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CUSPIDAL LOCAL SYSTEMS
AND GRADED HECKE ALGEBRAS, I

by GeorGE LuszTtic (%)

Introduction

The Hecke algebra attached to a finite (resp. affine) Weyl group plays a very
important role in the representation theory of a reductive group over a finite (resp.
p-adic) field. It is also of considerable interest to consider Hecke algebras in which the
parameters attached to the simple reflections s; are powers ¢™ of ¢ (depending on s,)
where n, are integers > 1 subject only to the condition that n, = n, if 5;, 5, are conjugate.
These more general Hecke algebras arise typically as endomorphism algebras of repre-
sentations induced by cuspidal representations of parabolic (resp. parahoric) subgroups,
trivial on the * unipotent radical ”. (See [7, p. 34, 35].)

We would like to understand such Hecke algebras with unequal parameters from
a geometric (rather than arithmetic) point of view and to classify their simple modules
(in the affine case), extending the known results [5] for equal parameters. I believe that
the proper setting for these questions is in equivariant K-homology (as in [3], [5]),
mixed with the cuspidal local systems of [9]. This is made very plausible by the results
of this paper, in which we replace the affine Hecke algebra by a certain graded version.

The connection between an affine Hecke algebra and its graded version is ana-
logous to the connection between a reductive group and its Lie algebra or the connection
between K-theory and homology. (In fact this is more than an analogy.)

0.1. We shall now define this graded version H of an affine Hecke algebra.

Let t be a G-vector space of finite dimension and let R C t* be a root system, with
a set of simple roots II ={«,, ..., a, } and Weyl group W with corresponding simple
reflections { 5y, ..., s, }. (Thus " has a direct sum decomposition, one summand consis-
ting of the W-invariants, the other having II as basis.) Let S be the symmetric algebra
of 1*®C; we denote r = (0,1) et*®GCS. Let ¢y, ..., ¢, be integers > 2 such that
¢; = ¢; whenever s;, s; are conjugate in W. Let £ “§ be the natural action of W
on S and let ¢ be the neutral element of W.

(}) Supported in part by the National Science Foundation,

19



146 GEORGE LUSZTIG
By definition, H is the C-vector space S ® CG[W] with a structure of associative
C-algebra with unit 1®e, defined by the rules:
a) S>H, £-»£®e¢, is an algebra homomorphism
b) C(W] - H, w1 ®uw, is an algebra homomorphism
¢c) EQe).(10w) =E®w, (EeS,weW).

d) (19®s) (E®e) — (E®e) (1®5,) = cirg —

®e, (EeS,1<i< m).

The algebra H arises in nature as the graded algebra associated to a certain natural
filtration of an affine Hecke algebra (with unequal parameters); this can be used to show
that the multiplication given by a)-d) is well defined.

The variable r appearing in H should be thought of as related to ¢ of the Hecke
algebra by ¢ = ¢*". Thus, just as the Hecke algebra specializes for ¢ — 1 to the group
algebra of the affine Weyl group, the algebra H specializes for r — 0 to the ¢ semidirect
product > of S(t*) and C[W]. (This semidirect product has been considered in recent
work of Kostant and Kumar.)

0.2. The main observation of this paper is that H can be realized geometrically
for many choices of the ¢; in terms of equivariant homology. (The experience of [5]
has shown that equivariant K-homology is much better behaved than equivariant
K-cohomology; for this reason we use equivariant homology instead of the more familiar
equivariant cohomology. See § 1 for the definitions.)

Let G be a reductive connected algebraic group over G, with Lie algebra g. We
fix a parabolic subgroup P with Levi subgroup L, and unipotent radical U; let p, [, n be
the Lie algebras of P, L, U. We also fix a nilpotent L-orbit € in | carrying an irreducible
cuspidal L-equivariant local system £ (in the sense of [9].)

Let t be the centre of I. Let R Ct* be the set of non zero linear forms on t which
appear as eigenvalues in the ad-action of t on g. Then R is a root system with a canonical
basis II and with Weyl group W = N(L)/L.

We consider the varieties

a) gy ={(x,gP) eg X G/P|Ad(¢g"Y) x e € + n}
b) 85 ={(x 2P, ¢'P) eg X G/P X G/P| (x, gP) €8y, (x,&'P) e gy }.
We have a natural G x G'-action on §y:
¢) (&, : (% gP) > (A7 Ad(2)) #, &1 &P)
and this induces a G X C*-action on §y.
The local system % on € gives rise via the function prg(Ad(g~?') x) to a local

system Z on §y. Let £ be the pull back of & X £* under §y <> §y X §y. This is a
G X C'-equivariant local system on gy.
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We consider the vector space
d) H$* % (gy, £)

(equivariant homology). Using the two projection gy — gy and the cup-product one
can regard d) as a module over Hg, o(dx) = SH"®C) =S in two different ways.
We can also define on d) a W X W-action using the method of [8], [9] of constructing
Springer representations in terms of intersection cohomology.

It turns out that these module structures allow us to regard d) as the two sided
regular representation of an algebra H as above. This gives a topological realization of
the algebra H on the vector space d); the constants ¢; (1 < i< m) can be determined
explicitly.

0.3. The case with equal parameters ¢; = 2 is obtained by taking in the previous
setting P to be a Borel subgroup, ¥ =0, ¥ = C.

This is the case studied in [5] in K-theoretic terms; even in this special case, the
present construction of the W-action is quite different from that of [5] where no
intersection cohomology was used. It is likely that in general case, one can realize

the affine Hecke algebra (with unequal parameters) as an equivariant K-homology
K3 (8, £).

0.4. Our method leads also to a parametrization of all simple H-modules on
which 7 acts as 7, € C*, in terms of parameters (x, 5, p) (up to G-conjugacy) where x
is a nilpotent element of g, ¢ is a semisimple element of g such that [, ] = 27, x and
p is an irreducible representation of a certain finite group. (The equation [o, ] = 27y x
is the Lie algebra analogue of the equation Ad(s) ¥ = ¢, ¥ appearing in the parame-
trization of [5].) The parametrization of simple H-modules will be established in a
sequel to this paper.

0.5. Notation. — All algebraic varieties are assumed to be over C and all alge-
braic groups are assumed to be affine. The stalks £, of a constructible sheaf # (in
particular a local system) are assumed to be finite dimensional G-vector spaces. If X is
an algebraic variety, we denote by 9X or 2%(X) the bounded derived category of com-
plexes K of G-sheaves on X whose cohomology sheaves 5#* K are constructible. If
f:X’ - X is a morphism, then f,: X' - 29X, f,: X' - DX, f*: DX — DX’ are
the usual functors. If K € 92X, we denote by H(X, K), Hi(X, K) the hypercohomology
(resp. hypercohomology with compact support) of X with coefficients in K. If .# is a local
system on X, we identify % with the complex K € 92X such that #°K = L, #' K = 0
for i + 0. In particular, H'(X, %) = @ H{(X, %) and H{(X, %) = D H{(X, %) are
well defined. ' '

We shall often denote the inverse image f* % of £ under a morphism : X’ - X
again by 2.
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We have induced homomorphisms:
fH(X, ) -H{(X', #) (inverse image)
[T HIX, #) - H{(X', £) (inverse image, if f is proper)
Sy tHIX', #) > Hi~*%(X, &%) (integration along fibres, if f is a locally trivial fibration
with all fibres of pure dimension 3)
S HIX!, &) - Hi(X, &) (extension by zero on X — X', if fis an open embedding).
When £ = C, we write H(X), H(X) instead of H (X, C), Hi(X, C).

We shall denote by an upper-script® the dual of a vector space or of a local system.
If G is a group acting on a vector space V, we denote the space of G-invariant vectors
by V€.

We shall denote S(V) = G?S"(V) the symmetric algebra of V; in particular

S1'V = V; we regard S(V) as a graded algebra: we assign degree 2j to the elements
of SV,

If G is an algebraic group, we denote by G? its identity component. If H is a sub-
group of G we denote by #/'H or #; H the normalizer of H in G.
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1. Equivariant homology

1.1. Let G be an algebraic group and let X be a G-variety, that is an algebraic
variety with an algebraic action. Let # be a G-equivariant local system (or G-local
system, for short) on X.

We want to define for an integer j, the equivariant cohomology Hi(X, &) and the
equivariant homology H(X, &£).

When G ={¢}, then

Hi{(X, %) =H/(X,%) and HYX, &%) =H¥mX-i(X £

In the general case, we follow Borel’s procedure [2] to define H{( ). For this we

choose an integer m> 1 such that m> j and

a) asmooth irreducible free G-variety I' such that H(I') = 0 fori =1, ..., m. ( Free ”
means that there exists a locally trivial principal G-fibration I' — G\TI'.)
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In Borel’s definition of H( ), I' is not required to be smooth; but the smoothness
is important for our definition of H}( ); it implies that H24™T=T') = O fori=1,...,m.

(In any case, a I' as in a) exists, as it is well known: embed G as a closed subgroup
of GL,(C), then GCGL,(C) x {¢}CGL,(C) x GL,.(C)CGL, ,(C) hence G acts
freely by left translation on I' ={e¢} X GL,(C)\GL,, ,.(C); this " has the required
properties as soon as 27" > m + 2.)

If G acts freely on a variety Y and & is a G-local system on Y, then & gives rise
to a local system & on Y = G\Y; the stalk &; at J € Y is the space of G-invariant vectors

in H1 &, (where ©:Y —Y is the canonical map); G acts naturally on this direct
yen My

product by the G-equivariance of &.

Applying this to Y = I' X X with the diagonal free action of G and to &, the
inverse image of % under pry: ' X X - X, we find a local system & = % on
def

X = G\(I' x X).
By definition,
H{(X, &) = H' (X, &), Hi(X, &) = HY 7 /(cX, r.2")"
where d = dim(:X). (When X is empty, 4 is not defined and we set H}(X, %) = 0.)
Hence Hi( ), H}( ) are zero for j < 0. We shall write H}(X), H%(X), instead of
Hi(X, C), H{X, C).
One has to verify independence of the choice of m, I'. Let (m’, I') be another

choice for (m,I'); then (m 4+ m’,T" X I') is also such a choice.
We have diagrams

H(X, 1%) 5 Hip v X, py 0 ) EHI(LX, 0 2)
H2=3( X, L") <& HEP (1 X, py &) 3 HE ~ (X, 1.2")
where d' = dimp X, D =dimp, » X and f:p,pX = X, f':pypX - X are the

canonical fibrations with fibres isomorphic to I, I' respectively.

