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The Coxeter element and the branching law for the

finite subgroups of su(2)

BERTRAM KOSTANT*

0. Introduction

0.1. Let I be a finite subgroup of SU(2). The question we will deal with in this
paper is how an arbitrary (unitary) irreducible representation of SU(2) decomposes
under the action of I'. The theory of McKay assigns to I' a complex simple Lie
algebra g of type A— D — E. The assignment is such that if [ is the unitary dual of I'
we may parameterize r by the nodes (or vertices) of the extended Coxeter-Dynkin
diagram of g.

Let £ = rankg and let I = {1,...,¢}. Let I.,; = I U{0}. The nodes may be
identified with a set of simple roots of the affine Kac-Moody Lie algebra associated
to g and are indexed by I.,;. We can then write I' = {v;}, 7 € I.p¢. Let II =
{a;}, i € I, be the set of simple roots of g itself. One has 7 is the trivial 1

dimensional representation of I' and, for ¢ € I,
dim’yi = dz (Ol)

where

’QZJ == Zdz (673 (02>

is the highest root. For proofs and details about the McKay correspondence see

e.g. [G-S,V], [M] and [St].
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0.2. The unitary dual of SU(2) is indexed by the set Z, of nonnegative integers

and will be written as {m,}, n € Z, where
dimm, =n+1 (0.3)
Our problem is the determination of m,, ; where n € Zy, i € I, and
my, ; = multiplicity of ~; in =, |I’
It is resolved with the determination of the formal power series

m(t)z = Z Mp g t" (O4>
n=0

To do this one readily notes that it suffices to consider only the case where I' = F'*
and F* is the pullback to SU(2) of a finite subgroup F' of SO(3). This eliminates
only the case where I' is a cyclic group of odd order and g is of type Ay where ¢ is

even. For the remaining cases the Coxeter number h of g is even and we will put
g="h/2 (0.5)

Also for the remaining cases there is a special index i, € I. If g is of type D or E
then «;, is the branch point of the Coxeter-Dynkin diagram of g. If g is of type Ay
then «;, is the midpoint of the diagram (recalling that ¢ is odd).

If i = 0 the determination of m(t)q is classical and is known from the theory

of Kleinian singularities. In fact there exists positive integers a < b such that

1+¢th
(1 —t2)(1—tb)

m(t)o = (0.6)

The numbers a and b in Lie theoretic terms is given in

Theorem 0.1. One has a = 2d;, and b is given by the condition that
ab=2|F"|
= 4|F]
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It remains then to determine m(t); for i € I.

Proposition 0.2. Ifi € [ there exists a polynomial z(t); of degree less than h

such that
Z(t)l
(1 —to)(1—t")

m(t); = (0.7)

The problem then is to determine the polynomial z(¢);. This problem was
solved in [K] using the orbits of a Coxeter element o on a set of roots A for g.
In the present paper we will put the main result of [K] in a simplified form. See
Theorem 1.13 in the present paper. Also the present paper makes explicit some
results that are only implicit in [K]. For example introducing II (see (1.10)) and
making the assertions in Remark 10 and Theorems 8, 9, 11 and 12.

The set IT generates a system, A, of posiive roots. The highest root ¢ € A
defines a certain subset ® C A, of cardinality 2h — 3. Because of its connection
with a Heisenberg subalgebra of g this subset is referred to as the Heisenberg
subsystem of A, . The new formulation explicitly shows how the polynomials z(t);

arise from the intersection
(orbits of the Coxeter element o) N (the Heisenberg subsystem ®) (0.8)

The polynomials z(t); are listed in [K]. The special case where g is of type Eg
is also given in the present paper (see Example 1.7.). Unrelated to the Coxeter
element the polynomials z(t); are also determined in Springer, [Sp]. They also
appear in another context in Lusztig, [L1] and [L2]. Recently, in a beautiful result,

Rossmann, [R], relates the character of 7; to the polynomial z(t);.

1. The main result - Theorem 1.13.

1.1. Proofs of the main results stated here are in [K].
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Let F be a finite subgroup of SO(3) and let
F* c SU(2) (1.1)
be the pullback of the double covering

SU(2) — SO(3)

—

The unitary dual SU(2) of SU(2) is represented by the set {m,}, n € Z, where if

S(C?) is the symmetric algebra then
7, SU(2) — S™(C?)

is the n+1 dimensional representation defined by the natural action of SU(2) on C2.
We are ultimately interested in determining how the restriction m,|F* decomposes
into irreducible representations of the finite subgroup F*, for any n, and relating
this determination to the structure of the simple Lie algebra corresponding to F™*
by the McKay correspondence. We now recall this correspondence.

