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NOTES ON UNIPOTENT CLASSES*

G. LUSZTIGT

0. Introduction and statement of results.

0.1. Let G be a semisimple, almost simple algebraic group over C. Let W be
the Weyl group of G. For any unipotent class C of G, let pc be the irreducible
representation of W attached by Springer’s correspondence to the pair consisting of C'
and the local system C on C. We say that C'is special if p¢ is a special representation
of W (that is, a representation in the class Sy introduced in [L1]). It is known that
C — pc¢ is a bijection between the set of special unipotent classes of G and the set of
special representations (up to isomorphism) of W.

The special unipotent classes play a key role in several problems in representation
theory, such as the classification of irreducible complex representations of a reductive
group over a finite field, and the classification of primitive ideals in the enveloping
algebra of a semisimple Lie algebra. Unfortunately, their definition is totally un-
geometrical. For this reason, special unipotent classes are often regarded as rather
mysterious objects. To partially remedy this situation, we have felt the need to try
to unveil some of the purely geometrical properties of special unipotent classes, or
rather, of the closely connected special pieces (defined below); this has led to the
present paper.

For any special unipotent class C' in G, let C be the subset of the unipotent
variety U of G consisting of all elements in the closure C' of C' which are not in the
closure of any special unipotent class C’ # C,C’ C C; this definition appeared in [Sp].
Clearly, the sets C (for various special unipotent classes C) are irreducible,locally
closed subvarieties of U; Spaltenstein [Sp| has shown that they in fact form a partition
of U. The subvarieties C' will be called special pieces. Note that each special piece is
a union of a special class (which is open dense in the special piece) and of a certain
number (possibly zero) of non-special classes. Let (C') be the set of unipotent classes
that are contained in the special piece C.

One of the results of this paper is:

THEOREM 0.2. Two unipotent classes C1,Cy of G belong to the same special
piece if and only if pc,, pc, belong to the same two-sided cell of W.

0.3. Now let ¢ be a two-sided cell of W and let WC be the set of irreducible
representations of W (up to isomorphism) that belong to c¢. To ¢ we attach, as in
[L3], a finite group G, and an imbedding

(a) We — M(Qc)?
here M (G.) is the set of pairs (g, 7) where g is an element of G, defined up to conjugacy
and 7 is an irreducible representation of the centralizer of g in G, defined up to
isomorphism.

THEOREM 0.4. Let C be a special unipotent class of G and let ¢ be the two sided
cell of W such that pc belongs to c. For any Cy € v(C), the image under 0.3(a) of pc,
(which belongs to We by 0.2) is of the form (g,1) where g is an element of G defined
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up to conjugacy. Let G be the subgroup of G. generated by the conjugacy classes of the
elements g attached to various Cy € v(C). Then Cy — g is an imbedding of v(C') into
the set of conjugacy classes of G. and a bijection of v(C) onto the set of conjugacy
classes of G...

0.5. In [L2] it was conjectured that (in the setup of 0.4), C' is a rational homology
manifold. This is now known to be true: it has been proved for the classical groups
in [KP], and has been checked for groups of type E, in [BS]; for type Fj it can be
checked from [Sh] and for G5 it was already known at the time of [L2]. The argument
in [KP] exhibits C (for a classical group) as a quotient of a smooth irreducible variety
by the action of a finite group, which we can now interpret as the group G/ in 0.4.

0.6. Assume now that G is adjoint of exceptional type. Since the group G. is
now defined in general, it seems likely that even in this case, C' should be the quotient
of a smooth irreducible variety CT by an action of G..

If C = C, this is of course trivial: we take CT = C. Assume now that C' # C.
In this case, G, = G. is a symmetric group S, where 2 < r < 5. To each C; € v(C)
corresponds a conjugacy class g € S,. of cycle type given by the partition ny+ng+--- =
r and to this we associate a subgroup of S, of the form Hqo, = S,,, X Sp, X ... which
is well defined up to conjugacy.

We expect that the action of G, = S, on CT has the property that C; is precisely
the set of orbits of points of CT whose isotropy group in S,. is conjugate to Hc, .

This is consistent with the following result on the intersection cohomology of C.
(For a unipotent class C’ of G we denote by A the group of connected components
of the centralizer in G of an element of C".)

PROPOSITION 0.7. Assume that G is as in 0.6, C,c are as in 0.4, and C #C.

(a) We have Ac = G except if C is the class of type Eg(bg) (notation of [Cal)
when AC = S3agc = SQ.

(b) Let C1 € v(C),Cy # C. Then Ac, may be identified with N(Hc,)/Hc, where
N(Hg,) is the normalizer of He, in Ge.

(c) Let L be an irreducible local system on C coming from an irreducible rep-
resentation E of G (which is naturally a quotient of Ac, see (a).) Then the in-
tersection cohomology complex IC(C’,E) is a constructible sheaf; its restriction to a
unipotent class C, C C,Cy # C is the local system associated to the representation of
Ao, = N(He,)/He, obtained by taking the space of He, -invariant vectors in E and
regarding it as a representation of N(He,)/He, in a natural way.

