgebras is false. Qur
ain: in the rest of this section is to construct I} in the next one we parametrize
the orbits in g attached to a fixed [i].

The choice of [{] should come as no surprise. If a Levi subalgebra [ contains
a uilpotent element X, then so too does any Levi subalgebra of g containing §; so
it is natural to look at minimal Levi subalgebras containing X. The main resull,

‘heorem 8.1.%. Any two minimal Levi subalgebras containing a fixed nilpotent X € g

are Gfd-conjugate.

Proaf. It follows easily from §52.1,3.8 that the center ¢ of any Levi subalgebra
[ is a subalgebra of a Cartan subalgebra of g, and so in particular consists of
g% consisting of semisimple elements toral Then g' is a Levi subalgebra of g
vontaining X whenever ¢ is a toral subalgebra of g¥. Thus, we get a one ta
une correspondence between maximal toral subalgebras of g and minimal Levi
subalgebras containing X. We are reduced to showing that any two maximal
toral subalgebras of g% are G% -conjugate: note that the corresponding fact for
g was observed in (2.1.11). There is a standard generalization of this fact Lo
arbitrary Lie algebras a. Recall that a Cartan subalgebra of a is 5 nilpoten
self-normalizing subalgebra; this definition agrees with the one in §2.1 if a is
reductive. The generalization states that any two Cartan subalgebras of o are
conjugate {21, 1.9.4},137, §16.4]). If 5 := g% were reductive, we would be doue,
bud we saw in §3.7 that this cannnt be the case unless X = 0. Nevertheless, we
hive

€lainy Let 4 be a maximal toral subalgebra of 5. Then ' is a Cartan subalgebr:
of 6, nnd { consists exactly of the semisimple elements in st

Cranting this f()r the momaent, let 4, f; be two maximal toral subalgebras of s
Then s is (7% conjugale to st by a map that must send 4 to i, (since 77
preserves h(’,irilhi]}l{)fu,lfcy and nilpotence in g). This is the desired resuls,

Yo prove the claim, let Z € ' By (1.1.1), the somisimple and nilpoten
parts Ay, 2y of 2 alko liein s, whenee Z, @ { by maximality. Since 1 obviously

il

semisimple elements. We aise have [ = g%, ¢ = g". Call any subaigebra of
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acts trivially on ' {under the adjoint action), it follows that Z acts on &t by
the nilpetent endomorphism Z,. By Engel's Theorem [37, §3.3], s' is nilpotent.
Since toral subalgebras of s or g are abelian [37, §8.1], we have ¢ ¢ &*, and t
coosists of semnisimple elements. Then the argument above to show that Z, € t
also shows that ali semisimple elements of * lie in t.

It only vemains to show that s' is selénormalizing. Via the adjoint rep-
resentation, t acés on the normalizer ?i of s' in s, whence this normalizer is the
direct sum of its t-weight spaces. But the O-weight space Ty is just s* itself,

and the independence of weight spaces shows that no others can occur. This
completes the proof, i

We warn you that if t is a maximal toral subalgebra of s, it does not follow
that t is the center of s,

Distinguished Nilpotent Elements
and Parabolic Subalgebras

You will notice that we never used the Jacobson-Morozov Theorem in the proof of
{8.1.1). The theory of standard triples comes into play when we study nilpotent
orbits attached via (8.1.1) to a fixed conjugacy class [I] of Levi subalgebras of
g. It is intuitively clear that the hardest orbits to classify are those for which
[} = {g] = g. We therefore define a nilpotent element X or its orbit Oy to
be distinguished if the only Levi subalgebra of g containing X (or equivalently
meeting Ox ) is g itself. Since Levi subalgebras of Levi subalgebras of g are again
Levi subalgebras of g, any nilpotent X € g is distinguished in any minimal Levi
subalgebra containing it. Thus, if we can understand distinguished orbits, we
can understand arbitrary orbits, Note also that a Levi subalgebra [ contains
X if and only if its semisimple part {I,[] does, by (1.1.6) and the discussion
before {1.1.7). Thus if X is distinguished in I, it is actually distinguished in the
semisimple algebra [T, 1]

Now we arc ready to apply the theory of Chapter 3. Let X € g be a
uonzero nilpotent element, {H, X, ¥} a standard triple. Recall the Z-gradation
§ == Biezgi introduced in §3.4. Using this gradation, it is easy to give a criterion
for X to be distinguished.

vinmun 8.2.1. Retain the above notations. Then X € g is distinguished if and only if

dim g = dim gs.

Prouf. Suppose first that dimgy = dimge. Let g = [ u be the Jacobson-

Morezov parabolic subalgebra of X relative to {H, X, Y} defined in §3.8, so
Lhad

(8.2.2)
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Since dimgg = dimgy, it follows from sly theory that g% = u¥ consists of
nilpotent elernents. Hence, the only toral subalgebra of g% is 0, so that X is
distinguished, by the remarks at the beginning of the proof of (8.1.1}.

Now suppose that dimgo # dim ge. Appealing to sly theory once again, we
get that dimgg > dim gy and the reductive subalgebra g% of g% defined in §3.7
is nonzero. If the semisimple part [g?, g%] of this subalgebra is nonzero, then it
certainly contains nontrivial toral subalgebras, so that X is non-distinguished,
as desired. So assume that g? is abelian. We showed that g% is reductive in §3.7
by showing that the Killing form on g restricts to a nondegenerate form on g?.
If g% consisted entirely of nilpotent elements, the Killing form would restrict to
0 om it, by a caleulation we have seen several times (e.g., in the proof of (1.3.9}.
Sinee g? is closed under the Jordan decompesition in g by (1.1.1), it must in any
event contain nenzero semisimple elements. But then g% has a nontrivial toral
subalgebra, whence X is nondistinguished. !

What really gets the theory of distinguished orbits off the ground is the following
result.

heorem 8.2.3. Any distinguished orbit in g is even.

Proof, Lot X € g be distinguished with Jacobson-Morozov parabolic g rel-
ative to & standard friple {H, X, Y}, We saw in §7.1 that there is a unique
nilpotent orbit @ =Ind3{{0}} in g whose intersection with u is dense in the
latter; e, O is the Richardson orbit attached to gq. If § is the connected Lie
subgroup of Ggq with Lie algebra g and Z € O Mu, then we also showed that, in

fact,

- Z is dense in u. (8.2.4)

Now suppose that g; # 0. Write
Z=Y Z
>0

with Z; € g;. By (8.2.4), Iq, Z] is a subspace of u of full dimension; so [q, Z] = u.
Using [gs,8;] C giz; and the definition of u, we deduce that

to: Z1 + Za}+ (91, Z1] = g1 + g2 (8.2.5)
I 7y == 0, then obviously [g1. Z1] = 0; if Z) # 0, then dim (g1, 7] = dimg; —
dimg? < dim g, since Z; € glzi. Thus, in any event dim [g;, Z1] < dimg:. On

L olther hand, we have

dim [go, 41 + Za] < dimgo = dim ga.

Flus (8.2.5) leads to a contradiction, and we get gy = 0, a8 desired, ]
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This proof s due to Jantzen (see {18]); Bala and Carter’s eriginal proof
was longer and involved some case-by-case computations. It follows from (7.1.7)
that any distingiiished orbit Ox is uniquely determined by the Jacobson-Morovov
parabolie subalgebra g of any of its representatives: It is the Richardson orhit
attached to g. {This fails for arbitrary arbits O because the Jacobson-Morezov
parabolic subalgebra tells only which nodes are labeled 0 in the weighted diagram
of @) Thus, it is natural to rewrite the distinguishedness criterion (8.2.1) in
terins of q. One obtains

Theorem 8.2.6. An even nilpotent orbit Ox is distinguished if and only if its Jacobson-

Merozov parabelic subalgebra q = [ @ u satisfies dim [ = dimu/[u, u].

Praof. We may assume that ¢ is chosen as in (8.2.1). Put v = ®348:. Then
obviously dim gy = dim [, while dimgs = dimu — dimu’. Since u is the sum of
eigenspaces g; with ¢ > 2, we have [u,u] C W'; conversely, f Z € ¢; and i > 4,
then we can write Z = (X, Z'] for some Z’' € g;—5 C u, by 5l; theory. Hence,
u'  ju, u]. The conclusion follows at once. £

We therefore define an arbitrary parabolic g = | ® « to be distinguished
if dim{ = dimu/[y, u]. For example, a Borel subalgebra is always distinguished
{(and turns out to correspond to the principal orbit). The last two results show
that there is an injective map from distinguished orbits to conjugacy classes of
distinguished paraboiic subalgebras; it sends an orbit Ox to the class [q] of any
Jacobson-Morozov parabelic g of X. The classification is completed by showing

that this map is a bijection. To do this we need a combinatorial fact about
parabolic subalgebras,

Proposition 8.2.7. Choose a Borel subalgebra b of g, as in §3.8, and adopt the notation

of that section. The nilradical ng of the subalgebra pg carresponding to the
subset & of simple roots satisfies the following propertjes.

(i) to and [ng,ng) are the direct sums of their I-dimensional root spaces.

{il) A root o of ng is a root of ng,ne] if and only if it is a sum of two roots
af ng {we call such a root decompaosable).

(iif) A root o of ne Is indecomposable {i.e., not decomposable} if and only if it
is the sum of one simple root not in & and various simple roots in ©.

Proof. Assertions (i) and (i) are clear. Since every root of ng is a sum
of simple roots at least one of which is not in &, it follows that any root o
satisfying the criterion of (ill) is indecomposable. Lei V an lg-stable complement
to [ne,ne] in ng. Theu it is easy to see that V' is uniquely defined; it must be
the sum of the indecomposable root spaces. Suppose (i) fails; then there is
an indecomposable root o, which is the sam of at least two simple roots not in
© and various simple roots in ©. By [37, §10.2}, one can repeatedly sublract
simple roots from o to oblain a sequence of positive roots of g followed hy 0.
By the indecompesabiiity of @, every root in this sequence must also be an



CHAPTER 8 The Exceptional Cases and Balae-Carter Theory

indecomposable reot that is the sum of at least two simple roots not in © and
various simple roots in &, Since the last (nonzero} root in the sequence must be
simpie, this is a contradiction. -

Now we can show that our map is surjective.

porem B8.2.8. Any distinguished parabolic subalgebra q = [ @ u is the Jacobson-

Morogov parabolic subalgebra of a distinguished nilpotent element X (relative
to a suitable stapdard triple}.

Proof. Choose a Borel subalgebra b = f) @ n of g contained in g and adopt
once more the notation of §3.8. Then q = ge for some & C A. Let V be the
subspace of it = ng defined in the proof of the last proposition. If a, 8 are roots
in V and a ~ 3 is a root, then (8.2.7)(iii} shows that o — 3 must be a root in la.
Hence, if § = §g = lo ® fe is the opposite parabolic gubalgebra to g, and if we
define V C fig in the same way as we did V' C ng, then we have

v.vict (8.2.9)

The proof of (8.2.3) shows that if X exists at all, its orbit must be the Richardson
orbit O attached to ¢, so let Z € O M. As in the proof of {8.2.3), we see that
19, Z] = u. Write Z = Zy + Zj ), where Zy € V and Zjy 4 € [4, #]. Then one
easily checks that

L Zv]=V. (8.2.10)

We now claim that g% NV = 0. Indeed, it follows from (R.2.7)(ili) that V and
¥ are paired nondegenerately by the Killing form « of g; but we saw in the proof
of (1.3.9) that g?v is x-orthogonal to {g, Zv] D [, Zv] = V. Hence,

dim[V, Zy}l = dim ¥V = dim V = dimu/[u,u] = dim [

wlience we get

[V, Zyv] =1 (8.2.11)

by (8.2.9), since Zy € V. Now choose H € § so that af) =0ifa e @
and o H) = 2if « € A\ ©. By {82.7)(ili), we have A(H) = 2 for all roots
AV, while v(H) = —2 for all roots v in V. Now put X = Zy and choose
Y € V s0 that [X,¥] = H, as is possible by (8.2.11). It follows that {#, X,Y}
is u standard triple. Then X is distinguished by (8.2.1) and its corresponding
Jacobson-Morozov parabolic is g, as desired. O

We inay summarize the foregoing resulis as follows.

v
i
3.
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Theorem 8.2.12. There is a natural cne-to-one correspondence between nilpotent or-

hits of g and Gg-conjugacy classes of pairs (I, p) where [ is & Levi subalgebra of

g and p; is a distinguished parabolic subalgebra of the semisimple algebra I, I].

Proof. We noted before (8.2.1) that a Levi subalgebra { contains a nilpotent
X € g if and only if [(, [f does, and it is easy to check that two Levi subalgebras
are conjugate if and only i their derived subalgebras are. The theorem follows
at once from (8,2.3), {8.2.6), and (8.2.8). o

Example 8.2.13. We illustrate this theorem by computing the mumber of nilpo-
tent orbits in type (g, Let A = {c, A} be a set of simple roots for an algebra g
of type Ga. Assume that « is short and & is long. Then it is well known and easy
to check that the set of positive roots is fo, 8, + 5,22 + 4,30 + 5,30 + 243}
By (3.8.1), g has exactly four conjugacy classes of parabolic subalgebras (cor-
responding to the four subsets of A), and one computes that g also has four
conjugacy classes of Levi subalgebras. (The only rontrivial point is to verify
that the Levi subalgebras corresponding to the subsets {a} and {5} are noncon-
jugate, and this follows since o and A are not conjugate under the Weyl group,
gince they have different lengths; of. (3.8.1).) Note that the Levi subalgebra |
of a proper parabolic subalgebra has derived algebra either {0} or isomorphic
to 51y, whence { has a unique distinguished orbit. This is the 0 orbit for a Car-
tan subalgebra b and the principal orbit for the other two nonconjugate proper
Levi subalgebras containing . Thus, we have accounted for three orbits in g
so far, and it only remains te count the distinguished parabolic subalgebras.
{Note however that we cannot read off the weighted diagrams of the two nonzero
orbits without doing some further computations.} A Borel subalgebra is distin-
guished while g itself is not (these last facts hold for any semisimple g). So it
sutfices to look at the parabolics pa, s containing a fixed Borel subaligebra and
corresponding to the subsets {a}, {8} of A. The first of these has the roots
B,a+ B, %+ 8,30+ B, 3 + 28 in its nilradical, whence the subspace V in the
proof of {8.2.7) contains all these roots except the last. Since dimt, = 4, we see
that po is distinguished. The corresponding orbit O has the node corregponding
to o labeled 0 and the node corresponding to & labeled 2 in its weighted diagram.
By the proof of (8.2.8), it is represented by a sum of at most four root vectors. In
fact, (7 is represented by a sum of two root vectors, it meets a regular subalgebra
of g of type A1 + A; even though it is distinguished. (It is the subregular orbit
of g, and it arose in the proof of {4.2.1).} Conversely, the parabolic subalgebra
ps has the roots oo+ 8,20 + 8,3 + £, 3a + 20 in its nilradical; only the
first two of these lie in the subspace V. Thus pg is not distingnished. 1t is not
surprising that dimV < dim{g, for one can adapt the proof of (8.2.8} to show
that dim V < dim [ for any parabolic subalgebra g = { & u. Thus, g has exactly
§ nilpotent orhits in all,

We conclude this section by remarking that there are easier ways to classify
the distinguished orbits than appealing to (8.2.6) and the definition of distin-
guished parabolic subalgebra. Indeed, if the amblent Lie algebra g is of classical
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type, then we showed in §§5.1,6.1 how to compute the reductive part of the cen-
tralizer of any nilpotent X from its partition. Fven without using distinguished
parabolics, it is easy to decide exactiy when this centralizer fails to contain
nonzero semisimple elements, so that X is distinguished. We obtain

ineorem 8.2.14,

(i) If g is of type A, then the only distinguished orbit is principal.

