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Discrete decomposability of the restriction of A,~(2) 
with respect to reductive subgroups and its applications 
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Japan 

Oblatum 3-IV-1993 

Summary. Let G' ~ G be real reductive Lie groups and q a 0-stable parabolic subalgebra of 
Lie(G) | C. This paper offers a sufficient condition on (G, G', q) that the irreducible unitary 
representation A~ of G with non-zero continuous cohomology splits into a discrete sum of 
irreducible unitary representations of a subgroup G', each of finite multiplicity. As an application 
to purely analytic problems, new results on discrete series are also obtained for some pseudo- 
Riemannian (non-symmetric) spherical homogeneous spaces, which fit nicely into this framework. 
Some explicit examples of a decomposition formula are also found in the cases where An is not 
necessarily a highest weight module. 

0 Introduction 

Our object of study is the restriction of a unitary representation A,~()+) of a rear 

reductive linear Lie group G with respect to its reductive subgroup G'. Here A,I(2 ) 
denotes the Hilbert completion of an irreducible unitary (g, K)-module &1(2) 
attached to an integral elliptic orbit Ad*(G)2 c 9" in the sense of Vogan-Zucker-  
man, which is a vast generalization of Borel-Weil-Bott 's  construction of finite 
dimensional representations of compact Lie groups. It is well-known that the 
following (g, K)-modules are described by means of A,~(2) or its coherent family in 
the weakly fair range (see IV3, Definition 2.5]; w 

(0.1)(a) representations with non-zero (g, K)-cohomology which contributes the de 
Rham cohomology of locally Riemannian symmetric spaces by Matsushima's 
formula (see [BOW, VZ]), 
(0.1)(b) discrete series for semisimple symmetric spaces (see [F  J, Chap. VllI,  w 
V3, w which include Harish Chandra's discrete series for group manifolds, 
(0.1)(c) 'most of '  unitary highest weight modules of classical groups [A2]. 

Suppose G' c G are Lie groups, X is a G-space and X '  is a G'-space. Then 
a representation theoretic counterpart  of an equivariant morphism f :  X '  - ,  X is 

*The author is supported by the NSF grant DMS-9100383. 
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the pullback of function spaces f * :  F (X) -,  F(X'), where the restriction of repres- 
entations of G with respect to G' naturally arises. If An(2 ) is realized in a function 
space F(X) as in (0.1)(a) and (b), it is natural to ask the restriction formula 
(branchin9 rule) of An(2)l~, into irreducible representations of G'. So far, the 
following special cases of the restriction of An(2 ) with respect to reductive sub- 
groups have been achieved (see also Examples 4.5 and 4.6): 

(0.2)(a) G is compact. A classical (but still active) study of branching rules of finite 
dimensional representations of compact Lie groups ('breaking-symmetry' in phys- 
ics) is to find explicit restriction formulas with respect to various subgroups. 
(0.2)(b) G" is a maximal compact subgroup of G. An explicit decomposition 
formula is known as a 9eneralized Blattner formula (see [HS; V 1 Theorem 6.3.12]). 
(0.2)(c) A n ()3 is of a highest (or lowest) weight. An explicit decomposition formula 
is found (e.g. [M, J, JV]) in the cases where An(2 ) is holomorphic discrete series 
with some assumption on G' (see the condition (4.1)(a)'). 

However, one can observe that the restriction of An(2) with respect to G' may 
have a wild behavior in general, even if G' is a maximal reductive subgroup in G, 
involving the following cases: 

(0.3)(a) The restriction is decomposed into only the continuous spectrum with 
infinite multiplicity (e.g. a tensor product of principal series of simple complex 
groups other than SL(2, IE); see [GG, Wi]). 
(0.3)(b) The restriction is decomposed into the continuous spectrum with finite 
multiplicity and at most finite many discrete spectrum (possibly no discrete 
spectrum) (e.g. the tensor product of a holomorphic discrete series and an anti- 
holomorphic discrete series [R]). 
(0.3)(c) The restriction is decomposed into countably many discrete spectrum with 
finite multiplicity (see w w w 
(0.3)(d) The restriction is still irreducible (e.g. Theorem 6.4). 

For a fruitful study of the restriction of An(2) with respect to a reductive 
subgroup in a general setting, we first want to find a good framework, where we can 
expect to obtain explicit and informative branching rules which are not only 
interesting from view points of representation theory but also applicable to har- 
monic analysis as in the situations of (0.1)(a) and (b). For this purpose we focus our 
attention to the case where the restriction is an 'admissible' representation. Here, 
we say a unitary representation (n, V) of G is G-admissible if (re, V) is decomposed 
into a discrete Hilbert direct sum with finite multiplicities of irreducible representa- 
tions of G. Previous examples (0.3)(c) and (d) are the case. Successful theories 
(0.2)(a) ~ (c) are also the case. One of the advantages of admissibility is to allow one 
to study algebraically the objects in which such representation (n, V) occurs. We 
also illustrate this in some other familiar results which have laid important 
foundations on the study of locally symmetric spaces (e.g. [BOW, VZ]), algebraic 
study of Harish-Chandra modules (e.g. [V1]). 

(0.4)(a) (induction) Let F be a cocompact discrete subgroup of G. Then the 
L2-induced module L2-Ind~(1)=L2(G/F) is G-admissible (Gelfand and 
Piatecki-Sapiro, [GGP, Chap. I, w 
(0.4)(b) (restriction) Let K be a maximal compact subgroup of a reductive linear 
Lie group G and (n, V) an irreducible unitary representation of G. Then the 
restriction (nIK, V) is K-admissible (Harish-Chandra). 
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(0.4)(c) (restriction) The restriction of the Segal-Shale-Weil representation ~pp 
with respect to dual reductive pair G' = G'I x G2 with G2 compact is G'-admissible, 
yielding Howe's correspondence (e.g. [Ho, KV, All) .  

Suppose G' c G are real reductive Lie groups and q is a 0-stable parabolic 
subalgebra of g = Lie(G) |  r Now, our main interest is the G'-admissibility of 
the restriction of A~(2). Naively, the representation Am(). ) should be 'small' and the 
subgroup G' should be 'large' for the G'-admissibility of the restriction 

-Aq(2)jc,,. Though previous examples (0.2) imposed strong assumptions on either G' 
(compactness) or A,()O (unitary highest weight module), it is more natural to treat it 
as a condition for the triplet (G, G', q). That is, 

Question 0.5 Find a criterion for (G, G', q) assuring G'-admissibility of the restric- 
tion of A,j~,. 

Surprisingly, we shall see there is a rich family of a triplet (G, G', q) such that the 
restriction of A~(2)~ G with respect to G' is admissible. To be more precise, one of 
our principal results in the case where (G, G') is a reductive symmetric pair (see 
Theorem 3.2) asserts: 

if 1R+ ( u  c~ p )  c~ x / ~ ( t ~ ) _  )* = {0}, then the restriction ~ l~  is G'-admissible, 

where IR+ ( u  c~ p ) is a closed cone determined by a 0-stable parabolic subalgebra 
q and x / - 1  (t~_)* is a subspace determined by a symmetric pair (G, G'). Such 
a triplet (G, G', q) is classified when (G, G') is a semisimple symmetric pair with 
G classical [Ko4]. For example, if (G, G') = (U(2, 2), Sp(1, 1)) ~ (SO(4, 2), 
SO(4, 1)), then Theorem 3.2 says that among inequivalent 18 An's of U(2, 2) 
there exist 12Ao's which are Sp(l, 1)-admissible, including 7 modules which do 
not have highest (or lowest) weights (see Example 3.7). In w we discuss another 
case where (G, G') is not necessarily symmetric but satisfies some compati- 
bility condition with g = q generalizing the situation (0.2)(c) (see Theorem 4.1, 
Corollary 4.4). 

Though these are our main results on A, (2), another object of the present paper 
is to study harmonic analysis on spherical homogeneous spaces in connection with 
the restriction of An(2). Here, a homogeneous space G/H is called spherical if 
He has an open orbit on the associated flag variety of Ge. The pairs (G, H) have 
been determined by Kr~imer and by Brion with G compact [Kr2, Br]. These 
include the familiar symmetric spaces, but also some others, such as 
SO(2n + 1)/U(n). A fundamental question in harmonic analysis on homogeneous 
spaces is to determine discrete series (i.e. to determine which homogeneous spaces 
admit discrete series and to classify them if exist), which plays an essential role in 
the Plancherel theorem. This question has been solved for semisimple symmetric 
spaces by Flensted-Jensen, Oshima and Matsuki (see [FJ ]  and the references 
therein), while it remains open for non-symmetric cases except for compact cases 
[Kr l ]  and principal bundles over semisimple symmetric spaces with compact 
fibers IS1, Ko3]. One of the main difficulties in the study of discrete series for 
non-symmetric homogeneous spaces has been the lack of powerful techniques such 
as Flensted-Jensen duality for semisimple symmetric spaces. We have no complete 
answer to this question yet, but our approach here covers various types of 
pseudo-Riemannian spherical homogeneous spaces, determining which of them 
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admit discrete series. For example, we shall prove 

Disc(SO(2p + 1, 2q)/U(p, q)) 4: ~ if and only if (p + 1)q~22E. 

