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In [KLI], Kazhdan and myself have defined a partition of an arbi- 

trary Coxeter group into subsets called left cells. These subsets en- 

ter in an essential way in the classification of primitive ideals in 

the enveloping algebra of a semisimple Lie algebra. In this paper we 

shall generalize the definition of [KL I] to include the case where the 

simple reflections are given different weights. We shall give an ap- 

plication of this to Schubert varieties. We shall also give some exam- 

ples concerning a Weyl group of type B . 
n 

i. Let (W,S) be a Coxeter group and let ~: W ~ F be a map of 

W into an abelian group F such that e(SlS 2 ... Sp) = ~(Sl)~(s2)... 

~(Sp) for any reduced expression SlS2...s p in W. We shall set 

1/2 
~(w) = qw " (w • W). Let H be the Hecke algebra of W with re- 

spect to ~; this is an algebra over the group ring ~[F]. As a Z[F]- 

module, it is free with basis Tw, (w • W). The multiplication is de- 

fined by 

(T s + i)(T s - qs ) = 0, (s • S) 

= TslTs2 ..T , if SlS2...s Tsls2...s p " Sp p 

sion in W. 

is a reduced expres- 

The unit element is T . 
e 

Tw = q~l/2Tw' (w ~ W). 

It will be convenient to introduce a new basis 

We then have 

i 1 
2) 

(%~s + q-s T) (Ts - qs = 0, (s • S) 
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= ~ ~ ...9 
SlS2...s p s I s 2 Sp' 

if SlS2...s p is a reduced ex- 

pression in W. 

Let a ~ a be the involution of the ring Z[F] which takes y to 

-i 
y for any y 6 F. We extend it to an involution h ~ h of the ring 

H by the formula 

awT w = [ ~wT-ll ,_ (a w 6 ~[F]). 
W W W 

1 1 
(Note that ~i Ts (qs 2 ' Tw = + - qs ) s e S, hence is ivertible for 

all w 6 W.) Let us define elements R* e ~[F], (x,y • W), by 
x,y 

~-i ~* ~ 
y-1 = x~ x'yTx" 

It is easy to see that R* = 0 unless x ~ y in the standard partial 
x,y 

order of W. Using the fact that h ~ h is an involution, we see that 

(1.1) ~ ~* R* = 6 
x~ySZ x,y y,z x,z 

for all x z in W. Note also that -1/2 I/2~, e ~[F2]. 
qx qy ~x,y 

For example, R* 
X,X 

on W. 

= 1 for all x e W. Let ~ be the length function 

(1.2) If x < y, ~(y) = Z(x) + i, then x is obtained by dropping 

s 6 S in a reduced expression of y, and we have R* 
x,y 

ql/2 -1/2 
s - qs 

(1.3) If x < y, Z(y) = ~(x) + 2, then x is obtained by dropping 

s E S and t 6 T in a reduced expression of y, and we have 

R* = ~qs" 1/2 _ q~i/2),~qtl/2 _ q~l/2). 
x,y 

We now assume given a total order on F compatible with the group 

structure on F. Let F+ be the set of elements of F which are 

strictly positive for this total order and let F_ = (F+) -I. We shall 
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that ql/2s 6 F+ for all s • S. We have assume 

2. Proposition. Given w 6 W, there is a unique element C' 6 H 
w 

such that 

C! = C ! 
w w 

c w ~ P* 
y-<w y,w y 

where P* = 1 and, for any y < w, P* is a Z-linear combination 
w,w y,w 

of elements in F • Moreover, qy-1/2qwl/2~*~Y,W e Z [F 2] . 

(When f is constant on S, this is the same as (l.l.c) of [KLI].) 

