LEFT CELLS IN WEYL GROUPS

G. Lusztig*
Department of Mathematics, M.I.T.
Cambridge, Massachussetts 02139

In $[\mathrm{KL}_1]$, Kazhdan and myself have defined a partition of an arbitrary Coxeter group into subsets called left cells. These subsets enter in an essential way in the classification of primitive ideals in the enveloping algebra of a semisimple Lie algebra. In this paper we shall generalize the definition of $[\mathrm{KL}_1]$ to include the case where the simple reflections are given different weights. We shall give an application of this to Schubert varieties. We shall also give some examples concerning a Weyl group of type B_n .

1. Let (W,S) be a Coxeter group and let $\varphi\colon W\to \Gamma$ be a map of W into an abelian group Γ such that $\varphi(s_1s_2\ldots s_p)=\varphi(s_1)\varphi(s_2)\ldots$ $\varphi(s_p)$ for any reduced expression $s_1s_2\ldots s_p$ in W. We shall set $\varphi(w)=q_w^{1/2}$, $(w\in W)$. Let H_φ be the Hecke algebra of W with respect to φ ; this is an algebra over the group ring $\mathbf{Z}[\Gamma]$. As a $\mathbf{Z}[\Gamma]$ -module, it is free with basis T_W , $(w\in W)$. The multiplication is defined by

$$(T_s + 1)(T_s - q_s) = 0, (s \in S)$$

$$T_{s_1s_2...s_p} = T_{s_1s_2...s_p}$$
, if $s_1s_2...s_p$ is a reduced expression in W .

The unit element is $\mathbf{T}_e.$ It will be convenient to introduce a new basis $\tilde{\mathbf{T}}_w = \mathbf{q}_w^{-1/2}\mathbf{T}_w$ (w \in W). We then have

$$(\tilde{T}_{s} + q_{s}^{-\frac{1}{2}})(\tilde{T}_{s} - q_{s}^{\frac{1}{2}}) = 0, \quad (s \in S)$$

 $^{^\}star$ Supported in part by the National Science Foundation.

$$\tilde{T}_{s_1s_2...s_p} = \tilde{T}_{s_1}\tilde{T}_{s_2}...\tilde{T}_{s_p}$$
 if $s_1s_2...s_p$ is a reduced expression in W.

Let $a\to \bar a$ be the involution of the ring $\mathbf{Z}[\Gamma]$ which takes γ to γ^{-1} for any $\gamma\in\Gamma$. We extend it to an involution $h\to \bar h$ of the ring H_{α} by the formula

$$\frac{\sum_{\mathbf{w}} \tilde{\mathbf{a}_{\mathbf{w}}} \tilde{\mathbf{T}}_{\mathbf{w}}}{\sum_{\mathbf{w}} \tilde{\mathbf{a}_{\mathbf{w}}} \tilde{\mathbf{T}}_{\mathbf{w}}^{-1}}, \qquad (\mathbf{a}_{\mathbf{w}} \in \mathbf{Z}[\Gamma]).$$

(Note that $\tilde{T}_s^{-1} = \tilde{T}_s + (q_s^{-\frac{1}{2}} - q_s^{\frac{1}{2}})$, $s \in S$, hence \tilde{T}_w is ivertible for all $w \in W$.) Let us define elements $R_{x,y}^* \in \mathbf{Z}[\Gamma]$, $(x,y \in W)$, by

$$\tilde{\mathbf{T}}_{\mathbf{v}^{-1}}^{-1} = \sum_{\mathbf{x}} \bar{\mathbf{R}}_{\mathbf{x},\mathbf{y}}^{\star} \tilde{\mathbf{T}}_{\mathbf{x}}.$$

It is easy to see that $R_{X,Y}^*=0$ unless $x\leq y$ in the standard partial order of W. Using the fact that $h\to \bar{h}$ is an involution, we see that

$$(1.1) \qquad \sum_{\mathbf{x} \leq \mathbf{y} \leq \mathbf{z}} \bar{\mathbf{R}}_{\mathbf{x}, \mathbf{y}}^{\star} \mathbf{R}_{\mathbf{y}, \mathbf{z}}^{\star} = \delta_{\mathbf{x}, \mathbf{z}}$$

for all $x \le z$ in W. Note also that $q_x^{-1/2}q_y^{1/2}R_{x,y}^{\star} \in \mathbf{Z}[\Gamma^2]$.