A very special case p = 0 means that there exist (Harish-Chandra's) discrete series 
for SO(I, 2n) with non-trivial U(n)-fixed vector iff n~22E. This is done in w (see 
Corollary 5.6) on the basis of our results on A~(2) in w and w together with deep 
results on discrete series for symmetric spaces due to Flensted-Jensen, Oshima- 
Matsuki and Vogan-Zuckerman. In w we present explicit decomposition formulas 
of some family of A~(2) according to SO(4p, 4 q ) ~  U(2p, 2 q ) ~ S p ( p , q )  and 
SO(4, 3) ~ G2(N), and determine discrete series for indefinite Stiefel manifolds 
U ( p, q)/U ( p - 1, q), Sp(p, q)/Sp( p - 1, q) and non-symmetric spherical homogene- 
ous spaces G2tz)/SU(2, 1) and Gz(z)/SL(3, IR). This immediately amounts to the 
Plancherel formula for these spaces since 'continuous series' for these spherical 
homogeneous spaces are much easier to find thanks to the classical Mackey 
machine. The first example can be obtained as a reformulation of [HT]  (cf. [Ko2] 
for a special case by a different method), and the second one is a joint work with T. 
Uzawa. It is remarkable that the irreducible summands in the restriction formula of 
A~l(). ) = ~ s , ~  ~--~ t , +,(01) (see w for notation) in w may involve different series of 
unitary representations (i.e. those attached to different 0-stable parabolic subalgeb- 
ras q'l . . . . .  q',, of g') such as 

j =  1 ~I'EA~ 

Here C,.?, is weakly fair with respect to q) for any vl j) ~ A i. It can happen that # Aj 
(the cardinality of the parameter set A j) = ~ for some j and # Aj < ~ for the 
other j (and still each Aj meets the good range of parameters). This is a new 
phenomenon which never occurs in (0.2)(a), (b), and known cases of (c). 

Notation. 1N = N+ w {0} and N+ = {1, 2, 3 . . . .  }. 

1 The general case 

Throughout this section let G be a locally compact group of type I in the sense of 
von-Neumann algebras. Suppose (~, V) is a unitary representation of G on the 
(separable) Hilbert space V. A homomorphism between unitary representations of 
G is a E-linear map which respects both the actions of G and inner products. We 
denote by Home the totality of such homomorphisms. Given (r, H~)~G, an 
irreducible unitary representation of G, we write 

V(z) := the Hilbert completion of the sum of f(H~), 

f running through f ~  HomG(H~, V). 

We define a discrete part of the irreducible decomposition of V by 

vd:= ~| v(~) -~ y ~  m(~)(~, He). 
(z,H,)~G (r,H,)~(~ 

Here ~ e denotes a direct sum as a Hilbert space and re(v):= dime Hom~(H,,  V) 
N w { ~ } .  Possibly, Vd = {0} (e.g. G = IR, ~z is the regular representation on 
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V = L2( ]R) ) .  We say (Tz, V) is discretely decomposable if (~, V) is unitarily equiva- 
lent to V~. If G is compact, then (Tr, V) is always discretely decomposable. We say 
(~, V) is G-admissible if the multiplicity m(v) < ~ for any z ~ G. 

The following simple lemma is used both in Theorem 1.2 and in Theorem 5.4. 

Lemma 1.1 Let (g, V) be a unitary representation of G. Assume that there exist a 
closed subgroup K and an irreducible representation z ~ IZ such that V(z) 4:0 and 
m(T) < o~. Then there exists an irreducible closed G-subspace W in V such that W (~) 4: O. 

Proof Select a non-zero subspace E in V(z) which is minimal with the property 
that E is of the form U(v) where U is a closed G-subspace in V (this is possible 
because m(0 < oQ). We put W:= n U~, where the intersection is taken over all 
closed G-subspaces U~. in V such that U~(~) = E. Clearly, W is also a closed 
G-subspace in V such that W(z) = E. Let us show W is irreducible. If this were not 
the case, we would have a direct sum decomposition of two G-invariant closed 
subspaces W = W1 @ W2. Because E = W(O = W1 (~) @ W2 (~) and because of the 
minimality of E, we have either W~(~) = E or W2(z) = E. In either case, the 
minimality of W contradicts to W ~  W~. Hence W is irreducible. [] 

If G is compact, then it is easy to see that K-admissibility implies G-admissibil- 
ity. In the following theorem, we show this without any assumption of the 
compactness. Our idea here parallels a proof of a theorem of Gelfand and Piatecki- 
Sapiro mentioned in (0.4)(a). 

Theorem 1.2 Let (g, V) be a unitary representation oJ" G, and K a subgroup of G. I f  
(~zlK, V) is K-admissible, then (~, V) is G-admissible. 

Proof Using Zorn's lemma, we find a closed G-subspace V' in V which is maximal 
with the property that V' is discretely decomposable. Let us show V ' =  V, or 
equivalently, the orthogonally complementary subspace U of V' in V is zero. If this 
were not the case, there exists ~ K  such that U(T)+ {0}. Applying Lemma 1.1 
to U, we find an irreducible closed G-subspace W in U. Then V' @ W ~  V' is 
discretely decomposable, which contradicts to the maximality of V'. Hence 
V' = V. The statement of finite multiplicity is obvious from that for K in the 
assumption. [] 

In w and w we shall find a sufficient condition assuring the G'-admissibility of 

Aq (2)it, (see w for definition), which is independent of 2. As for the independence of 
the parameter 2 we can go one step further by focusing our attention to coherent 
continuation and representations of Weyl groups on virtual (g, K)-modules (see 
IV2]) based on the following simple observation. 

Corollary [.3 Suppose G is a real reductive Lie group and K '  ~ G' are subgroups of 
G. Let ~z E G. Assume ~IK' is K'-admissible and that ~ ~ G appears in a subquotient ~f  
a coherent family of~z (see [V1, Definition 7.2.5]). Then alG, is G'-admissible. 

Proof We can find a finite dimensional representation ~ of G such that cr appears 
as a subquotient in ~c | ~ because g is K'-admissible and dim ~ < oo, the multipli- 
city of a fixed K'-type occurring in 7z | ~ is finite. Thus cr is also K'-admissible. 
Hence a is G'-admissible by Theorem 1.2. [] 
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2 Notat ion  and preliminaries on A n (2) 

Throughout  this section we suppose that G is a real reductive linear Lie group. We 
fix a Cartan involution 0 of G. Write go for the Lie algebra of G, g = 9o |  • for its 
complexification, K = G o for the fixed point group of 0, and flo = fo + Po for the 
corresponding Cartan decomposition. Analogous notation is used for other 

groups. Now a 0-stable parabolic subalgebra q is given by an element X ~ x / -  1 ~o: 

Definition 2.1 Given an element X ~ x / -  1 t~ o. Let 
L - L(X):= the centralizer of X in G under the adjoint action. 
I = I(X) := the centralizer ofad(X) in .q, 

u - u ( X ) : =  the sum ofeigenspaces with positive eigenvalues ofad(X), 
fi - f i (X) :=  the sum of eigenspaces with negative eigenvalues of ad(X), 
q ~ q(X) := l(X) + u(X). 

Then we have a direct sum fl = fi(X) + I(X) + u(X). Choose an Ad (G)-invari- 
ant non-degenerate bilinear form on go which is negative definite on ~o, and we 
identify [o and [*. Via this identification, we also use the notation 1(2), u(2) and so 

on, if we are given ). ~ x f l -  1 f*. 
The elliptic orbit Ad(G)X --- G/L carries a G-invariant complex structure, with 

the holomorphic tangent bundle T(G/L) given by G • ft. An L-module (~, V~) 
L 

defines an associated holomorphic vector bundle ~ = G x V~ over G/L. As an 
�9 L 

algebraic analogue of a Dolbeault cohomology HJ(G/L, V~) with coefficients in "fJ~, 
Zuckerman introduced the cohomological parabolic induction ~ ,  - (~',I) j ( j  ~ N), 
which is a covariant functor from the category of metaplectic (1,(L c~ K ) - ) -  
modules to that of (.q, K)-modules (/~ is a metaplectic covering of L defined by 
a character of L acting on ^dim,u) (see IV 1, Chap. 6; V2, Chap. 6; Wal ,  Chap. 6]). 
In this paper, we follow the normalization in IV2, Definition 6.20] which is 
different from the one in IV1] by a 'p(u)-shift'. To be more precise, we take 
a fundamental Cartan subalgebra b~( c 1o). Then b~ contains the center 3o oflo and 
t~:= 1~ c~ fo is a Cartan subalgebra of ~o. Fix a positive system 
A + (L t c) = A (f c~ u, tr Suppose W is an (1, (L c~ K ) ~ )-module with 2F ([)-infinitesi- 
mal character 7~(b~) * in the Harish-Chandra parametrization. Following IV3, 
Definition 2.5], we say W is in the good range if 

(2.2)(a) Re(7,  ct) > 0 for any ~EA(u, bc). 

In the case where W is one dimensional, we say W is in the fair range if 

(2.2)(b) R e ( y l ~ , ~ ) > 0  for any ~ A ( n , [ ~ ) ,  

which is implied by (2.2)(a). It is weakly good (respectively weakly fair) if the weak 
inequalities hold. Then the (g, K)-module A,~(2) with the notation in [VZ, w 
is isomorphic to .~(C;.+p(,0) with our notation, where S = d i m e ( u n f ) ,  
p(u) = �89 and tU, + p~,,~ is in the good range of parameters. In particular, 
A n - An(0 ) _~ N~(tl~p~,,~) has the same infinitesimal character as that of the trivial 
representation. For  later convenience, we define a condition (2.2)(c) on W: 

(2.2)(c) 

W is a finite dimensional metaplectic unitary representation of /~ in the 

weakly good range, or in the weakly fair range with dim W =  1. 
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We recall some important results of Zuckerman and Vogan. See IV2, Theorem 6.8] 
for the first statement and the proof of [V1, Theorem 6.3.12] for the second. 

Fact 2.3 Retain the notation as above. Suppose W satisfies (2.2)(c). 
(1) f f  W is infinitesimally unitary, so is ~ ( W ) .  
(2) For K-modules ai (i = 1, 2), we write ~1 < K trz if [al : rt] < [a2 : lt] jor any 
it E I~, where [ai : ~z] is the multiplicity of  ~ occurring in ai- Then .for any j ~ 1N we 
b a d e  

dI~n(W)IK < HJ(K/L, S(n c~ p) | W |  r 
K 

Hereafter, we write ~ ( W )  for the completion of the pre-Hilbert space ;~s(w)  if 
W satisfies the condition in Fact 2.3(1). If Wis in the good range, then ~ ( W )  is 
essentially the same with A,(2) in the sense of [VZ]. In fact, if such W satisfies 
dim W > l, then we can find 

a 0-stable parabolic subalgebra p = m + ix contained in q, 
(2.4) 

with the property that L/ M is compact, 

such that ~ ( W )  is isomorphic to :~s.(Ga) with a metaplectic character K'~ of M by 
using the Borel-Weil-Bott theorem for a compact normal subgroup of a Levi factor 
L and induction by stages IV1, Proposition 6.3.6] with respect to ~ c q c .q. 

