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In [KLl], Kazhdan and myself have defined a partition of an arbi-
trary Coxeter group into subsets called left cells. These subsets en-
ter in an essential way in the classification of primitive ideals in
the enveloping algebra of a semisimple Lie algebra. 1In this paper we
shall generalize the definition of [KLl] to include the case where the
simple reflections are given different weights. We shall give an ap-
plication of this to Schubert varieties. We shall also give some exam-
ples concerning a Weyl group of type Bn'
1. Let (W,S) be a Coxeter group and let ¢: W - T be a map of

W into an abelian group' I such that @(sls2 ...8 ) = @(sl)@(sz)---

p

¢(sp) for any reduced expression in W. We shall set

S8, - -8,
¢o(w) = qi/zl (w € W). Let H¢ be the Hecke algebra of W with re-

spect to ¢; this is an algebra over the group ring Z[T]. As a XI[I']-

module, it is free with basis Ty, (w € W). The multiplication is de-
fined by
(TS + 1) (Tg - qs) = 0, (s € 8)
T s s = T T ...T , |if $18,..-8 is a reduced expres-
S1S .- p S, S, sp P )

sion in W.
The unit element is Te. It will be convenient to introduce a new basis

T Tw’ (w € W). We then have

i
Y (B, - a2) =0, (s € 8)

*
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T = T T ...T , if s.s....s is a reduced ex-
§185--:S sy 8, Sp 172 p
pression in W.
Let a -+ a be the involution of the ring ZI[TI'] which takes y to
Y_l for any v € I'. We extend it to an involution h - h of the ring
H@ by the formula
S _ = ~=1
Y afT = ]ar_,, (a, € z[r]).
w w w
1 1
S R 2 2 ~ L ,
(Note that TS = TS + (qS qs), s € S, hence Tw is ivertible for
all w € W.) Let us define elements R; v € z[T], (x,y €W, by
~=] —% 0~
R T .
Ty—l i X,y'X
It is easy to see that R; v = 0 unless x < vy 1in the standard partial
’

order of W. Using the fact that h - h

is an involution, we see that

(1.1) R* Rr* =
XSy<z XY Y.2 X, 2
for all x < z in W. Note also that q_l/qu/zR* emirl.
X v X,y
For example, R; < = 1 for all x € W. Let ¢ be the length function
on W.
(1.2) If x <y, ¢£(y) = £(x) + 1, then x is obtained by dropping
s € S in a reduced expression of y, and we have R; v =
1/2 -1/2
qs/ - 44 .
(1.3) If x <y, £(y) = ¢2(x) + 2, then =x is obtained by dropping
s €S and t € T 1in a reduced expression of y, and we have
172 -1/2 1/2 -1/2
* = - -
RE,y = (95 qg " ) (ay a9

We now assume given a total order on T

structure on T. Let T be the set of

+

strictly positive for this total order and let

compatible with the group

which are

)7t

elements of T

r_ = (r, We shall
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assume that qi/z € F+ for all s € S. We have

2. Proposition. Given w € W, there is a unigue element C& € H

¢

such that

él = C'

\4 w

c. = § px T

w y3w YWYy
where P* =1 and, for any y < w, P* is a Z-linear combination
—_— W, W —_——_— y,aWw = =

. -1/2 1/2_, 2

of elements in T _. Moreover, qy Iy, Py,w € Z[r°].

(When £ 1is constant on S, this is the same as (l.1l.c) of [KLl].)

We must show that the system of equations

(z.1) p* = 1
W,W
(2,2) p* ~- p* = R* px* ¥YX < W
X, W X,W X<§fw X,Y YW ! ( ) !
with unknowns P?* ;has a unique solution such that P* is a Z-
X, W X,W

linear combination of elements in T_, for X < w. This is shown by
induction on £(w) - £(x). The uniqueness is clear. To show existence,
we shall use a suggestion of 0. Gabber, which simplifies somewhat the
original proof in [KLl]‘ We fix x < w and assume that for all vy,

X <y = w, the P; w have been already constructed and have the re-
I

quired property. It is then enough to show that z R* p* =

x<pzw XY YoV
- ) R* p* w+ But we have
X<YEW XY Yo
I Rr P* = ) R¥ R P*
X<YEW XY Yo X<YSZEW XY Yo ’
= R* R* ©Pp* - R¥* * )
x<§<w (x<§<2 X,V Y2 2,W X,2 2,W
and, using (1.1), this equals - 2 R; zP§ w ' as required. The last
’ r

