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NOTES ON UNIPOTENT CLASSES∗

G. LUSZTIG†

0. Introduction and statement of results.

0.1. Let G be a semisimple, almost simple algebraic group over C. Let W be
the Weyl group of G. For any unipotent class C of G, let ρC be the irreducible
representation of W attached by Springer’s correspondence to the pair consisting of C
and the local system C on C. We say that C is special if ρC is a special representation
of W (that is, a representation in the class SW introduced in [L1]). It is known that
C 7→ ρC is a bijection between the set of special unipotent classes of G and the set of
special representations (up to isomorphism) of W .

The special unipotent classes play a key role in several problems in representation
theory, such as the classification of irreducible complex representations of a reductive
group over a finite field, and the classification of primitive ideals in the enveloping
algebra of a semisimple Lie algebra. Unfortunately, their definition is totally un-
geometrical. For this reason, special unipotent classes are often regarded as rather
mysterious objects. To partially remedy this situation, we have felt the need to try
to unveil some of the purely geometrical properties of special unipotent classes, or
rather, of the closely connected special pieces (defined below); this has led to the
present paper.

For any special unipotent class C in G, let C̃ be the subset of the unipotent
variety U of G consisting of all elements in the closure C̄ of C which are not in the
closure of any special unipotent class C ′ 6= C, C ′ ⊂ C̄; this definition appeared in [Sp].
Clearly, the sets C̃ (for various special unipotent classes C) are irreducible,locally
closed subvarieties of U ; Spaltenstein [Sp] has shown that they in fact form a partition
of U . The subvarieties C̃ will be called special pieces. Note that each special piece is
a union of a special class (which is open dense in the special piece) and of a certain
number (possibly zero) of non-special classes. Let γ(C) be the set of unipotent classes
that are contained in the special piece C̃.

One of the results of this paper is:
Theorem 0.2. Two unipotent classes C1, C2 of G belong to the same special

piece if and only if ρC1 , ρC2 belong to the same two-sided cell of W .

0.3. Now let c be a two-sided cell of W and let Ŵc be the set of irreducible
representations of W (up to isomorphism) that belong to c. To c we attach, as in
[L3], a finite group Gc and an imbedding

(a) Ŵc ↪→ M(Gc);
here M(Gc) is the set of pairs (g, τ) where g is an element of Gc defined up to conjugacy
and τ is an irreducible representation of the centralizer of g in Gc defined up to
isomorphism.

Theorem 0.4. Let C be a special unipotent class of G and let c be the two sided
cell of W such that ρC belongs to c. For any C1 ∈ γ(C), the image under 0.3(a) of ρC1

(which belongs to Ŵc by 0.2) is of the form (g, 1) where g is an element of Gc defined
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up to conjugacy. Let G′c be the subgroup of Gc generated by the conjugacy classes of the
elements g attached to various C1 ∈ γ(C). Then C1 7→ g is an imbedding of γ(C) into
the set of conjugacy classes of Gc and a bijection of γ(C) onto the set of conjugacy
classes of G′c.

0.5. In [L2] it was conjectured that (in the setup of 0.4), C̃ is a rational homology
manifold. This is now known to be true: it has been proved for the classical groups
in [KP], and has been checked for groups of type En in [BS]; for type F4 it can be
checked from [Sh] and for G2 it was already known at the time of [L2]. The argument
in [KP] exhibits C̃ (for a classical group) as a quotient of a smooth irreducible variety
by the action of a finite group, which we can now interpret as the group G′c in 0.4.

0.6. Assume now that G is adjoint of exceptional type. Since the group G′c is
now defined in general, it seems likely that even in this case, C̃ should be the quotient
of a smooth irreducible variety C† by an action of G′c.

If C̃ = C, this is of course trivial: we take C† = C. Assume now that C̃ 6= C.
In this case, G′c = Gc is a symmetric group Sr where 2 ≤ r ≤ 5. To each C1 ∈ γ(C)
corresponds a conjugacy class g ∈ Sr of cycle type given by the partition n1+n2+· · · =
r and to this we associate a subgroup of Sr of the form HC1 = Sn1 × Sn2 × . . . which
is well defined up to conjugacy.

We expect that the action of Gc = Sr on C† has the property that C1 is precisely
the set of orbits of points of C† whose isotropy group in Sr is conjugate to HC1 .

This is consistent with the following result on the intersection cohomology of C̃.
(For a unipotent class C ′ of G we denote by AC′ the group of connected components
of the centralizer in G of an element of C ′.)

Proposition 0.7. Assume that G is as in 0.6, C, c are as in 0.4, and C̃ 6= C.
(a) We have AC = Gc except if C is the class of type E8(b6) (notation of [Ca])

when AC = S3,Gc = S2.
(b) Let C1 ∈ γ(C), C1 6= C. Then AC1 may be identified with N(HC1)/HC1 where

N(HC1) is the normalizer of HC1 in Gc.
(c) Let L be an irreducible local system on C coming from an irreducible rep-

resentation E of Gc (which is naturally a quotient of AC , see (a).) Then the in-
tersection cohomology complex IC(C̃,L) is a constructible sheaf; its restriction to a
unipotent class C1 ⊂ C̃, C1 6= C is the local system associated to the representation of
AC1 = N(HC1)/HC1 obtained by taking the space of HC1-invariant vectors in E and
regarding it as a representation of N(HC1)/HC1 in a natural way.

(d) If C1, C2 ∈ γ(C), then C1 is contained in the closure of C2 if and only if HC2

is conjugate to a subgroup of HC1 .
This is verified case by case; for (c), we make use of the tables of [BS],[Sp],[Sh].
The only G-equivariant local system on C not covered by (c) above is the local

system L on the class C of type E8(b6) coming from the two-dimensional irreducible
representation of AC = S3. But in this case, again IC(C̃,L) is a constructible sheaf
(equal to C) on C̃.