3 Discrete decomposability of A,~(2) for a symmetric pair (G, G') 

In this section we give a sufficient condition that the Hilbert completion of 
a unitarizable cohomological parabolic induced is discretely decomposable with 
respect to a symmetric pair (G, G'). 

Suppose that cr is an involutive automorphism of G and that G' is the connected 
component of the fixed points ofa. Then (G, G') is called a reductive symmetric pair. 
Choose a Cartan involution 0 of G so that or0 = 0or. Then OG' = G', K' := K c~ G' is 
a maximal compact subgroup of G' and the pair (K, K') forms a compact symmet- 
ric pair. We write [0e := {X~[0 : a (X)  = + X}. Fix a a-stable Cartan subalgebra 
t~ of t~o such that t~_ := t~ n [o- is a maximal abelian subspace in [o- .  Then we 
have a direct sum t c = G G tL. Choose a positive system s + (l, tL) of the restricted 
root system X(L tL) and a positive system A+(L t ~) which is compatible with 
S+(LtL)  (i.e. if ~ A + ( L t  c) then ~,. E2~(LtL) or ~lt'_ = 0). Let q = l +  u be a 
0-stable parabolic subalgebra of ,q. After a conjugation by an element of K, we may 
and do assume that 

q = q(X) (Notation 2.1), 

with an element X ~ x f ~ t o  (to ~ t~) which is dominant with respect to A + (1~, if). 

Define a closed cone in x / -  1 (t~)* by 

(3.1) I R + ( u c ~ p ) : = {  ~ nafl:na>O }. 
[3eA(unp, I') 

Now we are ready to state one of our main results: 
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Theorem 3.2 Suppose that (G, G') is a reductive symmetric pair and that q = I + u is 
a O-stable parabolic subalgebra. In the setting as above (possibly after a conjugation 
of  q under K ), assume 

(3.2)(a) ~ +  <u ~ p} ~ ~ - 5 ( t ; , _ ) *  = {0}. 

Then ~ s ( w )  is G'-admissible for any W satisfying (2.2)(c). 

Applications are given in Corollary 3.3, Examples 3.6 and 3.7. See also Theorem 6. l 
for an example of an explicit decomposition formula in a special case. First, if we 
apply Theorem 3.2 to a tensor product  of two unitary representations n~, ~2 ~ (~, by 
regarding it as a restriction of the outer product 7z~ [] 7z2 e ~ - ~  with respect to the 
symmetric pair (G x G, diag G), then it is easy to see: 

Corollary 3.3 Let G be a real reductive linear Lie group and qj = lj + u j ( j  = 1, 2) 
be O-stable parabolic subalgebras. Fix a Cartan subalgebra fro of  [o and a positive 
system A + (~, t~). We may and do assume that lj ~ t ~ and A (u s c~ [, 1 ~) c A + (f, t r 
(possibly after conjugations of qj by Ad(K)). Denote by Wo the longest element in the 
Weyl group of A(f, Y). Assume 

(3.3)(a) IR + ( u ,  n ~ )  c~ IR__(Wo(U2 n p ) )  = {0}. 

Here IR_ (w0(u2 c~p))  is defined similarly to (3.1). Then the tensor product 
~'~)(W~) @ ~s~(wz) is G-admissible for any VVj satisfyin(j (2.2)(c). 

Now, let us prove Theorem 3.2. First, we need the following result on finite 
dimensional representations of compact  groups: 

Lemma 3.4 Let (K, K') be a compact symmetric pair. Retain the notation as before. 
We put I< (z) := {Tr ~ / (  : [TriK. : z] * 0} for z ~ I( '  and regard g (z) ~ I( ~ ~ ( t ~ ) *  
by means of  highest weights with respect to a positive system A+([, t c) which is 

compatible with X + ([, t ~_ ). We writ e P : x / -  1 (t~)* ~ x f l~^( t~  +)* for the projec- 
tion corres.sponding to a direct sum t~o = 1~o+ G t~o -. Then P(K(z)) is a finite set for 
each z ~ K '. 

Remark 3.5 We shall give an explicit upper bound (denoted by ~(~)) of P(/~(r)) in 
the proof of Lemma 3.4. The special case P ( K ( 1 ) ) c  E ( I ) =  {0} is a part of 
a theorem of Cartan-Helgason (see [War, Theorem 3.3.1.1]). 

Proof of Lemma 3.4 We define a reductive Lie group K a ( c Ke)  by a Cartan 
decomposit ion K d := K '  e x p ( ~ - i [ o _  ), This definition does not depend on the 
choice o fa  complexification Ke because exp ( x / - ~ 0 _ )  - ~ d,~t,,_ is simply connec- 
ted. Then (K d, K') is the non-compact  dual Riemannian symmetric pair  of (K, K ' )  
(see [He, Chap. V w A finite dimensional representation g of K defines that of K d 
(also denoted by lr) by a holomorphic  continuation with respect to K c Kr  ~ K ~. 
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Now let us regard g as a Langlands quotient in the following way (see [Wal, Chap. 
5]): Let p d =  MaAdN d be a minimal parabolic subgroup of K a associated to 
S + (~, t~_). Define a positive system A + (m a, t~+) by A + (1~, t ~) c~ A (m d, t~+). Suppose 
p~(t~) * is the highest weight of ~e K(~). Denote by (a, V~) the irreducible repres- 
entation of M d with highest weight/~l~"+ ~(t~+) *. We put v = ~tli ~ ~(t~)*. Then ~ is 
the unique quotient of the (non-unitary) principal series (without p-shift): 

I n d ~ ( a  | v @ l) = {f :  K a c~ ~ V~:f(gman ) = ~(m)- la-~ f (9) ,  

for man~MdAaNa,  g~Ka} .  

For each z e K' we define 

by the set of highest weights for A + (ut a, t~+) of Md-types occurring in z. Then s is 
a finite set because dimT < vQ. Finally, let us show P( / r  E(r). Because 
g contains r e K '~ ,  we have [zlu, : a] = [Ind~t',a : ~] + 0 by the Frobenius reciproc- 
ity theorem. Thus P(~) = PI~., ~ ( z )  by definition. 

Proof of  Theorem 3.2 To apply Theorem 1.2 we shall show [~,1(W)IK,~ s : z] < ~v 
for each ~ ~ K'.  In view of 

7r~K 

let us see the sum of the right side is finite. First, it is an easy geometric observation 
that the condition (3.2)(a) implies the compactness of the set 

(IR+ (u  n p )  + C1) n x / ~ ( ( t ~ - ) *  x C2) ( = x f ~ ( t ~ ) * )  

for any compact sets C1 = ~ - l ( t ~ ) *  and C2 = ~ - - l ( t ~ + ) * .  In particular, we 
apply this to the case where C~ and C2 are the following finite sets: 

C1 := {6 + p(u) - 2p(u n D : 6 is a highest weight of (L n K) ~ 

type occurring in W}, 

C2 := P(/~(z))( = E(z)) (see the proof of Lemma 3.4 for notation). 

Assume that p is a highest weight of a K-type ~r occurring in ~ s ( w )  and satisfying 
[~zl~:z]#0.  Then it follows from Fact 2.3(2) and Lemma 3.4 that 
~ ( 1 R +  (u  c~ p )  + C l ) n  ~ - - l ( ( t ~ _ ) *  x C2). Hence there are only finitely many 
possibilities of such dominant  integral weights ~. Thus we have completed the 
proof. [] 

We end this section with some Examples 3.6 and 3.7 where (G, G') and : ~ ( W )  
satisfy the assumptions of Theorem 3.2 or Corollary 3.3. Perhaps, the first example 
is observed by many experts although we could not find it in the literature: 

Example 3.6 Suppose (G, K) is an irreducible Hermitian symmetric pair. Letting 
x/---1Z ( #: 0) be a central element in ~o, we write p + for u(Z)  with the Notat ion 2.1. 
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Then q(Z) = t + p+. According to [A2], we call a 0-stable parabolic subalgebra 
q = 1 + u holomorphie i fu c~ p c p+. Suppose that q is holomorphic. Then A,(2) is 
a unitary highest module [A2, Lemma 1.7]. We remark that q c q(Z) iff A,~(2) is 
a holomorphic discrete series. 

If Ch, q2 are holomorphic, then the assumption (3.3)(a) is satisfied because 
Wo(U c~ p) c wop+ = p+. Thus A~, (21) ~) An~(22) is G-admissible. In the case where 
q := q~ = q2 = q(Z), a decomposition formula of the tensor product of holomor- 
phic discrete series Aq(2a) @ An(;tz) is found in [JV, Corollary 2.6]. On the other 
hand, if we put ql = q(Z) and q2 = 0q(Z), then the assumption (3.3)(a) does not 
hold. In this case, it is known that Aq(21) (~ A0,(22) necessarily contains a continu- 
ous spectrum [R, Theorem 2]. 