(ii) If g is of type B,C, or D, then an orbit is distinguished if and only if its
partition has no repeated parts. Thus, the patrtition of & distingnished orbit
in types B, D has only odd parts, each occurring once, while the partition
of a distinguished orbit in type €' has only even parts, cach again occurring
onee.

An immediate consequence is that none of the orbits in type Dy, corresponding
to a very even partition is distinguished. The point of this observation is that it
implies that two pairs (I,p,), (1, P} are Gog-conjugate if and only if the parabolics
pr, b} are Lg-conjugate. Equivalently, if [ is a minimal Levi subalgebra of g
meeting a given orbit (9, then it meets O in a single L,g-orbit. This fact seems
not to have been observed by Bala and Carter. {Here L.y of course denotes the
adjoint group of )

Of course there is no counterpart to (8.2.14) if g is exceptional, for then
nilpotent orbits do not correspond to partitions. Nevertheless, Bala and Carter
use various fricks in [2] (which we do not describe here) to compute the st of
distinguished parabolic subalgebras of exceptional algebras without oo much
labor. They also use some earlier computations of Dynkin in {27). The number
of distinguished orhits in types (75 resp. Fy, Eg, By, Eg is 2 resp. 4,3,6,11.

Connections with Induction

We used a very naive method in the last section to pass from orbits O in a
L.evi subalgebra of g to orbits @y in g. Indeed, we just took O, to be the Gy
suburation of O that is, O = Goq - O We could have used the theory of
the last chapter to produce an orbit in g from O in a much more sophisticated
why, namely, by inducing O from [ to g. Unfortunately, this move sophisticated
operation (though it of course has many nice properfies} is substantially less
wselid than the naive one if we want to classify the orbits. More precigely,
ttrppose that we took rigid orbits, rather than distinguished ones, as base cases in
Lhe vlassification. We would then try to give an a priori parametrizasion of rigid
orhitn iy g and hope to show that any orbit is uniquely induced in some sense from
wripiel ome. The problem is that both these goals are unrealistic. There is no nice
dencription of the rigid arbits for exceptional g and, furthermore, no unigueness
theoven for induced orbits, For example, in type Eg, more than one-fourth of
the orbils are righd, and their weighted diagrams exhibit no particular pattern.

8.4 Tables 1237

In type Fy, let I3, s be two nonconjugate Levi subalgebras with semisimple parts
of type Ay + Ay, and let I3 be a Levi subalgebra with semisimple part of type
By, Then it tirns out that the Rickardson orbits attached to the i {or their
carresponding parabolics) all coincide, even though no two of the l; are conjugate
and Iy is not even isomorphic to either [} or {g.

Nevertheless, there is a beautiful connection between Bala-Carter theory
and induction that is realized by the duality of §6.3. More precisely, one has

Theorem 8.3.1 (Barbasch, Vogan, Spaltenstein). Suppose that the nilpotent or-

8.4

bit Oy of g meets a proper Levi subalgebra | in the orbit . Then A0y} =
Ind?d{ ).

We amit the proof, which amounts to a fairly tedious case-by-case comp-
tation (see {6, Appendix] or {76, I11.11.7}), but we do make & couple of remarks.
First, the converse statement fails; that is, if an orbit O is induced, then its dual
orbit need not meet a proper Levi subalgebra. For example, the orbit in spg
with partition [2%,1%] is induced, but the dual orbit has the partition [4, 2] and is
distinguished. Second, Spaltenstein originally defined the duality of §6.3 in [76]
by a Hst of axioms, one of which was Theorem 8.3.1 in the special case where
O is principal and d((;) = 0. Finally, we uote that the induction construction
is erucial to the classification of certain important unions of {not necessarily
niipotent) orbits called sheets [8].

Tables

We conclude the chapter by giving a list of the weighted diagrains of the excep-
tiomal nilpotent orbits. We follow the nctation of Bala and Carter. An orhit
corresponding to (the conjugacy class of) the ordered pair ([,p:) via (8.2.12) is
given the label Xy(a;), where X is the Cartan type of the semisimple part of
['and 4 is the number of simple roots in any Levi subalgebra of p;. If ¢ = 0,
one writes X rather than X ~{00). In case there are two orbits with the same
Xn and the same value of i, we choose one of them arbifrarily and label it
Xn(a:); the other gets the label Xn{h;). One has to be a bit careful dealing
with conjugacy classes of Levi subalgebras; in most cases, two Levi subalgebras
are conjugate if and only if they are isomorphic, but this is not always the case.
If g has two root lengths and a simple component of a Levi subalgebra [ involves
short roots, then we place a tilde over its Cartan label. Thus, i g is of type Fy,
one of its Levi subalgebras is labeled 4; + Az and another is labeled A; + A,.
These two subalgebras are not conjugate, since any conjugacy must respect root
lengths; of. (3.8.1). There is one further difficulty. If g is of type e+, then it
has only one root length, but it turns out to have three pairs of nonconjugate
isomorphic Levi subalgebras. One subalgebrsa in each pair is chosen arbitrarily
and labeled with a prime; the other receives a donble prime. This difficalty turns
out ta occar only in type Fy (for exceptional g)
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In the tables below (taken from [18]), we give four pieces of information
about every nilpotent orbit: its Bala-Carter label, weighted diagram, dimension,
and fundamental group. The notation kX in the leftmost column of course
denotes k copies of Xy. In the rightmost column, we indicate whether the
orbit is special in the sense of §6.3. One can also read off the G g-equivariant
fundamental group of the orbit from the table, as follows. This is the same
as the fundamental group in types Gy, Fy, and Hs. In types Eg and Eq, one
obtains A(D) from 7:(0) by omitting a direct factor Z/d, if one is present.
(Here d = 2 or 3.) In particular, the total number of nilpotent orbits in types
Gy resp. Fy, Eq, Er, Fy is 5 resp. 16,21,45,70. For the Hasse diagram of nilpotent
orbit closures and the order-reversing involution on special orbits see [18] or [76].
As noted in Chapter 6, the order-reversing surjection from arbitrary nilpotent
orbits to special orbits is completely determined by its restriction to the special
orbits,

Nilpotent Orbits in Type (2
Label | Diagram | dim @ | #{OY | Special
Commma >0
G ¢ 0 6 1 yes
Ay 1 1] 6 1 ne
ZI 0 1 8 1 ne
Ga(ul) 2 {} 10 53 yes
Go 2 2 12 1 yes |
Nilpotent Orbits in Type 5y
Label Diagram dim®@ | 7:{0) | Special
s o e}
G 0 6 6 0 1] 1 yes
Ay 1 0 ¢ 0 16 1 no
AV; 0 0 0 1 22 Sz yes
A + A, 0 1 0 ¢ 28 1 yes
Ay 2 0 0 0 30 Sz yes
Az 6 0 0 2 30 1 ves
Art A6 0 1 0 34 1 5o
N B 2. 8 0 1 36 S no
Ay - Ay ¢ 1 9 1 36 1 no
(;‘3(&] ) 1 0 1 9 38 Sz na
Falas) 0 2 0 0 40 S yes
Hy 2 2 0 0 42 1 yes
s i 001 2 42 1 yes
Fylas) 4 2 ¢ 2 44 S yes
Fylar) 2 2 0 2 46 S yes
15 2 2 2 2 48 1 yes

8.4 Tables
Nilpotent Orbits in Type Eyg
Label Diagram dim 7 #1{00) | Special

) o

]

0
0 0 0 0 9 0 0 1 yes
A, ¢ 0 z} 6 90 22 1 Ve
241 I ¢ g 6 1 32 1 yes
3A: a 0 []3 0 0 40 1 no
Ag 0 0 g g 0 42 S yes
A + Ay 1 8 (13 [ 46 1 yes
24, 2 0 g 6 2 48 YARY A yes
A+ 24 0 1 g 10 50 1 yes
Aj 10 3 0 1 52 1 yes
245 -+ Ay 1 0 ? ¢ 1 G4 YARY/ ng
Az + Ay ¢ 1 (E 1 8 56 H no
Ba(as) g 0 g 0 0 58 53 yes
Ay 2 8 é 0 2 60 1 ves
Dy 0 G ; G 0 66 1 yes
Ag+ A It (1) 11 62 1 yes
As 2 1 é 12 64 7./37. 1o
Dila1) 1 3 é 11 64 1 ves
Es{as) 2 0 g 0 2 66 | Sy xZ/Z | yes
Dy 2 0 3 0 2 68 1 yes
Eglas) 2 2 g z 2 70 YAEY/ ves
Jo 2 2 3 2 2 72 Z/3E yes

129
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Nilpotent QOrbits in Type By

8.4 Tabies

Nilpotent Orbits in Type Ev {continued)

Label Diagram dim O {0} Special

o

e

]
0 G 0 0 0 O 0 G 1 yes
Ay 9 040 ((}) 0 1 34 1 yes
24, 6 1 0 g ] 52 1 yes
{341)" 2 00 g 6 Q 54 YAPYA yes
(841 000 g 1 0 64 1 1o
Az 0 4 0 g 0 2 66 o yes
44, 0.6 (1] ¢ 9 70 1 no
Ay + Ay 0 1 0 ([)} g 1 76 S ves
As + 24; 06 9 [i 0 0 82 1 yes
Ay 0 1 4 g 0 2 84 1 yes
24z 0 2 @ g 00 84 1 yes
Ap + 34, 0 0 0 (2} Y 84 kYA ves
(As + A1) 20 0 g 0 2 86 Z./27 ves
24, + Ay d 1 0 g 10 90 1 no
(Aa + A1Y 000 {1) o1 92 1 ne
Dyla:} 0 0 & ?] 2 9 94 Sz yes
As + 24; 10 1 g 0 1 04 VALY no
Dy 0 0 0 g 2 2 46 1 yes
Dafar} + Ay 1 00 rl) 10 96 | 82 x Z/27 yes
Ax 4+ Ay 6 1 0 2 0 ¢ G8 Sa ves
Ay 06 2 0 g 0 2 100 Sy yos
As 4 As 4 A 60 2 g o0 1060 Z/2Z yos
{As)" 2 2 0 ::() 2 102 i yes

Label Diagram dm & 7 {0) Special

o

]

1
Dy + Ay 680 0 1 2 162 ZivE ne
As+ Ay g 1 8 2 g0 1 104 55 yes
Ds(a) 0 1 0 2 o 2 106 Sz yes
A+ As 6 0 0 g 0 90 108 1 yo§
(AsY g 2 0 ? [EI 108 1 ne
As + Ay 2 10 (1] 0 1 108 Zj2E no
Dslay) + Ay 6 0 2 2 9 2 108 ARV A ves
De{az) 2 0 1 3) 10 110 Z/2Z ro
Eg(as) 0 2 0 3 20 110 Sy yos
Ds 0 2 6 g 2 2 112 1 yes
Erlas) 2 0 0 (z} oo 12 | 93 = Z/2% yes
As 0 2 0 (2) 0 ¢ 114 1 yes
Dg + Ay 0 1 1 {1) 1 2 114 Py yes
De(ar) 2 0 1 l}J o2 114 APy yes
Er(as) 2 0 0 2 0 2 116 | S2 x Z/2Z | yes
Dis 2 2 1 é 102 118 VAPY/ 0o
Eglas) g0 2 0 g o 2 118 S ves
Eg 0 2 0 g 2 2 120 1 yes
Frlos) 2 2 9 (‘2} G 2 120 8y x B/2Z yes
Er{az) 2 6 2 g 2 2 122 Z/2% yes
E7{a) 2 2 2 3 2 2 124 VAPY A ves
Fq 2 2 2 523 z 9 126 Zj2E v
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Nilpotent Orbits in Type Ej
Label Diagram dim @ | =) | Special

o

]

0
0 6 0 ¢ 0 0 6 0 0 1 ves
A1 1 9 0 0 ?) 0 e 58 1 yes
24 9 6 0 0 [(}} 0 1 g2 1 ves
34, ¢ 1 6 0 ((j) G 9 112 1 no
Az 2 0 0 ¢ ?) 0 G 114 S yes
44, 0 06 0 ¢ €1) 0 o i28 i no
Az Ay 16 0 0 ([)} 0 1 136 5 yes
Az -+ 24, ¢ 0 1 0 g ¢ 9 148 1 yes
As 2 0 0 0 ?) 01 148 1 yos
As + 34 6 9 0 0 ?) 1 G 154 1 no
24, g ¢ 0 0 ?} i 2 156 &2 yes
24 + Ay 0 1 0 0 (()} 1 162 1 10
Ay + A 10 10 (()} (HE 164 1 no
Da{or} D2 6 0 ({)) G 9 166 53 yes
Dy 2 2 0 0 ((.]) 6 o 168 1 yes
2A2+ 24, 0 0 06 1 (()3 (LAY} 168 1 no
Ag + 244 1 0 6 9 [()) 1 9 172 1 no
Pala) + A 01 6 9 é) 6 0 176 S yes
Az + A 00 1 9 ((]) G 1 178 Sy ves
Aa 2.0 0 9 ((]3 ¢t 2 180 Sy yes
Ay 4 Az + Ay 0 ¢ o0 2 n o 182 1 no
Py Ay 2 1 6 9 2’? 6 8 184 1 no
fhalay) | _Ag e 0 (2} o 184 Sy yes

8.4 Tables
Nilpotent Orbits in Type Eg {continued)
Label Diagram dimO | 7. (O) | Special
o
Q—MOM----D—G—LMWO—-—C
0
As+ Ay 19 106 90 90 1 188 P yes
245 b0 0 1 S 0 1 188 1 ne
Dsla} 2 01 40 ?) 01 190 S yes
A+ 24,4 1 0 90 {; G 0 192 Sy yes
Ag + Aq 9 0 2 90 g a0 194 1 yes
As 019 ?] 0 2 196 1 no
Ds(a) + As 2 6 0 0 ? 0 ¢ 196 1 ves
Ag+ Ay + Ay 60 0 10 ?J 1 0 196 1 yes
Dy + As 2 00 0 ?) o 0 198 Sz ves
Ee(as) 0 2 9 0 g 0 2 198 Sy yes
g
Dy 220 060 0 32 200 1 yes
Ay 4+ A ¢ 1 00 2 9 0 200 1 Lo
As + A4y i 00 0 ? 6 1 202 1 no
Dsla1} + A 16 10 ?] Lo 202 1 no
Da{na) 6 1 0 0 é 10 204 52 no
Eglas) + A 001 0 1 g 0 1 204 Sz 16
Eqias) 0 o 1 0 ? 0 0 206 53 ne
Dy + A; 2 1 0 1 (()) 0 1 208 1 1o
Eg{ay) B 0 6 2 ?) 6 0 208 Sy yes
Ag 9 0 2 9 f(]) 0 2 210 1 ves
Delas) 2 1 0 0 é 10 219 S ves
As + Ay 6 9 1 0 g 9 1 212 H yes
Frlog) 20 10 (;J 00 212 85 yes
: |