We must show that the system of equations 

(2.1) P* = 1 

WrW 

(2.2) P* - P* : [ R* P* , (Vx < w) , 
x,w x,w x<y~w x,y y,w 

with unknowns P* ,has a unique solution such that P* is a Z- 
X,W X,W 

linear combination of elements in F , for x < w. This is shown by 

induction on Z(w) - ~(x). The uniqueness is clear. To show existence, 

we shall use a suggestion of O. Gabber, which simplifies somewhat the 

original proof in [KLI]. We fix x < w and assume that for all y, 

x < y ~ w, the P* have been already constructed and have the re- 
y,w 

quired property. It is then enough to show that ~ R* P* = 
x<y~w x,y y,w 

- ~ R* P* . But we have 
x<y~w x,y y,w 

R* P* = ~ R-*---R* P* 
x,y y,w x,y y,z z,w 

x<y~w x<y~z~w 

( [ N* R* P* - R* * x,y y,z z,w x,zPz,w ) 
X<Z_<W < <Z x_y_ 

and using (i.i), this equals - ~ R* P* as required. The last 
n XtZ Z~W t 

X< z ~W 
assertion follows from (2.2). This comple te s  the  p r o o f o f  the  p r o p o s i t i o n .  
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3. Now let s 6 S, w • W be such that w < sw. For each y such 

that sy < y < w, we define an element 

M s e ~. [F] 
y,w 

by the inductive condition 

(3.1) [ p, M s _ ql/2p* 
y,z z,w -s y,w 

y_<z<w 
SZ<Z 

is a combination of elements in F 

and by the symmetry condition 

(3.2) ~s = M s . 
y,w y,w 

The condition (3.1) determines uniquely the coefficient of y in 

M s for all y 6 F - F ; the condition (3.2) determines the remain- 
y,w 

-1/2 -1/2 i/2_s 
ing coefficients. We have qs qy qw Ny,w • Z[F2]" 

4. Proposition. Let s E S and let w c W. Then: 

(4.1) (~s + qs I/2)c' = c' + X Ms c' if w < sw 
W SW ZrW Z I -- 

Z<W 

SZ< Z 

(Ts i/2 , (4.2) - HS )C w = 0, if W > sw 

(compare with (2.3.a), (2.3.c) in [KLI]). 

Proof. If w = e, then (4.1) is clearly true. Now assume that w # e 

and that the proposition is already proved for all w' < w. Using (4.2), 

we see that 

(4.3) p. = ql/2p. 
UtZ S S UtZ 

if u < su _< z, sz < z < w. 

Case i: w < sw. Consider the left hand side minus the right hand side 

of (4.1). The coefficient of T in that expression is 
Y 

= s/2~, + p, _ p, _ [ p, M s 
fy ~s ~y,w sy,w y,sw y ,z  z,w 

y~z<w 
SZ<Z 
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< i if sy < y 
where s = and P* is defined to be zero whenever 

1 if sy > y x,x' 

x ~ x'. If sy < y, then (3.1) shows that f is a Z-linear combina- 
Y 

tion of elements in F • If sy > y, then applying (4.3) we see that 

fy q:i/2p, + p, _ p, _ -1/2 M s 
= sy,w y,sw qs ~ P* " sy,z z,w 

y,w sy~z<w 
SZ<Z 

It follows that 

= q i/2f- + -i/2~, _ p, f 
y s sy qs rsy,sw y,sw 

hence, again, fy is a ~-linear combination of elements in F_. But 

(Ts s ' ' MS + q 1/2) = Cs' Cw' z,w are each fixed by the involution h ~ h. 

Hence ~ f T = ~ f T . Assume that some f is non-zero. We can 
y Y Y ~ Y Y Y0 

take Y0 to have maximal possible length subject to the property f 
Y0 

# 0. Then the coefficient of T in [ fyTy is equal to f . Thus 
Y0 y Y0 

f = f . This contradicts the fact that f is a non-zero combina- 
Y0 Y0 Y0 

tion of elements in F . Thus we have f = 0 for all y • W and 
- y 

(4.1) is proved for w. 

