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Discrete decomposability of the restriction of 4q(4)
with respect to reductive subgroups and its applications
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Japan

Oblatum 3-1V-1993

Summary. Let G’ = G be real reductive Lie groups and ¢ a 6-stable parabolic subalgebra of
Lie{G) ® €. This paper offers a sufficient condition on (G, G, q) that the irreducible unitary
representation A, of G with non-zero continuous cohomology splits into a discrete sum of
irreducible unitary representations of a subgroup G’, each of finite multiplicity. As an application
to purely analytic problems, new results on discrete series are also obtained for some pseudo-
Riemannian (non-symmetric) spherical homogeneous spaces, which fit nicely into this framework.
Some explicit examples of a decomposition formula are aiso found in the cases where Aq is not
necessarily a highest weight module.

0 Introduction

Our object of study is the restriction of a unitary representation A,(4) of a real

reductive linear Lie group G with respect to its reductive subgroup G'. Here A,(2)
denotes the Hilbert completion of an irreducible unitary (g, K)-module A4,(2)
attached to an integral elliptic orbit Ad*(G)A = g* in the sense of Vogan-Zucker-
man, which is a vast generalization of Borel-Weil-Bott’s construction of finite
dimensional representations of compact Lie groups. It is well-known that the
following (g, K )-modules are described by means of 4,(2) or its coherent family in
the weakly fair range (see [V3, Definition 2.5]; §2):

(0.1)(a) representations with non-zero (g, K )-cohomology which contributes the de
Rham cohomology of locally Riemannian symmetric spaces by Matsushima’s
formula (see [BoW, VZ1),

(0.1)(b) discrete series for semisimple symmetric spaces (see [FJ, Chap. VIII, §2;
V3, §417), which include Harish—Chandra’s discrete series for group manifolds,
(0.1)(c) ‘most of” unitary highest weight modules of classical groups [A2].

Suppose G’ = G are Lie groups, X is a G-space and X' is a G'-space. Then
a representation theoretic counterpart of an equivariant morphism f: X' — X is

*The author is supported by the NSF grant DMS-9100383.



182 T. Kobayashi

the pullback of function spaces f*: I'(X)— F(X'), where the restriction of repres-
entations of G with respect to G’ naturally arises. If A,(4) is realized in a function
space I'(X) as in (0.1)(a) and (b), it is natural to ask the restriction formula

(branching rule) of A,(A),¢ into irreducible representations of G’. So far, the

following special cases of the restriction of A4,(4) with respect to reductive sub-
groups have been achieved (see also Examples 4.5 and 4.6):

(0.2)(a) G is compact. A classical (but still active) study of branching rules of finite
dimensional representations of compact Lie groups (‘breaking-symmetry’ in phys-
ics) is to find explicit restriction formulas with respect to various subgroups.
(0.2)(b) G’ is a maximal compact subgroup of G. An explicit decomposition
formula is known as a generalized Blattner formula (see [HS; V1 Theorem 6.3.12]).
(0.2)(c) A,(4) is of a highest (or lowest) weight. An explicit decomposition formula
is found (e.g. [M, J,JV]) in the cases where A4,(4) is holomorphic discrete series
with some assumption on G’ (see the condition (4.1)(a)’).

However, one can observe that the restriction of A,(4) with respect to G’ may
have a wild behavior in general, even if G’ is a maximal reductive subgroup in G,
involving the following cases:

(0.3)(a) The restriction 1s decomposed into only the continuous spectrum with
infinite multiplicity (e.g. a tensor product of principal series of simple complex
groups other than SL(2, €); see [GG, Wi]).

(0.3)(b) The restriction is decomposed into the continuous spectrum with finite
multiplicity and at most finite many discrete spectrum (possibly no discrete
spectrum) (e.g. the tensor product of a holomorphic discrete series and an anti-
holomorphic discrete series [R]).

(0.3)(c) The restriction is decomposed into countably many discrete spectrum with
finite multiplicity (see §3, §4, §6.1).

(0.3)(d) The restriction is still irreducible (e.g. Theorem 6.4).

For a fruitful study of the restriction of A,(4) with respect to a reductive
subgroup in a general setting, we first want to find a good framework, where we can
expect to obtain explicit and informative branching rules which are not only
interesting from view points of representation theory but also applicable to har-
monic analysis as in the situations of (0.1)(a) and (b). For this purpose we focus our
attention to the case where the restriction is an ‘admissible’ representation. Here,
we say a unitary representation (n, V') of G is G-admissible if (=, V') is decomposed
into a discrete Hilbert direct sum with finite multiplicities of irreducible representa-
tions of G. Previous examples (0.3)(c) and (d) are the case. Successful theories
(0.2)(a) ~ (c) are also the case. One of the advantages of admissibility is to allow one
to study algebraically the objects in which such representation {n, V') occurs. We
also illustrate this in some other familiar results which have laid important
foundations on the study of locally symmetric spaces (e.g. [BoW, VZ]), algebraic
study of Harish—Chandra modules (e.g. [V1]).

(0.4)(a) (induction) Let I' be a cocompact discrete subgroup of G. Then the
L*-induced module L?-Indf(1)= L*(G/I') is G-admissible (Gelfand and
Piatecki-Sapiro, [GGP, Chap. L, §2]).

(0.4)(b) (restriction) Let K be a maximal compact subgroup of a reductive linear
Lie group G and (n, V) an irreducible unitary representation of G. Then the
restriction (mx, V) is K-admissible (Harish—-Chandra).
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(0.4)(c) (restriction) The restriction of the Segal-Shale-Weil representation §§
with respect to dual reductive pair G’ = G| x G} with G compact is G'-admissible,
yielding Howe’s correspondence (e.g. [Ho, KV, A1]).

Suppose G’ < G are real reductive Lie groups and q is a 0-stable parabolic
subalgebra of g = Lie(G) ® g €. Now, our main interest is the G’'-admissibility of
the restriction of A,(4). Najvely, the representation 4,(4) should be ‘small’ and the
subgroup G’ should be ‘large’ for the G'-admissibility of the restriction
-A4(4),6-. Though previous examples (0.2) imposed strong assumptions on either G’

{compactness) or A,(4) (unitary highest weight module), it is more natural to treat it
as a condition for the triplet (G, G', q). That is,

Question 0.5 Find a criterion for (G, G, q) assuring G’-admissibility of the restric-
tion of A

Surprisingly, we shall see there is a rich family of a triplet (G, G', q) such that the

restriction of 4,(A)e G with respect to G’ is admissible. To be more precise, one of
our principal results in the case where (G, G') is a reductive symmetric pair (see
Theorem 3.2) asserts:

FR.unp)ny/—1(t5-)* = {0}, then the restriction ch is G'-admissible,

where R, (u n p ) is a closed cone determined by a #-stable parabolic subalgebra
g and ./ —1(15-)* is a subspace determined by a symmetric pair (G, G’). Such
a triplet (G, G', q) is classified when (G, G') is a semisimple symmetric pair with
G classical [Ko4]. For example, if (G,G')=(U(2,2), Sp(l, 1))~ (SO®4,2),
SO(4, 1)), then Theorem 3.2 says that among inequivalent 18 A.’s of U(2,2)
there exist 12A4,’s which are Sp(l, 1)-admissible, including 7 modules which do
not have highest (or lowest) weights (see Example 3.7). In §4 we discuss another
case where (G, G’) is not necessarily symmetric but satisfies some compati-
bility condition with g o q generalizing the situation (0.2)(c) (see Theorem 4.1,
Corollary 4.4).

