Embeddings of Discrete Series
into Principal Series

TosuniKko MATSUKI AND TosiIo OSHIMA

§1. Introduction.

Let G be a connected real semisimple Lie group, ¢ an involution of
G, and H an open subgroup of the group G? of fixed points for o. For
simplicity we assume that G has a complexification G.. We fix a Cartan
involution # of G with 06 = 6. The involutions of the Lie algebra g
of G induced by o and # are denoted by the same letters, respectively.
Let g=h+qand g = €+ p be the decompositions of g into +1 and
—1 eigenspaces for o and 6, respectively. Let g?, & and h? be the
subalgebras of the complexification gc of g defined by

g =tnh+V=I(ENq)+vV=1(pnh) +(pN q),
¥ =tnh+v=I(pnh), he=tnh+vZ1(tNyg),

and let K, G% K9 and H? be the analytic subgroups of G. with the
Lie algebras &, g4, ¢4 and §9, respectively. Then the homogeneous space
X = G4/K? is a Riemannian symmetric space of the non-compact
type and called the non-compact Riemannian form of the semisimple
symmetric space X = G/H. The ring D(X) of the invariant differential
operators on X is naturally isomorphic to the ring D(X?) of invariant
differential operators on X9,

Let P? be a minimal parabolic subgroup of G¢. In [01] a K-finite
eigenfunction 4 of D(X) is called a spherical function on X and de-
fines an H%invariant closed subset FBI(¥) of G¢/P?%. Namely, by the
Flensted-Jensen isomorphism, ¥ corresponds to a simultaneous eigen-
function ¥ of D(X?) and then FBI(4) is the support of the image of
¥ under the boundary value isomorphism defined by [KKMOOT)]. The
main result in [O1] shows that FBI() and the eigenvalue determine
the leading terms in a convergent series expansion of ¥ at every bound-
ary point of X in X. Here X is the compact G-manifold constructed in
[02] which contains X as an open G-orbit.

Suppose the spherical function ¥ generates an irreducible Harish—-
Chandra module U(#). Then by the leading terms we have embeddings
of U(¥) into principal series for X, which is studied in [O1, Theorem
5.1]. The key lemma in [O1] is [O1, Lemma 3.2] which studies a local
property of intertwining operators between class 1 principal series for
G9.
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In §2 we will give another lemma for the intertwining operators. These
lemmas give embeddings of U(y) into principal series for X which are
not obtained in [01). Namely, by the lemmas and the same argument as
in [O1], we get the embeddings which do not correspond to any leading
term.

In §3 we consider the case where X is a semisimple Lie group. In
this case ¢ corresponds to a matrix coefficient of an irreducible Harish—
Chandra module for the group, FBI(%) coincides with the support of
the D-module realized in a complex flag manifold through Beilinson-
Bernstein’s correspondence ([BB1], [V]) and we will give a simple theo-
rem to find embeddings of any irreducible Harish-Chandra module into
principal series for the group. The embeddings corresponding to S(E)o
(i.e. the leading terms) in Theorem 3.2 are also studied by [KW] and
[(BB2].

In §4 we consider the case where X is a classical simple Lie group and
give an algorithm to express the H9-orbit structure on G4/P9, which
is sufficient to apply the theorem in §3. Thus we can obtain a simple
combinatorial algorithm to obtain the embeddings.

The precise argument for the proof of the lemma and its application
will be given elsewhere.

§2. Local properties of intertwining operators.

Retain the notation in §1. Let G = KA, N be an Iwasawa decompo-
sition of G and a;, the Lie algebra of A,. Let £ be the restricted root
system for the pair (g,a,), 7 the positive system corresponding to N
and ¥ the fundamental system of £. The Weyl group W of T is iden-
tified with the normalizer Nk (a,) of ap in K modulo the centralizer M
of ap in K and the group P = MA,N is a minimal parabolic subgroup
of G. For any a € X, we denote by w, € W the reflection with respect
to a.