Case 2: w > sw. Applying (4.1) to sw, we see that 

e' = (%s + q~ 1/2)c' - [ M s c' 
W SW Z,SW Z 

Z<SW 

SZ<Z 

i/2) (Ts- + q~i/2)- 0 and by the induction hypothesis Clearly, (Ts - qs = ' ' 

_i/2% C| (Ts 0 for all z, (z < sw, sz < z) Hence (Ts 
-- = " -- ~S ; ~W ~S ; Z 

= 0, as required. 

5. Proposition. Let y < w be such that ~(w) = Z(y) + i. Then y 

is obtained by dropping a simple reflection s in a reduced expression 

of w. 
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(a) We have P* = -1/2 
y,w qs 

(b) Let t be a simple reflection such that ty < y < w < tw. 

Then 

M t 
y,w 

0, 

i, 

1/2 -i/2 -1/2 1/2 
qs qt + qs qt ' 

i/2 i/2 
if qt < qs 

1/2 1/2 
if qt = qs 

1/2 1/2 
if qt > Hs 

Proof. From (1.2) and (2.2) we see that 

Pg,w - P* = R* 1/2 - y,w y,w = Hs - qs I/2 

and (a) follows. If t is as in (b) , then by (3.1) and (a) , M t - 
y,w 

1/2 -1/2 
qt qs must be a Z-linear combination of elements in F_. From 

this and from (3.2) the desired formula for M t follows. 
' y,w 

6. Let j: H ~ H be the ring involution defined by j ([ awT w) = 
~ w 

awswTw , where s w = (-I) ~(w) It commutes with the involution h ~h. 
w 

= • C ! Let C w S w 3 (  w ) . T h e n  

= C and C = ~ SyS w P* Cw w w y,w y" 
ysw 

(Compare [KLI, i.i].) 

Applying j to (4.1) and (4.2) we get: 

(6.1) (Ts i/2,~ 
- ~S ;~W = 

GzswMS ~ C , if w < sw Csw- ~ ,w z 
z<w 

sz<z 

(6.2) (Ts + qsl/2) Cw = 0, if w > sw. 

Let j' : H ~ H be the anti-automorphism of the ring H defined by 

J'(Tw ) = T -i and j'(a) = a for a E ~[F]. It is easy to see that 
W 

j'(C w) = C -l" Therefore, from (6.1) and (6.2) we can deduce 
W 
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_1/2, 
(6.3) Cw(Ts - qs ; = Cws 

- z<w[ ~zSwM~-l,w -ICz' 

ZS<Z 

if w < ws 

(6.4) Cw(~ s + q~i/2) = 0, if w > ws. 

Let ~ be the preorder relation on W generated by the rela- 
L,~ 

tion "x' 5 x if there exists s E S such that Cx, appears with 
L,~ 

non-zero coefficient in Ts.Cx (expressed in the Cw-basis)." We call 

it the left preorder. The equivalence relation associated to ~ is 
L,~ 

denoted L?~ and the corresponding equivalence classes in W are 

called the left cells of W (with respect to ~). Given x,y E W, we 

say that x ~ y if there exists a sequence x = x0,xl,...,Xn = y 
LR,9 

of elements in W such that for i = 0,1,...,n-l, we have either 

-i -i 
or x. ~ The equivalence relation on W cor- xi L,~ Xi+l ± L,~ Xi+l" 

responding to the preorder ~ is denoted ~ and the correspond- 
LR,~ LR,~ 

int equivalence classes on W are called the two sided cells of W. 

(These notions were introduced in [KL I] in the case where ~ is con- 

stant on S.) 

