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Let G be the group of rational points of a connected reductive group defined over a p-adic field
F (not assumed to be of characteristic 0). If P is a parahoric subgroup of ' with pro-unipotent
radical {J the quotient M is the group of rational points of a reductive group defined over the
residue field F, of F. If (=, V) is an irreducible smooth representation of G we say that it is of
level 0 if, when restricted to some P as above, the finite-dimensional subspace V¥ of U-fixed
vectors is nonzero and contains a cuspidal representation of M. We remark that V¥ is typically
zero; if it is not, then, after changing P if necessary, VYU must contain a cuspidal representation.
We say that (7r, V) is unipotent if it is of level O and if, in addition, it contains a unipotent cuspidal
representation of M. The best known and most common example of a unipotent representation is
the case when (7, V) contains a nontrivial Iwahori fixed vector: in other words, the parahoric in
question is an Iwahori subgroup / so that M is a torus and the unipotent cuspidal representation is
the trivial character.

Here are two facts concerning level-0 representations: (i) If o is an irreducible cuspidal represen-
tation of M as above one can consider the intertwining algebra 3{(c ) of the smooth representation
c-Ind%(5), where ¥ denotes the contragredient. The structure of this algebra was investigated
by the reviewer [Invent. Math. 114 (1993), no. 1, 1-54; MR1235019 (94¢:22035)}; roughly speak-
ing, it is the tensor product of a twisted group algebra by an affine Iwahori-Hecke algebra with
not necessarily equal parameters; this is quite analogous to the situation for parabolic induction in
groups over finite fields, and indeed the proof uses the theory of R. B. Howlett and G. L. Lehrer [In-
vent. Math. 58 (1980), no. 1, 37-64; MR0570873 (81j:20017)] in a crucial way. The group algebra
may exhaust the intertwining algebra; however, if o is unipotent the classification of such repre-
sentations implies that the group algebra piece is very small and comes from automorphisms of P,
and the 2-cocycle is trivial. (ii) The category of smooth representations of G’ which are generated
by their o-isotypic vectors is equivalent to the category of nondegenerate (o )-modules. This
was proved by the reviewer [Compositio Math., to appear], and by A. Moy and G. Prasad [Com-
ment. Math. Helv. 71 (1996), no. 1, 98-121; MR1371680 (97¢:22021)}; although these proofs are
different, each relies to some extent on the theory of types due to C. J. Bushnell and P. Kutzko
[Proc. London Math. Soc. (3), to appear]. This generalises a well-known result of A. Borel [Invent.
Math. 35 (1976), 233-259; MR0444849 (56 #3196)] for the Iwahori case. It is worth pointing out,
however, that under quite general hypotheses one can show that there are bijections between the
isomorphism classes of irreducible objects on each side here. This does not depend on knowing a
categorical equivalence, and proofs can be found in the paper by the reviewer cited above, as well
as in Bushnell and Kutzko [The admissible dual of GL{N') via compact open subgroups, Ann. of
Math. Stud., 129, Princeton Univ. Press, Princeton, NJ, 1993; MR 1204652 (94h:22007)].



Now assume (' is split simple adjoint, and write *G for the connected component of a dual
group for G—we are deliberately vague here—so that “G is simply connected. In the present
paper the author establishes a bijection between the set of isomorphism classes of irreducible
unipotent representations of G and the set of triples (s, N, p}, where s € “( is semisimple, N ¢
Lie*G is nilpotent, with Ad(s)N = ¢N, where ¢ is the order of the residue field of F, and p
is an irreducible representation of the component group Ziq(s, N)/ Z?G(s, N) which is trivial
on the image of the centre Z:;. He obtains variants for the inner forms of G, by placing no
restriction on p. This completely proves an earlier conjecture of the author’s [Trans. Amer. Math.
Soc. 277 (1983), no. 2, 623-653; MR0O694380 (84j:22023)]. The Iwahori part of the conjecture
was established earlier by D. Kazhdan and the author [Invent. Math. 87 (1987), no. 1, 153-
215; MRO862716 (88d:11121)] using equivariant K'-homology: they showed that the equivariant
K-homology tensored by C of the variety of triples {(u, B, B')| B, B’ Borel groups in /G, u
unipotent € BN B’} provides a model for the regular representation of the Iwahori-Hecke algebra
H. They were then able to construct a “standard” J{-module for each triple (s, NV, p); this module
has a unique irreducible quotient, and this provides the desired correspondence, by Borel’s version
of (i) above. Unfortunately, the equivariant K-homology method runs into serious difficulties if
one tries to extend it to the general conjecture. In the paper under review, following a strategy
outlined in his address at the 1990 International Mathematics Congress in Kyoto [in Proceedings of
the International Congress of Mathematicians, Vol. I, I (Kyoto, 1990), 155-174, Math. Soc. Japan,
Tokyo, 1991; MR 1159211 (93e:20059)], the author proves his conjecture essentially by replacing
affine Hecke algebras by graded versions and using his parametrisation of the irreducible modules
of these latter algebras. Indeed, in a series of previous papers he has used (ordinary) equivariant
homology and perverse sheaves in the equivariant derived category to construct and parametrise
such modules. In particular this method provides a new proof of the Iwahori case.

We now try to provide a rough, and sometimes heuristic, sketch of some of the steps in the
bijection itself, beginning with the geometric (complex) side.

(a) First, given a nilpotent orbit € of some Levi component L of a connected reductive com-
plex algebraic group » and an irreducible equivariant cuspidal local system F of this orbit the
author has constructed a graded Hecke algebra / over C[r] ( an indeterminate) with typically un-
equal parameters [see Inst. Hautes Etudes Sci. Publ. Math. No. 67 (1988), 145-202; MR0972345
(90e:22029); in Representations of groups (Banff, AB, 1994), 217-275, Amer. Math. Soc., Prov-
idence, RI, 1995; MR1357201 (96m:22038)(with errata for Part I)]. For example, if the Levi
component is a maximal torus with the trivial nilpotent orbit this algebra is a graded algebra asso-
ciated to a filtration of the standard affine Hecke algebra over C(v, v }). In any case the graded
Hecke algebra can be usefully identified with the full endomorphism ring of a certain equivari-
ant perverse sheaf associated to J in the equivariant derived category @LGXC*LieL G, or again, as
a graded vector space, with the full equivariant homology of a generalised variety of triples with
values in an associated local system.

(b) Now fix G and consider the equivalence relation on the triples (L, G, F ) in (a) obtained
via the action of “G. This provides a finite collection of graded Hecke algebras Hy, -, Hy.
Let Irr,, H; denote the set of isomorphism classes of irreducible modules of H; on Whlch the
indeterminate r acts via the real number ry. The author has shown that there is a bijection from



[1,Irr,, H; to the set whose elements consist of triples (s, IV, p) as above except that s is now
in Lie”G and ¢ is replaced by 2ry. We refer the reader to the author’s two-part paper [op. cit.;
MR0972345 (90e:22029); op. cit.; MR1357201 (96m:22038)], especially Part I, Section 8.

(¢) In particular, if L@ is simply connected and almost simple with maximal torus 7" = T, x
L1, decomposed into its compact and hyperbolic parts, and ¢’ € LT,. we may apply (a) and (b)
above to the connected reductive group Zio(t').

(d) Fix (G, YT as in (c) and let I be an index set in one-to-one correspondence with a set of
simple affine roots (or the extended Dynkin diagram) for this pair. To J C [ one can associate
a connected reductive group Gy € “G. Fix a nilpotent orbit € on Lie”G; and an irreducible
L@ s-equivariant cuspidal local system J on C. In Section 5 of the paper under review the author
associates an affine Hecke algebra H(*G, G, €, F) with unequal parameters starting from a
certain root datum (R, L, R, L) arising from the triple ("G 7, €, F). Let W denote the Weyl group
associated to this root datum; let T denote the complex algebraic torus whose cocharacter group
is £’. The centre Z of H(*G, "G, €, F) can be identified with the algebra of regular functions of
the quotient W\T x C*; thus a character of Z can be identified with a pair (Wt, vg), £ € T. Let
Irryp o H (PG, PG 5, €, F) denote the set of isomorphism classes of irreducible H(*G, “G 7, €, F)
modules which transform on Z by the character (Wt, vg).

(e) Take a pair (Wi, vy) as in (d) above and decompose ¢ = ¢, into its compact and hy-
perbolic parts. We assume vy is a positive real number. To . the author associates an element
t¥ € T, and LG, is a Levi component of Zr(t¥). One then has the graded Hecke algebra
H(Zoo(t?), LG5, €,F) as in (a). The element logt;, lies in Lie T and this can be identified with
Lie Zzi;, C Lie"T. Just as in (d) one has the set Irry, 1ogt,.,H (Z16(tY), *G 1, €, F), where ro =
log vy and the Weyl group W,_may be identified with /N Zuy( ig)L (G)/"G ;. The author then applies
the results of his paper [J. Amer. Math. Soc. 2 (1989), no. 3, 599-635; MR0991016 (90e: 16049)]
to establish a bijection Ity . H(*G, Gy, €, F) — Irtw, togt, s H (Z16(t8), “G 5, €, F).

(f) Fix a positive number vy, and let & denote the collection of triples (J, €, F). By varying
the orbits of T under W, and combining the results in (c)—(e), the author obtains a bijection of
[ieqeslr H, ("G, %G, €, F) with the set &(vg) of triples in the introduction, except that ¢
is replaced by vg. (See Theorem 5.21 of the paper.) Here H, (- --) denotes the algebra I (- -)
specialised at vy. Note that if one takes vy = 1, the left side of the bijection becomes the collection
of irreducible representations of a certain finite set of generalised affine Weyl groups, while the
right side becomes the collection of pairs (g, p): g € L@, p an irreducible representation of the
component group of Zi(g).

(g) Let S'(1) denote the (finite) group of characters of Zi. If x € S'(I) then in (f) above we can
consider the sets @x, &, (vp): the first set denotes triples (J, C, F) where Z:¢ acts on each stalk
of F by y; the second denotes triples (s, N, p) where p|image Z:; acts by x. The bijection in (f)
respects this decomposition. The elements @X are called by the author geometric diagrams of type
X-
We remark that much of §§ 2-5 of the paper is concerned with carefully establishing the bijections
in (d)~(f) above. We now pass to the p-adic (arithmetic) side.

(h) Let F denote the unramified closure of the field /. We take a split adjoint simple F-group
Gy and fix an inner form G of Gy; the Bruhat-Tits classification implies that G splits over F and



we identify G with its F-points. Take the complex group “G in (a)~(g) above to be the connected
component of the dual group of G. (We are being careless here.) The Galois action on G is
determined by a Frobenius element ¢ which induces a permutation % on the vertices I of the (F-
) local Dynkin diagram of G. This permutation can be identified with an element x of the group
S’(I) in (g) by a result of Kneser-Kottwitz.

(i) Let P be a parahoric subgroup of G = G?; we write P for the full centraliser of the facet
in the affine enlarged building of G fixed by P. Up to G-conjugacy P corresponds to a u-stable
subset J of I, and we suppose that its reductive quotient M admits a unipotent cuspidal repre-
sentation E, with contragredient E. Thzs forces strong restrictions on both A and P. Let ¢ be
a character of the “component” group P /P. The triple (J, E, ) is called by Lusztig an arith-
metic diagram of type u; let U, denote the collection of such diagrams. Write 3(I, J, u, E) for
the intertwining algebra Endg (chnd}@(E)) (compact induction); the irreducible unital modules
of this algebra are in one-to-one correspondence with the irreducible admissible representations
of G which contain E by (i1) above. Now, this algebra can be decomposed into a direct sum
of two-sided ideals H¥ corresponding to central 1demp0tents parametrzsed by the ¢ above, and
H¥ is isomorphic with the algebra Endg (c- Ind4 ( » ), where ET,V is an extension of E to P
parametrised by +/. This last assertion depends on the fact that E is unipotent. Each of the algebras
H¥ is noncanonically isomorphic to a fixed algebra H'(I, J, w, E) which has the same presen-
tation as Endg (C-Indg(fé})) except that the group algebra part can be identified with the group
algebra of Ng(P)/ P. Let U(G) denote the set of isomorphism classes of irreducible unipotent
representations of &, and let Irr 7('(I, J, u, E) denote isomorphism classes of irreducible unital
modules of the algebra 3{'(I,J, u, E). Combining these facts one obtains a bijection UW(G) —
s, Irr H'(1, J,u, E).

() Fix x € §'(I) corresponding to w. The desired bijection [ [ ; g yye5, It H'(L J, u, E) —
11 (g.e.5)e8, 11 I, (PG, Gy, €, F) isrealised in §7 of the paper under review by matching families
of arithmetic diagrams with families of geometric diagrams case by case, and specialising the
bijection in (g) to vy = /¢, wWhere g is the order of the residue field of /. For this the author
is guided by earlier bijections he has established in the classification of character sheaves. (The
interested reader may wish to look at the reviewer’s paper [Ann. Sci. Ecole Norm. Sup. (4) 29
(1996), no. 5, 639-667; MR1399618 (972:22013)] for a special case.)

This is an important paper which will repay close reading.

Reviewed by Lawrence Morris

© Copyright American Mathematical Society 1998, 2007
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of Simple p-adic Groups
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0 Introduction

0.1

Let us first consider the group §; of Fy-rational points of a reductive connected algebraic
group defined over a finite field F,. Among the irreducible (complex) representations of
Gy, there is a remarkable class of representations, called unipotent, which were defined
in [DL] by a cohomological method.

The unipotent representations of Go were classified in [L6]; their classification
is independent of g. At one extreme, one has the irreducible representations which
have nonzero vectors fixed by a Borel subgroup. (They are in bijection with the irre-
ducible representations of the Weyl group, assuming that we are in the split case.) At
the other extreme, one has the unipotent cuspidal representations. These are quite rare:
for example, the group SOz..1(F4} (and also Spy,(Fy)) has a unique unipotent cuspidal

representation if n is twice a trianguiar number, and none, otherwise.

0.2

Now let G be a simply connected almost simple algebraic group over C with Lie algebra
g. Consider the set of all pairs {€,F) where € is a nilpotent G-orbit on g and F is an
irreducible, G-equivariant local system on € (up to isomorphism). The set of all such
pairs is in a certain sense similar to the set of unipotent representations of G,. At one
extreme, one has the pairs (€, F), which enter in the Springer correspondence {S]. (They are
in bijection with the irreducible representations of the Weyl group.) At the other extreme,

Received 19 May 1995 and I August 1995,



518 George Lusztig

one has the cuspidal pairs {see [L5]). These are quite rare: for example, the group Sp;,(C)
has a unigue cuspidal pair if n is a triangular number, and none, otherwise. Note that
the picture here, although reminiscent of that in 0.1, is different from that in 0.1,

0.3

The main theme of this paper is that the pictures in 0.1 and 0.2 come together in the
representation theory of §, the group of rational points of a split adjoint simple algebraic
group over a nonarchimedean local field.

We shall be interested in a particular class of irreducible admissible represen-
tations of § that we call unipotent, since they are analogous to the unipotent repre-
sentations of a reductive group over a finite field. Namely, an irreducible admissible
representation of § is said to be unipotent if its restriction to some parahoric subgroup
contains a subspace on which the parahoric subgroup acts through a unipotent cuspidal
representation of the “reductive quotient” of that parahoric subgroup {a reductive group
over a finite field).

(If, in this definition, we replace G by Gy of 0.1 and “parahoric” by “parabolic,” we
recover the class of unipotent representations of 9;.)

According to the Langlands philosophy, it should be possible to parametrize the
set of isomorphism classes of unipotent representations of our group in terms of the
geometry of G (as in 0.2) assumed to be of type dual to that of §. Indeed, in [L4] it
was conjectured that the set of isomorphism classes of unipotent representations of G is
naturally in one-to-one correspondence with the set of triples (s, y, V} {(modulo the natural
action of G} where

5 is @ semisimple element of G,

y is a nilpotent element of the Lie algebra of G such that Adis)y = quy (here g is
the number of elements in the residue field of our local field), and

V is an irreducible representation {up to isomorphism) of the group of compo-
nents of the simultaneous centralizer of s and y in G, on which the centre
of G acts trivially.

In the case when we restrict ourselves to representations with nonzero vectors
fixed by an Iwahori subgroup, our conjecture specializes to a conjecture of Deligne-
Langlands {in a refined form, due to the presence of V). In [L7], the idea that equiv-
ariant K-theory should play a role in this problem was formulated, and in [XL], the
proof of the (refined form of the) Deligne-Langlands conjecture was given using equiv-

ariant K-theory. (In [G], a partial proof of that conjecture was given; see also [CG])
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In this paper we prove the general conjecture stated above. The strategy of the
proof was sketched in [1.12], and several steps of that strategy were carried out in [L10],
{L11],{L13], [L14]. First, one observes that the endomorphism algebra of a representation
induced by a unipetent cuspidal representation of {the reductive quotient of a) parahoric
subgroup is an affine Hecke algebra with an explicit presentation similar to that given by
Iwahori and Matsumoto, but the parameters can be unequal and almost arbitrary. Then,
one would like to know that the unipotent representations under consideration can be
parametrized by the simple modules of the endomorphism algebras above, This was re-
cently established by Moy and Prasad [MP2] and Morris [M2], generalizing an earlier
result of Borel [B] and Matsumoto [Mal. Thus, we are reduced to the problem of classify-
ing the simple modules of certain affine Hecke algebras with unequal parameters. One
would like to see these affine Hecke algebras in a purely geometric context, in terms of the
complex group G. In this paper we show that, given a subgroup of G which is the central-
izer of some semisimple element and a unipotent class of the subgroup which carries a
cuspidal local system, one can construct explicitly an affine Hecke algebra (usually with
unequal parameters), Remarkably, the affine Hecke algebras arising from the geometry
of G are the same as the affine Hecke algebras arising from the representation theory
of §. We are therefore reduced to the problem of classifying the simple modules of the
affine Hecke algebras attached to cuspidal local systems.

Our approach is as follows: the affine Hecke algebra in question can be “lin-
earized” with respect to various points in the spectrum of its centre. The linearized
algebras are the “graded Hecke algebras” {see {L104, [L.11)). These algebras are simpler
than the affine Hecke algebra; however, from their representation theory, one can recover
the representation theory of the affine Hecke algebra, as shown in [L11]. (This is in some
sense similar to the way in which much of the representation theory of a Lie group can
be recovered from that of its Lie algebra.] We are therefore reduced to the problem of
classifying the simple modules of the linearized algebras. It turns out that all the lin-
earized algebras arising in our case are of the type studied in {L10}, using equivariant
homology and perverse sheaves. In particular, their representation theory is understood
from {L14].

Thus, the desired classification can be accomplished. (We note that our proof
does not use K-theory at all.)

The classification of the unipotent representations of inner forms of G is also
obtained in this paper (see Corollary 6.5). The ideas of this paper are expected to apply,
more generally, to any form of § which becomes split after an unramified extension of
the ground field; there is some discussion of this in §8.
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1 Endomorphism algebras of certain induced

representations

1.1

Let K be a nonarchimedean local field. Let A be the ring of integers of K, let m be the
maximal ideal of A, and let g be the cardinal of the finite field A/m, we write F, instead
of A/m. Let K be a maximal unramified extension of K. Let A be the ring of integers of K,
and let & be the maximal ideal of A. Then k = A/ is an algebraic closure of A/m = F,.
Let F ; K — K be the unique field automorphism such that Fix) = x for all x € K and
F(x) = x® mod f for all x € A.

