Embeddings of Discrete Series into Principal Series

TOSHIHIKO MATSUKI AND TOSHIO OSHIMA

1. Introduction.

Let G be a connected real semisimple Lie group, σ an involution of G, and H an open subgroup of the group G^{σ} of fixed points for σ . For simplicity we assume that G has a complexification G_c . We fix a Cartan involution θ of G with $\sigma\theta=\theta\sigma$. The involutions of the Lie algebra \mathfrak{g} of G induced by σ and θ are denoted by the same letters, respectively. Let $\mathfrak{g}=\mathfrak{h}+\mathfrak{q}$ and $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be the decompositions of \mathfrak{g} into +1 and -1 eigenspaces for σ and θ , respectively. Let \mathfrak{g}^d , \mathfrak{k}^d and \mathfrak{h}^d be the subalgebras of the complexification \mathfrak{g}_c of \mathfrak{g} defined by

$$g^d = t \cap \mathfrak{h} + \sqrt{-1}(t \cap \mathfrak{q}) + \sqrt{-1}(\mathfrak{p} \cap \mathfrak{h}) + (\mathfrak{p} \cap \mathfrak{q}),$$

$$t^d = t \cap \mathfrak{h} + \sqrt{-1}(\mathfrak{p} \cap \mathfrak{h}), \quad \mathfrak{h}^d = t \cap \mathfrak{h} + \sqrt{-1}(t \cap \mathfrak{q}),$$

and let K, G^d , K^d and H^d be the analytic subgroups of G_c with the Lie algebras \mathfrak{k} , \mathfrak{g}^d , \mathfrak{k}^d and \mathfrak{h}^d , respectively. Then the homogeneous space $X^d = G^d/K^d$ is a Riemannian symmetric space of the non-compact type and called the non-compact Riemannian form of the semisimple symmetric space X = G/H. The ring D(X) of the invariant differential operators on X is naturally isomorphic to the ring $D(X^d)$ of invariant differential operators on X^d .

Let P^d be a minimal parabolic subgroup of G^d . In [O1] a K-finite eigenfunction ψ of D(X) is called a spherical function on X and defines an H^d -invariant closed subset $FBI(\psi)$ of G^d/P^d . Namely, by the Flensted-Jensen isomorphism, ψ corresponds to a simultaneous eigenfunction $\tilde{\psi}$ of $D(X^d)$ and then $FBI(\psi)$ is the support of the image of $\tilde{\psi}$ under the boundary value isomorphism defined by [KKMOOT]. The main result in [O1] shows that $FBI(\psi)$ and the eigenvalue determine the leading terms in a convergent series expansion of ψ at every boundary point of X in \tilde{X} . Here X is the compact G-manifold constructed in [O2] which contains X as an open G-orbit.

Suppose the spherical function ψ generates an irreducible Harish–Chandra module $U(\psi)$. Then by the leading terms we have embeddings of $U(\psi)$ into principal series for X, which is studied in [O1, Theorem 5.1]. The key lemma in [O1] is [O1, Lemma 3.2] which studies a local property of intertwining operators between class 1 principal series for G^d .

EMBEDDINGS OF DISCRETE SERIES INTO PRINCIPAL SERIES

in [O1], we get the embeddings which do not correspond to any leading not obtained in [O1]. Namely, by the lemmas and the same argument as lemmas give embeddings of $U(\psi)$ into principal series for X which are In §2 we will give another lemma for the intertwining operators. These

(i.e. the leading terms) in Theorem 3.2 are also studied by [KW] and principal series for the group. The embeddings corresponding to $S(E)_0$ rem to find embeddings of any irreducible Harish-Chandra module into Bernstein's correspondence ([BB1], [V]) and we will give a simple theothe D-module realized in a complex flag manifold through Beilinson-Chandra module for the group, $FBI(\psi)$ coincides with the support of this case ψ corresponds to a matrix coefficient of an irreducible Harish-In $\S 3$ we consider the case where X is a semisimple Lie group. In

combinatorial algorithm to obtain the embeddings. give an algorithm to express the H^d -orbit structure on G^d/P^d , which is sufficient to apply the theorem in $\S 3$. Thus we can obtain a simple In $\S 4$ we consider the case where X is a classical simple Lie group and

will be given elsewhere. The precise argument for the proof of the lemma and its application

§2. Local properties of intertwining operators.

of G. For any $\alpha \in \Sigma$, we denote by $w_{\alpha} \in W$ the reflection with respect and Ψ the fundamental system of Σ . The Weyl group W of Σ is idensystem for the pair $(\mathfrak{g}, \mathfrak{a}_p)$, Σ^+ the positive system corresponding to N of a_p in K and the group $P = MA_pN$ is a minimal parabolic subgroup sition of G and a_p the Lie algebra of A_p . Let Σ be the restricted root tified with the normalizer $N_K(\mathfrak{a}_p)$ of \mathfrak{a}_p in K modulo the centralizer M Retain the notation in §1. Let $G = KA_pN$ be an Iwasawa decompo-

 $(a_p)_c^*$ of the dual a_p^* of a_p , the space of hyperfunction sections of class 1 principal series is defined: naturally a left g-module. Then for an element λ of the complexification For an open subset U of G the space $\mathcal{B}(U)$ of hyperfunctions on U is

$$\mathcal{B}(G/P; L_{\lambda}) = \{ f \in \mathcal{B}(G); f(gman) = f(g)a^{\lambda - \rho}$$
 for $(g, m, a, n) \in G \times M \times A_{p} \times N \}.$

For any $\alpha \in \Psi$ there exists a function $T_{\alpha}^{\lambda} \in \mathcal{B}(G/P; L_{w\lambda})$ with the

meromorphic parameter $\lambda \in (\mathfrak{a}_{\mathfrak{p}})_{\mathfrak{c}}^*$ so that the linear map

(2.1)
$$T_{\alpha}^{\lambda} : \mathcal{B}(G/P; L_{\lambda}) \to \mathcal{B}(G/P; L_{w\lambda})$$
$$f(x) \mapsto (T_{\alpha}^{\lambda} f)(x) = \int_{K} f(k) T_{\alpha}^{\lambda} (k^{-1} x) dk$$

is a G-homomorphism which satisfies

$$(T_\alpha^\lambda f)(x) = \int_{\bar{N}_\alpha} f(x \bar{w}_\alpha \bar{n}_\alpha) d\bar{n}_\alpha$$

are Haar measures on K and N_{α} , respectively. if f is continuous and $\operatorname{Re}(\lambda,\beta)<0$ for any $\beta\in\Psi$. Here \bar{w}_{α} is a representative of w_{α} , $N_{\alpha} = \theta(N) \cap \bar{w}_{\alpha}^{-1} N \bar{w}_{\alpha}$ and the measures dk and $d\bar{n}_{\alpha}$

subset of G, we put For an open subset U of G/P, which is identified with a right P invariant For a subset S of G/P we define a subset w[S] of G/P by $SPw^{-1}P$

$$\mathcal{B}(U; L_{\lambda}) = \{ f \in \mathcal{B}(U); \ f(gman) = f(g)a^{\lambda - \rho} \}$$
for $(g, m, a, n) \in U \times M \times A_{\mathfrak{p}} \times N \}$

$$\mathcal{B}(S; L_{\lambda}) = \lim_{U: \text{open } \supset S} \mathcal{B}(U; L_{\lambda}).$$