Let g be a complex simple Lie algebra and let h be a Cartan subalgebra of g.
Let £ = rank g, and if ' is the dual space to b, let A C h’ be the set of roots for the
pair (g,h). Let W, operating in ', be the Weyl group. Let II be the set of simple
positive roots with respect to a choice, A, of positive roots. If I = {1,...,¢} we
will write IT = {a;}, i € I. We may regard II as the vertices (or nodes) of the
Coxeter-Dynkin diagram associated to g. The extended Coxeter-Dynkin diagram
has an additional node «g.

The McKay correspondence assigns to F'* a complex simple Lie algebra g =
w(F*) of type A — D — E. The assignment has a number of properties: (1), the
unitary dual I~ may be parameterized by indices of the nodes of the extended
Coxeter-Dynkin diagram of g. In particular card F* = £+1 and we can write F* =
{vi}, i € Iext = T U{0}. Next (2), vo is the trivial 1-dimensional representation,
and if ¢ € I, then

dim Yi = dz
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where
l
Y= Z dioy;
i=1

is the highest root in A. In addition (3), if 7y is the two-dimensional representation

defined by (1.1) and A is the (¢ 4+ 1) x (£ + 1) matrix defined so that

y4
% ®Y =Y Ay (1.2)
j=0

then C is the Cartan matrix of the extended Coxeter-Dynkin of g where

Cij = 2(52‘3‘ — Aij

1.2. Returning to our main problem, for ¢ € I.,; and n € Z,, let
my, ; = multiplicity of v; in m,|F*
and introduce the generating formal power series
m(t); = i My i 1"
n=0

If i = 0, the determination of m(t); is classical and is known from the theory of

Kleinian singularities. That is, in this case
Mo = dim (S™(C))F"
In fact let h be the Coxeter number of g so that
l(h+1)=dimg

Then there exists positive integers a < b such that

1+¢th
(1 —t2)(1—tb)

m(t)o =
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To define the numbers a and b in Lie theoretic terms one notes that u(F*) is of
type D, E or Ay where £ is odd. In any of these case there is a special index i, € I.
If u(F*) is of type D or E, then «;, is the branch point of the Coxeter-Dynkin
diagram of g. If u(F™) is of type Ay, then «;, is the midpoint of the diagram (recall

that ¢ is odd in this case).

Theorem 1.1. One has a = 2d;, and b is given by the condition that

ab=2|F*"|
(1.4)
=4|F

See Lemma 5.14 in [K]. The cases under consideration are characterized by the

condition that h is even. We put g = h/2. The parity of g will play a later role.

Remark 1.2. One proves (see Lemma 5.7 in [K]) that b may also be given by

b=h+2—a (1.5)

so that b, as well as a, is even.

The following table lists the various cases under consideration. In the table

A, is the dihedral group of order 2n.

F g a b h g

L, Aopq 2 2n 2n n

A, Do 4 2n 2n + 2 n+1
Alty Eg 6 8 12 6
Sym4 E7 8 12 18 9
Altg Eg 12 20 30 15

Proposition 1.3. There exists a unique partition

Il = II; UL, (1.6)
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such that if k = 1,2 and «;, o, € 1}, where i # j then oy is orthogonal to o;.
Furthermore all the roots in Iy are orthogonal to the highest root 1, or equivalently

the root g is orthogonal to all the roots in 1ls.
One has the disjoint union I = I1 U Iy where, if k € {1,2}, Il = {a; | i € I} }.

Remark 1.4. It is immediate from (1.2) that if A;; # 0 and i € I}, then j is
in the complement of I} in I. It then follows that +; descends to a representation

of F' (i.e., v;(—1) = 1) if and only if £ = 2. In particular

my,; = 0 if n and k have opposite parities where «; € IIj. (1.7)

If ¢ € I let s; € W be the reflection defined by «; so that s; commutes with s;

ifi,j € Ir, k € {1,2}. Put 74 = [[;c;, si- Then

=12
= identity

One defines a Coxeter element o € W by putting

o=ToTy (1.8)

Remark 1.5. Every element in W is contained in a dihedral subgroup of
W. Since, as one knows, the centralizer of a Coxeter element is the cyclic group
(necessarily of order h) generated by the Coxeter element, a dihedral group con-
taining the Coxeter element is unique. It is clear that 71 and 75 are in the dihedral
group containing ¢ and, in fact, are in the complementary coset of the cyclic group

generated by o.

As a extension of (1.3) one knows (see (5.7.2) in [K]) that for any i € I there

exists a polynomial z(t); of degree less than h such that

) (1.9)
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so that m(t); is known as soon as one knows the polynomial z(t);.

Remark 1.6. Note that by (1.6) and evenness of a and b (Remark 1.2) one
must have that the only powers of ¢ which have a nonzero coefficient are odd if

1 € I, and even if 1 € I5.