Let G be a connected, adjoint simple algebraic group, defined over K. (For the
classification of the possible such G, see Kneser [Kl for the case where K has characteristic
zero, and Bruhat and Tits [BT] for general X.)

Unless otherwise stated, it is assumed that G is split over K. Then G(K) is the
fixed-point set of the natural action of the Galois group Gal(K/K) on G(K). Since F is a
topological generator of Gal(K/K), the action above gives us a bijection F : G(K) — G(K)
whose fixed-point set is G{K). We shall write G instead of G(K); then we have F: G — G
(“Frobenius map”) and G(X) = G {fixed-point set). (We shall generally denote the fixed-
point setof amap f: Z — Zby Z'}

1.2 Parahoric subgroups

Let ‘B be the set of all subgroups of G that are conjugate to the subgroup of G denoted
by B in {IM, 2.1] {whose definition uses a fixed épinglage of G). The subgroups in B are
called Iwahori subgroups of G. Note that any Iwahori subgroup of G is contained in &/,

the derived group of G {a subgroup of finite index of G}.
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A subgroup of G is said to be parghoric {cf. [BT]) if it contains some Iwahori
subgroup and is contained strictly in G/,

Any parahoric subgroup P can be naturally regarded as a proalgebraic group over
k. It has a canonical normal subgroup Uy which is prounipotent, so that the guotient
P = P/Up is naturally a connected, reductive algebraic group over k.

The set B" = (B € B | FB = B} is nonempty (see [BT]).

1.3

A number of properties of G or of its subgroups are analogues of familiar properties of
reductive groups over a finite field. For example,

{a) if B € BF, the Lang map b — b~ 'F(b) of B into itself is surjective.
In other words, “Lang’s theorem” holds for B. This can be deduced from the usual Lang's
theorem for connected algebraic groups over k, since B is connected and proalgebraic
over k. We will often use this extension of Lang's theorem to proalgebraic groups like
Us,P,....

From (a}, it follows, in the standard way, that the action of G' on B' (by conjuga-

tion) is transitive,

1.4

Let P be a parahoric subgroup of G such that ¥FP = P. Then F : P — P induces a hijection
F: P — P which may be regarded as a Frobenius map of an Fy-rational structure of
the reductive group P. Taking fixed points of F, we obtain subgroups P* UL, P*. (The last
group is finite.) Note that U}, is a normal subgroup of P and P' = PT/U}. (To see this, we
use “Lang's theorem” for Us.) Let 7p : P* — P¥ be the natural projection.

1.5

We now fix P asin 1.4, and we assume that there is given a unipotent cuspidal {irreducible}
representation {over C) of the finite group P'; let E be the vector space {over C} of this
representation. We regard E as a P'-module via the surjective homomorphism 7p : P¥ —
P'. Let X be the C-vector space consisting of all functions f : G* — E such that
(a) flgp) =p~'f{g) forall g € GF,p € P and
(b suppf = {g € G' | flg) + 0} is contained in a union of finitely many PT-cosets
in Gt /P,
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For any ¢ € G' and f € X, the function ¢g'f : G" - E given by (g'filg) = flg' !¢
belongs to X. This defines a representation of G' on the vector space X. We have a direct

sum decomposition
x = @gp]:xgp?

where gP' runs over the cosets GF /P and Xpr = (f € X | suppf  gP'}.
Let H(G";P, E) = 3 be the endomorphism algebra of the G'-module X. Let Irr H
be the set of isomorphism classes of (finite-dimensional) simple H-modules.

1.6

Let Irr(GT; P, E) be the set of isomorphism classes of irreducible admissible representa-
tions of GF with the following property: The subspace of vectors fixed by U}, regarded as
a Pf-module in the natural way, contains the P'-module E. We shall need the following
result.

(a} There is a natural one-to-one correspondence between the sets Irr(G'; P, E)

and Irr K.

This result was proved by Morris [M2], under the assumption that G is split over K, and
by Moy and Prasad [MP2], without any assumption. Both of these proofs rely on the
paper {BK] of Bushnell and Kutzko. In these references, the bijection (a} is obtained from
a stronger statement, namely an equivalence of two categories of representations, (The
assumption that E is unipotent is not needed for these results.) The case where P is an
Iwahori subgroup and E is the unit representation was considered earlier by Borel [B]
and Matsumoto [Mal.

Let us now consider another F-stable parahoric subgroup P of G and a unipotent
cuspidal {irreducible} representation (over C} of the finite group ?7 on the vector space E/.

{b) The sets IrriGT: P, E), Irr(G": P', E') are either equal or disjoint. The first alter-
native occurs if and only if there exists g € G' which conjugates P to P and E to a
representation isomorphic to E',

From [MP1, 5.2] it follows that P, P’ are associate; the fact that E, E’ are unipotent
cuspidal then forces P, P to be conjugate under GF,

1.7

Let us fix (P,E) as in 1.5. From 1.6 {a), we see that the problem of parametrizing the
set IrriG'; P, E) is the same as the problem of parametrizing the set Irr 3. It is therefore
desirable to describe the algebra I explicitly.



Unipotent Representations of Simple p-adic Groups 523

It is a remarkable fact that the algebra H is an affine Hecke algebra with not nec-
essarily equal parameters. {In the case where G is split over K, P is an Iwahori subgroup,
and E is the unit representation, this goes back to the fundamental paper of Iwahori and
Matsumoto [IM]; the parameters are all equal to g in this case.) In the general case, this
fact was stated very briefly in the introduction to {L10]; more details were given in [L12]
where the types of the Hecke algebras appearing and the values of the parameters were
described without proof. (However, the proof is almost the same as that of the analogous
statement in the representation theory of reductive groups over a finite field [L3, 3.26];
the proof of this last statement is given in [L1, §5] for exceptional groups and in L2, §5]
for classical groups.) The proof (which will be sketched in the remainder of this section)
is not only analogous to that of [L3, 3.26], but some of its key steps actually rely on [L3,
3.26]. {See also [M1].)

1.8

For any (P, P}-double coset @ in G, we denote by He the set consisting of those ¢ ¢ H
such that

Cb(xgp?:) C EBQ’PFEGF/PF;Q’"“IgeBxg"PF

for some gPf € GT/P", or equivalently, for any gPf ¢ GF/PF. It is immediate that

H=deMe
where © runs over the (P, P)-double cosets in G; we may in fact restrict ourselves to ©
such that ¥F@ = 8, since for other @ we have Hg = 0.

The condition that F&@ = € is equivalent to the condition that ©NG' # B. The sec-
ond condition implies the first condition trivially; the first condition implies the second
condition since € is a homogeneous space for P x P and “Lang’s theorem” holds for P x P.
Moreover, if these conditions are satisfied, then @ N G' is a single (PF, PF)-double coset in
G'. (Here we use the fact that “Lang’s theorem” holds for the isotropy group inPxPof a

point of ® N Gf, which is an intersection of P and a G'-conjugate of P.)

1.9

If P,, P, are parahoric subgroups of G in the G-conjugacy class of P, then P| = Up (P NPy}
and P, = Up,(P; N P3) are parahoric subgroups. We say that the pair (P,,P;) is good if
P, = P; or, equivalently, if P, = P,. We say that the pair (P;, Py} is bad if P| # P, or,
equivalently, if P} % Py,

A (P, P)-double coset @ in G is said to be good (resp. bad) if the pair {P, gPg~!) is

good (resp. bad) for some, or equivalently any, g € ©,
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An argument similar to one used by Harish Chandra for reductive groups over
a finite field shows that, if © is a bad double coset, then Hg = 0. (The argument is
based on the fact that, in this case, for g € ©, the image of PN gPg~" in P is a proper
parabolic subgroup of P. Then the hypothesis that E is cuspidal is used.) Moreover, if ©
is a good double coset (stable under F}, then Mg has dimension 0 or 1. More precisely,
let g € © N G’ Then we can define two isomorphisms 1;,1; from P to g_PE:T Namely,
4 is induced by the homomorphism P -» gPg~! given by conjugation by g and 1, is
defined by the condition tz(rtp{x)) = 7 1 (x) for any x € PN gPg™!. Then ¢ = 1y is
an automorphism of P defined over F,, so it restricts to an automorphism of the finite
group P¥. Composing this automorphism with the homomorphism P* — GL(E) defining
the representation E gives us a new P*-module °E; if the P'-module E, 9E are isomorphic,
then dim Hg = 1;otherwise, we have dim Hg = 0. {The condition that E, E are isomeorphic
is independent of the choice of g in @ N G'.) So far, the assumption that E is unipotent
has not been used. We now use this assumption. Then E is isomorphic to the P'-module
obtained by composing E with any automorphism of P* which is the restriction of an
automorphism of the reductive group P, defined over F, (a known property of unipotent
cuspidal representations). Hence in our case, we have dim Hg = 1 for any good, F-stable
double coset 8.

1.10

The minimal elements {under inclusion} of the set of parahoric subgroups that are not
Twahori subgroups fall into finitely many G'-orbits (Pi}ie (under conjugation). Here Iis a
{finite} indexing set.

We choose an Iwahori subgroup B such that B ¢ P and FB) = B. Let W be an
indexing set for the set of {B, B)-double cosets in G. The set W has been described in [IM].
We denote by O,, the double coset corresponding tow € W. Let W = {w e W | O, C G'},
and let O = {w € W | O,, C NB}. (Here NB is the normalizer of B in G.)

If i € 1, and P; denotes the unique element of P; containing B, then P, ~ B =
0,, for a well-defined w ¢ W’; we set w = s;. Two (B, B}-double cosets 0., O, are said
to be composable if there exists w” £ W such that multiplication defines a bijection
Oy x5 Ow —+ O (Here B acts on Oy x O,y by b : (g,d") — (gb™}, by’).) We then set
wew = w,

There is a unigue group structure on W such that the product of w, w' is w-w' {as
above) whenever O,,, O,v are composable, and sf = 1 for alli € L. {The unit element 1 is
the (B, B)-double coset B.}) Then W’ is the subgroup of W generated by {s; |1 € I}. Thisisa
normal subgroup of W, and Q) is an abelian subgroup of W which maps isomorphically
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onto W/W', The group W’ together with (s | 1 € I} is a Coxeter group {in fact, an irreducible
affine Weyl group}.

1.11

Let S(I) be the group of all permutations u' : I — I such that s; = sy (for i € T) extends
to an automorphism of the group W',

The elements of W which have centralizer of finite index in W’ form a normal
subgroup 7 of finite index in W'

A permutation v’ € S$(1) is said to be special if the corresponding automorphism
of W' restricts to an automorphism of T given by conjugation by some element of W',

The special permutations of I form a normal subgroup S(I) of S(). If w € Q, then
there is a unique special permutation w’ : I ~Z» I such that ws;w~! = sy for all i e .

This gives an isomorphism Q ~— S{I.

1.12

Letl: W - N bethelength function of the Coxeter group W'. We extend this to a function
1; W - N by thwywy) = Ywow,) = Yw,) forw, € W wy € Q. Then O, O, are composable
precisely when Uww') = Liw} + tiw'},

The orbits of G’ on the set of parahoric subgroups (under conjugation} are natu-
rally indexed by the subsets J of I, distinct from I the orbit 7; corresponding to .J consists
of those parahoric subgroups P’ such that the following holds: There exists an Iwahori
subgroup B’ such that, if P; denotes the unique element of F; containing B’, then we have
P cPifandonlyified.

For any subset J of I distinct from I, we denote by W; the subgroup of W generated
by {si |1 e J}

Let J be the subset of I such that P € P;, If @ is a (P, P)-double coset in G, then &
is a union UQO,, where w runs over a {W;, W;}-double coset in W. This gives a one-to-one
correspondence between the set of (P, P)-double cosets in G and the set of (W3, W;)-double
cosets in W. A (P, P)-double coset @ in G is good if and only if the corresponding (W5, Wy)-
double coset in W is contained in NW; (the normalizer of W; in W). In each (W;, Wy)-
double coset in W contained in NW,, there is a unique element of minimal length. Hence
the set W, consisting of the elements of minimal length of the various {W;, W;)-double
cosets in W contained in NWyj, is an indexing set for the good (P, P)-double cosets in G.
We shall denote the good (P, P)-double coset corresponding to an element w € W by &,,.
Actually, W is a subgroup of W (and of NW;).
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Now F permutes among themselves the (B, B)-double cosets in G; hence it defines a
permutation of W, denoted by u. This is a group automorphism which maps W' into itself,
maps Q into itself, and satisfies lu(w)) = lw) for all w € W. In particular, u restricis to a
permutation of {s; | i € I}. We denote again by u the permutation of I such that u(s;) = sy
for all 1. This permutation leaves stable J. Hence u maps Wy into itself, so that u maps
W into itself. Clearly w € W is fixed by u if and only if F@,, = 8,

1.13

From 1.8 and 1.12, we see that H = &ewuHeg,; from 1.9, we see that dim 3Hg,, = 1 for all
w e W,

1.14

Let w,w' € W. We say that 8., @,y are composable if there exists w’ € W such that
multiplication defines a bijection @, xp O,y —> Oy, (Here P acts on ©,, x O, by b :
(g, ¢} > (gb~1, bg'))

If 8,8, are composable and uw} = w, uw) = w', then w'

i

above satisfies
ufw”) = w' and, using “Lang's theorem” for P, it follows that multiplication defines a
bijection (@) xpr (O] ) —> @F . (Here P¥ acts on (BF) x (87,) by b : (g, ¢') > (gb™!, bg").)
For example, if w,w' & W* are such that lww') = Uw) + Uw) (length in W), then
0,., @, are composable and w” above is equal to ww'. (Compare to {L1, 54].) Hence,
multiplication defines a bijection (Of) x,r (@] ,) -~ ©F . From this, one can deduce that,
for w,w’ such that Hww'} = {{w) + Hw'), the following helds.
{a) If t,, fresp. tw) is a basis element of the one-dimensional vector space Hg,,
(resp. He_,), then t.ty is a basis element of the one-dimensional vector
space Heg,_,.
{Here the product t,,t,» is given by composition of endomorphisms of X.}

1.15

Let W {resp. () be the set consisting of the elements of minimal length of the various
(W5, W)-double cosets in W’ (resp. 0} contained in NW;. Thus, W' = WNW’, Q = WNQ =
NW; 1 Q2. Then W* is a normal subgroup of W*, and the subgroup Q" of W* maps
isomorphically onto W*/W'" under the canonical map W* — W*/W*, We shall need the
following results.

{a) If u has exactly one orbit on 1 — J {that is, {f P is maximal among F-stable

parahoric subgroups), then W = (1},
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{b) If uw has at least two orbits on 1 J {that is, if P is not maximal among F-stable
parahoric subgroupsi, then W is a Coxeter group on certain generators
sy, where k runs over the set of u-orbits on I —J.

These statements follow from 2.30 and 2.28. (From the classification of unipetent
cuspidal representations [L6], we see that the subset J of I is u-excellent in the sense
of 2.28, and hence the results in 2.28 and 2.30 are applicable.) More precisely, s, can be
characterized as the unigue element of W* N Wy, distinct from 1. It follows that the
conjugation action of an element of O% on W* maps the set of generators (s} into itself.

1.16

Let NP be the normalizer of Pin G, and let NP = NP/U5 (a possibly disconnected reductive
group over k, with identity component P, on which F acts naturally as a Frobenius map
for an Fy-rational structure). We have NP = NPF/UE (by “Lang’s theorem” for UE), hence
P’ < NP'/UL. We denote the natural map NPF —» NP'/UL by nwp. Using the classification
of unipotent cuspidal representations [L6], it is easy to see that the P'-module E can be
extended to a NP' /U -module. Assume that this extension has been chosen.

1.17

From the definitions, we see that an element w € W" belongs to QY if and only if ©,, ¢ NP.
We shall define, for each w € (" a basis element T,, of Ha,, as follows. For f € X we define
Tof : GF — E by

(T flg) = myplulfloy)

where y € ©,,NG' © NPF. (Here mnply) acts on flgy) € E by the chosen extension of E to a
NP /UL -module) It is clear that T,,f is independent of the choice of y, that it belongs to
X, and that f — T, is a well-defined element in Hg  (in fact, a basis element of it}. Using
the definitions, we see that

{a) TwTw = T for any w,w' & WY,
{Here T, T, is a composition of endomorphisms of X.) Note also that T; = 1.

1.18

Let (I — J)/u be the set of orbits of u on I — J. Assume that (I — J)/u has at least two
elements. If k is one of these elements, there is a unique basis element T, of 3, such
that ) )

(a) (T, + 1M, —q"¥) =0
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for some integer L(k) > 1. The unigueness is obvious. The existence follows from the study
of induction of unipotent cuspidal representations in reductive groups over a finite field
[L.1, §5], [L2, §5].

If k is as above and w € Q¥ then wsw™? = sy for some k' € (I - Jj/u. We have

o) TuTo T = To,.
Indeed, using 1.*14 {a), we see that Tw“{sg};l € j{esk; . On the other hand, from (TSjﬁ 4 1)(T5£ -
g'¥) = 0, it follows that (T, T, T;? + V(T T, 15 — q“¥) = 0. From the definition of T, we
now see that {b) holds.

Let k', K’ be two distinct elements of (I - J)/u such that sys)» has finite order m
in W, We have

(€) ToyTouToy == T, Ty, T
where both ;;roc_iucis have m factors. This equality follows from the study of induction
of unipotent cuspidal representations in reductive groups over a finite field {L1, §5], [L2,
§51.

Forw ¢ W, we define

{d} Tw = TsSEI TSEQ "'TSE,,
where W' = sy S, oSk is a reduced expression in the Coxeter group W™, This is well
defined {independent of the choice of reduced expression) by (b). From 2.29 {b), it follows
that we necessarily have Lw'} = Hsy ) + Use ) + - + 1(5&) {where 1 is the length function
of W'}, and from 1.14 (a} it follows that T,y € Hg_,. Note that T,» # O (it is a product of
invertible elements of ) and hence T,» is a basis element of Hg .

Forw & W we define

(e} Ty = T L
where w € WY w" € OY, and w = ww": here, T, is given by (d) and T, is as in 1.17.
From 1.14 {a} it follows that T, € Ha, . Moreover, T,, is an invertible element of ¥ since
both T, T are so; hence T,, is a basis element of Hg,,. Using 1.13, we see that

(£} {Tw | w e W) is a C-basis of H.

Now (a)-{f} and 1.17 {a) show that H is naturally the affine Hecke algebra attached
(in the Iwahori-Matsumoto-presentation {IM-presentation), as in 5.12, and specialized
at v = ./q) to the Coxeter group W™ with Coxeter generators sy indexed by (I — J)/u, to
the function k +> L{k), and to the finite abelian group O, which acts by conjugation on
W't respecting the set of generators and the function L.