(d) If C1,C € v(C), then C is contained in the closure of Co if and only if He,
is conjugate to a subgroup of He, .

This is verified case by case; for (c), we make use of the tables of [BS],[Sp],[Sh].

The only G-equivariant local system on C' not covered by (c) above is the local
system £ on the class C of type FEg(bg) coming from the two-dimensional irreducible
representation of Ac = S3. But in this case, again IC(C, £) is a constructible sheaf
(equal to C) on C.

If we drop the assumption that G is adjoint, and assume that £ is an irreducible
G-equivariant local system on C, then it is very likely that IC(C, L) is again a con-
structible sheaf on C. (I have verified this in type Eg and it can be probably verified
also in the only remaining case, E7). Note that, in the case where C = C, the fact
that IC(C, £) is a constructible sheaf on C'is obvious.
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Note also that the constructibility of IC/(C, £) remains valid in the case of classical
groups, where it can be deduced from the results of [KP].

0.8. Now let G be a linear algebraic group over C. Let X be an algebraic variety
over C with an algebraic action of G. For j € Z, we write HJg (X) for the equivariant

homology space ng(X , C) defined in [L5, §1]. This is a finite dimensional C-vector
space and is 0 for 7 < 0.

THEOREM 0.9. Let G = Spo,.(C),G' = SO2,11(C). Let W be the Weyl group of
G and of G'. Let C be a special unipotent class of G and let C" be a special unipotent
class of G' such that pc = pcr. Then dim HJG(C') = dim HJG/(CN”) for all 5.

The theorem above is equivalent to the last assertion of the Conjecture 3 in [L2].

0.10. Notation. For two integers z,y we write z K yif t <y —2 and ¢ K y
if & <y —3; we write [z,y] = {z € Z|z < z < y}.

If A, B are multisets of integers, we write A < B if each number in A is < than
each number in B.

For a finite set X we denote by |X| the cardinal of X. Let P(X) be the set of
subsets of X and let ., be the set of subsets of even cardinal of X. Then PB(X) is
naturally a vector space over F» and P, is a vector subspace.

1. Combinatorics: type C.,.

1.1. We fix an integer » > 2. For any n > 0 we define W¥5,., to be the set of all
sequences of integers a = (ag < a1 < ag < --+ < ag,) such that

ap 2 0;a1 2 1; ap K apyz for p € [0,2n — 25 r =32 1.0, ap — (2n% +n).
There is a natural map ¥s, ,, — Ws, 41 given by

(ap<ar<ay<--<ag,)— (0<1<a+2<a1+2<az+2<---<ag,+2).
This is a bijection if n is large enough (compared to r). We will denote by Wo, the
limit of ¥y, ,, as n — oo (with respect to the maps above); we will fix n large enough
so that Wy, , = Wy, and we identify the last two sets. We may also assume that
agp =0,a1 =1 for any a € Uy,.. Let

B(a) = 20§i<j§2n inf(a;, a;) — n(4n* — 1)/3.

1.2. A ladder of a € o, is a non-empty subset [k, ] of [0,2n] such that

(aky Qkt1, A2y - a1) = (a,a+1,a+ 2,04 3,...)
and ap—1 < ar (if k> 0), a; < aj41 (if 1 < 2n).

A staircase of a € Uy, is a non-empty subset [k,[] of [0,2n] with I — k + 1 even
such that

(ak, Qpt1, ro, - .-y ar) = (a,a,a+2,a+2,a+4,a+4,...)
and ar_o K ayg (if k> 2), a <K apqo (f14+2< 2n).

It is easy to see that [0,2n] is a disjoint union of subsets that are either ladders
or staircases.

Let z be an indeterminate. For any integer s > 0 we set

6(25) = (25 +1) = [['_, (1 — 7).
Let

M(a) = 2" 2P I, o(fi)) "
Here i runs over the set of subsets of [0,2n] that are ladders (not containing 0) or
staircases.



NOTES ON UNIPOTENT CLASSES 197

1.3. We say that a,a’ in Uy, are congruent if

{ao,a1 —1,a2—1,a3—2,a4—2,...,a2n—n}

I I ! I ! !
={ap,a; — l,a5 — 1,05 — 2,ay — 2,..., a5, —n}

as multisets. We then write a ~ a’.
LEMMA 1.4. For a,a’ € Uy,., the conditions (a),(b), (c) below are equivalent:
(a) a~a’;
(b) {azp —p, a2pt1 —p—1} = {a’zp -, a’2p+1 —p—1} forp € [0,n—1] as multisets

and agy, = ab,;
azp A2p41

(¢c) asy, = ab,, and, for any p € [0,n — 1], (a;p aép+1> is of the form (i) (: i), or
g o ((s=1 s+1
(i) (sil S_SH), or (i) (SS S’; )

Assume that (a) holds. We show that (b) holds. This follows from

{ag,a1 =1} < {az —1,a3 =2} <--- < {agn—2 — (n —1),a2p—1 — n} < {ag, —n}
and the analogous fact for a’.