For any x e W, we denote I L (resp. IL) the Z [r ] -submodule 
X x 

of H spanned by the elements Cy, y ~ x, (resp. by the elements 
L,@ 

x, y ~ x). We define similarly I LR and ~LR, by re- 
Cy, Y L,~ L,~ x x 

placing ~ , ~ by ~ , ~ in the previous definition. It is 
L,e L,e LR,e LR,~ 

clear from (6.1)-(6.4) that I~ ~L are left ideals of H and that 
' x 

i LR L ^L 
x ' x are two-sided ideals of H~. Hence Ix/I x is a left H 

module with a natural basis given by the images of C for y in the 
Y 

ILR.~ LR left cell of x; x / x is a two sided H -module with a natural 

basis given by the images of Cy, for y in the two sided cell of x. 

With respect to this basis, the action of Ts (s • S) is given by a 

matrix which is completely determined by the elements M s y,w 

From now on, we assume that F is the infinite cyclic group with 

generator ql/2 with the order relation qi/2 s qj/2 = i s j. We then 

have _1/2 qm(W)/2 where m: W ~ {1,2,3 ...}. In this case, we have 
qw = 
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m(w) -m(y) 

P* • Z[q -I/2]- and q 2 P* • Z[q] for any y ~ w. Moreover 
y,w y,w 

PQ,w has no constant term if y < w. From (3.1) we see that, when 

m(s) -i 

defined, M s q 2 • ~[ql/2]. In particular, M s is a constant 
y,w y,w 

whenever m(s) = i. (This is the case considered in [KLI].) 

Consider, for example, the case where (W,S) is a Weyl group of 

4 
type B 2 with S = {Sl,S2}, (SlS 2) = i, and let m(s I) = i, m(s 2) = 

c > 2. We have: 

c+l c-i 2c+i 2c-i 
p, q 2 2 p, 2 2 = _ q , = q - q 
s2,s2sls 2 e,s2sls 2 

c+l c-I c+2 c 
- 2 - 2 - 2 -~ 

p* = q + q • P* = q + q 
Sl,SlS2S 1 e,sls2s I 

m(y) m(w) 

and P* = q 2 2 for all other pairs y < w. (In particular, 
y,w 

P* may have negative coefficients.) We have 
y,w 

c-i -c+l 
s2 s2 2 2 Sl Sl 

M = M -- q + q , M = M = 0. 
S2Sl,SlS2S 1 s2,sls 2 SlS2,S2SlS2 Sl,S2S 1 

The left cells are: 

{e}, {Sl}, {s2,sls2}, {S2SlS2}, {S2Sl,SlS2Sl}, {SlS2SlS2 }. 

L ^L (with scalars extended to an al- The corresponding H -modules Ix/I x 

gebraic closure of ~(ql/2)) are all irreducible. (This is in contrast 

with the situation when m(s I) = m(s 2) = 1 in which case there are only 

four left cells.) The two-sided cells are {e}, {Sl}, {S2SlS2 }, 

{s2,sls2,s2sl,SlS2Sl}, {SlS2SlS2}- 

7. If we specialize qli2/ to i, and take coefficients in @, the 

L ^L 
H -modules Ix/I x become left W-modules; they give a direct sum de- 

composition of the left regular representation of W; they are said to 

be the W-modules carried by the left cells (with respecto to 4)- Simi- 
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larly, IL~f LR become two sided W-modules;they give a direct sum de- 
x- x 

composition of the two sided regular representation of W. Hence the 

two sided cells give rise to an equivalence relation on the set of ir- 

reducible representations of W: two representations are equivalent if 

they can be connected by a chain such that any two consecutive ones ap- 

LR^LR 
pear in the same Ix/I x . The equivalence relation on the representa- 

tions is known in the case where ~(s) = q (Vs 6 S), by the work of 

Barbasch-Vogan [BV]. It coincides with the equivalence relation de- 

scribed in [LI]. It is likely that, in general, the equivalence rela- 

tion should still be that in [LI] , except that instead ofthe a-function 

used there one should use an a-function which depends on ~: for any 

irreducible W-module E, we define a (E) to be the order at 0 of 

the rational function in q giving the formal degree of the Hecke 

algebra H corresponding to E. In particular, it should be true 

that the a -function should be constant on each equivalence class. 