Though these are our main results on A, (4), another object of the present paper
is to study harmonic analysis on spherical homogeneous spaces in connection with
the restriction of A,(4). Here, a homogeneous space G/H is called spherical if
H¢ has an open orbit on the associated flag variety of G¢. The pairs (G, H) have
been determined by Krdmer and by Brion with G compact [Kr2, Br]. These
include the familiar symmetric spaces, but also some others, such as
SO(2n + 1)/U(n). A fundamental question in harmonic analysis on homogeneous
spaces is to determine discrete series (i.e. to determine which homogeneous spaces
admit discrete series and to classify them if exist), which plays an essential role in
the Plancherel theorem. This question has been solved for semisimple symmetric
spaces by Flensted-Jensen, Oshima and Matsuki (see [FJ] and the references
therein), while it remains open for non-symmetric cases except for compact cases
[Krl1] and principal bundles over semisimple symmetric spaces with compact
fibers [S1, Ko3]. One of the main difficulties in the study of discrete series for
non-symmetric homogeneous spaces has been the lack of powerful techniques such
as Flensted-Jensen duality for semisimple symmetric spaces. We have no complete
answer to this question yet, but our approach here covers various types of
pseudo-Riemannian spherical homogeneous spaces, determining which of them
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admit discrete series. For example, we shall prove
Disc(SO2p + 1,29)/U{(p, q¢)) + & if and only if (p + 1)qe2Z.

A very special case p = 0 means that there exist (Harish-Chandra’s) discrete series
for SO(1, 2n) with non-trivial U (n)-fixed vector iff ne 2Z. This is done in §5 (see
Corollary 5.6) on the basis of our results on 4,(4) in §3 and §4 together with deep
results on discrete series for symmetric spaces due to Flensted-Jensen, Oshima-
Matsuki and Vogan-Zuckerman. In §6 we present explicit decomposition formulas
of some family of A,(4) according to SO(4p,4q) > U(2p, 2q) = Sp(p,q) and
SO4, 3) o G,(R), and determine discrete series for indefinite Stiefel manifolds
Ulp, q)/U(p — 1, q), Sp{(p, 9}/Sp(p — 1, g) and non-symmetric spherical homogene-
ous spaces G;(;)/SU(2, 1) and G, /SL(3, R). This immediately amounts to the
Plancherel formula for these spaces since ‘continuous series’ for these spherical
homogeneous spaces are much easier to find thanks to the classical Mackey
machine. The first example can be obtained as a reformulation of [HT] (cf. [Ko02]
for a special case by a different method), and the second one is a joint work with T.
Uzawa. It is remarkable that the irreducible summands in the restriction formula of
A0 = (#3P(C, + o)) (see §2 for notation) in §6 may involve different series of
unitary representations (i.e. those attached to different 6-stable parabolic subalgeb-
ras g, ... . qm of g') such as

A, (e = @ Y (AT, )

J=1,Peq,

Here €, is weakly fair with respect to q for any v/’ € A;. It can happen that # 4,
(the cardinality of the parameter set A;) = oo for some j and # A; < o«c for the
other j (and still each A; meets the good range of parameters). This is a new
phenomenon which never occurs in (0.2)(a), (b), and known cases of (c).

Notation. N = N, U {0} and N, = {1,2,3,... }.

1 The general case

Throughout this section let G be a locally compact group of type I in the sense of
von-Neumann algebras. Suppose (r, V) is a unitary representation of G on the
(separable) Hilbert space V. A homomorphism between unitary representations of
G is a C-linear map which respects both the actions of G and inner products. We
denote by Homg the totality of such homomorphisms. Given (t, H,)e G, an
irreducible unitary representation of G, we write

V(1) := the Hilbert completion of the sum of f(H.,),
f running through fe Homg(H,, V).
We define a discrete part of the irreducible decomposition of ¥ by
Y v Y® m@( H)
(1, H,)e(f (z. H,)EG

Here Z® denotes a direct sum as a Hilbert space and m(t):= dim¢Homg(H,, V)e
NuU {w}. Possibly, V; = {0} (e.g. G=R, = is the regular representation on
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V = L%(R)). We say (n, V) is discretely decomposable if (z, ') is unitarily equiva-
lent to V. If G is compact, then (x, V) is always discretely decomposable. We say
(m, V) is G-admissible if the multiplicity m(t) < «o for any 1€ G.

The following simple lemma is used both in Theorem 1.2 and in Theorem 5.4,

Lemma 1.1 Let (n, V) be a unitary representation of G. Assume that there exist a
closed subgroup K and an irreducible representation 1€ K such that V(t) £ 0 and
m(t) < co. Then there exists an irreducible closed G-subspace W in V such that W(t) £ 0.

Proof. Select a non-zero subspace E in V(r) which is minimal with the property
that E is of the form U(z) where U is a closed G-subspace in V (this is possible
because m(t) < ov). We put W= n U,, where the intersection is taken over all
closed G-subspaces U; in ¥ such that U,(r) = E. Clearly, W is also a closed
G-subspace in V such that W(r) = E. Let us show W is irreducible. If this were not
the case, we would have a direct sum decomposition of two G-invariant closed
subspaces W = W, @ W,. Because E = W(t) = W, (1) @ W,(z) and because of the
minimality of E, we have either W;(r) = E or W,(t) = E. In ecither case, the
minimality of W contradicts to W 2 W;. Hence W is irreducible. []

If G is compact, then it is easy to see that K-admissibility implies G-admissibil-
ity. In the following theorem, we show this without any assumption of the
compactness. Our idea here parallels a proof of a theorem of Gelfand and Piatecki-
Sapiro mentioned in (0.4)(a).

Theorem 1.2 Let (n, V) be a unitary representation of G, and K a subgroup of G. If
(m k. V) is K-admissible, then (n, V') is G-admissible.

Proof. Using Zorn’s lemma, we find a closed G-subspace V' in V which is maximal
with the property that V' is discretely decomposable. Let us show V' =V, or
equivalently, the orthogonally complementary subspace U of V' in V is zero. If this
were not the case, there exists te K such that U(r) #+ {0}. Applying Lemma 1.1
to U, we find an irreducible closed G-subspace W in U. Then V'@ W22 V' is
discretely decomposable, which contradicts to the maximality of V’. Hence
V' = V. The statement of finite multiplicity is obvious from that for K in the
assumption. O

In §3 and §4 we shall find a sufficient condition assuring the G'-admissibility of

Aq(4)¢- (see §2 for definition), which is independent of 4. As for the independence of
the parameter 4 we can go one step further by focusing our attention to coherent
continuation and representations of Weyl groups on virtual (g, K)-modules (see
[V2]) based on the following simple observation.

Corollary 1.3 Suppose G is a real reductive Lie group and K’ = G’ are subgroups of
G. Let ne G. Assume m|g. is K'-admissible and that 6 € G appears in a subquotient of
a coherent family of w (see [V1, Definition 7.2.5]). Then o,;- is G'-admissible.

Proof. We can find a finite dimensional representation t of G such that ¢ appears
as a subquotient in 7 ® 7 because 7 is K'-admissible and dim t < w0, the multipli-
city of a fixed K'-type occurring in 7 & t is finite. Thus ¢ is also K'-admissible.
Hence o is G’-admissible by Theorem 1.2. O
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2 Notation and preliminaries on A4,(4)

Throughout this section we suppose that G is a real reductive linear Lie group. We
fix a Cartan involution 8 of G. Write g, for the Lie algebra of G, g = go ® g C for its
complexification, K = G° for the fixed point group of 8, and g, = o + p, for the
corresponding Cartan decomposition. Analogous notation is used for other

groups. Now a #-stable parabolic subalgebra q is given by an element X € ./ — 11,:

Definition 2.1 Given an element X €./ — 1{,. Let
L = L(X):= the centralizer of X in G under the adjoint action.
[ = (X)) := the centralizer of ad(X) in g,
u = u(X) = the sum of eigenspaces with positive eigenvalues of ad(X),
il = ii(X) == the sum of eigenspaces with negative eigenvalues of ad (X),
q=g(X) = 1(X) + u(X)

Then we have a direct sum g = 7i(X) + (X)) + u(X). Choose an Ad (G)-invari-
ant non-degenerate bilinear form on g, which is negative definite on f,, and we
identify £, and f§. Via this identification, we also use the notation (1), u(%) and so
on, if we are given ie./ — 11§.