Assume now that (b) holds. We show that (c) holds. Fix p € [0,n — 1]. We have
{agp, azpr1 — 1} = {ay,, a5, — 1}. If ag, = ah,, agp 1 = ah,44, then we are in case
(i). Assume now that ag, = a5, —1,a2p41 = az,+1. We have ay, .1 —1 < ap,+1 <
ab, 1 + 1. Hence either ajy, = a5,,; and we are in case (iii) or aj, = aj,,; — 1 and
we are in case (i) or ay, = aj,,; — 2 and we are in case (ii).

The implications (¢) = (b) = (a) are obvious. The lemma is proved.

1.5. We say that b = (bg < by < -+ < bay,) € Yo, is special if bap < bapyy for all
p € [0,n —1]. Let ¥9, be the set of special elements of Ws,..

LEMMA 1.6. Given a € Wy, there is a unique b € V9 such that b ~ a. We
have

bop = a2p, bapi1 = agpy1, if p € [0,n — 1], a2y < agpy1;

bzp = agp — 1,b2p+1 = Q2p+1 +1, pr S [O,TL — 1], A2p = A2p+15

ban = azy,.

The proof is immediate (using Lemma 1.4).

1.7. Let b € U9, . A segment of b is a non-empty subset [k, ] of [0, 2n] such that
k is even, [ is odd,

(bry by 1, bry2,s -+, br)
=(a,a+2,a+2,a+4,a+4,...,a+l—-k—1l,a+l—k—1l,a+1l—-k+1)

and such that b1 < by (if & > 2), by < by1. Let Sy be the set of segments of b.
Clearly, the segments of b are disjoint subsets of [0, 2n].

PROPOSITION 1.8. Let b € W3 . There is a 1-1 correspondence between B(Sh)
and the set {a € ¥y la ~ b}: to a subset K of Sp corresponds the sequence a =
a(K) € Uy, defined by

(ak,Qrt1, k2, - a) = (a+1,a+1,a+3,a+3,a+5,a+5,...,a+l—k,a+1—k)
Zf [k‘,l] € K and a; = by th ¢ U[k,l]EK[kyl]-

This follows easily from Lemmas 1.4, 1.6.

1.9. We fix b € U9 . An integer k € [0, 2n] is said to be isolated (for b) if either:

(a) k =2n and ba,—1 < bay, or
(b) kis even, 0 < k < 2n and bg_1 < by < bg41, or
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(c) k is odd and b—1 < b < b41.

LEMMA 1.10. (a) {k € [0,2n]|k isolated} = {ko < k1 < --- < kosy} where ky, =1
mod 2 fort € [0,2f].

(b) Assume thatt € [0,2f —1] is even. Then [ki+1, ki1 —1] is a (possibly empty)
union of staircases.

(c) Assume that t € [0,2f] is odd. Then [k, kit1] is a union of ladders.

(d) The set [kay + 1, kap] is a (possibly empty) union of staircases.

(e) The set [0, ko] is a union of ladders.

(f) Assume that t € [1,2f]. Then either the unique ladder containing k¢ has an
odd cardinal, or else it equals [ki—1, k] (if t is even) or ki, kir1] (if t is odd).

(9) The unique ladder containing ko has an odd cardinal.

The proof is routine; it will be omitted.

1.11. Let I =1y, be the subset of PB([0,2n]) consisting of those subsets of form
[ko, kl], [kl, kg], ey [k2f—17 kgf]
that are either ladders or segments for b. All segments of b appear in I; they form
the subset S = S, of I. The ladders in I form a subset L = Ly of I. Note that
I =SUL. Wesay that iy € S)i; € L are adjacent if they have a non-empty
intersection (necessarily one of the k).

1.12. Let K be a subset of S and let a = a(K) be as in 1.8. We want to compare
the products defining II(b),II(a). From the definitions we see that

z—2r°+2B(a) _ ,—2r*+2B(b) ick Zll
For any [k, ki+1] € L, the factor ¢(|[k; + 1, ki1 — 1]]) 7! in TI(b) is replaced in II(a)
by the factor ¢(|[ke, ker1]|) ™t = o(|[ke + 1, kg1 — 1)) 711 — zFerr=ke+1) =1 moreover,
if the ladder of b containing k; (resp. k:11) has even cardinal, necessarily ky —k:—1 +1
(resp. ki1o—kiyr1+1) then in a it becomes a ladder of cardinal k; —k;_q or ks —ki—1—1
(resp. kiio —kiyq or kyio — ki1 — 1) and the corresponding factor ¢(ky — k1 +1)71
(resp. @(kiyo — key1 +1)71) of II(b) would be replaced in II(a) by the factor

Py — k1)t = (kg — k1 — 1) = p(ky — ko + 1)1 (1 — Zkt*kt’ﬁl)
(resp.