For an open subset U of G the space B(U) of hyperfunctions on U is
naturally a left g-module. Then for an element A of the complexification
(ap): of the dual aj of aj, the space of hyperfunction sections of class 1
principal series is defined:

B(G/P;Lx) ={f € B(G); f(gman) = f(g)a*~*
for (9,m,a,n) €G x M x A, x N}.

For any a € ¥ there exists a function T) € B(G/P;L,)) with the
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meromorphic parameter A € (a,); so that the linear map
T : B(G/P; L) — B(G/P; Lu»)
1@ R0@) = [ ST )
is a G-homomorphism which satisfies
@21)@) = [ @tano)ina

if f is continuous and Re(A,8) < 0 for any # € ¥. Here w, is a rep-
resentative of wy, Ny = 6(N)Nw;'Nw, and the measures dk and dii,
are Haar measures on K and N,, respectively.

For a subset S of G/P we define a subset w[S] of G/P by SPw-!P.
For an open subset U of G/ P, which is identified with a right P invariant
subset of G, we put

B(U;Lx) ={f € BU); f(gman) = f(g)a*~*
for (g,m,a,n) €U x M x A, x N}

(2.1)

and define
B(S;Ly) = __lv:_ B(U; Ly).
U:open DS
Then the key lemma in [O1] is

LemMMa 2.1 [O1, LEMMA 3.2]. Fix an element o of ¥ and a point p of
G/P and put V = w,[{p}]. Denoting

B(V,{p}:L») = {f € B(V;Lx); p¢supp f},
the map (2.1) induces the g-homomorphism
(2:2) 7' : B(V, {p}; L) = B({p}; Lu.»)

for any A € (ap); by analytic continuation. Moreover if

_Ha) ¢1{1,2,3,...},

(o, a)

(2.3) ea(A)#£0 and
then (2.2) is injective.

In the above lemma, (, ) is the non-degenerate bilinear form on (a,);
induced from the Killing form of g,

-1 -1
ea(A) = ﬁAWMWMW + m:_.. + wv HAWMMHMW + w::. + wzs..v

and myg denotes the multiplicity of the root space for a root 8 € L.
Here we give another lemma.
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LEMMA 2.2. Use the notation as in Lemma 2.1.
1) Suppose X satisfies

KA

(2.4) o a)

€{0,1,2,...}.

Then the function T# has a pole of order 1 at p = X and the residue
defines the g-homomorphism

(2.5) Res T} : B(V;Ly) — B(V; Ly, »)
and if the support of f in B(V; L)) is not equal to V', then
(2.6) supp f = supp(Res 7.') /.

2) If mq =1 and

g )

? 2 €1{0,1,2,...},

(2.7)

then there exists a g-homomorphism
(2.8) S):B(V;Ly) = B(V; Ly._»)
such that if the support of f in B(V; L)) is not equal to V, then

(2.9) supp f = supp .ww.‘..

3) :.QQSV?AI»V # 0, then the analytic continuation of
ﬂA A0 v T2 defines a bijective g-homomorphism

a,a)

(2.10) T2 :B(V;Ly) = B(V;Ly_»).

§3. Group cases.

Let G be a connected real semisimple Lie group with a simply con-
nected complexification G. and G = KA, N an Iwasawa decomposition
of G. Let K. be an analytic subgroup of G. with the Lie algebra E,
which is the complexification of the Lie algebra t of K, B a Borel sub-
group of G, which contains A, N and j. a Cartan subalgebra of g. which
satisfies A, C exp(j.) C B. Let I(j) be the root system for the pair
(8¢,ic) by denoting j = gNj., I(j)* the positive system corresponding
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to B, ¥(j) = {ay,...,a¢} the fundamental system and p half the sum
of the positive roots. The Weyl group W of Z(j) is generated by the
reflections s; with respect to simple roots o; (j = 1,.. ., ).