The elliptic orbit Ad(G)X ~ G/L carries a G-invariant complex structure, with
the holomorphic tangent bundle 7(G/L) given by G x . An L-module (z, V)
defines an associated holomorphic vector bundle ¥, = G x V, over G/L. As an

algebraic analogue of a Dolbeault cohomology H’(G/L, V,) with coefficients in ¥,
Zuckerman introduced the cohomological parabolic induction 2, = (#;)! (j e N),
which is a covariant functor from the category of metaplectic (I,(L ~» K)™)-
modules to that of (g, K )-modules (L is a metaplectic covering of L defined by
a character of L acting on A%i™*y) (see [V1, Chap. 6; V2, Chap. 6; Wal, Chap. 6]).
In this paper, we follow the normalization in [V2, Definition 6.20] which is
different from the one in [V1] by a ‘p(u)-shift’. To be more precise, we take
a fundamental Cartan subalgebra by ( < Iy). Then by contains the center 34 of I, and
o=bint, is a Cartan subalgebra of f,. Fix a positive system

Y1) o At~ u, t9). Suppose Wis an (I, (L n K) ™~ )-module with Z (I)-infinitesi-
mal character ye(})*)* in the Harish-Chandra parametrization. Following [V3,
Definition 2.5], we say W is in the good range if

(2.2)(a) Rely,a)> >0 forany aed(u,bhe).
In the case where W is one dimensional, we say W is in the fair range if
(2.2)(b) Re{y,, 2> >0 forany aed{u, k),

which is implied by (2.2)(a). It is weakly good (respectively weakly fair) if the weak
inequalities hold. Then the (g, K)-module A4,(4) with the notation in [VZ, §5]}
is isomorphic to R} o(C; ,ay) Wwith our notation, where S =dimgunft),
p(u) = yTrace(ad“,) and C, ., ,u is in the good range of parameters. In particular,
A, = A,(0) ~ RS +{C,.y) has the same infinitesimal character as that of the trivial
representatlon F or later convenience, we define a condition (2.2)(c) on W:

2.2)(c¢)
W is a finite dimensional metaplectic unitary representation of L in the
weakly good range, or in the weakly fair range with dim W = 1.
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We recall some important results of Zuckerman and Vogan. See [V2, Theorem 6.8]
for the first statement and the proof of [V1, Theorem 6.3.12] for the second.

Fact 2.3 Retain the notation as above. Suppose W satisfies (2.2)(c).

(1) If W is infinitesimally unitary, so is R3(W).

(2) For K-modules o; (i =1,2), we write 9, Zxa, if [o,:n] <{a,:n] for any
ne K, where [o;:x] is the multiplicity of = occurring in o;. Then for any j €N we
have

Ro(W)ik = HIK/L, Sunp)@ W C,py).

Hereafter, we write %5 (W) for the completion of the pre-Hilbert space #; (W) if
W satisfies the condition in Fact 2.3(1). If W is in the good range, then %5 (W) is
essentially the same with A4, (1) in the sense of [VZ]. In fact, if such W satisfies
dim W > 1, then we can find

a O-stable parabolic subalgebra p = m + n contained in q,

24
@4 with the property that L/M is compact,

such that 223 (W) is isomorphic to #5 (C,) with a metaplectic character €, of M by
using the Borel-Weil-Bott theorem for a compact normal subgroup of a Levi factor
L and induction by stages [V 1, Proposition 6.3.6] with respect to p < q < g.

3 Discrete decomposability of 4 (1) for a symmetric pair (G, G')

In this section we give a sufficient condition that the Hilbert completion of
a unitarizable cohomological parabolic induced is discretely decomposable with
respect to a symmetric pair (G, G').

Suppose that g is an involutive automorphism of G and that G’ is the connected
component of the fixed points of 6. Then (G, G') is called a reductive symmetric pair.
Choose a Cartan involution 6 of G so that 60 = 86. Then G’ = G, K':= K n G is
a maximal compact subgroup of G’ and the pair (K, K’) forms a compact symmet-
ric pair. We write f,, == {Xef;:0(X) =+ X}. Fix a o-stable Cartan subalgebra
ty of T, such that t§_ == 5 n ,_ is a maximal abelian subspace in f,_. Then we
have a direct sum t¢ = t, @ 1. Choose a positive system X * (I, 1) of the restricted
root system XZ(f, 1<) and a positive system A7 (f,t°) which is compatible with
IYEAL) (e if xedt (L 1) then o €Z(F11) or oy =0). Let q=1+4u be a
f-stable parabolic subalgebra of g. After a conjugation by an element of K, we may
and do assume that

q=q(X) (Notation 2.1),

with an element X e/ — 1t, (t, < t5) which is dominant with respect to 4 * (%, t9).
Define a closed cone in ./ —1({t5)* by

(3.1) ]R+<ur\p>:={ ¥ n,,ﬂ:n,,gO}.

pedunp.t)

Now we are ready to state one of our main results:
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Theorem 3.2 Suppose that (G, G’) is a reductive symmetric pair and that g = 1 + wis
a 6-stable parabolic subalgebra. In the setting as above ( possibly after a conjugation
of q under K), assume

(3.2)(a) R.:{unp) ny/—1(ts-)* = {0}.

Then R5(W) is G'-admissible for any W satisfying (2.2)(c).

Applications are given in Corollary 3.3, Examples 3.6 and 3.7. See also Theorem 6.1
for an example of an explicit decomposition formula in a special case. First, if we
apply Theorem 3.2 to a tensor product of two unitary representations z;, 7, € G, by
regarding it as a restriction of the outer product 7, X 7, €T x G with respect to the
symmetric pair (G x G, diag G), then it is easy to see:

Corollary 3.3 Let G be a real reductive linear Lie group and q; = 1; + u;(j =1, 2)
be O-stable parabolic subalgebras. Fix a Cartan subalgebra tg of 1, and a positive
system A" (L, t°). We may and do assume that |; > 1° and A(n; nE19) = A7, )
(possibly after conjugations of q; by Ad(K)). Denote by wq the longest element in the
Weyl group of A, t°). Assume

(33)(@) R Cuy npd AR Cwoluy np)> = {0).

Here R_{wolu, np)) is defined similarly to (3.1). Then the tensor product
RS(W)) @ RS (Ws) is G-admissible for any W satisfying (2.2)(c).

Now, let us prove Theorem 3.2. First, we need the following result on finite
dimensional representations of compact groups:

Lemma 3.4 Let (K, K') be a compact symmetric pair. Retain the notation as before.
WeputI&(t):: {neK (Imi i 1] 0} forte K and regard K (1) « K < / —1(t5)*
by means of highest weights with respect to a positive system A* (1, t) which is
compatible with ¥ (£,17). We write P:/ —L{t3)* » / —L(t5.)* for the projec-
tion corresponding to a direct sum 1o = {5, @ t5_. Then P(K(t)) is a finite set for
eachteK'.

Remark 3.5 We shall give an explicit upper bound (denoted by Z(t)) of P(R())in
the proof of Lemma 3.4. The special case P(K(1)) = E(1) = {0} is a part of
a theorem of Cartan-Helgason (see { War, Theorem 3.3.1.1]).

Proof of Lemma 3.4 We define a reductive Lie group K ( < K¢) by a Cartan
decomposition K¢:= K’ exp(,/ —1%,_). This definition does not depend on the
choice of a complexification K¢ because exp(y/ —1£,_) =~ R*™"- is simply connec-
ted. Then (K¢ K') is the non-compact dual Riemannian symmetric pair of (K, K')
(see [He, Chap. V §2]). A finite dimensional representation z of K defines that of K*
(also denoted by =) by a holomorphic continuation with respect to K = K¢ > K%
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Now let us regard n as a Langlands quotient in the following way (see [Wal, Chap.
5]) Let PY= M?4°N? be a minimal parabohc subgroup of K¢ associated to

X7 (f,t2). Define a positive system 4* (m?, %) by 4 (£, t)n A(m", 1%). Suppose
pe(t)* is the highest weight of me K (7). Denote by (o, V,) the irreducible repres-
entation of M¢ with highest weight g, €(t%)*. We put v = . e(2)*. Then = is
the unique quotient of the (non-unitary) principal series (without p-shift):

. c*
Ind; (e @ v 1) = {f: K —— V,: f(gman) = a(m) *a"*f(g),
for mane M?A‘N% ge K},

For each te K’ we define
ST

by the set of highest weights for 4% (m?, 1%) of M *-types occurring in 1. Then Z(r) is
a finite set because dimrt < o0, Finally, let us show P(K () = Z(7). Because
7 contains T e K’ we have [1,,,:0] = [Indf;«o: 7] + 0 by the Frobenius reciproc-
ity theorem. Thus P(n) = . e Z(r) by definition. [

Proof of Theorem 3.2 To apply Theorem 1.2 we shall show [ZS (W) 1l <00
for each te K. In view of

[ﬂg(W)uc ] = Z [f%ﬁ(W)m ]l tl,

neK

let us see the sum of the right side is finite. First, it is an easy geometric observation
that the condition (3.2)(a) implies the compactness of the set

Ry unp) +C)n/~1({te-)*xCz) (= —1(te)*)

for any compact sets C; < ./ —1{t5)* and C, = / —1(t5+)*. In particular, we
apply this to the case where C, and C, are the following finite sets:

Cy:={d+ p) - 2p(nT):0 is a highest weight of (L~ K)~
type occurring in W},

C,= P(K(1))( = E(1)) (see the proof of Lemma 3.4 for notation).