If we drop the assumption that G is adjoint, and assume that L is an irreducible
G-equivariant local system on C, then it is very likely that IC(C̃,L) is again a con-
structible sheaf on C̃. (I have verified this in type E6 and it can be probably verified
also in the only remaining case, E7). Note that, in the case where C̃ = C, the fact
that IC(C̃,L) is a constructible sheaf on C̃ is obvious.
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Note also that the constructibility of IC(C̃,L) remains valid in the case of classical
groups, where it can be deduced from the results of [KP].

0.8. Now let G be a linear algebraic group over C. Let X be an algebraic variety
over C with an algebraic action of G. For j ∈ Z, we write HG

j (X) for the equivariant
homology space HG

j (X,C) defined in [L5, §1]. This is a finite dimensional C-vector
space and is 0 for j < 0.

Theorem 0.9. Let G = Sp2r(C), G′ = SO2r+1(C). Let W be the Weyl group of
G and of G′. Let C be a special unipotent class of G and let C ′ be a special unipotent
class of G′ such that ρC = ρC′ . Then dimHG

j (C̃) = dimHG′
j (C̃ ′) for all j.

The theorem above is equivalent to the last assertion of the Conjecture 3 in [L2].

0.10. Notation. For two integers x, y we write x ¿ y if x ≤ y − 2 and x ≪ y
if x ≤ y − 3; we write [x, y] = {z ∈ Z|x ≤ z ≤ y}.

If A,B are multisets of integers, we write A ≤ B if each number in A is ≤ than
each number in B.

For a finite set X we denote by |X| the cardinal of X. Let P(X) be the set of
subsets of X and let Pev be the set of subsets of even cardinal of X. Then P(X) is
naturally a vector space over F2 and Pev is a vector subspace.

1. Combinatorics: type Cr.

1.1. We fix an integer r ≥ 2. For any n ≥ 0 we define Ψ2r;n to be the set of all
sequences of integers a = (a0 ≤ a1 ≤ a2 ≤ · · · ≤ a2n) such that

a0 ≥ 0; a1 ≥ 1; ap ¿ ap+2 for p ∈ [0, 2n− 2]; r =
∑

p∈[0,2n] ap − (2n2 + n).
There is a natural map Ψ2r,n → Ψ2r,n+1 given by

(a0 ≤ a1 ≤ a2 ≤ · · · ≤ a2n) 7→ (0 ≤ 1 ≤ a0 +2 ≤ a1 +2 ≤ a2 +2 ≤ · · · ≤ a2n +2).
This is a bijection if n is large enough (compared to r). We will denote by Ψ2r the
limit of Ψ2r,n as n →∞ (with respect to the maps above); we will fix n large enough
so that Ψ2r,n

∼−→ Ψ2r and we identify the last two sets. We may also assume that
a0 = 0, a1 = 1 for any a ∈ Ψ2r. Let

B(a) =
∑

0≤i<j≤2n inf(ai, aj)− n(4n2 − 1)/3.

1.2. A ladder of a ∈ Ψ2r is a non-empty subset [k, l] of [0, 2n] such that
(ak, ak+1, ak+2, . . . , al) = (a, a + 1, a + 2, a + 3, . . . )

and ak−1 ¿ ak (if k > 0), al ¿ al+1 (if l < 2n).
A staircase of a ∈ Ψ2r is a non-empty subset [k, l] of [0, 2n] with l − k + 1 even

such that
(ak, ak+1, ak+2, . . . , al) = (a, a, a + 2, a + 2, a + 4, a + 4, . . . )

and ak−2 ≪ ak (if k ≥ 2), al ≪ al+2 (if l + 2 ≤ 2n).
It is easy to see that [0, 2n] is a disjoint union of subsets that are either ladders

or staircases.
Let z be an indeterminate. For any integer s ≥ 0 we set
φ(2s) = φ(2s + 1) =

∏s
j=1(1− z2j).

Let
Π(a) = z−2r2+2B(a)

∏
i φ(|i|)−1.

Here i runs over the set of subsets of [0, 2n] that are ladders (not containing 0) or
staircases.
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1.3. We say that a,a′ in Ψ2r are congruent if

{a0, a1 − 1, a2 − 1, a3 − 2, a4 − 2, . . . , a2n − n}
= {a′0, a′1 − 1, a′2 − 1, a′3 − 2, a′4 − 2, . . . , a′2n − n}

as multisets. We then write a ∼ a′.
Lemma 1.4. For a,a′ ∈ Ψ2r, the conditions (a),(b), (c) below are equivalent:
(a) a ∼ a′;
(b) {a2p−p, a2p+1−p−1} = {a′2p−p, a′2p+1−p−1} for p ∈ [0, n−1] as multisets

and a2n = a′2n;
(c) a2n = a′2n and, for any p ∈ [0, n− 1],

(
a2p a2p+1

a′2p a′2p+1

)
is of the form (i)

( s t

s t

)
, or

(ii)
( s s

s−1 s+1

)
, or (iii)

(
s−1 s+1

s s

)
.

Assume that (a) holds. We show that (b) holds. This follows from
{a0, a1 − 1} ≤ {a2 − 1, a3 − 2} ≤ · · · ≤ {a2n−2 − (n− 1), a2n−1 − n} ≤ {a2n − n}

and the analogous fact for a′.
Assume now that (b) holds. We show that (c) holds. Fix p ∈ [0, n− 1]. We have

{a2p, a2p+1 − 1} = {a′2p, a
′
2p+1 − 1}. If a2p = a′2p, a2p+1 = a′2p+1, then we are in case

(i). Assume now that a2p = a′2p+1−1, a2p+1 = a′2p +1. We have a′2p+1−1 ≤ a′2p +1 ≤
a′2p+1 + 1. Hence either a′2p = a′2p+1 and we are in case (iii) or a′2p = a′2p+1 − 1 and
we are in case (i) or a′2p = a′2p+1 − 2 and we are in case (ii).