Let E be an irreducible Harish-Chandra module with an integral in-
finitesimal character —\. Here we choose the element A of the complex
dual j? of j. with

3.1) (M a) >0 forany a€X(j)*.

Let Ly be the holomorphic line bundle over the flag manifold Y
G./B induced from the holomorphic character 7, of B which satisfies
Ta(exp(Z)) = exp(p — A, Z) for Z € j.. The twisted sheaf of differential
operators Dy on Y is defined by

Aw.wv D=Ly ® Dy ® hﬂ_.

Here Oy (resp. Dy) are the sheaf of holomorphic functions (resp. that
of differential operators) on Y in the Zariski topology. Let U(g) be the
universal enveloping algebra of g.. For a matrix coefficient ¥ of E we
put FBI(E) = FBI(y). Then FBI(FE) is well-defined and a closure of
a single K -orbit on Y and satisfies

(3.3) FBI(E) = supp(D), ® 2, ® FE).

If rank(G) = rank(K) and E is the Harish-Chandra module belonging
to the discrete series of G, then E is isomorphic to HJ(Y, L)) with a
compact K -orbit V on Y. Here n is the codimension of V in Y.

Let L be the centralizer of Ap in G and Ly its identity component..
Then P = LN is a minimal parabolic subgroup of G and Py = LgN is its
identity component. Let x be the irreducible representation of Py whose
restriction on Lo has the lowest weight p— X and Uy the Harish-Chandra
module of the representation of G induced from 7. Then U, is a finite
direct sum of principal series of G in the category of Harish-Chandra
modules.

By denoting B; = Bs; B for any a; € ¥(j), we have
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DEFINITION 3.1. For any closed subset V of Y, we put
S(V) = {w € W; there exists a reduced expression
W= Sy(k) " Su(1)
with the length k of w and a map
e:{1,...,k} - {0,1}
such that
Vi=Y and V;_; # ViciB,u) for i=1,...,k
by inductively denoting
ﬁ Vi-1iBuy  if g(i) =1,

Vi= . ,
Sl- —M- mAnv = o~

fori=1,...,k}

For the irreducible Harish-Chandra module E we put S(E) =
S(FBI(E)). Since FBI(E) = D with a K.-orbit D of Y, each V; in
the above definition is a closure of a single K -orbit D; and dim D; =
dim D;_; + €(i). Then for a non-negative integer j, we put

S(E); = {w € S(E); the length of w equals j + codim D}.

By a similar argument as in [O1, §4, 5] with the lemmas in §2, we
have

THEOREM 3.2. Retain the above notation.
1) For any w € S(E), there exists an embedding of E into Uy, .
2) ([O1, Theorem 4.1]) Let ¢ be a matrix coefficient of E. Suppose
A is regular for simplicity. Then there exists a positive number ¢,
non-zero real analytic functions ay (g, g') of G x G for w € S(E)q
such that
¥(g-expZ-g')

— Y alag)eed

+ oA > V
sm%A@vo
for Z € ap and (g,9') € G x G when a(Z) — oo for all a € ¥(j)
with als, # 0. Here the estimate is locally uniform on G x G.
3) If E is embedded in U, with an element u € j;, then there exist
v € W and w € S(FE)o satisfying u = v\ and v > w with respect
to Bruhat ordering.

elwA=(1+€)p,2)

For an element w of S(E); we put 0w = {v € S(E);j_,;v < w}. Then
we have

152

EMBEDDINGS OF DISCRETE SERIES INTO PRINCIPAL SERIES

CoNJECTURE 3.3. (8,S(FE)) is isomorphic to a regular contractible
CW -complex.

On the other hand, we have

PRoPOSITION 3.4. Y (—1)’#S(E); = 1.

§4. Orbit structures on complex flag manifolds of classical
type.

Let G. be a connected complex reductive Lie group with a connected
real form G. Let g = £+ p be a Cartan decomposition of g = Lie G with
respect to a Cartan involution 6 and K, the analytic subgroup of G for
L.