Then the key lemma in [O1] is

G/P and put $V = w_{\alpha}[\{p\}]$. Denoting LEMMA 2.1 [O1, LEMMA 3.2]. Fix an element α of Ψ and a point p of

$$\mathcal{B}(V, \{p\}; L_{\lambda}) = \{ f \in \mathcal{B}(V; L_{\lambda}); \ p \notin \text{supp } f \},$$

the map (2.1) induces the g-homomorphism

$$\mathcal{I}_{\alpha}^{\lambda}: \mathcal{B}(V, \{p\}; L_{\lambda}) \to \mathcal{B}(\{p\}; L_{\mathsf{w}_{\alpha}\lambda})$$

for any $\lambda \in (\mathfrak{a}_p)_c^*$ by analytic continuation. Moreover if

(2.3)
$$e_{\alpha}(\lambda) \neq 0 \text{ and } -\frac{\langle \lambda, \alpha \rangle}{\langle \alpha, \alpha \rangle} \notin \{1, 2, 3, \dots\},$$

then (2.2) is injective.

induced from the Killing form of g, In the above lemma, \langle , \rangle is the non-degenerate bilinear form on $(a_p)_0^*$

$$e_{\alpha}(\lambda) = \Gamma\left(\frac{1}{2}\frac{\langle\lambda,\alpha\rangle}{\langle\alpha,\alpha\rangle} + \frac{1}{4}m_{\alpha} + \frac{1}{2}\right)^{-1}\Gamma\left(\frac{1}{2}\frac{\langle\lambda,\alpha\rangle}{\langle\alpha,\alpha\rangle} + \frac{1}{4}m_{\alpha} + \frac{1}{2}m_{2\alpha}\right)^{-1}$$

and m_{β} denotes the multiplicity of the root space for a root $\beta \in \Sigma$. Here we give another lemma.

Lemma 2.2. Use the notation as in Lemma 2.1. 1) Suppose λ satisfies

(2.4)
$$\frac{\langle \lambda, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \{0, 1, 2, \dots\}.$$

Then the function T^μ_α has a pole of order 1 at $\mu=\lambda$ and the residue defines the g-homomorphism

(2.5)
$$\operatorname{Res} T_{\alpha}^{\lambda} : \mathcal{B}(V; L_{\lambda}) \to \mathcal{B}(V; L_{\omega_{\alpha}\lambda})$$

and if the support of f in $\mathcal{B}(V; L_{\lambda})$ is not equal to V, then

(2.6)
$$\operatorname{supp} f = \operatorname{supp}(\operatorname{Res} T_{\alpha}^{\lambda}) f.$$

2) If $m_{\alpha} = 1$ and

(2.7)
$$2\frac{\langle \lambda, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \{0, 1, 2, \dots\},$$

then there exists a g-homomorphism

(2.8)
$$S_{\alpha}^{\lambda}: \mathcal{B}(V; L_{\lambda}) \to \mathcal{B}(V; L_{w_{\alpha}\lambda})$$

such that if the support of f in $\mathcal{B}(V; L_{\lambda})$ is not equal to V, then

(2.9)
$$\operatorname{supp} f = \operatorname{supp} S_{\alpha}^{\lambda} f.$$

3) If $e_{\alpha}(\lambda)e_{\alpha}(-\lambda) \neq 0$, then the analytic continuation of $\Gamma\left(\frac{|\lambda,\alpha|}{(\alpha,\alpha)}\right)^{-1}T_{\alpha}^{\lambda}$ defines a bijective g-homomorphism

(2.10)
$$\tilde{T}_{\alpha}^{\lambda}: \mathcal{B}(V; L_{\lambda}) \to \mathcal{B}(V; L_{w_{\alpha}\lambda}).$$

§3. Group cases.

Let G be a connected real semisimple Lie group with a simply connected complexification G_c and $G = KA_pN$ an Iwasawa decomposition of G. Let K_c be an analytic subgroup of G_c with the Lie algebra \mathfrak{k}_c which is the complexification of the Lie algebra \mathfrak{k} of K, B a Borel subgroup of G_c which contains A_pN and j_c a Cartan subalgebra of \mathfrak{g}_c which satisfies $A_p \subset \exp(j_c) \subset B$. Let $\Sigma(j)$ be the root system for the pair (\mathfrak{g}_c, j_c) by denoting $j = \mathfrak{g} \cap j_c$, $\Sigma(j)^+$ the positive system corresponding

to B, $\Psi(j) = \{\alpha_1, \dots, \alpha_\ell\}$ the fundamental system and ρ half the sum of the positive roots. The Weyl group W of $\Sigma(j)$ is generated by the reflections s_j with respect to simple roots α_j $(j = 1, \dots, \ell)$.

Let E be an irreducible Harish-Chandra module with an integral infinitesimal character $-\lambda$. Here we choose the element λ of the complex dual j_c^* of j_c with

(3.1)
$$\langle \lambda, \alpha \rangle \geq 0$$
 for any $\alpha \in \Sigma(j)^+$.

Let L_{λ} be the holomorphic line bundle over the flag manifold $Y = G_c/B$ induced from the holomorphic character r_{λ} of B which satisfies $r_{\lambda}(\exp(Z)) = \exp(\rho - \lambda, Z)$ for $Z \in j_c$. The twisted sheaf of differential operators \mathcal{D}_{λ} on Y is defined by

(3.2)
$$\mathcal{D}_{\lambda} = L_{\lambda} \underset{\mathcal{O}_{Y}}{\otimes} \mathcal{D}_{Y} \underset{\mathcal{O}_{Y}}{\otimes} L_{\lambda}^{-1}.$$

Here \mathcal{O}_Y (resp. \mathcal{D}_Y) are the sheaf of holomorphic functions (resp. that of differential operators) on Y in the Zariski topology. Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g}_c . For a matrix coefficient ψ of E we put $FBI(E) = FBI(\psi)$. Then FBI(E) is well-defined and a closure of a single K_c -orbit on Y and satisfies

(3.3)
$$FBI(E) = \operatorname{supp}(\mathcal{D}_{\lambda} \otimes E).$$

If $\operatorname{rank}(G) = \operatorname{rank}(K)$ and E is the Harish-Chandra module belonging to the discrete series of G, then E is isomorphic to $H_V^n(Y, L_\lambda)$ with a compact K_c -orbit V on Y. Here n is the codimension of V in Y.