The implications (c) =⇒ (b) =⇒ (a) are obvious. The lemma is proved.

1.5. We say that b = (b0 ≤ b1 ≤ · · · ≤ b2n) ∈ Ψ2r is special if b2p < b2p+1 for all
p ∈ [0, n− 1]. Let Ψ0

2r be the set of special elements of Ψ2r.
Lemma 1.6. Given a ∈ Ψ2r, there is a unique b ∈ Ψ0

2r such that b ∼ a. We
have

b2p = a2p, b2p+1 = a2p+1, if p ∈ [0, n− 1], a2p < a2p+1;
b2p = a2p − 1, b2p+1 = a2p+1 + 1, if p ∈ [0, n− 1], a2p = a2p+1;
b2n = a2n.
The proof is immediate (using Lemma 1.4).

1.7. Let b ∈ Ψ0
2r. A segment of b is a non-empty subset [k, l] of [0, 2n] such that

k is even, l is odd,

(bk, bk+1, bk+2, . . . , bl)

= (a, a + 2, a + 2, a + 4, a + 4, . . . , a + l − k − 1, a + l − k − 1, a + l − k + 1)

and such that bk−1 < bk (if k ≥ 2), bl < bl+1. Let Sb be the set of segments of b.
Clearly, the segments of b are disjoint subsets of [0, 2n].

Proposition 1.8. Let b ∈ Ψ0
2r. There is a 1-1 correspondence between P(Sb)

and the set {a ∈ Ψ2r|a ∼ b}: to a subset K of Sb corresponds the sequence a =
a(K) ∈ Ψ2r defined by

(ak, ak+1, ak+2, . . . , al) = (a+1, a+1, a+3, a+3, a+5, a+5, . . . , a+l−k, a+l−k)
if [k, l] ∈ K and at = bt if t /∈ ∪[k,l]∈K [k, l].

This follows easily from Lemmas 1.4, 1.6.

1.9. We fix b ∈ Ψ0
2r. An integer k ∈ [0, 2n] is said to be isolated (for b) if either:

(a) k = 2n and b2n−1 < b2n, or
(b) k is even, 0 < k < 2n and bk−1 < bk ¿ bk+1, or
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(c) k is odd and bk−1 ¿ bk < bk+1.
Lemma 1.10. (a) {k ∈ [0, 2n]|k isolated} = {k0 < k1 < · · · < k2f} where kt = t

mod 2 for t ∈ [0, 2f ].
(b) Assume that t ∈ [0, 2f−1] is even. Then [kt+1, kt+1−1] is a (possibly empty)

union of staircases.
(c) Assume that t ∈ [0, 2f ] is odd. Then [kt, kt+1] is a union of ladders.
(d) The set [k2f + 1, k2n] is a (possibly empty) union of staircases.
(e) The set [0, k0] is a union of ladders.
(f) Assume that t ∈ [1, 2f ]. Then either the unique ladder containing kt has an

odd cardinal, or else it equals [kt−1, kt] (if t is even) or [kt, kt+1] (if t is odd).
(g) The unique ladder containing k0 has an odd cardinal.
The proof is routine; it will be omitted.

1.11. Let I = Ib be the subset of P([0, 2n]) consisting of those subsets of form
[k0, k1], [k1, k2], . . . , [k2f−1, k2f ]

that are either ladders or segments for b. All segments of b appear in I; they form
the subset S = Sb of I. The ladders in I form a subset L = Lb of I. Note that
I = S t L. We say that i1 ∈ S, i2 ∈ L are adjacent if they have a non-empty
intersection (necessarily one of the kt).

1.12. Let K be a subset of S and let a = a(K) be as in 1.8. We want to compare
the products defining Π(b),Π(a). From the definitions we see that

z−2r2+2B(a) = z−2r2+2B(b)
∏

i∈K z|i|.
For any [kt, kt+1] ∈ L, the factor φ(|[kt + 1, kt+1 − 1]|)−1 in Π(b) is replaced in Π(a)
by the factor φ(|[kt, kt+1]|)−1 = φ(|[kt + 1, kt+1 − 1]|)−1(1− zkt+1−kt+1)−1; moreover,
if the ladder of b containing kt (resp. kt+1) has even cardinal, necessarily kt−kt−1 +1
(resp. kt+2−kt+1+1) then in a it becomes a ladder of cardinal kt−kt−1 or kt−kt−1−1
(resp. kt+2− kt+1 or kt+2− kt+1− 1) and the corresponding factor φ(kt− kt−1 +1)−1

(resp. φ(kt+2 − kt+1 + 1)−1) of Π(b) would be replaced in Π(a) by the factor
φ(kt − kt−1)−1 = φ(kt − kt−1 − 1)−1 = φ(kt − kt−1 + 1)−1(1− zkt−kt−1+1)

(resp.
φ(kt+2−kt+1)−1 = φ(kt+2−kt+1−1)−1 = φ(kt+2−kt+1+1)−1(1−zkt+2−kt+1+1)).