LA |
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Nilpotent Orbits in Type Es {continued)
Label Diagram dim @ | # () | Special

o

s

0
D5 + A 24 0 2 0 0 0 214 Sz yes
De 2 1 0 0 é 12 216 1 no
Es 2 2 2 0 ?J 0 2 216 1 yes
Dr{as) 16 10 ? 01 216 S yes
Az 0 1 190 (; 01 218 H no
Eefay) + Az 2 0 1 0 2 0 1 218 S yes
Eq{og) 2 8 1 0 ? g9 2 220 S ves
Eg{bs) 2 0 00 g 00 220 Sa yes
Dr(as) 20 0 2 ([}) 0 2 222 S ves
Bs+ A zZ 2 1 ¢ 2 B 1 222 1 no
Er{an) 2 2 01 B 1 6 224 1 no
Eg{ug) 6 2 0 0 g 0 0 224 5y ves
4 10 1 1 ; 1 2 226 1 [£183
Ealbs) 2 2.0 0 g 0o 226 Sa yes
Er(a1) 2 2 0 1 10 12 228 1 yes
Ea{as) B2 0 0 g 0 2 298 S, yes
Es(bs) 2 2 0 0 ‘92 0 2 230 8, ves
By 2 2 2 1 ;) 1 2 232 1 o
Es(as) 2 06 20 g 0 2 232 Sz yes
Fslas) 22 2 9 2 0 2 234 52 yes
Eglaa} 2 2 0 2 ?3 2 2 236 1 yes
Eylar) 2 2 2 2 ?} 2 2 238 1 ves
Fm 22 _ 2 2 ‘3 22 '_‘:24(] 1 yes

9.1

Real Nilpotent Orbits

So far we have worked exclusively over C (except for brief excursions into arbi-
trary algebraically closed basefields in a couple of remarks). We now indicate
what happens over R. Although the theory is neither as elegant nor as well
developed as in the complex case, many of the ideas and techniques carry over.
Moreover, real nilpotent orbits come up quite frequently in the representation
theory of real Lie groups (just as complex orbits do in the representation theory
of complex Lie groups; see the next chapter).

Survey of Real Simple Algebras

We begin by recalling (without proof) Cartan’s welt-known Hst of the real sim-
ple Lie algebras. Basic references for this material are [83, pp.134-35] and [33,
88111, X}; the latter derives the classification in detail (using Kad's classification
of automerphisms of finite order) and gives much explicit information about the
real forms.

There are two basic types of real simple Lie algebras: complex simple Lie
algebras, regarded as real; and real forms of complex simple algebras. Algebras
of the first type obviously yield no new nilpotent orbits, so we restrict ajtention
to real forms. Recall, as noted in §4.4, that a fixed complex simple algebra ge
admits a unique compact form up to conjugacy. Its noncompact forms corre-
spond bijectively to conjugacy classes of involutions (automorphisms of order 23
in Aut{ge) (not Aut(ge)®). Any element of a compact form is skew-adjoint with
respect 0 a negative definite form (the Killing form). Thus, it is semisimple
with pure imaginary eigenvalues and cannot be nilpotent unless it is . We will
therefore concentrate on noncompact forms. We begin with the ones of classical
type.

I go = sl2,C, then it has n + 2 noncompact real forms (if n = 2}, The
most obvious one is sy, R, the set of traceless real 2n x 2n matrices. Then there
is a series SUp 2,.-p In which each algebra consists of the skew-adjoint matrices
relative f0 a Hermitian form of signature (p, 2n—p) on €. Heren < p < 2n—1,
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Finally, one has suf,, 2 sl H, which consists of the n x n matrices over H of pure
quaternionic trace. (“Pure quaternionic” means a linear combination of 4, j, k in
Y If g = shyn+1 @, then one gets the same forms with 2n replaced by 2n + 1,
except that suy, 4 is not defined.
The situation is simpler for gc = 802,41C. There are just n noncompact
real forms, namely the algebras oy, 2,41—p of skew-adjoint matrices relative to
a symmetric form of signature (p,2n + 1 — p} on B*"*; here n+ 1 < p < 2n.
If g = 809, C, then there is one additional real form (as in type A). This is
503, the algebra of skew-adjoint matrices relative to a skew-Hermitian form
o H™. Omne can also realize 503, as an algebra of 2n x 2n complex matrices;
these arve required to be skew-adjoint relative to two forms: a symunetric one
and a skew-Hermitian one. {The forms must be compatible in a suitable sense
to establish the identification with s}, ; see [33, §X] or [83].) The last classical
case, gc = 8Py, C, s analegous to 502, C. Now, however, the isolated form is the
split one ap,,. R, and the series spy, o, o, consists of n x n matrices over H skew-
adjoint relative to a Hermitian form of signature {n — p,p). Here 1 < p < [n/2].
(This last algebra is usually denoted by sp,,_, ,, but we have chosen the above
notation fo be consistent with owr notation for ge.) Once again, there is a
. realization of 5Py, g, o, by complex 2n x 2n matrices, this time skew-adjoint
“ relative to a compatible pair of forms, one symplectic and the other Hermitian
(ol signature (2n — 2p, 2p}).
We now give a table of the noncompact exceptional real forms, each listed
ith the Cartan type of its complexified maximal compact subalgebra tc (which
s reductive); clarifying remarks follow.

Exceptional Real Forms

Form Type of £
Eﬁ(—2ﬁ) Fti
Fe(~14) | Ds+C
Be(2) | As+ A4
He(6) | Ca
Fa(~25) | Bs+C
[:’77(75) Ds + Ay

1.5‘7(7) Ar
!.‘1'3(724) Fr 4+ Ay
By (8) Dy
Fs(~20) | Ba

]‘11{4} Ca + Ay
(2(2) A+ Ay

Whest interpreting this table, it is helpful to recall some structural facts. Any
rond shmple algebra ge admits a Cartan decompesition by 4 pp in which bp is
# mnshnnl compact subalgebra and pg is a fg-module such that {pr, pr] C .
Llais, Chere is also a Cartan involution 6 of gy (or its complexification ge) defined

9.2
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to be 1 on &g and —1 on pg. Any two Cartan decompositions or involutions are
conjugate. The Killing form is negative definite on £g and positive definite on pg.
Following Cartan, it is standard to denote a real form of an exceptional algebra
of type X by Xy (s), where s is the common value of dimpg —~ dim &z for all
Cartan decompositions bg -+ pr of gr. {Of course, we could also use this notation
for classical real forms, but it is ambiguous in that context: It is possible for two
forms of the same classical ge to have the same value of 2.}

The Jacobson-Morozov Theorem Revisited

We now develop the theory of real nilpoient orbits. Except for one remark
about real orthogonal groups in the next section, we will confine attention to
orbite under the adjoint group e of gr. This group is defined exactly as in the
complex case; see §1.2. As in the complex case, the first step is to establish a
tight link between nilpotent elements and copies of sR, or equivalently with
standard triples of elements in gp. The main result should come as no surprise,
but its proof will take a Httle more work in this setting,

Theorem 9.2.1. Let gr be a real semisimple Lie algebra, X € gg a nonzero nilpotent

clement, Then there is a standard triple [H, X, Y} in gr with X nilpositive.

Proof. The argument we gave in the complex case actually carries over
word for word once we have the theory of Jordan decompasitions over non-
algebraically-closed basefields (of characteristic 0). We prefer, however, not to
agsume or develop this theory, and so we take another path.

Clearly, X is also nilpotent in the complexification g¢ of gg, and g is
semisimple (though it need not be simple even if gg is simple). So we get a
standard triple {Hg +iH}, X, Ya + Y7t} in gc in which every element with an R
subscript belongs to gg. The triple {Hp, X, Yz} les in gg and clearly satisfies two
of the defining equations of a standard triple: [Hp, X] = 2X and [X | ¥g] = Hz.
Unfortunately, we need not have [Hy, Yg! = ~2Vg. The following lemma cures
this difficulty and completes the proof of the theorem. ]

Lemma 9.2.2 (Jacobson). Let H, X\ Y' € gp satisfy the relations [H, X] = 2X and

[X,Y'}= H. Then there is ¥ € gr such that {H, X,Y} is a standard triple.

Proof. We begin by applying the Jacobi identity three times. First, ady
maps the generalized A-eigenspace of ady in g to the generalized A+2-eigenspace,
for any A € C. Thus, X is nilpofent. Second, ady stabilizes gﬁf . Third, X cen-
tralizes [H,Y"] + 2Y’. Suppose now that we can show that ady acts on g
without, eigenvalue —2. Then ady + 2 acts nonsingularly on &, so that there is
Z € gi¥ with (adg +2{2Z) = ~[H,Y"] —2Y". Replacing V' by ¥V 1= Y' + Z, we
see that {H, X,Y} is a standard triple, as desired.

We are therefore reduced fo studying the eigenvalues of adyg on gﬁ? . We
will actually show thai they all lie in N (note that this mnst be the case i our
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desired element Y exisﬁs, by sia theory). To this end, we define a filtration {g;}
on g via g; = g Nady (gr). We have g; = 0 for large 4 since X is nilpotent.
Now let Z =adi (W) € g;. If i = 0, we get

adg(Z) = adxady(Z2) — ady-adx (Z) = adxady(Z) € g1,
since Z € gif . If 4 > 0, then we have

adg(Z) = adyady ady (W)
= d‘dx (zz -t &d? adg}a.d;'l_} W) + adf,?'lade
by the product rule for derivations, since ady X = —H. Now move every oc-

currence of —ady to the extreme left of its term. Fvery time --ady moves past
ady, we introduce an “error term” involving —adx(H) = 2X. We get

g1 i1
adpZ = adi{ ady W — > adgadiy W + 3 27 + Dady W
3=0 =9

and thus

(i + Vadp Z = ady  ady W +i(i + 1)Z

1. follows that ady acts on the vector space §;/g:+1 by the scalar 4. Since g; = 0
for large 4, we deduce that ady acts {diagonally) on g with all cigenvalues in
M, as claimed. i

Remark.  The result generalizes immediatety to semisimple Lie algebras gy over
- nny field k of characteristic 0. To see this, let ﬁ_ﬂbe an algebraic closure of k and
et k' be a k-vector space complement of k in k. Identify gy with its canonical
"imugv mn o = 0k ®kE and write gy, = K'gp C g Then one need only replace
531 in the proof by oy and igp by g).. If k has characteristic p > 0, then one
1. pluce some restrictions on p to make the theorem hold over k.

Now it is natural to ask to what extent the conjugacy theorems of §3.4 held
. Kostant’s conjugacy theorem (3.4.10) carries over at once,

l_:_i-3.2.3. Any two standard triples {H, X, Y}, {H', X, Y"'} in gr with the same
{Ipositive element X are conjugate under G¥ , the centralizer of X in the adjoint
Jrroup Gy of gg.

Thee proof is the same as that of (3.4.10). Mal’cev’s conjugacy theorem (3.4.12)
i o dillerent matter, for it fails already in sfpR. The two matrices oy g, bE7 5
i sb8 are conjugate under §LoR or PSLR i and only if b = ac? for some
¢ ¢ W (Here By o denotes the elementary matrix havieg a 1 as its (1,2)-entry

9.3
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and zeros elsewhere, as in §5.2.) Thus, there are two nonconjugate standard
triples in bR with the same neutral element (and infinitely many nonconjugate
standard triples in say slp{Q with the same neutral element!). In §9.4 we will
produce a substitute for H that does determine the conjugacy class of a standard
tripie {H, X, Y}, but the theory developed so far is already sufficient to classify
nilpotent orbits in any gg of classical type. This we do in the next section.

Nilpotent Orbits in Classical Algebras

The results in this section are due to Springer and Steinberg {80}; they are also
stated somewhat more explicitly in [17]. Let ggr belong to the list of classical real
forms given in §9.1. Let X € gg be s nonzero nilpotent element and {H, X, Y}
a standard triple. Fhe first step is to decompose the standard representation V
of gr over the span a of H, X, and V', just as we did in the complex case in §5.1.
{Note the basefield of V need not be R, even though a is only $he real span of
H, X, Y. Nevertheless, the action of a commutes with scalar multiplication by
the basefield, so that the irreducible summands are indeed subspaces.) We note

that if gr is not suj, or st (R), then V carries a nondegenerate form (-,-) that
is gr-invariant. Write

V=P M)
r2>0

as in (5.1.8), so that each M(r) is a direct sum of irreducible (r + 1)-dimensional
a-modules. Let H{r) denote the highest weight space of M (r}, as in §5.1. Assume
for definiteness that the ambient form (-, -) exists. Again, we get an induced form
(+)r on H(r) defined by

{(v,wh = {0, ¥ - w).

Corresponding to (5.1.10) and (5.1.14), we have the following resulé.

Lemma 9.3.1. If {-,-) is symmeiric, then {-,-}, is symmetric or symplectic according

as v is even or odd, The signature of {-,-} on M{r) has the same number of +
as — signs if r is odd. If r is even, then this signature is obtained by starting
with the signature of {-,-}, and then replacing each + sign s by an alternaiing
sequence of signs of length r + 1, beginning with 5. The same results kold if
{',") Is Hermitian, replacing “symmetric” by “Hermitian” and “symplectic” by
“skew-Hermitian” throughout. The same results hokd if {-, .} is skew-Hermitian,
interchanging the roles of eveni and odd r, and again replacing “symmetric” by
“Hermitian”, “symplectic” by “skew-Hermitian®. Finally, the same results hold
if {:,-} Is symplectic, interchanging the roles of even and odd r.

This is proved by a direct caleulation. Furthermore, the proofs of (5.1.11)
and {5.1.17} carry over te show that the induced forms (-, ), are nondegenerate
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amd determine the ambient form (-,-} uniquely. We now recall some standard
facts from lnear algebra.

i':(mition 9.3.2. Let W be a k-vector space of dimension n, where k Is one of the
“ ihree fields R, C, or HL.

(i} Ik = C, then W admits a unique nondegenerate symmetric form up to
equivalence. It also admits a nondegenerate symplectic form, unique up
to equivalence, provided that n is even; if n is odd, there is no such form.
Nondegenerate skew-Hermitian forms on W are in one-to-one correspon-
dence with nondegenerate Hermitian forms under multiplication by i, the
imaginary unit. Equivalence classes of either of these are parametrized by
their signatures, which can be any combination of n signs s;, each either
+ or -,

i) Ifk = R, then W admits a nondegenerate symplectic form if and only if n
is even, in which case it Is unique up to equivalence {just as for C). Equiva-
lence classes of nondegenerate symmetric forms are again parametrized by
their signatures, which take the same form as in (i).