Let L be the centralizer of $A_{\rm p}$ in G and L_0 its identity component. Then P=LN is a minimal parabolic subgroup of G and $P_0=L_0N$ is its identity component. Let π_{λ} be the irreducible representation of P_0 whose restriction on L_0 has the lowest weight $\rho-\lambda$ and U_{λ} the Harish-Chandra module of the representation of G induced from π_{λ} . Then U_{λ} is a finite direct sum of principal series of G in the category of Harish-Chandra modules.

By denoting $B_j = \overline{Bs_jB}$ for any $\alpha_j \in \Psi(i)$, we have

Definition 3.1. For any closed subset V of Y, we put $S(V) = \{w \in W; \text{ there exists a reduced expression}\}$

$$w = s_{\nu(k)} \cdots s_{\nu(1)}$$

with the length k of w and a map

$$\varepsilon:\{1,\ldots,k\}\to\{0,1\}$$

such that

$$V_k = Y$$
 and $V_{i-1} \neq V_{i-1}B_{\nu(i)}$ for $i = 1, ..., k$

by inductively denoting

$$V_{i} = \begin{cases} V_{i-1}B_{\nu(i)} & \text{if } \varepsilon(i) = 1, \\ V_{i-1} & \text{if } \varepsilon(i) = 0, \end{cases} \text{ for } i = 1, \dots, k. \}$$

For the irreducible Harish-Chandra module E we put S(E) = S(FBI(E)). Since $FBI(E) = \bar{D}$ with a K_c -orbit D of Y, each V_i in dim $D_{i-1} + \varepsilon(i)$. Then for a non-negative integer j, we put the above definition is a closure of a single K_c -orbit D_i and dim $D_i =$

$$S(E)_j = \{ w \in S(E); \text{ the length of } w \text{ equals } j + \text{codim } D \}.$$

By a similar argument as in [O1, §4, 5] with the lemmas in §2, we

THEOREM 3.2. Retain the above notation.

- 1) For any $w \in S(E)$, there exists an embedding of E into $U_{w\lambda}$.
- 2) ([O1, Theorem 4.1]) Let ψ be a matrix coefficient of E. Suppose non-zero real analytic functions $a_w(g, g')$ of $G \times G$ for $w \in S(E)_0$ λ is regular for simplicity. Then there exists a positive number ε ,

$$\psi(g \cdot \exp Z \cdot g')$$

$$= \sum_{w \in S(E)_0} a_w(g, g') e^{\{w\lambda - \rho, Z\}}$$

$$+ 0 \left(\sum_{w \in S(E)_0} \left| e^{\{w\lambda - (1+\epsilon)\rho, Z\}} \right| \right)$$

with $\alpha|_{a_p} \neq 0$. Here the estimate is locally uniform on $G \times G$. for $Z \in \mathfrak{a}_p$ and $(g, g') \in G \times G$ when $\alpha(Z) \to \infty$ for all $\alpha \in \Psi(j)$

ಅ If E is embedded in U_{μ} with an element $\mu \in j_c^*$, then there exist $v \in W$ and $w \in S(E)_0$ satisfying $\mu = v\lambda$ and $v \geq w$ with respect to Bruhat ordering.

For an element w of $S(E)_j$ we put $\partial w = \{v \in S(E)_{j-1}; v < w\}$. Then

CW-complex. Conjecture 3.3. $(\partial, S(E))$ is isomorphic to a regular contractible

On the other hand, we have

Proposition 3.4. $\sum (-1)^{J} \# S(E)_{j} = 1$.

§4. Orbit structures on complex flag manifolds of classical

respect to a Cartan involution θ and K_c the analytic subgroup of G for real form G. Let $\mathfrak{g} = \mathfrak{t} + \mathfrak{p}$ be a Cartan decomposition of $\mathfrak{g} = \text{Lie } G$ with Let G_c be a connected complex reductive Lie group with a connected

structure on Y depends only on $\mathfrak{g}^s = [\mathfrak{g}, \mathfrak{g}].$ subalgebras in g_c on which G_c acts by the adjoint action, the K_c -orbit Let B be a Borel subgroup of G_c , b its Lie algebra and $Y = G_c/B$ the flag manifold for G_c . Since Y is identified with the set of all Borel

in a K_c -orbit are diffeomorphic to each other. Let D_1 and D_2 be two K_c -orbits on Y with $\tilde{K}_cD_1=\tilde{K}_cD_2$. Then we can easily obtain $S(\bar{D}_1)=$ Let K_c be a subgroup of G_c such that $K_c \subset \tilde{K}_c \subset N_{G_c}(K_c)$, where $N_{G_c}(\tilde{K}_c)$ is the normalizer of K_c in G_c . Then all the K_c -orbits contained to study the \tilde{K}_c -orbit structure on Y for some \tilde{K}_c . $S(D_2)$. Hence in order to get $S(\bar{D})$ for a K_c -orbit D in Y, we have only

subalgebra of \mathfrak{g}_c contained in $\mathrm{Ad}(g)\mathfrak{b}$. Let Σ be the root system for the a such that $\theta a = a$ ([M1], [R]). Note that a_c is a θ -stable Cartan roots in Σ^+ and $\mathfrak{g}(\mathfrak{a};\alpha)$ the root space for a root $\alpha \in \Sigma$. pair $(\mathfrak{g}_c,\mathfrak{a}_c)$, Σ^+ the positive system for $\mathrm{Ad}(g)\mathfrak{b}$, Ψ the set of simple For any $gB \in Y$, the Borel subalgebra Ad(g)b has a split component

a simple Lie algebra of classical type. In this section we parametrize the \bar{K}_c -orbit structure on Y when \mathfrak{g}^{\bullet} is

(Later we will consider the case when $\mathfrak{g}^{\mathfrak{s}}$ is complex simple.) Take the orthogonal basis $\{e_1,\ldots,e_n\}$ of the dual \mathfrak{a}^* of \mathfrak{a} such that Suppose that $G_c = GL(n, \mathbb{C})$, $SO(2n + 1, \mathbb{C})$, $Sp(n, \mathbb{C})$ or $SO(2n, \mathbb{C})$.

$$\Psi = \begin{cases} \{\alpha_1, \dots, \alpha_{n-1}\} & \text{if } G = GL(n, \mathbb{C}), \\ \{\alpha_1, \dots, \alpha_n\} & \text{otherwise,} \end{cases}$$

where $\alpha_1 = e_1 - e_2, \dots, \alpha_{n-1} = e_{n-1} - e_n$ and $\alpha_n = e_n, 2e_n$ or $e_{n-1} + e_n$ if $G = SO(2n+1, \mathbb{C})$, Sp (n, \mathbb{C}) or $SO(2n, \mathbb{C})$, respectively.