G(kiyo—kip1) t = (kipa—kip1—1)7" = dkppa—kip1 +1) 7 (1 =gk R tly),
On the other hand, if the ladder of b containing k; (resp. k:11) has odd cardinal, then
it becomes a ladder for b shorter by one, and the contributions to II(b),II(a) would
be the same (since ¢(2s) = ¢(2s + 1)). The factors of II(b),II(a) other than those
mentioned above are the same. We see that

(a) =TI(b) [[;,ex % [ier re(1— zll).
Here K* denotes the set of all elements of L that are not adjacent to any element of
K. We can rewrite this as follows:

. zli1]
(a) =T0(b) [T (1 -2 [] L

i2€L nerc L= 2 e (1 — 200)

Z_‘i2|

=Ti(b) [T (1 -2 ] ﬁ I

ir€L iieK ireK!t
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The last product can be expanded into a sum:

2" - Tews™  Soscellest™ -1
2 =1 [Ty eper (51— 1) [T cree (212 — 1)

izeKﬁ

1 1
- Z [i,ext_z(z712l = 1) - Z [Ti,cy (271l — 1)

Z,ZCKHt Y;YCK!

Hence

M(a) = 1(b) [[-2) 3 1

ir€L V.Y CK¢ [Tieyvur (1 =1)°

We now compute

Y M@= Y k) =IHb) [Ja-2") > N (127”' -
a;a~b K;KCS is€L Y,K;YCL iEYUK
KCS;YCK*

Using the definitions and Lemma 1.10, we see that
. .2 a . — o\ —
I(b) HigeL(l - leQ‘) =z 2 2B [Licx o(lil —2) ! Hj o(lih~"
where j runs over the subsets of [0,2n] — U je1[k + 1,1 — 1] that are ladders of b (not
containing 0) or staircases of b.

1.13. Let Ap 1 be the subspace of Pey({ko,k1,...,kar}) spanned by the sets
{kag, kog4+1} with g € [0, f — 1]. (These form a basis By, 1.) Let Ap 2 be the subspace
of Bev ({ko, k1, .. ., kas}) spanned by the sets {kog_1, kog} with g € [1, f]. (These form
a basis Bp2.) We define an (injective) map Sy, <= By1 by (bk, bi+1,bgt2,...,01) —
{k,l}. This extends uniquely to an (injective) linear map of Fy-vector spaces T :

P(Sb) = Ap.1-
2. Combinatorics: type B,.

2.1. We fix an integer r > 2. For any n > 0 we define W5, ., to be the set of
all sequences of integers a = (ag < a1 < as < --- < agy,) such that

ag = 0ya, < apia for p € [0,2n =25 r =37 g5, ap — 2n2.
There is a natural map W5, ., ,, — W5, ;. given by

(ap<ar<az<---<ag,)— (0<0<ag+2<a1+2<az+2<---<ag,+2).
This is a bijection if n is large enough (compared to r). We will denote by W5, 4
the limit of W5, ., as n — oo (with respect to the maps above); we will fix n large

enough so that W5, — W5 ., and we identify the last two sets. We may also
assume that ag = 0,a; = 0 for any a € 5, ;. Let

B(a) = X o<icj<on Mf(ai; aj) —n(n —1)(4n +1)/3.

2.2. The ladders and staircases of of a € W5, ; are defined exactly as in 1.2.
Again, [0,2n] is a disjoint union of subsets that are either ladders or staircases. We
set

M(a) = z~2"+2B@ T, ¢(fi]) .

Here i runs over the set of subsets of [0,2n] that are staircases (not containing 0) or
ladders; ¢ is as in 1.2.
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2.3. We say that a,a’ in W), | are congruent if

{ao,a1,a2—1,a3—1,@4—2,...,&271—n}

O A / / /
= {ag,ay,a5 — lya5 — 1,0y —2,...,a5, —n}

as multisets. We then write a ~ a’.
LEMMA 2.4. For a,a’ € Uy, ., the conditions (a),(b),(c) below are equivalent:
(a) a~a’;
(b) {azp—1—(p—1),a2p —p} = {a5,_1 — (p—1), a3, —p} for p € [1,n] as multisets
and ag = ag;
asp—1 @ . . ; ..
(c) ap = ag and, for any p € [1,n], (az:_i QZ:) is of the form (i) (: i), or (ii)

_ 1
(sil Sj_l), or (i) (5515;r )

The proof is similar to that of 1.4.

2.5. We say that b = (bg < by < ...b2,) € Wh,, is special if byyp_1 < by, for all
€ [1,n]. Let W% ., be the set of special elements of W), _ ;.

LEMMA 2.6. Givena € W), ,, there is a unique b € W4 | such that b ~ a. We
have

bgp_l = Q2p—1; bgp = Q2p; ifp S [1,7?,}704211_1 < agp;

bop—1 = agp—1 — 1,bap = agp + 1, if p € [1,n],a2p—1 = a2p;

bo = ap.