From the definitions, we see that the parameters L{k) are determined as follows.
Let P’ be the parahoric subgroup in Py containing P (see 1.12). Then ¥’ is F-stable, and
P may be regarded as a Levi quotient of a maximal F-stable parabolic subgroup Q of P'*.
We can induce E from QF to PT; the resulting representation splits into the direct sum of

two irreducible representations of dimensions d > d'. Then g% = d/d’; the explicit value
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of Li{k) can be extracted from the table in [L3, p. 35]. On the other hand, the integers m in
(c) are determined as in 2.28 (a) {with (I =1, | = J}.

1.19

Now assume that (I — J)/u has exactly one element. Then W* = Q" (see 1.15(a)}, and
hence {T,, | w € (3"} (defined as in 1.17) form a basis of H, From 1,17 (a), we see that ¥ is
naturally the group algebra of Q.

1.20

In the setup of 1.18 or 1.19, we note that the permutation action of " on I induces a
homomorphism of Q¥ into the group of permutations of the set (I — J)/u. Let QY {resp.
Q}) be the kernel (resp. image} of this homomorphism.

Note that the subspace of K spanned by {T,, | w € Q}} is a subalgebra of H con-
tained in the centre of ¥(. This subalgebra is the group algebra of QV; it is naturally a
direct sum of one-dimensional subalgebras corresponding to the various group homo-
morphisms 1 : fl‘; — C*. The one-dimensional subspace corresponding to 1 generates a
two-sided ideal (¥ of H{. We have a direct sum decomposition H = @y H? as algebras. Let
3’ be the algebra defined by the same IM-presentation as J except that O is replaced
by QF. For any {, we define an algebra isomorphism 3’ — HV as follows. We choose a
cross section j : QYf — (Y of Q% —» (Y. We can find a function ¢ : Q}f — C* (depending

on j and on V) such that the assignment
-E-WETW” = Ch\i’z]-r](wfz)—ﬂ 7

is an algebra homomorphism for any w), € O}, w” € W, (The last group is defined to be
{1} in the setup of 1.19.) This is then automatically an algebra isomorphism.

Thus, we may identify H with a direct sum of copies of the algebra 3{’, the various
copies being indexed by Hom((Y, C*).

We shall denote ' twith its IM-presentation) by H'(L,J,u, E).

1.21

An irreducible admissible representation of G is said to be unipotent if its isomorphism
class belongs to Irr(G'; P, E) for some (P, E} as in 1.5. Let U(G") be the set of isomorphism
classes of unipotent representations of G,

For any u-stable proper subset J of I, we denote by U%(J, u) the set of isomorphism
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classes of unipotent cuspidal representations of an adjoint algebraic group over Fy, with
Dynkin diagram given by the full subgraph J of I and with twisting describedbyu:J — J.

1.22

Forany u € $(1} (see 1.11), we define 91, to be the set of all triples (J, E, 1) where J runs
through a set of representatives for the (2"-orbits of proper u-stable subsets of I, E runs
through U2, u), and ¥ runs through Hom(fl‘;, C*), Here ﬂ‘i‘ is defined in terms of J,u as
in 1.15 and 1.20, The triples (J, E, ¥} are called arithmetic diagrams of type u.

The results in this section provide a bijection

(@) WGH & Ly g e, IrrH'(L I, u, E)
where F: G — Gisasin 1.1 andu:1 - Iisinduced by F as in 1.12. {The affine Hecke
algebra 3'(I,J,u, E) is independent of 1)

2 Relative affine Cartan matrices

2.1

Let (a;;) be an affine Cartan matrix indexed by I x L. (I is a finite set with at least two
elements.) We include irreducibility in the definition of an affine Cartan matrix. There
are uniquely defined strictly positive integers d;, v, {i € I} such that

(@) diay; = djay; forall i, j and & = 1 for some i,

(b) 3, vy =0forall jand r =1 for some 1i.

{c} ) _;ayn; = 0 forall i and n; = 1 for some 1.
We say that {a;;) is untwisted if for any i such that ny = 1, we have d; = maxj« d;. An
equivalent condition is that ny/r; is an integer for all i. From now until the end of §4, we

assume that (i} is untwisted.

2.2

Let V be an R-vector space with basis {o;)ic1, and let V' be the dual vector space; we denote
by {,): V' xV - R the obvious bilinear pairing. Foranyie I, let @©; € V' and b € V' be
defined by

(@4, 055) = by, {hi, o) = .

The symmetric bilinear form {,} : V x V — R defined by {a;, ;) = diay; is positive semi-
definite with radical spanned by the vector

D= Zn;(xﬁ;

jel
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hence it induces a positive definite form on V/RD. The hyperplane
HY = {x' e V| ix/, D) = O}

in V' is exactly the subspace of V' generated by the hi. We have 3, rihi = 0. Clearly, (,}
defines a perfect pairing H" x (V/RD} — R. Hence there is a unique linear map t: V — H°®
such that {({x}, y) = (x,y} for all x,y ¢ V, this map takes «; to d;h; for all 1 and induces an
isomorphism V/RD - HY We use this to carry the form (,) from V/RD to H° and we
obtain a positive definite form on H® denoted again by (,); it satisfies (hy, hy) = a;;/d; for
all i, j.

Fori e I, let s; : V' -» V' be the reflection given by s:(x) = % — &, odhy, and let
s; : V —» V be the reflection given by si{x) = x — (hy, x} ;. Let W be the subgroup of GL(V}
generated by the s; taking contragredients, we identify W with the subgroup of GL(V'}
generated by the s; {(in this identification, s; : V — V corresponds to sy : V' — V). The
action of W on V preserves the form {, ) on V and hence also the form (, } on H°. (W keeps
D fixed and leaves H® stable.)

The affine hyperplane

H={x eV |, D) =1

in V', parallel to HY, is W-stable. Let ${H) be the smallest W-stable collection of affine
hyperplanes in H that contains {x’ € H | {x', &) = 0} for any i € 1. The chambers and
facets of H can be defined in terms of this collection of hyperplanes as in [NB, Ch. V, §11.
Any facet is the image under some w € W of a facet of the form
Ck=(eV|xX=) amjeeRug, Yy me=1cH
ik £

for a unique nonempty subset K C [. We then say that the facet has type K. A chamber is
a facet of type L

2.3
Let K be a nonempty subset of [ and let | = I — K. The affine subspace

Pp={xeH|{¥ a})=0 Viel}={xeV|x mZCiCOi;Ci eR,chi = 1}

tek i
of H is parallel to the following linear subspace of H%:
Pp={x e H| (X, 04) =0 Vie]}={x eH % +Pyx=Pgl

Let H{Px) be the collection of all codimension-one affine subspaces of Py that are of the
form PN X for some X € ${H). Then H(Py} is a locally finite collection of affine hyperplanes
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in Py, and hence one can define in terms of it the notion of facet, chamber, and wali (as in
[NR, Ch. V, §1]}; here we shall call them Py-facet, Py-chamber, and wall. A Pi-facet is just
a facet of H that is contained in Py, while a Px-facet is a facet of H that is contained as an
open set in Px. Note that Cy is a Px-chamber, but that in general a Px-chamber may have
type other than K, when regarded as a facet of H.It is known [NB, Ch. V, §1, pp. 62-63] that
(a) any Px-facet of codimension one in Py is contained in the closure of exactly
two Pyx-chambers.
From this we shall deduce that
{b) given two Py-chambers C # (', there exists a sequence of Px-chambers C =
Co # C1 # - # C; = C and a sequence of Px-facets Do, 13y,..., D5 of
codimension one in Px such that D is in the closure of C; and of Ci.y for
i=0,1...,s—1.
To verify (b}, we fix p € C and choose g € ' general enough so that the segment
Ip, q] does not meet any facet in Py of codimension greater than one in Px and meets any
codimension-one facet in Py in at most one point. This segment will cross successively
the facets C = Cy, Dy, Cy, D1, ..., C; = ¢’ with the required properties.

2.4

For any ] C 1, let W be the subgroup of W generated by {s; | j € };. If | # I, then Wy is
finite and has a unique longest element wé {for the standard length function1: W — N
on the Coxeter group W), we then have a well-defined involation 7y : ] — | such that
wg,(ocj) = oy forall j e J.

We say that | is an excellent subset of 1if | 5= I and if, for any J' ¢ I such that
Jo 7,7 # 1, we have Tp(f) = |.

We assume, until the end of 2.27, that we are given an excellent subset ] of I and
that the set K = 1 — ] has at least two elements.

We shall write P, P? instead of Py, PQ, and we will use the terms P-chamber and
P-facet, instead of Py-chamber and Py-facet. Note that dimP > 1. Let V] be the subspace
of V spanned by {0y | j € J}.

For any k ¢ K, conjugation by wg"jk defines a Coxeler group automorphism of
W (it takes s; to s () for any j € J), and hence it maps w{, to itself. Thus, we have
wl¥wl = wiwh’™, and we denote this element of W by ¢\. The previous equality shows
that o} = 1.

{a) For any j € | we have on{og) = oy, - and TrTi(i) € J.

This shows that
(b) oy maps the subspace V) into itself.
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Let W* be the subgroup of W generated by [oy | k € K}. By (b}, any w € W* maps
V] into itself and hence induces an automorphism of V/V). Thus, we obtain a group
homomorphism W* — GL{V/V)).

Lemma 2.5. This homomorphism is injective. G

Proof. We first prove the following statement.

{al Letw e W be such that wx = xmod V; for any x € V. Then w ¢ W,

We argue by induction on the length n of w. For n = 0, the result is ¢lear. Now
assume that n > 1. Let Vg = 3 ;. Noy. We can write w = w's; where i € [ and w’ € W has
length n — 1. Then —wi{a) € Vi and o € Vi, By assumption, —wio) + a; € V). Clearly,
if the sum of two vectors in V,p is in Vj, then both those vectors are in V;, Thus, o € V).
It follows that i € |. Using this and our assumption on w, we see that for any x € V, we

have
Wx = Wsidx) — x = whe — (hy, o) —x =% — (hy, o —x = —{hy, o =0

where = means equality mod Vy. Thus, the induction hypothesis is applicable to w'. We
see that w' € W}, and hence w = w's; € W). This proves (a}, To complete the proof of the
lemma, it is now enough to show that W* W) = [1}. Let w € W* N'W)|. Since w ¢ W*, we
see from 2.4 (a) that there exists a permutation i — j of  such that

(b} wiey} = a; forall j € J.
Clearly, an element w € W} which satisfies (b} must be 1. The lemma is proved, m

2.6

Let V'® be the linear span of P {that is, the linear subspace of V' spanned by {@ | k € K}).
Note that {,} induces a perfect bilinear pairing

a) {,): VEx(V/V]) = R,
It follows that, if w € W*, thenw : V' — V' maps V'* into itself. (The restriction of w to V'*
is the contragredient of w : V/V| - V/V; with respect to (a}.) Thus, restriction from V' to
VX defines a homomorphism W* — GL(V'*}. Using 2.5, we see that this homomorphism

is injective.

Lemma 2.7. Foranyk € K, oy : V'* — V¥ maps P into itself, and its restriction to P is
a reflection in the hyperplane in ${P)) given by {x’ ¢ P | {, og.) = 0}. 1

Proof. We first show that
{a) Gk(G)R/TLk} e P,
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since o (H) = H, it suffices to show that, for j € J, the expression {o\@\, o) is zero. This

expression equals
(@ks Gk(Xj) = {ka, (x’quk_'t;(j)} = ék.’r]uk’rgﬁj)a

and this is zero since Ty, T;(j) € ] and k ¢ ]. Next we show that
b ol = wi/n forie K 1# k.
Indeed, for 1 € 1 we have oyoq = oumod} ;.4 2y, and hence {@;, o) = b thus,
(@ — @, ) = (@4, Oy — &) = &y — &y = 0. It follows that ox@; = ®; and (b) holds.
Since P is spanned as an affine space by the vectors @;/n; for t € K, we see from
ta) and (b) that ¢ (P} = P. Since [x’ € P | {x/, ay) = 0} is spanned as an affine space by the
vectors @; /M with i € K, 1 # &, we see from (b} that oy is the identity on this affine space.
Next we show that
{e) oclond lp= —o fp.
(Here we regard elements of V as functions on V' via (, }.) For this, we first observe
that wéUk(rxk) = —xx. Indeed, there exists an involution T : JUk — J Uk such that
wé‘“‘k(cx,;) = —opy for all i € ] U k; this involution maps | onto itself since | is excellent.
Hence it necessarily maps k to k. On the other hand, wé(ock) = oy mod Z_M Zo;, and hence
w{])(oc;c) lo== oty |p and {c} follows,
It remains to show that oy, : P — P is not the identity map. Let ¥’ € P be such that

o (x’) = x'. Then, by (c),
o, o) = — X, oxod = — (o, ag) = — (X, o

so that (X', o) = 0. This shows that oy : P — P is not the identity map. The lemma is

proved. ]

2.8

We regard the affine space H as an euclidean one, using the form (,) on the space of
translations H® of H. Then P, being an affine subspace of H, has an induced euclidean
structure. The action of W on H preserves the euclidean structure, and hence any w ¢ W
such that w{P) = P, preserves the euclidean structure of P. In particular, for k ¢ X,
oy | P —» P preserves the euclidean structure of P, and hence, by 2.7, it is an orthogonal
reflection in P.

By 2.6, W* may be identified with the subgroup of the group of automorphisms
of the euclidean affine space P generated by the oy : P — P with k € K. For any h € $(P},
we denote by Sp the orthogonal reflection in P with fixed point set h.

Since oy : P — P permutes among themselves the subspaces in H{F}, it must also
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permute among themselves the P-chambers. It follows that W* acts naturally on the set
#({P} and on the set of P-chambers. Clearly, if h € #(P) and w € W*, then

1

{a) WSpW™* = S.uh.

Lemma 2.9. W acts transitively on the set of P-chambers. O

Proof. Let C be a P-chamber and let C = Cy. It suffices to show that
fa) C’ = w(C} for some w ¢ W*.

To prove this, we may assume that C' # C. Let C = Cp,Cy,...,Cy = ', Dg, Dy,..., Dsy
be as in 2.3 (b} with s > 1 as small as possible. We argue by induction on s. There exists
w € W* such that C,.; = w'(C); this follows from the induction hypothesis if s > 2 and
is trivial if s = 1 (take w' = 1}. Let h € H(P) be such that D);_; ¢ h. Then 5,(C;) = C;.
Since w~H{C,_1) = C and D,_, is contained in the closure of C,_;, it follows that w'~'D,_,;
is contained in the closure of C. Hence w'~*h is a wall of C. Hence there exists k € K such
that w~th = {x € P | {x,0q) = 0}, and using 2.8 (a), we deduce W™ *353,w" = . Thus,
Sp = woew' ™l e W5, We have C' = 5,{C; 1) = Spw'(C) and Syw' e W*. This proves the

induction step of (a} as well as the initial step s = 1. The lemma is proved. m

Lemma 2.10. (a} If H « n(P}, then S, e W™
(b} If h, h’ belong to H(P}, then so does 5,(h'). £

Proof. We can find a P-chamber C’ such that h is a wall of C’'. By 2.9, we have C’ = w{Cy;}
for some w € W*, Then w-th is a wall of Cx, and hence there exists k € K such that
wlh = {x' € P| (x, ) = 0}, and using 2.8 {a), we deduce wSpw = oy. It follows that
Sk € W™ and (a) is proved. Now (b} follows from {a) since W* permutes the set H{P). m

211

Since Cy is an open simplex in P and U,ew»w(Cx) is dense in P {by 2.9), it follows that W*
is infinite. Note that the reflection group W* acts properly on P {since this action is the
restriction of the proper action of W on H). Using this and 2.10 (b}, we see that we may
apply [NB, Ch. V, §3, 2, Th. 1], and we deduce the following:

{a) W* is an irreducible Coxeter group on the generators (oy | k € K}

{The irreducibility follows from [NB, Ch. V, Ex. I, p. 128], since in our case the
chamber Cx is an open simplex.) Recall that PP =[x’ ¢ H® | ¥ + P = P} (a linear subspace
of M%. Let

L= {x' € P’ | there exists w € W* with x' +z = wiz} for all z € P}.

Then £’ is a lattice in PO [NB, Ch. VI, p. 180], and we may apply [NB, Ch. V1, §2, 5, Prop. 8]
to deduce the following.
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(b) There exists a basis &, € V/V;lk € K) and vectors Iy, € V¥(k € K} such that
(glk: Bu) = Ay Jor k¥ e K,

where (8] Is an untwisted affine Cartan matrix indexed by K x K, oy {x') = %" {x/, By )
forallk e K,andP={x'¢€ ‘AN Dy = 1}. {We defirne 7y, Tk € K) in terms of (G} in the
same way asn, vy were defined in terms of (o), in 2.1, and we set D= 2 e e € V/VY)

Let @ ¢ V'* be defined by (Dy, &) = be for k, k' € K. We show that (), @, &,
hy are uniquely defined by the requirements above. Since the Coxeter group corresponding
to (8.} is W*, the Coxeter graph of (Gyy) is uniquely determined by the Coxeter group W.
The corresponding Dynkin graph is then uniquely determined by the requirement that
(e} is untwisted. Hence (G} is itself uniquely determined. It follows that the integers
i, are uniquely determined. Now the vectors @y /fix and @, /1y are both characterized by
the property that they belong to P and are fixed by o forall ¥’ # k. Hence Dy /T = /M
so that @ is uniquely determined: we have

oy = (1/n)®@,  where z; = /M.
Now & € V'¥ is determined uniquely from the equations (@, &) = dxw: we see that
& == zop, mod V.
Finally, hyx € V'* is given by
hy = Z B D
kf ek
and hence it is uniquely determined.
The procedure above allows us to compute explicitly, in any given case, the matrix

{G) and the vectors ay, hy. For this we only need to know explicitly the structure of the
Coxeter group W*; this is given by the following formula for the order my for the order

of ooy e Wik £ K inKh
201wy — Ul

Uwh™ ) + Ul ) — 2tw])’

(C) Mgy =

lisasin2.4. (When K = {k, ¥}, then w{,“k”k’ is not defined; in this case we use the convention
Lwl¥) = o0, so that My = 0.} The proof of {c) is the same as that of [L1, 5.9.1]; it will
be omitted, A formula of the same type as (¢} appeared, in connection with relative root

systems, in the paper of Tits {T, 2.5.3].
Lemma 2.12. For any k € K, the ratio z, = n,/fix is an integer. 0O

Proof. We use the following well-known property of affine Weyl groups in two different

situations.
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{a) Giveni e land a € R, the set {x" ¢ H | (', o) = a} belongs to H(H) if and only
ifae?Z

{b) Given k € Kand a € R, the set {x’ € P{ {x, &} = a} belongs to $(P) if and only
ifaeZ

Now let k € K. By {a), the set [x" € H | (', o) = 1} belongs to H(H}. Intersecting
this set with P gives us a member of $(P). Thus, {(x' ¢ P | {x/, ) = 1} belongs to H(P),
Equivalently, {x" € P | (¥, (fu.,/7y)&) = 1} belongs to S{P). Using (b}, it follows that ny /T

is an integer. |

2.13

We say that k € K is extraordinary if the Coxeter graph of W* is of type C, (notation of
[NB, p. 199} convention: C; = A,) and k corresponds to one of the two extremal points of
the Coxeter graph. Otherwise, k ¢ K is said to be ordinary.