 $\{1, 2, \ldots, n\}$ such that $\varphi^2 = id$ and that Since θ induces an involution of Σ , we have a permutation φ of

$$=\pm e_{\varphi(i)}$$

 $\{\varepsilon_1,\ldots,\varepsilon_n\}$, which we call "a clan", of n "persons" with the following for every $i=1,\ldots,n$. We can assign to the pair (\mathfrak{a},Ψ) an ordered set

adult belongs to two different pairs. Each pair is "a young couple" or the signs + and - and the circle \circ , which we call "a boy", "a girl" and 'an old couple". an adult", respectively. Some of the adults in a clan form pairs and no Each person ε_i is an element of the set $\{+,-,\circ\}$ of three elements.

gnore the direction of the arrow. esponding two circles with a line and an arrow, respectively. Here we A young couple and an old couple are expressed by joining the cor-

The clan has the following property:

- sign if and only if $\mathfrak{g}(\mathfrak{a};e_i-e_j)\subset\mathfrak{k}_c$, that is, the root e_i-e_j is a compact (\pm) If $\theta e_i = e_i$, then $\varepsilon_i = +$ or -. Moreover ε_i and ε_j are the same
- (a) If $\theta e_i = e_j$ with $i \neq j$, then ε_i and ε_j are adults and form a young
- (A) If $\theta e_i = -e_j$ with $i \neq j$, then e_i and e_j are adults and form an
- pair, which we call "the aged". (o) If $\theta e_i = -e_i$, then ε_i is an adult which does not belong to any

in Table 1 are in one-to-one correspondance. THEOREM 4.1. The K_c -orbits on Y and the clans with the conditions

young couple. that the clan consists of n persons and there exists no boy, no girl or no REMARK 4.2 (i) In Table 1, for example, the condition $(A, \circ)_n$ means (ii) N_+ , N_- and N_A are the members of boys, girls and old couples

(iii) For BI, $g(\mathfrak{a}; \alpha_n) \subset \mathfrak{k}_c \Leftrightarrow (N_+ - N_- = p - q)$ and $\varepsilon_n =$

For
$$CI$$
, $g(\mathfrak{a}; 2e_i) \not\subset \mathfrak{g}_c$ if $\theta e_i = e_i$.
For CII , $g(\mathfrak{a}; 2e_i) \subset \mathfrak{k}_c$ if $\theta e_i = e_i$.
For DI , $g(\mathfrak{a}; \alpha_{n-1}) \subset \mathfrak{k}_c \Leftrightarrow g(\mathfrak{a}; \alpha_n) \subset \mathfrak{k}_c$.
For $DIII$, $g(\mathfrak{a}; \alpha_{n-1}) \subset \mathfrak{k}_c \Leftrightarrow g(\mathfrak{a}; \alpha_n) \not\subset \mathfrak{k}_c$.

For the compact orbits and open orbits, see Table 1'.

Table 1 (p+q=n)

Type
$$g^s$$
 G_c \tilde{K}_c Condition for the clans

AI $\mathfrak{sl}(n,\mathbb{R})$ $GL(n,\mathbb{C})$ $O(n,\mathbb{C})$ $(A,\circ)_n$

AII $\mathfrak{su}^*(n)$ $GL(n,\mathbb{C})$ $Sp(n/2,\mathbb{C})$ $(A)_n$ $(n=\text{even})$

AIII $\mathfrak{su}(p,q)$ $GL(n,\mathbb{C})$ $GL(p,\mathbb{C}) \times GL(q,\mathbb{C})$ $(\pm a)_n N_+ - N_- = p - q$

BI $\mathfrak{so}(2p+1,2q)$ $SO(2n+1,\mathbb{C})$ $S(O(2p+1,\mathbb{C}) \times O(2p,\mathbb{C}))$ $(\pm a,A,\circ)_n N_+ - N_- = p - q \text{ or } p - q + 1$

CI $\mathfrak{sp}(n,\mathbb{R})$ $Sp(n,\mathbb{C})$ $Sp(n,\mathbb{C})$ $GL(n,\mathbb{C})$ $(\pm a,A,\circ)_n N_+ - N_- = p - q$

DI $\mathfrak{so}(2p,2q)$ $SO(2n,\mathbb{C})$ $S(O(2p,\mathbb{C}) \times Sp(q,\mathbb{C})$ $(\pm a,A,\circ)_n N_+ - N_- = p - q$

DI' $\mathfrak{so}(2p,2q)$ $SO(2n,\mathbb{C})$ $S(O(2p,\mathbb{C}) \times O(2q,\mathbb{C}))$ $(\pm a,a,\circ)_n N_+ - N_- = p - q + 1$

DIII $\mathfrak{so}^*(2n)$ $SO(2n,\mathbb{C})$ $S(O(2p+1,\mathbb{C}) \times O(2q-1,\mathbb{C}))$ $(\pm a,A,\circ)_n N_+ - N_- = p - q + 1$
 $\mathfrak{C}^\times \times PSL(n,\mathbb{C})$ $(\pm a,A,\circ)_n N_+ - N_- = p - q + 1$

Here \tilde{N}_c is the number of the compact \tilde{K}_c -orbits, N_c is the number of compact K_c -orbits and $(+)_k$ denotes the row of +'s of length k if $k \geq 0$ and that of +'s of length -k otherwise. z/(1-u)u $\begin{bmatrix}
 \lambda^n \\
 \lambda^n \\
 \lambda^n
 \end{bmatrix}$ $\begin{bmatrix}
 \lambda^n \\
 \lambda^n \\
 \lambda^n
 \end{bmatrix}$ $\begin{bmatrix}
 u \\
 u \\
 d \\
 u
 \end{bmatrix}$ $\begin{bmatrix}
 u \\
 d \\
 d
 \end{bmatrix}$ $\begin{bmatrix}
 u \\
 d \\
 d
 \end{bmatrix}$ u(∓) ···· BBVV (uz).os DIII $1 - p + q - pq^2$ $t+b-d(+) \circ \cdots \circ$ oī-u(∓) (1 - p2, 1 + q2)osDI $b-d(+) \circ \cdots \circ$ bdz, **u**(∓) (b7,q2)02DI $pd \cdot pq \cdot pq$ $pd \cdot pq \cdot pq$ **u**(∓) (b'd)dsCII u(∓) z/(1+u)u(**H**,n)qa CI $(\frac{d}{u})$ $\binom{d}{u}$ $b(1+d\zeta)$ u(∓) (p2,l+q2)os BI compact orbits $\begin{cases} n^2/n \\ b/(n^2 - 1)/4 \end{cases}$ pq $\binom{d}{u}$ $u(\mp)$ (b'd)ns IIIA ····aaaa $VB\cdots BV$ $(u)_*$ ns IIA $AB \cdots \circ \cdots BA$ u(0) (\mathbf{H}, n) la Ι¥ stidto A B · · · · · B A и : елеп 5 orbits codimension of oben compact °N Ŋ ß Type Table 1'