For example, $R_{\mathbf{x},\mathbf{x}}^{\star}=1$ for all $\mathbf{x}\in W.$ Let ℓ be the length function on W.

- (1.2) If x < y, $\ell(y) = \ell(x) + 1$, then x is obtained by dropping $s \in S \text{ in a reduced expression of } y, \text{ and we have } R_{x,y}^* = q_s^{1/2} q_s^{-1/2}.$
- (1.3) If x < y, $\ell(y) = \ell(x) + 2$, then x is obtained by dropping $s \in S$ and $t \in T$ in a reduced expression of y, and we have $R_{x,y}^{\star} = (q_s^{1/2} q_s^{-1/2}) (q_t^{1/2} q_t^{-1/2}).$

We now assume given a total order on Γ compatible with the group structure on Γ . Let Γ_+ be the set of elements of Γ which are strictly positive for this total order and let $\Gamma_- = (\Gamma_+)^{-1}$. We shall

assume that $q_s^{1/2} \in \Gamma_+$ for all $s \in S$. We have

2. Proposition. Given $w \in W$, there is a unique element $C_W^! \in H_\phi$ such that

$$\bar{C}_{w}^{\prime} = C_{w}^{\prime}$$

$$C_{\mathbf{w}}^{\prime} = \sum_{\mathbf{y} \leq \mathbf{w}} P_{\mathbf{y}, \mathbf{w}}^{\star} \tilde{T}_{\mathbf{y}}$$

where $P_{w,w}^{\star} = 1$ and, for any y < w, $P_{y,w}^{\star}$ is a \mathbf{Z} -linear combination of elements in Γ . Moreover, $q_y^{-1/2}q_w^{1/2}P_{y,w}^{\star} \in \mathbf{Z}[\Gamma^2]$.

(When f is constant on S, this is the same as (1.1.c) of $[\mathrm{KL}_1]$.) We must show that the system of equations

$$(2.1)$$
 $P^* = 1$

$$(2.2) \qquad \overline{P}_{X,W}^{\star} - P_{X,W}^{\star} = \sum_{X < V \le W} R_{X,Y}^{\star} P_{Y,W}^{\star} , (\forall x < w),$$

with unknowns $P_{X,W}^*$, has a unique solution such that $P_{X,W}^*$ is a \mathbb{Z} -linear combination of elements in Γ_- , for x < w. This is shown by induction on $\ell(w) - \ell(x)$. The uniqueness is clear. To show existence, we shall use a suggestion of O. Gabber, which simplifies somewhat the original proof in $[KL_1]$. We fix x < w and assume that for all y, $x < y \le w$, the $P_{y,W}^*$ have been already constructed and have the required property. It is then enough to show that $\frac{\sum_{x < y \le w} R_{x,y}^* P_{y,w}^*}{\sum_{x < y \le w} R_{x,y}^* P_{y,w}^*} = \frac{\sum_{x < y \le w} R_{x,y}^* P_{y,w}^*}{\sum_{x < y \le w} R_{x,y}^* P_{y,w}^*}$. But we have

$$\frac{\sum\limits_{\mathbf{x}<\mathbf{y}\leq\mathbf{w}}\mathbf{R}^{\star}_{\mathbf{x},\mathbf{y}}\mathbf{P}^{\star}_{\mathbf{y},\mathbf{w}}}{\mathbf{R}^{\star}_{\mathbf{x},\mathbf{y}}\mathbf{R}^{\star}_{\mathbf{y},\mathbf{z}}\mathbf{P}^{\star}_{\mathbf{z},\mathbf{w}}} = \sum\limits_{\mathbf{x}<\mathbf{y}\leq\mathbf{z}\leq\mathbf{w}}\overline{\mathbf{R}^{\star}_{\mathbf{x},\mathbf{y}}\mathbf{R}^{\star}_{\mathbf{y},\mathbf{z}}\mathbf{P}^{\star}_{\mathbf{z},\mathbf{w}}}$$

$$= \sum\limits_{\mathbf{x}<\mathbf{z}\leq\mathbf{w}}(\sum\limits_{\mathbf{x}\leq\mathbf{y}\leq\mathbf{z}}\overline{\mathbf{R}^{\star}_{\mathbf{x},\mathbf{y}}\mathbf{R}^{\star}_{\mathbf{y},\mathbf{z}}\mathbf{P}^{\star}_{\mathbf{z},\mathbf{w}} - \mathbf{R}^{\star}_{\mathbf{x},\mathbf{z}}\mathbf{P}^{\star}_{\mathbf{z},\mathbf{w}})$$

and, using (1.1), this equals $-\sum\limits_{x< z\leq w} R_{x,z}^*P_{z,w}^*$, as required. The last assertion follows from (2.2). This completes the proof of the proposition.