Let py be the generator > 1 of the subgroup } ...« @viZ of Z. One checks easily

that

{a) px = 2 if k is extraordinary and py, = 1 if k is ordinary.

We partition K into two subsets K*, K by the following requirements.

(i} IfkeKis ordinary, thenk € K%,

{ii) Ifk # K in K are extraordinary and z,, z are odd, then k e K! ¥’ e K&

{ifi) If k # k' in K are extraordinary and either z; or z. is even, then k € K, k' & K,
2.14

For k € K, we define %, € R.q as follows. If k € K¥ then Z, = z,. If k € K®, then 7, = z,/2.
We have
(a) (L)) Z o) C 2.
To prove this, we will use the following fact;
{b) L is precisely the subgroup of V' generated by fhe [k € K]
This follows from the definitions, using known properties of affine Weyl groups.

From (b) we see that, to prove {a}, it suffices to check that Z.(fi,/ny)ay, € Z for
all ¥ e K. Using now the definition of z, (2.11) and p, (see 2,13}, we see that it suffices
to check that Z,py/zy € Z or equivalently that p, € Z for K! and py/2 € Z for Kb, This is
obvious.

We will now modify the affine Cartan matrix (@) and the vectors &, by as follows.

Fork € K, we set

b = B0y = (B/zd @ € VY, Ty = (zi/Bdhu e VK



538 George Lusztig

Fork, ¥ € K, we set

e = (hy, &) = -

In other words, we have

(e} & = &, and hy = hy if k & K¥; &y = {1/2), and Ty = 2Ry if k € K

(d) e = Qe i, K € Klorifk, & e K Gy = 2800 ifk € K K € KL Gy = (1/2)d0y
ifke KF K e K.

Lemma 2.15, (Gulerex 1S a (not necessarily untwisted) affine Cartan matrix. O

Proof. From the formulas just written, we see that if (Gy) is of type # C,,, then (G} =
{Gyrh; 1if (Ayge) is of type Cy, then (&) is the transpose of (Ge}. The lemma follows. n

2.16

Besides the affine Cartan matrices (G}, (), we define an affine Cartan matrix (*aye)
as follows. We define vectors *h{k ¢ K) in V* and *oq(k € K) in V/V; by *hy = zihy, * o4 =
e mod Vy; for k, k' € K, we set

i Zx
. .
e = {"hy, o) = G
i

Lemma 2.17. (*0y) is a {not necessarily untwisted) affine Cartan matrix. O

Proof. We first prove that, if k, k" € K, then
{a) *aye € Z.
By definition, we have o {dy) = & — e &y, and hence zy oy lone) = ze e — Zi e o5 and
(B oplog) = o — {Zey /2o o
{equalities in V/V)). Since oy € W, we have oylaw) € 3 ., 2oy lequality in V). Comparing
with (b}, we deduce that zydyy /2 € Z. This proves (a).
The other required properties of (*an} follow immediately from the correspond-

ing properties of {du). ]
Lemma 2.18. Given k € K, we have hy ¢ £/ — 207 if k € Kf, and hy € 247 if k e K'. O

Proof. Indeed, by 2.14 (c), it suffices to show that, for k € K, we have hy ¢ 207, Assume
that this is not so. Then, by 2.14 {b), we have hy = 2 Y ek fyhy where f are integers.
‘This, together with the equation }_,, frhy =0, implies that T = 2 (see 2.11 (b)) for k' = k.
Since (fyw) is untwisted, it follows that fiy is even for all K’ # k. It is well known that this

is impossible for an untwisted affine Cartan matrix, ]

Lemma 2.19. Letk, k' € K be such that dyy = Qg = —1.Then zy = z». Moreover, Zy = Zy.
]
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Proof. We have *ay*apy = Oy ey = 1. Since (*ay) is an affine Cartan matrix, it follows

that *aww = "awx = —1, 50 that zi/ziw = 1. Under our assumption, k and ¥’ are ordinary
{see 2.13) and hence Z; = z; and similarly Zy = z;.. The lemma is proved. m
2.20

Let R be the set of all vectors in V of the form wio;) for some w € W and some i € L. Let
*R be the set of all vectors in V/V} of the form w{*oy) for some w € W* and some k ¢ K.
Let R be the set of all vectors in V/V; of the form w(&e for some w € W* and some k € K.
Let R be the set of all vectors in V/V of the form wi{&,) for some w ¢ W* and some k € K.

Lemma 2.21. {a} Let w € W” and k,k’ € K be such that w(d} = & in V/V;. Then z; =
2, 3 = By

(b} There are well-defined functions o > z,, & + %, from R to R.q which are
constant on the orbits of W* on R and satisfy z5, =1y, 2z = Z, forall k e K.

(c) o > (1/z,)x is a well-defined bijection R — *R.

{d) & +> (24/2z,)x is a well-defined bijection R —» R. |

Proof. The assumption of {a} implies that wo, = opw (in W*), Let I* : W* — N be
the length function of the Coxeter group W*. If Mwo) = 1*{w) + 1, then the equality
woy, = 0w holds in the braid monotid attached to W*. If I"(way) = Prw) — 1, then, setting
w = woy, we have the equality woy, = opw’ in the same braid monoid. From 2.19, we
see that there is a well-defined homomorphism from the braid monoid of W* into N
{regarded as a monoid for addition) which takes the value z, at vy for any k € K. Applying
this homomorphism to the equality woy = oww or woy = opw', we obtain z, = zp. An
entirely similar proof shows that Z, = Zy. This proves (a). Now (b) follows immediately
from (a); (c) and (d) follow immediately from the definitions. ]

2.22

Let
p:V/Vp = V/(V|+RD) = (V/Vj}/RD

be the canonical map. D= 3 vex fady € V/Vy as in 2.11.} Note that {,) induces a perfect
pairing P x V/(V; + RD} — R.

Let R = p(R), R = p{ﬁ), *R = p{*R). Let &' be the set of all vectors in P° of the form
wihy) for some w € W* and some k € K. Let &’ be the set of all vectors in P? of the form
w(ﬁk) for some w € W* and some k € K. Let *R’ be the set of all vectors in P? of the form

wi{*h;) for some w € W* and some k € K.
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From general properties of affine root systems, we see that

(@) (Rc V/(V;+RDLR P9,

(b) (R < V/(V)+RD), R c PY,

{c) FRC V/{(Vy+RD), "R < PY
are ordinary root systems. (The bijection R —» ® is characterized by the property that it is
W*-equivariant and takes p(ay) to hy; the bijection R — &' is characterized by the property
that it is W*-equivariant and takes p(&) to hy; the bijection *R —» *R is characterized by
the property that it is W*-equivariant and takes p(*o) to *hy. Moreover, the root system
(a} is reduced, since (dy) is untwisted. In addition,

{d) the root system (b) is reduced,
since either the corresponding affine Cartan matrix, or its transpose, is untwisted (see
the proof of 2.15).

However, the root system (c} is not necessarily reduced.

Lemma 2.23. (a) For any B € R, there is a unique number f(3) ¢ R., such that f{B)p = R.
(b} The map p — f(B)p from R to R is surjective; moreover, §, ' € R are mapped
to the same element if and only if §' € R.of.
(c)Let B € R. Choose« € Rsuchthat pl(./z.)0) = B (see2.21(d)). Then f(B) = z4/Z4.
Hence f{B) € {1,2}. 1

Proof. We prove (a). Let p € R. Choose o R such that ple) = B. Let « € R be such that
o = (Fa/z )0 (see 2.21 {d). Then pla) = (24/2:08 € R. Hence there exists p’ € 2N R.of
necessarily unique since R is reduced); (a} follows.

We prove (b). Let §’ € R. Choose « € R such that pla) = B’. Then {Z./z4)0 € R (see
2.21 (d), and hence pllZ,/za)e) = (E4/2,)8" & R. Hence there exists p € RN R,¢f'. This
proves surjectivity of the map in (b}, The assertion about the fibres is immediate.

We prove (c). In the setup of (¢}, we have plod € R.of(B), Since pled and f(B} are
in R (which is reduced}, it follows that ploa} = f(3)B; () follows. ]

2.24

Let ‘&° be the set of all 3 & R such that f(§) = 2. Let R? be the set of all § € R such that
f(B) = 1. From 2.23 we see that we have a partition R = R* u R%.

Lemma 2.25. Let § € R and let hy be the corresponding element of R'.
{a} We have B € ®° if and only if hg € 20"
(b) We have B ¢ RF ifand only if hg € L' — 24", o

Proof. Replacing B by wp for some w € W*, we may assume that there exists ak € K
such that § = pl&), hg = . In this case, the result follows from 2.18 {a} and 2.23. [ |
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Proposition 2.26. The following conditions for w £ W are equivalent:
{a) we W W,
{b) w & N{Wj) {the normalizer of W} in W).
{c) w{P) CP. O

Proof. Since | is excellent, the generators ¢, normalize W). It follows that W* ¢ N{W))
so that (a) == (b). Clearly, if y € W} acts on V as a reflection, then the (—1}-eigenspace of
¥ W — Wis contained in V}. (Use the fact that y induces the identity map V/Vy — V/V})
Now, if w € N{Wj) and j € ], then ws;w™! € W} acts on V as a reflection, and hence w{x;)
{which is contained in the {-1)-eigenspace of WS?W“]') must be contained in V|. It follows
that, if w € N(Wj}, then w(V}} C V}. Since V'* is the annibilator of V; in V, it follows that
w: V' — V' maps V'* into itself. We certainly have w(H) = H. Since P = V'* " H, it follows
that wi{P} ¢ P. Thus, (bl=={c}.

Now letw € W be such that w(P) < P. Thenw : P — P permutes among themselves
the subspaces in H(P), and hence it permutes among themselves the P-chambers. Thus,
w({Cg) is a P-chamber. Since W™ acts transitively on the set of P-chambers, there exists a
w e W* such that wi{Cyx) = w(Cx). Let w" = W' 'w. Then w’ ¢ W satisfies w’{Cy) = Cx. It
follows that w" permutes among themselves the extremal points of Cx. These extremal
points are zero-dimensional facets in H of mutually distinct types, and w”’ must map a
facet of H into a facet of the same type. It follows that w” maps each extremal point of
Ck to itself. Since these extremal points form a basis of V¥, it follows that w"x’' = x’ for
all ¥’ € VX, Taking contragredients, we deduce that w”'x = xmod V; for all x ¢ V. Using
now 2.5 {a}, we deduce that w” ¢ W). Thus (c)==>(a). The proposition is proved. »

Corollary 2.27. Let HJ be the set of all ¥’ € HY such that there exists a w € W with
x' +z=wiz) for all z € H. We have H} nPY ¢ L/, [

Proof. Let x' € HJ NP We can find w ¢ W such that ¥ +z = wiz) for all z ¢ H.
Since x' € PC, we have x' + P C P, and hence w(P) C P. By 2.26, we then have w = w'w"
for some w € W*w" ¢ W, Clearly, W) acts trivially on P. Hence for z’ € P we have
x4 27 = ww'{Z) = w{z/). By the definition of £’, this means that x’ ¢ L', The corollary is

proved. =

2.28

We shall need a variant of the resulis in 2.11. (The proofs are along the same lines as those
in 2.11 and will be omitted.) Namely, in the setup of 2.1, we now assume that we are given
a permutation u : | — I such that Quaatp = ag forall i, § € I Then nyy = nyg, duy = &

foriel.
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Let u: W — W be the isomorphism given by uls)) = s, forallie L

In the setup of 2.2, we define a linearmap u: V' — V' by w(®;) = @y forallie L

A subset | of [ is said to be w-excellent if | 5 Lul{]) = ] and if, for any }' ¢ [ such
that J' # L,u(]') = T, we have 1p{]) = J, with the notation of 2.4, (In the case where w is
the identity map, this reduces to the definition of an excellent subset; see 2.4.) Let us fix
a u-excellent subset ] of 1. Let K = [ — |, and lst K be the set of u-orbits on K. We assume
that K contains at least two elements.

For any k € K we have wéubwé = wg)wéuﬁ, and we denote this element of W by ;.
We have o) € W¥ and of = 1.

Now oy @ V' - V' maps P* into itself, and the restriction of o, to P* is the
orthogonal reflection in P* (with the metric induced by P} whose fixed-point set is the
affine hyperplane {x' € P* | (x/, &) = 0} where k is any element of k.

Hence, if W* is the subgroup of W generated by {0y | k € K}, then W* acts naturally
by affine isometries on P*. The action of W* on P* is faithful, and it realizes W* as an affine
Weyl group with Coxeter generators {oy | k & K}. The subset Cx N F* is a fundamental
domain for the W*-action on P*,

If k, X’ are distinct u-orbits on K, then the order myy of oyop € W* is given by

r
2060, 5 ) ]y

M il -2ty

{a) My =
- 1w

B UK, . . . UkUK
{When K = kUK, then wy is not defined; in this case we use the convention Uw, = =} =

oo, so that my = 0c.)

Lemma 2.29. Let NWj be the normalizer of Wy in W and let NW} = NW; nwh,

(a} W* is precisely the set of all w € NWJ’ such that w has minimal length in its
Wi-coset.

(b) For any w € W” there exists a sequence k;,k,,...,k, in K such that w =
Oy, 0%, -+ O, and Uw} = Yoy ) + Uog,) + - + Uay ). (Recall that 1 is the length function
of W.} Moreover, w = O, O, = O, is necessarily a reduced expression in the Coxeter

group W*. i

The proof is along the same lines as that of {L1, 5.10 {ii)].

2.30

Assume now that | is a u-stable subset of [ such that I # ] and such that u has exactly
one orbit on [ —J. Then NW;, NW} are defined as in 2.29. The following version of Lemma
2.29 continues to hold:

{a) NW}" = W; N W+
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3 The root system R,

3.1

In this section we preserve the assumptions of 2.4. Recall from 2.22 (d} that the root
system {R C V/{V; + RD}, % ¢ P9) is reduced.

Let 7. = PY/L’ {a compact torus). Given t € T, we define R, to be the set of all
$ € R such that

(&) {t,P) e (1/HBNZ.
Here{,) : POx V/{Vi+RD} — Risthe natural pairing, f(3) & {1,2}is asin2.23, and tis arep-
resentative of T in P, {The condition (a) does not depend on the choice of representative,
since f{B)f ¢ R and (L', R) ¢ Z.) Let R be the subset of R’ corresponding to R, under the

canonical bijection R — X',
Lemma 3.2. (R, ¢ V/(V;+RD), R, ¢ P is a (reduced) root system, E}

Proof. Taking in account 2.22 (d), we see that we must only verify the following state-
ment.

Let 3,B € R. and let s be the reflection in PP or in V/(V; + RD) determined by f3
and by hy (the element of R corresponding to B). Then s3(p’) € R..

First note that fisgp’) = f{B’) {since sy comes from an element of W* and the
function f is clearly constant on orhits of W*). We have

{1,853 = (spt, B') = (T — (T, BYhg, B} = (1. B} — (%, BY(hp, B)

1 (hﬂa ﬁ]} 1 {hﬁnﬁ’>
- Z = A
< B f(p) flsp (B (8)

Now {(1/f(Blihg, f') € Z, since hg & f{BIL’ (see 2.25) and (L', R} C Z, by the definition of

f{,ﬂ{, Hence
7 z2c- 2
fsgl{p)) fisg(PN

The lemma is proved. u

(1, sp(pN) &

3.3

In the remainder of this section we fix an element k; of {k € K| fiy = 1}. {Such k; certainly
exists.)

Consider the {free} action of L' on P given by ¥’ : z —» ¥’ 4 z. We can form the
quotient £\P {a compact manifold). Since the action of L' on P described above is a
restriction of the W*-action on P, we see that there is an induced W* action on L/\P.
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Wedefineamapp (P — T. by ¥ = % — 53&, mod L', This is well defined since
x - ékg & P%. We have an isomorphism of manifolds

{a) L\P -5 T,
induced by p’.

Lemma 3.4. p!is compatible with the natural actions of W* on P and on 7. O

Proof. It suffices to show that, for any w ¢ W*, we have w{é}kj) - c:)k] e L. We may

assume that w = gy for some k € K; in this case,

W@y} — @y = ”(é}k;:&k)ﬁk = 6k1\k}1k el L

3.5

We consider the collection of subsets of T, which are images {necessarily one-to-one} of
facets of H, under p’. These subsets form a partition of T.. Any subset in this partition
has a well-defined type (a nonempty subset 5 C K), namely, the unique S such that the
subset is the image under p' of a facet of type S in H; we then say that the subset is a
facet of type S of 7. In particular, p(Cs) is a facet of type S in T..

Lemma 3.6. Let Cx be the closure of Cy in . For any W*-orbit in 7., there exists a unigue

vector x” € Cx such that p/{x’} is in that orbit. 1

Proof. This follows from 3.3 (a), from 3.4, and from the following well-known property
of the affine reflection group W* (in P): Any W*-orbit on P meets Cy in exactly one point.
n

3.7

In the remainder of this section we fix T € pl(Cx).

We denote by x' the unique element of Cy such that T = p/(x). We have ¥’ € Cg
for a well-defined nonempty subset S of K. Let W{_, be the subgroup of W* generated by
{oy | ke K—5}, and let

}gRKwS = *R M Z Z{*O(,k)',
keK~5

Res=RN Yz
keK~$

Re s =RnN }: VAL )
keK—-8§
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Lemma 3.8. (a) The bijection R —=> *R (& r» (1/z3)&) restricts to a bijection Ry_s —>
*Ri—s.
{b) The bijection R —> R (& > (23/z5)&) restricts to a bijection Rg_g —» By_s. 1[I

Proof. We prove (a). Let & € R, & € *R be related by « = (1/z3)&. We must show that the
conditions (¢} and {d) below are equivalent:

() & =} ,.x_swdy for some integers wy,

{d) o= 3 x_g Ui "o for some integers u;.
Assume first that {d) holds. We have & = )~ ., ux 6y for some uniquely defined integers uy.
(This uses the definition of R and the fact that &y, are integers.) Hencezzo = 3, Wiz "o
Comparing with (d)}, we see that uy = 0 if k € § so that (¢} holds. Conversely, assume that
(c) holds. We have o = }_, . w "oy for some uniquely defined integers . (This uses the
definition of *R and the fact that *ay are integers.) Hence & = §_, ., W, zaz, ' &. Comparing
with {c}, we see that u] = 0 if k € § so that {(d) holds, Thus, the equivalence of {¢) and (d)
is established and (a) is proved. The proof of (b) is entirely similar, [ |

Lemma 3.9. Let R, bethe setof all # € R such that (%, B) € Z (% as in 3.1). The restriction
of the map p : V/V| — V/(V; + RD) defines a bijection Ry ~—» R |

Proof. Let p ¢ R. Choose & & R such that p(&) = f. Note that & is uniquely determined
up to addition of an integer multiple of D = 5, & The condition that p e R, is
{t, & € Z; replacing 1t by ¥’ — Cf)k,, this may be also written {(x' - ékj , & € Z, and this is
equivalent to the condition

{a) &, &) e 2
(since (&)k, , &) is automatically an integer). Since & ¢ R, we have

& = ka&k

kek
where fy are integers. Condition (a) is the same as the condition that ¥’ belongs to h' =
{u € P1{y, & = n} {a mermber of H{P)) for some n € Z. Since x’ € Cg, this is equivalent to
the condition that Cs ¢ h’ and also to the condition that the vertices {®,/fi; | s € §} of
the simplex Cs are all contained in h'. This condition can be expressed as (@, /i, &) =n
forall s € 5, or as f; = iyn for all s € 5. We see that condition {a) is equivalent to
b) & € nD -+ F s 28k
where 1 is some integer. Replacing & by & — nD (which is again an element of R that
prajects to f{3if), we see that we may achieve that
& = Z uxiy for some integers u,,
kek-§
that is, & € Rx.s. (Now the ambiguity in the choice of & is removed.) The lemma follows.
|
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Lemma 3.10. The restriction of the map ¢ : V'V, — V/(Vj + RD) defines a bijection
Rk.s —> Re. o

Proof. Themap f — f(B)B from R to R is a bijection, since R is reduced (see 2.22 (d) and
2.23 {b)}. This map clearly restricts to a bijection R, -+ R.. We have a diagram

ﬁK—S — F3~5<—5

l |

Ri —— R
where the lower horizontal map is the bijection considered above, the upper horizontal
map is the inverse of the bijection in 3.8 (b), the right vertical map is induced by p
{a bijection, by 3.9), and the left vertical map is the unique bijection which makes the
diagram commutative. From 2.23 (¢} it follows that the left vertical map is the restriction

of p. The lemma follows. =
Lemma 3.311. The vectors [p{&) | k € K — 5} form a system of simple roots for R.. 3

This follows immediately from 3.10.