On the other hand, if the ladder of b containing kt (resp. kt+1) has odd cardinal, then
it becomes a ladder for b shorter by one, and the contributions to Π(b),Π(a) would
be the same (since φ(2s) = φ(2s + 1)). The factors of Π(b),Π(a) other than those
mentioned above are the same. We see that

Π(a) = Π(b)
∏

i1∈K
z|i1|

1−z|i1|
∏

i2∈L−K](1− z|i2|).
Here K] denotes the set of all elements of L that are not adjacent to any element of
K. We can rewrite this as follows:

Π(a) = Π(b)
∏

i2∈L

(1− z|i2|)
∏

i1∈K

z|i1|

1− z|i1|
1∏

i2∈K](1− z|i2|)

= Π(b)
∏

i2∈L

(1− z|i2|)
∏

i1∈K

1
z−|i1| − 1

∏

i2∈K]

z−|i2|

z−|i2| − 1
.
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The last product can be expanded into a sum:

∏

i2∈K]

z−|i2|

z−|i2| − 1
=

∏
i2∈K] z−|i2|∏

i2∈K](z−|i2| − 1)
=

∑
Z;Z⊂K]

∏
i2∈Z(z−|i2| − 1)∏

i2∈K](z−|i2| − 1)

=
∑

Z;Z⊂K]

1∏
i2∈K]−Z(z−|i2| − 1)

=
∑

Y ;Y⊂K]

1∏
i2∈Y (z−|i2| − 1)

.

Hence

Π(a) = Π(b)
∏

i2∈L

(1− z|i2|)
∑

Y ;Y⊂K]

1∏
i∈Y ∪K(z−|i| − 1)

.

We now compute

∑

a;a∼b

Π(a) =
∑

K;K⊂S

Π(a(K)) = Π(b)
∏

i2∈L

(1− z|i2|)
∑

Y,K;Y⊂L

K⊂S;Y⊂K]

1∏
i∈Y ∪K(z−|i| − 1)

.

Using the definitions and Lemma 1.10, we see that
Π(b)

∏
i2∈L(1− z|i2|) = z−2r2+2B(a)

∏
i∈I φ(|i| − 2)−1

∏
j φ(|j|)−1

where j runs over the subsets of [0, 2n]−∪[k,l]∈I[k +1, l− 1] that are ladders of b (not
containing 0) or staircases of b.

1.13. Let Λb,1 be the subspace of Pev({k0, k1, . . . , k2f}) spanned by the sets
{k2g, k2g+1} with g ∈ [0, f − 1]. (These form a basis Bb,1.) Let Λb,2 be the subspace
of Pev({k0, k1, . . . , k2f}) spanned by the sets {k2g−1, k2g} with g ∈ [1, f ]. (These form
a basis Bb,2.) We define an (injective) map Sb ↪→ Bb,1 by (bk, bk+1, bk+2, . . . , bl) 7→
{k, l}. This extends uniquely to an (injective) linear map of F2-vector spaces T :
P(Sb) ↪→ Λb,1.

2. Combinatorics: type Br.

2.1. We fix an integer r ≥ 2. For any n ≥ 0 we define Ψ′2r+1;n to be the set of
all sequences of integers a = (a0 ≤ a1 ≤ a2 ≤ · · · ≤ a2n) such that

a0 ≥ 0; ap ¿ ap+2 for p ∈ [0, 2n− 2]; r =
∑

p∈[0,2n] ap − 2n2.
There is a natural map Ψ′2r+1,n → Ψ′2r+1,n+1 given by

(a0 ≤ a1 ≤ a2 ≤ · · · ≤ a2n) 7→ (0 ≤ 0 ≤ a0 +2 ≤ a1 +2 ≤ a2 +2 ≤ · · · ≤ a2n +2).
This is a bijection if n is large enough (compared to r). We will denote by Ψ′2r+1

the limit of Ψ′2r+1,n as n → ∞ (with respect to the maps above); we will fix n large
enough so that Ψ′2r+1,n

∼−→ Ψ′2r+1 and we identify the last two sets. We may also
assume that a0 = 0, a1 = 0 for any a ∈ Ψ′2r+1. Let

B(a) =
∑

0≤i<j≤2n inf(ai, aj)− n(n− 1)(4n + 1)/3.

2.2. The ladders and staircases of of a ∈ Ψ′2r+1 are defined exactly as in 1.2.
Again, [0, 2n] is a disjoint union of subsets that are either ladders or staircases. We
set

Π(a) = z−2r2+2B(a)
∏

i φ(|i|)−1.
Here i runs over the set of subsets of [0, 2n] that are staircases (not containing 0) or
ladders; φ is as in 1.2.
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2.3. We say that a,a′ in Ψ′2r+1 are congruent if

{a0, a1, a2 − 1, a3 − 1, a4 − 2, . . . , a2n − n}
= {a′0, a′1, a′2 − 1, a′3 − 1, a′4 − 2, . . . , a′2n − n}

as multisets. We then write a ∼ a′.
Lemma 2.4. For a,a′ ∈ Ψ′2r+1, the conditions (a),(b),(c) below are equivalent:
(a) a ∼ a′;
(b) {a2p−1− (p−1), a2p−p} = {a′2p−1− (p−1), a′2p−p} for p ∈ [1, n] as multisets

and a0 = a′0;
(c) a0 = a′0 and, for any p ∈ [1, n],

(
a2p−1 a2p

a′2p−1 a′2p

)
is of the form (i)

( s t

s t

)
, or (ii)

( s s

s−1 s+1

)
, or (iii)

(
s−1 s+1

s s

)
.

The proof is similar to that of 1.4.

2.5. We say that b = (b0 ≤ b1 ≤ . . . b2n) ∈ Ψ′2r+1 is special if b2p−1 < b2p for all
p ∈ [1, n]. Let Ψ′02r+1 be the set of special elements of Ψ′2r+1.

Lemma 2.6. Given a ∈ Ψ′2r+1, there is a unique b ∈ Ψ′02r+1 such that b ∼ a. We
have

b2p−1 = a2p−1, b2p = a2p, if p ∈ [1, n], a2p−1 < a2p;
b2p−1 = a2p−1 − 1, b2p = a2p + 1, if p ∈ [1, n], a2p−1 = a2p;
b0 = a0.
The proof is immediate (using Lemma 2.4).