3. Now let $s \in S$, $w \in W$ be such that w < sw. For each y such that sy < y < w, we define an element

$$M_{y,w}^{s} \in Z[T]$$

by the inductive condition

(3.1) $\sum_{\substack{y \leq z < w \\ sz < z}} P_{y}^{\star}, z^{M}_{z}^{s}, w - q_{s}^{1/2} P_{y}^{\star}, w \text{ is a combination of elements in } \Gamma_{-}$

and by the symmetry condition

$$(3.2) \overline{M}_{y,w}^{S} = M_{y,w}^{S}.$$

The condition (3.1) determines uniquely the coefficient of γ in $\mathtt{M}_{\mathbf{y},\mathbf{w}}^{\mathbf{S}}$ for all $\gamma \in \Gamma$ - Γ _; the condition (3.2) determines the remaining coefficients. We have $q_{\mathbf{S}}^{-1/2}q_{\mathbf{y}}^{1/2}\mathbf{M}_{\mathbf{y},\mathbf{w}}^{\mathbf{S}} \in \mathbf{Z}[\Gamma^2]$.

4. Proposition. Let $s \in S$ and let $w \in W$. Then:

(4.1)
$$(\tilde{T}_{S} + q_{S}^{-1/2})C_{W}^{\dagger} = C_{SW}^{\dagger} + \sum_{Z < W} M_{Z,W}^{S}C_{Z}^{\dagger}, \qquad \underline{if} \quad w < sw$$

(4.2)
$$(\tilde{T}_{S} - q_{S}^{1/2})C'_{W} = 0,$$
 if $W > SW$

(compare with (2.3.a), (2.3.c) in $[KL_1]$).

<u>Proof.</u> If w = e, then (4.1) is clearly true. Now assume that $w \neq e$ and that the proposition is already proved for all w' < w. Using (4.2), we see that

(4.3)
$$P_{u,z}^* = q_s^{-1/2} P_{su,z}^*$$
 if $u < su \le z$, $sz < z < w$.

<u>Case 1:</u> w < sw. Consider the left hand side minus the right hand side of (4.1). The coefficient of \tilde{T}_v in that expression is

$$f_{y} = q_{s}^{\varepsilon/2} P_{y,w}^{\star} + P_{sy,w}^{\star} - P_{y,sw}^{\star} - \sum_{\substack{y \leq z < w \\ sz < z}} P_{y,z}^{\star} M_{z,w}^{s}$$

where $\varepsilon = \begin{cases} 1 & \text{if sy} < y \\ -1 & \text{if sy} > y \end{cases}$ and $P_{x,x}^*$ is defined to be zero whenever $x \not = x'$. If x y < y, then (3.1) shows that x y = x' is a x y = x'-linear combination of elements in x y = x', then applying (4.3) we see that

$$f_{y} = q_{s}^{-1/2}P_{y,w}^{*} + P_{sy,w}^{*} - P_{y,sw}^{*} - q_{s}^{-1/2} \sum_{\substack{sy \leq z < w \\ sz < z}} P_{sy,z}^{*}M_{z,w}^{s}.$$

It follows that

$$f_y = q_s^{-1/2} f_{sy} + q_s^{-1/2} P_{sy,sw}^* - P_{y,sw}^*$$

hence, again, f_y is a \mathbb{Z} -linear combination of elements in Γ_- . But $(\tilde{T}_S + q_S^{-1/2}) = C_S'$, C_W' , $M_{Z,W}^S$ are each fixed by the involution $h \to \bar{h}$. Hence $\sum_{Y} f_Y \tilde{T}_Y = \sum_{Y} f_Y \tilde{T}_Y$. Assume that some f_{Y_0} is non-zero. We can take y_0 to have maximal possible length subject to the property $f_{Y_0} \neq 0$. Then the coefficient of \tilde{T}_Y in $\sum_{Y_0} f_Y \tilde{T}_Y$ is equal to f_{Y_0} . Thus $f_{Y_0} = \bar{f}_{Y_0}$. This contradicts the fact that f_{Y_0} is a non-zero combination of elements in Γ_- . Thus we have $f_Y = 0$ for all $Y \in W$ and (4.1) is proved for W.