( #) If k = H, then W admits a unigue nondegenerate skew-Hermitian form
up to equivalence (regardless of the parity of nj. Equivalence classes of
nondegenerate Hermitian forms are parametrized by their signatures, as in

(i). There are no nenzero symmetric or symplectic forms on W (and indeed
no nonzerc bilinear forms).

The last assertion in (ifi) is a consequence of the noncemmutativity of H.)

We are now ready to give the classification of the classical orbits. We state
in terms of signed Young diagrams, which we now introduce. Recall from §6.3
Dl a Young diagram is a left-justified array of rows of empty boxes arranged so
it 1o row is shorter than the one below it, There is an obvious correspondence
wiween these and partitions. We now define a signed Young diagram to be a
amng diagram in which every box is labeled with a + or — sign in such a way
#l signs alternate across rows {they need not alternate down columns). Two
ipned dingrams are regarded as equivalent if and only if one can be obtained
m the other by interchanging rows of equal length. The signature of a signed
wirarn s the ordered pair (m, n}, where m is the mumber of boxes labeled +

¢ 7 i3 the number of boxes labeled —. We now run through the list of classical
i forms in §9.1.

.8, Nilpotent orbits in suy, ; are parametrized by signed Young diagrams of
atore (p,q). Nilpotent orbits in su}, are parametrized by partitions of n (not
N:i}mtmt orbits in 51, (R) are parametrized by partitions of n, except that
“svin” partitions having only even terms (not necessarily with even multiplicity}
correspomnd to two orbits, denoted as usual by I and I,

Proof., The previous discussion shows that nilpotent U/, ,-orbits in su, , are
pirinnicbrized by signed Young diagrams of signature (p, ¢), where U, , of course
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denotes the isometry group of a Hermitian form on CP of signature {p, q). But
the orbits of Ug 4 clearly coincide with those of this group modulo its center,
which identifies with the quotient of SU, ; medulo its center. The first assertion
follows. To prove the second, we just use the Jordan normal form for elements
in 51, H; since H is elosed under m®* raots for any m, there is again no difference
between GL,H-orbits and SL,H-orbits. The situation i slightly different for
s R, If two direct sums of Jordan block matrices are conjugate by a makrix of
negative determinant and at least one of the block sizes is odd, then one can
multiply the conjugating matrix by an appropriate diagonal matrix o make jts
determinant 1. If, however, all block sizes are even, then we see by looking
at centralizers (as in the proof of (5.1.4)} that there is no way to replace the
conjugating matrix by one of positive determinant. The theorem follows. O

Theorem 9.3.4. Nilpotent orbits in §0,.¢ are parametrized by “orthogonal signed Young

diagrams” of signature (p,q) with numerals; that is, by signed Young diagrams
of signature (p, g} such that rows of even length occur with even multiplicity
and have their leftmost boxes labeled +. Some of these diagrams get Roman
numerals attached to them, as follows. If all rows have even length, then two
Roman numerals, each I or II, are attached. If at least one row has odd length
and all such rows have an even number of boxes Iabeled +, or all such rows
have an even number of boxes labeled —, then one numeral T or IT is attached.
Otherwise no numeral is attached. Nilpotent orbits in 0}, are parametrized by
signed Young diagrams of size n and any signature in which rows of odd length
bave their Jeftmost boxes labeled +.

Proof. We first note that orthogonal signed Young diagrams of signature
(p,q) without numerals parametrize nilpotent O, ,-orbits (where O, ; is defined
in the obvious way). The point of requiring rows of even length to begin with a
+ is simply to account for the uniqueness {up to equivalence) of a nondegenerate
symplectic form on an even-dimensional real vector space (cf. (9.3.2)(i1)); the
signatures work out properly by (%.3.1). The proof that the rules for attaching
Roman numerals account for the way in which 0, 4-orbits split into SO -orbits
is left an exercise; it requires the observation thai O ; has four connected com-
ponents. Finally, the last assertion follows from the discussion before (8.3.3)
together with the realization of sof, in §1. Again, we require that odd rows
begin with + because skew-Hermitian forms are unique up to equivalence, by
(8.3.2}(iii). We don't have to keep track of the numbers of + and — signs be-
cause skew-Hermitian forms don’s have signatures; furthermore, orbits under the
adjoint group coincide with these under the isometry group. 3
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orem 9.3.5. Nilpotent orbits in sp,, 5, are parametrized by signed Young diagrams
of signature {(p, q) in which even rows begin with +. Nilpotent orbits in sp,, R are
parametrized by signed Young diagrams of size 2n and any signature in which
odd rows begin with + and occur with even multiplicity.

Proof. This follows from the above discussion together with the realization
of 5Py, 0, in §1. Once again, there is no difference between orbits under the
adjoint and isometry groups. |

For every classical real form other than su, ,so},, and 5Pap 24, the Young dia-
gram of the complexification Qg of a real orbit Oy is obtained from that of Qg
by omitting the signs. (For $0p,q, one also omits the numeral if the partition of
Or is not very even; if it is very even, one omits only the frst numeral. For s, R,
one also omits the numeral.) For suj,, 503, , and spy, 5., one obtains the Young
diagram for O¢ from that of Og by omitting the signs and replacing every row
by two copies of itself. We now give some examples.

Example 9.3.6. There iz a well-known isomorphism sty = shR. Applying
{9.3.3), we see that orbits in the former algebra correspond to the diagrams

il

while those in the latter correspond to the partitions ([21), ([2):I1), and [12].
Uhe parametrizing sets match up in an obvious way; note that there are two
wincipal orbits in this case, in contrast to (4.1.8). Of course, these orbits are
sonjugate under the complex group.

wmple 8.3.7. There is a slightly less well-known isomorphism go22 = shR x
IR, Since we observed in the last example that sl,R has three nilpotent orbits,
follows that szR x sl;R has nine such orbits. By (9.3.4), s0g5 also has nine
potent orbits, corresponding to the diagrams

A —F- oo

(»fﬁ oI 1)
=T
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These again match up with the orbits in slbR x sLR in a straightforward way
There are four principal orbits, obtained by taking products of principal orbit:
in s[;R. The four orbits whose diagrams are given in the second row are obtainec

by taking the product of a principal orbit in one sl;R factor and the O orbit ir
the other.

Example 9.3.8. We have an isomorphism of split forms soz2 = sp,R. The
diagrams parametrizing the orbits in the former algebra are

(== 1 )

—TH-= +1={+
5 I i;I,H 4 [+
[+ ot
+._

+i— L1

i

)

|

Rl

while the corresponding diagrams for the latter algebra are

EE EEEE

= FaE =
= —F —+
+1 =4

+] +

+] ¥

E

i

M_*«...

+

Example 9.3.9. Finally, we consider the iscmorphism Sug 3 = 804 5, which arises
in relativity theory. The relevant diagrams for the first algebra are
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hile those for the latter algebra are

.
[+

T .
+|11|J£)

15 .

(+ T ,I,H)
(S SERE
iy LT ]
\ & =l
3=
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" You may enjoy matching up the parametrizations given by Theorems 9.3.3
11;?11113,,11 9.3.5 for the following three pairs of isomorphic algebras: so04,1 # 5py ;
atig % sog 5 505 = 50g2. We conclude this section by remarking that Djokovié
has completely described the order relation on real classical nilpotent orbits given
by containment of closures; see [22].

9.4
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Cayley and Normal Triples: Basic
Conjugacy Results

‘We now return to the case of a general real semisimple algebra gg and develop the
theory of standard triples further. Fix a Cartan decomposition #z + pg of gg and
let & be the corresponding Cartan involution. Given a standard triple {H, X, V},
our goal is to produce a semi-simple element whose conjugacy class determines
that of the triple. Since Cartan tnvolutions piay such a prominent role in the
theory of real simple algebras, it is reasonable to expecs this sernisimple element
to have something to do with #. Now Theorem 8.2.1 immediately suggests a
connection. The span a of {H, X,Y} is isomorphic to slhR, so it has a Cartan
involution # in its own right, which is usually taken to be the negative transpose

“mpap, Thus 0(H) = ~H,#(X) = -Y,8'(Y) = —X {cf. the formulas for H, X,V

as images of matrices in sk in §3.2). The obvious way to bring 6 into the
picture would be o have it stabilize ¢ and agree with & there. Actually, it is not
reasonable to expect this, as there is nothing eanonical about our choice of #; it
is unique only up to conjugation. The most to be hoped for is that {H, X, Y} is
conjugate to a triple whose span is #-stable. This is indeed the case.

Theorem 9.4.1. Given a Cartan involution 6, any standard friple {H, X, Y} in gg

is conjugate to another one {H', X' )Y'} such that 6(H") = ~H',8(X") =
—Y'",8(Y") = ~ X', (Triples with this last property are called Cayley triples.)

Proof. By a result of Mostow {69, Thm.6] (see also [33, Ch.VLex.8]), any
Cartan involution of a semisimple subalgebra of gp extends to one on gg itself.
The result follows from the conjugacy of Cartan involutions. =

We now see {philosophically) why H does not determine the conjugacy
clags of {H, X,Y}: both H and X +Y lie in the noncompact part of a Cartan
decomposition, so neither one can be regarded as distinguished. By contrast,
X Y is the unique compact element in 0, up to conjugation and scalar multiples,
go it should be the semisimple element we are looking for. We will prove this
below, but first we need to introduce an important auxiliary standard triple
attached to any Cayley triple. Let e, pe be the complexifications of B, pr and
let {H,X,Y} be a Cayley triple. We need to construct a second triple which
not only spans a #-stable subalgebra but actually consists of §-eigenvectors. Set
{H, X', Y'} = {i(X~Y), H{X +Y +iH), J(X +Y —iH} }. We can check directly
that {H', X', Y’} is indeed a standard triple; it is called the Cayley transform of
{H,X,Y}. Of course it lives in g¢, not gg; more precisely, its neutral element
lies in ¢ while the other two lie in pc. Any standard triple in g¢ with this last
property is called normal.

Now we must digress for a moment to study the conjugacy properties of
normal triples. Fortunately, the main facts accord precisely with what we would
expect from the results in §3.4. More precisely, we have the following analogues
of (3.3.1), {3.4.10), and (3.4.12).
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wem 9.4.2. Any nonzero nilpotent element X € pe is the nilpositive element of a
normal triple.

wem 9.4.3. Any two normal triples {H, X, Y },{H', X,Y"} with the same nilpos-
itive element X are Kg -conjugate, where K@x denotes the centralizer of X in
the adjoint group K¢ of ic.

)mm 9.4.4. Any two normal triples {H, X, Y}, {H, X', Y} with the same neutral
i element H are KC -conjugate,

These results are all taken from a fundamental paper [54] of Kostant and Rallis
that studies normal triples independently of their applications to nilpo$ent orbits.
“They all essentially follow easily from the proofs of the corresponding results in
‘Chapter 3. Tor example, to prove (8.4.2), let X € pg be nilpotent and nonzero.
As in the argument before (3.3.5), we get H' € g¢ with [H’, X] = 2X. Replacing
{! by its component in &g, we obtain H" € t¢ with [H”, X] = 2X. Replacing
1" by its semisimple component in the Jordan decomposition in ¥c, we may
wstine that HY is semisimple. Then the proof is completed by induction on
he dimension of g¢, as in (3.3.1}. To prove (9.4.3), we argue as in the proof
{ (3.4.10), replacing the “pesitive weight” part u¥ of g¥ by its projection to
¢ Finally, to prove {9.4.4), we replace the subspace gy occurring in the proof
f (3.4.12) by its projection pp to pc, define a Zariski-open subset P’ of pa as
i (3 4.12), and then use a conneetedness argument to show shat P’ is a single
! .orbit.

Before we can state and prove the analogue of (3.4.12) for gg, we need one
ore structural fact.

9.4.5. Any two elements of by or pgn are Gr-conjugate if and only if they are
Wp-conjugate.

saf, Suppose for definiteness that W, g- W € tg (the other case is similar)
{th 7 € Gr. By the Cartan decomposition for reductive groups [33, VL.L.1],
“pny write g = (Exp P)k for some k € Kg and P € pr. Replacing W by
w k- W, we may assume that g =Exp P. Now adp acts semisimply on gp
i1kl real cigenvalues, so that ad?, acts semisimply on fg and pg with nonnegative
! eigenvalues. From the power series expansion of Exp P - W', we see that its
paponent in pg cannot vanish unless [P, W] = 0. Thus g - W' = W', whence
iwd g W oare already conjugate under k € g, as claimed. O

‘We are finally ready for our main result.

| 4.6 (Ruo) Any two standard mples {H X YV{H X'\ Y'} in gr with
' ‘f ¥« X' — Y7 are conjugate under G’ , the centralizer of X — Y in Gp.

Froaf, A direct attack along the lines of (3.4.12) seems to lead to a blind alley
{one problen 18 that $he centralizer G%“i , unlike the centralizer Gé’; in {3.4.12},
ek ot he connected). So we give a more roundabout argument using the above

9.5
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ideas. By (9.4.1), there are g, h € Gw such that g- {H, X, Y} and h- {H', X", Y’}
are both Cayley. Since g+ (X —Y) and h- (X' —Y") are elements of & conjugate
under Gy, the proof of {9.4.5) shows that we may replace h - {H', X', Y'} by
a Cayley triple # - {H', X" Y'} with &' - (X' ~ V") = ¢+ (X — Y). Thus, the
triple {H", X", Y"} 1= ¢~ h'- {H', X', Y"} satisfies X" —Y" = X ~Y and both
{H,X,Y} and {H", X", Y"} are Cayley triples with respect to the same Cartan
decomposition, which we may assume is our fixed one g = & + pr. Replacing
{H X, Y}, {H",X",Y"} by their Cayley transforms, we get two normal triples
in ge with the same nentrai eiemer;t (X -Y). By (9.4.4), these normal triples are
conjugate by some k € KX~ which also conjugates one of the Cayley triples
to the other. Since & is reductwe and X - Y is semisimple, {2.1.2) implies that
the algebra ceniralizer E Y is reductive. Applying the proof of (9.4.5) to the
Cartan decomposition ER e iég Y oof Eg “¥ we see that we may replace & by
an element of Kﬂf ¥, Thus, {H, X, Y} and {H', X', Y'} are conjugate ander
Gg Y as desired. a

Sekiguchi’s Bijection and Weighted
Dynkin Diagrams

Now we are ready to state our main resuit on nilpotent orbits in gr. Is proof
combines the basic conjugacy theory of Cayley and normal triples via the Cayley
transform. The key observation is that the groups G and K¢ share a common
maximal compact subgroup, namely Kg.

