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0. Introduction

0.1. The purpose of this paper is to prove the following theorem: Let A be an
n X n matrix over an algebﬁiically closed field K of characteristic zero, C, the
conjugacy class of 4 and C its (Zariski-) closure.

Theorem. C, is normal, Cohen-Macaulay with rational singularities.

If a variety X with a G-action (G reductive) is the closure of an orbit ¢ and
dim(X~\ 0)< dim X —2, it is a crucial question for the geometry of X to decide
whether the singularity (in X . ¢) is normal. In fact the normality of X allows to
identify the ring K[X] of regular functions on X with the functions on the orbit
¢ and so, by Frobenius reciprocity, to analyse K[ X] as a representation of G (cf.
[11], [1]). In our case this is closely related to the “multiplicity conjecture” of
Dixmier; we refer the reader to the paper [1] for a detailed description of this
connection and some applications.

A different proof of this theorem will appear in [23].

0.2. The theorem has also another interesting application, shown to us by Th.
Vust, in the spirit of the classical theory of Schur. If U is a finite dimensional
vector space one has the classical relation between the action of GL(U) and of
the symmetric group ©,, on the tensor space U®™. If we restrict to the subgroup
G 4 of GL(U) centralizing a fixed matrix 4 (€ End U), then one can still compute
the centralizer of G, acting on U®™ and one obtains (see Sect. 6): End (U®™)
is spanned by the endomorphisms

c-A"RA"®.. @A™ (6eC,.hy,...,h,eN).

We remark that the group G 4 is not reductive and the commuting algebra is not
semisimple in general.

0.3. In many ways the motivation to study this problem came from a fundamen-
tal paper of B. Kostant [11] in which he studies in detail the adjoint action on a
semisimple Lie algebra g. In the course of his analysis he shows the normality of
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the variety C, in the case in which A is a regular nilpotent element of g (i.e. C, is
the nilpotent cone of g). His method depends on the fact that, in this case, C, can
be proved to be a complete intersection in g. This is no more true for the non
regular classes in general, nevertheless some particular cases were treated by W.
Hesselink [8]; we wish to thank him for his comments on an earlier version of
the paper. Our method, on the other hand, consists in constructing an auxiliary
variety Z which is a complete intersection and of which C, is a “quotient” (1.4).

0.4. Remark. It is known (see [8] proposition 1, or use the method of associated
cones [1]) that it is sufficient for the proof of the theorem to treat the case of a
nilpotent matrix A and so we restrict to this case. Then C, has a resolution of
singularities 7: X — C, where X is the cotangent bundle of GL,/P, P a parabolic
subgroup of GL, ([4], or [1] Anhang). Then the canonical divisor of X is 0 and
so by the theorem of Grauert-Riemenschneider (cf. [9] p. 50) it follows that C
has rational singularities and the normality of C, is sufficient to insure also the
Cohen-Macaulay property. So the main point of the paper is to prove that C , is
normal. The proof we give should be adaptable also to positive characteristic; it
yields at least that the normalisation of C, is purely inseparable over C, (cf.
remark 5.7).

0.5. Let us remark finally that the methods developed here have analogues for all
the classical groups. In this case, which will be treated in a subsequent paper,
there occur different phenomena which are not yet fully understood. Of course
the non connected conjugacy classes have non normal closure, but there are also
infinitely many connected conjugacy classes C, for which C, is not normal; the
simplest known cases are: for the symplectic groups the one in spg relative to
the partition (3, 3, 1, 1), for the orthogonal groups the one in so,, relative to the
partition (4,4,2,2,1).

1. Notations, Some Known Results

1.1. Let us fix some notations. Any nilpotent matrix is conjugate to one in
normal Jordan block form:

J. 0 0 .. 0 01 0
0 J, 0 ), Ji= 0 1\ at x t-block. ()
0 0 : Nt
0 0 J 0 0

We can assume p, 2p,=... 2 p,; this decreasing sequence n=(p;,p,,...,p,) is @
partition of n and it is convenient to represent it geometrically as a Young-
diagram with rows consisting of p,, p,, ..., p, boxes respectively:

[ ]

e.g. the diagram corresponds to the partition (5, 3, 2, 1, 1).

[]
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The dual partition §=(p,, p,, ..., b,,) is defined setting p; equal to the length of the
™ column of the diagram #n; more formally pi:=#1{jlp;Zi}. In case of a partition
n associated to the normal Jordan block form of a nilpotent matrix A, the dual
partition 7 has the following interpretation:

j
dimKer4/= )" p,

i=1
or equivalently

rk A/=Y p,.

i>j
1.2. Given two partitions n=(p,,...,p,) and v=(q,,...,q,) of n, we say n=v, if we
have Z P2 Z q; for all j. This is equivalent to Y p,= ) g, for all j.

i=1 i= k>j k>1
A simple property of this ordering, which expresses it geometrically, is the
following (cf. [7] Proposition 3.9):

Proposition. If n>v and no other partition is in between them (i.e. n and v are
adjacent in the ordering), then the diagram of n is obtained from the one of v
raising a box from one row to the first allowable position.