In order to see how Theorem 3.2 is applied to A n (2) (which does not necessarily 
have highest weights), let us list all Aq's of U(2, 2) and find which among them are 
Sp(1, 1)-admissible: 

E.ramp& 3.7 Suppose (G, G') = (U(2, 2), Sp(1, 1)) ~ (SO(4, 2), SO(4, 1)). First we 
find K-conjugacy classes of 0-stable parabolic subalgebras q = l + u. For the study 
of A,, we can restrict ourselves to q, for which there does not exist a proper 0-stable 
parabolic subalgebra p satisfying (2.4). We choose a coordinate in x / -~ l  t~ so that 
A + ([, t c) = {el -- e2, e3 - e4} and x / ~ t ~ _  = IR(H1 - H2) + IR(H3 - -  H4). By us- 
ing the above basis, we put X1 = (4,3,2, 1), X2 = (4,2,3, 1), X3 = (4, 1,3,2), 
X4=(3 ,2 ,4 ,1) ,  X5=(3 ,1 ,4 ,2 ) ,  X6=(2 ,1 ,4 ,3 ) ,  Y1= (2,1,1, 0), Y2=(2,0,1,0),  
Y3=(2,1,2,0),  Y4=(1,0,2,0),  Ys=(2,0,2,1) ,  Y6=(1,0,2,1),  ZI=(1,O,O,O), 
z2 = (1,1,1, 0), z3= (0 ,0 ,1 ,0 ) ,  z4 = (1 ,0 ,1 ,1 ) ,  w = ( t , 0 , 1 , 0 ) ,  u = ( 0 , 0 , 0 , 0 ) ~  
~ -  l t~_. Then the set of (g, K)-modules 

{A n :q = q(X,), q(Y~)(1 __< i < 6), q(Z,)(l < i < 4), q(W), q(U)} 

is the totality of irreducible, unitary (g, K)-modules with non-vanishing (g, K)- 
cohomology [VZ]. Applying Theorem 3.2 we conclude that if 

q = q(X3), q(X4), q(Y2), q(Y3), q(Y4), q(Ys), q(Z~), (1 < i < 4), q(W), q(U), 

then ~ G  is G' = Sp(1, 1)-admissible. 
For  the benefit of the reader, we give some explanation of the above description 

of representations. Aotx,) (1 < i < 6) is Harish-Chandra's discrete series for a group 
manifold G, and Aq(v)is the trivial representation. Ifq = q(Xa ), q(X6), 0(I11 ), q(Y6), 
q(Zi) (1 < i < 4) or q(U), then A, is a unitary highest (or lowest) weight module (see 
[A2]). In the context of the Beilinson-Bernstein correspondence between irredu- 
cible Harish-Chandra modules and irreducible K-equivariant sheaves of @-mod- 
ules on the flag variety X of Gr -'- GL(4, I12), we associate a single Kr Q(M on 
X to an irreducible (g, K)-module n so that the closure of Q (n) is the support of the 
corresponding localization. There are 21 Kr on X, with 6 closed orbits 
Q(AQIx.~ ) (I < i < 6), and one open orbit Q(Aq~v)). These are described in the 
following Matsuki-Oshima diagram [MO2]. Here, the k-th column has a complex 
dimension k + 2 (0 < k < 4), and a, b, c are orbits which are not associated to A n. 
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a b c 
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We remark that the above position of Kr is slightly different from Fig. 7 
in [MO2] so that it is easier to read from the above diagram the duality relations 
of (9, K)-modules Ao(Xi)-~ A,I(X6-,) v (i = 1,2), Aq(Y~)~-A,I(Y6_~) v (i = 1,2,3), 
AdZ,  ) ~- Aq(Z4_~) v (i = 1,2). 

4 Discrete decomposability of A~(2) for a holomorphically embedding pair (G, G') 

A 0-stable parabolic subalgebra q = I + u defines a complex structure on G/L so 
that the holomorphic tangent bundle is given by T(G/L) = G x L ft. We also denote 
by (G/L) ~ a complex manifold G/L endowed with the coniugate complex structure 
of G/L so that T((G/L) ~ = G x Lu. Let G' be a connected closed subgroup which is 
reductive in G and fix a Cartan involution 0 of G which stabilizes G'. We write 
K' = K n G' as usual. In this section, we consider a discrete decomposability of the 
restriction A,~(2)l c, in the case where K' /L  n K'  c G/L is a holomorphic embedding 
(see (4.1)(a)). 

Theorem 4.1 In the above setting, assume (possibly after a conjugation by an element 
of K): 

(4.1)(a) [' = (ti c~ f') • (1 n f') �9 (u c~ ['), 

(4.1)(b) S ( u n p ) |  S ( ~ l / f i ~ r )  is an admissible Lc~ K'  module. 

Then J I s ( w )  is G'-admissible for any W satisfying (2.2)(c). 

Applications are given in Corollary 4.4, Examples 4.5 ~ 4.7. We remark that the 
compatibility condition (4.1)(a) implies that K' /L  c~ K ' c  G/L is a holomorphic 
embedding, which is a weaker condition than that G'/L n G' c G/L is a holomor- 
phic embedding, that is, 

(4.1)(a)' g' = (t~ n ,q')~ (1 n g') ~ (u n g ' ) .  
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First, forgetting the above setting for a while, we prepare a result on compact 
groups. 

Lemma 4.2 Suppose K ~ K'  are connected compact Lie groups. Let X '  ~ ~ 1 ~'o 
and we use the notation 2.1fi)r K', defining f' = fi' + 1' + u' and L' c K'. Likewise, 

let X e ~ l f o  and we define f = ~ + l + u and L c K. Assume that l ' c l a n d  

u ' c  u. (Such X e x / -  1~o exists for each X '  (e.g. X = X')).  For (n, V)~K,  we 
define an L-module V~ := V/n(~) V. Then Vr is irreducible (the "highest L-type" of V). 
With the notation < ~ defined in Fact 2.3(2), we have 

(4.2)(a) n < H~ ~ V~I L, | S(ft/~')). IK' ~' 

The underlying geometric idea of Lemma 4.2 is similar to a proof of the generalized 
Blattner formla in Fact 2.3(2), but we give an account of it for the sake of 
completeness. 

Proof of  Lemma 4.2 By the Borel-Weil-Bott theorem for compact groups we 
realize V as holomorphic sections: V ~- H~ ~ VO. 

In view of 1' c l, u '  c n and t~' c ~, the holomorphic normal 
bundle Tcr,/r,),,((K/L) ~ of K'/L'  in K/L  is given by TIr,/L,)~((K/L) ~ = 
Coker (T( (K ' /L ' )  ~ T((K/L)~ = C o k e r ( K ' x L ,  n ' - - ~ K ' x L ,  u) = 
K '  x L,(u/u'). Then (4.2)(a) follows from the same argument in [JV, w based on the 
technique of differentiation in the direction normal to a submanifold K'/L'  due to 
S. Martens [M]. (We also use an L'- isomorphism (u/u') ~ ~ ti/fi'.) [] 

Proof of  Theorem 4.1 Given a metaplectic representation W satisfying (2.2)(c), 
we write W := W|  < r), which is an L c~ K module. It follows from Fact  
2.3(2) and the Poincar~ duality H~ ~ V~) ~- HS(K/L, V~ | AS(u n f)) that 

(4.3) ~ s (  W)]a < H~ n K) ~ 1~ | S(u np) ) .  
K 

Applying (4.2)(a) to the right side of (4.3), we obtain 

~S(W) l r ,  N H ~  K')~ W |  S(u c~p) |  a ~r / .~r , ) ) .  
K '  

Because d i m l ~  < ~ ,  the assumption (4.1)(b) implies that 1~ |  S(u n p) | 
S( '~ ~ f/a ~ v) is also admissible as an L n K '  module. Hence ~,s(W) is admissible as 
a K'-module.  Now Theorem 4.1 is a direct consequence of Theorem 1.2. [] 

We put t := ~ n (the center of I). 

Corollary 4.4 In the setting of  Theorem 4.1, assume that there exists an ideal b of  
f such that t c b c f'. Then ~ s ( w )  is G'-admissiblefor any W satisfying (2.2)(c). 

Proof. Let us check the assumptions (4.1)(a) and (b). Since b is an ideal of ~, we 
can find the ideal b of r such that f = b G b .  Because f e b ,  we have f =  
( t i n f ) O ( l n f ) @ ( u c ~ f ) = ( t i n b ) ~ ( ( I n b ) ~ b ) G ( u n b ) .  Because b~f ' ,  we 
have ~' = (t~ n b) @ (1 n V) @(u n b) = (t~ n ~) G (l n f ') @ (u c~ [), in particular, 
f i n f ' =  fic~f. Because the symmetric tensor algebra S(u r ip)  is admissible as 
a T-module, so is it as an L n  K' (  = T) module. Hence the assumption (4.1)(b) is 
also satisfied. [] 
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We begin with two known examples: 

Example 4.5 (G' is compact) Assume G' := K, a maximal compact subgroup of G. 
In this case the assumption in  Corollary 4.4 is obviously satisfied if we take b := L 
It is well-known that any ~ e G is admissible as a K-module (Harish-Chandra). Also 
a formula of the restriction of ~ s ( w )  to K is known as a generalized Blattner 
formula IV1, Theorem 6.3.12]. 

Example 4.6 (holomorphic discrete series) Suppose (G, K) is an irreducible Her- 
mitian symmetric pair. With the notation in Example 3.6 (in particular, Z is 
a central element in x / - -  lf0), we have g = ~(Z) �9 I(Z) �9 u(Z) - p | f 03 p+. 
Assume that K '  = K n G' satisfies 

(4.6)(a) S(p +) is admissible as K'-module. 

Then Theorem 4.1 assures that any holomorphic discrete series of G is G'- 
admissible because (4.1)(a) is automatically satisfied. For example, if G' contains 
e x p ( x f -  1 IRZ), then (4.6)(a) is satisfied. In this case, the result of finite multiplicity 
of Aq(J.) l  G, w a s  obtained in [M], and also in [L], Theorem 4.2 in his study of 
restrictions of principal series of complex groups to real forms. In [~JV] a formula of 
decomposition of a holomorphic discrete series of G in terms of G' is given under 
a stronger assumption (4.l) (a)' (i.e. p ' ( = p  n g') = ( p ' n  p_) | (p' c~ p+)) but with- 
out the assumption (4.6)(a). Under the assumption (4.1)(a)' in this case, the de- 
composition is always discrete ([JV]) and (4.6)(a) is a necessary and sufficient 
condition of the finite multiplicity in the decomposition. 