The maps f~, f*, f;, fy are isomorphisms; for f*, f'* this is well known and for f,, f,
it follows from the lemma below.

Then (f'*)7'of" and the transpose of f, o (f,) ™" establish the independence of
the definitions of the choices made.

Lemma 1.2. — Let f: X' — X" be a locally trivial fibration such that all fibres f~(x")
are irreducible of dimension &' and satisfy H2¥ ~}(f~'(x"),C) =0 fori=1,...,m'. Let &
be a local system on X'. Let &’ = dim X', &' = dim X"'. Then

fy HE X £ 8) - HE (X", &)
is an isomorphism for 0< 1< m'.

Proof. — We have a canonical spectral sequence
Ere = Hy(X",#°f f* &) = H*YX", f.f* ) = H (X", f* &).
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We have
Hi(X’,f‘ é’) onto EZO——28’,28’ C.. . C E;’—28’,28’C Eé’—28',28’
= HI-2¥(X" &).
The composition of these maps is by definition f,. It remains to show that in our
case, we have

a) Ep =028 — B 628 — | _ EMI-02 _ HW (X', f* €) for 0< i< m.

We have EZ'2¥ ~# = 0if 1< i< m’ and E2? = 0 if p > 24". From this a) follows.

1.3. Consider the product
a) H{(X) ®H{(X, £) -~ Hi" (X, £)

defined by the cup-product
H/(:X) @ H (X, 1&) - H' "7 (X, 12).

where I'is as in 1.1 a) with large m.
Similarly, the cup-product

HY(pX) ® Hy! "9+ (X, v &%) — He? =7 (0 X, rn&”)
gives rise to a pairing
HI(pX) @ HY =/ (X, 1.27)" > HY# =0+ (X, 127)°
hence to a product
b) Hj(X) © HY(X, £) -~ HS, (X, £).
One verifies that a), b) are independent of (m, I').
This makes Hi(X) = G? H(X) into a graded C-algebra (commutative in the
graded sense) with 1 and
HyX, %) = DHiX, %), HYX, %) =DH{X, 2)
J J

into graded Hg(X)-modules.

1.4. We discuss the functorial properties of Hg( ), H®( ). Let f: X’ - X be a
G-equivariant morphism between two G-varieties X, X', let # be a G-local system
on X' and let &’ = f*#. We have natural homomorphisms:

a) fr:HYX, £) - H{(X', £') (in general)

b) fi *HY samx —amn(X's £7) - HY(X, £) (if f is proper)

¢) [ HYX, &) > H}(X', &) (if fis a locally trivial fibration with irreducible fibres
of fixed dimensjon)

d) f*:H$X, &) > H? sumx —amx(X's £’) (if fis an open embedding).
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In terms of a I' as in 1.1 a) with m large these maps are defined respectively by
(or by transposes of):

) (of ) 1 H(eX, p &) - H (X, 1 L)

) (of) HP? (e X, v &) = HP (X, p &)

) (o )yt HE TI(eX, pn#7) - H? (X, 1.27)

d) (nf), : HE= (X!, n27%) > HE 3 X, 1 2")

(see 0.5) where f:pX — X’ is the map induced by Id X f:T' X X - T X X,

d = dim X, d' = dim :X'.

¢) If fis a G-equivariant vector bundle with fibres of fixed dimension then f* in a)
and ¢) are isomorphisms.

This follows from the definitions.

Now let G’ <> G be a closed subgroup of G. If X, & are as in 1.1, then X is also
a G’-variety and we have a natural homomorphism

f) HiX, 2) -~ Hf (X, 2).

It is defined as follows. Let I" be as in 1.1 a) with m large. Then T is also a free
G'-variety. Then (f) is the transpose of

9y s Hi H(G\(T' X X), ¢*(r-£")) > HF/(G\(T' X X), n&")
defined as integration along the fibres (~ G/G’) of the canonical fibration
e:G\(I' x X) - G\(I" x X).
(d = dim(G\(T' X X)), d’ =dim(G’'\(T" x X))).
Similarly, we have a natural homomorphism
¢) Hi(X, Z) -~ Hy (X, £)

defined as
o' : H(G\(T' x X), &) - H(G'\(T' x X), ¢*(pL"))-

From the definition of f) and g) we see that:

k) If G/G’ is isomorphic as a variety to an affine space (for example, if G’ is a maximal
reductive subgroup of G) then the maps f), g) are isomorphisms.

1.5. Now let F be a closed G-stable subvariety of X; let ® = X — F and let
1:Fo X, ¢:0< X be the inclusions. We then have a natural long exact sequence
a) ... >Hj spmx+2ame(F, &) - H}(X, £) - H} s gmx + 2amo0(0; £)

G !
—Hj camx+2ame(F> &) —
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Indeed, let I" be as in 1.1 a) with m large. The partition X = .F U 0 with F closed,
gives rise to a long exact sequence
oo > HETITNCE, 1 ) - HY (10, 1 27) — HY (X, 127
—H{7(F, 1 &%) — ...

(where d = dim X). Taking duals we find a portion of the exact sequence a);
increasing m, we find a larger and larger portion of a); for m — o we find a).

If, for example, we have dim F < dim X, then from a) we get an isomorphism
b) H(X, £) = H}(0, 2)
since H}(F, &) = 0 for j< 0.

1.6. Let G’ be a closed subgroup of G and let X’ be a closed G’-stable subvariety
of X such that the map G'\(G x X') — X, (g, x") b g«’, is an isomorphism of G-varieties.
(G" acts on G X X' by g': (g, x') (gg' "% g #') and G acts on G'\(G x X') by
817 (& %) = (818 %))-

We have natural isomorphisms
a) HY(X, #) =2 HyL.(X', &), H}(X, ¥) ~ H$(X', &).

Indeed, choose I" as in 1.1 a) with m large. Then the isomorphisms in a) are induced
by the natural isomorphism G'\(I' X X') ad G\(I' x X).

1.7. We write Hy, H® instead of H, (point), H? (point) where the point is regarded

as a G-variety in the obvious way. The map X — point defines by 1.4 a) a C-algebra

homomorphism ¢: H; — Hg(X) preserving the grading. Since Hy(X, %), H¢(X, %)
are Hg(X)-modules (1.3) they can be also regarded as Hi-modules, via «.

1.8. Assume now that X has pure dimension. We have a natural homomorphism
a) H{(X, #) - H}(X, £).
It is defined as follows. Choose I" as in 1.1 a) with m large. We consider the composition
H(pX, 1) ® H ~/(;X, p#") 7 HY(pX) = C
where ©: ;X — point, and d = dim X.
This defines H'(:X, &) — H*~ (X, -.&*)*, hence a).
b) If X is smooth of pure dimension, then @) is an isomorphism.
This follows from Poincaré duality for the smooth variety X. In particular, we have

c) H(’;% H¢ (isomorphism of Hg-modules).

1.9. Let G’ be a closed normal subgroup of G containing G°.

a) The finite group G/G’ acts naturally on Hf (X, %) and H} (X, #) and we
have H$(X, ) 3 HY(X, £)%¢, Hi(X, £) S HL (X, £)%¥. (The maps are given
by 1.6 a).)
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Indeed choose I' as in 1.1 @) with m large. Then I is also a free G’-variety. Let
p:G'\(I' X X) - G\(T'" X X) be the natural map, a finite principal covering with
group G'\G. Then p*(+%) is a G’\G-local system hence G’\G acts naturally on
H/(G'\(T' x X), p°(r2)) and He" ~/(G'\(T' x X), $*(r£")) (d’ = dim G'\(T' x X)),
and

P H(G\(T X X), p&) 3 H(G'\(T X X), p"(r2))
by B2 TI(G\(T X X), p"(r£")) > H¥ ~H(G\(T X X),p"(+-£")).

Thus, we have a).

1.10. Let T be a torus with Lie algebra t and let X(T) be its character group.
For y € X(T) let G, be C with the T-action defined by (¢, z) — () z. Let i : {0} C
and ©: G —{0} be the obvious map. The composition

H({0}) —> HX(C,) — > HT({0})

is H'-linear and of degree 2, hence it must be given by multiplication by an element

¢(y) eHZ. (See 1.8 ¢).) Then ¢: X(T) — HZ(x —¢(y)) is a group homomorphism.
There is a unique isomorphism

a) V:tt 3 H

such that the diagram

(m*)~1
(1 4(9))

X(T)

Y

————> }i2
is commutative, where dy :t — C is the differential of y : T — C* at the identity.

More generally, let E be a finite dimensional C-vector space with a given linear
representation of T. Then ExC ®...®C, as a T-module. Let i:{0}<E,
n:E —{0} be the obvious maps. Then
b) the composition HT{ 0} —> HI(E) ©™= HT{0} is the multiplication by

W(dyy) . F(dya) - - - Fldxa) = ¢(a) - - - ¢(a)-

1.11. Let R, G be the unipotent radical of G and G, = G/R, G.

Let g, be the Lie algebra of G,. Then G acts naturally on g, via the adjoint action.
Hence it acts on S%(g}).

It is well known that we have natural isomorphisms

a ) S ( )G & HZ:
b) H¥** = 0.
The map a) is characterized by properties ¢), d), ¢) below.

20
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¢) If T is a maximal torus of G, with Lie algebra t <> g, then the diagram

(a)

8(g;)® ——= HZ/

1.4 (&)

s’(t‘) —L Hi‘f
is commutative. (The left vertical map is induced by the natural map t < g.)
d) f G=T and j = 1 then the map a) coincides with ¥ in 1.10 a).

¢) The product 1.3 @) in Hj corresponds under a) to the natural algebra structure
of 5(g;)°.

1.12. Assume that G° is a central torus in G and that E is an irreducible algebraic
representation of G (over C), trivial on G° Let g be the Lie algebra of G. We have
natural isomorphisms

a) Hy S Hi
b) H%point, E® E*) 3 H,

This is shown as follows. By our assumption, the adjoint action of G on g is trivial.
By 1.11 a), we have

H = S(g')° = S(¢") & Hyo
hence a). By a), we have dim H} = dim Hj, for all j. Using 1.8 ¢) for G and G°, we
deduce that dim HS = dim H$’ for all j. Hence from the isomorphism H$ il (HG)ere
we can conclude that G/G® acts trivially on H$". Using 1.9 a) we have
HY(point, E® E*) & (H%(point, E ® E*))°
~ (H®®E®E")® (since G acts trivally on E® E*)
~ H®® (E®E*)® (since G acts trivially on H®)
~ H® (since (E®E") = Q)
hence b5).