%,

(e.g. =n and =V)

B C
1.3. From now on, if n is a partition of n, we will indicate with C, the conjugacy
class of the matrix (*) in normal Jordan block form with partition #. The

following is the basic theorem on degenerations of orbits (cf. [7] Theorem 3.10
and Corollary 3.8 (a)).

Proposition. a) Given two partitions n and v of n, we have nzv if and only if
C,=2C,.

b) If n=(p,, ..., p,) is a partition of n and j=(p, ..., p,) the dual partition, we
have:

t k
dimC,,:nZ— Z min(p;, p;) = Z F=23 p;p;

Jj= i= i<j
1.4. We are working always with affine varieties and we will use the following
terminology. If X is an (affine) variety with the action of a reductive group G
and n: X —Y a morphism, we say that m is a quotient (under G), if the
coordinate ring of Y is identified, via n, with the ring of G-invariant functions on
X. We denote this quotient by n: X — X/G. The following properties of quotient
maps are well known ([20], Chap. 1, §2):

a) Let Z< X be a G-stable closed subvariety. Then n(Z)<= X/G is closed and =|,:
Z - 7(Z) is a quotient.
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b) Consider the following fibre product:
X:i=YxyeX 25X

' T

Y— 5 X/G.

The action of G on X induces an action on the fibre product X' in a natural way
and 7' is a quotient with respect to this action.

2. The Induction Lemma

2.1. If U,V are vector spaces we will write L(U, V) for the space of linear maps
from U to V and L(U) instead of L(U,U). If V is n dimensional and 75 is a
partition of n, we may consider the elements of L(V) as n x n matrices and so
C,sL(V).

2.2. Let n=(p4,...,p,) be a partition of n. Erasing the first column in the Young
diagram 7 one obtains a partition n'=(p},p5, ..., p;) of m:=n—p, =n—k, formal-
ly defined by p;=p,—1 for all i. In terms of dual partitions we have #'

Z(ﬁz,ﬁ3a cee):
Fix vector spaces U, V of dimension m, n respectively and consider the two maps

L(U,V)xL(V,U)—=— L(U)
0
L(V)
defined by n(A4, B)=BA, p(4,B)=AB.

Theorem (First fundamental theorem of invariant theory): © and p are quotient
maps (under GL(V), GL(U) respectively) and the image of p is the determinantel
variety of matrices of rank <m. (cf. [22] §3, Théoréme 3 or [18] I1.6, Theorem
2.6. A; for a characteristic free proof see [2] §3.)

2.3. Consider finally the orbits C,cL(U), C,cL(V) and the variety
N”:=7I“I(C,1;).

Proof. First of all we show that p(N))< 6;, using repeatedly Proposition 1.3 a).
Let (4,B)eN,, i.e. BAeC,.. To prove that ABeC, we must verify that, for any
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i=1, we have rk(4B)'S ) p;. Now (AB) =A(BA)~' B, so rk(AB) <rk(BA) !
jzi+1

<Y pj= ) P;as desired.
jzi

jzi+1
To show that p(N,)=C, it is sufficient to prove that C,<p(N,) (since p is a
quotient map and so p(N,) is closed, cf. 1.4a). Let us then fix DeC,, D: V—V. We
can clearly identify U with D(V) since rk D =m. It is immediate to verify that D|,
has Young diagram #’ and clearly we have a factorization

V—2 .y
U

where A is the inclusion and B coincides with D. On the other hand BA is just
D|y so that the pair (4, B) is in N, and the claim is proved 1 qged.

We will use this lemma to present the variety C_n as a quotient of a suitable
variety Z for which we will be able to prove normality (Theorem 3.3).

3. The Variety Z

3.1. Notations being as in section 2 we make the following construction.
Starting with a fixed partition y=(p,,...,p,) and dual partition /=(p,,....p,),
t:=p,, we define a sequence of partitions

Ne=n, M1 M2

by n,_,:=n; (i.e. by erasing successively the first column of the corresponding
Young diagrams);

€8 N=hu= > N3 » M= —l7 ’71:[]-

L

Then #, is a partition of ni:=p,+p,_,+...+p,_;,, with dual partition #,

=(pl—i+1""’pl—~1’pt)' . .
Construct next vector spaces U,, U,, ..., U, of dimensions n,,n,,...,n, respec-

tively and consider the affine spaces:
M:=L(U,,U,) x L(U,, U;) x L(U,, U3)
x L(Us, Uy) % ... x L(U,_,, Uy x L(U,, U, _,)
and

N:=L(U,)x L(U,) ... x L(U,_ ).

This argument due to W. Hesselink replaces a more direct matrix computation we had made.
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We will indicate a point o of M by
o=(A,,B{,A,,B,,....,4,_{,B,_,)

where A;: U,— U,

i+1°

B;: U,

i+1

—U.,.