X<ZEW
assertion follows from (2.2). This completesthe proofof the proposition.
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3. Now let s € S, we&W be such that w < sw. For each y such

that sy < y < w, we define an element

M° € z[T]
YW
by the inductive condition
* s _ /2% ; . . .
(3.1) z Py,zMz,w dg Py,w is a combination of elements in T_
Y=Z<W
sSzZ<Z
and by the symmetry condition
(3.2) M = M .
YIW YIW

The condition (3.1) determines uniquely the coefficient of ¥ in

M for all y € T - T_; the condition (3.2) determines the remain-

YW
—l/2q—l/2ql/2Ms

ing coefficients. We have dg v w v.w € Z[Tz].
’

4. Proposition. Let s € S§ and let w € W. Then:

T _1/2 ] —_ 1 S ] :
(4.1} (Ty + ag e, = ¢, * ) M, WCo if w < sw
Z<W
SzZ<2
qo_ LL/2y 0 i
(4.2) (TS qS )Cw = 0, if w > sw
(compare with (2.3.a), (2.3.¢) in [KLII).
Proof. If w = e, then (4.1) is clearly true. Now assume that w # e

and that the proposition is already proved for all w' < w. Using (4.2),

we see that

(4.3) PS . = ;l/zP;u z if u<su=2z, sSz< Z < W.
r r

Case l: w < sw. Consider the left hand side minus the right hand side

of (4.1). The coefficient of %y in that expression is
e/2 s
£ = P*  + P* - p* - P* M
1% dg y,w Sy ,W Y, SW y5£<w V.2 2,W

SZ<Z
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1 if sy <y
where ¢ = and P; < is defined to be zero whenever
-1 if sy > ¥y !

x £ x'. If sy <y, then (3.1} shows that fy is a Z-linear combina-

tion of elements in T_. If sy > y, then applying (4.3) we see that
£ 0= q;l/2p* +PX - PE - q Y2 y  px zMi w
Y v.w Yy Y S SY=2Z<W SY . !
SZ2<2

It follows that

- -1/2 ~1/2, %
fy dg fsy + 9 Psy,sw Py,sw
hence, again, fy is a Z-linear combination of elements in T_. But
(T + q_l/z) = C! C' M are each fixed by the involution h - h
s s s’ w' z,w Y .
Hence Z £ET = Z £ T . Assume that some f is non-zero. We can
vy v Yy 0
take y0 to have maximal possible length subject to the property fy
0
# 0. Then the coefficient of T in § £ T  is equal to f_ . Thus
0 Yy Yo
Yy
f = £ . This contradicts the fact that £ is a non-zero combina-
YO Yo Yo
tion of elements in T_. Thus we have fy =0 for all y € W and

(4.1) is proved for w.

Case 2: w > sw., Applying (4.1) to sw, we see that

' — m -1/2 4 _ 1
Co = (Tg * ag )Csw ) Mz swiz*
Z<SW
S2Z<2
Clearly, (%s q;/z)(%s + q;l/z) = 0 and, by the induction hypothesis,
(TS - g 172 )C =0 for all 2z, (z < sw, sz < z). Hence (%S - qi/z)cé
= 0, as required.
5. Proposition. Let y <« w be such that ¢(w) = £(y) + 1. Then vy

is obtained by dropping a simple reflection s in a reduced expression

of w.
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-1/2
* =
(a) We have Py,w 94
(b) Let t be a simple reflection such that ty <y < w < tw.
Then
. 1/2 1/2
0, if qt < qs
t - . 1/2 _ 1/2
My,w 1, if i = qg
1/2 -1/2 -1/2 1/2 . 1/2 1/2
95 9 + dg qy if d¢ > dg
Proof. From (1.2) and (2.2) we see that
= 1/2 -1/2
* - * = * = -
Pow T Fyw Ryow s dg
and (a) follows. If t is as in (b), then by (3.1) and (a), M§ w "
1/2 -1/2 . . , .
ay’ Tdg must be a Z-linear combination of elements in T_. From
this and from (3.2), the desired formula for M; W follows.