> orbit. The following are examples of K_c -orbits of Type CI with n=5in Table 1. lines and arrows, where $\{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n\}$ is the clan corresponding to the Each $ilde{K}_{e}$ -orbit in Table 1 can be expressed by a symbol $arepsilon_{1}arepsilon_{2}\ldotsarepsilon_{n}$ with

and then we can write the above example as follows, respectively: To express the orbit more easily we give "a family name" for each pair

$$-o-+a+a-+abaB$$
.

express an old couple by the same capital letters. We remark that the small letters and an old couple is expressed by the small letter and distinguish couples in a clan. A young couple is expressed by the same following expressions also correspond the last orbit in the above example: the capital letter corresponding to the family name. In some cases, we Here each couple in a clan has a family name consisting of letter to

$$+babA + aBaB + bAbA$$

+abaB

and $\pi_i: Y \to Y_i$ be the canonical projection. Let D_1 and D_2 be two $ilde{K}_{c}$ -orbits on Y. Then we write Let B_i be the parabolic subgroup of G_c for $\{-\alpha_i\} \cup \Sigma^+$. Let $Y_i = G/B_i$

$$1 \stackrel{\cdot}{\longrightarrow} D_2$$

 $\dim D_2 = \dim D_1 + 1.$ if and only if $\pi_i(D_1) = \pi_i(D_2)$ and dim $D_1 < \dim D_2$, which implies

if one of the following conditions holds. to an element of D_1 . Then $D_1 \stackrel{i}{\longrightarrow} D_2$ for some $ilde{K}_{\mathfrak{c}}$ -orbit D_2 if and only Proposition 4.3. ([V, $\S 5$], [M2]). Choose a pair (a, Ψ) corresponding (I) $\theta \alpha_i = \alpha_i$ and $\mathfrak{g}(\alpha; \alpha_i) \not\subset \mathfrak{t}_c$, that is, α_i is a non-compact simple root.

 Ξ

$$\theta \alpha_i \in \Sigma^+ - \{\alpha_i\}.$$

Table 2 and examples of the K_c -orbit structure on Y of Typ- AI,..., DIII in Fig. 1~ Fig. 20. We will give the necessary and sufficient condition for $D_1 \stackrel{:}{\longrightarrow} D_2$ in

We express the orbits by rows consisting of +, - and letters. Let $\delta_1 \dots \delta_n$ and $\delta'_1 \dots \delta'_n$ be the expressions corresponding to D_1 and D_2 , respectively.

(i) Here $i=1,\ldots,n-1$ and the old couple (resp. young couple) is expressed by the capital letters (resp. small letters) corresponding to the family name. Then $D_1 \stackrel{i}{\longrightarrow} D_2$ if and only if $\delta_j = \delta_j'$ for $j=1,\ldots,i-1,i+2,\ldots,n$ and $\delta_i,\delta_{i+1},\delta_i'$ and δ_{i+1}' equal to one of the following lists, where the letters p,P,q,Q correspond to suitable family names.

оP	P_0	po	† ∘	ρQ	PQ	$\pm P$	pq	$\pm p$	$p\pm$	qq	+	+	$\delta_i \delta_{i+1}$
P_0	oP	qo	ů.	Qp	QP						qq	qq	$\delta_i'\delta_{i+1}'$
$\varphi(i+1) < i$	$i+1<\varphi(i)$				$\varphi(i+1) < \varphi(i)$		$\varphi(i) < \varphi(i+1)$	$i < \varphi(i+1)$	$\varphi(i) < i+1$				Condition
$e_{\varphi(i+1)} - e_i$	$e_{i+1} - e_{\varphi(i)}$	$e_{\varphi(i)} + e_{i+1}$	$e_i + e_{i+1}$	$e_{\varphi(i)} + e_{\varphi(i+1)}$	$e_{\varphi(i+1)} - e_{\varphi(i)}$	$e_i + e_{\varphi(i+1)}$	$e_{\varphi(i)} - e_{\varphi(i+1)}$	$e_i - e_{\varphi(i+1)}$	$e_{\varphi(i)} - e_{i+1}$	α_i	α;	α_i	$\theta \alpha_i$

(ii) Here i=n and the old couple (resp. young couple) is expressed by the small letter and capital letter (resp. small letter) corresponding to the family name. If δ_j and $\delta_{j'}$ are an old couple with j < j', then we express δ_j by a small letter and $\delta_{j'}$ by the corresponding capital letter.

(1) In the cases BI, CI and CII, $D_1 \stackrel{n}{\longrightarrow} D_2$ if and only if $\delta_j = \delta'_j$ for $j = 1, \ldots, n-1$ and δ_n and δ'_n are one of the following:

$$\begin{array}{cccc}
\delta_n & \delta'_n & \theta \alpha_n \\
\pm & \circ & \alpha_n \\
p & P & e_{\varphi(n)}
\end{array}$$

(2) In the case DI, $D_1 \stackrel{n}{\longrightarrow} D_2$ if and only if $\delta_j = \delta_j'$ for $j = 1, \ldots, n-2$

EMBEDDINGS OF DISCRETE SERIES INTO PRINCIPAL SERIES

and δ_{n-1} , δ_n , δ'_{n-1} and δ'_n are one of the following:

q_0	po	₽	Q_p	ρQ	pq	$p\pm$	±p	pp	+	+	$\delta_{n-1}\delta_n$
P_0	oР	÷	Pq	qP	QP	$\pm P$	$P\pm$	00	PP	PP	$\delta'_{n-1}\delta'_n$
			$\varphi(n) < \varphi(n-1)$								Condition
$e_{\varphi(n)}-e_{n-1}$	$e_{\varphi(n-1)}-e_n$	$e_{n-1}-e_n$	$e_{\varphi(n)} - e_{\varphi(n-1)}$	$e_{\varphi(n-1)} - e_{\varphi(n)}$	$e_{\varphi(n-1)} + e_{\varphi(n)}$	$e_{\varphi(n-1)} + e_n$	$e_{\varphi(n)} + e_{n-1}$	α_n	α_n	α_n	$\theta \alpha_n$