3.2. We are now ready to define the variety Z. It is the subvariety of M defined
by the equations

B, A,=0
B,4,=A4,B,
By;A,=A,B, (%)

B,_1A,_=4,_;B,_,.
In more suggestive notation we write

Ap=0 Ay Ay A -y
a: Uy=0= > U — U U,...U_, =10,
0 1 2 3 t—1 t
Bo=0 B, B, Bi-1

for the elements of Z. The equations just require that for each i=1...t—1 the
two compositions U,_, € U, 2 U,, , yield the same endomorphism of U,. (See
also [19] 5.3, where this objects occur as representations of a certain Lie
algebra.)

In due time we will prove that the equations we have given actually define a
reduced variety; for the moment we think of Z as a scheme, possibly not
reduced, and we indicate by Z, ., the reduced variety associated.

The best way to understand the equations is to construct a map &: M —> N
given by the formula:

®(4,,B,,A,,B,,....,A,_{,B,_1)
=(B,A4,,B,4,—A4,B;,B3A;—A4,B,,....B,_A,_—A,_,B,_,)
Then Z, as a scheme, is the fiber @~ !(0) of the 0 point in N.

3.3. Consider the group G:=GL(U,) x GL(U,) x ... x GL(U,) and its normal sub-
group H:=GL(U,) x GL(U,) x ... x GL(U,_,). The group G acts on M and N in
a natural way:

On

M:(g,.85,.--,8)(A{,B{,A,,B,, ..., A4, _1,B,_)
=(g,4,81"8:1B:187 "8 418,81 B_1 87
and on
N:(81,820 -8 (ELE, . E )
=g E1grh 81 By g h).
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It is easy to verify that the map ¢: M — N is equivariant under G and so Z is
invariant under G. Now the main theorem is an immediate consequence of the
following more precise result (use the fact that a quotient of a normal variety is
also normal):

Theorem. i) Z is a complete intersection in M; the equations (x*) give a regular
sequence.

i) Z is non singular in codimension 1.

iil) Z is reduced, irreducible and normal.

iv) There is an isomorphism Z/H—— C_,, being compatible with the actions of
GL(U)=G/H.

The rest of the paper is devoted to the proof of this theorem. We first reduce
it to a lemma (3.7) whose proof will be given in Sect. 5 (5.4, 5.5, 5.6) using the

theory of nilpotent pairs (section 4) and a dimension formula for nilpotent pair
orbits (5.3).

3.4. First of all we settle part iv) which gives the connection between Z and E‘;
We consider the map

6: M—L(U)

given by (4,,B,,...,4,_;,B,_)—A,_,B,_,, which is clearly GL(U,) equivariant.

Proposition. @(Z,ed)=C_ﬂﬂ1d the induced map ©': Z,,— C, is a quotient map
under H (i.e. Z 4/H——C,).

Proof. We use repeatedly lemma 2.3. Since B, 4, =0 the pair (4,,B,) is in the
variety N,, and so 4,B,eC,,. By induction we may assume 4; ;B; ,eC,.
Since B;A,=A4; B, ; we have that (4,,B)=N, and so again by 2.3,

e A S
A;B,eC, . Thus finally ® maps Z,, into C,=C, and the same lemma 2.3
i Mm+1 p ed n [/

applied inductively shows that Z_, is mapped onto C,. To see that the map is a
quotient under H we perform the quotients in succession. First under GL(U,),
we have the quotient map (Theorem 2.2)

O,: M- L(U,) xL(U,, Uy) x L(U;, Uy) x ...
xL(U,_,, U)xL(U,_, U,_))
given by
(4,,B,,A,,B,,...,A,_,,B,_))—(A;B,,A,,B,,...,4,_,B,_,).

If we restrict this map to Z,., we have again a quotient map (since we are in
characteristic zero cf. 1.4a). Now on Z_,, we have A, B, =B, A4, (if t >2), thus we
see that ©, maps Z,4 into the graph of the map

i My:=L(U,, Uy) x L(Uy, Uy) X ...
xL(U,_, U)xL(U,, U,_,) > L(U,)
(Ay,B,, Ay, By, ..., A,_1,B,_ ) B, A,
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Thus we may replace the graph of y with its domain and drop the first
coordinate 4, B,. Hence on Z_, the mapping

(4,,By,...,A,_{,B,_)—(A4,,B,,...., A, |,B,_,)EM,

is a quotient under GL(U,). Its image Z, < M, is easily seen to be defined by the
“equations”:

B,A,eC,,
Asz=BaA3
A;B;=B,A,

A, _,B,_,=B,_ A, ;.