The proof is immediate (using Lemma 2.4).

2.7. Let b € U9 . A segment of b is a non-empty subset [k, ] of [0,2n] such
that k is odd, [ is even,

(bk, b1, br2, -« -5 b1)
=(a,a+2,a+2,a+4,a+4,...,a+l—-k—1l,a+l—k—1l,a+1l—k+1)

and such that by_1 < by, by < b4 (if I < 2n). Let Sy be the set of segments of b.
Clearly, the segments of b are disjoint subsets of [0, 2n].

PROPOSITION 2.8. Letb € W% . There is a 1-1 correspondence between P(Sp)
and the set {a € U, |a ~ b}: to a subset K of Sy corresponds the sequence a =
a(K) € vy, defined by

(ag, apt1, Qra,---5a;) = (a+1,a+1,a+3,a+3,a+5,a+5,...,a+l—k,a+1—k)
if k0] € K and ay = by if t ¢ Upyexc[k, ).

This follows easily from Lemmas 2.4, 2.6.

2.9. We fix b € U4 ;. An integer k € [0,2n] is said to be isolated (for b) if
either:

(a) k=2n and by,_1 <K 627“ or

(b) kis even, 0 < k < 2n and bg_1 < by < bg41, or

(c) k is odd and bp—1 < b < bgy1.

LEMMA 2.10. (a) {k € [0,2n]|k isolated} = {ko < k1 < --- < koy} where ky =t
mod 2 fort € [0,2f].

(b) Assume thatt € [0,2f —1] is odd. Then [kt + 1, key1 — 1] s a (possibly empty)
union of staircases.

(¢) Assume that t € [0,2f] is even. Then [ke, kiy1] is a union of ladders.

(d) The set [kay + 1, kop] is a union of ladders.
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(e) The set [0, ko] is a (possibly empty) union of staircases.

(f) Assume that t € [0,2f — 1]. Then either the unique ladder containing k; has
an odd cardinal, or else it equals [ki—1, kt] (if t is odd) or [k, kev1] (if t is even).

(9) The unique ladder containing koy has an odd cardinal.

The proof is routine; it will be omitted.

2.11. Let I =1 be the subset of ([0, 2n]) consisting of those subsets of form
[ko, ]{il], [k‘l, k‘g], ey [kigf_l, k‘gf]
that are either ladders or segments for b. All segments of b appear in I; they form
the subset S = Sy, of I. The ladders in I form a subset L = Ly of I. Note that
I = SUL We say that iy € S,is € L are adjacent if they have a non-empty
intersection (necessarily one of the k).

2.12. Let K be a subset of S and let a = a(K) be as in 2.8. As in 1.12, we see
that

is 1
> T(a)=T1(b) J] (1 -2l > Moo @ =)

a;a~b iz€L Y,K;YCL;KCS;YCK!

and that ,

(b) [T, (1 — 22)) = 2727 P2B@ [T o(|if - 2) 71 TT; (i)~
where j runs over the subsets of [0,2n] — Uy, e[k + 1,1 — 1] that are staircases of b
(not containing 0) or ladders of b. (K* is defined as in 1.12.)

2.13. Let Ap 1,Bb1,Ab 2, Bb2 be defined as in 1.13. We define an (injective)
map Sp — Bp2 by (bk,bkt+1,bk+2,...,b;) — {k,l}. This extends uniquely to an
(injective) linear map of Fy-vector spaces T : P(Sp) — Ap,.

3. Combinatorics: type D,.

3.1. We fix an integer 7 > 4. For any n > 0 we define W5, ,, to be the set of all
sequences of integers a = (ag < a1 < ag < -+ < agp41) such that
ag > 05a, < apyo for p €[0,2n — 17 =35 10,117 ap — (207 + 2n).
There is a natural map W5, , — W5, ., given by
(a0 < a1 <ag <+ <agpir)
0<0<ap+2<a1+2<as+2< - <agmy1 +2.)
This is a bijection if n is large enough (compared to r). We will denote by ¥, the
limit of W5, ,, as n — oo (with respect to the maps above); we will fix n large enough
so that W5, = W, and we identify the last two sets. We may also assume that

ap =0,a; =0 for any a € U5,

3.2. The ladders and staircases of a € W5, are defined as in 2.2 (replacing 2n
by 2n 4+ 1). Again, [0,2n + 1] is a disjoint union of subsets that are either ladders or
staircases.

3.3. We say that a,a’ in U, are congruent if
{ao,a1,a2 —1,a3 — 1,a4 — 2,...,a2q41 — 1}
/! /! !/ / /! i
={ag,ay,a5 —1,a3 —1,ay —2,...,a5,,, —n}

as multisets. We then write a ~ a’.
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LEMMA 3.4. For a,a’ € U, the conditions (a),(b),(c) below are equivalent:
(a) a~a';
(b) {agp—1—(p—1),a2, —p} = {a5, 1 — (p—1), a3, —p} forp € [1,n] as multisets
and ag = af, Agni1 = by 41}
azp—1 G2p

(C) ap = aé)a a2n+1 = a/2n+1 and, fO?” any p € [LTLL (aép71 aép) is Of the form (Z)

(i:)’ or (i) (sil sil)’ or (iii) (tl S?).