1.13. Let X, & be as in 1.1.
a) If H)(X, %) =0 then H¥(X, &) = 0.
Indeed let T' be as in 1.1 a) with m large. We consider the natural map

f:G\(I' x X) = G\I' with fibres X. Our hypothesis implies that #* f, (%) = 0 for
all 7. Hence f,(z&) = 0, so that H}(;X, r&¢) = 0, and a) follows.
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2. Cuspidal local systems

2.1. In the remainder of this paper, G denotes a connected reductive algebraic
group with Lie algebra g. Then G acts on g by the adjoint action and G X C* acts on g
by (g1, M) :x > A2 Ad(g,) x. If x € g, we denote by Z,(x) the stabilizer of x in G and
by M(x) the stabilizer of x in G X C*. Thus

a) Mg(x) ={(&, 1) €G X C"| Ad(gy) * =M x}.
Assume now that x is nilpotent.

b) By Jacobson-Morozov we can find a homomorphism of algebraic groups ¢ : SL,(C) — L

such that do [8 (1)] = x. We set

Zy(9) ={&1€G a1 o(A) g’ = o(A), VA eSLy(C)}

! Mo(e) = (e G x Clapd) e = [y 2] Ay 5]) vaesL@!.

d) It is known that Z () (resp. Mg(p)) is a maximal reductive subgroup of Zg(x)
(resp. Mgy(x)).

It is clear that

) NP @e [y oW
defines an isomorphism of algebraic groups Zy(¢) X C* ad M, (o).
From d) and e¢) it follows that
f) the embedding Z,(x) & My(x), g, (g4, 1) induces Zg(x)/Z](x) ad M, (x) [M2(x).

From the existence of ¢ it follows that the G-orbit of x is also a G X C*-orbit;
from f) we see that a G-local system on a nilpotent G-orbit in g is automatically
G x C’-equivariant.

2.2. Let & be an irreducible G-local system on a nilpotent G-orbit @ in g. We
say that & is cuspidal if it satisfies the condition a) below.

a) For any proper parabolic subalgebra p, of g with nil-radical n, and any y € p,
we have
Hi(y +ny) N0, & =0 for all i.
This implies that:

b) Ifj: @ < 0 is the inclusion of 0 in its closure then j, & = j, & € 2(0)

The closely related concept of cuspidal local system on a unipotent class of G is
defined and studied in [9], [10]. The two concepts are related to each other by the expo-
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nential map; thus the results of loc. cit. can be transferred to Lie algebras. (See [11].)
We shall use freely those results (in particular, the classification) in the case of Lie algebras.
The implication a) = b) follows from [10].

2.3. We now fix a proper parabolic subgroup P of G with a Levi subgroup L and
unipotent radical U. Let p, I, n be the Lie algebras of P, L, U so that p = [®n. The
concepts in 2.1, 2.2 can be applied to L instead of G.

We fix a nilpotent L-orbit € in [ and an irreducible L-equivariant (hence L. x C*-
equivariant) cuspidal local system Z on €. We fix an element x, € ¥ and a homomor-

phism of algebraic groups ¢, : SLy(C) — L such that dg, [8 (1)] = x,. Let T be the

identity component of the centre of L and let t be the Lie algebra of T.

Let W = Ng(T)/L. This is a finite group. For w € W, @ will always denote a repre-
sentative of w in N(L); it acts by conjugation on L, T, hence on t.

From [9, 9.2 5)] we have, for all w e W,

a) w:L — Lleaves € stable and the inverse image of . under @ : € — % is isomorphic
to Z.
From [9, 2.8] and 2.1 d) we have
b) Zi(90) = T.
Using 2.1 ¢), we see that there is an isomorphism
% 0 )\ O
&) T X € >M(e0), (520> (20 |g 1|2
Using ¢) and the definition of M, (¢,) we see that
d) M (p,) is contained in the centre of My (p,).

2.4. For any linear form «:t -~ C we set g, ={xeg| [y, x] =a«(p) x,Vyet}.
Then g = @t g, since T is a torus. Let R ={a et* |« % 0, g, + 0}. It is easy to see
act*

that n is a sum of g,’s (x € R). We define Rt ={«xeR|g,Cn}.
Let P, P,, ..., P, be the parabolic subgroups of G which contain strictly P and
are minimal with this property. Let L; be the Levi subgroup of P, which contains L;
let p;, [; be the Lie algebras of P;, L,. Let R} ={« eR*|«a|centre(l;) = 0}; then
Lnn= D g,.
*E R,

Proposition 2.5. — R is a (not necessarily reduced) root system in t*; it spans the space of
linear forms on t which are zero on the centre of g. Moreover, W acts faithfully on t, t* (trivially
on the centre of §) as the Weyl group of R. The set R;" contains a unique element o, such that o,/2 ¢ R
(1<i<m). The set T ={ oy, a9, ..., ,}is a set of simple roots for R. The group W 1is
a Coxeter group on generators sy, Sy, - . -, S,, where s; is the unique non-trivial element of Ny (T)/L.

This is easily checked, case by case, using the known classification of cuspidal
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local systems: this forces p to be a very special parabolic subalgebra of g. A slightly weaker
statement, namely that the set of indivisible elements of R is a (reduced) root system
with Weyl group W is proved in [6, 5.9] and [9, 9.2]. Note that in the generality
of [6, 5.9], R is not necessarily a root system.

Proposition 2.6. — a) T is a maximal torus of Z = ZZ(¢,).
b) The natural map N,(T)/T — Ny(T)/L = W is an isomorphism. (Thus, W can be
interpreted as the Weyl group of Z.)

Proof. — a) Let S be a torus in Z containing T. Then S is in the centralizer of T,
hence S C L. Thus S C Z(¢,). But the last group is T by 2.3 4). Hence S = T.

b) To prove injectivity, it is enough to show that Z "N LCT.IfgeZ N L then g
commutes with all elements of T (since it is in L). But the centralizer of T in Z is T,
by a). Hence g € T. To prove surjectivity, it is enough to show that the generators si
are in the image of our map. This follows from the analogous statement in which G is
replaced by L,. So we assume that P is a maximal parabolic subgroup of G. We can
also assume that G is simply connected and even almost simple. In that case, W is of
order 2 and by a case by case check (using classification of cuspidal local systems) we
see that Z is not a torus so N,(T)/T has also order 2. Hence our map, being injective,
is automatically surjective.

2.7. For any a € R, g, is L-stable for the adjoint action of L on g, since T is central
in L. In particular, g, can be regarded as an SL,(C)-module via gq:SL,(C) — L.
Let M, denote a simple SL,(C)-module of dimension d.

Proposition 2.8. — Let o € R. Then the SL,(C)-module g, is isomorphic to:

M,eM;®...®M,,,,, for some p, if 20 ¢ R,
M, if /2 €R,
M,eM,®...®M,,, for some p, if 20 € R.

Proof. — W permutes R ; moreover if &0 € N(L) represents w, then Ad(#) : g, - §ya-
We can assume that @ € ZZ(¢,) (see 2.6 4)) so that Ad(w) commutes with the SLy(C)-
action on g. Hence the SL,(C)-modules g,, g,, are isomorphic. Since the W-orbits
of R;" (1 < i< m) cover R, we see that we can assume « € R;}*. We can then replace G
by L; and assume that P is a maximal parabolic subgroup. We may also assume that G
is simply connected and even almost simple. In that case we use the classification of cus-
pidal local systems. We are in one of the four cases below. (In the following discussion
(as well as in 2.10, 2.13) we shall describe nilpotent elements of classical Lie algebras
by specifying the sizes of their Jordan blocks; this will be always taken with respect to
the standard representation of that Lie algebra: of dimension 2n for sp,,, of dimension z
for sp,.)
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Case 1. — g =sly,, [ =51, ®s[,®C > (x,, %, 0) = x, where x;, x,/ are regular
nilpotent in sl,, (r> 1). In this case, Rt ={a} and g, M,®@M;®...®M,, ,
as an SL,(C)-module.

Case 2. — g = 8Py 15, | = 5Py, ® G5 (x,, 0) = x,, where x; is a nilpotent element
in sp,, with Jordan blocks of sizes 2, 4, 6, ..., 2p so that 22 =2 + 4 4+ 6 + ... + 2p,
(n>1). In this case, R* ={«,2«¢} and g,, = M,, g, = M,OM,®...®M,, as an
SL,(C)-module.

Case 3. — g =950, .5, | =50,®C 5 (x,,0) = x, where x, is a nilpotent element
in so,, with Jordan blocks of sizes 1, 3,5, ...,2p + I sothatn =1+ 3 + ... + (2p + 1)
(n= 4).

In this case, R* ={a}and g, = M;®M;® ... ®M,,,, as an SL,(C)-module.

Case 4. — g=190,,,, | =50,®s,®C > (x,, x,", 0), where x, is a nilpotent
element in spo, with Jordan blocks of sizes 1,5,9,...,4p + 1 or 3,7,11, ..., 4p + 3
(so that n=14+5+4+94+ ... +4p+1) or n=3+7+4+114+ ... + (40 + 3))
and x," is a regular nilpotent element in sl,, (n > 3).

In this case, R* ={«,2¢} and g, = M,, g, =M, ®@M,® ... ®M,,, as an
4p+2,ifn=14+54+9+ ... +(4p+1)
4+ 4, ifn=34+7+114 ... + 4p+3)

2.9. Let R”Ct" be the set of roots of the reductive Lie algebra 3 = g8=©®
of Zi(p,) with respect to its Cartan subalgebra t. From 2.8, we see that, for « € R,

SLy(C)-module, where 2k =

| 1 if 2« ¢ R
di n3) = ’
(808 =14 if 94 e R.
a) It follows that R’ is precisely the set of non-multipliable roots of R.
We define

b) ¥ gx = unique nilpotent G-orbit in g such that ¥ 3y N (¥, + n) is open dense
in x5 + n.