Assume that p is a highest weight of a K-type 7 occurring in 25 (W) and satisfying
[m,:1]+0. Then it follows from Fact 23(2) and Lemma 3.4 that

e(R, unp) + Cy)n./—1{(t5-)* x C,). Hence there are only finitely many
possibilities of such dominant integral weights u. Thus we have completed the
proof. [

We end this section with some Examples 3.6 and 3.7 where (G, G') and %5 (W)
satisfy the assumptions of Theorem 3.2 or Corollary 3.3. Perhaps, the first example
is observed by many experts although we could not find it in the literature:

Example 3.6 Suppose (G, K) is an irreducible Hermitian symmetric pair. Letting
N —1Z( % 0) be a central element in f,, we write p 4 for u(Z) with the Notation 2.1.
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Then q(Z) =t + p.. According to [A2], we call a G-stable parabolic subalgebra
q = [ 4 u holomorphic if u N p < p_.. Suppose that q is holomorphic. Then A4,(4) is
a unitary highest module [A2, Lemma 1.7]. We remark that q < q(Z) iff A, (/t) is
a holomorphic discrete series.

If q;,q, are holomorphic, then the assumption (3.3)(a) is satisfied because
wo(unp) € wop, = p.. Thus 4, (4;) &® A,,(4;) is G-admissible. In the case where
q=aq; = q; = q(Z), a decomposition formula of the tensor product of holomor-
phic discrete series 4,(1;) ® A,(4,) is found in [JV, Coroliary 2.6]. On the other
hand, if we put q; = q(Z) and q, = 8q{Z), then the assumption (3.3)(a) does not
hold. In this case, it is known that 4,(4;) ® Ajp,(4;) necessarily contains a continu-
ous spectrum [R, Theorem 2].

In order to see how Theorem 3.2 is applied to A4, (4) (which does not necessarily
have highest weights), let us list all A,’s of U(2, 2) and find which among them are
Sp(1, 1)-admissible:

Example 3.7 Suppose (G, G') = (U(2,2), Sp(1, 1)) = (SO4, 2), SO(4, 1)). First we
find K-conjugacy classes of -stable parabolic subalgebras q = [ + u. For the study
of A4,, we can restrict ourselves to g, for which there does not exist a proper 6-stable
parabolic subalgebra p satisfying (2.4). We choose a coordinate in ./ — 115 so that

(] 1) = {e; —ey,e5 —espand \/—1t;_ = R(H; — H,) + R(H; — H,). By us-
ing the above basis, we put X; =(4,3,2,1), X, =(4,2,3,1), X3=(4,1,3,2),
X.=(3,2,4,1), X;=3,1,42), X¢=(2,1,4,3), Y1 =(2,1, 1 0), ¥,=1(2,0,1,0),
Y;=(2,1,2,0), Y,=(1,0,2,0), ¥Y5=(2,0,2,1), (1, 0 2,1), Z,=(1,0,0,0),
Z,=(1,1,1,0), Z5=(0,0,1,0), Z,=(1,0,1,1), (1,0,1,0), U =(0,0,0,0)e
/ — 115-. Then the set of (g, K }-modules

{A1q = a(X;), a(Y))(1 72 6),q(Z)(1 Sis4),q(W),qU)]

is the totality of irreducible, unitary (g, K )-modules with non-vanishing (g, K)-
cohomology [VZ]. Applying Theorem 3.2 we conclude that if

q = q(X3), a(X4), a(Y3), q(Y3), q(¥a), a(¥s5), 9(Z,), (1 £ i< 4), q(W), q(U),

then 4,€G is G' = Sp(1, 1)-admissible.

For the benefit of the reader, we give some explanation of the above description
of representations. A,x, (1 £ i < 6) is Harish-Chandra’s discrete series for a group
manifold G, and Ay, is the trivial representation. If g = q(X ), q(Xs), a(Y1), a(¥s),
6(Z;)(1 £ i< 4)orq(U), then A, is a unitary highest (or lowest) weight module (see
[A2]). In the context of the Beilinson-Bernstein correspondence between irredu-
cible Harish-Chandra modules and irreducible K-equivariant sheaves of 2-mod-
ules on the flag variety X of G¢ ~ GL(4, T), we associate a single K¢-orbit Q(z) on
X to an irreducible (g, K )-module 7 so that the closure of Q(n) is the support of the
corresponding localization. There are 21 K¢-orbits on X, with 6 closed orbits
Q(A,x,) 1 £i<6), and one open orbit Q(A,y,). These are described in the
following Matsuki-Oshima diagram [MO?2]. Here, the k-th column has a complex
dimension k + 2 (0 < k < 4), and a, b, ¢ are orbits which are not associated to A,.
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QAq(xy) Q(Aq(xz) QAqxa) Q(Aqxa) Q(Aqxy)) Q(Aa(xy))

QAqny) QAgvy) QAqys) Q(Aq(ry) Q(Aywy)) Q(Aqtvay)

5

Qhqz)  Qyz)  QAw)  Qdsz))  QAxz)

NV
~_

QlAywy)

We remark that the above position of K¢-orbits is slightly different from Fig. 7
in [MO2] so that it is easier to read from the above diagram the duality relations
of (g, K)-modules 4,(X;) ~ 4,(X¢-;)" (i=12), A(Y}) = A (Ys-;)" (i=1,2,3),
AZ) = A(Z4-))” (i=1,2)

4 Discrete decomposability of 4,(1) for a holomorphically embedding pair (G, G')

A O-stable parabolic subalgebra ¢ =1 + u defines a complex structure on G/L so
that the holomorphic tangent bundle is given by T(G/L) = G x , ii. We also denote
by (G/L)° a complex manifold G/L endowed with the conjugate complex structure
of G/L so that T((G/L)°) = G x ,u. Let G’ be a connected closed subgroup which is
reductive in G and fix a Cartan involution 6 of G which stabilizes G’. We write
K’ = K n G’ as usual. In this section, we consider a discrete decomposability of the

restriction A4,(4),¢ in the case where K'/L n K’ < G/L is a holomorphic embedding
(see (4.1)(a)).

Theorem 4.1 In the above setting, assume (possibly after a conjugation by an element
of K):

4.1)(a) F=Unt)Y®(Int)®unt),

(4.1)(b) Sunp)® S(°°Yinr) is an admissible L » K’ module.

Then &3 (W) is G'-admissible for any W satisfying (2.2)(c).

Applications are given in Corollary 4.4, Examples 4.5 ~ 4.7. We remark that the
compatibility condition (4.1)(a) implies that K'/L n K' < G/L is a holomorphic
embedding, which is a weaker condition than that G'/L n G’ <« G/L is a holomor-
phic embedding, that is,

(4.1)(a)’ g =@ng)®ANg)Dung).
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First, forgetting the above setting for a while, we prepare a result on compact
groups.