(3) In the case DIII, $D_1 \stackrel{n}{\longrightarrow} D_2$ if and only if $\delta_j = \delta_j'$ for $j = 1, \ldots, n-2$ and δ_{n-1} , δ_n , δ_{n-1}' and δ_n' are one of the following:

Qp	ρQ	pq	$\pm q$	$\pm p$		+	$\delta_{n-1}\delta_n$
Pq	qP	QP	$\mp P$	$P\mp$	pp	PP	$\delta'_{n-1}\delta'_{n}$
$\varphi(n)<\varphi(n-1)$							Condition
$e_{\varphi(n)} - e_{\varphi(n-1)}$	$e_{\varphi(n-1)} - e_{\varphi(n)}$	$e_{\varphi(n-1)} + e_{\varphi(n)}$	$e_{\varphi(n-1)} + e_n$	$e_{\varphi(n)} + e_{n-1}$	α_n	α_n	$\theta \alpha_n$

Next consider the case where \mathfrak{g}^s is a classical complex simple Lie algebra. Then we may suppose $G_c=G'_c\times G'_c$ with $G'_c=GL(n,\mathbb{C}),$ $SO(2n+1,\mathbb{C}),$ $Sp(n,\mathbb{C})$ or $SO(2n,\mathbb{C}),$ $\theta(g,g')=(g',g)$ for $(g,g')\in G_c,$ $K_c=\tilde{K}_c=\{(g,g);g\in G'_c\}$ and $B=B'\times B'$ with a Borel subgroup B' of G'_c . Then

$$K_c \setminus G_c/B \xrightarrow{\sim} B' \setminus G'_c/B'$$

by the map $(g,g')\mapsto g^{-1}g'$ of G_c onto G'_c . Thus the K_c -orbit structure on $Y=G_c/B$ is reduced to the structure of the Bruhat decomposition of G'_c . Then by taking the orthogonal bases $\{e_1,\ldots,e_n,e'_1,\ldots,e'_n\}$ of the dual \mathfrak{a}^* of \mathfrak{a} in a natural way as before, we can express the K_c -orbit structure as in Fig. 21 \sim Fig. 23.

Now we give some examples of S(E) in Theorem 3.2, which are easily obtained from the diagram of the K_c -orbit structure. Suppose G = SU(2,1). Then the corresponding diagram is Fig. 5. Since the closed

subset V_i is a closure of one K_c -orbit on Y, we express it by the corresponding clan. Suppose E is the Harish-Chandra module belonging to the discrete series of SU(2,1). Then FBI(E)=-++ or +-+ or ++- and we have $S(-++)=\{s_2s_1=\binom{123}{321}\}$, $s(++-)=\{s_1s_2=\binom{123}{321}\}$ and $S(+-+)=\{s_2s_1,s_1s_2,s_1s_2s_1=\binom{123}{321}\}$. Here we identify the Weyl group W with the permutation group of 3 numbers 1, 2 and 3 and the elements of S(+-+) are obtained as in the following table:

Suppose G=SU(p,q) with $p\geq q$. For a Harish-Chandra module E belonging to a discrete series of G, we can obtain $S(E)_0$ in the following way:

Consider the ordered q pairs in the clan corresponding to the compact K_c -orbit FBI(E) which satisfies the following conditions.

Let $(\varepsilon_{I(i)}, \varepsilon_{J(i)})$ denote the *i*-th pair with I(i) < J(i).

- (1) Each pair consists of a boy and a girl.
- (2) There exist p-q boys who do not belong to any pair.
- (3) If there exist i and j with I(i) < j < J(i), then there exists i' with i' < i such that I(i) < I(i') < J(i') < J(i) and $j \in \{I(i'), J(i')\}$.

For the ordered q pairs, we attach an element $\begin{pmatrix} 1 & \dots & n \\ j_1 & \dots & j_n \end{pmatrix}$ of the permutation group of n numbers $1, \dots, n$ satisfying $j_k = J(i_k)$ and $j_{n+1-k} = I(i_k)$ for $k = 1, \dots, q$ and $j_{q+1} < j_{q+2} < \dots < j_{n-q}$. Identifying the permutation group with the Weyl group of $SL(n, \mathbb{C})$ and considering all the definitions of the above q pairs, we obtain all elements of $S(E)_0$.

For example, if FBI(E) corresponds to ++--+, then there exist 3 types of the ordered q pairs

from which we have the following elements, respectively:

$$\begin{pmatrix} 12345 \\ 34512 \end{pmatrix} \qquad \begin{pmatrix} 12345 \\ 35142 \end{pmatrix} \qquad \begin{pmatrix} 12345 \\ 53124 \end{pmatrix}.$$

In the case where \mathfrak{g}_c is classical and simple, a computer programme to calculate $S(\bar{D})$ for any K_c -orbit D on Y was written by the second

EMBEDDINGS OF DISCRETE SERIES INTO PRINCIPAL SERIES

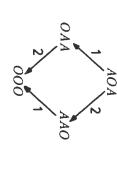
named author. By the program, for example, we have

$$#S(+-+-)=7, #S(+-+-+)=35, #S(+-+-+-)=135,...$$

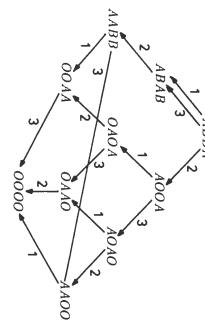
in the case of type SU(p,q). It takes about 2 minutes by a microcomputer (CPU:80286, Clock:10MHz) to get all S(+-+-+-). The programme with source code in C is available from the second named author.

REMARK 4.4. Suppose G is a classical simple Lie group whose real rank equals 1. Suppose E is a Harish-Chandra module belonging to the discrete series of G. Then comparing a result in [C], we can obtain all the embeddings of E into principal series by Theorem 3.2 except the following cases: $FBI(E) = + + \cdots + -$ and $g = \mathfrak{sp}(p, 1)$ with $p \geq 2$. In these cases

 $FBI(E) = + + \cdots + -$ and $g = \mathfrak{sp}(p,1)$ with $p \geq 2$. In these cases there are two embeddings of E into principal series of G but Theorem 3.2 gives only one embedding corresponding to the leading term of the matrix coefficient of E.