The proof is similar to that of 1.4.

3.5. We say that b = (bp < b1 < ...bap41) € VS, is special if boy_1 < boy, for all
p € [1,n]. Let ¥4 be the set of special elements of WY, .

LEMMA 3.6. Given a € W), there is a unique b € W5 such that b ~ a. We
have

b2p—1 = Q2p—1, b2p = Q2p, ifp € [1,”},@21,_1 < agp;

bop—1 = agp—1 — 1,b3p = agp + 1, ifp € [17”]>a2p—1 = Q2p;

b() = ap,

bani1 = G2ng1.

The proof is immediate (using Lemma 3.4).

3.7. The segments of b € UX) are defined just as in 2.7 (replacing 2n by 2n + 1).
Let Sp be the set of segments of b. Clearly, the segments of b are disjoint subsets of
[0,2n + 1].

PROPOSITION 3.8. Let b € WY . There is a 1-1 correspondence between B(Sh)
and the set {a € ¥, |a ~ b}: to a subset K of Sp corresponds the sequence a =
a(K) € W, defined by

(ak,apt1, ko, - -sa) = (a+1,a+1,a+3,a+3,a+5,a+5,...,a+l—k,a+1—k)
’Lf [k, l] € K and a; = by th ¢ U[k,l]EK[k7 l]

This follows easily from Lemmas 3.4, 3.6.

3.9. We fix b € U2 . An integer k € [0,2n + 1] is said to be isolated (for b) if
either:

(a) k =2n+ 1 and by, < bay41, Or
(b) k is even, 0 < k and by_1 < by, < bg41, or
(c) kisodd, k < 2n+1 and by—1 < by < b11.

LEMMA 3.10. {k € [0,2n + 1]|k isolated} = {ko < k1 < kg < -+ < kog4+1} where
ki =t mod 2 forte[0,2f +1].

The proof is routine; it will be omitted.

3.11. Assume that f > 0 in the previous lemma. Let Ay be the quotient of the
Fs-vector space Pey({ko, k1,...,kept1}) by the line spanned by {ko,k1,...,kast1}-
Let Ap 2 be the subspace of Ap spanned by the images of the sets {kog_1, k2g} with
g € [1, f]. (These form a basis By 2.) We define an (injective) map Sp < Bp 2 by
(bk, b1, b2, - .-, b)) — {k,l}. This extends uniquely to an (injective) linear map of
Fy-vector spaces T : B(Sp) — Ap,.

4. Comparison of types C, and B,.

4.1. We fix r > 2. We will choose the same (large) n in 1.1, 2.1. There is a 1-1
correspondence U9 — WY | given by
b = (b, b1,...,bap) < b’ = (b4, b],...,b5,)
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where by, = b, if k is even, b, = bj, + 1, if k is odd.
PROPOSITION 4.2. Ifb,b’ are as above, then

(a) Y T(a) = > II(a’).

acVsy,;a~b a’e¥y, , ;a/~b’

First note that the integers kg < k1 < --- < kay in [0, 2n] that are isolated for
b (see 1.9) are the same as the corresponding integers for b’ (see 2.9). Let us write
L', S’ for the sets denoted L, S in 1.11 (to distinguish them from the sets L, .S in 2.11).
It is clear that L’ = S and S’ = L. Moreover, if K C S=L"and Y c L = 5 then
the conditions Y € K* and K C Y* are equivalent: they both are equivalent to the
condition that any set in K is disjoint from any set in Y. Hence we have

2. !
Y.K;YCLiKCS;Y CK* [Lieyur(z i —1)

- D !
[Tieyrox: (2711 =1)

Y, K';Y'CL;K'CS"Y' CK'

Let P = [0,2n] —Up yeruslk 41,1 —1]. We note that there is 1-1 correspondence
between the set of ladders of cardinal > 2 of b contained in P (but not containing
0) and the set of staircases of b’ contained in P (but not containing 0); in this corre-
spondence a ladder has cardinal equal or bigger by one than that of the corresponding
staircase. Similarly, there is 1-1 correspondence between the set of staircases of b
contained in P and the set of ladders of cardinal > 2 of b’ contained in P; again,
in this correspondence a ladder has cardinal equal or bigger by one than that of the
corresponding staircase.

Finally, one checks from the definitions that B(b) = B(b’) (where the left hand
side is as in 1.1 and the right hand side is as in 2.1).

We now use the results in 1.12 and 2.12, taking into account the arguments above.
The proposition follows.