Case 2: w > sw. Applying (4.1) to sw, we see that

$$C_{W}^{\prime} = (\tilde{T}_{S} + q_{S}^{-1/2})C_{SW}^{\prime} - \sum_{\substack{z < SW \\ Sz < z}} M_{z,SW}^{S}C_{z}^{\prime}.$$

Clearly, $(\tilde{T}_S - q_S^{1/2})(\tilde{T}_S + q_S^{-1/2}) = 0$ and, by the induction hypothesis, $(\tilde{T}_S - q_S^{1/2})C_Z^! = 0$ for all z, (z < sw, sz < z). Hence $(\tilde{T}_S - q_S^{1/2})C_W^! = 0$, as required.

5. Proposition. Let y < w be such that $\ell(w) = \ell(y) + 1$. Then y is obtained by dropping a simple reflection s in a reduced expression of w.

- (a) We have $P_{y,w}^* = q_s^{-1/2}$
- (b) Let t be a simple reflection such that ty < y < w < tw. Then

$$\mathbf{M}_{\mathbf{y},\mathbf{w}}^{\mathsf{t}} \ = \ \begin{cases} 0, & \text{if} \ q_{\mathsf{t}}^{1/2} < q_{\mathsf{s}}^{1/2} \\ \\ 1, & \text{if} \ q_{\mathsf{t}}^{1/2} = q_{\mathsf{s}}^{1/2} \\ \\ q_{\mathsf{s}}^{1/2}q_{\mathsf{t}}^{-1/2} + q_{\mathsf{s}}^{-1/2}q_{\mathsf{t}}^{1/2}, & \text{if} \ q_{\mathsf{t}}^{1/2} > q_{\mathsf{s}}^{1/2} \end{cases}$$

Proof. From (1.2) and (2.2) we see that

$$\bar{P}_{y,w}^{\star} - P_{y,w}^{\star} = R_{y,w}^{\star} = q_s^{1/2} - q_s^{-1/2}$$

and (a) follows. If t is as in (b), then by (3.1) and (a), $M_{y,w}^t = q_t^{1/2}q_s^{-1/2}$ must be a **Z**-linear combination of elements in Γ . From this and from (3.2), the desired formula for $M_{y,w}^t$ follows.

6. Let $j: H_{\phi} \to H_{\phi}$ be the ring involution defined by $j(\sum_{w} a_{w}^{T} T_{w}) = \sum_{w} \bar{a}_{w} \epsilon_{w}^{T} T_{w}$, where $\epsilon_{w} = (-1)^{\ell(w)}$. It commutes with the involution $h \to \bar{h}$. Let $C_{w} = \epsilon_{w} j(C_{w}^{l})$. Then

$$\bar{C}_{w} = C_{w} \text{ and } C_{w} = \sum_{y \leq w} \epsilon_{y} \epsilon_{w} \bar{P}_{y,w}^{\star} \bar{T}_{y}.$$
 (Compare [KL₁, 1.1].)

Applying j to (4.1) and (4.2) we get:

(6.1)
$$(\tilde{T}_s - q_s^{1/2}) C_w = C_{sw} - \sum_{z < w} \varepsilon_z \varepsilon_w^{M_z} C_z, \quad \text{if } w < sw$$

(6.2)
$$(\tilde{T}_s + q_s^{-1/2})C_w = 0$$
, if $w > sw$.

Let $j': H_{\phi} \to H_{\phi}$ be the anti-automorphism of the ring H_{ϕ} defined by $j'(\tilde{T}_W) = \tilde{T}_{w-1}$ and j'(a) = a for $a \in \mathbf{Z}[\Gamma]$. It is easy to see that $j'(C_W) = C_{w-1}$. Therefore, from (6.1) and (6.2) we can deduce

(6.3)
$$C_{\mathbf{w}}(\tilde{\mathbf{T}}_{\mathbf{S}} - \mathbf{q}_{\mathbf{S}}^{1/2}) = C_{\mathbf{w}\mathbf{S}} - \sum_{\mathbf{z} < \mathbf{w}} \varepsilon_{\mathbf{z}} \varepsilon_{\mathbf{w}} M_{\mathbf{z}}^{\mathbf{S}} - 1_{\mathbf{w}} C_{\mathbf{z}}, \quad \text{if } \mathbf{w} < \mathbf{w}\mathbf{S}$$

(6.4)
$$C_{w}(\tilde{T}_{s} + q_{s}^{-1/2}) = 0$$
, if $w > ws$.