Lemma 4.2 Suppose K = K' are connected compact Lie groups. Let X'e/ — 11,
and we use the notation 2.1 for K', defining ¥’ =1’ + ' + u’ and L' = K’. Likewise,
let Xe./ — 1%, and we define t =11+ [+ u and L c K. Assume that I <[ and
u cu (Such Xe./ — 1%, exists for each X' (eg. X = X’)). For (=, ek, we
define an L-module V,:= V/n() V. Then V, is irreducible (the “highest L-type” of V).
With the notation < g deﬁned in Fact 2.3(2), we have

(4.2)(2) 1K = HO((K'/LY®, Ve ® S(iT/a’)).

The underlying geometric idea of Lemma 4.2 is similar to a proof of the generalized
Blattner formla in Fact 2.3(2), but we give an account of it for the sake of
completeness.

Proof of Lemma 4.2 By the Borel-Weil-Bott theorem for compact groups we
realize " as holomorphic sections: ¥V ~ H°((K/L)°, V).

In view of l'cl, W' cu and u <u, the holomorphic normal
bundle T, ((K/L)°) of K'/L' in K/L is given by Tixr- (K/L)°) =
Coker (T((K'/L")°) = T({(K/L)"}yxyr}) = Coker(K'xpu' - K’'xpu) =
K’ % -(u/u’). Then (4.2)(a) follows from the same argument in [JV,§1] based on the
technique of differentiation in the direction normal to a submanifold K'/L’ due to
S. Martens [M]. (We also use an L'-isomorphism (u/u’)¥ ~uaii’.) O

Proof of Theorem 4.1 Given a metaplectic representation W satisfying (2.2)(c),
we write W= WQC, ) -25unt), whichisan L n K module. It follows from Fact
2.3(2) and the Poincaré duality H°((K/L)°, V) ~ HS(K/L, V. ® AS(un¥)) that

43) REW)x < HO((K/LNK)°, W® S(unp)).
K

Applying (4.2)(a) to the right side of (4.3), we obtain
R(W)lx < H (K'/LAK), W@ Sunp)®S(“" /i)

Because dimW < oo the assumption (4.1)(b) implies that W®Sunp)®
S("" Y~y is also admlssible as an L n K’ module. Hence 23 (W) is admissible as
a K’-module. Now Theorem 4.1 is a direct consequence of Theorem 1.2. 0O

We put t:= f n (the center of I).

Corollary 4.4 In the setting of Theorem 4.1, assume that there exists an ideal d of
fsuch that t = d < . Then R5(W) is G'-admissible for any W satisfying (2.2)(c).

Proof. Let us check the assumptions (4.1)(a) and (b). Since  is an ideal of f, we
can find the ideal 3 of I such that f=b @b Because t <, we have =
AAHBUNADHRUND =GN D(((ND)E D) ®unDd). Because daf, we
have I'=(INd)BUNnF)BUnD)=TnDBINT)D uni), in particular,
inf =1~ Because the symmetric tensor algebra S(unp) is admissible as
a T-module, so is it as an L ~» K’( > T') module. Hence the assumption (4.1)(b) is
also satisfied. [
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We begin with two known examples:

Example 4.5 (G’ is compact) Assume G’ := K, a maximal compact subgroup of G.
In this case the assumption in Corollary 4.4 is obviously satisfied if we take b := .
It is well-known that any 7 € G is admissible as a K-module (Harish-Chandra). Also
a formula of the restriction of #5(W) to K is known as a generalized Blattner
formula [V1, Theorem 6.3.12].

Example 4.6 (holomorphic discrete series) Suppose (G, K) is an irreducible Her-
mitian symmetric pair. With the notation in Example 3.6 (in particular, Z is

a central element in \/ — 1f;), we have g =11(Z)R1(Z)PuZ)=p_DIDp..
Assume that K' = K n G’ satisfies

(4.6)(a) S(p+) is admissible as K'-module.

Then Theorem 4.1 assures that any holomorphic discrete series of G is G'-
admissible because (4.1)(a) is automatically satisfied. For example, if G’ contains
exp(y/ — 1IRZ), then (4.6)(a) is satisfied. In this case, the result of finite multiplicity
of A4(A);c- was obtained in [M], and also in [L], Theorem 4.2 in his study of
restrictions of principal series of complex groups to real forms. In [/J\V] a formula of
decomposition of a holomorphic discrete series of G in terms of G' is given under
a stronger assumption (4.1) (@) (ie. p'(=png )= Nnp-)B ® np,)) but with-
out the assumption (4.6)(a). Under the assumption (4.1)(a)’ in this case, the de-
composition is always discrete ([JV]) and (4.6)(a) is a necessary and sufficient
condition of the finite multiplicity in the decomposition.

The next example is remarkable which treats more general cases where A,(4) is
not necessarily a unitary highest module and where G’ is not necessarily compact.

Example 4.7 Let G = U(p, ¢; F), an indefinite orthogonal group over an Ar-
chimedean field F =R, € or H (a quaternionic number field) We write
K =K, xK, =U(p;IF)x U(g; F). Assume that a 6-stable parabolic subalgebra
g = [ + u is defined by an element of f; = u(p; IF) ( < f) (see Definition 2.1). (The
representations A,(4) here have been intensively studied, for instance, in [EPWW,
S1, Ko3]) Then A.(4) is G'=U(p,rF)xU(q —r;IF)-admissible for any
0 = r £ q. Actually, it is U (p, r; IF)-admissible. See also [Ko3, Proposition 4.1.3].

5 Harmonic analysis on spherical homogeneous spaces and restrictions of 4,(1)

In this section we study discrete series for spherical homogeneous spaces (see
Theorem 5.4 and Corollary 5.6) on the basis of discrete decomposability of 4,(4)
studied in previous sections.

Suppose H, G’ are closed subgroups of G. In general, the existence of an open
orbit of H on G/G’ is merely necessary for the transitivity of the H action (e.g.
Bruhat decomposition, Matsuki decomposition). However, it is also sufficient in
the case of reductive groups:

Lemma 5.1 Suppose that G is a connected real reductive linear Lie group and
that H and G' are closed subgroups reductive in G with finitely many connected
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components. Then the following three conditions are equivalent:

(1) The natural immersion H/H NG’ g G/G' is surjective.
(2) The natural immersion G'/{H NG’ < G/H is surjective
(3) dimH + dim G’ = dim G + dim(H n G’).

Proof. The non-trivial part is the implication (3) = (1) {or (3) =(2)), or equiva-
lently, to show that an open H-orbit on G/G’ is necessarily a closed orbit. We may
and do assume that a Cartan involution 8 of G stabilizes both H and G’ (possibly
after taking conjugates of H and G’). We write K':= K n G’. According to the
vector bundle structure G/G’ ~ K X (po/Po M §5), we have an H n K equivariant
vector bundle map

(H ﬂK) X (pon[h/pomhu(\g())'—) K x (k‘ﬂ/pong,',) 5
HNK' K’

corresponding to the immersion H/H n G’ ¢ G/G’. An open orbit of a compact
group is automatically closed, and so we have an isomorphism between base spaces
HnK/Hn K’ > K/K’. On the other hand, an open image of a homomorphism
between vector spaces is obviously closed, and so we have an isomorphism between
fibers pgo M Bo/Po N bo M gy 3 Po/Pg M go. Therefore an open H-orbit on G/G’ is
also closed. Hence 3)=(1). O

We should remark that the third condition in Lemma 5.1 depends only on their
complexifications (or their compact real forms). For instance, we have

Example 5.2 The natural inclusions Sp(m) < U(2m), U(m) < SO(2m) and
SU@3) « G, < Spin(7) < Spin{8) induce (see [Bol):

P fo - 133 VO [y — 1y 3 S¥ LV 1y SO oy 3 8P
Spin(7)/G> = Spin(8)/Spin(7)  S7, G,/SU(3) = Spin(7)/Spin(6) > S¢ .
Hence we have also isomorphisms of different real forms such as
Do a3V 00 g VP 1,9 350 00, 12y
VO fism 1,y 3 PR 1y 3 O DG om — 1wy s
GLOWR) 1 m e 1R S SO ™ [500m — 1,y »
G,(R)/SL(3, R) =3 SO(4, 3)/SO4(3, 3), G2(R)/SU(2, 1) 3 SO, (4, 3)/S0, (4, 2)
and those obtained by (1) <> (2) in Lemma (5.1) such as

URp — 1, 2 ~ SU{2p, 2 SOQp ~ 1,2 ~ SO@2p, 2
SUQ2p q}/sp(p_l‘q)_, 2p, q)/sp(pvq), @p q)/U(p~1,q)—> 2p q)/U(P,q),

- _ L(2m, R
SUln = L) eom— 1.8) 3 S0 /Ry T TR g 1 ry S R Ry

SO =11 1 - 1,R) 3 SC™ /G m R) »

SO0(3, 3)/SL(3, R} 3 SO, (4, 3)/G2(R) & SO,(4, 2)/SUR2, 1) .