5. Equivariant homology.

5.1. Assume that X is an algebraic variety over C with an algebraic action of
a linear algebraic group G over C, such that X is a union of finitely many G-orbits
X1, Xo,..., Xi. We can assume that the numbering is chosen so that X;UX,U---UX
is closed in X and has dimension equal to dim X for s = 1,...,k. Let 5 € X, and
let G, be the stabilizer of z, in G for s =1,...,k. Let Gs be the reductive quotient of
G, and let g, be its Lie algebra. Let S7° (85)9 be the space of G,-invariant elements
on the j’-component of the symmetric algebra of g, if 7/ € N and 0, if j* ¢ N.

LEMMA 5.2. For j odd we have ng(X) = 0. Ifz is an indeterminate, we have

k
Z dim Hzgj (X)z? = Z Z dim §9 (g, ) 9= g7 dim X —dim X,

7>0 s=1j>0
By [L5, 1.6,1.8(c),1.11], we have )
(a) Hy (X.) = H* (pt) = Hg (pt) = 57/2(g:).
Here pt denotes a point. Using (a) and the long exact sequence [L5, 1.5] we see by
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induction on s that HY

72 dim X, (X1UXoU---UXjy) is zero for odd j and is isomorphic
to

ng+2dimxs,1(X1 UXpU---U Xs—l) @ Hj’g+2dime (Xs)
for s =2,..., k. Applying this repeatedly, we see that
. kg
dim ng+2dimX(X) =2 g dim ng+2dime (Xs)-
This, together with (a), implies the lemma. -
LEMMA 5.3. Let us fix s € [1,k]. Assume that G5 = 20:1 H, where each H), is
one of the groups SOn,(C) (N, odd), Spn,(C) (N, even), or On,(C). Then

_ ) Po
> dim §7(g.) %2 =[] o(V,)
j=0 p=1
where ¢(Np) is as in 1.2.

This is well known.

6. Comments on Theorems 0.2, 0.4 and 0.9.

6.1. Let G be as in 0.1. The set of unipotent classes in GG, assumed to be of type
C,, B, or D,, is in a natural 1-1 correspondence with the set Wo,, W5 |, W) (respec-
tively) except that in the case of D, each sequence of U/ without isolated elements
should be considered twice. (See [L4, Sec.11].) That description is particularly well
suited to calculating the Springer correspondence in those cases. In this language, the
problem of deciding when a unipotent classes C; in G satisfy the condition that pe,
belongs to a given two-sided cell becomes the problem of deciding when an element of
Wy, (or Wh, 4 or ¥ ) is congruent to a given element of U9 (or U5 ; or U4). This
is described quite explicitly by 1.8, 2.8, 3.8 and yields Theorem 0.2 in these cases, since
the condition that C; belongs to a given special piece has been decribed explicitly in
[Sp]. The maps C; — g in Theorem 0.4 can in these cases be identified with the maps
T in 1.13, 2.13, 3.11. Hence Theorem 0.4 also holds in our cases. Of course, when G
is of type A, both 0.2 and 0.4 are trivial.

In the case where G is of exceptional type, the proof of 0.2, 0.4 consists simply
in analyzing existing tables. In the following five subsections we will indicate for each
of the exceptional groups the map C; — g of 0.4 (from v(C) to the set of conjugacy
classes in a symmetric group S,). We only consider the case where C # C. We shall
use the notation of [Ca] for unipotent classes. We group together the unipotent classes
in a fixed v(C) and for each Cy in the group we specify g by a partition of r. (This
determines in each case the value of r where G. = G. = S,..) The special class appears
first in each group.

6.2. Type Fs.
Ay (L,1);341 (2).
As+ Ay (1,1);44; (2).
24y (1,1); Az +34; (2).
Da(ay) (LL1):As+ Ar (2,1):245 + A1 (3).

D4(&1)+A1 (1,1,1); As+ 24, (2,1);2A2 + 244 (3)
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Dy(a1)+ A2 (1,1); A5+ As+ A1 (2).
Ds(a1) (1,1);Ds+ A1 (2).
Ag+24, (1,1);243 (2).
Eg(as) (1,1);45 (2).
{ Eg(a7) (1,1,1,1,1); E7(as) (2,1,1,1); Eg(as) + A1 (3,1,1); Dg(az) (2,2,1);
Ds(ar)+As (4,1 A5+ A1 (3,2): As+ A3 (5).
Dg(ar) (1,1); D5+ A1 (2).
Ez(as) (1,1); D¢ (2).
Eg(bs) (1,1);A7 (2).
Eg(bs) (1,1,1); E7(a2) (2,1);E6+ A1 (3).
Eg(as) (1,1); D7 (2).
Eg(a3) (1,1);E7 (2).

6.3. Type E5.
Az (L,1);(341)" (2).

Ay x Ay (1,144, (2).
Dy(ar) (1,1,1);(As+ A1) (2,1);245+ A1 (3).
Dalar) + Ay (1,1): Ag + 24, (2),
Ds(a1) (1,1);Ds+ A1 (2).
Eg(az) (1,1);(45)" (2).
Frlas) (1,1,1): Dglas) (2,1); As + A1 (3).
Er(as) (1,1); D¢ (2).