8. Let G be a simple adjoint group defined over C and let 6: G ÷G 

be an outer automorphism which leaves stable a Borel subgroup B c G 

and a maximal torus T c B. We assume that the corresponding map 6: 

W ~ W (W =Weyl group of G) is non-trivial. Let W 1 be the fixed 

point set of ~ on W. It is well known that W 1 is a Coxeter group 

with a set of generators S 1 corresponding to the orbits of ~ on S 

(= the simple reflections of W) ; to an orbit Q, there corresponds 

the longest element in the subgroup generated by 0. Let ~: W1 ~ {qZ} 

be the function defined by e(w I) = q ~(wl) where ~(w I) is the length 

of w I with respect to (W,S). Let y, w be two elements of W 1 

such that y < w. We shall give an interpretation of P* (defined 
- y,w 

with respect to ~) in terms of Schubert varieties, analogous to [KL2]. 

Let ~w C G/B be the Schubert variety corresponding to w and let By 

be the Bruhat cell corresponding to y. Then a acts naturally on ~w 

Let H~i(Bw )uy be the stalk of the 2i-th and on its subvariety By. 
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intersection cohomology sheaf of B at a point of B 
w y 

2i(B w) and we have by a. Then ~ acts naturally on H B 
Y 

~(w)- ~(y) 

(8.1) ~ Tr( 2i(~w) )qi = q 2 p, 
i>_0 a'HBy y,w. 

which is fixed 

(Note that Z is here the length function on W, not on WI.) The 

proof is similar to that of [KL2]. The formula (8.1) explains why the 

coefficients of P* may be negative. 
y,w 

9. The multiplication in the Hecke algebra can be interpreted in terms 

of a multiplication of complexes in a derived category of constructible 

sheaves over the flag manifold. (See [LV], [S].) This interpretation 

together with (8.1) allows us to deduce the following. 

= N C , Let y,w • W 1 and let us write Cy.C w zj~W 1 Y,W,Z 1 z I 

Ny,w,z I • ~[ql/2,q-i/2]- (an identity in the Hecke algebra of W I, with 

respect to ~). We can also consider y, w as elements in W and 

attach to them elements Cy, Cw in the Hecke algebra of W, with 

respect to ~(w) = qZ(W) . (Cw is just C w with respect to W.) We 

= ~y ~ ~ • z[ql/2 q-l/2] The coef- then have Cy.C w [ ,w,zCz ' y,w,z ' " 
z•W 

ficients of SySwCzNy,w,z ,(s w = (-l)g(w)), are ~0 and can be inter- 

preted as dimensions of certain vector spaces on which a acts when- 

ever z • W I. Moreover the trace of a on that vector space is the 

corresponding coefficient of Ny,w,z. It follows that 

(9.1) If z • W 1 and Ny,w,z ~ 0 then Ny,w,z # 0. 

From the definition of the left preorder 

easily that 

it now follows 
L,~ 

w with respect to the left preorder (9.2) If y,w • W 1 satisfy Y L,e 

of WI, ~ then they satisfy the similar inequality with respect 

to the left preorder of W,~. Hence any left cell of W 1 (with 
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respect to ~) is contained in a left cell of W (with respect 

to ~). 

i0. Assume, for example that (W,S) is a Weyl group of type A 
n 

(n ~ 3) and that ~ is the unique automorphism of order 2 of (W,S). 

Then (WI,S I) is a Weyl group of type Bn/2 if n is even and 

B(n+l)/2 if n is odd. The restriction of ~(w) = q~(W) to S 1 has 

values q2,q2 2 3 2 2 2 , .... q ,q if n is even and q ,q , .... q ,q if n is 

odd. It is known that each left cell of W contains a unique involu- 

tion and it carries an irreducible representation of 

W. It is clear that e: W + W permutes among themselves the left 

cells of W, and it maps each two sided cell of W into itself (since 

is an inner automorphism of W). Let n(W I) be the number of left 

cells of W 1 (with respect to ~) and let n(W) be the number of 

a-stable left cells of W. We have 

(i0.i) n(W I) ~ n(W) . 