2.7. Let b ∈ Ψ′02r+1. A segment of b is a non-empty subset [k, l] of [0, 2n] such
that k is odd, l is even,

(bk, bk+1, bk+2, . . . , bl)

= (a, a + 2, a + 2, a + 4, a + 4, . . . , a + l − k − 1, a + l − k − 1, a + l − k + 1)

and such that bk−1 < bk, bl < bl+1 (if l < 2n). Let Sb be the set of segments of b.
Clearly, the segments of b are disjoint subsets of [0, 2n].

Proposition 2.8. Let b ∈ Ψ′02r+1. There is a 1-1 correspondence between P(Sb)
and the set {a ∈ Ψ′2r+1|a ∼ b}: to a subset K of Sb corresponds the sequence a =
a(K) ∈ Ψ′2r+1 defined by

(ak, ak+1, ak+2, . . . , al) = (a+1, a+1, a+3, a+3, a+5, a+5, . . . , a+l−k, a+l−k)
if [k, l] ∈ K and at = bt if t /∈ ∪[k,l]∈K [k, l].

This follows easily from Lemmas 2.4, 2.6.

2.9. We fix b ∈ Ψ′02r+1. An integer k ∈ [0, 2n] is said to be isolated (for b) if
either:

(a) k = 2n and b2n−1 ¿ b2n, or
(b) k is even, 0 < k < 2n and bk−1 ¿ bk < bk+1, or
(c) k is odd and bk−1 < bk ¿ bk+1.
Lemma 2.10. (a) {k ∈ [0, 2n]|k isolated} = {k0 < k1 < · · · < k2f} where kt = t

mod 2 for t ∈ [0, 2f ].
(b) Assume that t ∈ [0, 2f −1] is odd. Then [kt +1, kt+1−1] is a (possibly empty)

union of staircases.
(c) Assume that t ∈ [0, 2f ] is even. Then [kt, kt+1] is a union of ladders.
(d) The set [k2f + 1, k2n] is a union of ladders.
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(e) The set [0, k0] is a (possibly empty) union of staircases.
(f) Assume that t ∈ [0, 2f − 1]. Then either the unique ladder containing kt has

an odd cardinal, or else it equals [kt−1, kt] (if t is odd) or [kt, kt+1] (if t is even).
(g) The unique ladder containing k2f has an odd cardinal.
The proof is routine; it will be omitted.

2.11. Let I = Ib be the subset of P([0, 2n]) consisting of those subsets of form
[k0, k1], [k1, k2], . . . , [k2f−1, k2f ]

that are either ladders or segments for b. All segments of b appear in I; they form
the subset S = Sb of I. The ladders in I form a subset L = Lb of I. Note that
I = S t L. We say that i1 ∈ S, i2 ∈ L are adjacent if they have a non-empty
intersection (necessarily one of the kt).

2.12. Let K be a subset of S and let a = a(K) be as in 2.8. As in 1.12, we see
that

∑

a;a∼b

Π(a) = Π(b)
∏

i2∈L

(1− z|i2|)
∑

Y,K;Y⊂L;K⊂S;Y⊂K]

1∏
i∈Y ∪K(z−|i| − 1)

.

and that
Π(b)

∏
i2∈L(1− z|i2|) = z−2r2+2B(a)

∏
i∈I φ(|i| − 2)−1

∏
j φ(|j|)−1

where j runs over the subsets of [0, 2n] − ∪[k,l]∈I[k + 1, l − 1] that are staircases of b
(not containing 0) or ladders of b. (K] is defined as in 1.12.)

2.13. Let Λb,1, Bb,1,Λb,2, Bb,2 be defined as in 1.13. We define an (injective)
map Sb ↪→ Bb,2 by (bk, bk+1, bk+2, . . . , bl) 7→ {k, l}. This extends uniquely to an
(injective) linear map of F2-vector spaces T : P(Sb) ↪→ Λb2 .

3. Combinatorics: type Dr.

3.1. We fix an integer r ≥ 4. For any n ≥ 0 we define Ψ′2r;n to be the set of all
sequences of integers a = (a0 ≤ a1 ≤ a2 ≤ · · · ≤ a2n+1) such that

a0 ≥ 0; ap ¿ ap+2 for p ∈ [0, 2n− 1]; r =
∑

p∈[0,2n+1] ap − (2n2 + 2n).
There is a natural map Ψ′2r,n → Ψ′2r,n+1 given by

(a0 ≤ a1 ≤ a2 ≤ · · · ≤ a2n+1) 7→
(0 ≤ 0 ≤ a0 + 2 ≤ a1 + 2 ≤ a2 + 2 ≤ · · · ≤ a2n+1 + 2.)

This is a bijection if n is large enough (compared to r). We will denote by Ψ′2r the
limit of Ψ′2r,n as n →∞ (with respect to the maps above); we will fix n large enough
so that Ψ′2r,n

∼−→ Ψ′2r and we identify the last two sets. We may also assume that
a0 = 0, a1 = 0 for any a ∈ Ψ′2r.

3.2. The ladders and staircases of a ∈ Ψ′2r are defined as in 2.2 (replacing 2n
by 2n + 1). Again, [0, 2n + 1] is a disjoint union of subsets that are either ladders or
staircases.