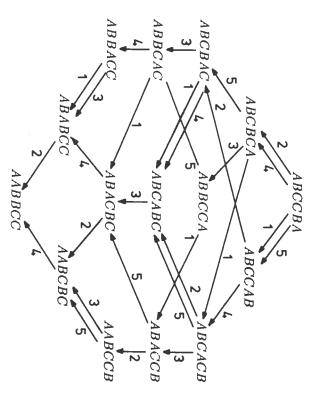
AI
$$g^* = \mathfrak{sl}(3, \mathbb{R}) \quad O(3) \setminus GL(3, \mathbb{C}) / B \quad \circ \longrightarrow F_{ig. 1}$$



Al
$$g^s = \mathfrak{sl}(4, \mathbb{R})$$
 $O(4) \setminus GL(4, \mathbb{C})/B$ o—o—o
Fig. 2

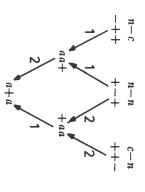
162

EMBEDDINGS OF DISCRETE SERIES INTO PRINCIPAL SERIES



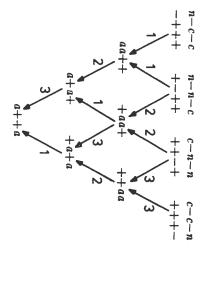
All $g^s = \mathfrak{su}^*(6)$ $Sp(3, \mathbb{C})\backslash GL(6, \mathbb{C})/B$ o—o—o—o

Fig. 4



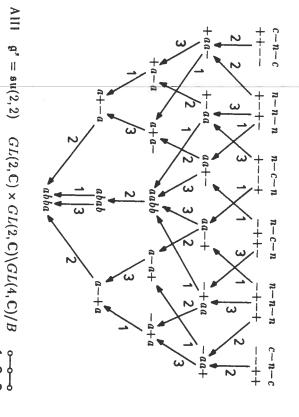
AIII
$$\mathfrak{g}^s = \mathfrak{su}(2,1)$$
 $GL(2,\mathbb{C}) \times GL(1,\mathbb{C}) \backslash GL(3,\mathbb{C}) / B$ $0 \longrightarrow \text{Fig. 5}$

T. MATSUKI AND T. OSHIMA



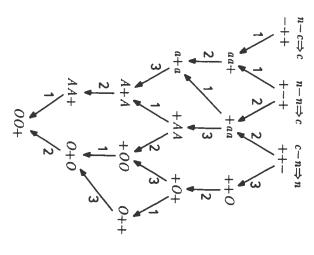
All1 $g^s = \mathfrak{su}(3,1)$ $GL(3,\mathbb{C}) \times GL(1,\mathbb{C}) \setminus GL(4,\mathbb{C}) / B$ o—o—o

Fig. 6



EMBEDDINGS OF DISCRETE SERIES INTO PRINCIPAL SERIES

 $g^s = so(1,6)$ $S(O(1,C) \times O(6,C)) \setminus SO(7,C) / B$ ---Fig. 8



BI $g^s = so(5,2)$ $S(O(5,\mathbb{C}) \times O(2,\mathbb{C})) \setminus SO(7,\mathbb{C})/B$ 0—0—0 Fig. 9

165

Fig. 7

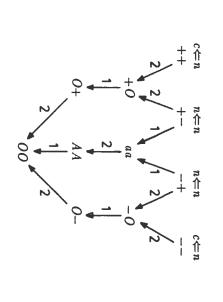
一c介n c-n介n n-n介n n-c介n n-c介n n-n介n c-n介n c-c介n

BI g' = so(3,4) $S(O(3,\mathbb{C}) \times O(4,\mathbb{C})) \setminus SO(7,\mathbb{C})/B$ o--o--o

Fig. 10

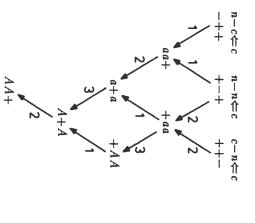
CI $g' = \mathfrak{sp}(3, \mathbb{R})$ $GL(3, \mathbb{C}) \setminus Sp(3, \mathbb{C}) / B$ o—o—o 1 2 3

Fig. 11

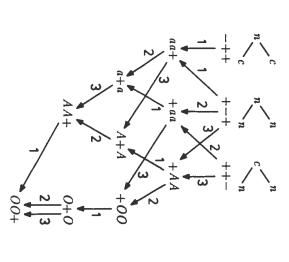


CI $\mathfrak{g}' = \mathfrak{sp}(2, \mathbb{R})$ $GL(2, \mathbb{C}) \backslash Sp(2, \mathbb{C}) / B$ OFig. 12

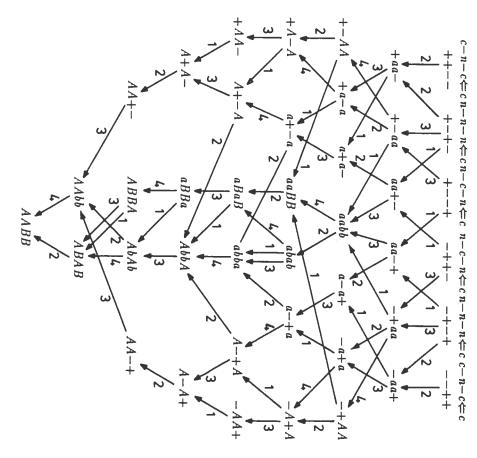
EMBEDDINGS OF DISCRETE SERIES INTO PRINCIPAL SERIES



CII $\mathfrak{g}' = \mathfrak{sp}(2,1)$ $Sp(2,\mathbb{C}) \times Sp(1,\mathbb{C}) \setminus Sp(3,\mathbb{C})/B$ o—o—o
Fig. 13



DI
$$\mathfrak{g}^s = \mathfrak{so}(4,2)$$
 $S(O(4,\mathbb{C}) \times O(2,\mathbb{C})) \setminus SO(6,\mathbb{C})/B$ 1003
Fig. 14



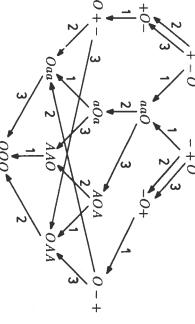
CII $\mathfrak{g}^s=\mathfrak{sp}(2,2)$ $Sp(2,\mathbb{C})\times Sp(2,\mathbb{C})\backslash Sp(4,\mathbb{C})/B$ o—o—o