Similarly (if t>3) Z,/GL(U,)=Z,.,/GL(U,) x GL(U,) is naturally contained in
M,:=1(U,,U,) x L(U,, Uy) x... x L(U,_,, U)x L(U,, U,_,)

and given by the “equations”:

B3A4eC,,
A3By=B,A,

At—ZBt-ZzBr—lAr—l'
Then finally by induction Z,,/GL(U,) x GL(U,) x ... x GL(U, _,) is given by

{(At 1 z l)lBl 1At IEC }CL(U, 1 )XL(Ut,U, 1)

Ne-1
ie. it is the variety N, =N, , and hence

Z.o/H=N,/GL(U,_)=C,
(the isomorphism being induced by ©). qed.

This reasoning can be also displayed in a more suggestive way constructing a

diagram, e.g. t=35:

Z(1,5—-2(1,49—2(1,3)>N, - C,

| I |

Z2,5-Z@2,4—N, —C

| I
3,

n2

23,9~ N, =G,
L

Nﬂa _}C'M

L

C

where each Z(i,j) is constructed inductively forming a fiber product. If we
proceed on a column we see that
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Z(k,n) «=—Z(1,n)/GL(U;) x GL(Uy) % ... x GL(U,_,)  for k<n—1
(cf. 1.4b).

3.5. We now make a simple remark on the basic map ¢: M — N (3.2) for which
Z=0"1(0).

Let M° be the open subset of M of those elements
(A4,,B;,A4,,B,,...,A,_4,B,_,) such that for each i=1,2,...,t—1 either A; or B,
has maximal rank. Then we have:

Proposition. The differential d® of ® is onto at every point o« of M°.

Proof. Let a=(A,,B,,A4,,B,,....,A,_,B,_,)eM°. We can 1dent1fy the tangent
space of M in « with M itself and take a point T=(X,,Y,,X,, Y,, ...

l 1> 1)
in it. Then the tangent map gives

dd(T)=(Y, A, +B, X, Y, A, +B,X,—X B, —A4,Y,,....Y,_ A,
+Bt—1Xt—l—Xt—ZBt—-2_At—2 Yt—2)'

If W=(W,,W,,...,W,_,) is any tangent vector in ®(x)eN we can solve inducti-
vely the equations

YA, +B, X, =W,
Y,A,+B,X,—-X,B,—A,Y,=W,

Yo (A +B_ (X, =X, ,B,_,—A, Y, ,=W_,

provided that for each i either A; or B, has maximal rank. In fact if 4, has
maximal rank then there is an A4;: Ux+1“’ U; with 4;4;,=1dy,, so the equation
Y;A;=R, is solved by Y;:=R A4, Slmllarly if B; has maximal rank then there is
an element B;:U—U,, w1th B ;=1Idy and the equation B;X;=S§; is solved by
X;:=B;S,. qed

3.6. The net result of this proposition is this:

Corollary. The open subvariety Z°:=Z AM° of Z is smooth and of codimension
t—1

Zn in M.

i=

Proof The only thing to prove is that Z°+@ since then the statement is a
t-1

consequence of 3.5 (dim N =) n} by definition 3.1). Now if we recall the proof
i=1

of 3.4 we see that we have constructed an element in Z such that for all i both 4,
and B; have maximal rank (see also the construction in 3.1). More precisely if D:
U—U is any element of C, we may assume U=U, U_,=D(U), U_,
=D*(U),...,U,=D'"Y(U), U,=0. Setting A;: U;— U, the 1nclus1on and B;:
U;.,— U, the map D itself, we have the required element. ged.

Remark. If we insist that for each i both 4; and B; have maximal rank we still get
a non empty open set Z’' of Z. One can easily show that Z’ is an orbit under G
(cf. proof above). It will be proved in fact that this is the unique open orbit of G
in Z (5.4).
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3.7. To complete the proof of the theorem it is enough to show the following
result:

Lemma. dim(Z~ Z°) <dim Z - 2.

In fact using 3.6 this lemma implies dim Z=dim Z° and that Z is non
singular in codimension one. Thus again by 3.6 we have that the codimension of

t—1
Z in M is exactly the number ) n} of equations defining Z (3.2). This implies
i=1
that these equations form a regular sequence and hence Z is a complete
intersection. Since Z is a cone it is also connected. But then by Serre’s criterion
([6] TV, Théoréme 5.8.6) Z is normal reduced and so also irreducible. This
completes the proof of the theorem 3.3 modulo the lemma above.
For this basic statement we will need to stratify the complement of Z° in Z
with strata of which we can compute the dimension (5.1, 5.3) and this will lead
us to the theory of nilpotent pairs (cf. the following section).

4. Nilpotent Pairs

Given two vector spaces U,V we consider the space L:=L(U,V)xL(V,U) of

pairs of maps Uk—i——tV as a representation of GL(U)x GL(V) in a canonical
B
way:

(X,Y)(4,B)=(YAX ', XBY~1).