The next example is remarkable which treats more general cases where Aq()~) is 
not necessarily a unitary highest module and where G' is not necessarily compact. 

Example 4.7 Let G = U(p, q; IF), an indefinite orthogonal group over an Ar- 
chimedean field IF = IR, • or ~-I (a quaternionic number field). We write 
K = K1 x K2 = U(p; IF)x U(q; IF). Assume that a 0-stable parabolic subalgebra 
q = I + u is defined by an element of fl = u(p; IF) ( c f) (see Definition 2.1). (The 
representations Aq(2) here have been intensively studied, for instance, in [EPWW, 
SI, Ko3].) Then An(2) is G ' =  U(p,r;iF) x U(q-r ; iF) -admiss ib le  for any 
0 -< r _< q. Actually, it is U(p, r; IF)-admissible. See also [Ko3, Proposition 4.1.3]. 

5 Harmonic analysis on spherical homogeneous spaces and restrictions of Aq(2) 

In this section we study discrete series for spherical homogeneous spaces (see 
Theorem 5.4 and Corollary 5.6) on the basis of discrete decomposability of Aq(2) 
studied in previous sections. 

Suppose H, G' are closed subgroups of G. In general, the existence of an open 
orbit of H on GIG' is merely necessary for the transitivity of the H action (e.g. 
Bruhat decomposition, Matsuki decomposition). However, it is also sufficient in 
the case of reductive groups: 

Lemma 5.1 Suppose that G is a connected real reductive linear Lie group and 
that H and G' are closed subgroups reductive in G with finitely many connected 
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components. Then the following three conditions are equivalent: 

(1) The natural immersion H/H c~ G' ~ G/G' is surjective. 
(2) The natural immersion G'/H n G' ~ G/H is surjective 
(3) dim H + dim G' = dim G + dim (H n G'). 

Proof. The non-trivial part is the implication ( 3 ) o ( I )  (or ( 3 ) ~  (2)), or  equiva- 
lently, to show that an open H-orbit  on GIG' is necessarily a closed orbit. We may 
and do assume that a Caftan involution 0 of G stabilizes both H and G'  (possibly 
after taking conjugates of H and G'). We write K '  := K n G'. According to the 
vector bundle structure GIG' -~ K x~, (P0/P0 n g~), we have an H ~ K equivariant 
vector bundle map 

Hc~K" K' 

corresponding to the immersion H/H n G' ~ GIG'. An open orbit of a compact 
group is automatically dosed, and so we have an isomorphism between base spaces 
H c~ K/H n K' ~; K/K'. On the other hand, an open image of a homomorphism 
between vector spaces is obviously closed, and so we have an isomorphism between 
fibers Po ~ Do/po n bo c~ g~ ~ po/po n g~. Therefore an open H-orbit  on GIG' is 
also closed. Hence (3)~(1).  [] 

We should remark that the third condition in Lemma 5.1 depends only on their 
complexifications (or their compact real forms). For  instance, we have 

Example 5.2 The natural inclusions Sp(m) c U(2m), U(m) cSO(2m) and 
SU(3) c G2 c Spin(7) = Spin(8) induce (see [Bo]): 

. ~ SO(2m)/ s 2 m  - 1 Splm)/sp(m - 1) -% U(2m)/u(2m - 1) ~ S 4 m  - 1, U(m) /u(m _ :t ~ /SO(2m - i) ~ , 

Spin(7)/G2 -~ Spin(8)/Spin(7) ~ S 7, G2/SU(3) ~ Spin(7)/Spin(6) -~ S O . 

Hence we have also isomorphisms of different real forms such as 

U ( p ' q ) / u ( p  ._ Sp(p, q) / sp (p  - 1, q) -'~ U(2p, 2q ) /u (2  p _ 1, 2q}, 1, q) ~ SO(2p, 2q) / so ( zp  _ 1.2q) 

U(m, m ) / u (  m _ 1,. m) ~ Sp(m, R) /Sp(m _ 1, ~ )  ~ GL(Zm, R ) /GL(2  m _ 1, R) , 

GL(m, R ) / G L ( m  - 1, ~.) - ~  SO(m, m)/ sO(m _ I, m) , 

G2(R)/SL(3, IR) -~ SOo(4, 3)/SOo(3, 3), Gz(~.)/SU(2, 1) ~ SO0(4, 3)/SO0(4, 2) 

and those obtained by (1) ,~  (2) in Lemma (5.1) such as 

SU(2p. 2q)/ . SO(2p - 1, SU(2p - 1, 2q) / sp (  p _ , q) - ~  /Sp(p.  qF, 2q) / u ( p  - I, q) - ~  SO(2p, 2q) / u ( p  ' q) , 

SU(m - 1, m)/sp(  m _ 1, ~ )  ~ SU(m, m)/sp(m,  ~.)' SL(Zm - 1, R)/Sp(m - I.~.) ~ SL(2m, ~)/Sp(m, ~ )  , 

SO(m m)/ SO(m - 1, m)/OL(m _ l, F.) ' /GL(m, ~.} , 

SOo(3, 3)/SL(3, R)  ~ SOo(4, 3)/G2(~) ~ SOo(4, 2)/SU(2, l ) .  

In the setting of Lemma 5.1, G/H carries a G-invariant (pseudo-) Riemannian 
metric and then a G-invariant measure. Let LE(G/H) denote the space of square 
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integrable functions on G/H with respect to this invariant measure. Then naturally 
we have a unitary representation of G on the Hilbert space L 2 (G/H). An irreducible 
unitary representation n e G is called discrete series for L 2 (G/H) if n can be realized 
as a closed subspace of LZ(G/H). 

Definition 5.3 The totality of discrete series for L2(G/H) is denoted by Disc(G/H) 
( c G). We also write Disc(G/H)for  the multiset of  Disc(G/H) counted with 
multiplicity occurring in L2(G/H). Suppose G' is also a subgroup reductive in G with 
finitely many connected components. For (n, V)~ G, we write Disc(n 16')( C G"'7) f or 
the irreducible discrete summands of the restriction n16,, and ]Disc(hi a, ) for the 
corresponding multiset counted with multiplicity. We note that (n16,, V)a "~ 

| 6 ,~sc(nF, ~) with the notation in w 

The isomorphism of G'-manifolds l: G'/H' ~ G/H induces that of Hilbert spaces 
z*: L2(G/H) ~ L2(G'/H'), on which the regular representations of G and G' are 
compatible with the restriction with respect to G ~ G'. Then the following theorem 
relates Disc(G/H) and Disc(G'/H'). 

Theorem 5.4 Suppose that G is a connected real reductive linear Lie group and that 
H and G' are closed subgroups reductive in G with fnitely many connected com- 
ponents. We assume 

(5.4)(a) dim H + dim G' = dim G + dim (H c~ G ' ) ,  

and that there exists a minimal parabolic subgroup P' of G' such that 

(5.4)(b) dim H '  + dim P '  = dim G' + dim (H' c~ P ' ) .  

Then there exists a surjective map between multisets 

J-: Disc(G'/H') ~ Disc(G/H),  

such that if  rc~ Disc(G/H)( c G) then the fiber J -  - l (n)  = 1Disc(hi6,) (see Definition 
5.3). This means that we have a bijection between multisets: 

(5.4)(c) U Disc(nt6, ) = Disc(G'/H').  
n~ Disc(G/H) 

In particular, Disc(G'/H') = 0 if and only if either Disc(G/H)= 0 or the discrete 
part (nl6,)a = {0} for any n ~ Disc(G/H). Moreover, if discrete series for G'/H' is 
multiplicity free, then the discrete part of  the restriction n I a" is multiplicity free for any 
n ~ Disc(G/H) ~ G. 

Proof. For n E Disc(G/H)( ~ G), we write re(n) for the multiplicity of n occurring 
in L2(G/H) and fix a base {T/' . . . . .  T~(~)} of the C-vector space 
Hom a(n, L2(G/H))) so that the image Tf(n) is mutually orthogonal. Likewise, if 
z ~ G'  occurs in the decomposition of niG, as a discrete summand with multiplicity 
re(v, n), we fix a base {S~ '~, . . . .  SL'~,~)} of the C-vector space Hom6,(T, n). Then 
{TfST'~(z):n~Disc(G/H), 1 < i <= m(~, n), 1 < j  < m(n)} forms G'-irreducible, mu- 
tually orthogonal closed subspaces of L2(G'/H ') ~- L2(G/H) which are isotypic to 
~. This gives rise to discrete series for L2(G'/H'), and what we want to prove now is 
the exhaustion of discrete series by this construction. Suppose U is a G'-irreducible 
closed subspace of L 2 (G' /H') ,  which is isotypic to z ~ G'. Because the multiplicity of 

in L2(G'/H ') is finite from the assumption (5.4)(b) by a recent result of Bien, 
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Oshima and Yamashita (cf. [Os, Y]), we can apply Lemma 1.1 so that we find 
a G-irreducible closed subspace W in L2(G/H)~-L2(G'/H ') such that the r- 
isotypic subspace W(r) contains U. From our definition of T i and SI '~, this means 
that {Tj~S['~:~EDisc(G/H), 1 < i <_ m(r, ~), 1 <j  < m(g)} spans the C-vector 
spacee Hom~,(r, LZ(G'/H')). In other words, the multiset IDisc(G'/H') contains 

e G'  with multiplicity 

m(~, ~)m(~) (finite sum) . 
~Disc(G/H) 

Now the map J~ can be well-defined on the multiset lDisc(G'/H') via the above 
basis. The remaining part of the theorem is clear. [] 

If one knows IDisc(G/H) and the restriction formula ~1 ~' for 7~ ~ Disc(G/H), then 
Theorem 5.4 gives a construction and exhaustion of discrete series for G'/H'. 
Conversely, on the knowledge of IDisc(G'/H') and Disc(G/H), one can establish an 
explicit decomposition formula in some cases, which was the approach taken in 
[Ko2]. In the scheme of Theorem 5.4, we shall present a classification of discrete 
series for some non-symmetric spherical homogeneous spaces in w in the cases 
where the restriction of any ~z ~ Disc (G/H) is G'-admissible. 