6. Let J: H(P - H@ be the ring involution define

d by 3 (é awTw)

) awaw%w’ where e = (-1)°") | It commutes with the involution h
w
—_ J 1
Let C_ = swj(Cw). Then
C = = % T
c, c, and C_ wa eyt Py,wTy' (Compare [KL;, 1.1].)
Applying j to (4.1) and (4.2) we get:
(6.1) (. -q%ec = c_ -7 M C, if W< sw
- s s w swW Z' W Z,W 2
Z<w
$2<2
~ ~-1/2 .
(6.2) (TS + qs )Cw 0, if w > sw.
Let 3 H@ - H¢ be the anti-automorphism of the ring H@ defined by
]'(%w) =T -1 and j'(a) = a for a€zlrj. It is easy to see that
\
j'(Cw) =C -1 Therefore, from (6.1) and (6.2) we can deduce

w
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5 1/2 _ _ s ,
(6.3) c (T, -af) = c . zz e e M 1 _1C,0 if w < ws
<W Z W
zZ8<2
= -1/2, _ .
(6.4) Cw(Ts + dg ) = 0, if w > ws.

Let < be the preorder relation on W generated by the rela-

L,¢
tion "x' st x 1if there exists s € S such that CX. appears with
non-zero coéfficient in %s.cx (expressed in the Cw-basis)." We call
it the left preorder. The equivalence relation associated to LS is
r
denoted ~® and the corresponding equivalence classes in W arz
’

called the left cells of W (with respect to ¢). Given x,y€ W, we

say that x = y 1if there exists a sequence x = KyrXyreeerX) =Y
2%
of elements in W such that for i = 0,1,...,n-1, we have either
X, =  X. or le = le . The equivalence relation on W cor-
ig,e Titl i e Titl
responding to the preorder < is denoted ~ and the correspond-
R, LR,o

int equivalence classes on W are called the two sided cells of W.
(These notions were introduced in [KLl] in the case where ¢ 1is con-

stant on S.)

For any X € W, we denote Ii (resp. fi) the ZI[r]-submodule
of H¢ spanned by the elements Cy, y = %, (resp. by the elements
L,e
C., v =X, yv # x). We define similarly IER and fiR, by re-
y L, L,op
placing < by ~ in the previous definition. It is

=,
LR, LR,

clear from (6.1)-(6.4) that Ii, fi are left ideals of H@ and that
LR 2LR

. . L ,2L .
IX y IX are two-sided ideals of H¢' Hence IX/IX is a left Hw

, ~
L,¢ L,o

module with a natural basis given by the images of Cy for y in the
left cell of x; IiR/fiR is a two sided H¢—module with a natural
basis given by the images of Cy, for y in the two sided cell of x.
With respect to this basis, the action of %s (s € 8) 1is given by a
matrix which is completely determined by the elements M;,w'

From now on, we assume that I is the infinite cyclic group with

generator ql/2 with the order relation ql/2 = qj/2 e i1 = j. We then
have qi/z = qm(w)/2 where m: W - {1,2,3,...}. 1In this case, we have
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m(w) -m(y)
P;,w S %[q_l/z] and q P;,w € Z[g]l] for any y = w. Moreover
P;,w has no constant term if y < w. From (3.1) we see that, when
m(s)-1
defined, Mo q 2 € %[ql/z]. In particular, Mo is a constant
YW YW
whenever m(s) = 1. (This is the case considered in [KLl].)

Consider, for example, the case where (W,S) is a Weyl group of
4

type B, with 8 = {sl,sz}, (slsz) = 1, and let m(sl) =1, m(sz) =
c > 2., We have:
_c+l _c-1 2c+1 _2c-1
2 2 2 2
* = * —
= g - g ’ P = q - qgq
52152819 €r5,%15,
_c+l _c-1 c+2 c
2 2 2 V3
p* = q + g ’ p* = q + g
S1/818,8, €,51S,8;
m(y) _m(w)
and P; w = g 2 2 for all other pairs vy =< w. (In particular,
1
P; w may have negative coefficients.) We have
r
c-1 ~c+1
2 _ 2 - 7 51 S1 _
S.S.,5,8,S, Mg ,s.s. = 4 +tq ’ My s ,s.s.s.,  Ms.,s.s. ~ 0.
2717717271 277172 1727727172 177271

The left cells are:

{e}, {Sl}’ {82'3182}' {szslsz}, {szsl,slszsl}, {slszsls2

The corresponding H¢—modules Ii/fi

l/2))

(with scalars extended to an al-
gebraic closure of @f{g are all irreducible. {(This is in contrast
with the situation when m(sl) = m(sz) = 1 in which case there are only

four left cells.) The two-sided cells are {e}, {sl}, {525152},

{sz,slsz,szsl,slszsl}, {slszslsz}.