The theory of orbits for this representation is known (cf. [3], [14], or [5]) and it
is in fact a special case of the theory of vector space crowns. One can naturally
think of such pairs as of a category of modules, and the classification is (like in
the case of Jordan blocks) through indecomposable modules. Also the “inva-
riant theory” of this representation is well known (see [12] and also [17]). In

. . . . 4 .
our case we are interested in a special class of pairs, those U<+=—=V for which
B

BA (or equivalently AB) is nilpotent. We will call such pairs “nilpotent pairs”.
They can be easily seen to be exactly the unstable vectors (in the sense of
geometric invariant theory) of the representation L.

4.2. The classification of the indecomposable nilpotent pairs is rather simple and
resembles the theory of Jordan blocks. The indecomposables are of the follow-
ing types:
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i.e. the space U is spanned by the basis a,,a,,...,a,,,, V has basis b,,b,,...,b

n
and

Aa;=b;, Bb;=a;,.
This type will be in short indicated by a string
abababab ...ba

with n+1 da’s and n b’s.

The type

is defined in a similar way and is shortly indicated by the string

abab ...ab

with n @’s and n b’s.
We have two other types starting with b instead of a:

shortly indicated by baba...bab and baba...ba respectively.

A
4.3. In general a nilpotent pair U — V is a direct sum of indecomposables

and so it will be determined by a finite set of such strings (ab-strings). We will
refer to such a set of strings as the ab-diagram of the pair. It is easy to see that
two distinct ab-diagrams give rise to non isomorphic pairs, since one can easily
recover the ab-diagram from the knowledge of the ranks of all the compositions
BABA....

Given a nilpotent pair Uz—'—%L V through its ab-diagram J, it is simple to

recognise the Young diagrams of the nilpotent matrices BA: U— U and
AB: V—V: For the diagram of BA suppress all the b’s in the ab-strings of . In
this way every ab-string gives rise to a string of a’s which can be interpreted as a
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row in a Young diagram. Similarly for 4B one has to suppress all the a’s. We
call these diagrams the associated a-diagram and the associated b-diagram of 6
and denote them as in 2.2 by =(d) and p(J).

ababab

baba
e.g. 0:=aba

aba

ba

b

then

aaa J

aa
n(d)=aa = =(3,2,2,2,1)
aa

is the Young diagram of BA€L(U) and

bbb |

bb
p(0)=b = =(3,2,1,1,1,1)

.

b

b —

is that of ABeL(V).
4.4. One should make three remarks:

Remark 1. Not all pairs of Young diagrams describing a nilpotent orbit in L(U)
and one in L(V) are associated to some nilpotent pair. Furthermore, there can
be different nilpotent pairs giving rise to the same pair of Young diagrams.

Remark 2. For a nilpotent pair (4, B) with ab-diagram 6 one can immediately
verify the following:

i) A is injective if and only if every ab-string in 6 ends with b.
ii) A is surjective if and only if every ab-string in é starts with a.
iii) B is injective if and only if every ab-string in 6 ends with a.
iv) B is surjective if and only if every ab-string in § starts with b.

Remark 3. For any ab-diagram 6 we denote by X its orbit in L (under the group
GL(U) x GL(V)). We have the two maps

X;—— Cn(a)

p(d)
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induced by = and p (2.2) which are fibrations (being of the form G/H — G/H' with

closed subgroups HSH'cG:=GL(U) x GL(V)). In particular ' and p' are
smooth.

5. Nilpotent Strings, Proof of Lemma 3.7
5.1. We want to go back to the basic variety Z (3.2) formed by strings

Ag=0 A, A, Ae—y
a: Uy=0 > U, U,= Uy..U,_ e=—=1,
Bo=0 B, B; Be-1

with the conditions B, ; A;,,=A;B; for i=0,1,...,t — 2. Let us indicate by Y, = {0},
Y, Y,,..., Y, the (finite) sets of diagrams indexing nilpotent conjugacy classes in
L(U,), L(U,),...,L(U,) respectively and by ¥,, ¥,,..., ¥,_, the (finite) sets of ab-
diagrams indexing conjugacy classes of nilpotent pairs in

L(U,, U,) xL(U,, Uy, L(U,, U,) x L(U,, U,), ...,
L(Ut—l’ Ut) X L(Un Ut— 1)

respectively. We have the already described maps associated to the two compo-
sitions (cf. 4.3):

L3

Yo mo lp() PO Y1 . 'Ill P1 Y2

L) Pt~
« Y, Y, e oW Y

We can form the iterated fiber products and construct the finite set A of strings
A=(0¢,0,,0,,...,0,_;) of ab-diagrams J,€ ¥; with

piB)=m,, (8., ), i=0,1,...,t—2.

For each AeA we have a stratum Z, of the variety Z: Z, is the set of all points

Ao Ay — Ac-1
a: 0=U, U+—=U,2..2U_,«—=10,
Bo By Be-1

of Z such that for each i the nilpotent pair (A;, B;) has ab-diagram 6.