Let B be a Borel subgroup of G, b its Lie algebra and Y = G./B
the flag manifold for G.. Since Y is identified with the set of all Borel
subalgebras in g, on which G, acts by the adjoint action, the K -orbit
structure on Y depends only on g° = [g, g].

Let K, be a subgroup of G. such that K, C K. C Ng (K.), where
Ng_(K.) is the normalizer of K, in G.. Then all the K.-orbits contained
in a K.-orbit are diffeomorphic to each other. Let D; and D, be two
K -orbits on Y with K.Dy = K.D,. Then we can easily obtain S(D;) =
S(D,). Hence in order to get S(D) for a K.-orbit D in Y, we have only
to study the K,-orbit structure on Y for some K..

For any ¢B €Y, the Borel subalgebra Ad(g)b has a split component
a such that da = a ([M1], [R]). Note that a. is a #-stable Cartan
subalgebra of g, contained in Ad(g)b. Let ¥ be the root system for the
pair (gc,a.), E* the positive system for Ad(g)b, ¥ the set of simple
roots in £+ and g(a; ) the root space for a root a € X.

In this section we parametrize the K.-orbit structure on Y when g’ is
a simple Lie algebra of classical type.

Suppose that G. = GL(n,C), SO(2n + 1,C), Sp(n,C) or SO(2n,C).
(Later we will consider the case when g’ is complex simple.) Take the
orthogonal basis {e;,...,e,} of the dual a* of a such that

@|A *QT....Q:I-w _—.Q”QN\AS.AHV.

{ay,...,an} otherwise,

where ay =e;—ey,...,an_1 =€,_1—¢€, and o, = €,,,2¢,, Or €,_; +¢,,

if G = 50(2n +1,C), Sp(n,C) or SO(2n, C), respectively.
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Since 8 induces an involution of X, we have a permutation ¢ of
{1,2,...,n} such that ©? = id and that

Qm.. = n_umﬁA..v
for every i = 1,...,n. We can assign to the pair (a, ¥) an ordered set
{e1,...,€n}, which we call “a clan”, of n “persons” with the following

structure:

Each person ¢; is an element of the set {4+, —, 0} of three elements,
the signs + and — and the circle o, which we call “a boy”, “a girl” and
“an adult”, respectively. Some of the adults in a clan form pairs and no
adult belongs to two different pairs. Each pair is “a young couple” or
“an old couple”.

A young couple and an old couple are expressed by joining the cor-
responding two circles with a line and an arrow, respectively. Here we
ignore the direction of the arrow.

The clan has the following property:

(£) If Ge; = e;, then ; = + or —. Moreover ¢; and €; are the same
sign if and only if g(a;e; — ;) C L., that is, the root e; — ¢; is a compact
root.

(a) Iffe; = e; with i # j, then ¢; and ¢; are adults and form a young
couple.

(A) If fe; = —e; with i # j, then ¢; and €j are adults and form an
old couple.

(o) If fe; = —e;, then ¢; is an adult which does not belong to any
pair, which we call “the aged”.

THEOREM 4.1. The K.-orbits on Y and the clans with the conditions
in Table 1 are in one-to-one correspondance.

REMARK 4.2 (i) In Table 1, for example, the condition (A,0), means
that the clan consists of n persons and there exists no boy, no girl or no
young couple.
(ii) Ny, N_ and N4 are the members of boys, girls and old couples,
respectively.
(ili) For BI, g(a;an) C . & (N —N_=p—gq and &, =+)
or(Ny—N_ =p—q+1 and e, =-).
For CI, g(a;2¢;) ¢ g. if Be; = e;.
For CII, g(a;2¢;) C b, if Oe; =e;.
For DI, g(a;an_1) C t. & g(a;a,) C E..
For DIII, g(a;an-1) C ¢t < g(a;a,) ¢ E.
(iv) For the compact orbits and open orbits, see Table 1°.
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Table 1 (p+ ¢ =n)

Condition for the clans
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Each K.-orbit in Table 1 can be expressed by a symbol €,¢5 . ..¢, with
lines and arrows, where {¢,,¢,.. ., €n} is the clan corresponding to the
orbit. The following are examples of K,-orbits of Type CI with n =5

in Table 1.