7. If we specialize ql/2 to 1, and take coefficients in @, the

Hw—modules Ii/fi become left W-modules; they give a direct sum de-
composition of the left regular representation of W; they are said to

be the W-modules carried by the left cells (with respecto to ¢). Simi-
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larly, Ii?fiR become two sided W-modules; they give a direct sum de-
composition of the two sided regular representation of W. Hence the
two sided cells give rise to an equivalence relation on the set of ir-
reducible representations of W: two representations are equivalent if
they can be connected by a chain such that any two consecutive ones ap-
pear in the same IiﬁfiR. The equivalence relation on the representa-
tions is known in the case where ¢(s) = g (ys € S), by the work of
Barbasch-Vogan [BV]. It coincides with the equivalence relation de-

scribed in [Ll]' It is likely that, in general, the equivalence rela-

tion should still be that in [L1], except that instead of the a-function

used there one should use an a-function which depends on ¢: for any
irreducible W-module E, we define aw(E) to be the order at 0 of
the rational function in q giving the formal degree of the Hecke
algebra HQ corresponding to E. In particular, it should be true

that the am—function should be constant on each equivalence class.

8. Let G be a simple adjoint group defined over € and let a: G +G
be an outer automorphism which leaves stable a Borel subgroup B ¢ G
and a maximal torus T < B. We assume that the corresponding map «a:

W -+ W (W=Weyl group of G) is non-trivial. Let W be the fixed

1
point set of ¢« on W. It is well known that Wl is a Coxeter group
with a set of generators Sl corresponding to the orbits of o on S
(= the simple reflections of W); to an orbit (@, there corresponds

4
the longest element in the subgroup generated by 0. Let o: Wl - {d}
g (wy)

be the function defined by @(wl) = q where z(wl) is the length

of Wy with respect to (W,S). Let y, w be two elements of W1

such that y = w. We shall give an interpretation of P§ w (defined
7

with respect to ¢) in terms of Schubert varieties, analogous to [KLzL

Let Ew C G/B be the Schubert variety corresponding to w and let By

be the Bruhat cell corresponding to y. Then a acts naturally on Bw

and on its subvariety By. Let H%l(éw) be the stalk of the 2i-th
Y
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intersection cohomelogy sheaf of §w at a point of By which is fixed

by a. Then «¢ acts naturally on Hgi(ﬁw) and we have
y

2(w)-2(y)

2i,= i 2
(8.1) Tr(a,H B = p*
igo ( By( W) B YW,

(Note that ¢ is here the length function on W, not on W,.) The

1
proof is similar to that of [KL2]. The formula (8.1) explains why the

coefficients of P; w may be negative.
14

9. The multiplication in the Hecke algebra can be interpreted in terms
of a multiplication of complexes in a derived category of constructible
sheaves over the flag manifold. (See [LV], [S].) This interpretation
together with (8.1) allows us to deduce the following.

Let y,w € W and let us write Cy-C =

E
zj Wl

14

1 1

N .z C
YI:lZ

N € %[ql/2’q-l/2] (an identity in the Hecke algebra of W,, with
Ylwrzl 1

respect to ¢). We can also consider y, w as elements in W and

attach to them elements C_, éw in the Hecke algebra of W, with

respect to g¢(w) = qE(W). (EW is just Cw with respect to W.) We
= ~ ~ ~ 1/2 -1/2
. = € . -
then have Cy Cw Z;W Ny,w,zcz’ Ny,w,z Z{g ,q 1 The coef
- v _ 1yt (W) i -
ficients of 5y8wSzNy,w,z ,(sw = (-1) ), are =0 and can be inter

preted as dimensions of certain vector spaces on which « acts when-

ever z € Wl' Moreover the trace of a on that vector space is the

corresponding coefficient of Ny S It follows that

Wy

. [S N 0.
(9.1) If =z wl and Ny,w,z # 0 then Ny,w,z #

From the definition of the left preorder LS it now follows
P

easily that

(9.2) If y,w €W satisfy y = w with respect to the left preorder

1 L
P
of Wl,@ then they satisfy the similar inequality with respect

to the left preorder of W,p. Hence any left cell of Wj; (with
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respect to ) 1is contained in a left cell of W (with respect

to (p) .