In the setting of Lemma 5.1, G/H carries a G-invariant (pseudo-) Riemannian
metric and then a G-invariant measure. Let L2(G/H) denote the space of square
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integrable functions on G/H with respect to this invariant measure. Then naturally
we have a unitary representation of G on the Hilbert space L2(G/H). An irreducible
unitary representation ze G is called discrete series for L2(G/H ) if = can be realized
as a closed subspace of L2(G/H).

Definition 5.3 The totality of discrete series for L*(G/H) is denoted by Disc(G/H)

(< G). We also write Disc(G/H) for the multiset of Disc(G/H) counted with

multiplicity occurring in L*(G/H). Suppose G’ is also a subgroup reductive in G with

finitely many connected components. For (n, V)e G. we write Disc(n¢:)( < G )for

the irreducible discrete summands of the restriction g, and WDisc(mg) for the

corresponding multiset counted with multiplicity. We note that (mig., V)i =
scDiscino )0 With the notation in §1.

The isomorphism of G’-manifolds » G'/H' = G/H induces that of Hilbert spaces
*: L*(G/H) > L*(G’/H’"), on which the regular representations of G and G’ are
compatible with the restriction with respect to G > G’. Then the following theorem
relates Disc(G/H ) and Disc(G'/H').

Theorem 5.4 Suppose that G is a connected real reductive linear Lie group and that
H and G’ are closed subgroups reductive in G with finitely many connected com-
ponents. We assume

(5.4)(a) dimH + dimG' =dim G + dim(Hn G'),
and that there exists a minimal parabolic subgroup P’ of G such that
(5.4)(b) dimH’ + dimP' =dim G’ + dim(H n P’) .

Then there exists a surjective map between multisets
7 : Disc(G'/H’) - Disc(G/H) ,

such that if e Disc(G/H)( = é) then the fiber 7 ~'(z} = Disc(n ') (see Definition
5.3). This means that we have a bijection between multisets:

(5.4)(c) J  Disc(mg) = Disc(G'/H') .

e Disc(G/H)

In particular, Disc(G'/H') = @ if and only if either Disc(G/H) = @ or the discrete
part (mig-)g = {0} for any neDisc(G/H). Moreover, if discrete series for G'/H' is
multiplicity free, then the discrete part of the restriction m|g- is multiplicity free for any
neDisc(G/H) « G.

Proof. For n e Disc(G/H)( < G), we write m(rn) for the multiplicity of 7 occurring
in L*(G/H) and fix a base {T}, ..., Thmy) of the C-vector space
Hogl\g(n, L%(G/H))) so that the image T7(n) is mutually orthogonal. Likewise, if
7€ G" occurs in the decomposition of 7|5 as a discrete summand with multiplicity
m(z, n), we fix a base {S{'", ..., SquE o} of the C-vector space Homg (z, 7). Then
{TrSF™1):meDisc(G/H), 1 £ i < m(t, n), 1 £j £ m(n)} forms G'-irreducible, mu-
tually orthogonal closed subspaces of L*(G'/H') ~ L?(G/H) which are isotypic to
7. This gives rise to discrete series for L?(G’/H"), and what we want to prove now is
the exhaustion of discrete series by this construction. Suppose U is a G'-irreducible
closed subspace of L2(G’/H ), which is isotypic to t e G, Because the multiplicity of
tin L*(G'/H') is finite from the assumption (5.4)(b) by a recent result of Bien,
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Oshima and Yamashita (cf. [Os, Y]), we can apply Lemma 1.1 so that we find
a G-irreducible closed subspace W in L*(G/H)=~ L*(G'/H’) such that the -
isotypic subspace W(1) contains U. From our definition of 7} and S$;-7, this means
that {T/S7":neDisc(G/H), 1 £i<m(t,n), 1 £j < m(n)} spans the C-vector
space Homg (7, L*(G'/H’)). In other words, the multiset Disc(G'/H’) contains
7€ G’ with multiplicity

Y  m,mm(z)  (finite sum) .
ne Disc(G/H)

Now the map 7 can be well-defined on the multiset IDisc(G'/H’) via the above
basis. The remaining part of the theorem is clear. [

If one knows Disc(G/H ) and the restriction formula 7,5 for n € Disc(G/H ), then
Theorem 5.4 gives a construction and exhaustion of discrete series for G'/H'.
Conversely, on the knowledge of Disc(G’/H’) and Disc(G/H ), one can establish an
explicit decomposition formula in some cases, which was the approach taken in
[Ko2]. In the scheme of Theorem 5.4, we shall present a classification of discrete
series for some non-symmetric spherical homogeneous spaces in §6 in the cases
where the restriction of any ne Disc(G/H) is G'-admissible.

For applications of Theorem 5.4, we use a well-known description of Disc(G/H )
for symmetric cases by means of Zuckerman’s derived functor modules. Let o be an
involution of G and H be an open subgroup of the fixed points of 6. A homogene-
ous space G/H is called a semisimple symmetric space. Take a Cartan involution
0 of G commuting with ¢. Then we have

Fact 5.5 (Flensted-Jensen, Matsuki and Oshima, see [MO1; FJ, Chap. VIII, §2; V3,
§41) Suppose G/H is a semisimple symmetric space. With the notation as above,
Disc(G/H) =+ 0 if and only if rank G/H = rank K/H n K. Moreover, if the rank
condition is satisfied, we fix a maximal abelian subspace to in {Xe€ls:0(X)= —X }.
Then any discrete series ne Disc(G/H) is of the form %5(C,), where q is defined by
a generic element in ./ — 1ty and €, is a metaplectic character of Z(t)™ in the fair
range satisfying some integral conditions determined by (G, H).

Here is an application of results of §3, §4 and Theorem 5.4 to determine the
existence of discrete series for some non-symmetric spherical homogeneous spaces.

Corollary 5.6

(5.6)(a) real forms of SO(2n + 1, C)/GL(n, C):
Disc(SOQ2p — 1,2¢9)/U(p — 1, q)} # 0 if and only if pge2Z.

(5.6)(b) real forms of SL(2n + 1, €)/Sp(n, C):
Disc(SU(2p — 1, 2¢)/Sp(p — 1, q)) * 0 for any p, g,
Disc(SU(n, n + 1)/Sp(n, R)) = 0,

Disc(SL(2n + 1, R)/Sp(n, R)) = 0.

(5.6)(c) real forms of GL(n + 1, €C)/GL(n, C):
Disc(U(p, 9)/U(p — 1, q)) + @ for any p, g,
Disc(GL(n + 1,R)/GL(n, R)) = ¢.

(5.6)(d) real forms of G,(C)/SL(3, C):
Disc(G»(R)/SU(2, 1)) + 0,

Disc(G,(R)/SL(3,R)} + @.
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(5.6)(e) real form of SO(7, C)/G,(C):
Disc{SO(4, 3)/G,(R)) + 0.

(5.6)(f) real forms of Sp(1, €) x Sp(n + 1, C)/diag(Sp(1, C)) x Sp(n, C):
Disc(Sp(1) x Sp(p, g)/diag(Sp(1))x Sp(p — 1, 4)) + 0 for any p, g.