+ooo"o

+—+4+0—  4oFo-

To express the orbit more easily we give “a family name” for each pair

and then we can write the above example as follows, respectively:
+—-40- +a+a-— +abaB.
Here each couple in a clan has a family name consisting of letter to
distinguish couples in a clan. A young couple is expressed by the same
small letters and an old couple is expressed by the small letter and
the capital letter corresponding to the family name. In some cases, we
express an old couple by the same capital letters. We remark that the
following expressions also correspond the last orbit in the above example:
+abaB + babA + aBaB +bAbA

Let B; be the parabolic subgroup of G, for {—a;}US*. Let Y; = G/ B;
and m; : Y — Y; be the canonical projection. Let D, and D3 be two
K.-orbits on Y. Then we write

Dy - D,

if and only if 7;(D;) = mi(D3) and dimD; < dim D,, which implies
dim Dy =dimD; + 1.

ProrosiTioN 4.3. ([V, §5], [M2]). Choose a pair (a, ¥) corresponding
to an element of D,. Then Dy, — D, for some K .-orbit D, if and only
if one of the following conditions holds.

(I) 0a; = o; and g(a;a;) ¢ L., that is, o; is a non-compact simple
root.
(1)
fa; € Tt - *Q..w.

We will give the necessary and sufficient condition for D, N Dy in
Table 2 and examples of the K -orbit structure on Y of Typ~ Al,...,
DIIT in Fig. 1~ Fig. 20.
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Table 2

We express the orbits by rows consisting of +, — and letters. Let §, ... 6,
and 6] ..., be the expressions corresponding to D, and D, respectively.
(i) Here i = 1,...,n — 1 and the old couple (resp. young couple) is
expressed by the capital letters (resp. small letters) corresponding to the
family name. Then D; —— D, if and only if 6 = &. forj=1,...,i—
1,i+2,...,nand §;,6;41,6] and 6}, equal to one of the following lists,
where the letters p, P, q, Q correspond to suitable family names.

8ibiyr )6}y, Condition fa;
+- pp a;
-+ pp a;
rp oo o

pt +p p(i)<i+l Ep(i) ~ €i+1
p  pt i<p(i+1)  ei—epip
pq gp p()) <@(i+1) epiy— epgis)

+P P+ ei + eyit)
PQ QP  p(i+1) < p(i) Ep(i+1) — €y(i)
Q. Qp €p(i) T Ep(i+1)
o ot e + el
po op €yp(i) + €it1

Po  oP i+1<p(i) ey —epg)
oP Po pi+1)<i €p(i+1) — €

(ii) Here i = n and the old couple (resp. young couple) is expressed
by the small letter and capital letter (resp. small letter) corresponding
to the family name. If 6; and §;+ are an old couple with j < j/, then we
express 6; by a small letter and é;: by the corresponding capital letter.

(1) In the cases BI, CI and CII, D, = D, if and only if 6 = &. for
J=1,...,n—1and é, and &, are one of the following:

8 8, Ao,
+ o oy

p p €p(n)

(2) In the case DI, Dy -~ D, if and only if 6; = &. forj=1,...,n—-2
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and 6,1, 6,, 6/,_, and §;, are one of the following:

6,10, &L _,6) Condition bay,
+— PP Qapn
—+ PP an
pp oo on
+p Pt €p(n) + €n-1
px +P p(n—1) + €n
P QP €p(n-1) T €p(n)

pQ qP p(n — Hv < SAJV €p(n—1) ~ €p(n)
Qp Pq SASV < SAS - C €p(n) — €p(n-1)