Fig. 15

$$\begin{array}{c|c}
2 & 3 \\
+O+ \\
1 & O++
\end{array}$$

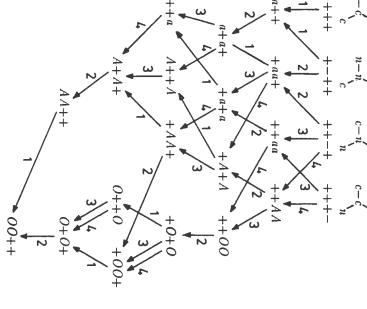
$$\begin{array}{c|c}
5, C \times O(1, C)
\end{array}$$

DI'
$$\mathfrak{g}^s = \mathfrak{so}(5,1)$$
 $S(O(5,\mathbb{C}) \times O(1,\mathbb{C})) \setminus SO(6,\mathbb{C})/B$ 1 \circ 3



DI' $\mathfrak{g}' = \mathfrak{so}(3,3)$ $S(O(3,\mathbb{C}) \times O(3,\mathbb{C})) \setminus SO(6,\mathbb{C})/B$ 1003 Fig. 17 170

EMBEDDINGS OF DISCRETE SERIES INTO PRINCIPAL SERIES

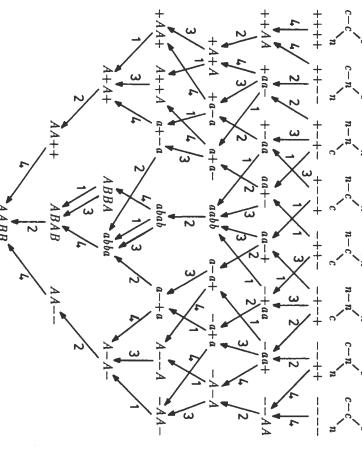


$$\mathfrak{g}^s = \mathfrak{so}(6,2) \quad S(O(6,\mathbb{C}) \times O(2,\mathbb{C})) \backslash SO(8,\mathbb{C})/B \quad \overset{\circ}{1} \quad \overset{\circ}{2} \quad \overset{\circ}{\circ} \overset{\circ}{4}$$

$$\text{Fig. 18}$$

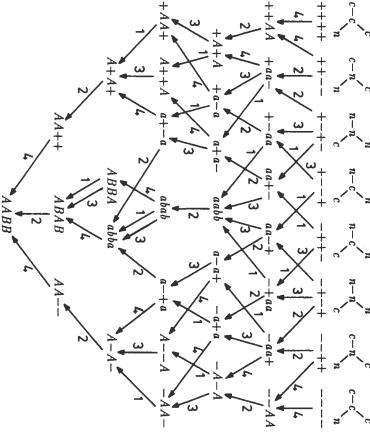
DI

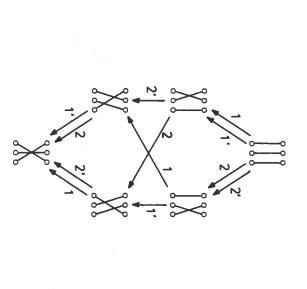
EMBEDDINGS OF DISCRETE SERIES INTO PRINCIPAL SERIES



DIII $\mathfrak{g}^* = \mathfrak{so}^*(6)$ $\mathbb{C}^{\times} \times PSL(3,\mathbb{C}) \setminus SO(6,\mathbb{C})/B$ 1003

Fig. 20





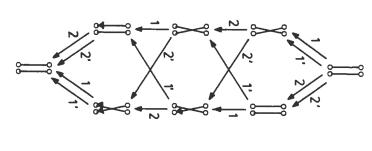
DIII $\mathfrak{g}^s = \mathfrak{so}^*(8)$

 $\mathbb{C}^{\times} \times PSL(4,\mathbb{C})\backslash SO(8,\mathbb{C})/B$

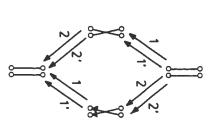
Fig. 19

 $\Lambda_2 \quad \mathfrak{g}^s = \mathfrak{sl}(3,\mathbb{C}) \quad \Delta GL(3,\mathbb{C}) \backslash GL(3,\mathbb{C}) \times GL(3,\mathbb{C})/B \quad \stackrel{\circ}{\longrightarrow} \quad 1 \quad 2$ Fig. 21 7.0

T. MATSUKI AND T. OSHIMA



 $B_2 \quad \mathfrak{g}^s = \mathfrak{so}(5, \mathbb{C}) \quad \Delta SO(5, \mathbb{C}) \backslash SO(5, \mathbb{C}) \times SO(5, \mathbb{C}) / B \quad \xrightarrow{\bullet \bullet} \quad \xrightarrow{\bullet} \quad \xrightarrow{\bullet}$



 $\mathfrak{g}^* = \mathfrak{so}(4, \mathbb{C}) \quad \Delta SO(4, \mathbb{C}) \backslash SO(4, \mathbb{C}) \times SO(4, \mathbb{C})/B$ of

°2 °2

 D_2

174

EMBEDDINGS OF DISCRETE SERIES INTO PRINCIPAL SERIES

REFERENCES

- [BB1] A.A. Beilinson and J. Bernstein, Localization de g-modules, C.R. Acad Sci. Paris 292 (1981), 15-18.
- [BB2] ______, A generalization of Casselman's submodule theorem, in "Representation Theory of Reductive Groups;" edited by P.C. Trombi, Progress in Mathematics 40, Birkhäuser, Boston, 1983, pp. 35-52.
- [C] D.H. Collingwood, Representations of Rank One Lie Groups. Pitman Advanced Pub. Program, Boston, 1985.
- [KKMOOT] M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Oshima and M. Tanaka, Eigenfunctions of invariant differential operators on a symmetric space, Ann. of Math. 107 (1978), 1-39.
- [KW] A.W. Knapp and N.R. Wallach, Szegő kernels associated with discrete series. Invent. Math. 34 (1976), 163-200, 62 (1980), 341-346.
- [M1] T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), 331-357.
- M2] ______ Closure relations for orbits on affine symmetric spaces under the action of minimal parabolic subgroups, Advanced Studies in Pure Math. 14 (1988), 541-559.
- [O1] T. Oshima, Asymptotic behavior of spherical functions on semisimple symmetric spaces, Advances Studies in Pure Math. 14 (1988), 561-601.
- [O2] A realization of semisimple symmetric spaces and construction of boundary value maps, Advanced Studies in Pure Math. 14 (1988), 603-650.
 [R] W. Rossman, The structure of semisimple symmetric spaces, Canad. J. Math.
- 31 (1979), 157-180.
 [V] D. Vogan, Irreducible characters of semisimple Lie groups III, Invent. Math 71 (1983), 381-417.

Toshihiko Matsuki Faculty of General Education Tottori University Tottori 680, Japan

Toshio Oshima
Department of Mathematics
Faculty of Science
University of Tokyo
Tokyo 113, Japan