Let $\underset{L,\phi}{\leq}$ be the preorder relation on W generated by the relation "x' $\underset{L,\phi}{\leq}$ x if there exists $s \in S$ such that C_x , appears with non-zero coefficient in $T_s \cdot C_x$ (expressed in the C_w -basis)." We call it the left preorder. The equivalence relation associated to $\underset{L,\phi}{\leq}$ is denoted $\underset{L,\phi}{\sim}$ and the corresponding equivalence classes in W are called the left cells of W (with respect to $_\phi$). Given $x,y \in W$, we say that x $\underset{LR,\phi}{\leq}$ y if there exists a sequence $x = x_0, x_1, \ldots, x_n = y$ of elements in W such that for $i = 0, 1, \ldots, n-1$, we have either $x_i \overset{\leq}{\leq} x_{i+1}$ or $x_i \overset{\leq}{\leq} x_{i+1}$. The equivalence relation on W corresponding to the preorder $x_i \overset{\leq}{\leq} x_i$ is denoted $x_i \overset{\leq}{\leq} x_i$ and the correspondint equivalence classes on W are called the two sided cells of W. (These notions were introduced in $[KL_1]$ in the case where $_\phi$ is constant on S.)

For any $x \in W$, we denote I_x^L (resp. \hat{I}_x^L) the $\mathbf{Z}[T]$ -submodule of H_{ϕ} spanned by the elements C_y , $y \leq x$, (resp. by the elements C_y , $y \leq x$, $y \not\sim x$). We define similarly I_x^{LR} and \hat{I}_x^{LR} , by replacing $I_{x,\phi}^{\leq x}$, $I_{x,\phi}^{\leq x}$ by $I_{x,\phi}^{\leq x}$, $I_{x,\phi}^{\leq x}$ in the previous definition. It is clear from (6.1)-(6.4) that I_x^L , \hat{I}_x^L are left ideals of H_{ϕ} and that I_x^{LR} , \hat{I}_x^{LR} are two-sided ideals of H_{ϕ} . Hence I_x^L/\hat{I}_x^L is a left H_{ϕ} -module with a natural basis given by the images of C_y for y in the left cell of x; I_x^{LR}/\hat{I}_x^{LR} is a two sided H_{ϕ} -module with a natural basis given by the images of C_y , for y in the two sided cell of x. With respect to this basis, the action of \tilde{T}_x ($x \in S$) is given by a matrix which is completely determined by the elements $M_{y,w}^S$.

From now on, we assume that Γ is the infinite cyclic group with generator $q^{1/2}$ with the order relation $q^{i/2} \le q^{j/2} \Leftrightarrow i \le j$. We then have $q_w^{1/2} = q^{m(w)/2}$ where $m \colon W \to \{1,2,3,\ldots\}$. In this case, we have

Consider, for example, the case where (W,S) is a Weyl group of type B_2 with $S = \{s_1, s_2\}$, $(s_1s_2)^4 = 1$, and let $m(s_1) = 1$, $m(s_2) = c \ge 2$. We have:

$$P_{s_{2},s_{2}s_{1}s_{2}}^{*} = q^{\frac{-c+1}{2}} - q^{\frac{-c-1}{2}}, \qquad P_{e,s_{2}s_{1}s_{2}}^{*} = q^{\frac{-2c+1}{2}} - q^{\frac{-2c-1}{2}}$$

$$P_{s_{1},s_{1}s_{2}s_{1}}^{*} = q^{\frac{-c+1}{2}} + q^{\frac{-c-1}{2}}, \qquad P_{e,s_{1}s_{2}s_{1}}^{*} = q^{\frac{-c+2}{2}} + q^{\frac{-c}{2}}$$