Proposition 2.10. — Assume that P is a maximal parabolic subgroup of G and let « be
the unique simple root of R. Let a: T — C* be the character by which T acts on g, by the adjoint
action, so that o = da. Let ¢ be the integer > 2 defined by the conditions

ad(x)* " ?:m—>mnis *0, ad(x)* " ':m—>mnisO.
Then
a) Ker(ad(x)® 2:1n —n) is a hyperplane S in n.
b) ## and n are stable under the action of M3 (@,) (restriction of the G x Cr-action 2.1 on g)
and the induced action of M3 (@,) on 1|3 is via the character
(0 — a2, (53 eT x € 222 MY(g,).
c) Vax N (% + 1) =% + (n — ).
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Proof. — a) follows from x, = (do,) [8 (1)] and the fact the SL,(C)-module n is
multiplicity free (cf. 2.8).

b) Follows from 2.8 and the following property of the irreducible representation
p: SLy(C) — Aut(M,) of dimension d: the largest non-vanishing power of

0 1
@) g oM. ~>M,
. » 0 0 17\ -
is the (d — 1)-th power, and p 0 -1 acts on M, /ker { (dp) 0 0 as multipli-

cation by A74+1,

To prove ¢) we again assume that G is simply connected, almost simple, so that
we are in one of the cases 1-4 in the proof of 2.8. The following results can be verified
in each of those cases by simple computations.

Case 1. — If x e xy + (n — ), then x esl,, is a regular nilpotent element; if
x € xy + S, then x is a non-regular nilpotent element.

Case 2. — If x e xy + (n — ), then x €sp,,,, has Jordan blocks of sizes
2,4,6,...,2p —2,2p + 2; if x € x, + 5, then x has Jordan blocks of sizes < 2p + 1.

Case 3. — If x e xy + (n — ), then x esp,,, has Jordan blocks of sizes
1,3,5,...,2p — 1,2p + 3; if x € x, + 5, then x has Jordan blocks of sizes < 2p 4 2.

Case 4. — If x € %y + (n — ) then x € s0,,, , has Jordan blocks of sizes 1, 5, 9, ...,
4p —3,4p + 5 (resp. 3,7,11, ..., 4p— 1, 4p 4+ Tifn=1+4+5+9+ ... + (4p + 1)
(resp. n=3 4+ 7+ 11+ ... + (4p + 3)); if x ex, + 5, then x has Jordan blocks
of sizes < 4p + 4 (resp. < 4p + 6).

These results imply ¢) immediately.
2.11. The proof of 2.8 shows that the integer ¢ in 2.10 is given explicitly in the
cases 1-4 of 2.8 as follows.
Case 1. — ¢ = 2n.
Case 2. — ¢ =2p + 1.
Case 3. — ¢ =2p + 2.
4+ 3, ifn=14+5+4+ ... +@4p+1).
4 +5 ifn=34+7+ ...+ (4 + 3).
We now drop the hypothesis in 2.10 that P is maximal.

Case 4. — ¢ =

Proposition 2.12. — Define integers ¢;> 2 (1 < 1< m) by the requirement
ad(%)5 2:Lnn—>LNnnis=+0, ad(x)% " :Lnn—>LNnnisO.

Then ¢; = c; whenever s;, s; are conjugate in W, (1< 4,j< m).
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Proof. — If ws;w™ =s; then w(x) =«;. We have [[nn =g, ®g,,
L[NAn= 8a; ® G20, and if we choose the representative @ for w in Z3(¢,) (see 2.6 b))
then Ad(w):[Nnn =1, An is an isomorphism of SL,(C)-modules. Since ¢, ¢; are
determined by the SL,(C)-module structures, they must coincide.

2.13. In this section we assume that G is almost simple, simply connected. We
shall indicate in every case that can arise the type of g, [, x,, the type of R, and the values
of ¢; (1 < ¢< m) corresponding to the various simple roots of R. We also indicate the type
of a nilpotent element xpy € ¥ gy

a) g-simple, [-Cartan subalgebra, x, = 0, R-usual root system, ¢, = 2, for all i.

b) g =59b,, | =¢6,@s[,® ... ®s[,®C*~! (k> 2,n > 2), x, is regular nilpotent in I,

k copies
xpy is regular nilpotent in g, R of type A, _,, ¢; = 2k for all z.
6') g = 5p2n+2k’ I = g"1:)2716(:',6 (k> 1> n> l),
%9 = (%5, 0) € [ where x, is a nilpotent element in sp,, with Jordan blocks of sizes 2, 4,
6, ...,2p (sothat 2. =2 +4 +6 + ... + 2p),
¥y 18 nilpotent in sp,, , », with Jordan blocks of sizes 2, 4, 6, ..., 2p — 2, 2p + 2k,
2 2 2 2 2 241
R of type BC,, ¢;: O—0O—0Q---O0—0—=0
d) g = son+2k’ I = 50”@01: (k> 1, nz 4)3
x, = (%, 0) € [ where x;is a nilpotent element in sp, with Jordan blocks of sizes 1, 3, 5, . . .,
20+ 1 (sothatn =143+ ... 4+ (2p + 1)),
%gy 1s nilpotent in sp,, , ,, with Jordan blocks of sizes 1, 3,5, ..., 2p — 1,2p + 2k + 1,
2 2 2 2 2 2p+2
R of type B, ¢;: 0—0O—0O---0O—0—=0
¢) §=50,,4, =50, ... Os,®C,
k copies
xo = (x5, 2, x2, ..., 2P 0) e[ where x{ are regular nilpotent in sl,, x, is a nilpotent
element in sp, with Jordan blocks of sizes 1, 5,9, ..., 4p + 1 (resp. 3,7, 11, ..., 4p + 3),
Xpy is nilpotent in so, , ., with Jordan blocks of sizes 1,5,9, ...,4p — 3, 4p + 4k + 1
(resp. 3,7,11, ...,4p — 1, 4p + 4k + 3),
R of type BC,,
4 4 4 4 4 4p+3 4 4 4 4 4 4p+5

& O—0—0---0—0O0 (resp- ¢, : O—O0—0---0O—0=O )
f) g of type Ey, | =sl;®sl;® C?
%, is regular nilpotent in [, xpy is regular nilpotent in g,

2 6

R of type G, ¢; : O=O
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g) g of type E,, | = s, ®sl,®sl,® C* corresponds to the subgraph

e e

marked with black nodes of the Coxeter graph of g, x, is regular nilpotent in I, x is
regular nilpotent in g,

2 2 4 4
R of type F,, ¢, : O—O—0—0O

We now return to the general case.

Proposition 2.14. — Let x € ¥V 'z N (% + ) and g € G be such that Ad(g) x e € + n°
Then g €P.

Proof. — We can assume that G is simply connected, almost simple so that we are
in one of the cases in 2.13. From 2.13 we see that

a) Zg(x)[Z5(x) = Zg(x)|Zg(%,)

where G is the adjoint group of G and L is the image of L in G. Let P be the image
of P in G. From [12] we have natural homomorphisms

Zi (%) [ Z3(%)) < Zg(x)|Z3(%) — Zg(x)[Z5(%)

the first of which is surjective and the second injective; from a) it then follows that both
are isomorphisms. In particular, Zg(x) C P.Z%(x). By [12] we have Z3(x) CP so that
Z5(x) CP hence Z,(x) CP. Now let g¢eG be such that Ad(g) x € ¥ + n. Then
Ad(g) x € V'gx N (¥ + n). But P acts transitively on ¥z N (¥ 4 n) ([12]) so
replacing g by pg (p € P) if necessary, we can assume that Ad(g) x = x, i.e. g € Zy(x).
Hence g € P, as required.

3. The W X W-action

3.1. We shall need the following G X C*-stable subvarieties of g:
¥ = U Ad(g) (¢ +t + n), where & is the closure of %,
9€G
Vs, = U Ad(g) (¥ + tug + 1), where to ={x €| Zg(s) =L},
¥'x= U Ad(g) (¢ + n),
s€G
¥ gy (se€ 2.9 0)),
gy ={ # € g | x nilpotent }.

If X is a closed subset of p, stable under the adJomt action of P, then U Ad(g) X
is a closed subset of g (since G/P is complete).

21
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Hence
a) V',V — Vs> ¥ x> ¥'x — P &x> Ox are closed subsets of g.
b) ¥ s is open dense in ¥7, ¥ g is open dense in ¥'y.
Clearly, ¥’y =gy N 7.
We define
¢) 8 ={(x,gP)eg X G/P|Ad(g7)xe€ +t+n}
Note that G X C* acts on § as in 0.2 ¢).
For any G X C*-stable subvariety V of g we define
d) V={(xgP)edg|xeV}
In particular, ¥, ¥ g, ¥, ¥ x> Ox are well defined G x G*-stable subvarieties
of 8. We have
e) §="7, o ="x.
Proposition 8.2. — a) The map { (x,gL) € ¥’z X G/L|Ad(g™?) x €€ + 1, } % ¥ gs,
(%, gp) > (%, gP), isan isomor{)hism. Hence w : (x, gL) - (x, go™" L) defines via  an action of W
on ¥ gg- Th.ix makes pry: ¥ g — ¥V'pg tnto a finite principal W-covering.
Both ¥ gy, ¥ gg are smooth, irreducible of dimension
3 = dim(g/l) + dim(% + t).
b) ¥ gy is open dense in ¥ . Both ¥ 5y, ¥ gx are smooth, irreducible of dimension
8 = dim(g/l) + dim(%).
¢) ¥ is smooth and is open dense in
7 ={(xeP)eg x G/P|Ad(g")xe@ +t+n}

v,V and ¥ are irreducible of dimension 3.

d) pr;: ¥V 'ox = Vg 15 an isomorphism.

Proof. — a) is a Lie algebra analogue of [9, 4.3 ¢)] and is proved in the same
way. b) is obvious except for the formula for dim ¥ ;. But it follows from [9] that
pri: ¥ gx = ¥gx is a finite covering, hence dim ¥ gy = dim ¥'zy. ¢) is obvious.
By 2.14, the fibre of pry: ¥ gy — ¥ gy at X € ¥ gy N (%, + 1) is (x, P). Since G acts
transitively on ¥z, d) follows.