Theorem 9.56.1 {Sekiguchi [74]). There is a natural one-to-one correspondence be-

tween nilpotent Gr-orbits in gg and nilpotent Kg-orbits in pe. This correspon-
dence sends the zero orbit to the zero orbit and the orbit through the nilpositive

element of a Cayley triple to the one through the nilpositive element of its Cayley
transforn.

Proof. We first show that the correspondence is well defined. We have al-
ready shown that any standard triple in g is conjugate to a Cayley triple. Any
two Cayley triples {H, X, Y}, {H', X, ¥’} with the same nilpositive element are
G -conjugate by (9.2.3). In particular, X — ¥ is conjugate to X — ¥’, whence
these two elements are actually Kg-conjugate, by (9.4.5). Thus the Cayley trans-
forms of {H, X, Y}, {H', X, Y’} have Kg-conjugate neutral elements. By (9.4.4),
these normal triples are Kc-conjugate, whence so are their nilpositive elements,
as desired.

Now we show that the correspondence is a bijection by constructing an
explicit inverse foi it. Given a normal triple {FHg, X, Yo} in go, we must first
show that it is K-conjugate to a Cayley transform of a Cayley triple. This is
the hardest step. Let ag be the complex span of Hp, X¢, and Y. Let 4 be
the unique conjugate linear automorphism of gy (regarded as a real Lie algebra)
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fixing X¢ —~ Ye and sending He, X¢ + Yg to their negatives. Then ¢ is a Cartan
involution of dg; note that it commutes with the restriction of # to ac. By the
result of Mostow quoted above, we know that ¢ extends to a Cartan involution &'
of g¢ {regarded as a real Lie algebra). The proof of this result in {69] shows that
we may assume that ' commutes with 8. Now let 6, be the Cartan involution of
ac corresponding to its compact real form tg+ipg. By (33, I11.7.2] there s Z € gc
guch that the automorphism g =Exp Z commutes with § and conjugates # into
8, then we must have g € Be. One computes that g(Hc) € b Nk +pr) = ilg;
similarly g{X¢ + Yo) € pr and g(X¢ — ¥e) € pr. Thus, g- {H@X@,Y(‘,} is the
Cayley transform of a Cayley triple and g € ¥, as desired.

Given a nilpotent X¢ € pc, we know that it is the nilpositive element
of a normal triple and any two such triples are Kc-conjugate, by (9.4.2) and
(9.4.3). If two such triples are conjugated so as to be Cayley transforms of
Cayley triples, then their inverse Cayley transforms {H, X, Y}, {H', X', Y'} give
rise to Kco-conjugate elements X — ¥, X' — Y7 of ifp. Again, by ($.4.5} applied
0 e, we see that X — ¥ and X' — Y7 are Kg-conjugate. It follows from (9.4.6)
that {H, X, Y}, {H', X', Y'} are Gg-conjugate. Thus, the correspondence has a
~well-defined two-sided inverse. 0

Remark 9.5.2. If the Gr-orbit (7 - Ay corresponds to the Kc-orbit K¢ - Ag, then
we also have the following properties, whose proofs we omit.

i) G- dr =G Acs
L (31) dimg(Ke - Ag) = § dimg(Gy - Ar) = § dime(CGe - Ac);

{iii) the centralizers GQ“,KQ“ have a common maximal compact subgroup,
namely the centralizer Kﬂ;“')‘c of the span of Ag and A in Kp.

We also note that Sekiguchi’s bijection is known to preserve the closure order on
'bhits (defined in the introduction to Chapter 4) for classical algebras gg [70]. 1t
4 not known whether this is still true if g is exceptional. Finally, we note that
Bjokovié gave an independent proof of {9.5.1) in [23}.

We conclude this section by giving a brief treatment of weighted Dynkin
agrams of nilpotent orbits in the simple real forms. Given a nonzero nilpo-
nt orbit Gr - Xg = O, et Kg - X be the orbit in pe corresponding to it
v (8.5.1). Let {Hg, X¢, Yo} be a normal triple with nilpositive element X¢.
¢ may conjugate {Hg, X, Y} so that its neutral element He lies in a fixed
finant Weyl chamber of a fixed Cartan subalgebra of . As in §3.5, this
tityal element then determines the orbit K¢ - X uniquely. Label each node
thie Dyukin diagram of B¢ by the eigenvalue of the corresponding simple root
i He. This labeled Dynkin diagram is called the weighted diagram of Gg - Xz
gr Ky Xe. It is an invariant of the orbit. If gg is not a Hermitian symmetric
sivirl form, the weighted diagram is a complete invariant; but if gr is Hermitian
iytnmetric, then fc has a one-dimensional center and we must also keep track of
the component of He in the center. This can be done by extending the weighted

9.5 Sekiguchi's Bijection and Weighted Dynkin Diagrams 149

diagram as follows. From the classification of Hermitian symmetric real forms,
it follows that we may obtain a set of simple roots of & from a corresponding
set for ge by omitting one root a. We extend a typical weighted diagram for gr
by adding a label equal to the eigenvalue of adg, on the a-weight space. The
resulting weighted diagram is denoted Ax(Og). If Og is the trivial orbit, we
adopt the convention that its diagram has every node iabeled zero.

Just as in the complex case, the labels of the weighted diagram are nonneg-
ative integers (except that the additional label in a typical extended weighted
diagram need not be nonnegative; we will say more about it below). In the
complex case, all labels are 0,1, or 2, but this need not hold in the real case.
To see why, we review some of the theory in the complex cagse. Once a Car-

o tan subalgebra fi of a complex semisimple algebra g has been fixed, choosing &
" dominant chamber in § amounts o choosing a set of positive roots of b in g, or

equivalently choosing a Borel subalgebra b of g containing b, Suppose that this
has been done and let {H,X,Y} be a standard triple in g with H in the fixed
dominant chamber. Then X must lie in n, the niiradical of b. If X_ . i8 a root
vector corresponding the negative of a simple root o, then either [X -0, X]=10
(in which case the label of o must be 0) or [X_q, X} is a nonzero element of b
(in which case the label of & can also be 1 or 2). Now let’s try to repeat this
argument in the real case. Given a normal triple {H,X,Y} with H in a fixed
dominant chamber of a fixed Cartan subalgebra of ¥, and a root vector X o
in ¢ corresponding to the negative of a simple root, the first problem is that
{X ..a, X] lies in pc, not €c. We can cure this difficulty by bracketing again with
X [[Xa, X], X] does lie in Ec. If this is 0, the label of o nust be 0 or 1. But
if it is not, then there is a further dificulty, which turns out to be insuperable:
The double bracket [[X_q, X], X] need not lie in the bracket of X_o and the
fixed Borel subalgebra of £z, in general {the bracket operation is not associa-
tive). Thus, we can almost, but not quite, show that all labels are (0,1,2,3, or 4.
In fact (at least if gg is exceptional), all labels are 0,1,2,3,4, or 8, except for the
additional label in an extended weighted diagram. This label turns out be an
integer bounded between ~10 and 2,

It is not clear from the arguments of the last two paragraphs that there
are only finitely many nilpotent orbits in ge. To see this, we consider a slightly
different kind of labeled diagram. Fix a dominant chamber of a Cartan subalge-
bra of B¢ as above and let {H, X, Y} be a normal triple with neutral element in
this dominant chamber. Now label every node of the Dynkin diagram of ge (not
tc) with the eigenvalue of the corresponding simple root on H {extending our
fixed Cartan subalgebra of £c to a Cartan subalgebra of gc). Then the labels are
not necessarily nonnegative; but they are integers bounded in absolute value by
dim gc. (By the representation theory of sly, none of the irreducible constituents
of ge under the action of the normal triple can have dimension greater than that
of gr itsel.) This new labeled diagram is not an invariant of the orbit A¢ - X,
but it does completely determine this orbit. Thus, there are only finitely many
nilpotent orbits in gg. This argument is taken from [64]. We summarize it in
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| - o Nilpotent Orbits in Fyu
sorem 9.5.3. There are only finitely many nilpotent orbits in gr. R label O Ax (O
e Y ETZA oD | D QLB Qe )
o e o3 o4l i P B B4
6 Tables of the Real Exceptional Orbits S B 0 0
We conchude this chapter by giving Djokovié’s tables in 124, 25 of the weighted 2 0 o0 ¢ 171 0 8 2
diagrams of the real exceptional orbits. For sach orbit Og, we give its weighted 3 0 ¢ 0o 110 1 0 0
diagram Ax(Og) together with the diagram of its complexification, which is f ¢ 1 0 0306 0 1 3
denoted A(O¢). Whenever the orbit lives in a Hermitian symmetric real form, M S L 1
, . . . ) = g 12 o o o0t0 0 0 4
we extend the weighted diagram, as in the last section, 80 that it is a complete 7 5 o5 0 o0lo2 o 0
invariant; the additional label lies to the right of the others. Thus, for every g 2 o o olo 0 5 2
exceptional real form gg, we can read off which orbits in g meet gr. (We g 6 0 0 2l 9 0 0
showed how to do this for classical forms gr in §9.3.) By combining these tables wio o0 1 ol1 1 o 9
with the ones in the last chapter, we can also compute the dimension of any real i1 12 o o 1t1 o0 2 4
exceptional nilpotent orbit. (Djokovié alse computes the reductive part of the 12 |2 0o 6 1349 1 2 2
centralizer of any real nilpotent element; we omit this information.) w6 1t 0o 141 t© % 1
Te make sense out of the tables, we make a few additional notational re- 411 0 1 01 0 3 1
marks. Fix a Cartan subalgebra to of Be, which can be extended to a Cartan B |1 ¢ 1 of1 1 1 3
subalgebra be of go; in fact, if go s & simple real exceptional form, then Eg) i? ?) 2 6 006 0 4 0
and Egi_ge) are the only cases where t¢ must be extended, Given the Dynkin 8 o 3 ¢ 60 2 0 4
diagram of gc, we can form the extended Dynkin diagram that arises when we w |2 2 00z 02 2
. \ . . ¢ [V 0 4 8
append the negative of the highest root of % {he, g} to its base A(be, gc) of sim- 2w |2 2 o6 ol2 0 4 A
ple roots; this leads to the extended base of simple roots, denoted Aex:(he, o) 21 T o0 1 2i1 3 1 5
The key fact to recall is that we can find & base of simple roats Al &) for 22 6 2 48 2@ 4 0 4
BT (e, Be) so that Alte, te) C Aexeibe, o). I £ (tesp. £x) denotes the rank of 23 tnp 2 o 212 2 2 9
gc (resp. fc), then denote by e, ..., o {resp. f1, ..., e, ) the simple roots. In 24 |2 2 o 212 2 4 4
the tables below, we indicate the location of each a; (resp. ) in the Dynkin 25 202 0 214 0 4 8
diagram (resp. extended Dynkin diagram). 2 12 2 2 214 4 4 8
Before giving the tables, we mention that Djokovié’s method for classifying
normal triples in go 8 essentially the same as Dynkin's method for classifying
shandard triples in ge, described in §8.1. It would be interesting to classify real Nilpotent Orbits in Fy -4
nilpotent orbits using Bala and Carter’s ideas, abel AlOc) Ax(Or)
Do O A e O cwm?wwom;o.__o
Niipotent Orbits in Gy LT D ({]:‘1 o B (s
bl | A(00 | Ar(0k) : Ll 000
0 0 1416 G 0 i
e o o 2 4} 0 0 Z 4 t] 0 i)
a; ozl i B
0 G 016 0
1 9 11 1
2 1 011 3
3 G zZi2 2
4 0 21498 4
5 2 214 8
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Nilpotent Orbits in Es 14

9.6 Tables of the Real Exceptional Orbits 15

Nilpotent Orbits in Bey

label A(O¢) A (Op)
Caug ¢08s
o——o—-—J}—mow—o [U—Y R S—
@ a3 4 G5 Op B B fs P Ba
(listedios (FI), .., o (HY) | {listed:pr(Hy),.. Bs{Hx), Bs{Hx))
{recail Hermitian symmesric case conventions)
] 0000649 60000 0
1 oi1go0¢ coGgol 4]
2 010000 (o010 -2
3 1006001 16000 1
4 1004001 10600 -2
) 106601 Dootl:l -2
6 t2a0004 02006 -2
7 1104601 11610 -2
8 116001 11008 -3
9 200002 40006 -2
10 120001 60013 -2
11 1206001 go03t -6
12 2200602 62022 -6
Nilpﬂtel‘lt Orbits in Eg(_gﬁ}
Tabel AOg) Ar{Og)
Spyg
WOwl———O——O Chmmrsere QRGO o]
o1 s as as os | h [ s Ba
(listed:as (H), . .., o6(H))

0 000000 9 0 0
1 166001 9 ] 1
2 2006012 6 0 2

label A{O) Ar(Og)
&
O(]'Z =3

D-—--—O——-——L-——mem-o O———DML Q w3
L U S S PR+ R 4 7] i Br B Ba s
{(listed:ar {H), ..., ce(H}) | (listed:Fi(Hyg),. . Bs(Hr),  PBs(Hx))

0 900600 gogaon 0

1 619000 60100 1

2 100001 1001 2

3 106601 016010 0

4 noo16d 06109 3

5 0gol10¢0 10161 1

6 020000 [IRERINIRT] 4

7 020000 200402 (]

8 9200090 0902090 2

9 1106001 21401 1

G 110001 10012 1

11 2900602 420620 4]

12 gaLota 301090 0

i3 goileo1ie 60103 1]

i4 0g1910 114911 2

15 120001 10201 4

16 1200601 01210 2

17 1600101 11111 1

18 0116010 10301 1

19 011010 11111 3

20 00G2400 00400 0

21 4002089 026290 4

22 tpaz2ed0 202062 2

23 620200 604060 8

24 p20200 20402 4

25 220002 44004 4

26 226002 22022 0

27 111011 12113 1

28 1116t1 31121 1

29 121¢01% 31319 4

30 1216113 01313 4

31 2ii012 13131 3

32 200202 22222 2

33 2060202 04040 4

34 220202 224272 4

35 220202 40404 8

36 222022 44044 4

37 222222 44444 8




CHAPTER ¢ Resal Nilpotent Orbits j 6.6 Tables of the Real Excepiional Orbits 155

Nilpotent Orbits in Fye Nilpotent Orbits in Frm
label AOg) Ax(Or) label A(Og) A (Ogr)
002 ﬂaz Q
Gprroee O P 1 [ S, ST T [C— R WSS, SO ouwo——-o——l—-mowmo——o
a1 a3 @ o as | P By B oy oz oy a5 o ol P Ba Ba Bs fe B
(listedi1 (H),. .., a6 (H)) (listed:as (H), ..., ar(H))