6.4. Type Fg.
A2 (1a 1)7 3A1 (2)

Dy(ar) (1,1,1); A3+ A1 (2,1);24:+ Ay (3).
Ee(as) (L,1);45 (2).
6.5. Type Fj.
A (1,140 (2).
Fi(az) (L1,1,1);Cs(ar) (2,1L1); A0+ A1 (3,1 B2 (2,2); A+ A (4).
6.6. Type Go.
Galar) (L1,1);4; (2,1);4; (3).
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6.7. Proof of Theorem 0.9. Using 5.2, we see that HJG(C') = HJG/(C”) =0 for
j odd. Using 5.2 and 5.3, we see that Y., dim HSi(C) is equal to 227" ~2B(®) times
the left hand side of 4.2(a), where b € Uy, corresponds to the unipotent class C C G
and B(b) is as in 1.1. Similarly, using 5.2 and 5.3, we see that 3. dim HS (C") is

2 ’

equal to z%" ~28(®) times the left hand side of 4.2(a), where b’ € ¥}, corresponds
to the unipotent class C’ C G’ and B(b’) is as in 2.1. Using now 4.2 and the equality
B(b) = B(b’) we see that

> j>odim H$(C) = > j>o dim HS(C).
This proves Theorem 0.9.

Theorem 0.9 shows that in the setup of 0.1, the equivariant homology Betti num-
bers of the pieces C' (with respect to the conjugation action of G) depend only on the
Weyl group.

6.8. Let us now replace the ground field C by the algebraic closure of a finite
field F, and assume that G has a fixed split structure over Fj,. Then the special pieces
C C G are again defined as in 0.1 (in small characteristics we must use the definition
[L2] of the Springer representations). Now, following Mizuno [Mi] and Spaltenstein
[Sp, I11.5.2] there is a natural order preserving imbedding from the set of unipotent
classes in the corresponding group over C, to the set of unipotent classes in G. Let
us call MS-classes the classes in the image of this map. For any MS-class C of G let
C be the subset of the unipotent variety of G consisting of elements in the closure of
C which are not in the closure of any MS-class distinct from C' and contained in the
closure of C. From the results in [Mi,Sp] one checks that the sets C' form a partition
of the unipotent variety (into locally closed subvarieties). (In good characteristic, the
MS-pieces are the same as the unipotent classes.) One can also check that each special
piece is a union of MS-pieces. We have the following result:

(a) the number of Fy-rational points of an MS-piece is a polynomial in ¢ that
is independent of the characteristic (that is, it depends only on the corresponding
unipotent class in the group over C).

We will indicate the necessary calculations (based on Table 10 in [Mi]) in the case
of Fg. If we restrict ourselves to characteristic # 2,3, there is nothing to prove. In
characteristic p = 2 or p = 3 the MS-pieces consist of one or two unipotent classes

and we use the identities:

1 1 _ 1 1
&= T (¢2—1)¢%% = 2(g+1)¢*® + 2(qg—1)¢?%>
1

1 _ 1
@ T @ D@ T Were® T gD
1 1 _ 1
2 D@ De® T A D@ De® @ PPT
1 1 _ 1 1
@ D¢® T @ D@-De® ~ 3@ D@-De® | A D@D
1 1

1
2(q+1)(¢?—1)(¢*—1)¢%3 + 2(¢—1)(¢?—1)(¢*—1)g%3"

(¢2—1)(g*—1)¢%* + (¢ —1)2(g*—1)g%* —
for p = 2, and

1 1 _ 1

0 + (2—1)g3 — (¢2—1)¢%8
for p = 3. Similar arguments apply for the other types. (For classical types in
characteristic 2 an MS-piece has a power of 2 unipotent classes.)

6.9. In [L2, Conj. 3] it was conjectured that
(a) the number of Fy-rational points of a special piece C' is a polynomial in q that
depends only on the Weyl group.
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We can now prove this as follows. Using 6.8(a), we are reduced to the case where the
characteristic is large. In that case, we only have to compare the number of points
in corresponding special pieces in type B, and C,.. But this follows from exactly the
same computation as the one in 6.7.

6.10. In view of 6.9(a), one can expect that the polynomials |C(F,)| have a
meaning also when W is replaced by a finite non-crystallographic Coxeter group.
(There should be one such polynomial for each two-sided cell of W.) There are obvious
candidates for the polynomials attached to the two-sided cells of the trivial element

or of the longest element wg, namely
qel+ez+~~+ez—l(qe1+1 _ 1)(q€2+1 _ 1) L (qez+1 _ 1)

or 1. Here ey, es,...,¢e are the exponents of W. On the other hand, the polynomial
attached to the cell containing wy times a simple reflection should be

(@" =D g2+ g
where h is the Coxeter number. (This is suggested by [L2, (3.1)].) In the case when W
is a dihedral group, the three polynomials above are all we need since there are only

three two-sided cells. The sum of the three polynomials is equal to ¢!, as it should
be.
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