For  applications of Theorem 5.4, we use a well-known description of Disc(G/H) 
for symmetric cases by means of Zuckerman's derived functor modules. Let a be an 
involution of G and H be an open subgroup of the fixed points of a. A homogene- 
ous space G/H is called a semisimple symmetric space. Take a Cartan involution 
0 of G commuting with a. Then we have 

Fact 5.5 (Flensted-Jensen, Matsuki and Oshima, see [MO1; F J, Chap. VIII, w V3, 
w Suppose G/H is a semisimple symmetric space. With the notation as above, 
Disc(G/H) 4:0 if and only if" rank G/H = rank K/H c~ K. Moreover, if the rank 
condition is satisfied, we fix a maximal abelian subspace to in { X ~ ~o: t~(X ) = - X  }. 
Then any discrete series ~z~Disc(G/H) is of the form ~ s ( ~ ) ,  where q is defined by 
a generic element in ~ t o  and ~ is a metaplectic character of Z~(to)- in the fair 
range satisfying some integral conditions determined by (G, H ). 

Here is an application of results of w w and Theorem 5.4 to determine the 
existence of discrete series for some non-symmetric spherical homogeneous spaces. 

Corollary 5.6 
(5.6)(a) real forms ofSO(2n + 1, ~) /GL(n,  ~): 

Disc(SO(2p - 1, 2q)/U(p - 1, q)) 4:0 if and only if pq ~ 2Z. 
(5.6)(b) real forms of SL(2n + 1, ~)/Sp(n, C): 

Disc(SU(2p - 1, 2q)/Sp(p - 1, q)) 4= ~ for any p, q, 
Disc(SU(n, n + l)/Sp(n, IR)) 4" 0, 
Disc(SL(2n + 1, IR)/Sp(n, IR)) = 0. 

(5.6)(c) real forms o f G L ( n  + 1, ~) /GL(n,  C): 
Disc(U(p, q)/U(p - 1, q)) 4 :0  for any p, q, 
Disc(GL(n + 1, IR)/GL(n, 1R)) = 0. 

(5.6)(d) real.forms of G2 (C)/SL(3, ff~): 
Disc(Gz(IR)/SU(2, 1)) 4= 0, 
Disc(G2(~,)/SL(3, IR)) 4= 0. 
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(5.6) (e) real form of SO(7, C )/G2 (~): 
Disc(SO(4, 3)/G2(IR)) + 0. 

(5.6)(f) realfi~rms of Sp(1, ( )  x Sp(n + 1, C)/diag(Sp(l,  C)) x Sp(n, ( ) :  
Disc(Sp(1) >< Sp(p, q)/diag(Sp(1)) x Sp(p - 1, q)) + 0 for any p, q. 

Proof First we note that the above homogeneous spaces are spherical and of 
course satisfy (5.4)(b). Therefore the multiplicity of discrete series is always finite if 
exist. The proof of the corollary is divided into four cases: 

(i) If G/H is a symmetric space SO(2p, 2q)/U(p,q)  with p q e 2 7 Z + l  or 
SL(2m, IR)/Sp(m, IR), then rank G/H > rank K /H  n K and so Disc(G/H)= 0 by 
Fact 5.5. Applying Theorem 5.4 to equivariant diffeomorphisms 

SO(2p - l, 2q)/U(p - 1, q) ~. SO(2p, 2q)/U(p, q) 

and 
SL(2m - 1, ]R)/Sp(m - 1, IR) ~ SL(2m, IR)/Sp(m, IR) 

in Example 5.2, we conclude that Di sc (SO(2p-  1 , 2 q ) / U ( p -  1, q)) = 0 
(pq~2~  + 1) and Disc(SL(2m - 1, IR)/Sp(m - 1, IR)) = 0. 
(ii) Because SO(4, 2)/U (2, 1) is a symmetric space with the rank condition, Fact 5.5 
says Disc(SO(4, 2)/SU(2, 1)) ~ Disc(SO(4, 2)/U(2, 1)) + 0. From Theorem 5.4, we 
conclude that Disc(SO(4, 3)/G2(lR)) :t = 0. 
(iii) This case is the main part of this corollary. Since the computation is fairly 
similar for other cases, we shall give the details only in the case G ' / H ' =  
SO(2p - l, 2q)/U(p - 1, q). Let G = SO(2p, 2q) ~ K = S(O(2p) x O(2q)). We rep- 
resent the root system of 9 and ~ as d(9, t ~) = {___(f~_+Ji): 1 < i < j < p + q}, 
d ( i , l  ~)={4-(f~+_fs) : l  < i < j < p  or p +  1 < i < j < p + q } .  Suppose pq~2Z.  
To describe discrete series for a symmetric space G/H = SO(2p, 2q)/U(p, q), we 

take x f ~ l t o  * = IR(fl +f2)  + ' ' "  + IR(f2[p]-x +}2[~] )  + IR(fp+ 1 +fp+2) + 
�9 . . + l R ( f p + 2 [ ~ ] _ l + ] ~ + 2 [ ~ ] )  (see notation in Fact 5.5) .  We define 

~:=  ([~3, [~3 . . . . .  1, l, (0), [~3 + [~3, [~] + [~3 . . . . .  [~3 + 1, [~3 + 1, (0))E 
x f ~ l t ~  with the above coordinate and define a 0-stable parabolic subalgebra 
q - q(/~) = l + u (see Definition 2.1). Then, since A ( n ~ p )  = {f/-+fs: 1 < j  < p, 
p + 1 _< i _< p + q}, it is easy to see IR+ <u c~ p> c~ IR <f~ . . . . .  fp> = {0}. With the 
notation in Theorem 3.2, x / ~ ( t ~ _ ) *  = IRf, for a symmetric pair (SO(2p, 2q), 
S O ( 2 p -  1, 2q)). Hence the condition (3.2)(a) is satisfied and so Theorem 3.2 
assures that ~ s ( w )  is S O ( 2 p -  1, 2q)-admissible for any metaplectic representa- 
tion W satisfying (2.2)(c). Now we have found a discrete series for 
SO(2p, 2q)/U(p, q) whose restriction to S O ( 2 p -  1, 2q) is admissible. Thanks to 
Theorem 5.4, we now conclude Disc(SO(2p - 1, 2q)/U(p - l, q)) + 0 if pq~2~.  
This argument applies to other cases where G'/H'  = SU(2p - l, 2q)/Sp(p - 1, q), 
SU(n, n + 1)/Sp(n, IR), G2(~)/SU(2, 1), G2(IR)/SL(3, IR), U ( p , q ) / U ( p -  1, q), 
Sp(l) x Sp(p, q)/diag(Sp(l)) x Sp(p - 1, q). 
(iv) It is deduced from the following lemma with H~ = tR that 
Disc(GL(n + 1, IR)/GL(n, IR)) -= 0. [] 

Lemma 5.7 Suppose that G ~ H are reductive Lie 9roups and that H has a direct 
decomposition HI • H2 with H1 noncompact. Then either Disc(G/H2) = 0 or any 
discrete series for G/H2 occurs in LE(G/H2) with infinite multiplicity. 
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Proof Correspondingly to the G-equivariant Hi-principal bundle 
Hx ~ G / H 2  --+ G/H, we regard G / H  2 --~ H 1 x G/diag(H1) x H 2. Applying Theorem 
5.4, if r E Disc(G/HE) and if the multiplicity of r occurring in L 2 (G/HE) is finite, then 
we can find n~Disc(H,  x G/diag(Hl) x HE).  We shall see that this leads to a con- 
tradiction. In view of 

(9 

L2(G/H2) = L2(G/H, L2(H/H2)) = ~ L2(G/H, z [] l)d/~(z), 
HI 

where d#(z) is the Plancherel measure on H~, n must be of the form ~ = a [] r with 
some aEDisc(Hl)  = H"~. Because Hx is non-compact, d ima  = ~ .  On the other 
hand, the multiplicity of T in LE(G/H2) must be at least dim a. This contradicts to 
the fact the assumption that the multiplicity of z in LZ(G/HE) is finite. [] 

We remark that we are not intending to make a complete list in Corollary 5.6. 
Actually, we have omitted several (easy) cases where either IS1; Ko3, Proposition 
0.4] or Lemma 5.7 can be applied. We end this section with some remarks 
suggesting further study. 

Remark 5.8 (1) Discrete series for non-symmetric spherical homogeneous spaces 
in (5.6)(c), (d) and (f) are classified in w It would be interesting to find the explicit 
restriction formula and to classify discrete series for some other non-symmetric 
spherical homogeneous spaces in the scheme of Theorem 5.4. 
(2) There are some other spherical homogeneous spaces such as 
SO(m, m + 1)/GL(m, IR) and Sp(l, ~-.) x Sp(n + 1, IR)/diag(Sp(1, IR)) • Sp(n, IR), 
for which we do not tell the existence of discrete series by this method. 
(3) The result in (5.6)(b) suggests a geometric construction of 'holomorphic discrete 
series' in the sense of 'Olafsson and Orsted [OO] for a non-symmetric spherical 
homogeneous space SU(2p - 1, 2q)/Sp(p - 1, q). 
(4) Our approach also presents examples where the restrictions of ~z ~ G with 
respect to a reductive subgroup G' is decomposed only by the continuous spectrum 
(an opposite direction to theorems in w and 4). It is the case when 
G = SO(4, 3) D G' = SO(3, 3) and n~Disc(SO(4, 3)/GE(IR)). 

6 Examples of an explicit decomposition formula 

In this section, in the framework of Theorem 5.4, we present examples of an explicit 
decomposition formula of AQ(2) I G' for Aq(2)~ G together with the classification of 
discrete series for non-symmetric spherical homogeneous spaces G'/H'. 