3.3. We say that a,a′ in Ψ′2r are congruent if

{a0, a1, a2 − 1, a3 − 1, a4 − 2, . . . , a2n+1 − n}
= {a′0, a′1, a′2 − 1, a′3 − 1, a′4 − 2, . . . , a′2n+1 − n}

as multisets. We then write a ∼ a′.
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Lemma 3.4. For a,a′ ∈ Ψ′2r, the conditions (a),(b),(c) below are equivalent:
(a) a ∼ a′;
(b) {a2p−1− (p−1), a2p−p} = {a′2p−1− (p−1), a′2p−p} for p ∈ [1, n] as multisets

and a0 = a′0, a2n+1 = a′2n+1;

(c) a0 = a′0, a2n+1 = a′2n+1 and, for any p ∈ [1, n],
(

a2p−1 a2p

a′2p−1 a′2p

)
is of the form (i)

( s t

s t

)
, or (ii)

( s s

s−1 s+1

)
, or (iii)

(
s−1 s+1

s s

)
.

The proof is similar to that of 1.4.

3.5. We say that b = (b0 ≤ b1 ≤ . . . b2n+1) ∈ Ψ′2r is special if b2p−1 < b2p for all
p ∈ [1, n]. Let Ψ′02r be the set of special elements of Ψ′2r.

Lemma 3.6. Given a ∈ Ψ′2r, there is a unique b ∈ Ψ′02r such that b ∼ a. We
have

b2p−1 = a2p−1, b2p = a2p, if p ∈ [1, n], a2p−1 < a2p;
b2p−1 = a2p−1 − 1, b2p = a2p + 1, if p ∈ [1, n], a2p−1 = a2p;
b0 = a0;
b2n+1 = a2n+1.
The proof is immediate (using Lemma 3.4).

3.7. The segments of b ∈ Ψ′02r are defined just as in 2.7 (replacing 2n by 2n + 1).
Let Sb be the set of segments of b. Clearly, the segments of b are disjoint subsets of
[0, 2n + 1].

Proposition 3.8. Let b ∈ Ψ′02r. There is a 1-1 correspondence between P(Sb)
and the set {a ∈ Ψ′2r|a ∼ b}: to a subset K of Sb corresponds the sequence a =
a(K) ∈ Ψ′2r defined by

(ak, ak+1, ak+2, . . . , al) = (a+1, a+1, a+3, a+3, a+5, a+5, . . . , a+l−k, a+l−k)
if [k, l] ∈ K and at = bt if t /∈ ∪[k,l]∈K [k, l].

This follows easily from Lemmas 3.4, 3.6.

3.9. We fix b ∈ Ψ′02r. An integer k ∈ [0, 2n + 1] is said to be isolated (for b) if
either:

(a) k = 2n + 1 and b2n < b2n+1, or
(b) k is even, 0 < k and bk−1 ¿ bk < bk+1, or
(c) k is odd, k < 2n + 1 and bk−1 < bk ¿ bk+1.
Lemma 3.10. {k ∈ [0, 2n + 1]|k isolated} = {k0 < k1 < k2 < · · · < k2f+1} where

kt = t mod 2 for t ∈ [0, 2f + 1].
The proof is routine; it will be omitted.

3.11. Assume that f ≥ 0 in the previous lemma. Let Λb be the quotient of the
F2-vector space Pev({k0, k1, . . . , k2f+1}) by the line spanned by {k0, k1, . . . , k2f+1}.
Let Λb,2 be the subspace of Λb spanned by the images of the sets {k2g−1, k2g} with
g ∈ [1, f ]. (These form a basis Bb,2.) We define an (injective) map Sb ↪→ Bb,2 by
(bk, bk+1, bk+2, . . . , bl) 7→ {k, l}. This extends uniquely to an (injective) linear map of
F2-vector spaces T : P(Sb) ↪→ Λb2 .

4. Comparison of types Cr and Br.

4.1. We fix r ≥ 2. We will choose the same (large) n in 1.1, 2.1. There is a 1-1
correspondence Ψ0

2r ↔ Ψ′02r+1 given by
b = (b0, b1, . . . , b2n) ↔ b′ = (b′0, b

′
1, . . . , b

′
2n)
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where bk = b′k, if k is even, bk = b′k + 1, if k is odd.
Proposition 4.2. If b,b′ are as above, then

(a)
∑

a∈Ψ2r;a∼b

Π(a) =
∑

a′∈Ψ′2r+1;a
′∼b′

Π(a′).

First note that the integers k0 < k1 < · · · < k2f in [0, 2n] that are isolated for
b (see 1.9) are the same as the corresponding integers for b′ (see 2.9). Let us write
L′, S′ for the sets denoted L, S in 1.11 (to distinguish them from the sets L, S in 2.11).
It is clear that L′ = S and S′ = L. Moreover, if K ⊂ S = L′ and Y ⊂ L = S′ then
the conditions Y ⊂ K] and K ⊂ Y ] are equivalent: they both are equivalent to the
condition that any set in K is disjoint from any set in Y . Hence we have

∑

Y,K;Y⊂L;K⊂S;Y⊂K]

1∏
i∈Y ∪K(z−|i| − 1)

=
∑

Y ′,K′;Y ′⊂L′;K′⊂S′;Y ′⊂K′]

1∏
i∈Y ′∪K′(z−|i| − 1)

.

Let P = [0, 2n]−∪[k,l]∈L∪S [k +1, l−1]. We note that there is 1-1 correspondence
between the set of ladders of cardinal ≥ 2 of b contained in P (but not containing
0) and the set of staircases of b′ contained in P (but not containing 0); in this corre-
spondence a ladder has cardinal equal or bigger by one than that of the corresponding
staircase. Similarly, there is 1-1 correspondence between the set of staircases of b
contained in P and the set of ladders of cardinal ≥ 2 of b′ contained in P ; again,
in this correspondence a ladder has cardinal equal or bigger by one than that of the
corresponding staircase.

Finally, one checks from the definitions that B(b) = B(b′) (where the left hand
side is as in 1.1 and the right hand side is as in 2.1).