Proof. First we note that the above homogeneous spaces are spherical and of
course satisfy (5.4)(b). Therefore the multiplicity of discrete series is always finite if
exist. The proof of the corollary is divided into four cases:

(i) If G/H is a symmetric space SO(2p,2q)/U(p,q) with pge2Z + 1 or
SL(2m, R)/Sp(m, R), then rank G/H > rank K/H n K and so Disc(G/H) =0 by
Fact 5.5. Applying Theorem 5.4 to equivariant diffeomorphisms

SO@2p — 1,29)/U(p — 1, 9) 3 SO2p, 29)/U(p, q)
and
SL(2m — 1, R)/Sp(m — 1, R) =3 SL(2m, R)/Sp(m, R)

in Example 52, we conclude that Disc(SO(2p—1,2q)/U(p—1,4))=0
(pge2Z + 1) and Disc(SL2m — 1, R)/Sp(m — 1, R)) = §.
(i) Because SO(4, 2)/U (2, 1) is a symmetric space with the rank condition, Fact 5.5
says Disc(SO(4, 2)/SU(2, 1)) = Disc(SO(4, 2)/U(2, 1)) # §. From Theorem 5.4, we
conclude that Disc(SO(4, 3}/G,(R)) 0.
(iii) This case is the main part of this corollary. Since the computation is fairly
similar for other cases, we shall give the details only in the case G'/H' =
SOQ2p — 1,29)/U(p — 1, q). Let G = SO(2p, 2q) > K = S(0(2p) x 0O(29)). We rep-
resent the root system of g and f as A(g, t)={+(fi £/} | Si<jZp+4q}
ARE)={+(fixf):1Zi<jSpor p+1Si<j<p+gq} Suppose pge2Z.
To describe discrete series for a symmetric space G/H = SO(2p, 2¢)/U(p, q), we
take ./ —UF =R +/2) + "‘|‘]R(f2[‘7’]~1 +f2[g])+]R(fp+1+fp+2)+
c 4+ R(fp+2[ 4711 +fp+2[%]) (see notation in Fact 5.5). We define
we= (51,0481 ..., 1, LO,[51+[4) [51+[4)....[51+1 [2]1+1L.(Ope

— 1t¥ with the above coordinate and define a @-stable parabolic subalgebra
q = q(u) = [ + u (see Definition 2.1). Then, since Aunp) = {fitfi: 1 £j<p,
p+1Zisp+ q},itiseasytoseelR <unp>r\IR<f1, o os [y = {0}. With the
notation in Theorem 3.2, ./ —1(t;-)* = Rf; for a symmetrlc pair (SO(2p, 29),
SO@2p — 1,2q)). Hence the condltlon (3.2)(a) is satisfied and so Theorem 3.2
assures that 25(W) is SO (2p — 1, 2g)-admissible for any metaplectic representa-
tion W satisfying (22)(c). Now we have found a discrete series for
SO2p, 2q)/U(p, q) whose restriction to SO(2p — 1, 2q) is admissible. Thanks to
Theorem 5.4, we now conclude Disc(SOQ2p — 1,2¢)/U(p — 1, ¢)) £ 0 if pge2Z.
This argument applies to other cases where G'/H' = SU(2p — 1, 24)/Sp(p — 1, 9),
SU(n,n+ 1)/Sp(n, R), G»(R)/SU(2, 1), G2(R)/SL3,R), U(p,q)/U(p—1,9),
Sp(1) x Sp(p, q)/diag(Sp(1)) x Sp(p — 1, g).
(ivy It is deduced from the following lemma with H =R that
Disc(GL(n + 1, R)/GL(n, R)) = 0. O

Lemma 5.7 Suppose that G > H are reductive Lie groups and that H has a direct
decomposition H, x H, with H, noncompact. Then either Disc(G/H;) = O or any
discrete series for G/H, occurs in L*(G/H,) with infinite multiplicity.
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Proof. Correspondingly to  the  G-equivariant  H,-principal  bundle
H, - G/H, - G/H, we regard G/H, > H, x G/diag(H ) x H,. Applying Theorem
5.4,if T € Disc(G/H ) and if the multiplicity of t occurring in L2(G/H ) is finite, then
we can find neDisc(H, x G/diag(H,) x H,). We shall see that this leads to a con-
tradiction. In view of

®
L*(G/H,) = L*(G/H, L*(H/H,)) = | L*(G/H, X 1)du(1),
",
where du(t) is the Plancherel measure on H,, = must be of the form 7 = ¢ X t with
some o eDisc(H;) = H,. Because H, is non-compact, dimo = o0. On the other
hand, the multiplicity of ¢ in L?(G/H,) must be at least dim . This contradicts to
the fact the assumption that the multiplicity of = in L*(G/H,) is finite.

We remark that we are not intending to make a complete list in Corollary 5.6.
Actually, we have omitted several (easy) cases where either [S1; Ko3, Proposition
0.4] or Lemma 5.7 can be applied. We end this section with some remarks
suggesting further study.

Remark 5.8 (1) Discrete series for non-symmetric spherical homogeneous spaces
in (5.6)(c), (d) and (f) are classified in §6. It would be interesting to find the explicit
restriction formula and to classify discrete series for some other non-symmetric
spherical homogeneous spaces in the scheme of Theorem 5.4.

(2) There are some other spherical homogeneous spaces such as
SO(m, m + 1)/GL(m, R) and Sp(l, R)xSp(n + 1, R)/diag(Sp(1, IR)) x Sp(n, R),
for which we do not tell the existence of discrete series by this method.

(3) The result in (5.6)(b) suggests a geometric construction of ‘holomorphic discrete
series’ in the sense of *Olafsson and Orsted [OO] for a non-symmetric spherical
homogeneous space SU(2p — 1, 29)/Sp(p — 1, 9). _

(4) Our approach also presents examples where the restrictions of e G with
respect to a reductive subgroup G’ is decomposed only by the continuous spectrum
(an opposite direction to theorems in §3 and 4). It is the case when
G = S04, 3) » G’ = SO(3, 3) and ne Disc(SO(4, 3)/G,(R)).

6 Examples of an explicit decomposition formula

In this section, in the framework of Theorem 5.4, we present examples of an explicit

decomposition formula of A,(1),¢ for A4(4)e G together with the classification of
discrete series for non-symmetric spherical homogeneous spaces G'/H'.

In contrast to Harish-Chandra’s discrete series, we have to deal with #5(C,)
where the range of parameters of €, is not necessarily in the good range but in the
weakly fair range in the sense of [V3] (see (2.2)(a), (b)). By this reason, we use the
notation #5(C;) instead of 4,4(A) (= #5(C;+ ). For simplicity, we omit the
notation for obvious Hilbert completions in this section.

6.1 Sp(p, q) = SU@2p, 29), U(p, 9) = SOo(2p, 29).

Let G=S00(2p,2q) (p=1, q=0). We represent the root system of f as
AR ) ={x(fixf):1Li<jgporp+1=£i<jZp+ q}anddefinea f-stable
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parabolic subalgebra by q:= q(f,). For AeZ, we write C;,, for the metaplectic
representation of L corresponding to Af; €./ — 1(t5)*. We define a (g, K)-module
by

U() = USRr20():= (RGP H(C,y)
If we write H = SOy(2p — 1, 2g), then it is well-known (see also Fact S$.5) that the

totality of discrete series for a semisimple symmetric space G/H is given by
(multiplicity free)

{U@:4eN,} (pz2qz1),
Diso(G/H) = (UM, U :2eN,} (p=1lgz1),
{UR):AeN,, Azp—-1} (p22,9=0),
{U@A), U4, U0):AeNL} (p=1,4g=0).

Next, let G’ = U(p,q), and represent the root system of § as
AR, V) ={x(e;—¢): 1Si<jSporp+1=i<jsp+4q} Fix A»B>»0
and we define f-stable parabolic subalgebras of g’ by g’y := q(de, + Bey.y),
a6:=q(e; —e,), and qo-:=a(—Ae,— Be,,,). For 1leN,, leZ such that
l=2+4p+q+ 1 mod2, we define (¢, K')-modules by:

Velol)= VIO )= (RS, 7" HCagly o mir,, ) 1>2>0,pg2 1,
Volh 1) = VE®D(, )= ()7~ H(Cagte, 4 =21,,) ifAz|l,pz2,

V(1) = Vieo@, )= (%g,_)mrz((]j‘xﬂe +Atle,., ) if ~I>A>0,pg=1.