 $\frac{m(y)}{2} - \frac{m(w)}{2}$ and $P_{y,w}^* = q$ for all other pairs $y \le w$. (In particular, $P_{y,w}^*$ may have negative coefficients.) We have

$$M_{s_2s_1,s_1s_2s_1}^{s_2} = M_{s_2,s_1s_2}^{s_2} = Q_{s_2,s_1s_2}^{\frac{c-1}{2}} + Q_{s_2,s_2s_1s_2}^{\frac{c-1}{2}} = M_{s_1,s_2s_1}^{s_1} = 0.$$

The left cells are:

$$\{e\},\ \{s_1\},\ \{s_2,s_1s_2\},\ \{s_2s_1s_2\},\ \{s_2s_1,s_1s_2s_1\},\ \{s_1s_2s_1s_2\}.$$

The corresponding H $_{\phi}$ -modules $I_{X}^{L}/\hat{I}_{X}^{L}$ (with scalars extended to an algebraic closure of $\mathbb{Q}(q^{1/2})$) are all irreducible. (This is in contrast with the situation when $m(s_{1}) = m(s_{2}) = 1$ in which case there are only four left cells.) The two-sided cells are $\{e\}$, $\{s_{1}\}$, $\{s_{2}s_{1}s_{2}\}$, $\{s_{2},s_{1}s_{2},s_{2}s_{1},s_{1}s_{2}s_{1}\}$, $\{s_{1}s_{2}s_{1}s_{2}\}$.

7. If we specialize $q^{1/2}$ to 1, and take coefficients in Q, the H_{ϕ} -modules $I_{x}^{L}/\hat{I}_{x}^{L}$ become left W-modules; they give a direct sum decomposition of the left regular representation of W; they are said to be the W-modules carried by the left cells (with respecto to ϕ). Simi-

larly, $I_X^{LR}\hat{\mathbf{f}}_X^{LR}$ become two sided W-modules; they give a direct sum decomposition of the two sided regular representation of W. Hence the two sided cells give rise to an equivalence relation on the set of irreducible representations of W: two representations are equivalent if they can be connected by a chain such that any two consecutive ones appear in the same $I_X^{LR}\hat{I}_X^{LR}$. The equivalence relation on the representations is known in the case where $\phi(s)=q$ ($\forall s\in S$), by the work of Barbasch-Vogan [BV]. It coincides with the equivalence relation described in $[L_1]$. It is likely that, in general, the equivalence relation should still be that in $[L_1]$, except that instead of the a-function used there one should use an a-function which depends on ϕ : for any irreducible W-module E, we define $a_{\phi}(E)$ to be the order at 0 of the rational function in q giving the formal degree of the Hecke algebra H_{ϕ} corresponding to E. In particular, it should be true that the a_{ϕ} -function should be constant on each equivalence class.

8. Let G be a simple adjoint group defined over ${\Bbb C}$ and let ${\alpha}\colon G \to G$ be an outer automorphism which leaves stable a Borel subgroup ${\Bbb B} \subset G$ and a maximal torus ${\Bbb T} \subset {\Bbb B}$. We assume that the corresponding map ${\alpha}\colon W \to W$ (W=Weyl group of G) is non-trivial. Let ${\Bbb W}_1$ be the fixed point set of ${\alpha}$ on ${\Bbb W}$. It is well known that ${\Bbb W}_1$ is a Coxeter group with a set of generators ${\Bbb S}_1$ corresponding to the orbits of ${\alpha}$ on ${\Bbb S}$ (= the simple reflections of ${\Bbb W}$); to an orbit 0, there corresponds the longest element in the subgroup generated by 0. Let ${\phi}\colon {\Bbb W}_1 \to \{{\P}^{{\Bbb Z}}\}$ be the function defined by ${\phi}({\Bbb W}_1) = {\P}^{\ell}({\Bbb W}_1)$ where ${\ell}({\Bbb W}_1)$ is the length of ${\Bbb W}_1$ with respect to (W,S). Let y, w be two elements of ${\Bbb W}_1$ such that $y \le w$. We shall give an interpretation of ${\Bbb P}^*_{Y,W}$ (defined with respect to ${\phi}$) in terms of Schubert varieties, analogous to $[{\Bbb KL}_2]$. Let $\overline{{\Bbb B}}_W \subset {\Bbb G}/{\Bbb B}$ be the Schubert variety corresponding to w and let ${\Bbb B}_Y$ be the Bruhat cell corresponding to y. Then ${\alpha}$ acts naturally on $\overline{{\Bbb B}}_W$ and on its subvariety ${\Bbb B}_Y$. Let ${\mathcal H}^2_{{\Bbb B}_Y}(\overline{{\Bbb B}}_W)$ be the stalk of the 2i-th

intersection cohomology sheaf of \bar{B}_w at a point of B_y which is fixed by α . Then α acts naturally on $H_{B_y}^{2i}(\bar{B}_w)$ and we have