Put ¢;:=p;, ,(6;_,), i=1,2,...,t and let us indicate as usual by C, the
conjugacy class of diagram ¢; and by X the nilpotent pair orbit of diagram 9.
The definition of A implies that we have a fiber product diagram subordinate to
the basic diagram constructing Z:
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Z,=Z,(Lt)——..—Z,(LH—Z,(1,3)—— X; —— C,,=(0)

zZ,2,t)——..—Z,2,4— X, ——C

X§3 - CGJ

in which each map is smooth (4.4 remark 3). Hence we get the following
proposition:

Proposition. (i) Z, Is a locally closed, G-stable, smooth and irreducible subvariety
of Z.
(ii) The set A indexes a stratification of Z into smooth G-stable strata.

5.2. The following result now clearly implies lemma 3.7.
Lemma. For all ieA either Z,<Z° or dimZ,<dim Z —2.

The proof will be given in 5.4, 5.5, 5.6 using the following dimension formula
for nilpotent pair orbits.

5.3. Proposition. Let X =X,cL(U, V) x L(V,U) be a nilpotent pair orbit project-
ing to the nilpotent conjugacy classes C, <L(U) and C,<L(V). Then
dim X;=4(dim C, +dim C,)+dim U -dim V- 4,
A:=Y a;b,

iodd

where a; (resp. b;) denotes the number of ab-strings of length i starting with a (resp.
with b).

Proof. The representation of GL(U)x GL(V) on L:=L(U,V)xL(V,U) is a ©-
group in the sence of Vinberg [17] (cf. also [12]): Consider the automorphism &
. 1d 0
of End(U@V) (and of GL(U@YV)) given by conjugation with J = ( OU 1d );
- 14
then GL(U)x GL(V) is the fixed point group and LcEnd(U®V) the (—1)-
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eigenspace of @. Furthermore we have the following relation between the
dimension of X and the dimension of the conjugacy class CcEnd(U@V)
generated by X:

dimX=34dim C

(cf. [17] §2.5 Proposition S5, or [12] 1.3 Proposition 5). In order to calculate
dim C denote by r, resp. s; the number of a’s resp. b’s in the i row of the ab-
diagram ¢ associated to X. Then the partition of the nilpotent conjugacy class C
is given by (p,,p,,...), p;: =t +s;, hence

dim C=(n+m)?> -} min(p;, p))
i
(1.3 Proposition b), n:=dim ¥, m:=dim U). By definition we have |r,—s,/ <1 and
therefore min(p;, p;)=min(r,r)+min(s;, s;) except in the case p;=p odd, r,=s;
and r;=s;, where min(p;, p;)=min(r, r;) + min(s;, s;) + 1. This implies

dim C=(n+m)*> =Y min(r,r)+Y min(s,s)+2- Y a;b,
i,j ij iodd
=dim C, +dim C, +2nm—24,

hence the required dimension formula.? qed.

Now let ied, A=(dy,...,0,_;) and A'=(dg,...,0,_,). Set o=p,_(6,_,), 0
t

-1

=p,_,(8,_,), and 4,= Y 4, 4, the 4 associated to J,.
i=0

t—1
Corollary. dimZ,= Y n;n;, +3dimC,—4,.
ti=1

Proof. We have the fibre product diagram

zZ, —2Z,,

Xs ,—C,

C

Now the proposition implies
dim X,  =%(dimC,+dimC,)+dimU,-dimU,_,—4,_,,
so we have by induction:

dimZ,=dimZ, +dim X,  —dimC,
t—2
=Y ngn,+3dim C, +3(dim C,. +dim C,)
i=1

1

This proof was suggested by G. Kempken; it replaces a explicit but lengthy calculation of
stabilizers we have made.
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+n,_yn—dimC, -4, ,
t—1

=Y mn;,,+3dimC,—4,. ged.
i=1

5.4. We now look, in view of corollary 5.3, at the projection @: Z — —C—,, (3.4) and
try to study the various strata Z; which lie on top of a given orbit C, in C,.
First of all analyze the open orbit C,: we have to describe the strings 4
=(0¢,04,...,9,_4) which lead to p,_,(6,_,)=n. We claim that there is only one
such string.

Let us take in general a Young diagram ¢ and let ¢’ be the diagram obtained

from o erasing the first column. We want to find an ab-diagram such that the a-
diagram and b-diagram associated are ¢’ and o.
Given o (as b-diagram) and a certain number m of a’s, to construct an ab-
diagram over ¢ one has to proceed as follows: First of all every b-string of ¢ has
to be filled internally with a’s. This requires altogether as many d’s as the
number of boxes m' in ¢’. If m is equal to m’ the ab-diagram J over ¢ is unique,
its associated a-diagram is ¢’, and every ab-string of ¢ starts and ends with b. If
m<m' there is no ab-diagram over o¢. If m>m’, after having used the m’ a’s, one
can utilize the remaining m—m’ @’s in many ways: add an a at the beginning or
the end of an ab-string or create a row with single a.