3.12

Assume that k € KYni{K = §). We set (k) = (1™, where m € Z is given by (T, p{&y)) = m/2.
{The parity of m is independent of the choice of T.)

Lemma 3.13. (a} If k = k;, then e(k} = —1.
{b) If k # k4, then e(k) = 1. 0

Proof. Letk e K'n (K — S). Assume that
{c) either k = k; and e{k;) = 1, or k # kj and elkj} = —1.
We will show that this leads to a contradiction. We have
(@1, &ic) = Sy 2/ Mgy = By 2/ 2
which is zero if k # k; and is Zy /2y = 1 /2 if k = k;. This, together with the assumption
{c), shows that

- N ~ R 1
"(G}‘;{J,Qﬂk) = (xf - @k}saki) - Emodz,

which implies (¥, &) € (1/2)Z — Z. Since &, = (1/2)&, we deduce (X', &) € Z — 2Z. This
implies, as in the proof of 3.9, that
(d) G e nD+ 3 oy s Zw
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where n is defined by {x/, &} = n. {Hence n is an odd integer.) On the other hand, since
k ¢ K-S, from {d) we deduce that n = 0. (Otherwise, D would be a linear combination of
the vectors [ | ¥’ € K— 5}, which is impossible, since K — 5 # K.) Since n = 0 is not odd,

we have a contradiction. The lemma is proved. [ |

Lemma 3.14. The sets *Ry_g, {x € V/V] | o = w(*oy) for somew € Wy _¢, k € K — §}

coincide. O

Proof. Clearly, the second set in the lemma is contained in *Ry_g. Conversely, let o ¢
*Ry.s. Then {y € P | {y, &) = 0} belongs to $(P), and hence there is a unique reflection
Og : P — P (in W"} whose fixed-point set is this hyperplane. We have o € Vi_s/V] C V/V),
and hence {y, o) = 0 for any y € Cs. Thus, g, is the identity map on Cs. Using known
properties of affine reflection groups (applied to W* acting on P}, we deduce that o, € Wy .
and that o, is conjugate in W{_ to a standard generator of W} _.. Thus, we can find
w e Wy_ and k € K- S such that o, = wo,w™'. This implies o = w{a). The lemma is

proved. | |

Lemma 3.15. {(a)} The restriction of p (see 2.22) defines an injective map *Ry_s — *R. Let
*Rg_s be the image of this map, and let *®,_. be the subset of *R’ corresponding to *Ry_s
under the natural bijection *R — *X' {see 2.22}.

{h) *Rx.s C V/V),"Ri_¢ C V'¥) is an ordinary (reduced) root system, for which
{*ox | k € K— 5§} is a system of simple roots and W} _ is the Weyl group.

fc) *Re—s C V/(Vi +BD),"Ry 5 C P% is an ordinary (reduced) root system, for
which {p{*ot) | k € K — 5} is a system of simple roots and W} _ is the Weyl group. EI}

Proof. We prove (a). Let o, o € *Rg_g be such that pla) = p(e'). Then o — &' = z[) for some
z € R (equality in V/V)). Expanding both sides of the last equality with respect to the
basis {*oy | k € K} of V/V; and looking at the coefficient of *o; fors ¢ S, we see that z = 0.
This proves {aj.

To prove (b}, it suffices to verify the following statement.

Let «, & € "Ry._s, and let s, be the reflection in V/V; or in V'* determined by «
and by h, (the element of *Ri_. corresponding to pla)). Then saia’) € *Rys.

By 3.14, we have o = w{*a) for some w € W{_ and some k € K — 5. Since *Rx_s
is Wy _,-stable, we see that there is no loss of generality if we assume x = o with
k € K — 8§, so that s, = oy. Since oy (') € *R, we see that it suffices to show that o
mMaps ) .5 &0 o) into itself. Hence it suffices to check that ow{ag) € 3 1oy g 2oy} if
k, k" & K~ 5. But oi{e) is an integral linear combination of ay, oy, Thus our statement is
verified and (b) is proved.

Now (¢} follows immediately from (a) and (b). n
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4 Recollections on affine Hecke algebras

4.1

Let £, £ be two finite-dimensional real vector spaces in duality () : ExE - R, and let
R, R be subsets of E, t {resp.) with a given bijection R -Z» R such that

{a} RCE,RcE)
is an ordinary (reduced) root system. Let W be the {finite) Weyl group of this root system
(a subgroup of GL(E) and of GL{E)). Assume that we are also given

{b) a lattice X C E and a lattice X ¢ E such that R C X,E c X and such that {,)

defines a perfect pairing X xX— Z

{¢) afunction A : R — N, which is constant on the orbits of Won R;

(d) a function A* : R® — N, which is constant on the orbits of W on R’.

Here, R" is the set of all « € R such that the corresponding element of R belongs
to 2X.

We recall (cf. [L11]) the definition of the affine Hecke algebra H = H}Y attached
to the root system (a), the lattices (b), and the functions (¢) and (d). B

We choose a system of simple roots (o, Jusu int R; let (hy)ueu be the corresponding
elements of g For each u € U, let s, : X — X (in W} be the reflection defined by h,, «...
These reflections are Coxeter generators of W, let 1: W — N be the corresponding length
function, Let v be an indeterminate. By definition, H is the associative Clv,v~']-algebra
with 1 defined by the generators Tiw), w € W and 0(x], x € X and by relations

T Tlw') = Thww')

for all w,w' € W such that lbww) = llw) + liw'); and
(Flsw) + IMTlsy) — v¥e) = 0

forallu e U,
Bx}0(x) = B(x + x')

forallx,x € X;
8{x) — B(s.{xh

_ e (ALY
B00Tlsu) = Tlsu)Blsulel) = % — ===

for x € X and u € U such that h, e X — 2X; and

2(x)Tisy) — Flsu)B{sy(x))

. e Ox) — Qs (x)
TN\ A _ Mengd A o) o Mod—A* o by 2087 7 UASu X))
={lv 1)+ el—aw)tv v Ty

for x € X and u € U such that h, & 2X.
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Note that 0{0) = 1. The definition of H given above depends apparently on the
choice of a system of simple roots. Let us choose another system of simple roots; it is of
the form {e], = win,} | u e U} for a unique w € W. Let H' be the algebra defined like H,
but in terms of the new system of simple roots. There is a unique algebra isomorphism
H — H such that

T{sy) > Flws,w ™) forallu e Ul
and
B{x) = Bwix)) for all x € X.

Thus, Hand H' may be canonically identified, and we see that the algebra His canonically

defined, independently of the choice of a system of simple roots.

4.2

For any ring A we denote by Irr A the set of isomorphism classes of simple A-modules.
Let T = C* @ X be an algebraic torus with a natural action of W. As in [L11, 10.2 (a}], we
have a canonical partition

{a) Irr Hgg‘( = Uiyt ugle(WATIx G+ T3t g ﬁg;
obtained by specifying the action of the centre of H on a simple H-module; for example,

the parameter vg is given by the scalar by which v acts. For vy € C*, we set
AN AN
Irr,, H&X = Uygre Wt IETwt g Hg)x .

Then
(b} Irr Hg';‘: == Uygees ITyg Hg!,’,‘(*‘

4.3

Let us fix vy € R.p. Let v2 be the subgroup of C* generated by vq.

Note that any « € R defines a homomorphism T - C*,z® x +> z®*, which we
denote again by «x.

For a fixed t « T, et R' be the set of all o € R such that

aft)evt ifaeR-R  and oletvi ifaeR.

Then R', together with the corresponding elements in R, forms a root system in (€, E). Tts
Weyl group W' is the subgroup of W generated by the reflections with respect to roots in
R'. Let W'* be the set consisting of those w & W such that wit] = w;{t} for some w; ¢ W'
Equivalently, this is the subgroup of W generated by W and W' = {fw e W | wt =t} (a

normal subgroup of W)
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4.4

Assumption. Inthe remainder of this section, the following assumption will be in force.
The abelian group Xis generated by R, together with [y € X | 2y € R}.
Lemma 4.5. We have U! ¢ W' Hence W' = W', 0

Proof. By [L1}, 1.7}, it is enough to consider the following two special cases:

(a) R® =,

(b} R’ # # and the root system R C E is irreducible.
In the case (a), Assumption 4.4 shows that the root system R ¢ E is of simply connected
type; in that case, by a result of Steinberg, the group U® is generated by reflections with
respect to roots o € R such that x.{t) = 1; these roots are contained in R', and the result
follows. In the case {b), the root system is that of 50,1, and the result follows by a

direct (easy} computation. u

4.6
Using the equality W' = W" and [L11, 8.6], we obtain a bijection

o AN
Irrwe Hg,x > IETypg HR‘,X'

{The restrictions Alye, A*|pepe are denoted again by A, A™.)

4.7
As a Lie group, we have T = T, x Ty, where
T.={zeC"z|=1}® X and T, = R.o ® X.

We can therefore write uniquely t = t,t, where t; € T, t;, € Ty,
Let R be the set of those « € R such that aft) = 1 if « € R — R’ and alt,) = +1 if
x &R Let_{gbe the subset of R corresponding to R under the natural bijection R « R. Then
(al R E,RCE)
is a root system. Replacing R by R in the definition of W, R', Wi, W', Ut we obtain W, R,
Wt W't 1t Note that

R = RLW = W

Indeed, if «(t} € v§, then automatically, alt;} = 1 {since v¢ € R.o); similarly, if alt) € +vE,

then automatically, alt,) = £1.
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We show that we again have W' = W' {even though Lemma 4.5 may not be appli-
cable). Indeed, we again have Wt = W' and it is obvious that 1(' ¢ U*. By Lemma 4.5
we have U' < W* hence U € Wt and W't = Wt

Using the last equality and [L11, 8.6}, for R instead of R, we obtain a natural

bijection
AN _ AN AA®
Ty HYY > Iy HECL = Trtueg o HRlS

Combining this with the bijection in 4.6 gives a natural bijection
(b) Irrviy, HEY — DTy, H%i‘(
{The restriction of A, A* to R is denoted again by A, A*)

4.8

We recall the definition of the graded Hecke algebra H = Hj, ; associated to the root sys-
tem 4.1 (a) and to a function u : R - Z which is constant Bn the orbits of W on R. {See
(L.11,4.4])

Let v be an indeterminate. We write Ec, E¢ instead of C ®g E,C ®z E. Choose a
system of simple roots x, (w e W in R leth, € 'R,s, € W be as in 4.1. By definition, H is
the associative Cfr]-algebra with I defined by the generators t,,(w & W} and f{f € Ec} and
the relations

{a) twtw = tww forw,w e Wity = 1;

(h) ff = f'f for {,1 € E¢;

{c} ftg, — to, (sulf) = ployihe, )7
forfe g anduesll

Again, the definition of H given above depends apparently on the choice of a
system of simple roots. Let us choose another system of simple roots; it is of the form
{of, = wioy) | w e U} for a unigue element w of W. Let H' be the algebra defined like H,
but in terms of the new system of simple roots. There is a unique algebra isomorphism
B -= H such that

tw') = thww'w™l} forallw e W
and
fi> wif) forallfeEe.

Thusg, H and B may be canonically identified, and we see that the algebra H is canonically

defined, independently of the choice of a system of simple roots.
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Now the algebra homomorphisms from the centre of H to C are naturally indexed
by (W\Eg) x C; see [L11, 4.5). Hence we have a natural partition

(d) TrrHg; = Mo e Egixe MW, Hyy
analogous to the partition 4.2 (a); it is obtained by specifying the action of the centre of
Hy ; on a simple Hy ;-module. For example, the parameter v, is given by the scalar by
which r acts.

To simplify notation, we shall also write Irr, ;. Hy ¢ instead of Ity e, Hy ¢ (where
x € E¢). For any 1y € G, we set

Qs . T
(e) Irre; Hpp = Usg v, Iwry Hy !

4.9

Let us return to our fixed vo € Rog and t = t.1y € T (see 4.3 and 4.7}, We write vy = e

where 1y € R, and we define
log : Th=R.e®@X > R®X

as the isomorphism of Lie groups induced by the isomorphism R..; —» R, inverse to the
exponential.

We consider the graded Hecke algebra }Wigi attached to the root system 4.7 (a) and
to the function p: R — Z given by

(@) ple) =27l if @ € R~ R%,

(b} piod = Alex) + ecfte)A* (e if x € RN R,
From the definition of R and from [L11, 3.15] we see that t. is a W-invariant element of T.
Hence 1 is constant on the orbits of W on R. Thus, the Clr]-algebra F.[E!E is well defined.
‘We have a canonical bijection

ITTyg, v, Hgi‘: — ITTy10g 4, 1 IW{E)E.
This is induced by an isomorphism of the completions of the algebras H%:;‘:,ITI;‘,E with
respect to the maximal ideals of the centres defined by (Wt, v}, (Wlog tn, o) respectively;
this isomorphism is constructed by repeating word-for-word the proof of [I.11, 9.3}, Com-
posing with the bijection 4.7 {b}, we obtain a natural bijection

AN T . Fph
(6] Irrygny Hex —> ItTygneq0, o Hy

4.10 Errata to [L11]

In the statement of Lemma 1.7, omit “uniquely”. In 8.1, the definition of W(‘), replace
wit) = t by wit) = t mod T{v). In 8.8 (a}, replace 1, (c) by 1, . In B.15 (a} and (b}, replace
c}f{c' by c}tic’-
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5 Affine Hecke algebras and algebraic groups over C

In §1 we saw how affine Hecke algebras (with not necessarily equal parameters) arise in
the representation theory of a simple p-adic group. In this section we shall see that such
affine Hecke algebras also appear in a geometrical context, related to algebraic groups
over G and cuspidal character sheaves,

5.1

We preserve the notation of §2. We now fix an index 0 ¢ I such that ng = 1.

Recall that HS is the set of all ¥’ € H? such that there exists a w € W with
x4z = wiz} for all z € H. (Note that w is uniguely determined by x’ and x" — w is an
injective group homomorphism HJ — W. The image of this homomorphism is a normal
abelian subgroup of W, and the quotient W = W/HY} is a finite group.) From the theory of
affine Weyl groups, it is well known that HY is the lattice in H® generated by {h; | i € I}.
Consider the dual lattice HY* = {x € V/RD | {H},x) € Z} in V/RD. Let R C H}* be the image
of R under the canonical map V — V/RD. Let & < R be the image of o € R.

Let HY = C®g HY Let T = HY/H} (a complex algebraic torus). We identify
H} = Hom{C*, T} (as abelian groups) by associating to x’ € H§ the homomorphism C* ~ T
given by e % > zx'mod HY (with z € C). We identify H® = Hom(T,C") (as abelian
groups) by associating to x ¢ H3* the homomorphism T — C* induced by x’ > 2™/ ~1¥
{from HY — C*). Then the pairing {, ) : Hj x H}* — Z becomes the standard pairing
Homi{C*, T) x Hom{T,C*) — Z.

5.2

We can imbed T as a maximal torus of a simply connected almost simple algebraic group
G over C, in such a way that h; ¢ Hom(C*, T} and & ¢ Hom{T,C*} {for i € [ — {0]} are a
system of simple coroots and simple roots of G with respect to T; then R becomes the set
of roots of G with respect to T. Moreover, G and the imbedding are determined uniquely
up to a unique isomorphism.

The natural W-action on H? {and H{) leaves the subgroup HJ stable, and hence
it induces a W-action on T. The subgroup HS of W acts trivially on H® and hence the
W-action on T factors through an action of the finite quotient W = W/ H2. This coincides
with the Weyl group of G with respect to T with its natural action on T.

We have a direct product decomposition (as a Lie group) T = T, x Ty, given by
multiplication, where T, = H%/HY is the maximal compact torus of T and Ty = R.q ® HJ.
Note that T,, Tx, are stable under the action of W (or W).
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An element of G is said to be compact (resp. hyperbolic) if it is in the G-conjugacy
class of an element of T, {resp. Tu). It is well known that any semisimple element s of G
can be written uniguely in the form s = s.s, where s; € G is compact, sy € G is hyperbolic
and s.5n = S$kSec-

Let g be the Lie algebra of G. An element of g is said to be compact {resp. hyper-
bolic) if it is in the AdiG)-orbit of an element of Lie T, (resp. Lie Ty). It is well known that
any semisimple element & of g can be written uniquely in the form & = & + &, where
£, € g is compact, &, € g is hyperbolic, and [£, &) = 0.

The exponential map exp : g — G restricis te a bijection from the set of hyper-
bolic elements in g to the set of hyperbolic elements in G; the inverse of this bijection is
denoted by log.

Consider the (free) action of H} on H given by x' : z — %'+ z, We can form the quo-
tient H2\ H (a compact manifold}. Since the action of Hj on H described above is a restric-
tion of the W-action on H, we see that there is an induced W- (or W-) action on H3\H. Letp :
H — T, be the map given the composition H — H® —» T.. (The first map is x' — X' — @g, and
the second map is the canonical homomorphism.) We have an isomorphism of manifolds

{a) HO\H — T,
induced by p. Now p is compatible with the W-actions on Hand on T, since widg)—@¢ € HY
for any w € W. Hence the isomorphism (a) is compatible with the W- (or W-) actions.

5.3

For any t € T we denote by R, the set of all x € R such that a(t) = 1. (We identify as above
« with 2 homomorphism T — C*.)
Forasubset ] c Iwith] # [ wesetRy =RnN }:jﬁl, Za,.