(8.1)
$$\sum_{i\geq 0} \operatorname{Tr}(\alpha, H_{\mathcal{B}_{\mathbf{v}}}^{2i}(\overline{\mathcal{B}}_{\mathbf{w}})) q^{i} = q^{\frac{\ell(\mathbf{w}) - \ell(\mathbf{y})}{2}} P_{\mathbf{y}, \mathbf{w}}^{\star}.$$

(Note that ℓ is here the length function on W, not on W₁.) The proof is similar to that of [KL₂]. The formula (8.1) explains why the coefficients of $P_{y,w}^{\star}$ may be negative.

9. The multiplication in the Hecke algebra can be interpreted in terms of a multiplication of complexes in a derived category of constructible sheaves over the flag manifold. (See [LV], [S].) This interpretation together with (8.1) allows us to deduce the following.

Let $y,w \in W_1$ and let us write $C_y \cdot C_w = \sum\limits_{z_j \in W_1} N_{y,w,z_1} C_{z_1}$, $N_{y,w,z_1} \in \mathbf{Z}[q^{1/2},q^{-1/2}]$ (an identity in the Hecke algebra of W_1 , with respect to ϕ). We can also consider y, w as elements in W and attach to them elements \tilde{C}_y , \tilde{C}_w in the Hecke algebra of W, with respect to $\phi(w) = q^{\ell(w)}$. (\tilde{C}_w is just C_w with respect to W.) We then have $\tilde{C}_y \cdot \tilde{C}_w = \sum\limits_{z \in W} \tilde{N}_{y,w,z} \tilde{C}_z$, $\tilde{N}_{y,w,z} \in \mathbf{Z}[q^{1/2},q^{-1/2}]$. The coefficients of $\varepsilon_y \varepsilon_w \varepsilon_z \tilde{N}_{y,w,z}$, ($\varepsilon_w = (-1)^{\ell(w)}$), are ≥ 0 and can be interpreted as dimensions of certain vector spaces on which α acts whenever $z \in W_1$. Moreover the trace of α on that vector space is the corresponding coefficient of $N_{y,w,z}$. It follows that

(9.1) If
$$z \in W_1$$
 and $N_{y,w,z} \neq 0$ then $N_{y,w,z} \neq 0$.

From the definition of the left preorder $\begin{tabular}{c} \leq & it now follows \\ L, \phi \end{tabular}$ easily that

(9.2) If $y,w\in W_1$ satisfy $y\leq w$ with respect to the left preorder of W_1,ϕ then they satisfy the similar inequality with respect to the left preorder of W,ϕ . Hence any left cell of W_1 (with

respect to $\ _{\phi})$ is contained in a left cell of W (with respect to $\ _{\phi})$.

10. Assume, for example that (W,S) is a Weyl group of type A_n $(n \geq 3)$ and that α is the unique automorphism of order 2 of (W,S). Then (W_1,S_1) is a Weyl group of type $B_{n/2}$ if n is even and $B_{(n+1)/2}$ if n is odd. The restriction of $\phi(w) = q^{\ell(w)}$ to S_1 has values q^2,q^2,\ldots,q^2,q^3 if n is even and q^2,q^2,\ldots,q^2,q if n is odd. It is known that each left cell of W contains a unique involution and it carries an irreducible representation of W. It is clear that $\alpha\colon W\to W$ permutes among themselves the left cells of W, and it maps each two sided cell of W into itself (since α is an inner automorphism of W). Let $n(W_1)$ be the number of left cells of W_1 (with respect to ϕ) and let n(W) be the number of α -stable left cells of W. We have

(10.1)
$$n(W_1) \ge n(W)$$
.

Indeed, each α -stable left cell of W contains some element of W₁ (for example, it contains a unique involution which is necessarily fixed by α), hence by (9.2) it contains a left cell of W₁ (with respect to φ). Let $n'(W_1)$ be the sum of the dimensions of the irreducible representations of W₁. Since the representations carried by the left cells of W₁ (with respect to φ) give a direct sum decomposition of the left regular representation of W₁, we see that

(10.2)
$$n'(W_1) \ge n(W_1)$$

with equality if and only if each left of cell of W_1, ϕ carries an irreducible representation of W_1 .