+o ot €n—1—é€p
po oP €p(n—1) — €n
op Po €p(n) — €n—1

(3) In the case DI, D; —— Dy ifand only if §; = fiforj=1,...,n-2
and 8,,_1, 8,, 8/,_, and &}, are one of the following:

bp_16n 6L _,6) Condition fay,
++ PP o,
- PP an
+p P €p(n) + en—1
pE FP €p(n-1) + é€n
pPq QP €p(n~1) + €p(n)

PQ gP  p(n—1) < p(n) epmn-1)— €pn)
Qr Pg  p(n) <ep(n—1) eyn)—epn-1)

Next consider the case where g* is a classical complex simple Lie al-
gebra. Then we may suppose G. = G, x G, with G, = GL(n,C),
50(2n +1,C), Sp(n,C) or SO(2n,C), 0(g,¢') = (¢, 9) for (9,9') € G,
K. =K. ={(9,9);9 € G.} and B = B’ x B’ with a Borel subgroup B’
of G.. Then

K:\G./B— B'\G./B

by the map (g,9’) — g~ '¢' of G, onto G.. Thus the K,-orbit structure
on Y = G./B is reduced to the structure of the Bruhat decomposition
of G,. Then by taking the orthogonal bases {ey,...,en,€},...,eL} of
the dual a* of a in a natural way as before, we can express the K.-orbit
structure as in Fig. 21 ~ Fig. 23.

Now we give some examples of S(E) in Theorem 3.2, which are eas-
ily obtained from the diagram of the K -orbit structure. Suppose G =
SU(2,1). Then the corresponding diagram is Fig. 5. Since the closed
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subset V; is a closure of one K.-orbit on Y, we express it by the corre-
sponding clan. Suppose E is the Harish-Chandra module belonging to
the discrete series of SU(2,1). Then FBI(E) = —4++ or +—+ or ++—
and we have S(— + +) = {s281 = (330}, s(+ + =) = {5182 = (}23)}
and S(+ — +) = {5251, 5152, 515281 = AwWw: Here we identify the Weyl
group W with the permutation group of 3 numbers 1, 2 and 3 and the
elements of S(+ — +) are obtained as in the following table:

<o=CVmCVS.\Anvavaw@m@«@
8281 +—+ 1 1 aat+ 2 1 a+a
818 +—+4+ 2 1 +aa 1 1 a+a
5189281 +—+ 1 0 +-+ 2 1 +4aa 1 1 a+4a

Suppose G = SU(p,q) with p > ¢q. For a Harish-Chandra module E
belonging to a discrete series of G, we can obtain S(E)q in the following
way:

Consider the ordered g pairs in the clan corresponding to the compact
Kc-orbit FBI(E) which satisfies the following conditions.

Let (er(i),€1()) denote the i-th pair with I(i) < J(i).

(1) Each pair consists of a boy and a girl.

(2) There exist p — ¢ boys who do not belong to any pair.

(3) If there exist i and j with I(i) < j < J(i), then there exists i’ with

i <isuch that I(i) < I(i") < J(i") < J(i) and j € {I(), J (i)}

For the ordered ¢ pairs, we attach an element Au.__ h.v of the permu-
tation group of n numbers 1,...,n satisfying ji = J(ix) and jup1-r =

I(ix) for k = 1,...,q9 and jg41 < jo42 < -+ < Jn—q. Identifying the
permutation group with the Weyl group of SL(n,C) and considering all
the definitions of the above ¢ pairs, we obtain all elements of S(E),.