3.3. We now define
a) g ={(x,gP:g’ P) €g X G/P X G/P| (x’gP) Eg, (x,gl P) Eg}‘

Then § is a closed subvariety of § X g, via (x, gP, g’ P) — ((x, gP), (%, &' P)),
hence it inherits a G X G'-action (from the diagonal G X C* action on § X §) and two

projections pryy, prig: g — §.
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If V is any G x C'-stable subvariety of g, we define
b) A ={(x, &P, ¢’ P) €8 I xeV}
Thisisa G x C'-stable subvariety of § and it has two projections pry,, pryg: V — V.

¢) Let Q be a locally closed subvariety of G which is a union of P — P double
cosets.

We define
d) VO ={(x,gP,g'P) eV |g g’ eQ}.
This is a G x C'-stable subvariety of V.
A P — P double coset in G is said to be good if it is of the form Q(w) = PwP for

some w € W. We have Q(w) + Q(w') for w + w’. All other P — P double cosets are said
to be bad.

We have a finite partition
e) V—UVn
Q

into locally coset subsets (Q runs over the P — P double cosets in G).
From 3.1 ¢) it follows that

) =7, b ="y
g) If weW, then g = ¥® j5 smooth, irreducible of dimension § (see 3.2 a)),
and §¥® = ¥ %% 5 smooth, irreducible of dimension & (see 3.2 5)).
Indeed, we have a fibration §** — G/P nwPw™?, (x, gP, &' P) b g(P n wPw™?),
with fibres

(¢ +t+mn) n(Ad(w) € +t + Ad(w) n)
(€ +t+n) N (% +1t+Ad(w) n) (see 2.3 a))
=% +t+ (nnAd@®) n).

(The same argument applies to ga*.)
k) If Q is a bad P — P double coset, then

dimg® =dim¥?<3 and dimg? = dim ¥ %< "

I

(This can be deduced from [9, 1.2].)

i) IfQisabad P — P double coset, then ¥¢, = 0. If w € W, then ¥y is a smooth
irreducible variety of dimension § and ¥z = U¥9” is the decomposition

of ¥ g into connected components. Also, #"24” is open dense in ¥,
(This follows from 3.2 a) and g).)
j) If Qis a P — P double coset other than P then ¥@; = @. Thus, ¥z = ¥ ox.
This is open dense in ¥%.
(This follows from 3.2 d), b).)
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From the results above, we deduce:
k) dim§ = dim ¥ = dim ¥ g = §, dim §y = dim ¥y = dim ¥y = ¥,
) dim(¥ — ¥gg) < 8, dim(#E — #5) < &

3.4. We define a local system .Z on g by the requirement f; % = £ % in the
diagram
€ L{(x,g) g X G|Ad(g)xe€ +t+n}2g

where f(%, 8) = pre(Ad(g™) ), fo(#, &) = (x, gP). .

Note that # is well defined since & is L-equivariant. Moreover, % is G x C'-
equivariant since £ is L X C’-equivariant and f;, f; are G X G*-equivariant for the
action of G X C* on ¥ given by (g,,2) : x> A" %x and the action

(815 %) 2 (%, 8) > (A7 Ad(gy) #, 81 8)-
Similarly, replacing % by .#* in the definition of %, we get a local system (£*)";
it is the same as the dual #* of #.
Let K = (pry), £ €2g, (pr;:8 —gq),
=14(Ky) (:7 —>q)

where K, = (pr,), £ € 27", (pr;: ¥ = § — ¥). We have the following result.

a) K[3] is a perverse sheaf on g. More precisely, K, is the intersection cohomology complex
on ¥~ defined by the local system (pr,), L* on ¥ zg, (Pry: "//.'ns — ¥ ga, €€ 3.2 a)).

To prove this, we need the following concept. A morphism f:Y — Y’ is said to
be small if Y, Y’ are irreducible varieties of the same dimension 4, dim(Y Xy Y) =d
and any irreducible component of dimension d of Y Xy. Y is mapped by f onto a dense
subset of Y’.

This concept is inspired by (and is more general than) the concept of smallness
of Goresky-MacPherson [4]: they require in addition that Y is smooth and f is proper
and generically 1 — 1.

In the case where P = B and & = C, the proof of a) is based on the observation
of [8] that pr,: ¥ — ¥  is small and proper. (In that case, ¥" = g.) In the general
case, pry: ¥ — ¥ is still small (by 3.2 ¢), 3.3 g), 3.3 &), 3.3 ) but is not necessarily
proper; this defect will be compensated by the cuspidality of .#. From 2.2 ) we have
J ¥ =5 & cDE, where j: €< € is the inclusion. It follows immediately that
L= € 9¥ where j:¥ < ¥ is the inclusion (see 3.2 ¢)). Let

K'= (pr,), £ €2(g), (pry:§—~>g) ie K =i K|,
where K, = (pr,), £ €27, (pr,:¥ —7).

We shall denote the first projection ¥ ¥ by Pry; it is a proper map, hence

(Pry), = (Pry),. We have pr; = pryo;: ¥ — ¥ hence
K} = (pr), & = (Pra), (4 &) = (Pra), (1, &) . _
= (Pry). (1. £) = (pra), £.



CUSPIDAL LOCAL SYSTEMS AND GRADED HECKE ALGEBRAS, I 165

We denote by D the Verdier duality. We have DK,; = D((pr,), ) (pr,), (DZ).
Here % is a local system on the smooth irreducible variety ¥" of dimension §
(3.2 ¢)) hence D.Z = #[23]. Thus

DK, = (pry), £[238] = K;[23].

By the definition of an intersection cohomology complex, to verify a) it is enough to
verify that

dim supp#* K, < 8§ — ¢ for all i> 0,
and dim supp #* K; < 8§ — i for all :> 0.

But these inequalities follow immediately from the fact that pr;: ¥ — ¥  is small.
Thus, @) is proved.

Our present objective is to define an action of W on K.

The definition of such an action was given in [8] in the case where P = B, and
in [9] in general; in these references instead of complexes on g, we considered complexes
on G. The case of g is entirely similar, but for the sake of completeness we shall explain
it here.

Let w € W. The local system #* on ¥ g4 is irreducible (since Z is irreducible
on %) and is isomorphic to its inverse 1magc w (.?') under w: ¥ gy —> ¥ ge in 3.2 a)
(due to 2.3 a)). Choose an 1somorph1sm ¢% 1 L 3w P (of local systems on ¥ gg).
This gives isomorphisms on stalks ¢}, , : L3 P for all e € ¥ pg. It is clear that
for w,w’' € W we have

P, s © Purye = Cuo, w0 Pow,
where ¢, ,, € C* is independent of e. Taking direct sum over all » € W, we obtain
isomorphisms

O £3D L, =D L.

PEW vEW vEW

or, equivalently,
((pry). j‘)v = ((pry). j.)w (pry: 'V..Rs — ¥'pg>) € ¥V gg)-

(See 3.2 a)).

This is induced on stalks by an isomorphism (pr,), £* 3 (pr,), £* of local systems
on ¥ gg.

Using a), this extends uniquely to an isomorphism ¢ : K 5 K in 2g. We have
%959 = €y w V% - To normalize ¢}, and ¢f,, we shall use the following result:
b) #° K | ¥ gy is a non-zero, irreducible local system.

Now ¢? induces an automorphism of the local system 5#° K | ¥ ' which by 5)
must be the multiplication by a scalar p, € C".

-1 .0

Replacing 97, ¢}, by u,' el =, wy' ¢, =1, we can assume p, =1
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Thus there is a unique normalization ¢%, ¢ (denoted ¢,, ¢,) which induces the identity
map on #° K | ¥g. We then have ¢, ¢, = ¢, , 50 that w — ¢, is a homomorphism

¢) W — Autg, K.

This is the W-action on K we wanted to construct.

3.5. We fix an integer m > 1 and a smooth irreducible variety I' with a given
free G x C-action such that

HY(T) =0 for all i e[l,m].

Asin 1.1 (with G X C* instead of G) for any G x C*-variety Y we shall write Y instead
of (G x C)\(T' X Y); if & is a G X CG"equivariant local system on Y, we write &
for the corresponding local system on Y; if f: Y — Y’ is a G X C’-equivariant mor-
phism between G X C*-varieties we shall write .f : ;Y — Y’ for the morphism induced
by d X f:I' XY >T XY’

In particular, g, 18, (g X @), 0(§ X §), p&, rL" are well defined. (G X C* acts
on g X g, § X 4§ diagonally.)

Consider the commutative diagram

=T x § —m
a) ™ J dx = l Jn
! Pry

r9<—_"PXQ_—>

where u, p’ are the canonical maps (principal G X C’-bundles) and = = pr,. Let
1‘5 = (), (r£") € D(rg)
K = (Id x =), pry(&£*) e 2(I' X q).
It is clear that
W' (K) = K = pri(K).
Now p’ and pr,:I' X g - g are smooth morphisms with connected fibres. Using
[1, 4.2.5] and the fact that K[3] is perverse we deduce that
5) K = pra(K), suitably shifted, is perverse and pr; defines
Endg(K) 3 Endgr g (prs K) = Endgg g (K);
¢) rK, suitably shifted, is perverse and p'* defines
Endgg(rK) 3 Endgr g 1K) = Endgr o (K).

Combining 4) and ¢) we find a canonical isomorphism

Endg,(K) 5 End g (cK).
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Composing this with 3.4 ¢) we obtain a homomorphism
d) W — Autg 4 (rK).

We can perform the same construction, replacing £ by #*; then K is replaced
by K’ = (;x), (r#) and d) becomes

¢) W — Autg o (rK’).

Let w, w’ € W. We denote by #": K — K the automorphism of (K corres-
ponding to w under d) and by #’'® : K’ — K’ the automorphism of ;K’ corresponding
to ' under ¢). Then w®, w'® define v X w'® € Autg g« 4(rK X tK').

It is clear that (w, »') » w™ X w’'® is a homomorphism
J) W X W — Autg g g(rK X pK').
We have an embedding
1:p(g X g) >rg X rg
induced by (v, x, ") > ((y, x), (v, %)), yeT, xeg, ' €g’.
Let ;K X K’ =*"(K X K’) € 2(r(g X g)); ¢* induces a homomorphism
Endg g o (rK XK' - Endg g x gn(rK & pK').
Composing this with f) we obtain a homomorphism

&) W X W — Autig g« q(rK B pK’).

Let
h) $=9RY ¢ =FRL.