Now let E be an irreducible representation of W. According to $[\mathtt{KL}_1], \ \mathsf{E} \ \mathsf{admits} \ \mathsf{a} \ \mathsf{natural} \ \mathsf{basis} \ (\mathtt{e}_{\mathtt{i}}) \ \mathsf{in} \ \mathsf{l-l} \ \mathsf{correspondence} \ \mathsf{with}$ the set of left cells contained in the two-sided cell $\ \mathsf{Q} \ \mathsf{of} \ \mathsf{W} \ \mathsf{corresponding} \ \mathsf{to} \ \mathsf{E}.$ This basis has the following property: the permutation

defined by α on the set of left cells in Ω corresponds to the permutation of the basis (e_i) defined by the action of $\pm w_0$ on E, where w_0 is the longest element in W. Thus, the number of α -stable left cells in Ω is equal to $|\text{Tr}(w_0,E)|$, hence

(10.3)
$$n(W) = \sum_{E} |Tr(W_0, E)|,$$

with the sum over all irreducible representations E of W.

of irreducible representations of W_1 into the analogous set for Wwith the following property: if $E_1 \in W_1$ corresponds to $E \in W$, then $Tr(w_0,E) = \pm dim E_1$, and if $E \in W$ is not in the image of our imbedding, then $Tr(w_0,E) = 0$. This can be seen by direct computation, using Murnaghan's rule, or one can argue as follows. We can regard W as the Weyl group of a unitary group over a finite field F_{r} and W_{l} as the relative Weyl group. The unipotent representations of the unitary group are parametrized by the elements of W and the unipotent representation corresponding to E \in W has degree given by a polynomial in p^r which for $r \to 0$ becomes $\pm Tr(w_0, E)$. This polynomial is divisible by $(p^{r} - 1)$ unless the unipotent representation is in the principal series. The unipotent representations in the principal series are parametrized by the irreducible representations of W_1 and the representation corresponding to $E_1 \in W_1^*$ has degree given by a polynomial in p^r which for $r \rightarrow 0$ becomes dim E_1 . Hence our assertion follows. We seen then from (10.3) that

$$n(W) = \sum_{i=1}^{\infty} dim(E_{1}),$$

with the sum over all irreducible representations E_1 of W_1^{\bullet} , hence

$$n(W) = n'(W_1).$$

Comparing with (10.1) and (10.2) it follows that

$$n(W_1) = n(W) = n'(W_1)$$

hence we have proved the following.

- 11. Theorem. Each left cell of W_1 (with respect to ϕ) carries an irreducible representation of W_1 . It contains a unique involution and is the intersection of W_1 with a left cell of W (= symmetric group S_{n+1}).
- 12. In the case where (W,S) is a Weyl group and $\varphi(s)=q$ for all $s\in S$, one can use the character formulas $[L_2]$ for the unipotent representations of a semisimple group over a finite field, to get some new information on the structure of left cells in W. For example, when (W,S) is of type B_n or D_n one can prove $[L_2]$ that
- (12.1) Any left cell in W carries a representation of W which is multiplicity free and has a number of irreducible components equal to a power of 2. Moreover the set of irreducible components can be organized in a natural way as a vector space over the field with 2 elements.

REFERENCES

- [BV]. D. Barbasch, D. Vogan: Primitive ideals and orbital integrals in complex classical groups, Math. Ann. 259 (1982), 153-199.
- [KL₁]. D. Kazhdan, G. Lusztig: Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.
- [KL₂]. : Schubert varieties and Poincaré duality, Proc. Symp. Pure Math. vol. 36 (1980), 185-203, Amer. Math. Soc.
- [L₁]. G. Lusztig: A class of irreducible representations of a Weyl group, II, Proc. Kon. Nederl. Akad. Series A. vol. 85(2), 1982, 219-226.
- [L_2]. : Characters of reductive groups over a finite field, to appear.
- [LV]. G. Lusztig, D. Vogan: Singularities of closures of K-orbits on flag manifolds, Invent. Math. 71 (1983), 365-379.
- [S]. T. A. Springer: Applications of intersection cohomology, Séminaire Bourbaki, Fév. 1982, Paris.