In contrast to Harish-Chandra's discrete series, we have to deal with ~s (c~)  
where the range of parameters of ~ is not necessarily in the good range but  in the 
weakly fair range in the sense of IV3] (see (2.2)(a), (b)). By this reason, we use the 
notation ~'s(~E~) instead of Aq(2) ('-~ ~s(c,~+p(u))). For  simplicity, we omit the 
notation for obvious Hilbert completions in this section. 

6.1 Sp(p, q) c SU(2p, 2q), U(p, q) c SO0(2p, 2q). 

Let G = SO 0(2p ,  Eq) ( p >  1, q > 0 ) .  We represent the root system of ~ as 
A(f,t c )=  { _ _ ( f ~ _ + f j ) : l _ - < i < j < p o r p +  l _ - < i < j < p + q } a n d d e f i n e a 0 - s t a b l e  
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( p > 2 ,  q > l ) ,  

( p = l , q > l ) ,  

(p_>_2, q = 0 ) ,  

( p = l ,  q = 0 )  . 

Next, let G' = U(p,q),  and represent the root system of ~' as 

parabolic subalgebra by q:= q(ft). For 2 s ~ ,  we write ~).~ for the metaplectic 
representation of/~ corresponding to 2ft e x / Z l ( t ~ )  *. We define a (g, K)-module 
by 

If we write H = SOo(2p - 1, 2q), then it is well-known (see also Fact 5.5) that the 
totality of discrete series for a semisimple symmetric space G/H is given by 
(multiplicity free) 

({u(;~):,~eN+ } 
~{v(~), u ( ; o  ~ :~sN+} 

IDisc(G/H) 

t{u(;,), tJ(;.V, U(0):;.~N+} 

A ( t ' , V ) = { + ( e ~ - e j ) :  1 < i < j < p  or p +  1 < i < j < p + q } .  Fix A ~>B~>0 
and we define 0-stable parabolic subalgebras of .q' by q'+:= q(Ael +Bep+l), 
q~) :=q(e l -ep) ,  and q'_:=q(-Aep-Bep+q) .  For 2 ~ N + ,  I~Z  such that 
l - 2 + p + q + 1 mod2, we define (g', K')-modules by: 

V+(2,1)-  VV+<P'q)(2 l ) :=(~' ,+)P+q-z(~;~+t  ~-;~+t ) i f l >  2>O, pq> 1 
" ~ - e i v  2 e p + l l  ~ 

ro(.~, l) = - rff(P'q)(.~, l):= (~gq,o)2v-4(ff~e:+-~2+,ep) i f 2 > l l l ,  p >  2 ,  

V_(/ t , l )~ .  VU(p,q)(2,1):=(~' , )  p+q 2(1~-2+l~ +x+t_ ) if - l > 2 > O ,  pq> 1 

Third, let G " =  Sp(p,q), and represent the root system of [" as Aft', t "r = 
{ •  hi), •  1 < i < j < = p  or p +  1 < i < j < p + q ,  1 < l < p + q } .  Fix 
A ~> B ~> 0 and we define 0-stable parabolic subalgebras of g" by 
q'+ := q(Ah~ + Bhp+l), q~:= q(Ahl + Bh2). For ) ~ N §  such t h a t j  - ). + t 
rood2, we define (g", K')-modules by: 

W+(,~,j) ~- WS+p(P'q)(~.,j): = ('~)~)2p+ 2q- 2([~'~_+ J+ lh,+ ~ h p + , )  

if j +  1 > 2 > 0 ,  p q >  1,  

Wo(2,j) --  Wsp(P'q)(,~,j): = .('~gl;)4P-4(qo. .([~--hlZ+J+l - T  n z ' - ; ~ + j +  1,. ] 

if2 > j +  1 > 0 ,  p > 2. 

Here is a reformulation of [HT] (cf. [Ko2] for a special case) in the scheme of 
Theorem 5.4: 

Theorem 6.1. (1 )Let  p>= 2 and q >  1. First we .fix R e N + .  According to 
U(p,q) c SOo(2p, 2q), we have 

US~176 = @ V+(.~, t) "+ @ Vo(,~, 1) + ( ~  V_(A, 1), 
1>2 Ill_-<~ 1<-4  

where the sum is taken over 1~ 271 + 2 + p + q + 1. 
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Next, we f ix 2e ]N+ ,  1~71 such that l = 2 + l m o d 2 .  According to 
Sp(p, q) c U(2p, 2q) c SOo(4p, 4q), we have 

vU(2p'Zq)(2 '  l)lsp(p,q) = vU(2p'2q)(A,  -- l) lsp(p,q) = @ W+(2,j) if l > 2 , 
j>l  

Vg<2v'2o)(2,1)lSplp,q)= ( ~  Wo()~,j)+ ( ~  W+(2,j) if]l[<=)o, 
Ill<j-<2--1 2+l-<j 

uS~176 = @ (J + 1)Wo()~ + ( ~  (J + 1)W+(2,j) ,  
0 <j<- 2 -  1 ~ + 1 <j  

where the sum is taken over j e 27l + 2 + 1. On the other hand, if we f ix  1~ 7/ and j e N, 
then we have a classification of discrete series for associated vector bundles: 

lDisc(U(p, q)/U(1)• U(p - 1, q); Zt) 

{i 
V+(Ll):l> ;~>O}~{Vo(;.1):;~>__l} (l>0),  

= V o ( , L l ) : , ~ > 0 }  ( l = 0 ) ,  

V _ ( L l ) : - l >  ; .>O}u{Vo(LI): ; .>- l}  (/<0), 

IDisc(Sp(p, q)/Sp(1) x Sp(p - 1, q); cry) 

= {(j + 1)Wo(2, j ) :2  > j }  u {(j + 1 )W+(2 , j ) : j  > 2 > 0} . 

Here Z~ is a character of U(1) and a j is the j + 1 dimensional representation of Sp(1). 
The parameter 2 runs over 2 ~ 2 7 / +  1 + p + q + 1, 2 6 2 7 / + j  + 1, respectively. The 
multiplicity of discrete series is uniformly equal to j + 1 for the Sp(p, q) case. 
(2) Let p = 1 and q > 1. First we f ix  2 ~ N + .  

Usoo(2, 2q)/]~ VU(1,q)(), ~'~JIv.,~ -- @ ~ l), 
/e2Z+2+q 

l>,~+q 

uSO~ ~ @ v_V(l'q)(2, 1) , 
1~277+2+q 
1< - .~-q 

Next, we f ix 2 E 1N +, 16 7/such that l = 2 + 1 rood 2. 

vU(2'2q)( "~, l)lsp(l,q) = v-U(2'2q)( ~L, --l)lsvtt.q) = @ W+()~,j) i f l  > 2 , 
j>max(l,i~ + 2q-  1) 

Vg(Z'2")(2, l))sp(1.q) = ( ~  W+(2,j) if Ill < 2 ,  
2 + 2 q - l < j  

uS~176 = O (J + 1) W+()~,j) , 
2 + 2 q - l < j  

where the sum is taken over j ~ 277 + 2 + 1. On the other hand, if we f ix  l ~ 7/andj ~ N, 
then we have a classification of discrete series for associated vector bundles: 

I { o V + ( 2 , 1 ) : l - q > = 2 > O } ( l > q ) ,  

IDisc(U(1, q)/U(1) x U(q); Z,) = (Ill < q) , 

[{V_(2,  l ) : - l - q > = 2 > O }  ( - q > l )  , 

iDisc(Sp(1, q ) / S p ( 1 ) x S p ( q ) ; a j , = f { ( j + l ) W + ( 2 , j ) : j - 2 q + l  >)~ > 0}, (j >2q) ,  
(j < 2q) . 

Sketch of  Proof We explain a proof  which consists of the following two steps. 



Restriction of A,)().) to reductive subgroups 201 

Step 1 K n o w l e d g e  of some degenera te  pr inc ipa l  series of U (p, q; IF) (IF = IR, C, IH ) 
such as i r reducib le  cons t i t uen t s  and  the  b r a n c h i n g  rule with respect  to 
Sp(p ,  q) c U(2p, 2q) an d  U(p, q) c SOo(2p, 2q). 
Step 2 Iden t i f ica t ion  of some  i r reducib le  cons t i tuen t s  as der ived func to r  modules .  

Step 1 is done  in [HT] .  We  set up  some necessary  no ta t ion .  Wi th  the  n o t a t i o n  
in w l.c. (p, q be even, aeT/ ,  a > 2 - p - q), we write S~ for the  Har i sh-  
C h a n d r a  m o d u l e  of the  i r reducib le  quo t i en t  of the  degenera te  pr inc ipa l  series 
S'*' (- 1~o (X o) of O(p,  q) whose  K- type  region is in the  r ight  wing of the  ba r r i e r  A + - 
(see p. 17 (i), (ii) 1.c.). Second,  wi th  the  n o t a t i o n  in w l.c. (p > 2, q > 1, c~, fiET/, 
c~ + fi > 2 - p - q), we wri te  SV(-P'q)(c~, fl) for the  H a r i s h - C h a n d r a  m o d u l e  of the  
i r reducib le  quo t i en t  of the  degenera te  pr inc ipa l  series S"tJ(X~ of U(p, q) whose  
K- type  region is in the  r ight  wing of the  ba r r i e r  A + - (see p. 39 (i), (ii) for q > 2, w 
for q = 1). I f p  = 1, the  K- type  region of U(1, q ) -module  S='~(X ~ meets  the  r ight  
wing of A + -  i f f m i n ( c q f l ) < - q  (cf. D i a g r a m  4.26 l.c. for U(p,  1)). Thus ,  
SU+(~_'q)(c~,fl) is def ined on ly  for c~,fl~7/ such t ha t  o : + f l > l - q  and  
min(c~,fl) < - q .  Th i rd ,  wi th  the  n o t a t i o n  in w 1.c. ( p > 2 ,  q > 1, a eT / ,  j~ IN ,  
a > 2 - 2p - 2q), we write Ssp(f'q)(a,j) for the H a r i s h - C h a n d r a  m o d u l e  of the  
i r reducib le  quo t i en t  of the  degenera te  pr inc ipa l  series S](X ~ of Sp(p, q) whose  
K- type  reg ion  is in the r ight  wing of the ba r r i e r  A + = If p = 1, sSpkl'q)(a,j) is 
def ined only  for a~7l, j e N ,  a > --2q and  a < j  - 4q. It can  be read f rom [ H T ]  
t ha t  if a e  7/ satisfies a > 2 - p - q (if~, fl e T/ satisfies c~ + / 3  > 2 - 2p - 2q, i f a e  7/ 
satisfies a > 2 - 2p - 2q, respectively),  then  for p > 2 and  q > 1 we have  

sO+(2_p,2q)(a) = ~ s+t+t+u(-p'q)(cr fl), S 0(2, 2q)(a ) = ~ sU+(l-'q)(o ~, f l ) ,  