These are G x C*-equivariant local system on § X § hence they give rise to local
systems %, % on p(§ X §).

From the definitions, it follows easily that

K 8 1K = r(m X 7)) (nF")
so that g) can be regarded as a homomorphism
&) W X W = Autg g (r(m X ), (c2"))-

3.6. We shall denote the restrictions of #, #* (see 3.5 k)) to §, or more generally,
to V (for V a G x Ct-stable subvariety of g) again by £, #*.
The diagonal inclusion k:V < g X g induces ph:pVe>p(g X g) and (ph)*
defines a homomorphism
Endg(r(g xon(p(m® X ), I‘j‘) - End@(pw(r}‘). (p(m X m), r‘j‘)

. = Endg(rw((rprl)x r‘j ")
where pr;:V —V is the first projection.
Composing with 3.5 g) we find a homomorphism

a) W X W — Autg v)((rPr1), ("))
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3.7. We want to give an alternative definition for the restrictions of the homo-
morphism 3.6 a) to W X {e} and {e¢} X W. We have a cartesian diagram

V pl! v

,,1,1 lp,

V——
h v
where p;, P12, p1s are the obvious projections. This induces a cartesian diagram

rlis

pV —— v

Tt1s l 1 rh

Th

I,V———-» I‘V

Let &' be the composition .V RALY rV e 1g. Then 2*(tK) = (pp15), (1f(+Z"))
and A&'* defines a homomorphism

a) End.@(pg)(r‘K) - End.@(pi')(k“(rK)) = End.@(p"r)((rpls)x (rﬁzz(r‘j‘)))-

Tensor product with the local system & is a functor 2(;V) — D(pV) so it
defines

b) Enda(p\'n((l‘ﬁls)x (I‘P;z(rj‘))) — Endg i) ((rf1s): (rﬁzz(rg")) ® r &) . g
= End.@(pi')((rpls)x (I‘[’;"z(rg*) ® pp1s(rL)))
= End@(pi')((l‘pla)l (r£")).

Composing @), b) and 3.5 d), we find a homomorphism
¢) W QAUtQ(pﬁ)((Fpls)x (I‘g‘))

Now the functor (pp,), defines a homomorphism

d) End@(p\'r)((rpm)x (I‘y*)) - Endg(pV)((I‘[’l)l (rf1s)s (F,?‘)) = Endg(pV)((I‘Prl)l (I‘j‘))'
(We have pyorprs = pry:pV — V.
Composing ¢) and d) we find a homomorphism

e) W— AUtQ(rV)((I‘prl)l (I‘j ")-

A routine verification shows that ¢) coincides with the restriction of 3.6 a) to
W x{e}.

We have the following variants a’) — ¢') of a) — e).

We have h"*(:K’) = (rpry,), (rpris(rZ)) and A" defines a homomorphism

a') End@(rg)(I‘K,) - End@(pif)(h"(I‘K’)) = End.@(ph((rplz)l (I‘/’Ia(r‘j ))-
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Tensor product with .#* is a functor (V) - (V) so it defines

b') Endgiin((rhre): (i£3s(r2))) — Endgin(rZ” @ (ehre): tf3s(r?))) .
= Endg(pi’)((r‘pm)t (I‘Pi_z(rg‘) ® ppis(rZ)))

= Ende(p\'n((rplz)l (I‘g‘))
Composing a’), b') and 3.5 ¢) we find a homomorphism

¢’) W— Ammpir)((nblz)! (I"?‘))
The functor (pp,), defines a homomorphism

d) Endg(pﬁ)((rﬁlz): (r‘j')) - Endg(rV)((l"pl)! (rf12): (r‘j')) = EndQ(pV)((Fprl)! (I‘y'))
Composing ¢’) and d’) we find a homomorphism
¢) W— Autg(rV)((I‘Prl)l (r‘j ")

Again, a routine verification shows that ¢’) coincides with the restriction of 3.6 a)
to {e} X W.

3.8. Our next objective is to define a homomorphism W x W — Aut H*®(V, £),
for an integer j> 0.
We choose I'" and m as in 3.5 with m > j and apply the functor
a) H2~3(LV, ) : 2(xV) — C-vector spaces
to 3.6 a) (d = dim V). We obtain a homomorphism
W X W — Aut H2=/(V, (ppry), (p27)) = Aut HE=4(, ¥, n.9).
Taking duals we obtain a homomorphism
W x W - Aut H2—i(L.V, &%)
or, equivalently, a homomorphism
b) W x W — Aut H¢*®(V, 2)
as desired.
This homomorphism is actually independent of the choice of I'; the verification
is routine and will be omitted.

Similarly applying the functor a) to 3.7 ¢) and 3.7 ¢’) and then taking duals we
find two homomorphisms

¢) WX Aut H2¥-i(pV, £)* = Aut H3*®(V, &)
which coincide with the restriction of 5) to W X {¢}, {e} X W respectively.

3.9. Let e [1,m], P;, L, p;, |, be as in 2.4, let 5; be as in 2.5 and let
W, ={65}CW.Let P=L,nP, =1 nn Let Q be a locally closed subset of G
which is a union of P, — P double cosets. Our objective is to define a natural homo-
morphism
a) W, - Aut H¢*®(§°, &)
which, in the case where Q = G, should coincide with the restriction of 3.8 4) (for
V = g) to the subgroup W; X {¢}of W x W.

22
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We introduce some notation. Let A ={(x, gP,) eg x G/P,| Ad(g™ ) x e p; },
8 ={(»hP) ep; X P/P|Ad(h"") ye ¥ +t + n}
e ={(3hP) e, x L/P|Ad(F" ") 7€ +t + T}

Consider the commutative diagram

Q<_‘Q1XG—>91—_>QB

T

A -——p X G —» pp — |,

in which all maps are obvious except for g, X G — § which is (y, AP, y) — (Ad (y) », YAP)
and p; X G - A which is (y,v) > (Ad(y) », YP).

Now §, — [; is exactly like § — g when (G, P, L, %) is replaced by (L;, P, L, €).
In particular, §, carries a local system %} analogous to the local system .#* on §. More-
over the analogue of 3.4 ¢) (for L, instead of G) gives a homomorphism
b) W; — Au"'g(l,-)((nz)l & 2)
and the analogue of 3.4 a) shows that
¢) (my), (&), suitably shifted, is a perverse sheaf.

The inverse image of #; under the composition §;, X G — §, — §, is the same
as the inverse image of #* under g, X G — §. Since our diagram has cartesian squares

and the horizontal arrows are smooth, we see as in 3.5 (using [1, 4.2.5] and ¢))
that

d) Endg,((my), &) = Endg4)((m), £*), canonically.

e) Endg,((m), & ) = Endg(rm((rno)x I‘j *), canonically
(for fixed I" as in 3.5 with m large).

We now consider the cartesian diagram

g

j,,,

A

where {Z“ ={(x, gP;, & P) | Ad(g™) xep,, Ad(g' ) xe€ +t+n,g g e}

p1s are the obvious projections and ¢ is the obvious map. We have natural G X C°
actions on the varieties in this diagram, so we can form the cartesian diagram:

q b1
g —
c
0
b
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" i .
I‘gn ——

faled sl

O
r'z rbiz rA

We denote the inverse image of .#* under pp;,:8° — § again by .#*. From the
last cartesian diagram we obtain a homomorphism

f) End Q(FA)((I“"o)z (rg.*)) - Enda(pzﬂ)(rcx(rj‘))-

Consider p;3: 3@ — 3. We denote the inverse image of & under (ppy3)* again
by &, and its inverse image under o.p,; again by .#. Tensor product by & is a
functor 2(r32%) — 2(;2%) hence it defines a homomorphism

&) End.@(pzﬂ)(rcx(r«j*)) - Endg(pzﬂ)(r"x(rj*) ® r‘g)) = End@(rzﬂ)(r"x(rgf‘ ® Z))
= Endg z0)(ro,(r£")).
Composing 4), d), ¢), f), g) we find a homomorphism
h) W, — AUtg(pzﬂ)(rf’x(rj‘))-

Applying the functor H2¢~ (.39, ) (d = dim §%), j< m, and taking duals we
find a homomorphism

W, > Aut H2= (49, 1.9)" = Aut HO*®(§9, )

which is the desired homomorphism a); it is independent of the choice of T

The following property follows easily from the definitions.

Let Q' be a closed subset of Q which is a union of P, — P double cosets. The natural
map HS*®(§Y, £) - H**®(§% £) induced by the closed embedding §* <> §® is
compatible with the W, actions a).

In particular, taking Q' = P;,, Q = G we see that

i) The natural map HS*% (%, £) - H%*®(g, #) induced by the closed embedding

g% < g is compatible with the W, actions a).

Assume now that Q = G; in this case we write Y, instead of 3®. We want to prove
that in this case the action a) is the restriction to W, X { ¢} of the action 3.8 5) (for
V =g).

The key point to be verified is the following:

Consider the commutative diagram

g
n/ \\n with p(x, gP;) = x;
A—E—mg
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then the action of s; on (m,), #* (composition of b), d)) is mapped under
o1 : Endgy((mo), £*) — Endgg (p,(mo); £*) = Endgy(m, £*)

to the action of 5; on w, #* given by 3.4 ¢).
The verification of this fact is routine and is omitted.
Next, assume that Q = P,. We introduce the following notation

R={(xgP,g'P)ct|rep,gcP,g P},
A={xgP,gP)eli x L/P x L/P|Ad(z ) xe¥ +1t+T,
Ad(g’ H)xe¥ +t+n}.
Note that A is exactly like §, when (G, P, L, %) is replaced by (L;, P, L, €); in particular
it is L; X C'-equivariant and carries an L, X C* equivariant local system % analogous
to # on §. Now A is a P, x C’-stable closed subvariety of % and the action of G x C*
on § defines an isomorphism ((G x C*) X Z) /P, x C* 3 gF,
Using 1.6 a), 1.4 k), it follows that

He* (G, &) ~ HE* (R, &) = HY* (R, £).
On the other hand we have an obvious L; X C'-equivariant map A — A which is a
vector bundle with fibres ~ p,/l;, hence, by 1.4 ¢) we have

HL <@ (R, &) = HE*®(A, 2).

Combining this with the previous isomorphisms we obtain
j) HY*®(A, Z) ~ HE* (g%, £).