0 co00090 0 0 0 ¢ ] ¢o00000 0 0 ] [t 0 4 0
1 610000 4] H] 0 1 1 106000040 0 0 o] 1 0 0 \]
2 100001 0 1 1] 1] 2 go0to010 0 1 4] 0 0 1 g
3 000100 1 0 0 H 3 gcoo0c02 1] 2 il { 1] 0 0
fj 420009 g 0 0 2 4 0000002 0 g ¢ 0 0 2 0
D 620600 2 9 0 0 5 Q010006 1 0 0 1 1] 1] 1
: 6 200002 1] 2 4] [¢] 6 2000000 2 0 4] 4] 0 0 2
: 7 120001 G 1 0 2 i 200000090 4] 0 0 2 0 1] G
";:8 1106001 1] 1 0 1 8 0100001 1 1 G 0 1 0 0
9 220002 0 2 1] 2 g9 0100001 ] 0 1 4] ] 13 1
601010 1 0 H 0 10 1006010 2 4] 1 0 1] ] i
190101 1 1 {t 1 11 1000010 1 {4 ¢ t] 1 G 2
000209 2 a4 0 2 12 1000010 Q 1 0 1 1] 1 Q
020200 2 0 1] 4 13 goG10006 3 0 1] 0 H ] ]
211612 1 2 1 1 14 0001000 0 0 1 4] 0 0 3
0110190 1 3 1 1 15 0001000 1 0 1 0 1 0 1
111011 1 1 1 1 H 0200000 4 0 ¢ 0 0 t] 0
121011 1 1 1 2 17 020404000 ] 0 0 0 ] ] 4
2220722 2 2 2 2 18 |oz200000 2 0 0 a9 2 0 0
200202 2 2 0 2 e 19 0200000 4] 4] 2 G 4] 1] 2
222222 4 2 2 4 : 20 20600010 ] 1 (] 2 0 1 [t}
220202 2 2 i} 4 21 0000020 0 2 0 0 0 2 1]
200202 0 2 2 1] 22 2004002 0 2 0 2 H] 0 H]
6602040 4 0 2 0 23 2000002 g o0 a4 2 0 2 0
24 0010610 1 14 i ¢ 1 1
25 14010090 1 0 1 1 1 1] 1
26 0620000 2 ) ¢ 2 0 0 2
27 0020000 { ¥] 2 o] 2 0 1]
28 1000101 1 1 1 1 4] 1 H]
249 10601901 [t} 1 1} 1 I 1 13
306 2020000 2 0 1] 4 1] ] 2
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Nilpotent Orbits in Ey, (continued) Nilpotent Orbits in By (continued)
Bel (S] Ax(Om) Tabel AOg) A0
31 01190001 2 L 0 1 1 { 1 75 2116110 1 2 1 3 1 1 3
32 g110001 1 0 1 1 4] 1 2 6 2002002 2 2 2 2 2 0 2
33 0110001 [¢] 1 2 0 1 [¢] i 7 20020072 2 0 2 2 2 2 2
34 061106001 1 0 1 e 2 i 0 T8 2002002 4 0 06 4 9 4 0
35 0001010 i G 3 0 0 1 0 79 2002002 0 4 0 4 9 g 4
36 0001010 G 1 4 3] 3 3] 1 80 2002020 4 2 2 4] 2 2 4
37 00010190 1 1 H 0 i t 1 a1 20020240 2 2 2 2 2 2 2
38 2000020 2 2 6 6 ¢ 2 2 82 2110122 3 4 1 3 1 3 1
39 0000200 0 0 4 0 4 0 & 83 2110122 1 3 1 3 1 4 3
40 0000200 g 0o 0 0 4 0 0 84 2022020 4 2 2 4 2 2 4
41 0000200 2 0 2 1] 1] 2 0 85 20062022 2 4 2 2 2 2 2
42 Go00200 6 2 0 0 2 o 2 86 2002022 2 2 2 2 2 4 2

2000020 0 2 9 2 0 2 0 87 2002022 4 4 0 4 O 4 0

2000022 1] 4 0 2 0 2 0 38 2002622 0 4 1] 4 1] 4 4

2000022 0 2 60 2 0 4 0 89 2220202 4 4 06 4 4 0 4

2110001 2 1 ¢] 3 1 ¢] 1 0 22206202 4 0 4 4 1] 4 4

2110001 1 0 1 3 8 T2 91 2220222 4 4 4 4 Q0 4 4

1001010 3 1 0 i 0 2 1 92 2220222 4 4 0 4 4 4 4

1001010 1 2 ¢ 1 1] 1 3 93 2222222 8 4 4 4 4 4 4

1001010 1 1 1 1 1 1 1 94 22222212 4 4 4 4 4 4 8

20010190 3 0 1 3 0 1 0

2001010 1] 1 { 3 1 Q 3

20010160 1 1 1 2 1 1 1

00062000 2 0 2 0 2 0 2

20002400 4 1] 0 4 0 0 1]

20002090 0 0 4] 4 0 0 4

2000200 2 8 2 2 0 2 0

20002060 0 2 G 2 2 4] 2

19001020 i 2 1 1 1 2 i

10901012 1 3 1 1 1 1 1

1001012 1 1 1 1 1 3 1

00200290 2 2 0 2 0 2 2

0020020 4] 2 2 0 2 2 1]

1110102 i 3 1 G 3 6 1

prigioz 1 {0 3 G 1 3 H

20200260 2 2 0 4 0 2 2

6002002 2 2 20 2 0 2

002002 2 0 2 60 2 2 2

102002 0 4 0 ] 4 1] ¢

o002 0 {] 4 0 1] 4 0

reGRa20 2 2 2 i 2 2 2

YE10102 3 0 1 3 1 3 1

2110102 1 3 1 3 1 0 3

$1101140 3 1 1 3 1 2 i
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Nilpotent Orbits in Ey_s

label A(O¢) Ax(Og)
O ay ofs
o—o-—-——i——o——o——o o—o—n——l—o—u——c
o ooy oo oo os ar| b P2 Bz B Bs Br
(listed:os (HY, ..., 0 (H)) (listed: 31 (Hx),.. . Ba(Hr), [(Hg))
0 000060060 go0000 ¢
1 190060000 490010 1
2 o000t 0 010000 2
3 0000010 o010 9
4 goigooo 0G001¢ 3
5 Q0140000 g1re010 1
& 2000000 0600006 4
7 2000000 aup0o020 2
8 2000000 020000 0
9 10400010 110001 1
0001000 200100 9
g00100G60 610100 2
260060180 6010020 4
2000010 460120 2
go0o0cG20 4000600 0O
goeGozo gago0200 0
00:06010 B1o1190 13
L6G1000 0106030 i
1061600 010110 3
00240800 000040 ¢
6026000 600200 4
60206000 0206020 2
20200400 000040 8
2020000 0200640 4
001010 201011 2
2000020 gd4000a 4
2000020 620200 0
10901610 1111190 1
2001010 29103 4
6oo02000 04000 0
1001620 010310 3
0020020 620220 B
D020029 000400 4
2020020 020240 4
2020020 0406040 8
6002020 460400 O
20620290 040400 4
2022029 040440 8

9.8 Tables of the Real Exceptional Orbits

159

Nilpotent Orbits in Fr_as,

Tabel A{Og) Ax(Og)
© (o ofdy
C——— UM, SI—Y. S— Y o—-———o~—-—o—(|>——wo»«~womo

1 g 4 PN R 1]

{listedices (H), ..., o0 (H))

o7

B fBs Ba Bs Be B
(isted:B1{Hx), ... e(Hx), Br{Hx))

DSBS RS e b i et B e e sl e eed
gl gl siiail o vl el Tl ol e~ R

Q0060000
ig00000
1000000
3000010

0000010

0000010
06006002
00600002
oco0002
0600002
2000000
1000010
1000010
20000160
20000190
0000020
2000002
20009002
2000002
2000002
2000020
20006022
2000022

{Recall Hermitian symmetric case conventions)

000000 G
1000600 0
6000601 -2

000001 0
la0000 -2
1090601 -2
c00000 2
pao00060 -2
000002 -2

200000 -2
a20000 -2
g1¢6010 -2
011000 -3
Joe001 -2
160003 -6

2060002 -4
200002 -2

400000 -2
0600604 -8
200002 -6
2200602 -8

4000604 -6
4000604 -10

z..
P
b
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Nilpotent Orbits in Eg_2q) Nilpotent Orbits in Ess)
el AO) Ar(Og) label A{O¢) Ax(Og)
? as o8, @ ag ¢ Bs
o——cw»—L-——om-—o———om—o S G ) e G Q0 0——0mm_i—wﬂ——0~_0—~»0 o———n0w—~LL—-~wo-—-—0-»—0—w0————0
oy s g Oy Qg oy (¥ e B Ba s Bs B ﬁg oy Q3 4 G5 Qe 7 QB 187 Be 185 }34 Bs ﬁ2 h
{listed:ex1 (H), . .., as(H}) (listed:Bs (Hk), ... Br{Hx), Ba(Hzr)) (listed:cz (), . .., os(H)) (listed:3: {Hk), - - Ba({Hi))
0 00000000 0000000 0 0 0Q0G0000 ¢o000000
1 400006001 0000001 1 1 00000001 00000010
2 10000000 190000600 2 2 10000000 000106000
3 10000000 0o00G0010 0 3 00000010 01600010
4 00000010 0000001 3 4100000002 020006000
5 Qoo00010 106000601 1 5 09000002 000000290
6 00000002 N RIRINTRY 4 6 g1o00000 10001000
T 00000602 nooo0002 2 T 10000001 1100000¢L
8 0Qa00002 2000000 ] 8 10000001 Go010010
g9 10000001 11060000 1 9 00000100 200100600
10 00000100 1000010 2 10 00000100 01000100
11 60000100 06010060 ] 11 10000002 000100290
12 100600002 1000002 4 i2 00100000 30000001
13 10000002 g000012 2 13 001000060 100100061
14 20000000 4000020 0 14 20000000 40000000
15 10000010 b 1000011 1 15 26000000 206000002
16 0000063101 1000011 3 16 20000000 600200060
i 00000101 10606003 1 17 10000010 010100190
18 goo00020 00000240 4 18 0000101 piooolio
19 000000290 00000014 0 19 0000006290 n2000020
20 00000024 2000002 2 20 00000020 00000200
21 gooeo0022 0000004 8 21 opoo00022 02000040
22 00000022 2000004 4 22 Quo01l0060 101001¢C0
23 10000100 6110001 2 23 go100001 10010011
D24 20000002 4000000 4 24 01000019 110601610
i 20000002 2000020 0 25 01000016 001001013
100001008 10106011 i 26 10000100 20100011
1900606102 0110003 4 27 100901090 10001G072
og0o00200 0po2000 0 28 1000901060 gro101040
20000101 1000031 3 29 200600002 02020000
200000290 2000022 2 30 26000002 000200290
20000020 00000490 4 31 00010000 40100003
20000022 2000024 4 32 00010000 161014001
20000022 4000004 8 33 01000012 11001030
200002060 00020290 4] 34 62000000 goooo0o4
200002602 400600460 4 35 pz000L00 20002600
200002212 4000044 8
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Nilpotent Orbits in Fae) (continued)
'labell AlOg) Ax(Og)
6 020006000 goz2o00002
37 100001061 111140010
38 i1g0c0101 010610110
39 1006901000 10110100
40 10000102 20100031
41 10000102 01010120
42 00010001 21010100
43 00190061 gl1200100
44 600100601 1001011
45 gpon0D200 p04n0000
46 00000200 02000200
47 20000101 01020110
48 00010002 3p001G30
49 00016002 101061021
50 poiod1o00 110101061
51 02000002 40000040
Y 02000002 00200022
53 02000002 20002020
54 200009020 020200260
55 200000290 oe020209
36 20000022 02020046
Y QO0GLOGLO 11101011
58 100106001 io1t11011
59 00100101 11910111
60 611009016 21011011
61 01100010 10102100
G2 160061010 11110116
63 10001010 01011101
4 60010100 100630061
6 00101490 11101191
66 19001012 111190130
67 60002000 20200200
{8 000020060 noena46c0d0
G4 00002000 02002002
70 20000200 40040000
it 2000020C gzozdzo00
T 01100012 21011031
IR plrica012 01201031
T 160103100 11111101
T tpp1o102 111031121
T nEHN1IoLo2 193006130
1 200600202 040202080
7 20000202 020202280
74 puo02002 62002022

Q0002002 ] 00400040

8.6 Tablea of the Real Exceptional Orbits

Nilpotent Orbits in Es; (continued)

Tabel A0 Ax (O

81 [00002002| 20200220
82 20000222 040202440
83 21100012 210319031
84 10010101 31010211
83 160106101 11111111
86 10610110 12111111
87 10010102 13111191
88 160106102 11111121
89 200101982 i1121121
94 20010102 30130130
g1 00020002 zo202022
G2 0G020002 04004009
93 | 20002002 02022022
94 20002002 400400460
93 20002002 202206220
96 10010122 13111141
97 01301622 131030641
98 | 00020020 00400400
99 00020020 22202922
100 21101101 313131211
101 06020022 22202042
102 poo2G022 040904049
103 211601022 13131043
104 20020020 222220722
105 20020020 40040400
106 20020022 22222042
107 20020022 04040044
108 21101222 34131341
106 | 20020202 22222222
110 20020202 440404060
111 200202272 24222242
1312 20020222 44040440
113 22202022 44044044
114 22202222 44440444
115 22222222 Bdad4d4444
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Advanced Topics

So far we have concentrated exclusively on the structure theory of semisimple
Lie algebras g. In this last chapter, we give a survey (without proofs) of some
of the many connections between nilpotent orbits and representation theory.
Yor simplicity we will assume that g is complex. We begin by describing a
fundamental connection discovered by Springer between nilpotent orbits and
‘representations of a Weyl group. This leads naturally into our next topie, which
i the classification of primitive ideals in I7{g), the enveloping algebra of g. {This
classification is most naturally stated in terms of Weyl group representations. To
‘o this, we need to introduce the notion of the associated variety of a primitive
deal; associated varieties turn out to be closures of nilpotent orbits.} In the
“last section we will refine the relationship between nilpotent orbits and primitive
ideals slightly. We also discuss some of the geometry of nilpotent orbits and its
“idenl-theoretic consequences. Here we will allow ourselves {o use some definitions
' and theorems from commutative algebra; a basic reference for these is [63].

The Springer Correspondence

- Bince g has only finitely many nilpotent orbits but infinitely many inequivalent
irreducible representations, it is not at all obvious that nilpotent orbits have
‘anything to do with representations of g. What one needs is a finite group closely
“yelated to g whose representation theory can act as an intermediary between that
of g and the theory of nilpotent orbits. It should perhaps come as no surprise
that the Weyl group W of g fills the biil. In this section, we describe Springer’s
wethod for producing a representation 7 of W from a nilpotent orbit O; in §16.3
we show how to pass from 7 to a representation of g {or rather to several such
fepresentations),
As usnal, the situation is clearest when g = slp. Then we have W 2 5, the
~mymmetric group on n letters. If you are familiar with the standard parametriza-
tion of the set W of irreducible representations of W, you will recognize an ob-
vious parallel between it and (3.1.7). The main facts are summarized next. We
yerniml you that the sign representation sgn of any Weyl group W' is the one
an which any @ € W' acts by a scalar equal to the determinant of its action
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on the dual of & Cartan subalgebra. If Y4 is the Young diagram corresponding
to a partition d, then a labeling of its boxes with the integers from 1 to n so

that labels increase across rows and down columns is called a standard Young
tableau {of shape d).

orem 10.1.1 (Young). Flements of S, are parametrized by partitions of n. If
d = |dy,dy,...,da] € Pln)andf = dt = [f1: fas- ., Ful, then the representation
74 corresponding to d s uniquely characterized by two properties: its restriction
to the subgroup [T, Sq, of S, contains a copy of the trivial representation, while
its restriction to H};l Sf, contains a copy of the sign representation sgn. One

has g = 73 ® sgn. The dimension of 74 equals the number of standard Young
tableaux of shape d.