We now use the results in 1.12 and 2.12, taking into account the arguments above.
The proposition follows.

5. Equivariant homology.

5.1. Assume that X is an algebraic variety over C with an algebraic action of
a linear algebraic group G over C, such that X is a union of finitely many G-orbits
X1, X2, . . . , Xk. We can assume that the numbering is chosen so that X1∪X2∪· · ·∪Xs

is closed in X and has dimension equal to dimXs for s = 1, . . . , k. Let xs ∈ Xs and
let Gs be the stabilizer of xs in G for s = 1, . . . , k. Let Ḡs be the reductive quotient of
Gs and let ḡs be its Lie algebra. Let Sj′(ḡs)Ḡs be the space of Ḡs-invariant elements
on the j′-component of the symmetric algebra of ḡs if j′ ∈ N and 0, if j′ /∈ N.

Lemma 5.2. For j odd we have HG
j (X) = 0. If z is an indeterminate, we have

∑

j≥0

dimHG
2j(X)zj =

k∑
s=1

∑

j≥0

dimSj(ḡs)Ḡszj+dim X−dim Xs .

By [L5, 1.6,1.8(c),1.11], we have
(a) HG

j (Xs) = HGs
j (pt) = Hj

Gs
(pt) = Sj/2(ḡs)Ḡs .

Here pt denotes a point. Using (a) and the long exact sequence [L5, 1.5] we see by
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induction on s that HG
j+2 dim Xs

(X1∪X2∪· · ·∪Xs) is zero for odd j and is isomorphic
to

HG
j+2 dim Xs−1

(X1 ∪X2 ∪ · · · ∪Xs−1)⊕HG
j+2 dim Xs

(Xs)
for s = 2, . . . , k. Applying this repeatedly, we see that

dimHG
j+2 dim X(X) =

∑k
s=1 dimHG

j+2 dim Xs
(Xs).

This, together with (a), implies the lemma.
Lemma 5.3. Let us fix s ∈ [1, k]. Assume that Ḡs =

∏p0
p=1 Hp where each Hp is

one of the groups SONp
(C) (Np odd), SpNp

(C) (Np even), or ONp
(C). Then

∑

j≥0

dimSj(ḡs)Ḡszj =
p0∏

p=1

φ(Np)−1

where φ(Np) is as in 1.2.
This is well known.

6. Comments on Theorems 0.2, 0.4 and 0.9.

6.1. Let G be as in 0.1. The set of unipotent classes in G, assumed to be of type
Cr, Br or Dr, is in a natural 1-1 correspondence with the set Ψ2r,Ψ′2r+1,Ψ

′
2r (respec-

tively) except that in the case of Dr each sequence of Ψ′2r without isolated elements
should be considered twice. (See [L4, Sec.11].) That description is particularly well
suited to calculating the Springer correspondence in those cases. In this language, the
problem of deciding when a unipotent classes C1 in G satisfy the condition that ρC1

belongs to a given two-sided cell becomes the problem of deciding when an element of
Ψ2r (or Ψ′2r+1 or Ψ′2r) is congruent to a given element of Ψ0

2r (or Ψ′02r+1 or Ψ′02r). This
is described quite explicitly by 1.8, 2.8, 3.8 and yields Theorem 0.2 in these cases, since
the condition that C1 belongs to a given special piece has been decribed explicitly in
[Sp]. The maps C1 7→ g in Theorem 0.4 can in these cases be identified with the maps
T in 1.13, 2.13, 3.11. Hence Theorem 0.4 also holds in our cases. Of course, when G
is of type A, both 0.2 and 0.4 are trivial.

In the case where G is of exceptional type, the proof of 0.2, 0.4 consists simply
in analyzing existing tables. In the following five subsections we will indicate for each
of the exceptional groups the map C1 7→ g of 0.4 (from γ(C) to the set of conjugacy
classes in a symmetric group Sr). We only consider the case where C̃ 6= C. We shall
use the notation of [Ca] for unipotent classes. We group together the unipotent classes
in a fixed γ(C) and for each C1 in the group we specify g by a partition of r. (This
determines in each case the value of r where Gc = G′c = Sr.) The special class appears
first in each group.

6.2. Type E8.

A2 (1, 1); 3A1 (2).

A2 + A1 (1, 1); 4A1 (2).

2A2 (1, 1);A2 + 3A1 (2).

D4(a1) (1, 1, 1);A3 + A1 (2, 1); 2A2 + A1 (3).

D4(a1) + A1 (1, 1, 1); A3 + 2A1 (2, 1); 2A2 + 2A1 (3).
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D4(a1) + A2 (1, 1);A3 + A2 + A1 (2).

D5(a1) (1, 1);D4 + A1 (2).

A4 + 2A1 (1, 1); 2A3 (2).

E6(a3) (1, 1);A5 (2).
{

E8(a7) (1, 1, 1, 1, 1);E7(a5) (2, 1, 1, 1);E6(a3) + A1 (3, 1, 1);D6(a2) (2, 2, 1);

D5(a1) + A2 (4, 1);A5 + A1 (3, 2);A4 + A3 (5).

D6(a1) (1, 1);D5 + A1 (2).

E7(a3) (1, 1);D6 (2).

E8(b6) (1, 1);A7 (2).

E8(b5) (1, 1, 1);E7(a2) (2, 1);E6 + A1 (3).

E8(a5) (1, 1);D7 (2).

E8(a3) (1, 1);E7 (2).

6.3. Type E7.
A2 (1, 1); (3A1)′ (2).

A2 ×A1 (1, 1); 4A1 (2).

D4(a1) (1, 1, 1); (A3 + A1)′ (2, 1); 2A2 + A1 (3).

D4(a1) + A1 (1, 1);A3 + 2A1 (2).