It is easy to see that the actions of s; on these two vector spaces, one defined by a)
for L; (or equivalently, by the s; X 1 action in 3.8 4) for G = L;, V = g), the other
defined by a) with Q = P,, correspond under j).

Combining i) and j), we obtain a map

k) HE*®(A, #) - HS*® (g, &)
which is compatible with the actions of s5; X 1 in 3.8 ) for L, and for G.

3.10. Assume that we are given two locally closed G X C’-stable subvarieties V, V,
of g such that V, is closed in V. Let V, =V — V,. Then V, (resp. V,) is a closed
(resp. open) subvariety of V and the inclusions 4, : V, & V, 4, : V, & V induce
a) HO* O (Vy, &) 25 HOxO(V, 2) 5 HIX (¥, 2).

The two maps in a) are compatible with the W X W-actions in 3.8 4). The verification
is routine and will be omitted.

4, S-module structures

4.1. Let m be the Lie algebra of M?(¢,) (see 2.1, 2.3). The differential of the

~

isomorphism T X C* 5 M} (q,) (see 2.3 ¢)) is an isomorphism t® G — m. We denote
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by 7 the linear form on m corresponding to pr,:t® G — C under that isomorphism.
Equivalently, r is the differential of the restriction of pr,: G X C* — C* to M?(¢,) — C".
We define

S =S(m").
From the decomposition m* = t*® G, we can write

S = S(t") ® C[r].
The natural action of W on t and t* extends to an action of W on 8 by C[r]-algebra
automorphisms; we denote it by w: & “£. In particular, “r = r for all w.

Proposition 4.2. — There 15 a natural isomorphism of graded algebras H , oo(8) = S.
In particular, H, , c(8) = 0 for odd j.

Proof. — We have an isomorphism
PXCN(GXC) X (€+t+m)37 =4
defined by ((g1, 1), *) - (A~2 Ad(g,) %, g, P) hence, by 1.6 a), we have
Hixe(8) = Hpx (¢ + t + ).
(P x C acts on € + t 4+ n as restriction of the G X C'-action on g. Since
pri: € +t+n—->%is a P X C-equivariant vector bundle, we have (1.4 ¢))
Hp (€ +t+ n) = Hy, o(%).
Here P x C' acts on € via its quotient L X C’. Using 1.4 %) we have
px (%) = Hy « 0o(¥).
Now L x C* acts transitively on € and the stabilizer of x, is My (x,). Using 1.6 a) we
have
1x (%) = Higgor
Using 2.1 d) and 1.4 &), we have
Hyyep & Higgop-
Using 2.3 d), 1.12 a) and 1.11 a)
Hyon & Higop= Hyxer = 8

and the proposition follows.

4.3. Let f: X -Y be a G X C'-equivariant morphism between two G X C*-
varieties and let #; be a G x C*-local system on X. Then H®*®(X, #,) can be regarded
as a left Hy , ¢+(Y)-module via its H , ¢«(X)-module structure (1.3 4)) and the algebra
homomorphism f*: Hg , (YY) = Hg x o+(X).
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In particular, for any locally closed subvariety Q of G which is a union of P — P
double cosets, and V as in 3.3, we consider

X =V® (see 3.35)), &, =2, Y =g,

f: X > Y the map =yy: (x, gP, g’ P) b (%, gP) or my, :"(x, g?, g P (x,¢' P), and we
get two S (= Hg ¢+(8))-module structures on H®*% (V¥ £). The two module struc-
tures are denoted as follows:
(AE) &
= 4
(A'(E) k

by definition A(§) £ = w},(E) .k, A'(E) b = wj4(E) .k, where £ is identified with an element
of Hy, ¢+(8) by 4.2, so that =},(£), n}3(8) € Hyy +(V?), and then the products are
taken as in 1.3 5).

It is easy to see that

b) AG)A'E)h=A(E)AE) kA (5 E €8).
Now H¢*®(V? &) is an Hy, e-module in a natural way (1.7) and it is clear that
this is the restriction of either of the two S-module structures above to Hg, ¢ via the

natural algebra homomorphism Hg, ¢« — Hg , ¢«(§) = S induced by the map § — point,
or equivalently by the map

a) £E€8, he HE* (VO &) in H&*®(V?, £);

¢) H(.}xc‘ g H;a?,(cpo) =8
induced (1.4 f)) by the inclusion M?(¢,) = G x C*.

The homomorphism ¢) has as image the algebra S¥ of W-invariants on S. [An
equivalent statement is the following. Let h be a Cartan subalgebra of g containing {.
Then any W-invariant polynomial t — G is the restriction of a polynomial ) — G
invariant under the full Weyl group W’ of h; or, equivalently: the natural map t/W — §H/W’
is a (closed) embedding. The verification of this statement is omitted.]

It follows that

d) A(E) = A'(E) for all £ eSY
as operators on H%* (V0 ),
We shall write r instead of A(r) = A'(r).
e) A(E) = A’(E) on HE*®(V? &) for all £ec8V.
Indeed, the two projections V¥ — § coincide.
We denote the operators defined in 3.8 5) by (w,e¢), (¢, w) on HE*®(V, £)

by A(w), A’'(w) respectively (w € W).

Proposition 4.4. — Let w,w' € W, £ €8, h e H¥*(V, Z). Then
a) A(w) A'(E) h = A'(E) A(w) h,
b) A'(w) A(E) k = A(E) A'(w) &,
¢) Alw) A(w) k= A(w) A(w) h.
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Proof. — We use the following fact. If X is a variety and K € 2X, then we have
the usual product

w: H?(X) ® HY(X, K) - H2* (X, K)
with the following property: if € Endgy K, then t induces % : H}(X, K) 2 for all  and
d) ©*T(u(A®B)) = u(A®1?B)
for A e H?(X), B e H(X, K).
We apply this in the following situation. We can assume that &, & are homogeneous
of degrees i,, i, with i, + i, = j. Let T be as in 3.5 with m large. We take: X = [V,

K = (pp1s), r€", v =weAut(K) (see 3.7 ¢)), p =14, ¢=2d —j, d=dim(V).
We have H;(1V, K) = H;(:V, #*), so that u becomes

H (V) @ Hy~/(1V, p&) - Hy 4V, 1.9
or, taking duals,
H (V) @ H2 (Y, 1 2% - H2 (.Y, 1. 2°)
or, equivalently,
W Hi (V) O HIXO(V, £) > HY < (¥, &),
The identity d) implies in this case:
(wx 1) W(A'®B) = w'(A'® (w x 1) B)
for A’ e HY, o(V), Be HE*®(V, .?) We apply this for A’ = image of § under
HY, +(8) > H%, (V) (induced by V<> g), B' =% and we obtain a). The proof

of b) is completely similar, and ¢) is obvious from the definitions.

4.5. We shall regard H®*%(§,, #) and H®*%(§, #) as S-modules in two
different ways as in 4.3. These two S-module structures define two linear maps
a) S®H*“(gy, £) 3 HI*“(gy, £)
and two linear maps
b) S HS*®(g, #) T H*"(§, £).

Proposition 4.6. — The two maps 4.5 a) and the two maps 4.5 b) are isomorphisms.
Moreover, dim HS*® (G5, £) = dim H3* (g, £) = # W.

The proposition is a special case of the following result.

Proposition 4.T. — Let Q be a locally closed subvariety of G, which is a union of P — P
double cosets. Let n(Q) be the number of good double cosets contained in Q. If V. = gy or g, then
the two S-module structures (4.3) on HE* (VR P) define isomorphisms

S® HE* (VR &) 3 HE* (VO £).
Moreover, dim HZ*®(V®, ) = n(Q).
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We shall consider only the S-module structure defined by the operators A(E)
(see 4.3); the other S-module structure is treated in a similar way.

We assume first that Q is a single P — P double coset. We choose g, € Q such that
L and L' = g,Lgy' contain a common maximal torus T,. Let P’ = g, Pg;?,
U =g, Ugy?, p’, I', n' be the Lie algebras of P, L', U’, ¥’ = Ad(g,) ¥CT,
t = Ad(g,) tCI'. Using 1.6 a), 1.4 %), we have

HE*(V0, £) ¢ HEPP (V' &) = HECW (V' 2),

where V=V N (€ +t+n) n (¥ 4+t + n') and the inverse image of £ under
V' > V2 x> (x, P, g, P), is denoted again by .#. We have

§pnp =(Inp)emnp)iny =(In1)OIAN)
b)pnp’=@mEnl®ppnn);pnl'=(10nT)SnANT).

If xeV’, we have in particular x € p N p’ hence we can write uniquely
x=y+v+uyyvelnl,v=I1INnn,pen(usinge))andx =y +v' +p,y el nl,
vennl, u en’ (using 8)). From vy +v+ p=v"+ v + ' we deduce (using a
root decomposition of g with respect to T,) that y = y'. For fixed v, v, v/ we have the
equation g +v=p’' + v forp, p’. Set f=p —v, @’ = —v. Then Ten, @ en’
and i =%’ en Nnn’. Thus we have an (L nL’) x C’-equivariant vector bundle

V>V ={(r,Y) e Al @(nn) @[ An) |y +ve(@+HnV,
y+ve@ +t)nV}

with fibres @ n N n'. Using 1.4 ¢), we have HLNLI X (V! @) — HENLIxe* (v P
where .Z denotes the local system on V* obtained as inverse image of % X #* under
the composition V' Sexelex €, aly,v, V) = (pre(y + v), pre(y + V),

B(3,) = (1, Ad(g ) y)- N
Assume that Q is bad. We must show that HENI)X(V"'| &) = 0. By 1.13 it is

enough to show that Hy(V", &) = 0. Letn, = (Inn) ® (' nn),,=(1NT)® I'nl;
these are the nil-radical and Levi subalgebra of a proper parabolic subalgebra p, of
I®1. Let ¢, =% x €' Clal, t,=1t01'CIDI. For (y,v,v)eV"” we define
Cet, et by y+{+ve¥ v+ +VvV e, {=((T)ety, vv=(")en,.
If V = gy, then §, {’ are necessarily zero. Hence we can identify

"o__ {(hvr &) enl) xmy Xt (v, ) + &+ v, €€}, if V=g,

{(rhv) e(INT) X m|(y,v) + €€}, if V=gy.
We define
TV > ((NT) X, (v &) = (1 8), V=g

: V' >INl t(y,v) =7, if V=gy.
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From the Leray spectral sequence of r, it suffices to show that
¢) H(F, élr) = 0 for any fibre F of 7.