~+ fl=a De-pi >-a+ 2q ~+ifl=a 

Sv+(2-~'2'7)(0:, fl) = @ SSv(d'q)(o: + fl, j), SV+t2-'2q)(o~, f l )=  ( ~  SSp(_l'q)(~ + fi, j ) ,  

J>l~-~l J>lg-/q 
i_>~+~+4q 

S~ = @ (J + 1)sS+p(_P'q)(a,j), S~ = @ (J + l)SSp(_l'q)(a,.j). 
j~2Z+a je2Z+a 

j>-O j>=a+4q 

S u p p o s e p ,  q >  1 , 2 ~ N + , l e 2 7 / + 2 + p + q +  1 , j ~ 2 7 / + ) . +  1. We  assume 
m o r e o v e r  2 > ] l t  an d  j > 2 + 2q - 1 if p = 1. Step 2 is to  p rove  the  fol lowing 
i somorph i sms :  

(6.2)(a) 
uSO~ (~ Us~ 

S +~ - p - -  q -k l)lsoo(2p,2q) ----- (USOo(2p,2q)(~) 
(p = 1) ,  

(p > 2 ) ,  

(6.2)(b) sV+tp'q) ( 2 + l - p - q + l 2 - l - p - q +  1)  _ -~  V y ( ~ ' ~ ) ( ; , ,  l )  
2 ' 2 

(6.2)(c) Ssp(-P'q)(2 - 2p - 2q + l , j )  ~- wsptP'q)(2,j). 
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H e r e 6 =  + i f l > 2 , 6 = 0 i f t l l  < 2 , 6 = -  if - l  > 2 in (6.2)(b), and e =  + if 
j +  1 > ) ~ , e = 0 i f j +  1 <2in(6 .2) (c) .  

Step 2 is divided into three substeps: 

Step 2(a) In the good range of parameters, we can apply a characterization of 
A,(2) given in [VZ] Proposition 6.1 to infinitesimally unitarizable representations 
S6~2_v'2q)(a) (or their irreducible direct components as SOo(2p, 2q)-modules if 
p = I), SV+Cv_'q)(~, fl) and SSV~_P'q)(a,j) whose K-types we know explicitly. 
Step 2 (b) We can prove the isomorphism (6.2) as K-modules by finding explicit 
K-types of U(2), V~(2, l) (6 = + ,  0, - )  and W~(2,j) (e = +,0). Explicit K-type 
formulas of U(2), VoO, l) and Wo(2,j) can be obtained as a special case of [Ko3, 
w A technical feature of calculations in the case V• (2, l) and W+ (2,j) is slightly 
different, which we omit here. 
Step 2 (c) In order to deal with the weakly fair range which does not belong to the 
good range, we apply translation functors to both degenerate principal series and 
derived functor modules in a special direction of translations ("from the good 
parameter [~v+2kp(u) (k ~ 0) to the weakly fair parameter C : ' )  based on [V3, 
Lemma 4.8] (see IV3, Proposition 4.7] for the case of derived functor modules). On 
the other hand, because we have already established the isomorphism (6.2) as 
K-modules in Step 2(b), and because irreducible constituents of the degenerate 
principal series here are characterized only by the K-types, we can now conclude 
that the above translation functor sends the irreducible quotient 
"S+_ (v + 2kp(n))" to "S+_ (v)" (with an abuse of notation). Hence the isomor- 
phisms (6.2) of (g, K)-modules follow. [] 

Remark 6.3 In [Ko2] (p = 1), we have taken an alternative approach, that is, to 
find all discrete series first and then to obtain the branching formula. The latter 
part is based on explicit K-type formulas of corresponding discrete series. Here we 
use a special property that the restriction of these discrete series to K forms linearly 
independent K-modules. 

Finally, we mention the relation of these discrete series and the degenerate 
principal series. We note that indefinite Stiefel manifolds U(p, q)/U(p - 1, q) and 
Sp(p, q) /Sp (p -  1, q) are principal bundles over semisimple symmetric spaces of 
rank one. Like the base spaces which are symmetric, we can define the boundary 
map of discrete series for the above Stiefel manifolds (one of the terms of the 
asymptotic expansion vanishes because of square integrability). This leads to an 
embedding of discrete series to the degenerate principal series of U(p, q) or Sp(p, q) 
which are dual to those considered in the above proof. 

6.2 Gz(IR) c SOo(4, 3). 

Let G = SO0(4, 3) = K = K1 x K2 = SO(4) • SO(3) and represent the root system 
of f as A (f, t c) = { + (fl  - f z ) ,  +f3 }. We define 0-stable parabolic subalgebras by 
ql := q(f3) and q2 := q(f l)  (see Definition 2.1). Let H1 := SOo(4, 2), H2 := SOo(3, 3) 
be subgroups (naturally embedded) in G. Then it is well-known (see also Fact 5.5) 

lDisc(G/H,) = {N'~,(IEa:3): 2 e N  + �89 Disc(G/Hz) = {~2(llSz:,): )~sN + �89 

Denote by X the generalized flag variety of Gr containing q~. There are 4 Ke-  
orbits on X, say, ~ (compact), -~2 (compact), ~4, and -~s (open) such that 
dime.~i = i (i = 1, 2, 4, 5), and that ~j~q~ and Kj acts trivially on .~j (j = 1, 2). 
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Next ,  let G '  = G2(IR ) be a n o n - c o m p a c t  real  fo rm of an  excep t iona l  s imple Lie 
g r o u p  G~: = G2(C ) with  K ' -  ~ SO(4). We  choose  a c o m p a c t  sho r t  r oo t  e and  
a n o n - c o m p a c t  sho r t  root /3 .  W e  define 0-stable  pa r abo l i c  suba lgebras  by q'~ := q(ct) 
and  q~ := 0(/3). D e n o t e  by Y the  general ized flag var ie ty  of G~: c o n t a i n i n g  q'~. T h e n  
Y~q~. Let  .~) be the  K~: o rb i t  t h r o u g h  q) (j = 1, 2). W e  e m b e d  t: G '  ~ G so tha t  
t (K' )  c K. We also write t for  its complexi f ica t ion  and  its differential.  T h e n  the  m a p  
t*: X ~ Y, q ~ ~-~(q) is well-defined, giving a G~:-equivar iant  i s o m o r p h i s m  be- 
tween  X and  Y. It  is easy to see ~*(~])~q) (j = 1, 2). Because  

t: ~ -~ ~1(2, II~) �9 ~1(2, IE) ~ f~ ~_ (~I(2, ~ )  ~ ~1(2, ill)) (~ ~1(2, ~ )  

is g iven by  (X, Y)~--~(X, Y, Y) up to Ad(K~) ,  we have  t([~) + []~ = t~ (j  = 1, 2). 
Because  the  ac t ion  of K ~  on  ~]  is tr ivial  and  tha t  of K~: is t ransi t ive ,  t(K~r) acts  
t rans i t ive ly  on  ~ j .  This  means  t*(~j)  = _~ (j = 1, 2). T h u s  the  local  c o h o m o l o g y  on  
X wi th  s u p p o r t  ~]  wi th  coefficients in an  inver t ib le  sheaf  of C-modules  is i somor -  
phic  to t ha t  on  Ywi th  s u p p o r t  oQ~ via ~* (j  = 1, 2). By the  dua l i ty  of H a r i s h - C h a n d r a  
modu le s  be tween  ~ - m o d u l e  cons t ruc t i on  a n d  cohomolog i ca l  pa r abo l i c  i nduc t i on  
[ H M S W ,  C]) ,  we have  the first ha l f  of the  fol lowing theorem,  while  the la t te r  ha l f  is 
a direct  consequence  of  E x am ple  5.2 and  T h e o r e m  5.4. 

T h eore m 6.4 ( jo in t  work  wi th  T. Uzawa)  

(~,)i(r = (~')1(r (;~N + �89 
~ ' z l E  + 1  , 

~isc(O2(IR)/SUt2,  1)) = {(.Ceil) 1 (C~,) :)~ ~ N + �89 

IDisc(Gz(IR)/SL(3,  IR)) = {(~ '~i)z(r  6 N + �89 . 

Remark 6.5 There  are 5 K ~  orb i t s  ~'~ on  Y wi th  d im~ -~i = i (i = 1, 2, 3, 4, 5) such 
tha t /* ( -~ i )  = -~ (i = 1, 2, 5), t*(~4) = ~ w . ~  and  the  b o u n d a r y  ~3~ = 2~'~ w ~ .  

The  i r reducib i l i ty  of  the (9', K ' ) -modu le s  ( ~ ' ) x  (IE~.~) r 2 and  (~q~) (Cza) at  2 = �89 in 
T h e o r e m  3.6 is n o t  k n o w n  to the  au thor .  In this  sense there  is a little abuse  of 
n o t a t i o n  in the  la t ter  pa r t  of the  a b o v e  theorem.  
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