D5(a1) (1, 1);D4 + A1 (2).

E6(a3) (1, 1); (A5)′ (2).

E7(a5) (1, 1, 1);D6(a2) (2, 1);A5 + A1 (3).

E7(a3) (1, 1);D6 (2).

6.4. Type E6.
A2 (1, 1); 3A1 (2).

D4(a1) (1, 1, 1);A3 + A1 (2, 1); 2A2 + A1 (3).

E6(a3) (1, 1);A5 (2).

6.5. Type F4.

Ã1 (1, 1);A1 (2).

F4(a3) (1, 1, 1, 1);C3(a1) (2, 1, 1); Ã2 + A1 (3, 1);B2 (2, 2);A2 + Ã1 (4).

6.6. Type G2.

G2(a1) (1, 1, 1); Ã1 (2, 1);A1 (3).
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6.7. Proof of Theorem 0.9. Using 5.2, we see that HG
j (C̃) = HG′

j (C̃ ′) = 0 for
j odd. Using 5.2 and 5.3, we see that

∑
j≥0 dimHG

2j(C̃) is equal to z2r2−2B(b) times
the left hand side of 4.2(a), where b ∈ Ψ2r corresponds to the unipotent class C ⊂ G

and B(b) is as in 1.1. Similarly, using 5.2 and 5.3, we see that
∑

j≥0 dimHG′
2j (C̃ ′) is

equal to z2r2−2B(b′) times the left hand side of 4.2(a), where b′ ∈ Ψ′2r+1 corresponds
to the unipotent class C ′ ⊂ G′ and B(b′) is as in 2.1. Using now 4.2 and the equality
B(b) = B(b′) we see that∑

j≥0 dimHG
2j(C̃) =

∑
j≥0 dimHG′

2j (C̃ ′).
This proves Theorem 0.9.

Theorem 0.9 shows that in the setup of 0.1, the equivariant homology Betti num-
bers of the pieces C̃ (with respect to the conjugation action of G) depend only on the
Weyl group.

6.8. Let us now replace the ground field C by the algebraic closure of a finite
field Fq and assume that G has a fixed split structure over Fq. Then the special pieces
C̃ ⊂ G are again defined as in 0.1 (in small characteristics we must use the definition
[L2] of the Springer representations). Now, following Mizuno [Mi] and Spaltenstein
[Sp, III.5.2] there is a natural order preserving imbedding from the set of unipotent
classes in the corresponding group over C, to the set of unipotent classes in G. Let
us call MS-classes the classes in the image of this map. For any MS-class C of G let
Ĉ be the subset of the unipotent variety of G consisting of elements in the closure of
C which are not in the closure of any MS-class distinct from C and contained in the
closure of C. From the results in [Mi,Sp] one checks that the sets Ĉ form a partition
of the unipotent variety (into locally closed subvarieties). (In good characteristic, the
MS-pieces are the same as the unipotent classes.) One can also check that each special
piece is a union of MS-pieces. We have the following result:

(a) the number of Fq-rational points of an MS-piece is a polynomial in q that
is independent of the characteristic (that is, it depends only on the corresponding
unipotent class in the group over C).
We will indicate the necessary calculations (based on Table 10 in [Mi]) in the case
of E8. If we restrict ourselves to characteristic 6= 2, 3, there is nothing to prove. In
characteristic p = 2 or p = 3 the MS-pieces consist of one or two unipotent classes
and we use the identities:

1
q26 + 1

(q2−1)q26 = 1
2(q+1)q25 + 1

2(q−1)q25 ,
1

q34 + 1
(q2−1)q34 = 1

2(q+1)q33 + 1
2(q−1)q33 ,

1
2(q+1)(q2−1)q35 + 1

2(q−1)(q2−1)q35 = 1
(q2−1)2q34 ,

1
(q2−1)q48 + 1

(q2−1)(q6−1)q48 = 1
2(q2−1)(q3−1)q45 + 1

2(q2−1)(q3+1)q45 ,
1

(q2−1)(q4−1)q64 + 1
(q2−1)2(q4−1)q64 = 1

2(q+1)(q2−1)(q4−1)q63 + 1
2(q−1)(q2−1)(q4−1)q63 ,

for p = 2, and
1

q30 + 1
(q2−1)q30 = 1

(q2−1)q28

for p = 3. Similar arguments apply for the other types. (For classical types in
characteristic 2 an MS-piece has a power of 2 unipotent classes.)

6.9. In [L2, Conj. 3] it was conjectured that
(a) the number of Fq-rational points of a special piece C̃ is a polynomial in q that

depends only on the Weyl group.
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We can now prove this as follows. Using 6.8(a), we are reduced to the case where the
characteristic is large. In that case, we only have to compare the number of points
in corresponding special pieces in type Br and Cr. But this follows from exactly the
same computation as the one in 6.7.

6.10. In view of 6.9(a), one can expect that the polynomials |C̃(Fq)| have a
meaning also when W is replaced by a finite non-crystallographic Coxeter group.
(There should be one such polynomial for each two-sided cell of W .) There are obvious
candidates for the polynomials attached to the two-sided cells of the trivial element
or of the longest element w0, namely

qe1+e2+···+el−l(qe1+1 − 1)(qe2+1 − 1) . . . (qel+1 − 1)
or 1. Here e1, e2, . . . , el are the exponents of W . On the other hand, the polynomial
attached to the cell containing w0 times a simple reflection should be

(qh − 1)(qe1−1 + qe2−1 + · · ·+ qel−1)
where h is the Coxeter number. (This is suggested by [L2, (3.1)].) In the case when W
is a dihedral group, the three polynomials above are all we need since there are only
three two-sided cells. The sum of the three polynomials is equal to qhl, as it should
be.
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