If V=g, the fibre at (v,%;) is{vien | (v,y) + &+ v, €%, }; if V= gy, the
fibre at y is {v; eny | (v, y) + v, € €, }. Since (y,y) and (y,y) + &, are in p; we see
that ¢) follows from the fact the local system *(Z X #*) on €, = € X ¥’ is cuspidal.
(See 2.2 a).)

Next, we assume that Q is good. Then gy Lg'=0L, =1, t=1t,
[nn' =1 nNnn=0,hence we can identify V"’ with{y el|y e (¥ +1) n (¥' +1) "V }.
From 2.3 a) we see that €' = € and Ad(g) : € - € carries % to #. Hence
V" = (% 4+ t) n V. More precisely, we see that V' =€ +tif V=gand V' =&
if V= gy. We have in both cases HL*®(V"”, &) = HLX®(¥, £® #*). (If V = g,
we apply 1.4 ¢) to the vector bundle pr;: € +t — %.)

Using 1.6 a), 1.4 k) we see that

HY (6, £© %) 2 HE((x,}, (£©.L"),,) = HI({x}, (£© 27),,).

The last space is = HY¥® (by 1.12 4), 2.3 d) and the irreducibility of .#) and
hence it is = Hy,(,, =8 (by 1.8 ¢)).

Combining these isomorphisms we get an isomorphism H®*®(V® &) =~ 8. The
proposition follows (in the case where Q is a single P — P double coset).

We now prove the proposition for general Q, by induction on the number N(Q)
of P — P double cosets contained in Q. The case N(Q) = 1 is already settled. Assume
now that N(Q) > 1. Let Q, be a P — P double coset contained and open in Q. We may
assume that the proposition is already proved for Q — Q, and Q,. We apply 1.5 a) to
the partition V® = V% U V2~ Assume first that Q, is bad, so that H®*®* (V™ &) = 0,
If n(Q — Q,) =0 then HE*®(V®, &) = HE* (V2% &) =0 and 1.5 a) shows
that H&*®(V2 &) = 0, as required. If 2(Q — Q,) > 1 then from 3.3 g), k) we see
that dim V® = dim V®~% and 1.5 a) shows that H* (VO —% @) 3 HEx (V2 &),

It follows that HS*®(V®, #) has the required property.

Next, we assume that Q, is good. Then by 3.3 g), &), dim V* = dim V2. If
n(Q — Q;) = 0 then HE*®(V®—%, &) — 0 and 1.5 a) shows that

HS>*@(V0, £) = H**(Vh, &)
hence HE*®(V®, &) has the required property. If 2(Q — Q,) > 1 then we also have

dim V2~ = dim V® by 3.3 g), k) and 1.5 a) gives the short exact sequence in the
first row of the diagram

0 » Hc.:)x c*(\";n-nl, y) — H?X 0?‘(\"]0’ g) —— H?’x °‘-(V“l, .?) — 0

| | |

0 —» SOHZ**(VO-U &) e SOHS*(V? &#) —p SOHG** (VY &) — 0

23
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We take that exact sequence in degree 0 and tensor it with S§; we find the short
exact sequence in the second row of the diagram. We map the second exact sequence to
the first using the S-module structure. We obtain the commutative diagram above.
By the induction hypothesis, the first and third vertical maps are isomorphism, hence so
is the middle one. We also see that dim H$*®(V?, #) = n(Q,) + n(Q — Q,) = n(Q).
The proposition is proved.

Corollary 4.8. — If Q in 4.7 is closed in G and V = gy or g, then the inclusion
i : V2 >V induces an injective homomorphism i, : H3* &(V®, &) - HS**(V, &).

Proof. — This follows from the exact sequence 1.5 a) applied to V = V@ U Vé-2
together with the vanishing of HE®*®(V®, #) and HE*®(V¢~2 #) for odd i (which
can be seen from 4.7).

4.9. From 3.3 1) and 1.5 b) we see that the open embedding j : ¥ pg & ¥ = §
induces an isomorphism
a) j*: HI* (5, &) B HE* (44, £).
Similarly, for any good P — P double coset Q(w), the open embedding
,y'/"g(sw) N ,/'/"D(w) — gﬂ(w)
induces an isomorphism
b) ngc*@n(w), ,g)) fad Hg‘rxc‘(,f'ggw), g)
In particular, using 4.7 we have
dim H$* (¥ 90 #) = 1,
Using 3.3 i) we see that the open and closed embedding ¥ <> ¥" defines
an isomorphism

¢) D HEx (YO @)X HEXC (¥ o, P).

weEW
This gives a direct sum decomposition
¢) HO*O(V g, ) = D D,
where D, is the image under ¢) of the summand corresponding to w (a graded space).

The W x W-module structure on H¥*®(¥",, #) satisfies
4) Aw) D,=D,, N(@) D, =D, (weW);
this follows immediately from the definitions.

Taking components of degree 0 we obtain
¢) H3* (Vg £) = D A@) Do = @ N(w)D,,
f) Aw)D,,=A'(w"")D,, (D,, is a line).
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4.10. For V = g, gy or ¥4 we defines a subspace Dy CHS*®(V, #) as the
image of the homomorphism H$*® (VP &) - H¢*®(V, #) induced by the closed
embedding V® < V. (In each case, we have dim V¥ = dim V, see 3.3.)

We shall denote Dy in the three cases V = g, gy, ¥'gg as D, Dy, D, ,, respec-
tively. (Note that D, , has already been introduced in 4.9. It is a line. Similarly, D
and Dy are lines, by 4.8 and 4.7.)

These lines are related as follows:

a) Under the isomorphism 4.9 a), D corresponds to D, ,.

b) The homomorphism HS* (g, #) - HZ*®(§, £) induced by the closed embed-
ding §x C8 maps the line Dy onto the line *.D (b = dim ).

We prove a). The cartesian diagram

17'1’&5 o 1;‘35

b

g*F == 3§
induces a commutative diagram

ngc*(,f-%s’ _g) —— ngc*(n/;-ns’j)

L

H§*®(§F, &) —= H}* (5, £)
and a) follows.

We now prove b). The commutative diagram

B G
a '1
Y

g <= g

induces a commutative diagram

HS (@R, &) == H{*%(iy, &)

g |

HE* (@, &) &> HY @, 2)
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and we are reduced to showing that image (f;) = r*.HZ*® (g%, £). As in the proof
of 4.7 we have

HY* (g}, &) = HE* (€, 2 ©.27) — Hl™((x,}, &)
HE (5% &) = Hy*"(% + 4,4{(£© ) = K™z, + 1, &)
(where p,: € + t — € is the projection and & denotes (& ® #”), regarded as a local

system over { x,} and also its inverse image under x, + t —{ %, }). We have only to
show that the homomorphism

S HEe ({5}, &) - Hi®(x, 4 1, &)

induced by the inclusion f’:{x,}<> %, + ¢ has as image " H¥®(x 1t &). But
this follows from 1.10 5).

4.11. From 4.9¢),f), 4.10a), 4.9 a) and 3.10, it follows that
G % C* /%2 5 _ — ’

o) Hi*“(3, %) = @ Aw)D= D @)D

and

b) A(w) D = A'(w™ ') D, weW.
We now show that

¢) the homomorphism v, : H$*®(§y, &) — H$XS(6, #) induced by the closed
embedding v : §x C g, is injective (b = dim t).

Indeed, using 4.6 we are reduced to the case where j = 0. Let I be the image of y
(for j = 0). By 4.10 b), I contains r* D. But I is clearly W X W-stable (see 3.10) hence

it contains Ewr" A(w) D = PP HS*®(§, #) (see a)). This subspace has dimension

equal to W (by 4.6). Thus dim I > $W. Using 4.6, we have dim H$* % (g, &) = #W.
It follows that dim I = $#W and vy is injective.
We have:

4) H3* %Gy, €) = D Aw) Dy = D A'(w) Dy,
e) A(w) Dy = A’(w™?) Dy.
Indeed, by the previous argument, & — r~?y, & defines an isomorphism
H3*®(8y, £) 3 H* (8, )
compatible with the W X W actions and taking Dy to D; it remains to apply a), b).
4.12. We now want to study the S-module structures on H®*®(¥" . #) in

the case where P is a maximal parabolic subgroup. In this case, we have W = {¢, s}
and we have the following result.
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Proposition 4.18. — a) The S-module structure on HE*(¥ ., L) defined by the
operators A(E), £ €8S, gives an isomorphism

S/(r) @ HY* (¥ gg, £) 3 HI* ' (Fgq, £)

where (1) is the ideal of S generated by r.
b) On the image of HE* (¥ 2, L) <> HEX® (¥ g, L) we have A(E) = A'(E), £ €8.
c) On the image of HE* (¥ 90) Z) s HEX® (¥ 1o, P) we have A(E) = A'(*E), E €8.
d) A(s) A(E) b = A(%E) A(s) h for all h e HO*® (¥ 1o, P), E 8.

Proof. — We have t,, =t — t, where t, is the centre of g (a hyperplane in t).
In the following calculations we shall often omit writing local systems. Using the
P x C'-equivariant embedding € + (t — 1) + n<> ¥, x> (x, P, P), we have
HE*C (PP, )= B*® (€ + (t —t,) + 1, ) (see 1.6 a))
> HYXC(E + (1 — 1), ) (see 1.4 k), 1.4 ¢)).

Let t, be an affine hyperplane in t, parallel to t, but distinct from t,. The stabilizer
of 4+t in L X G is L X (1) and we have
HS*®(¥Rg, #) x HEXE(G + 1, ) (by 1.6 a))
~ HL*=*1)(%, @ %) (by 1.4 ¢))
x HX® 05}, (£©27),,) (by 1.6 a))
& HAw < ED({ g}, @ 2°),) (by 1.4 h))
~ HA® — HT, (by 1.12 4), 2.3 b), d)).

Using the L x C* equivariant embedding i : € + (t — 1) & Y%, x> (x, P, §P),
we have
HE (Y90, £) 2 HE* (% + (t — 1), ) (see 1.6 a))
~ HT (as above).
Using these isomorphisms and 4.9 ¢), we see that a) holds.
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