Lemma 5.4. Let K’ be a nonempty subset of [, let J = I - K/, and let t € p{Cyx/). Then
ﬁt = }‘2;,_ [

Proof. The proof is very similar to that of 3.9. Let € Cy be such that p{t) = t. Let a & R.
Then « is the image of an element & € R under V -» V/RD. We have & =} ., fjoy where
f, € Z. The condition that x(t) = 1 is equivalent to the condition that {t, &) € Z, and hence
to the condition that for some n € Z, t is contained in h = {x’ ¢ H | {¥/, & = n} {which
belongs to H{HN. Since t € Cy, this is eguivalent to the condition that Cy < h and also
to the condition that the vertices {@y/n | k € K} of the simplex Cy are all contained
in h. This condition can be expressed as {@y/ny, & = nforall k € K', or as fy = nyn
for all k & X'. We see that the condition that et} = 1 is equivalent to the condition that
& —nD € ) ;. Zo; for some n & Z. Replacing & by & — nD, we see that & can be chosen
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so that & € } ;. Zoy and then there is no ambiguity in the choice. This establishes a
bijection between R; and the set R N J_jer Zoy. The last set is naturally in bijection with
Ry via the restriction of V — V/RD. The lemma follows. "

5.6

The centralizer Ze(t) of t € T in G is the connected reductive subgroup of G generated
by T and by the root subgroups of G corresponding to roots o € R*. For a subset |' C I
with J' # I, we denote by Gy the connected reductive subgroup of G generated by T and
by the root subgroups of G corresponding to roots in Ry. Using 5.4, we see that, if ' is a
subset of I with ' # l and t € p{Cy) where K = I ', then Z{t) = Gy. In particular, Zg(t)
depends only on |’ and not on t.

The relationship between centralizers of semisimple elements of G and affine
Weyl groups goes back to Borel and de Siebenthal [BS].

5.6

We denote the Lie algebra of G by g. For a subset J' ¢ [ with J' s [, we denote the Lie
aigebr& of G]f bY gr.

In the remainder of this section, we fix a subset ] of I, with ] # 1, a nilpotent
Gy-orbit € on the Lie algebra g, and an irreducible, cupidal Gj-equivariant local system
FonC.

The possible ] are listed explicitly in each case in the tables in 87 {they corre-
spond to the boxed elements of I in those tables); this list is easily obtained from the
classification of cuspidal local systems [L10]. From this we see that

the subset | of | is necessarily excellent.

Let yg ¢ €. We can find a semisimple element d in the derived subalgebra of g
such that [d, o] = 2yp. Let 8 : C* —» Der Gy (derived group of G;) be the homomorphism
of algebraic groups given by 0{(b} = exp(bd) for all b &€ C*. Then Ad{8{b}lyy = b*y, for all
b e G* From [L5, 2.8] it follows easily that the pair (yq, @) is uniquely determined up to

the action Gj.

5.7 The function ¢

letK=1-1.
Until the end of 5.16, we further assume that X has at least two elements.



556 George Lusztig

Then the discussion in §2 is applicable in the present case. The discussion in §3
is also applicable in the present case, since the assumption in 3.1 is now automatically
satisfied, as we see by examining the tables in §7.

Fork € K, we have G; C Gju; in fact, G; is a Levi subgroup of a maximal parabolic
subgroup of Gp. Let n be the nil-radical of a parabolic subalgebra of gy with Levi
subalgebra gj.

Ify € G, then adly} : ¢ — g maps n into itself; let ¢, be the unique integer > 2

k-2

such that ady*™-! : n — n is zero and adiy)® i n -» 1 is nonzero. This is clearl
Y

independent of the choice of n and y.

5.8

Consider the group homomorphism L' —» W* (notation of 2.4 and 2.11) given by %' +» W'
wherew’ € W~is such that X'+’ = w'(z') for all ' € P. Note that w' is uniquely determined
by x' (see 2.5), and that cur homomorphism is injective. The image of this homomorphism
is a normal abelian subgroup of W* and the quotient W = W*/L' is a finite group. This
is, in fact, the Weyl group of the root system (R ¢ V/(V: + RD), R < PY) (see 2.22 (b))

Lemma 5.9. {(a} If R s ¢, then ®® is a single W-orbit and X® consists of exactly two
elements k, k.

{h) There is a unique W-invariant function A : X — Nsuch that Alp(&y)) = Zce /2 for
all k € K and whose restriction to R* (if nonempty} is constant with value (Z.cy + Zwew}/2,
where k, k' are as in {a).

{e) IF R* 5 @, there is a unique W-invariant function A* ; ®® — N, which is constant
with value (Zycy —Zwew)/2, where k, k' (as in (a)} are ordered in such a way that Zyc, > Zpcw.

0

Then (a) follows from the tables in §7; {b) follows from the following two state-
ments:

Ifk, k' € K are such that oo has order 3 in W*, then ¢, = cy.

Ifk # ¥ in K are extraordinary and R =, then ¢ = cy.
(Both these statements follow from the tables in §7.) Item (c) is obvious. The fact that the
values of A, A* are integers rather than rational numbers is verified case by case from the
tables in §7. ]

5.10

Recall that in 3.3 we have chosen an element k; of {k € K | iy = 1}. We want to make this

choice a little more precise, in the case where K* # ¢, In this case, {k € K | fiy = 1} = K"
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has exactly two elements, and we choose k;j so that
Iyt =

where k is the unique element of K* distinct from k;.

5.11

Consider the root system (R € V/(V;+RD}L R ¢ PY, the lattice L' ¢ PP (see 2.11), the dual

lattice
L={xeV/(Vi+RD)| (L' x) g Z},

and the functions A : R — N,A* : R* — N as in 5.9. Note that ® ¢ L' and R ¢ L (using the
definitions). Hence, to the data above, one can associate an affine Hecke algebra Héz"g as
in4.1. Assumption 4.4 is satisfied in the present case: the abelian group L' is generated by
{Z&k | ke Ka}u{’ﬁk/z | k € K*}. An equivalent statement is that £’ is generated by he |k € K]
(see 2.14 {(b)). Hence the results in §4 are applicable to this affine Hecke algebra.

5.12

Let W be a Coxeter group with simple reflections {s,, | m € M}, with a given function
I.: M - N, which takes equal values on any two simple reflections that are conjugate, and
let T he a group with a given action on W preserving the group structure, the generating
set, and the function L.

Following Iwsahori and Matsumoto, to these data one can associate an algebra
over Clv,v~1] with generators {Tem | m € M} U{T, | ¥ € T} and the following relations:

(@) (T + IMTem — v3™) o 0 for m e M

) T T T = - =Ts_,Ts, Ts_, - - - where both products have a number of factors

equal to the order of s, s,y in W {if that order is finite and m # m’);

o Wy =Tyify,y eI =1

@ T, =FhupTyifmeM,yel.
We say that this algebra is given by an IM-presentation.

Now the affine Hecke algebra Hﬁf‘g admits an IM-presentation that we now de-
scribe. First we define an untwisted affine Cartan matrix (a;rk,)k'kfek as follows.

From the definitions, we see that {1:1;( | k € K~ {ki}} is a system of simple coroots
for R, The negative of the highest coroot in R’ with respect to this system of simple

coroots is denoted by cx;r[.
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Let hﬂ; be the element of R corresponding to a;ri under the canonical bijection

R — R. For k € K - {k¢}, we set a]:r = hy and h{ = & For k,l € K, we set azl = (oc,;r,h;r}.
Clearly,

{agi)mgg is an untwisted affine Cartan matrix,

The affine Weyl group corresponding to this affine Cartan matrix is denoted by
W. This is a Coxeter group on generators {g, | k € K} of order 2 such that, for k # lin K,
the order of ¢, g, is equal to 2, if a;rl = ‘111 = 0;to 3, if a;f{agc = 1;to 4, if u;fiagt = 2: 10 6, if
a.fiagc = 3; and to oo, if a;ia;; =4,

Let Lg be the subgroup of £ generated by R. The quotient L/L; (a finite abelian
group) acts in a standard way as a group of automorphisms of the Coxeter group W.

There is a unique function L : K — N such that the following hold:

) LK = Mplda)y if k € K- {kj};

(i) Liky = Afplae)) if k5 K and ¥ € K — {kj} is such that oaI, is in the same

wr-orbit as ol ;

(i) Liks) = A*(pldye)) if k) € K* and K’ € K is such that ¥’ # k;.

The algebra given by the IM-presentation attached to the Coxeter group W, to the
function L, and to I’ = L/L; is canonically isomorphic to Hﬁ{‘a (This is shown in [L11, §3]
by a construction generalizing an earlier one of Bernstein and Zelevinsky.)

5.13

Let vp € Rup. We set PE = C ®r PY. We consider the algebraic torus
Te= PO/L =C @ L.

The last equality is given by PR/L = (CR L) /2@ L) ={C/Z) L =C @ L),
where we use the isomorphism C/Z —» C*,w > 21,

We have a direct product decomposition (as a Lie group) 7 = T. x T, given
by multiplication, where 7. = P%/L’ (see 3.1) is the maximal compact torus of 7 and
Th=R0® L

We define amap t — t¥ from p/(Ck} € T, to T, by t¥ = pix) where x" € Cx,p/ix) = t.
(Recall that p' : P — 7, is defined in terms of our chosen k;.) For example, we have
1V = @y, — @p mod HY.

A complete set of representatives for the W-orbits on T is provided by

{a) Uscrszop(Cs) - expy, (Bs)
where Bs = {x € H? | {x,0q) > O Vi € I -5} and expy, : H® = R®HI = Ty =R.g ®HJ is
induced by exp : R -» R.g.
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Similarly, a complete set of representatives for the W-orbits on T is provided by
(b) Lisckszep'(Cs) - expe, (BL)
where

BL={xeP’|(x,o4)>0vieK~S§}
=IxeH | (x,00) 20VieK—5 (x, ) =0Vie]} C Bs

and expg, :P? =R®L - T, =R,o @ L' is induced by exp : R — Reo.

5.14

We fix an orbit for the natural action of W {or W*) on 7. This orbit contains a unigue
element t in the set 5.13 (b): we have ¢t = t.ty, where t. € p'(Cs) and 1, € expf_r_n(B;) for a
well-defined § C K, S 5 @. Note that W,, coincides with the Weyl group of the root system
(R, © V/(Vj+RD}, R, C PO defined as in 3.1 and 3.2, for © = t. (This is seen by an
argument like that in the proof of 4.5.) As in 4.9, we define u: R, — Z by

wlo = 2Mod if x € Ry, — R
o) = Ao + et A o) if ¢ e R,

Then the graded Hecke algebra I*—I;;{c VAVRD) is well defined {see 4.8}, and we have a canon-
ical bijection {see 4.9 {c})

(@) Irryvev, HiE — ITw, togiy.ro Ha, VAV +RD)"
Here 7y ¢ R is defined by vo = €™, and logty, ¢ P° is defined by exp, (logty) = tn.

As in 3.7 for T = t.), we denote by ¥’ the unique element of Cs such that p/ix) = t..

Lemma 5.158. u: R, -» Z (in 5.13} is the unique function that is constant on the crbits
of W,, and satisfies
{a} niplén)) = Zycy for all k € K — S, I

Proof. Recall that the vectors {pl&y) | k € K~ 5} form a system of simple roots for R,_ (see
3.11}%: hence we only have to show that u satisfies (a). Assume first that k € K~ §, k ¢ K"

Then, from the definitions,
wlpla) = 2Aplda)) = Zicy,

as desired. Assume next that k € K~ S,k € K’k = k;, and let k; € K’ be the unique
element such that k; £ k. From the definitions,

piplogd) = Mploud) + anclt )N {plogc )}

1. - 1, - . -
= ”é‘{szi Cky -+ Z Oy} = §(Zk1 Ck, = ZiyCry) = Zy O = ExCi.
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{(We have used the equality oglt;) = —1; see 3.13 (a).) Finally, assume that k e K~ S,k ¢
K’ k # k;. From the definitions,

w{ploa ) = Mplogh) + ot A (pla))

1 . . 1. - _
:,gézkck + Zk;CkJ) + E(Z‘ch — Zkgck;} = ZyCy.

{We have used the equality o (t.) = 1; see 3.13 (b}.) The lemma is proved. n

5.16

The root systems
(*Ry¢_s < V/(Vi+RD),*Ry_g € PO, (Re, € V/(V) +RD), R} C PY

have sets of simple roots {plfout | k € K — 5}, {plé&y) | k € K — S} respectively (see 3.11
and 3.15), and these are related by p{&y) = Zyp(* ) for all k (see 2.14}. The corresponding
simple coroots are again proportional. It follows that the Weyl groups of these two root
systems have the same simple reflections and hence they coincide. Thus, we have
{a) W{_g=Wy.

1t also follows that there is a unique function v : *Rg.s — N (necessarily constant on
the orbits of W{_¢) such that R,, = {v(a)x | @ € *Ry_s}; moreover, we have v(*oq) = z, for
all k € K— S, Let o' : *Re_s — N be the function defined by v'(a) = u{vic)od/v{xd. This
function is again constant on the orbits of W}_; and is characterized by the equality

Wloy)=c forallke K-35,

{See 5.15.) Let H be the graded Hecke algebras attached to the root system (R, C V/(V] +
RD), R C P% and the function p : Ry, — N. Let H' be the graded Hecke algebras attached
to the root system (*Rx.s < V/(V]+ RD),*R ¢ C PY) and the function p’ : *R¢_5 -» N.
We have an algebra isomorphism H —» H', which is the identity on the generators (see
4.8); here we use the fact that the two root systems above have the same Weyl group. We
observe that the relation 4.8 {¢} is the same for both algebras, in view of the identity

(&) (e, Fy = W (pl* o)) (Fhie, ),

which states that Z.cx (R, f) = cx{Zxh, ). The isomorphism H — H’ induces a bijection

ey F

it ~ B
{b) Trrwy togtiro Har, vyrvysroy ™ HTwg_gloginro Hamy ¢ wiovy rmop

5.17

We identify in the obvious way HZ with the Lie algebra t of T. Let 3 be the Lie algebra of
the centre of Gy. This is a subspace of t. Then the subspace Pg of H is identified with the



Unipotent Representations of Simple p-adic Groups 561

subspace 3; of t, and the dual space C®g V/(V; +RD) of P is identified with the dual 37 of
7. From 3.14 we see that *Rg_s is the set of indivisible roots of the {relative) root system
(in 3}) attached in [L10, 2.4 and 2.5] to Gi_s and to its subgroup G (a Levi subgroup of a

parabolic subgroup of Gi.s.)

Note also that Gy 5 = ZG{tf’} where t‘é’ is as in 5.13. (This follows from 5.5 since
tf € Cs.}

Let H(ZgtY), Gy, €, 7} be the graded Hecke algebra attached by the topological
method of [L.14] to the reductive group Gi_5 = Zeltd) toits subgroup Gy (a Levi subgroup
of a parabolic subgroup}, and to the irreducible cuspidal local system Fon € C g) (see 5.6).

Using the definitions, we see that we may identify canonically

H(Z(td), 65, €,9) = H:LRKnS V/AVERD)

as graded algebras. We shall write H(G, Gy, €, 7) instead of H}/;.

We now take the compositions of the bijections 5.14 (a) and 5.16 (b) and use the
identifications above. We obtain a natural bijection

() Trry, HIG, Gy, €, F) — Irriege, -, H(Za(td), Gr, €, ).

5.18

We now drop the assumption that X has at least two elements (6.7). In the case where K
has exactly one element, the algebra H(G, G}, €, 7} is defined to be Clv,v~!] and the alge-
bra H(Zg(t¥), G, G, F) is Clr]. We have T = {1}, and we interpret Wt in 5.17 {a) as {1} and
W;_glogtn as {0). The bijection 5.17 (a) continues to hold; it is a bijection between two

sets with one element.

5.19

We put together the bijections 5.17 (a} for various (], €, %) as in 5.6 (including the case
where S — ] has exactly one element; see 5.18) and for various t in the set 5.13 {b). We

obtain canonical identifications

uyesIrn,, HIG, G, C, 5

= Ures Uscr-1s# Ui eplics) Yy, el Irowge )0 HIG, Gy, €, 5)

= Lj,e.7 Usci1,5%0 bieep(Co) Hy, ) Irfiogy, r HIZalt?), Gy, €,5)
== Ly e, Hsci-T, 5w ut?ep((?s) utheBg Irtog th g I:I(ngtéb), G;,C, 9

= bisc1 548 LrepiCs) Wiel-s,02 Uy cp) TTlogtm H(Zs{t), Gy, €, F)
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{We have made the change of variable t. +» t = t¥: note that this is a bijection
pH{Cs} > p(Cs), since p! : Cs — p/(Cs) and p : Cs — p{Cs) are bijections.}

5.20

Applying the results in [L14, §8} to the group Zgit)) = Gy_s for a fixed t' € p(Cs), we obtain
a canonical bijection between the set
(@) tycis,ea I, H(ZG(), Gy, €, F) = Ujcr_s e Uy IrTy o, H(Zg (), Gy, €, F)
{where x runs over the set of orbits on 3y of the normalizer of Gy in G;_s) and
{b} the set of triples (£, y, V} {modulo the natural action of Zg{t') = Gi_s} where
{ is a semisimple element of Lie Z;(t"),
Yy is a nilpotent element of Lie Zg{t)) such that [£,y] = 2rpy, and
V is an irreducible representation (up to isomorphism) of the group of com-
ponents of the centralizer Zy_uyi{&, u)

Under this correspondence, an element in Irr, o, HiZs 1), Gy, €, 3) twith x € 3;) cor
responds to the class of a triple (£,y, V) with £ = x + d where d ¢ g; is attached to {J, )
as in 5.6.

Since d is a hyperbolic element commuting with %, we see that x is hyperbolic if
and only if & is hyperbolic (in Lie G;_s}. Hence the bijection above restricts to a bijection
between the subset of {a) defined by the condition that x is hyperbolic and the subset of (b)
defined by the condition that & is hyperbolic. Thus, we obtain a bijection between the set

Uici—s,es E‘JxeBé Irry H{Z g, G, €, 7}

and the set of classes of triples (£,y,V) as in (b}, with £ hyperbolic,

Combining this with the identification in 5.19, we obtain a bijection between the
set L o ;e It Hy (G, Gy, €, F) and the set of quadruples {t',£,y, V) where t' ¢ piCy) and
(£,y,V}is as in (b) (with £ hyperbolic).

Here, H,, (G, G;, €, F) denotes the quotient algebra of HIG, G;, €, F) by the two-sided
ideal generated by {v — vy}, so that Irr, H(G, Gy, €, J) = Irr H,{G, Gy, €, J). Moreover, & de-
notes the set of all triples (], €, F} where ] is a proper subset of [ and F is an irreducible
cuspidal Gy-equivariant local system on a nilpotent Gy-orbit € in gy (up to isomorphism).

Setting s = t expif) (so that ¥ = s;, explf} = sy}, we obtain a natural bijection
between the set U; o g Irr Hyy (G, Gy, €, F) and the set of triples (s,y, V) where

s is a semisimple element of G such that s, e p(C)),

v is a nilpotent element of g such that Ad{s)y = vZy,

V is an irreducible representation (up to isomorphism) of the group of compo-
nents of the centralizer group Zg(s,y);
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here, two triples {s,u, V), (s',y’. V') are regarded as equal if 5. = s, and (sy,y, V}, (s, . V'
are in the same Zgfs:j-orbit.

Note that for any semisimple element s of G, the compact part s; is conjugate to
a unique element of p(Cy) (see 5.13). Hence the bijection above can be reformulated as

follows.