For a proof and an elegant “hook formmla” for the number of standard Young
tableaux of a given shape, see [40, §§11,20]. Combining (3.1.7) and {10.1.1), we
get a bijective correspondence between the set of nilpotent orbits and gﬂ; this
correspondence is the Springer correspondence described below, The principal
orbit corresponds to the trivial representation while the zero orbit corresponds
to the sign representation. (It turns out that these last two facts hold for any
semisimple algebra g.)

Before giving the general definition of the Springer correspondence, we
describe how it works for the other classical algebras g, as this description is
generally more useful than the precise definition. If g is of type B, or C,, then
W is the semidirect product of 5, and {Z/2Z)"; it acts on C"® by permuting
and changing the signs of the coordinates (as noted in §5.2}. Since (Z/2Z)" is
abelian, Wigner and Mackey's method of “little groups” (described in {75, §8.2])
yiekds the following result {cf. [64]). Given a partition d, we use the notation |d]
to denote the sum of its parts.

s 10.1.2. If g is of type B, or Oy, then elements of W are parametrized by
ordered pairs {d, ) of partitions such that {d) + |fi = n. The representation
T8 is characterized by the following property. Let o be the subspace of Ted )
vonsisting of all vectors on which the first |d} copies of Z/2 act trivially while
o remaining | f] copies act by —1. Then 8\g x S|4 acts on o according to the
preseatation wg x wp defined in (10.1.1). We have 7 6 dty ® 7 d f® sgn and

dlir T gy = {I’;;}(dinmd)(dimﬂf), where (EZ!) as usual denotes the binomial
Heiont di!(:-!- Ay

- 'T'his time the correspondence between nilpotent orbits and representations

AW s far from obvious. To define it, we need to use Lusztig’s notien of the
“iwinhol of a representation [57), which we now introduce. Suppose first that g
s of type B, and let d = [dy,dy,. .., ds] € Pi(2n + 1). Choose the notation so
that afl parts of d are nonzero; then k is odd. Define a new increasing sequence
ey <Dy L < gy of integers via e; = dggi; + 1 1. Enumerate the odd e
an Afy b T < 3fa 41 < <2 41 and the even e; as 291 < 20 < ., < 2g5.
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Then it turns out that o = {k 4+ 1)/2 = b+ 1. Form the alternating sequence
(f1,91, f2.925- - -+ 95 Ja) and write it down so that all the f; ave on one line while
the g; are on a lower line. The resulting arrangement is called the symbol of
d. For example, if d = [3%,1%], then (e1,e2,...) = (1,2,3,6,7),(f1. fo, fa) =
(0,1,3), and {g;, g2} = {1.3}. The symbol of d is usually written

(i)

If ¢ = |2%,1], then the symbol of d is

0 3 2

(')

Given a symbol, we can produce a pair of partitions as in (10.1.2} as follows:
subtract (7 — 1) from the i*" element of the top row {counting from the left)
and deal similarly with the elements in the bottom row. Then the new top and
bottom rows (when rearranged in nonincreasing order) correspond to a pair (p, q)
of partitions satisfying the conditions of (10.1.2). For example, if d = [32,17],
then (p,q) = ({1}, [2,1]); if d = 24,1, then (p, a) = (&, [2%]).

Combining the above recipes with (5.1.2), we get a map from nilpotent
orbits to representations of W, as desired. Note, however, that it is now only
an injection and not a bijection; we compute directly that the representation
corresponding to {{12], %) does not (yet) correspond to any nilpotent orbit In type
By, We will see below how to refine and extend the Springer correspondence into
a bijection between W and = certain set of ordered pairs (O, ), where O iz a
nilpotent orbit and x is an irreducible representation of the group A{O) defined
in Chapter 6. {Then a representation  of W corresponding to an orbit & under
the above map corresponds to ((2,1) under its extension, where 1 denotes the
trivial representation. Recall from Chapter 6 that all groups A{Q) are trivial
in type A, s0 it is not necessary to extend the Springer correspondence in that
case. )

Next let g be of type C,. Of course, the Weyl group W is the same as
in type B,. Given a partition d = [d;,da, ..., di] € P-1{2n), we compute its
symbol by slightly modifying the recipe for type B, as follows. If k is even,
replace it by k 4+ 1 and add a 0 as the last part of d; otherwise, leave d and
%k unchanged. Define a sequence e; <.eg < ... < ey exactly as above. Define
sequences f1 < fo < ... < fo, 91 < g2 < ... < gp 88 above, excepl that the roles
of even and odd e; are reversed. Just as in type By, it turns out that a = b+ 1.
Construct the symbol of d from the sequences (fy, f2,...) and (g1,90,...} and
the pair of partitions from the symbol as in type B,. Once again, the resulting
map from nilpotent, orbits to representations is injective but not bijective. (Its
range is not the same as in type 13, 16 too will be extended to a bijection
betweens Woand a set. of ordered pairs (O, i1} below. Yor example, in type O, if
d == 22,17, then we nlimately obtain the pair of partitions (p,q) = ([1], [12)).
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Finally, let g be of type Dy, This time W is a semidirect product of S,
and (Z/22Y*%; it acts on C" by permuting and changing an even number of
the signs of the coordinates. Embed it in the Weyl group W' of type B, via this
action. The method of little groups yields the next result; see [65].

sorem 10.1.3. [f g is of type Dy, then slements of W are parametrized by un-

ordered pairs {d,f} of partitions such that |d| + |f| = n, except that if n = 2m
is even and d = f, then the unordered pair {d,d} corresponds to two represen-
tations, denoted Wé d and Wé{ a4 The representation mq ¢ corresponding to the

unordered pair {d,f"} is just the restriction to W of the representation =g g,

of W corresponding to the ordered pair {d,f), provided that d # {. Ifd =,
then my q, decomposes over W as the direct sum of wé g and réI q- Thus,

Tt gt = '”gt at = 'ﬂ’df) ® sgn and dimwg ¢ = dimm 4 ¢ ifd#f Ifd=1,
then dimﬂ"dd = dim ?rd 4= *dln’i Ted, d) If a representation Trd dor wd 4 is

tensored with sgn, then the partition d is replaced by its transpose. The labels
T or IT stay the same if rn == n/2 is even, but interchange if m is odd.

For the definitions of the labels [ and Il, see [65]; the notations 1 and 2 are
usad there. Now let d = {di.ds, ..., di] € P1{2n). As above, the key tooi for
passing from d to a representation of W is the symbol of d, which we now define.
As in type B, choose the largest index k so that di > 0; then k is even. Define
the sequence ey < ez < ... < eg as in types B and €. Fnumerate and label the
odd and even e; exactly as in type B. This time it turns out that a = b. Write
down the f; on one line and the g; on another line directly below the first one.
The resulting arrangement is called the gymbol of d. For example, the symbol
ofd =1[5,3,2%] is

G2

and that of £ = [3,2%,1] is

¢ 1

G 3
We construct an (unordered) pair of partitions from s symbol exactly as above.
Mureover, we handle Reman numerals in the “obvious” way: it turns out that
the olements in the unordered pair coineide if and only if the original partition
of 2n s very even, in which case we give the muneral of the partition to the
pair. As in types B and O, the resulting map from orbits to representations is
injective but not surjective. Tt too will be extended to a bijection below, In the
twe examples just given, the nilpotent orbit (s 3.02) {resp. Ogg‘gz,ﬂ) corregponds
to the W orepresentation w3 (resp. mp, gal)

Before we show how fo {xtené the Ciprmg,uc correspondence in the classical
cases 1o o bijection and define it in the exceptional cases, we mention that the

10.1 The Springer Correspondence 169

special orbits of §6.3 admit a particularly simple characterization in terms of
their symbols, In type A, every orbit is special (as observed in Chapler €; note
that no such orbit has a symbol). In types B and €, an orbit with symbol

(2’31 Pz Pa Pn+1)
g1 In

is special fand only  p1 € g1 € p2 € g2 < ... < gy € Yoty Similarly, in type
D, an orbit with symbeol

(pl P Pn)
91 G2 4n
isspectal fand only f py < g1 <22 <0 ... € py < . There are order-
preserving isomorphisms from special orbits in type By, to special orbits in type
€, and vice versa; they both correspond to the identity map on symbols. We call
a representation of W special if it corresponds to a special orbit via the Springer
map. {Actually, Lusztig originally defined special representations of W first; he
then defined special orbits as their inverse images under the Springer map.)
Now we are finally ready to give the general definision of the {(extended)
Springer correspondence. Let ¢ be an arbitrary complex semisimple Lie algebra.
Let B denote the flag variety of g; that s, the set of its Borel subalgebras. Then
B is a homogensous space for G, (since all Borel subalgebras are conjugate);
the isotropy subgroup of any of its elements is a Borel subgroup. Let X € g be
nilpotent, Denote by By the Dyvnkin variety of all Borel subalgebras containing
X. Obviously G2, acts on By. It is not difficult to show that the induced

action of (GX,})° on the cohomology of Bx (with complex coefficients) is trivial;
so A{Ox) acts on the cohomology of By.

Theorem 10.1.4 (Springer [78]}.

(i} There is a natural action of W on H*(Bx,C) commuiing with the action
of A = A{o;){}

(i) The natural map H*(B,C) — H*(Bx,C) is W-equivariant (here W acts
on the domain via the so-called "Borel picture”; see [7]).

(i) The top degree cohomology HV™Bx(By C) decomposes as a direct sum
@u calmy @ V,), where m, is either 0 or an irreducible representation of W

on which A acts trivially, while V,, is a module on which A acts by p and

W acts trivially, Here “dim” d(knotes real dimension, contrary to cur usual
convention.

(iv) We have my # 0, where 1 as above denotes the trivial representation.

(v) Any irreducible Womodulde is isomarphic to m, for a unique nilpotent orbit
Oy oand o uigue e A = AO).
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The {extended} Springer correspondence is the map sending (Ox, i) te 7.
We note that this correspondence is now universally defined slightly differently
than it was in [78}; Springer’s m, differs from ours by tensoring by the sign rep-
resentation sgr. In particular, as mentioned above, this correspondence always
sends (Oprin, 1) 4o the trivial representation and (Og, 1) to the sign representa-
tion. Actually, Lusztig has extended the correspondence of (10.1.4) even further,
namely, to all representations of 7: {Oyx); see [60],

We gave formulas above for all representations nq if g is classical. The
general formula for m, in this case is somewhat complicated to state {see [18,
§13]}, bus it is not difficult to compute the orbit corresponding to a given rep-
resentation of W via the Springer map. We have already done this for type A
ahove, In types B, and Cp, let {d,f} be the ordered pair of partitions corre-
sponding $o a representation 7w of W. Run the above recipes for constructing

I pairs of partitions from symbols in reverse to produce a symbol 5. Now s is not

in general the symbol of any partition in Py {2n + 1) or P_1(2n). Nevertheless,
we can run the recipes for producing symbols from partitions in types B and
' in reverse to produce partitions pi,py of 2n + 1, 2n, respectively. Then the
partition of the 50a,41-orbif corresponding to 7 is the B-collapse {p1)g of m
{defined in §6.3). Similarly, the Spy,-orbit corresponding to 7 s the C-collapse
{p2)e of pz. In type Dy, the procedure for computing the orbit attached o a
typical n is similar but slightly more complicated. Start with the unordered pair
{d.f} of partitions corresponding to 7 and assume first that d  f, Censtruct a
symbot ¢ from {d, £} as above, Then the top row of s ig different from its bottom
row, so that at least one inleger ¢ appears only onee in 3. Let 45 be the smallest
such integer and interchange the rows of s if necessary to put ig into the tep
row. Then compute the partition p with symbol s as above. Once again, it is
not necessarily true that p € P1{2n}. Nevertheless, p has a D-collapse pp. The
SOg,-orbit with this partition corresponds to n. If d = f, we can construct this
orbit more guickly. New the symbol s is the symbol of a partition q in Py (2n),
which is necessarily very even. The orbit corresponding to 7 has partition g and
the same Roman numeral as {d,d}.

We conclude this section by mentioning that the Springer correspondence
has also been computed for exceptional Weyl groups W; see {18, §13]. It turns
out to be quite efficient in the sense that very few pairs (O, ) get mapped to
the zero representation. Furthermore, Kazhdan and Lusstig have defined a map
from nilpotent orbits to conjugacy classes in W [48] that has been computed
explicitly by Spaltenstein [77] in the classical cases.

Associated Varieties of Primitive Ideals

i s much more difficult to produce representations of g than representations of
W frem nilpotent orbits. It turns ouf to be much easicr to proceed in the reverse
direetion and attach nilpotent orbits & to representations 7. Unfortunately,
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the orbit & can-tell only so much about 7, for we will see that the first step
in constructing © is to replace 7 by its annihilator Ann{7) in the universal
enveloping algebra U(g) of g. Thus, any two representations w, #’° with the same
anuihilator get the same attached orbis, even though 7 and 7’ can certainly
lock very different. Nevertheless, the ideals Ann(w), called primitive, are of
considerable interest in their own right, and we will see in the next section
that a careful analysis of the fibers of the map sending Ann(#) to © leads to &
compiete classification of primitive ideals,

So let = be an irreducible left U{g}-module with annihilator I in U{g).
Such an ideal I is called primitive, by definition. For the properties of U{g) and
its general (two-sided) idesls see [21, chs.2,3). The basic philosaphy is that U{g)
is close to being a pelynomial algebra on dim g generators. {This is made precise
in the famous Poincaré-Birkhoff-Witt Theorem, to be recalled below.) Hence,
I'is close to being a prime ideal in a polynomial ring. Thus, it should have an
irreducible associated variety V of common zeros in g*. Since I turns out to
meet the center Z{g) of U/{g) in an ideal of codimension one, it is not difficult
to show (using (4.4.14)) that V sits inside the nilpctent cone of g* (defined in
§1.3}. Since it is irreducible, it turns out to be, not quite & nilpotent orbit, but
the closure of such an orbit. But we saw in the introduction to Chapter 4 that
any adjoint or coadjoing orbit is uniquely determined by its closure. Thus, we
get a well-defined map sending T =Ann{x) to a nilpotent orbit, as desired.

More precisely, we begin with the following result. Let {I7,{g)} be the
standard filtration of U{g), so that Up(g) identifies with the scalar field C,
Ui(g) = C @ g, and in general I,.(g) is spannad by products of at most n
elements of g. Then we can form the associated graded algebra

gr U(ﬂ) = @ Un(g)/Un—l(g)

=0

where we define U_, (g} to be 0.