bbbbb
bbb
Example: o=bbb =(5,3,3,2,1), mM"=9;
bb
b

the unique ab-diagram with m=9 a’s is

babababab

babab
d=babab

bab

b

associated to ¢ and

aaaa
aa

n(0)= =0
aa
a

If we give m=10 a’s (for instance) one easily sees that it is possible to construct
11 ab-diagrams over o, if m=11, we can construct 56 ab-diagrams etc.
Summing up the result we see by induction that there is a unique string A°
=(89,89,...,8°_,) such that p,_,(8° ,)=n=n,. For this string we have p;(3})
=1, for all i. Since every ab-string in each &? starts and ends with b, it follows
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from 4.4 remark 2 that Z,,=Z° (Z,0=Z' with the notations of remark 3.6).
Hence we get the following result:

Lemma. There is a unique string A°=(39,69, ...,67_,) such that p,_,(8°_ )=n=n,.
For this string we have Z,,< Z°.

5.5. We now make a further simple remark. By 3.6 and 3.1 we have

t—1 t—1 t—1 t—1
dimZz°=2Y nn,,  — Y n}= Yomn g+ 2 mi(ng, —n)
i=1 i=1 i=1 i=1
t—1 t—1
= Zl nn g+ pibj=) mn, +3dim C,
i= i<j i=1
Now if A+ 1°, Z, projects to some orbit C, with ¢ <# and thus dim Z, <dim Z°
(Corollary 5.3). This implies (as one can also verify directly) that dimZ,,
=dim Z° and Z,, is the unique open orbit of G acting on Z. The same estimate
shows that, if dim C,<dim C, —4, then dimZ, <dim Z°-2.

To complete the proof of 5.2 we are thus restricted to analyze the strings A
such that Z, projects to some C, with dim C,=dim C, —2. In each degenera-
tion the dimension of a nilpotent orbit decreases by at least 2 (since the orbits
are even dimensional, see proposition 1.3b). Thus the only case in which we may
have dim C,=dim C, —2 is if the diagram ¢ is obtained from # moving down a
single box (Proposition 1.2). The explicit dimension formula (Proposition 1.3b))
shows, in fact, that the only case is to move a box down to the next row. Given
such a ¢ we must study which strings (6,,9,,...,9,_,) lead to p,_,(5,_,)=0.

5.6. We analyze inductively this problem as before and claim that the analysis
restricts to the following problem:

Given a diagram n, let #' be obtained from n removing the first column, and let
o be a one step degeneration of n (obtained by moving down one box to the next
row). We must study the ab-diagrams 6 such that p(d)=a¢ and n(8) <#n’ (n(d) and #’
with the same number of boxes).

We follow the same analysis as before, letting m be the number of boxes of 1'.
Let ¢’ be obtained from o erasing the first column and m’ its number of boxes.
We have clearly the two possibilities m=m' and m=m’'+ 1.

Case I: m=m'; this case is obtained when the box moved in the degeneration
of n to o is attached to a non empty row.

In this case the previous analysis (5.4) shows that i) there is a unique ab-
diagram 6 over o, ii) J is associated to ¢,0" and ¢’ is a one step degeneration of
#', and iii) every ab-string of & starts and ends with b.

Case 11: m=m' +1; this case is obtained when ¢ is gotten from n splitting off
one box from the last row (to form a new “one box” row). In this case the
previous analysis shows that, to form an ab-diagram & over ¢, we are forced to
place m’ a’s; the remaining single a can be placed only in the last two rows or by
itself since we must preserve the condition n(d)<n#'.
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Let us consider thus the last two rows; after filling with m’ of the a’s they are:

babab...ab
b

For the remaining a we have S choices:

(o) and (o): We attach a to the row bab...ab either to the right or to the left.
In this case the ab-diagram o represents a pair in which one of the two maps has
maximal rank. The associated a-diagram is just 7.

(p) and (f'): We attach a to the row b left or right. In this case the ab-
diagram o represents also a pair in which one of the two maps has maximal
rank. The associated a-diagram is a one step degeneration of #'.

(y): We create a new row consisting of the remaining a. In this case the
associated a-diagram is a one step degeneration of 7" but neither map in the
nilpotent pair has maximal rank. On the other hand for this ab-diagram we
have, in the notations of 5.3 a, =b, =1 and hence 4=1. For the corresponding
nilpotent pair orbit we have thus the dimension

dim X;=%(dim C,. +dim C,)+dim U -dim V—1.

Summing up all this analysis we see by an easy induction, that we have proved:
If Z, projects to C,, o a one step degeneration of v, then either
z,c72°

or
t—1

dimZ,< ) mn;, +3dimC,—1<dimZ°-2.
i=1

This completes the proof of 5.2.

5.7. Remark. The only place in which we have used characteristic zero, apart
from the implication normal = Cohen Macaulay, was in the proof of proposi-
tion 3.4, where we used the following fact: If V is a affine variety on which a
reductive group G acts and W a closed subvariety invariant under G, then the
induced map W/G — V/G is a closed immersion (cf. 1.4a)). In characteristic p>0
one can only say that this map is finite and injective, i.e. W/G is purely
inseparable over its image (cf. [21]§4).