Theorem 5.21. ILet vo € R.o, and let &{v) be the set consisting of all triples (s,y,V)
{modulo the natural action of G) where

s is a semisimple element of G,

y is a nilpotent element of g such that Ad(sly = viy,

V is an irreducible representation {up to isomorphism) of the group of compo-

nents of the centralizer group Zg(s, y).
There is a natural bijection
(a) &lvg) « Uy emes T Hyy (G, Gy, €, F). 1

See the introduction for historical remarks.

5.22

Theorem 5.21 holds in particular for v¢ = 1. In that case, the set in the right-hand side
of 5.21 (a) consists of the irreducible representations of a finite collection of affine Weyl
groups {possibly of extended type], while the set ®(1} may be identified {via (s,y, V) +
(s exply}, V) with the set of all pairs (g, V) (modulo the natural action of G) where g is an
element of G and V is an irreducible representation (up to isomorphism} of the group of

components of the centralizer group Zg(g).

5.23
We have natural partitions
Blvg) = Ly Blvgly, & =156,

where x runs through §'(I} = Hom{Z¢, C*). {The centre of G is denoted by Zg.} Namely, B,
denotes the subset of & consisting of those ([, €, ¥ such that Z; acts on each stalk of Fvia
the character x (using the Gj-equivariance of 7 and the inclusion Zg < Gy); vyl denotes
the subset of 6{vs) consisting of those {s,y, V) such that Z¢ acts on V via the character x
(using the obvious homomorphism Zg — Zgls, y).

The triples (J,C, F} in éix are called geometric diagrams of type x. From the def-
initions it is clear that the bijection in 5.21 restricts, for any x € $'(I}, to a bijection

{a) Blvoly < Ly emed, Irr H,,{G, Gy, €, F).
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6 The arithmetic/geometric correspondence

6.1

We now consider simultanecusly the simply connected, almost simple algebraic group
G over C {as in 5.2) and a connected, adjoint, simple algebraic group G, defined and split
over K {see 1.1), which is identified with the group of its K-rational points; we assume
that G is of type dual to that of G {in the sense of Langlands).
To G corresponds an untwisted affine Cartan matrix with set of indices I (as in
5.1). To G corresponds a Coxeter group (an affine Weyl group} W' {see 1.10), or equivalently,
an untwisted affine Cartan matrix with set of indices I. It is known that we may identify
{a) ') = 5(0)
as (finite) abelian groups (S(I) as in 1.11 and §(1} as in 5.23).

6.2

For any u € 5(I) {see 1.11), we can find (and will select) a K-rational structure on G with
Frobenius map F, (see 1.1} such that the permutation of I induced by F, {as in 1.12) is
equal to w. (This follows from the results of Bruhat and Tits [BT].) Let q be as in 1.1.

Theorem 6.3. Let u € S{I) and let x € 5{I) be the corresponding element {see 6.1 (a)).
There exists a one-to-one correspondence

(@) By « Ay
(where G—ﬁx is as in 5.23 and ¢, is as in 1.22), or equivalently, between the set of geometric
diagrams of type x and the set of arithmetic diagrams of type u, such that, if the geo-
metric diagram (J, ¢, 7} € &, corresponds to the arithmetic diagram (J, E,¥) ¢ 2, then
the affine Hecke algebras H (G, Gy, €, F) and J{'(L, J, u, E) have the same IM-presentation

(hence are isemorphic). .

This is proved by examining the tables in §7, where the list of arithmetic dia-
grams of type u and that of geometric diagrams of type x is given and the two types of

diagrams are matched.

6.4
Let u,x be as in 6.3. We consider the bijections
H(GFu) > {"'E(J,EﬂiJJEﬁu Iir :}f"(l, J, L, E) R4 U(}_e}s{.‘)eéx IFFHJ@(G, G]! E’, 9‘} € @(ﬁ)x

where the first bijection is as in 1.22 (a}, the second bijection is given by 6.3, and the third

bijection is as in 5.23 {a).
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Corollary 6.5. The composition of the bijections in 6.4 is a bijection
{a) WGH) & & /).
Taking a disjoint union over u ¢ ${I), we obtain a hijection
(b} UnesmlliG™) « &{/G). [

The left-hand side of (b} is a disjoint union of the sets of unipotent representa-
tions of the various inner forms of a split K-form of G, recall that the right-hand side of
(b} is the set consisting of all triples (s,vy, V) modulo the natural action of G) where

s is a semisimple element of G,

y is a nilpotent element of g such that Ad(s)y = qy,

¥ is an irreducible representation {up to isomorphism) of the group of compo-
nents of the centralizer group Zgis,yl.

The corollary above is a further confirmation of the Langlands philosophy, which
predicts that irreducible representations of the various inner forms of a split K-form of G
may be parametrized in terms of G. For further historical remarks, see the introduction.

6.6

The bijection 6.3 (a} is closely related to the bijection of [L8, IV, 17.8.3], which associates
to any character sheaf of G a semisimple class in the dual group of G and some additional
data. We will explain this in a special case. Assume that {J,€,F) € &, is such that [ —J
has exactly one element, and let (J, E, {) € ¥, be the corresponding triple under 6.3 (al.

Let t € p(Cy (as in 5.5). We identify C with texp(C) using g — texplg); we may
therefore regard F as a local system on t exp(C). This extends uniquely to a G-equivariant
local system on the G-conjugacy class in G containing t exp(€). Extending this by zero
on the boundary of that conjugacy class, we obtain a cuspidal character sheaf FonG.
Under [L8, IV, 17.8.3], to this cuspidal character sheaf corresponds a certain local system
L, which may be interpreted as a semisimple conjugacy class in the complex dual group,
and the type of the centralizer of an element of this semisimple class may be interpreted
as a type of a parahoric subgroup of G, or as a subset J of L. This is the same as the J con-
sidered above. The additional data attached in [L8, IV, 17.8.31 10 F may be interpreted as
a unipotent representation of the Fy-points of the “reductive quotient” of our parahoric
subgroup. This is the saine as E above,

A similar relationship holds in the general case.

6.7

Note that the triples (], €, 5} € & are closely related to the data {L,Z, &) in [L8, II, 8.1.1],
which are used to construct the “admissible complexes” (that is, the character sheaves)
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on G. Namely, if (L, £, £) is given, then we pick x € £ and we write x = x'x” with x’ € L
semisimple and x” € . unipotent. We may assume that the centralizer of ¥’ in G is Gj. Let
€ be the conjugacy class of x” in Gj. Then & defines a local system F on €, and we have
1,8,7) e &.

6.8

In the rest of this section, we explain the tables of §7. Those tables contain a complete list
of the arithmetic diagrams corresponding to varicusu € S(I), a complete list of the various
geometric diagrams corresponding to various x € $'(I}, and the maiching between them.
Let S(I) be the group of permutations of I defined like S{I) in 1.11. In §7, there is
ene table for any u € 5{) (or equivalently, any ¥ € §(I}) and any $(I)-orbit on the set of
proper subsets ] of I such that ] can be completed to a geometric diagram (J, €, 5} € &, .
In each table we indicate one particular representative | of that orbit by a name
(like £4/E7A;, where Eg refers to the affine Dynkin diagram with vertices I, and E5A,
refers to the subset J) and by a picture of the pair ] < I (the vertices in | are the vertices
of I inside boxes); in the classical types, the picture attached to a name can be found in

6.10, This is accompanied by the words
geometric,a x b

where “geometric” means that this is part of a geometric diagram (that is, attached to G),
a is the number of subsets of I in 5(I)-orbit of J, and b is the number of pairs (€, F) such
that (J, €, F) € &,. Thus, the table accounts for ab geometric diagrams.

Next, the table specifies ab arithmetic diagrams which are matched with the ab
geometric diagrams. (We do not show how, but we use as guiding principle the method
of 6.6.) Thus, we give some information on u € ${I) {ord{(u) denotes the order of u). If our
extended Dynkin diagram with vertices Iis of type D, withn > 4, we say that u is of type
1 if the permutation u is a product of two 2-cycles; we say that u isof type 2 if n > 4, u
has a single fixed point, and ord{u) = 4 {for n odd) and ord{u) = 2 (for n even). We indicate
a representative J for a (3" = (-orbit on the set of proper u-stable subsets of 1 such that
J can be completed to an arithmetic diagram (J, E, ) of type u.

J is indicated by a name (like E4/E;, where Eg refers to the affine Dynkin diagram
with vertices I, and B, refers to the subset J) and by a picture of the pair J ¢ I {the
vertices in J are the vertices of I inside boxes); in the classical types the picture attached
to a name can be found in 6.10. This is accompanied by the words

arithmetic, o’ x b’

where “arithmetic” means that this is part of an arithmetic diagram (that is, attached
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to G), o is the number of elements of Q¥ {see 1.15 and 1.20}, and b’ is the cardinal of a
subset of U%(J, v} {(see 1.21) that is relevant for the table in question.

Note that the same subset Jmay appear in more than one table, and the sum of the
b’ corresponding to each of these tables (with fixed v) is equal to the cardinal of U%(J, u).
In the classical types, we have always b’ = 1; in the exceptional types when U%(J,u) may
have many elements, we indicate which subset of U%(J,w) is relevant for a given table
by specifying {(at the end of the table) the names (from (L8]} of the representations E in
the table, whenever such names are available. Each table accounts for a'ty arithmetic
diagrams. We have ab = a't’,

Next, each table contains a b — §-diagram. This is the affine Dynkin diagram cor-
responding to the (not necessarily untwisted) affine Cartan matrix {4,) associated as
in 1.14 to the subset ] of I, Its vertices are indexed by K = I — ] {if K has at least two
elements); the diagram is empty if K has exactly one element. Each vertex is marked with
b or £ according to whether it belongs to XK' or K!. Moreover, for each such vertex k we
specify a datum of form A x B where A = ¢, (see 5.7) and B = %, (see 2.14).

Next, each table contains a diagram {called H.A., for Hecke algebra} describing
the IM-presentation of an affine Hecke algebra. This is obtained from the b — §-diagram
(hence ultimately from the geometric diagram) by the procedure in 5.9,5.11, and 5.12, or
from the arithmetic diagram by the procedure in 1.18 and 1.19. {The two procedures give
the same result.) {See 6.11 for a further discussion of affine Hecke algebras.)

6.9 Conventions

For a = 0 or 1, we interpret A, ; as the empty graph. For a = Q ora = 1, we interpret D,
as the empty graph. A graph of the form

* = % * g ) A e =

with s > 1 vertices is considered to be x—+ when s = 2 and ¥ when s = 1.

6.10 Some diagrams

D, /D, x D)

*
*
* A

*
i oo T k) ek g e s g

Dy Dy



568 George Lusztig

D,./D,
*s
!
“*
I e - e T el P T T
DF
Dy/0
*] kg
l
Ky T kg T e T kgap T ke
D/, x Dgx Al p+qg+2s~1=mn
bl [ . bl
R e e ol Rt e * s ko
Dp Dy

D /Dy % Dy x Ary)

2%
*
*

Agp
B s |

*
R — RN
*

fjn/(Dp X AiM1),p B 2(5 o 1} == Y1

E"jn/'ﬂ‘qul

*1

oy — [T T ] —

Ari
D, /A, 2(s — 1) =n

*i

[x]— %0 — ¥ — %5 — -+ — %0z —

*s

x5

et LR S

*
T (R - PR P ) p————

*igf

e i o 1
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B./(Dp x Bg)
*
e AL
Bq
Dy
B,/
*
Rl e Bt e
Dp
Bn/Bg
*1
N3
Bg
B./0
*1
kg kg s kg e o ek T g

Ba/(Dp x Bg x AL p+q+20 -1 =n

e Lt LI

Bq

Bo/(Dp x AT p+20s -1 =n

* e Kk *1 E *g E -.M.mww

Dy

*gi """”"'"'” = ks

ok 4

Bo/By x AN, p+2(5—D=mn
*3
i
-—*2-—-———-'-*3—0---——ww-*s———-— * . * koo

By

En/Asl‘l, As—1)=n

*1
!
”—*2—’_*3‘“""“'""‘“‘*5—1""“” =
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Ca/(Cy x Cy)
[ = T e ety g
G

g qu

Ca/(Co x Cyr X Ary)

* o= ok K - Kk b B I e S R 1 L2 e
C‘p" Ar_y

6.11 Notation for affine Hecke algebras

The affine Hecke algebras (in the IM-presentation; see 5.12} that are needed in the tables
in §7 will be described by specifying the corresponding extended Dynkin diagram and
the appropriate parameters at each vertex,

It is always understood that the group I in the IM-presentation {(see 5.12) is the
group of all special permutations of the set of vertices of our extended Dynkin diagram,
except for

{a} Cilab.] (see below), and

) C ;o= ﬁ\; with the L-function having distinct values at the two vertices for

which I" = {1}. In classical types we introduce some notation for the var-
iousg affine Hecke algebras,

An[a], n=li:

. ———-a————-—a—a—-ww P

a cyclic graphs with n +4 1 vertices.

Drlalnz 4
a a
E I
Q — @ e o — o O,

with n -+ 1 vertices.
Bn[ab]:

O — 0 — g —— +o¢ =g = b,
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with n + I vertices, if n = 3;

a=b<4<a

ifn=2

a4 = bbb o ——b &= q,

with n 4 1 vertices, if n = 2;

ifn=1.
Cselubel,m > 1:

a=>b——b—>bh—0> .. —b &

with n -+ 1 vertices, if n = 2;

ifn=1
We shall identify the algebras

Cgbe) = Balbel

in the standard way, forn > 1.
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7 Tables
7.1

Ea/Eg (geometric, 1 x 1)

LI AR T I S —
*

7.2

Es/E7A, (geometric, 1 x 1}

**:***m*——

7.3

Eg/EsAg (geometric‘ 1 x2)

*****m*__

7.4

Eg/Dg (geometric, 1 x 1)

dee] K K kK K kK
*

@

7.5

Eo/DsAs (geometric, 1 x 2}

E g G S S S
£ =

Eg/Eg,u = 1 {arithmetic, 1 x 1}

R e S S
*

HA @
E: EéIH]

Es/Es,u =1 (arithmetic, I x 1)

*ok ok ok ok koK
*

HA D
E: Eg[“"“l]

’ég /Eg, 1= 1 {arithmetic, 1 x 2)

* Kk i K A K K g
HA ' &
E : E5l0], Eg4l0]

Eg/Es,u = I (arithmetic, 1 x 1)

*ok ok ok ok ok ok
*

HA. : @
E: E}1]

Ea/Eg,u = 1 (arithmetic, I x 2)

* ok ok ok ok ok ok g
*

HA @
E : Bgli], Egf—il
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7.6

Es/AsAzA, (geometric, I x 2) Ea/Eg,1t = 1 (arithmetic, 1 x 2

5] — + — s
i ok K kK KK
*
% HA ¥
E : Egi-0], Eg[~87]

7.7
Eg /A4A4 (geometric, 1 x 4) fig/ Eg,u = 1 {arithmetic, 1 x 4}
**:—-—*— KKK KA KK ek
] HA : 9
E : Egl], EglT?], EalCP], Eglc]
7.8
Egs/A3A3A, {geometric, 1 x 2} Eg/E,u =1 (arithmetic, 1 x 2)
_m*zw_ i * -—*1“""""" * : R K o e g
by 2 282 HA. 1515,
E : E5[&), E5[—&
7.9
Ea/A2AzA; (geometric, 1 x 2) Eg/Es,u = 1 (arithmetic, 1 x 2)
— xp —— [kx] — g
! * Kk I * K kg vk} —— k)
*y
jfjd < ng e ﬁgXS HA. : 10 o 1} =" 92
E : E5l0], Egl8%]
7.10
Es/A1A1 AL A (geometric, 1 x 1) Eg/Ds,u = 1 (arithmetic, 1 x 1)

P e £ £y
] i
]

gLl b g HA 1g— 1 — 1y = Ag e 4y

* | kg kg ik =y
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7.1
Eo/0h (geometric, 1 x 1) Eg/0, =1 {arithmetic, 1 x 1)
] e g v K g s K5 e i g e K e K g e e () T e g e g ey o gy e e g ey
*lg ‘Ajg
ﬁzxim___;dzn__ﬁle__ﬁlewazxz__gzx]_ﬁle__ﬁle
‘ S A - - VS PR FUS JORS FO (o
e |
| 8]
1j—13—1;
7.12
E,/E, {geometric, 2 x 1) E;/Eg, ordi) = 2 {arithmetic, 2 x 1}
prop b S S T S 4 P B e i N S S
* *
7 HA. : 0
7.13
E,/AsAz (geometric, 2 x 2) E;/Eg, 1t 5 1 (arithmetic, 2 x 2)
***:m*m *__**;**W*
%] HA : 9
7.14
Er/AzA3A (geometric, 1 x 2) £,/E;,u =1 (arithmetic, 1 x 2)
— =
| o] kX i * ok ok
# HA.: 0
7.15
E;/AszAs (geometric, 1 x 2) E5/As, ord(u) = 2 (arithmetic, 2 x 1)

Kk | e ke [ dg Rk A Ak ]
0
| E

*3 *1

pinz Zpexl HA, 97,
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7.16
Es/AzA2A, (geometric, 1 x 2) E;/Eg,u = 1 (arithmetic, 1 x 2}
** -——*1""""*“."—*2-——“ e Rl
R P H.A, :9-2-9
Hy AL
7.17
Es/A1ALA LA (geometric, T x 1) £,/D4, v = 1 (arithmetic, 1 x 1}

Bl —» — [l — % — [ —u — [

3 oy ey — * :’ * e g e K
*3
Ax2
4
! HA :1p = 4—4 & 13
ﬁé}l;XZ — ﬁgXZ = ﬁgxl
7.18
E;/A1ALA, (geometric, 2 x 1) E,/9, ord{u) = 2 {arithmetic, 2 x 1)
g g kg K _"""'*l“““'” gk | g Ry Ky ey gy
H
.
yEx1 oL pExl 2l o f P HAG 1y 1 & 2 — 2 — 2
7.19
E, /% (geometric, 1 x 1) E,/f,u = 1 (arithmetic, 1 x 1)
Feg ke g e kg ek —— kg ——ky ey ey kg ——— kg kg kg ey
*3 *Ez
2x1_§i2x1_n2xi_f2x1_g2>:1___g2xlmﬁ2xi
¢ ' : 41 s ¢ 7 HA. . Ipwwlj=—lzg—1lg—1g—Ig—17
agxl I
iz
7.20
Eg/Es (geometric, 3 x 1) Eg/Da, ordiu) = 3 (arithmetic, 3 x 1)
* K ok Kk K e | Kk i
* *
l !
* *
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7.21
Eg/AsA; (geometric, 3 x 1) Es/Dy, ord(u) = 3 (arithmetic, 3 x 1)

| d———f Kok ok
* *
| Il
9] HA.: ¥
7.22
Es/A2AzAz (geometric, 1 x 2) fs/Es,u = 1, (arithmetic, 1 x 2)
[ =] Xk Ak
i
] HA. : &
7.23
Es/AzAy (geometric, 3 x 1) Es/#, ord(u} = 3 {arithmetic, 3 x 1)
mm-*} — LT e S ﬁz —kyr——kyy
'kEz *;.ﬁr
|
*g ke
ﬁ?Xl <= ;i%x}—ﬁg"cl H,A_: 3{]“‘“3} == 12
7.24
Eg/A;A1AL A (geometric, 1 x 1) Eg/Da, 1= 1 {arithmetic, 1 x 1)
F ey o] e o sriee]
1 * g | KK F g
3 *
’
;;ttxz . :d‘zlx2 4 o 4
HA.: 3 /

wax °
t %



7.25

Eg/# (geometric, 1 x 1)
A ey e g oy e K

*2

|
*0

ﬁ?xi_ﬂgx}wﬁixl__ﬁgxlwﬂgxi

jZxl
2

ﬁ(zfxl
7.26

¥4/F4 (geometric, 1 x 1)