Theorem 10.2.1 (Poincaré-Birkhoff-Witt). There is a natural Geq-equivariant iso-

morphism of graded algebras gr U{g) = S(a), where S{g), the symmetric algebra
of g, is defined as in Chapter 4 to be the algebra of polynomial functions on g*.
It is a polynemial algebra on dim g generators, graded by assigning a degree of
1 fo each generator.

For a proof see [37, §17.4] or {21, 2.3.6). Now we bring our ideal [ into the
picture. It inherits a filtration {7,} from the standard filtration of U(g). The
associated graded object gr [ is clearly a graded ideal of gr (g} = 5(g). As such,
it has an assoclated variety V{gr 1) of common zeros in g*. Since I is graded,
this variely 18 a cone in g™, If is usually denoted simply V{I) and called the
associated variety of 1. Since [ s stable under the (locally finite) action of Guy
o gy, VI s adso O pestable. Clearly, it s also Zariski-closed. By a lemma
of Dixmter (21, 2691, the idead 7 meets the conter Z{g) of () in an ideal of
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codimension one. Since the associated graded algebra of Z(g) identifies with the
space of Gug-invariant polynomials S{g)%=¢ in S(g), it follows that gr I meets
gr Z{g) in its augmentation ideal {consisting of all G,4-invariant pelynomials
with zero constant term), Then {4.4.12) implies that V{J) sits inside the nilcone
N* of g* (defined in §1.3, where we also observed that it is isomorphic to the
nilcone of g as an algebraic variety). The upshot of all these observations is a
theorem of Borho and Kraft [121: V(I) is a closed finite union of nilpotent orbits.

But actually we have a much stronger result, whose statement should come as
no surprise by now.

eorem 10.2.2 (Borho, Brylinski, Joseph). Let I be a primitive ideal of U{g).
Then V(I) is the closure O of one nilpotent orbit 0.

This resul§, often referred to as the Irreducibility Theorem, was proved by Borho
and Brylinski in the special case where g is classical and I has integral infinites-
imal character [10]. (We will explain this condition in the next section.) Joseph
then proved it in general [47]. As a consequence, we obtain the desired map from
representations 7 to nilpotent (coadjoint} orbits (0; it sends 7 to the unique open
dense orbit in Y{Ann{r)). We can also define the associated variety Y{r) of «
itself, but this turns out to be much more dificult to understand than V(Ann{w))
{unless # happens to be & so-calied Harish-Chandra module for s complex group;
we define these in the next section), For example, it need not be Irredueible even
if 7 is. We will discuss the fibers of our map in some detail in $he next section.
For now, we note that Barbasch and Vogan have shown how to give an elegant
reneral definition of the order-reversing surjection d of §6.3 from nilpotent orbits
{o special nilpotent orbits in terms of associated varieties of certain maximal ide-
als in U{g). They also show that the restriction of d to the special orbits (which
is an Invelution) admits a very simple description (in most cases) on the level
of the Springer eorrespondence. More precisely, for every special nilpotent orbit
€1, with one exception in type E; and two in Fg, the Springer representation
attached to (d(O), 1} is obtained from that attached to {0, 1) by tensoring with
thoe sign representation. See [6, §3].

Classification of Primitive Ideals

» now investigate the precise extent to which a primitive ideal is determined
by its associated variety. The starting point in $he modern theory of primitive
lonks is the following celebrated result, which was first proved analytically by
Hlo [26] and then algebraically by Joseph [44]. We assume you are familiar
Swith the definition and basic properties of highest weight modules; see [37, ch.VI]

or [23, :'.é)f?].
wirein 10.3.1, Any primitive ideal I in U(g) Is the annihilator of some simple highest

weight module L (relative to some choice b of Borel subalgebra coptaining a
Chirtan subadgebra b ).
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The proof uses the fact noted in the last section that I meets the center Z (g) n
an ideal of codimension one. An immediate consequence of this fact is that Z(g)
acts by a character on a simple highest weight module L, called the infinitesimal
character of I or of I. A basic fact, first observed by Harish-Chandra, is that
there are only finitely many simple highest weight modules (relative to b and b)
with a fixed infinitesimal character x; more precisely, the infinitesimal character
of any simple highest weight module is completely determined by the W-orbit of
its highest weight plus p, the half sum of the positive roots (again relative to b
and ). Assume now for simplicity that the infinitesimal character x is regular
integral; that is, it is the infinitesimal character of some finite-dimensional sim-
ple module. Then there are exactly |W| nonisomorphic simple highest weight
modules of infinitesimal character x. We can completely classify primitive ide-
als of this infinitesimal character by determining which of these highest weight
modules have the same annihilator. Algorithms for this purpese are available if
g is of classical type ([45], {28]), but we content ourselves here with an abstract
parametrization of the set of primitive ideals with infinitesimal character x and
a given associated variety.

Theotrem 10.3.2 (Barbasch, Vogan, Joseph). Asswmne that yx is regular and integral,
The associated variety V{I) of any primitive ideal I of infinitesimal character
x is the closure of a special nilpoteni erbit O. The set of such ideals with
associated variety equal to a fixed O is parametrized by a basis of the special
W -representation = corresponding via the Springer map to (0,1}, Thus, the
number of primitive ideals of infinitesimal character x equals the sum of the
dimensions of the special representations of W.

This is an extremely diffeult result; it was the culmination of six years of inten-
sive work in the subject following Dufio’s announcement of Theorem 10.3.1. See
i4, 5, 46]. Roughly speaking, the parametrization is realized as follows. Fix a
special orbit © and consider the set C'{Q) of simple highest weight modules L{})
of highest weight A and infinitesimal character x such that V{(Ann L(})) = [aX
For each such highest weight A, consider the set of simple highest weight mod-
wles L(A') where A’ ranges over infegral weights in the same Weyl chamber as
A. The Goldie rank of the quotients {/{g)/Ann L{)) turns out to depend poly-
nomially on A, and the polynomial p expressing it as a function of A extends in
a natural way to §*. Thus, p identifies with an element of §(b}, and as such it
transforms in a certain way under the natural action of W on §(h). The set of
all polynomials p obtained as L{\) ranges over C{Q) spans a W-submadule of
S(h) isomorphic to the Springer representation attached to {0, 1). The proof
relies much more on the formal properties of the Springer correspondence than
on its precise definition. For a nice exposition of most of the theory involved,
see {41, Kap. 1..,16].

1f she infinitesimal character y is not regular integral, then the set of
primitive ideals of infinitesimal character y and a fixed associated variety V is
parmmetrized by a basis of the subspace of W/-fixed vectors in a suitable special
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representation of W', where W' and W* are the so-called integral and singular
Weyl subgroups of W relative to x. For their precise definitions see [41, Kap. 21
This parametrization follows easily from the ideas in the proof of (10.3.2). We
aote that V need not be the closure of a special orbit in this situation.

So far in this section we have discussed only annihilators of irreducible
representations. We now give a brief account of what can be said about repre-
sentations m with a fixed annihilator 7. The first point is that it is hopeless to
say anything sensible about such representations = in general: there are far foo
many of them, and they can be too badly behaved. We must restrict attention
to a manageable subclass of simple V{g)-modules. The most obvious one in view
of {10.3.1) is that of simple highest weight modules. For simplicity, we assurne
once again that all our modules have regular integral infinitesimal character.

eorem 10.3.3 (Barbasch, Joseph, Lusztig, Vogan). The set of all simple high-

est weight modules having a fixed primitive annihilator I of regular integral
infinitesimal character is parametrized hy a basis of a certain W -representation
7' (called the left cell representation of I). If g is of type A, then ' is irreducible
and, in fact, isomorphic to the representation 7 corresponding to I via Theorem
(10.3.2). Inn general, there is a unique copy of = ingide =’

The ideas and techniques of the proof are similar to those of the proof of {10.3.2),
but we must work even harder. The parametrization turns out to be rather less
canonical than that of (10.3.2). The possibilities for 7’ have been worked out
completely by Lussztig [58, 61}, who gives an interesting description of them
in terms of representations of various finite groups. There is a generalization
of (10.3.3) to arbitrary infinitesimal characters similar to the one we gave of
{10.3.2), but we omit it; see [41, Kap. 16].

We conclude this section by considering one further class of simple U{g)
modules, namely, Harish-Chandra modules (for (Gaa). A Harish-Chandra module
M is a (U{g), U(g)} bimodule such that the “adjoint g-action” given by

X-m=Xm-—mX

is locally finite. Thus, modules of this sort certainly lock very different from
highest weight modules; for example, the latter are only left modules. Never-
theless, there is a remarkable equivalence between a certain large subcategory
of the category of Harish-Chandra modules and a certain natural category con-
taining the highest weight modules [41, 6.27). Cowmbining this equivalence with
a fundamental calculation of Joseph [43] and a deep result of Lusztig {59, 12.15],
we obtain

heorem 10.3.4. The set of simple Harish-Chandra modules with fixed left and right

primitive annihilators I, Ir of regular integral infinitesimal character is either
empty or parametrized by a basis of the space of homomorphisms between a
suitable pair of left cell representations of W, The latter alternative holds if and
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only if I, and Ig have the same associated variety; in this case, the left cell
representations are those attached to Iy, and Ir by Theorem 16.3.3.

A simple example of a Harish-Chandra module is a quotient Uigy/I of Uig)
by any (two-sided} ideal I {even the zero ideal). If I is primitive, then U{g)/I
belongs to the “large subcategory” of the category of Harigh-Chandra modules
alluded to above and has some particularly nice properties. It was by studying
these properties that Dufic was led to discover Theorem 18.3.1.

Primitive Ideals and the
Geometry of Orbits

in this last section, we describe some more recent work on primitive ideals of
U{g), focusing on the connections between them and nilpotent orbits. We are led
to expect such conunections by the results of §10.2 together with the well-known
identification of any prime quetient S(g)/T of S(g) with the coordinate ring of
its associated irreducible variety. Since we now know a precise sense in which
17(g) is not far removed from S(g), it is natural to investigate the relationship
between a primitive quotient U{g)/I and the coordinate ring Ry = 5(g)/ e
of its associated variety. By (10.2.2), the radical /gr 7 of gr T is prime, though
gr T itself need not be. If gr I does happen to be prime, then it coincides with
its radical. Then the quotient U(g)/T admits a natural filtration with associated
graded algebra isomorphic to S(g)/gr I. Thus, U(g)/] looks just like Ry in some
sense and in fact does share many properties of the latter. For example, it is
casy to show that U(g)/I is completely prime (i.e., has no zero divisors) and is
isomorphic to Ry as a Gog-module in this situation.

In general, it turns out that there is a precise measure of the difference
between S{g)/er I and S{g)/v&r 1, and hence also of the difference between
17(g)/I and R;. Indeed, both ${g)/gr [ and S{g)/ar T are finitely generated
S{g)-modules whose Hilbert polynomials have leading terms at® bt involving
the same power of the indeterminate ¢ (the exponent d is the dimension of the
associated variety W(I)). The ratic a/b of the leading coefficients turns out to be
a positive integer n. The formal scalar multiple aV{I} of V{I} by n is called the
charseteristic cycle of I or of U{g)/I. Vogan has shown how to replace it by an
n-dimensional representation of a certain compact subgroup of Gg, which can
then be used to deduce much useful information about U(g}/T1 [86]; actually, he
works in a much more general context.

Thus, one would like to understand the coordinate rings R; not only as
interesting objects in their own right, but also for the insights they reveal into
the quotients U/ (g) /. Unfortunately, most of the known results pertain not to Ry
directly but rather to its nermalization (or integral closure). This normalization
may be identified with the coordinate ring R{0} of the open dense orbit O in
the associated variety of T [12]. For example, R{O} is known to be Gorenstein
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and have rational singularities [35% thus, it is also Cohen-Macaulay. A greal
deal of work has been done on determining which orbite O have normal closures,
so that the corresponding coordinate rings Ry are already normal It turns out
that they all do in type 4 and most of them do in the other classical types.
"The known methods in prineiple settle the question of whether the closure of a
classical nilpotent orbit is normal, with the exception of certain very even orbits
in type D [36]. For the exceplional cases, on the other hand, we have only a
fairly long list of orbits whose closures are known to be nonnormal, but so far
no corresponding list of orbits with provably normal closures [73]. There are,
Lowever, three general results, due to Kostant, Broer, and Kempf, respectively:
the prinecipal, subregular, and minimal nilpotent orbits all have normal closures
[53, 16, 49],

The most useful result so far for compuiations seems to be the following
formula for the Geg-module structure of R{O)., To state it, we need some no-
tation. (Yiven a nongero nilpotent orbit O, let {H, X, Y} be a standard triple
in g with X € (0. Decompose g as a direct sum of eigenspaces g of adg, a8 in
{3.4.1). Fix a Cartan subalgebra t of g containing H and a choice of positive
raots of t in g such that o(H) 2 0 for every positive root «v. Let T denote the
connected Lie subgroup of Geg with Lie algebra ; then T is a maximal torus in
F44. For each weight A in the root iattice of f, lat e* denote the corresponding
(exponentiated) character of T. The set A of all such characters has an obvious
structure of abelian group (writien multiplicatively); moreover, we have the fa-
miliar law of exponents ete = A, If A € A, then we define the formal swn
Indfiz(e}‘) of (7,4-modules by Frobenius reciprocity: a typical finite-dimensional
simple module 7 appears with coefficient ny in Endgﬁ(e*), where ny denotes the
multiplicity of the A-weight space in m. We extend nd% () to elements of the
group ring Z[A] by linearity; then its image lies in the Grothendieck group Ky
generated by the finite-dimensional G pa-modules.

vorem 10.4.1 (McGovern [66]). With notation as above, we have

R(0) =ndf (J]{1—e*))

¥

it Ky, where o ruas over the positive roots of t in g such that the corresponding
root space 9 les in gy 4 gi-

This result also holds for the zere orbit if we make the obvious convention that
po = g in that case.

We mentioned in the introduction to $his chapter that the geometry of
uilpotent orbits has ideal-sheoretic consequences. We conclude by amplifying this
remark slightly. It is natural to ask whether the well-known bijection between
prime ideals in ${g) and irreducible subvarieties of g* extends to Uig). The
mosl vecent work suggests that it does not, but there should stili be an injective
map belweess some preseatly undefined class C of geometric objects (including
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all coadjoint orbits, nilpotent or not} and another class £ of completely prime
algebra extensions of finite type over primitive quotients of U{g) {including all
the completely prime primitive quotients themselves). We call algebras of this
sort Dixmier algebras. Whenever a ccadjoint orbit admits a nontrivial cover,
that cover shouid also belong to C, so that one may attach a Diximier algebra
to it. Similarly, whenever an orbit @ has a nonnormal closure @, both @ and

& should belong to €, so that both get Dixmier algebras abtached to them, We
refer you to {84, 85, 67, 68].
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