For example, if FBI(E) corresponds to 4+ + — — +, then there exist 3
types of the ordered ¢ pairs

\7/
\7 \J\M/ \M/l/
++ - -+ ++ - - + ++ - - +

from which we have the following elements, respectively:

12345 12345 12345
34512 35142 53124/
In the case ilrm_.a gc is classical and simple, a computer programme
to calculate S(D) for any K -orbit D on Y was written by the second
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named author. By the program, for example, we have
#S(+—+-)=T,#S(+ -+ —-+) =35, #S(+ -+ - +-) = 135,..

in the case of type SU(p,q). It takes about 2 minutes by a micro-
computer (CPU:80286, Clock:10MHz) to get all S(+ — + — +—~). The
programme with source code in C is available from the second named
author.

REMARK 4.4. Suppose G is a classical simple Lie group whose real
rank equals 1. Suppose E is a Harish-Chandra module belonging to the
discrete series of G. Then comparing a result in [C], we can obtain all
the embeddings of E into principal series by Theorem 3.2 except the
following cases:

FBI(E) =+ +---+ — and g = sp(p,1) with p > 2. In these cases
there are two embeddings of E into principal series of G but Theorem
3.2 gives only one embedding corresponding to the leading term of the
matrix coefficient of E.
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AOA ABCCBA
1 2 2 5
VN 7R\
OAA AAO ABCBCA ABCCAB
5
/N/ \ k 1 /
000 ABCBAC L m\::wqg 2 SABCACB
3 1 1
Al g =sl(3,R) OB\GL(3,C)/B o—o h X 5 T
12 ABBCAC ABCABC ABACCB

Fig. 1

ABABCC AABCBC
/ s\
AABBCC
All @ =su*(6) Sp(3,C)\GL(6,C)/B o—o—0—0—0
. 12345
Fig. 4
Al g* =sl(4,R) O(4)\GL(4,C)/B O.|OI.M
Fig. 2 12
n—c n—n c—n
—++ -+ -
ABBA 7. \ 5 ~\~
d:w
aa+ +aa
ABAB
_N 2 \\A
AABB e
All g’ =su*(4) Sp(2,C)\GL(4,C)/B o—o0—o AHD @' =su(2,1) GL(2,€) x GL(1,C)\GL(3,C)/B m_vlm
Fig. 3 123 Fig. 5
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n—c¢—~c¢ n—n—c¢ c—n—n c—Cc—n

~+++ -+ +4+—

NAYAY.

aa++ +aa+ +4-aa

a+a+ +a+ta
v/ \k
a++a

Alll @ =su(3,1) GIL(3,C) x GL(1,C)\GL(4,C)/B Mlmvlm
Fig. 6

c~n—¢ n-n—n n—c—n n—c—n n—n—n c—-n—c¢

+|| e e e e o

1A XK XK ENR

+aa— aa+— aa—+ —+aa —aa+t

WAL

aabb a—a+ —a+a
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abab a—+a

abba

AIT g'=su(2,2) GL(2,C) x GL(2,C)\GL(4,C)/B ol?w
12
Fig. 7
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c—c=>n

fo A

Bl g'=s0(1,6) S(O(1,C) x O(6,C))\SO(7,C)/B ﬂwlm
Fig. 8

n—c=>c n— :Hva c—n=—n
—++ ++-

NAVA

aa+ +aa ++0
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A+A +00 0++

L A

AA+ 0+0

N\ /2

00+

8" =s50(5,2) S(O(5,C) x 0(2,C)\SO(7,€)/B o—o0—o0
. 123
Fig. 9
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n—e=n

+0— aaQ
L
O+~ aQa

Bl ¢’ =s0(3,4)

n—n=—sn cC—n=pcC

S(0(3,€) x O(4, C)\SO(7,C)/B  o—0—0

Fig. 10
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00+ AAO 0AA 00—
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Fig. 11 '23
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Fig. 12
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Fig. 13
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Fig. 14
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Fig. 15
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+ + 0 \h. \ﬁ \.2. \:
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c C n n
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Fig. 18
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c c n n
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Fig. 22

7N
N/

D, ¢ =s0(4,C) ASO(4,C)\SO(4,C) x SO(4,C)/B

Fig. 23
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