=
]

7.27

F4/CsA; (geometric, 1 x 1)

mw*—-— [r—

@

7.28
F2/A2A; (geometric, 1 x 2}

[x]—= =[]
]

7.29
Fa/AsA; {geometric, 1 x 2}

5] = «—[E]
]
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Ee/W,u = 1 {arithmetic, 1 x 1)
ey g e e g e oy — K

*2

;
*9

HA.: ;—1zw14—15—15
t

g
;
o

F4/Fs,u = 1 (arithmetic, 1 x 1)

e T e

HA.: @

E:Fl1

F1/Fs, 1 = 1 (arithmetic, 1 x 1}
o[
HA.: 9

E : Fy[—1}

Fy/Fa,u = 1 {arithmetic, 1 x 2)
*—[EF =57
HA . ®

E : Fa[6], 74 [07]

F4/Fa,u = 1 {arithmetic, 1 x 2)
o [rrm ]
HA. : ¢

E : Falil, Fa[-1]
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7.30
Fa/Bs (geometric, 1 x 1}
* ok ok TER Kk |k

%

7.31
F4/A1A; (geometric, 1 x 1)
‘"“‘“”*1 -—— = g ey
b?xl . ngz y ngi
7.32
Fa/@ {geometric, 1 x 1)
kg kg kg T kg ok
e >
7.33
G,/G, (geometric, 1 x 1)
=]
9]
7.34
Ga/A; (geometric, 1 x 2)
* <
]
7.35
Gz/A1A; (geometric, 1 x 1)
<= 5]
@

Fo/Fo,u = 1 (arithmetic, 1 x 1)

R e A

HA. : ¥

E:Fil1]

?4/82,11 =1 (arithmetic, 1 x 1)

o =X

HA 3 =3¢ 1

Fs/8,uw = 1 {arithmetic, 1 x 1)
kg k3 £ kg ek kg

HA : ly=lz <= lp—1; 14

G3/Gy,u = 1 {arithmetic, 1 x 1)

=l

HA. : ¢

G2/Ga, 1 = 1 (arithmetic, 1 x 2)

Ex -

HA.: @

Gy/Gz,u = 1 (arithmetic, 1 x 1)

Fe=a—

HA. : &
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7.36
&,/# (geometric, 1 % 1) G,/@ 1w = 1 (arithmetic, 1 x 1)
*y EE skp kg kg ——k) <{EE U
et <= g2 — g3 HA: 1 — L <= L

7.37

An/AY_, (geometric, a x 1)

Heren > 1, a is an integer greater than or equal to 1 dividing n + 1, and b = (n + 1)/¢;

B T ] T )
Aa-1 a

Ag—t Ag-1

(a eyclic graph with n + 1 vertices);

. ﬁ%axl Hgaxi glaxl
L 3
(a cyclic graph with b vertices) if b > 2 and @ if b = 1;

A /9, ord{w} = a (arithmetic, a x 1)

B S

(a eyclic graph with n + 1 vertices).
HA.: Apy ifb>2and #ifb=1,

7.38

f)n/(Dp % Dgh2p = {a+b)2,2q = {a~ b)? {geometric, 2 x 1), a even, b even, a > b > 0. Here

a?+bP<cn>4 lets=n+1-p~—q.
Da/IDy x D), 9" = o, ¢’ = b?,u = 1 (arithmetic, 2 x 1);

2{a—b)xi 2x1 2x1 2x1 s Ha+bixl
t's @.ﬁmms—zw""—'z = 2

ifs>2and@ifs=1.
H.A. @:il[quzb] ifs>2and #if s = 1.

7.39

D, /(D, x Dg), 2p = (a + b)%,2q = (a — b)? (geometric, 2 x 1), a odd, b odd, a > b > 0. Here
a+bicnz4d lets=n+1—-p—q.
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D./(Dy x Dg),p’ = 6% g = b% u of type 1 (arithmetic, 2 x 1);

b.s'l{awb)xl = ﬁfifll piicz] o ﬁg)d = b%(:ﬂrb)xl

ifs=>2and@ifs = 1.
H.A.: C [aloplif s > 2and 4 if s = 1.

7.40

f)u/(D?J x Dp),2p = a® (geometric, 1 x 1), a >0 even. Let s =n + 1 — 2p.
D./Dy,p = a?, u= 1 (arithmetic, 1 x 1};

s 2axl 2x1 12x1 42x1 2axl
g < By §5v2 T ﬁz = b1

ifs>2and @ifs=1.
H.A: CC [glag) = By 1 [15) if s > 2 and §if s = 1.

7.41

Ijn/D?,p = 2a° (geometric, 2 x 1,if s > 2,4 x 1,if s = 1) a even, a > 0. Here a® < n > 4
ands=n-+1-—7p.
ljn/(Dpf x Dy p' = of,u= 1{arithmetic, 2 x 1,ifs > 24 x 1,if s = 1).

ﬁle

s

Zx1 2x1 Aax 1l
§2x1 |
#axl

g

HA: Colpaladifs>2and@ifs = 1.

7.42

D./D,, 7 = 20° (geometric, 2x 1,if s > 24 x 1,if s = 1) aodd, a > 0. Here a®> < n > 4
ands=n+1-7p.
Qn/(D?f x Dp),p’ = a?, wof type 1 (arithmetic, 2 x 1,if s > 2,4 x 1, if s = 1).

ﬂin
LH

:;?iczl . ggxl = ﬂtlluxl

iZx 1
s—1

HA.: Coqlaalzalifs > 2and Bif s = 1.
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7.43

D./% (geometric, 1 x 1}, n = s. Here n > 4.
D,/ v =1 (arithmetic, 1 x 1).

hgxl afxi

; a2x1 (21 2% 1
fr et
vﬂzlj a1
4\ s
H.A DL

7.44

Do /Dy x Dy x AT, 2p = (1/2M2a+b)(2a-+b+1}, 2¢ = {1/2)(2Za~bl(2a—b—1), p+q+{2s—2} =
n (geometric, 2x 2, a>0,b= 0,82 1,0 = nmod 2, (1/2)b{b + 1) = nmod 2,b # 2a,b #
2a — 1. Qur assumptions imply thatp > ¢ > 1 and n = 5.

Dp/(Dy x Dy x A,), 9’ = a?,1 = (1/2)(b? + b), u of type 2; (arithmetic, 4 x 1).

:42§>< 1 = b§4a+2b+1)xl

Ma—-2b-1}x1 4xl 4x]
bs &= ﬁ:;ml ﬁs—.‘?

HA: CF [ea2opiilif s > 2and @ if s = 1.
51

7.45

Do /(Dp x A1, 2p = (1/2)(2a+ b)(2a +b+1),p + 2(s — 1) = n (geometric, 4 x 1), a> 0,5 >
l,a=nmod2,{1/2)blb+1)=nmod2,b=2corb=2a~1 Heren=5.
D, /(D x Dy x Av1), 1’ = a?, 1 = (1/2)(b® + b), u of type 2 (arithmetic, 4 x 1).

2%} 4x1 4x] axl {4a+2b+1)x1
s a1 .52 Pty = by

HA: C [2p]if s> 2 and §if s = 1.

7.46

D /(D, x Dy x AS71), 2p = (1/2)b(b + 1), 2p + 2(s — 1} = n (geometric, 1 x 2) b > 0,5 2 1,0 =
{1/2)b{b + 1)mod 2. Herenn > 5.
D./Ar1,T = (1/2)(b? + b) with u of type 2; {arithmetic, 2 x 1).

L (2B 1% Axi 431 udx1 {Zb+1)x1
P S el =y

H.A.: 6231{022];.4.1] mm g5ﬁ1[22b+1§ if s = 2and #if s = 1.
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7.47
D, /A3, 2(s — 1) = n (geometric, 4 x 1), s > 4, Here n > 6.
Dn/8, wof type 2 (arithmetic, 4 x 1).

2x1 4wl 4x1 A%l i2x1
B0 = e ) e = 1

HA: B, (2],

7.48

f%n/(Dp x Be)2p = (a+b+ 1229+ 1 = {a~ b (geometric, 1 x 1), a>b>0,a+b+1

even. Lets=n+1-—-p - q.
C,./C v % Cohp’ =ala+ 1), ¢ = blb+ 1},u =1 (arithmetic, 1 x 1).

bf(ﬂub)xl o 52;(1 ;2x21 azxz = b?(aﬁ-b"}»i}xl

HA:CE laan I ifs > 2and Zif s = 1.

7.49

B./(Dp x Bg),2p = (a~b)?,2q + 1 = {a+b + 1) (geometric, 1 x 1),a > b > 0,a — b even.
lets=n+41—-p-—aq.
Cn/(pr x Cyhp' = ala+ 1), ¢ =blb- 1),u = 1 (arithmetic, 1 x 1).

bﬂa+b+ﬂxl yexl 21 . ﬁle bﬂaﬁmxl
s As—1 52 "2 1

HA:CE oy lapn)if s > 2and Bif s = 1,

7.50

Bn/Bq, ¢ = 20 + 2a (geometric, 1 x 1), a > 0. Let s =n + 1 — q.
Cn/(pr x Cphp' = ala + 1),u = 1 (arithmetic, 1 x 1),

ptza+1ix1 2xl __ f4i=i iZxl 2% 1
&S = d s-2 T THg Wﬁz
ﬁle
3

HA.: Coilzoslzenlifs>2and Bif's = 1.
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7.51

B,/(D, x By x ASY, 2p = (1/2)2a+ b+ 1{2a + b + 2), 24 + 1 = (1/2{2a — b)(Za — b+ 1),
p+g+2(s—1)=nigeometric,1 x2},a>0,b>0, a+ 1= (1/2p{b ~ 1) mod 2.
CaflCy x Cp x Ar), P =a*+a,v= {1/2)(62 + b), ordiu} = 2 (arithmetic, 2 x 1);

4aq-2b-+1{x1 4><1 4%l A% 1 {40+4+2b4-31x1
bl eyt —— 57 = by

ifs>2and @if s =1,
H.A: E:':_114a+222b+11 fs>2andPifs = 1.

7.52

B./(D, x By x AT, 2p = (1/2)2a—bl2a—b+1),2q+1 = (1/2){2a+b+ D2a+ b+ 2),p+
g+ 2{(s — 1} = n {geometric,1 x 2}, a2 0,b=0,a= {1/2/b(b — V)mod 2,b # 2a,b # Za+ 1.
Co/(Cy x Cy % Aa) P =0 ta,r= {1/2){b? + b}, ord(u) = 2 (arithmetic, 2 x 1);

iGa—2 1
b(4a+2b+3)xl = ﬁ4><} df;xl Ax1 =5 bt a—2b+1ix

52 2 “1

ifs>2and P if s = 1.
H.A.: éic_;g4a+222h+l] ifs>2and@ifs =1,

7.53

Bo/(Bg x AS71),2q + 1 = (1/202a + b + 1)(2a + b + 2),q + 2(s — 1) = n {geometric, 2 x 1},
az>0,b=2a0orb=2a+1
Co/(Cyr x Cpy X Apa), P = +a,7 = (1/2}{b? + b), ord{u) = 2 (arithmetic, 2 x 1).

Ao+2b43)x1 4><1 4wl 4><1 L2
bt e e ) 2T )

ifs>2and difs = 1.
HA: Cf layo2zpl if sz 2and @ if s = 1,

7.54

Ca/ICp x Cahyp = (1/2)(a+bi{a+b+1), g = (1/2)a~b — 1){a —b) (geometric, 2 x 1), a even,
a>0,b>0.Lets=n-+1~-p~—4q.
Bn/(Dy x By, p' = a?, ¢’ = b? + b,u = I (arithmetic, 2 x 1}.

2a4-2b-+11x1 2x1 2wl 2% 2a~2b—1ix1
bt o PP e b

ifs>2and@ifs==1.
HA: C belppi)if s> 2and Bifs= 1.
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7.55

(:,‘n/(Cp xCyhp=1/2)a+bla+b+1),g=(1/20a—b~1}{a~b) {geometric, 2 x 1}, a odd;
a>0b>0lets=n+1-p-—q.
B./(Dy x By),p’ = a?,q’ = b? + b, ordlu) = 2 (arithmetic, 2 x 1).

b§2a+2b+l}xl P ﬁff}l ﬁfjgl L ngl = bE12a—-2b—1i><£
ifs>2and@ifs=1.
HA: C lzalop] if s> 2and @if s = 1.

7.56

Ca/{Cy x Cphp = (1/2)b{b + 1) (geometric 1 x 1), b > 0. Let s =n + 1 — 2p.
En/qu, q’ = b2 + b,u == } (arithmetic‘ 1 % 1}
ﬁi%mﬂ = ﬁffllmﬁff%*- L W_ﬂgxz . ﬁizwxm

ifs>2and@ifs=1.
H.A.: gsv1[12b+1] ifs>=2and@ifs=1.

8 Complements

8.1

LetG,1,G,1beasin6.1. Let O(G) be the (finite) subgroup of the group of all automorphisms
of G consisting of the automorphisms which preserve T, the set {& |1 & I — {0)) (see 5.2)
and an associated “épinglage.” We form the semidirect product G = G- O{(G) with identity
component G. As it is known, the quotient group 5(1}/5(I) may be identified with O(G).

In this section, we assume that we are given an element & € O(G} — {1}. Let $(I); be
the set of allu e S(I} such that the corresponding coset in S(I}/S{I) corresponds to § € O{(G).

Omne can expect that the following generalization of Corollary 6.5 {(supporting the
Langlands philosophy) should hold.

There is a natural bijection between L sy WG} and the set of all triples (s,y,V)
{modulo the natural action of G) where s & G9 is semisimple in G, y g is nilpotent with
Ad(s)y = qu, and V is an irreducible representation (up to isomorphism) of the group af
components of the centralizer group Zc{s,u).

Tt is likely that the proof of the previcus statement will not differ too much from
the one in the case & = 1. This is the case at least if we restrict ourselves to the case
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of irreducible representations with nonzero vectors fixed by an Iwahori subgroup, for a
distinguished u in 5{I); (see {C}, which is modeled on [CG].)
In the remainder of this section, we will sketch the beginning of such a proof,

namely, a matching of arithmetic diagrams and geometric diagrams.

8.2

The various arithmetic diagrams of type u (foru < S$(I)s) and the type and parameters
of the corresponding affine Hecke algebras will be listed in 8.3-8.14. In each case, we
describe the subset J by specifying the type of the subdiagram corresponding to J. The
notation for affine Hecke algebras is as in 6.11.

If the extended Dynkin diagram is of type D.., then we say that w is of type 1 if u
is a permutation with exactly one 2-cycle; we say that u is of type 2 if u is not of type 1.
{Recall that v ¢ S(1).)

8.3 Type A, ord(w) = 2

J is of type Ay_1 x Ag.; (both components are u-stable} where p’ = ala + 11/2, q =
bib + 1}/2, and a -+ b = (1" mod 4. Note that p’ + ¢’ =n -+ 1 mod 2.
H.A.: é:il[ga+122b+1] wheres = {n+ 1) —{p'+q — 2))/2.

8.4 Type Dn,uof type 1

J is of type Dy x Dy, 9’ = o, ¢’ = b?, a is odd, b is even, and u acts nontrivially on first
factor.
H.A: C¢ [20 150l where s =n+ 1 - {p' + q').

8.5 Type Dn, uof type 1

J is of type Dy, v’ = o?, a is odd, « acts nontrivially.
H.A.: C* [olap] = Byi[lsq where s =m + 17",

8.6 'Type D, uof type 2

Jis of type Dy x Dy x Ary, P’ = a% 1= (b*+1)/2, a > 0,b > 0, a = n+ Imod?2,
(b? + b)/2 =nmod 2, and hence a+ 1 = {b? + b)/2mod 2.
H.A.: C [4020041] wheres = ((n+ 1) — 2p’ — (v — 1)}/2.



586 George Lusziig

8.7 ‘Type D, of type 2

Jis of type A,.; where r = (b? + b)/2,
H.A: Be1[22001] where s = ((n+ 1) — (r — 1))/2.

8.8 Type fis,oa"ci(u) 2= 2

Jis of type Eg, and there are two possible E (one the dual of the other).
H.A. D

8.9 'Iype Eg, ordu) = 2

J is of type Eg, E is self-dual.
H.A.: 8.

8.10 Type Eg, ord(u) = 2

J is of type As.
HA:1=29

8.11 'Type ﬁg,ord{u} = 2

J =
HA:2—2 &= 1—1—1

§8.12 Type Dy, ord(u) = 3

Jis of type Da.
HA. @

8.13 Type Dy, ord(u) = 3

J is of type D4, E is other than that in the previous table.
HA. @,

8.14 'Type f)4,ord(u) == 3

J =0
HA:I—1=>3.
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8.15

In our case (8 s 1), the geometric diagrams are defined as triples (Z, €, ¥), where Z is the
centralizer in G of a semisimple element in the coset GO C G and 7 is an irreducible
Z-equivariant cuspidal local system on a nilpotent Z-orbit in the Lie algebra of Z. {A
study of the centralizers of semisimple elements in G was made in [Kal)

Tn each case in 8.3-8.14, one can indicate a geometric diagram which is a candi-
date to be matched with the arithmetic diagram. We describe the type of Z in each case.

In 8.3 with n odd, Z is of type D, x C, where 2p = {a+ b+ 1)?/4, 29 = la = b —
1Y{a — b+ 1)/4.

Tn 8.3 with n even, Z is of type B, x C, where 2p + 1 = {(a + b + 1)%/4,
2g={a—b—1Ha b+ 1)/4

In 8.4, Z is of type B, x By, 2p + 1 = {a + b}?, 29 + 1 = {a — b)*.

In 8.5, Z is of type By x By, 2p + 1 = a?.

In 8.8, Z is of type B, x By x A", 2p + 1 = (1/2)2a + b)2a + b + 1),
2q+1=(1/2)2a-b){2a-b-1,p+q+2s—2)=n~1

In 8.7, Zis of type B, x B, x AJ™" 2p+1={1/2)b(b+ 1), 2p+ (25 -~ 2) =n — L.

In 8.8, 7 is of type Az x Az

In 8.9, Z is of type F4.

In 8.10, Z is of type A1 x Ap x Ay,

In 8.11, Z is of type @ {a torus).

In 8.12, Z is of type Ga.

In 8.13, Z is of type A1 x A;.

In 8.14, Z is of type ¥ {a torus).

8.16

We note that the relationship between geometric diagrams and character sheaves of G
mentioned in 6.6 and 6.7 generalizes to the present case, provided that we consider char-
acter sheaves not on G, but on the coset G3. {Such character sheaves were considered in

(L9L)
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