6. An Application to Tensor Representation

6.1. We present here the application due to Th. Vust announced in the introduc-
tion. Let AeEnd(U) be a matrix, G, the centralizer of A in GL(U). We consider
the action of G, on the tensor space U®™ and wish to compute Endg ,(U®").
One knows that Endg, ,(U®™) is spanned by the symmetric group &, acting
on U®™ in the obvious way (cf. [2], [18]). Now clearly the endomorphisms
A A" ®...® A'eEnd(U®™) also commute with G, and we have:
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Theorem (Th. Vust). The algebra EndGA(U®"‘) is spanned by the elements
o A"®..@A", €S, hy,... h,eN.
The proof will require some lemmas (mostly well known).

6.2. Let V be an affine variety, G a reductive group acting on V, W<V a G-
stable closed subvariety, M a linear representation of G and ¢: W—M a G-
equivariant morphism.

Lemma 1. There exists a G-equivariant morphism &: V— M extending ¢.

Proof. Let K[U], K[W] be the coordinate rings of V; W. A G-equivariant
morphism ¢ from W to M is given by an element ue(K[W]® M)®. To extend ¢
to V is equivalent to lift u to (K[V]® M), and this is a simple consequence of
linear reductivity. qed.

6.3. Let V be as before, G:=GL(V). We take now W to be the closure GA of an
orbit GA for an element AeV. We assume:

i) diin(G_A—\ GA)<dimGA -2,

ii) GA is a normal variety.

Let G, denote the stabilizer of A4 in G and M be again a linear representation
of G.

Lemma 2. If BeM is invariant under G ,, then under the condition i) and ii) there
exists a G-equivariant morphism ®: V— M such that ¢(A)=B.

Proof. First of all we construct a morphism ¢: GA— M given by gA+>gB; this
is well defined since Be M¢4. The two hypotheses i) and ii) on GA imply that ¢
extends (uniquely) to a G-equivariant map ¢': GA — M. Finally taking W=GA
and applying lemma 1 we have the required conclusion. ged.

6.4. We now want to apply these lemmas to the following set up: M:=End(U®™)
=End(U)®", AeEnd(U) the given matrix, BeEndGA(U@)"'), V:=End(U). To
finish our proof it only remains to explicit the set of G-equivariant maps @:
End(U)— End(U)®™. This set can be easily computed (cf. [15]). We need two
lemmas for which we refer to the literature.

Lemma 3 ([10] Lemma 4.9, [15] Theorem 1.2). Let 6€S,, be decomposed into
cycles: a=(i;iy...0) (j1jp---J,).--(t, t5...t) (including cycles of length one), and
Y=X,®X,®...®X,eEnd(U)®™. Then

Tr(o-Y)=Tr(X;, X,,... X;) Tr(X;, X, X,) .. Tr(X,, X,,... X, ).

Lemma 4 ([16] Theorem 1, [15] Theorem 1.3). The ring of invariants of the space
of m-tuples of matrices (X,,X,,...,X,,) under simultaneous conjugation under
GL(U) is generated by the invariants

Tr(X,, X,,...X,), keN, v,,...,v,€{l,2,...,m}.

6.5. Let us now look at the space L of G-equivariant maps ®@: End(U) — End(U)®™
Clearly L is a module over the ring R of invariants of End(U).
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Proposition. L is spanned, as an R-module, by the maps of type:

X0 X"@X"®...@ X", €S, heN.

Proof. Let @: End(U) — End(U)®™ be a G-equivariant map. We introduce m new
variables Y, Y,,..., Y, in End(U) and construct a function ¥ on End(U)"*! by
setting

Y(X,Y,,Y,,... V) =Tr(®X) V,®Y,®..0Y,).

By the non degeneracy of the trace form the mapping @+ ¥ is an injection from
L to the space of invariants of X, Y,,Y,,..., Y, which are linear in Y, Y,,..., Y, .
Now by lemma 4 such invariants are of type

Y (X)-Tr(X" Y, X" Y, .. X" Y,)- Te(X?' Y, X7 Y,,..)...
LTrX Y, XY, .)  (((X)eR).

The previous lemma 3 shows then that any such invariant is of type
Tr(@(X)- Y,®Y,®...®Y,), where ¢(X) is a linear combination with coef-
ficients in R of the special maps X0 -X"® X" ® ... ® X" The previous
remark about the injectivity of @+— ¥ completes the proof. qed.

6.6. We now sum all our work and prove the main theorem 6.1:

Let BeEndg (U®™)=(End(U)®™)%4; we have seen that there exists a G-
equivariant map @:End(U)— End(U®™) such that ®(4)=B. By the previous
proposition 6.5 we know all equivariant maps. The very formula given by the
proposition implies immediately the theorem. qed.
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