10. Assume, for example that (W,S) 1is a Weyl group of type An
(n = 3) and that « 1is the unique automorphism of order 2 of (W,S).
Then (Wl,sl) is a Weyl group of type Bn/Z if n 1is even and

2w
- W

to Sl has

B(n+l)/2 if n is odd. The restriction of ¢ (w)
values qz,qz,...,qz,q3 if n 1is even and qz,qz,...,qz,q if n is
odd. It is known that each left cell of W contains a unigue involu-
tion and it carries an irreducible representation of

W. It is clear that a: W > W permutes among themselves the left
cells of W, and it maps each two sided cell of W into itself (since
a 1s an inner automorphism of W). Let n(Wl) be the number of left
cells of W1 (with respect to ¢) and let n(W) be the number of
a-stable left cells of W. We have

(10.1) n(Wl) = n(W).

Indeed, each a-stable left cell of W contains some element of Wl
(for example, it contains a unique involution which is necessarily fixed

by «a), hence by (9.2) it contains a left cell of W (with respect

1
to ¢). Let n'(Wl) be the sum of the dimensions of the irreducible

representations of W Since the representations carried by the left

1
cells of Wl {(with respect to ¢) give a direct sum decomposition of

the left regular representation of W we see that

1

(10.2) n'(Wl) =

with equality if and only if each left of cell of Wl,w carries an
irreducible representation of Wl.

Now let E be an irreducible representation of W. According to
[KLl]’ E admits a natural basis (ei) in 1-1 correspondence with

the set of left cells contained in the two-sided cell @ of W cor-

responding to E. This basis has the following property: the permutation
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defined by a on the set of left cells in & corresponds to the permu-
tation of the basis (ei) defined by the action of W on E, where
w5 is the longest element in W. Thus, the number of a-stable left

cells in § 1is equal to ]Tr(wO,E)l, hence

¢10.3) n(w) = 7§ |Tr(w0,E)|,
E

with the sum over all irreducible representations E of W.

Next, we note that there exists an imbedding W, C WY of the set

1
of irreducible representations of Wl into the analogous set for W
with the following property: if E; € Wi corresponds to E € WY,

then Tr(wO,E) = +dim E and if E € W~ 1is not in the image of our

l’
imbedding, then Tr(WO,E) = 0. This can be seen by direct computation,

using Murnaghan's rule, or one can argue as follows. We can regard W

as the Weyl group of a unitary group over a finite field F r and W
p

as the relative Weyl group. The unipotent representations of the

1

unitary group are parametrized by the elements of WY and the unipotent
representation corresponding to E € W™ has degree given by a poly-

nomial in pr which for r - 0 becomes tTr(wO,E). This polynomial

is divisible by (pr - 1) unless the unipotent representation is in

the principal series. The unipotent representations in the principal
series are parametrized by the irreducible representations of Wl and

the representation corresponding to E, € Wi has degree given by a

1

polynomial in pr which for r - 0 becomes dim E;. Hence our asser-

tion follows. We seen then from (10.3) that

n(W) = ] dim(E),

with the sum over all irreducible representations E of WY, hence

1
n(wW) = n'(Wl).
Comparing with (10.1) and (10.2) it follows that

n(W,) = n(WwW) = n'(Wl)

1
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hence we have proved the following.

11. Theorem. Each left cell of Wl {with respect to ¢) carries an

irreducible representation of wl. It contains a unique involution and

is the intersection of W, with a left cell of W (= symmetric group

sn+l)'

12. In the case where (W,S) is a Weyl group and ¢(s) = q for all
s € S, one can use the character formulas [L2] for the unipotent re-
presentations of a semisimple group over a finite field, to get some
new information on the structure of left cells in W. For example,

when (W,S) 1is of type Bn or Dn one can prove [L2] that

(12.1) 2any left cell in W carries a representation of W which is

multiplicity free and has a number of irreducible components

equal to a power of 2. Moreover the set of irreducible com-

over the field with 2 elements.
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