Example 1.7. Consider the case where F is the icosahedral group so that
pu(F*) = Eg. In the listing of z(t); below we will replace the arbitrary index i by
the more informative {d;}. Since there exists in certain cases two distinct 7,j € I
such that dimy; = dim; we will write @ for j when the “distance” of a; to ayg

is greater than the “distance” of a; to ag. Note that d;, =6

2(t) g2y =t + 1+ 119 412

2(t) 3y = 2 + 110+ 12 4 418 420 4 428

2(t) 4y = $3 9 1l 13 1T 419 4 21 427

2(t) 5y = 4+ 15 + 110 4 £12 4 414 4 416 4 418 4 420 4 422 4 426
2(t) oy = 17 + 17 4+ 19 + #11 #1834 2415 4 417 4419 4 421 4 423 4 425
2(t)ay = 16+ 15 + 112 4 414 4 416 4 418 422 4 g2

2(t)qay =7+t + 17 78

2(t)qzy = 10 + 10 4 14 4 16 4 420 4 424

We now modify II by defining
I={3|icl} (1.10)

where 6; = «; if 1 € I} and §6; = —ay if i € I5. Let Z C W be the cyclic group

generated by the Coxeter element o. Recall (h + 1) ¢ so that

card A = ht (1.11)



We have shown that o has £ orbits in A, each with h-elements, and that each orbit

contains a unique element of II. That is, one has

Theorem 1.8. For any i € I the o-orbit Z - 3; has h elements and one has

the disjoint union

A=t Z-p; (1.12)
This result is readily proved using (6.9.2) in [K].
Forany i€ Ilet (Z-3;)+ = Ay NZ-B;. One has (see (0.5))

Ay =gl (1.13)

Theorem 1.9. For any i € I one has card (Z-3;)+ = g and the disjoint union

Ay =Uier (Z-Bi)+ (1.14)

It follows from (5.6.2) in [K] that (see (0.5))

a;, €1y if g is even and «;, € 11 if g is odd. (1.15)

Let k be the long element of the Weyl group. One has (see Lemma 4.9 in [K])
the following result of Steinberg:
o9 =k (1.16)

so that Kk € Z.

Remark 1.10. Recall that 1) is the highest root. It is a consequence of (5.6.2)
in [K] that one has ¢ and 3;, are in the same o orbit. In fact if g is odd then

o' () = B,
(1.17)

= Oéi*



and if g is even then

ot () = B,
(1.18)
= _Oéi*
One easily has that 09 commutes with 71 and 75 so that, for k € {1, 2},
o9(Ily) = — (1) (1.19)
Furthermore since k(1)) = — one has that
o (i,) = —a, (1.20)
so that in any case
Y and «;, lie in the same o-orbit (1.21)

1.3. We come now to the main result—the determination of z(¢); in terms of
the orbit structure of o on A. For any ¢ € Ay let i, € I be defined so that (by

Theorem 1.9)

pe(Z Bi,)+ (1.22)

But then there exists k, € {1,2} such that
iy € In, (1.23)

The following result follows from (6.9.2) in [K].

Theorem 1.11. Let ¢ € Ay. Then there exists a unique positive integer n(p)

where 1 < n(p) < h with the same parity as ky, such that if k, =1 then

n(p)—1

T (p) = B, (1.24)
If k, = 2 then
o () = B, (1.25)
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One also has (see Remark 6.10 in [K])

Theorem 1.12. For any i € 11 the map

(Z'Bi)-l-_){ovlw"?g_l}v Y=

s a bijection and for any i € Iy the map

(Z-Bi)+ —{1,...,9}, ¢+_9B£f2

1 a bijection.

(1.26)

(1.27)

Let (¢,¢’) be the restriction to A of the W-invariant bilinear form on b’

induced by the Killing form on g. Let ® = {¢o € A | (¢,¢) > 0}. One easily has

that ® C A,. Obviously ¢ € ®. One has

card® =2h — 3

(1.28)

Because of its connection with a Heisenberg subalgebra of g we refer to & as the

Heisenberg subsystem of A, . For i € I let ®* = ® N (Z - [3;)4+. Our main result is

Theorem 1.13. Leti € I — {i.}. Then
A= 3
pED!
Furthermore

card ®' = 2d;

In addition all the coefficients of z(t); are either 1 or 0 so that

For i =1, one has

2(t), =29+ Y ")
PED, pFY
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(1.30)

(1.31)

(1.32)



In addition the coefficient of t9 is 2 and all the other coefficients of z(t);, are either

*

0 or 1. One also has
Z(l)i* = Qdi*
(1.33)

=a

Finally

Z(t)i* — t9—at2 + t9—at4 R t9—2 L 2¢9 $9+2 R t9ta—4 + pgta—2 (134)

Theorem 1.13 combines Theorem 6.6 and Lemma 6.14 in [K]. We note also that
the expression (1.32) for z(t);, in Theorem 1.13 follows from the proof of Theorem

6.6 in [K] (see especially (5.8.1) in [K]).
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