Indeed, each s-stable left cell of W contains some element of W 1 

(for example, it contains a unique involution which is necessarily fixed 

by ~), hence by (9.2) it contains a left cell of W 1 (with respect 

to ~). Let n'(W I) be the sum of the dimensions of the irreducible 

representations of W I. Since the representations carried by the left 

cells of W 1 (with respect to ~) give a direct sum decomposition of 

the left regular representation of W I, we see that 

(10.2) n'(Wl) ~ n(W I) 

with equality if and only if each left of cell of WI, ¢ carries an 

irreducible representation of W I- 

Now let E be an irreducible representation of W. According to 

[KLI] , E admits a natural basis (e i) in i-i correspondence with 

the set of left cells contained in the two-sided cell ~ of W cor- 

responding to E. This basis has the following property: the permutation 
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defined by a on the set of left cells in ~q corresponds to the permu- 

tation of the basis (ei) defined by the action of _+w 0 on E, where 

w 0 is the longest element in W. Thus, the number of a-stable left 

cells in £ is equal to ITr(w0,E) I , hence 

(10.3) n(W) = [ ITr(wo,E) I , 
E 

with the sum over all irreducible representations E of W. 

Next, we note that there exists an imbedding W] c W v of the set 

of irreducible representations of W 1 into the analogous set for W 

with the following property: if E 1 E W{ corresponds to E 6 W v, 

then Tr(Wo,E) = _+dim El, and if E 6 W v is not in the image of our 

imbedding, then Tr(wo,E) = O. This can be seen by direct computation, 

using Murnaghan's rule, or one can argue as follows. We can regard W 

as the Weyl group of a unitary group over a finite field F r and W 1 
P 

as the relative Weyl group. The unipotent representations of the 

unitary group are parametrized by the elements of W v and the unipotent 

representation corresponding to E 6 W ~ has degree given by a poly- 

r 
nomial in p which for r ~ 0 becomes -+Tr(w0,E). This polynomial 

( r 
is divisible by p - i) unless the unipotent representation is in 

the principal series. The unipotent representations in the principal 

series are parametrized by the irreducible representations of W 1 and 

the representation corresponding to E 1 e W{ has degree given by a 

polynomial in pr which for r ~ 0 becomes dim E 1 . Hence our asser- 

tion follows. We seen then from (10.3) that 

n(W) = ~ dim(E1) , 

with the sum over all irreducible representations 

n(W) = n' (W I) . 

Comparing with (I0.i) and (10.2) it follows that 

E 1 of W[, hence 

n(W I) : n(W) = n' (W I) 
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hence we have proved the following. 

ii. Theorem. Each left cell of W 1 (with respect to ~) carries a__nn 

irreducible representation of W I. It contains a unique involution and 

is the intersection of W 1 with a left cell of W (= symmetric group 

Sn+l)- 

12. In the case where (W,S) is a Weyl group and ~(s) = q for all 

s e S, one can use the character formulas [L 2] for the unipotent re- 

presentations of a semisimple group over a finite field, to get some 

new information on the structure of left cells in W. For example, 

when (W,S) is of type B n or D n one can prove [L 2] that 

(12.1) Any left cell in W carries a representation of W which is 

multiplicity free and has a number of irreducible components 

equal to a power of 2. Moreover the set of irreducible com- 

ponents can be organized in a natural way as a vector space 

over the field with 2 elements. 

[BV]. 

[KL 1 ] . 

[KL 2 ]. 

[L 1 ] • 

[L 2 ] • 

[LV] . 

[S]. 
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