Third, let G” = Sp(p,q), and represent the root system of {' as A(f, 1) =
{£(hi—hy), £2h: 1Zi<jSporp+1Zi<js<p+gq, 1SISp+q} Fix
A>»B» 0 and we define 6O-stable parabolic subalgebras of g” by
q% = q(4hy + Bhys1), 6o= q{Adh, + Bh,). For 2e N, je N such that j=1 4 |
mod 2, we define (g”, K”)-modules by:

W, ()= WPPO(, )= (A7 207 HCajrL,  masivy, )
fj+1>A>0,pg=1,

Wolh ) = WEPD(, j)i= (BG4 (Cazfes,, 220,
fizj+1>0,pz2

Here is a reformulation of [HT] (cf. [Ko2] for a special case) in the scheme of
Theorem 5.4:

Theorem 6.1. (1) Let p=2 and q= 1. First we fix AeN,. According to
U(p,q) = SOu(2p, 2q), we have

Usoo(2p2q)(,1)|w”)_@VJA D+ @ Vo D+ @ V-4,

e 1<-a

where the sum is taken over 1€2Z + A+ p+q + L.
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Next, we fix AeNy, leZ such that =1+ 1mod2. According to
Sp(p, g} = U2p, 29) = SO (4p, 4q), we have

VE(Zp,Zq)(A, l)|Sp(p.q) = Vy(lp,?.q)(/”’, _I)ISp(p.q) - C—B W+ ()’J) lfl > ;v 5

izt
VéJ(Zp,Zq)(/*v’ I)ISp(p,q) = @ W()(/:’]) + (‘B W+ ()*a]) Zf”l = A N
jtigia-1 ey
USSP 40 g = B G+ DWeh )+ @ (+ DW.(h)),
osj=i-1 Av1sj

where the sum is taken over je 2Z + 2 + 1. On the other hand, if we fix le Z and je N,
then we have a classification of discrete series for associated vector bundles:

Disc(U(p, g)/UM)x Ulp ~ 1, q) 1)
(Vi D):l> 2> 00 {Ve, DAz 1} >0,
= {{Vo(4,1): 2 >0} =0,
(Vo) =1> 2> 0 u{VeL D)2z =1} (I<0),
Disc(Sp(p, 4)/Sp(1) x Sp(p — 1, 9); o)
={(+ DWo(hj):A>jLu{(j+ DW.(4]):j>i>0}.
Here y; is a character of U(1) and o is the j + 1 dimensional representation of Sp(1).
The parameter 4 runs over A€2Z + 1+ p + q + 1, Ae2Z + j + 1, respectively. The

multiplicity of discrete series is uniformly equal to j + 1 for the Sp(p, q) case.
(2) Let p=1and q = 1. First we fix AeN,.

Uso@200y o> @ VYO, D),

1e2Z+ A+gq
I24+q

USE200 Y p g > @ VERIGD.

1e2Z+A+gq
I£—-A—¢q
Next, we fix Ae Ny, l€Z such that | = A + 1 mod 2.
V220, Dispag = VIO =Dispag = D WL yi> 1,
jzmax(l,i+2g-1)
VIR0 Diseng= @  Wilhj) ifI1<4,
At+2g-155
Usodsay o= @ G+ DWelh)),
it29-15j

where the sum is taken over je2Z + A + 1. On the other hand, if we fix le Z and je N,
then we have a classification of discrete series for associated vector bundles:

Ve )il—q2z2>00  (>q),
Disc(U(1, /U x U(q) 1) ={ 90 {=q,
Vo l)—l—qzi>0) (—g>1),
: G+ —2q+ 124 >0} (jz 29)
Disc(Sp(1, 4)/Sp(1}xSpiq); 0;)= {Q), (<24 .

Sketch of Proof. We explain a proof which consists of the following two steps.
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Step 1 Knowledge of some degenerate principal series of U(p, ¢; IF) (F = R, C, H)
such as irreducible constituents and the branching rule with respect to
Sp(p, ) = U(2p, 2g) and U(p, ¢) = SO4(2p, 29).

Step 2 ldentification of some irreducible constituents as derived functor modules.

Step 1 is done in [HT]. We set up some necessary notation. With the notation
in§2.1 l.c.(p,qbeeven, acZ, a =2 — p — q), we write S2»?(qa) for the Harish-
Chandra module of the irreducible quotient of the degenerate principal series
S§4 (17X °) of O(p, q) whose K-type region is in the right wing of the barrier A~
(see p. 17 (i), (i) Lc.). Second, with the notation in §4 lc. (p=2,q9= 1, o, fEZ,
«+pf22—p—q) we write S{?(«, B) for the Harish-Chandra module of the
irreducible quotient of the degenerate principal series S*#(X °) of U(p, g) whose
K-type region is in the right wing of the barrier 4 * ~ (see p. 39 (i), (i) for g = 2, §4.5
for g = 1). If p = 1, the K-type region of U(1, ¢)-module S*#(X °) meets the right
wing of A*~ iffmin(x, ) £ —g (cf. Diagram 4.26 lc. for U(p,1)). Thus,
SY%a(y, ) is defined only for o, feZ such that a+f=1-—¢q and
min{a, ) £ —q. Third, with the notation in §5 lc. (p =22, g=1, aeZ, jeN,
az2-2p—2q), we write S¥¥9(q, j) for the Harish-Chandra module of the
irreducible quotient of the degenerate principal series S/(X °) of Sp(p, q) whose
K-type region is in the right wing of the barrier A*~. If p = 1, S1?(q, j) is
defined only for aeZ, jeN, a = —2q and a < j — 4q. It can be read from [HT]
thatifae Z satisfiesa = 2 — p — g (if o, e Z satisfieso + f =2 — 2p — 2q,ifacZ
satisfies a = 2 — 2p — 2q, respectively), then for p = 2 and ¢ = I we have

S0er@ = @ SUew p),  SEWa@ = @ SO,
a,peZ a feZ
at+f=a la—-f|za+2q
atf=a

YN f)= B SPEOE+ ) SYEWE = D ST+ b)),

je'ZZ+a+{f j§21+u+ﬂ
jzla-$i jzla—gi
jzatp+aq

SUr@ = @ (+DSTIUa)), SIEW@ = @ G+ DSTEa).
je2Z+a je2Z+a
jz0 jzatdq

Suppose p, g2 1, AeIN,, [e2Z +A+p+q+1,je2Z + 4+ 1. We assume
moreover A = |l and j=2 42+ 2¢—1if p=1. Step 2 is to prove the following
isomorphisms:

(6.2)(2)

Soup,zq)u p—q+ 1)| N {USOO(ZP.ZG)(,{)(_B Usoc,(zp,z‘n(,{)v (p=1),
+- - P SOo(2p,29) =

ysonn20 () (P22,

A+l—p—q+1l A-l—-p—q+1
2 ’ 2

(6.2)(b) si‘z#)( )z Viweo ),

62 SPLD( = 2p = 20 + Lj) = WFPGL))
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Here =+ if [> 4, 0=0if [I|S4 6= —if —I>4in (6.2)(b), and 6= + if
j+1>4e=0ifj+1<2in (62)().

Step 2 is divided into three substeps:

Step 2(a) In the good range of parameters, we can apply a characterization of
Ag(ﬂv) given in [VZ] Proposition 6.1 to infinitesimally unitarizable representations
§Q2r29)(q) (or their irreducible direct components as SOo(2p, 2g)-modules if
p=1), SY»9(q, B) and SPP?(q, j) whose K-types we know explicitly.

Step 2(b) We can prove the isomorphism (6.2) as K-modules by finding explicit
K-types of U(2), V5(A,1) (0 = +,0, —) and W,(4,j) (¢ = +,0). Explicit K-type
formulas of U (4), Vo(4, 1) and Wy(4,j) can be obtained as a special case of [Ko3,
§47. A technical feature of calculations in the case ¥V (4, 1) and W, (4, ) is slightly
different, which we omit here.

Step 2(c) In order to deal with the weakly fair range which does not belong to the
good range, we apply translation functors to both degenerate principal series and
derived functor modules in a special direction of translations (“from the good
parameter €, 2,0 (k> 0) to the weakly fair parameter €,”) based on [V3,
Lemma 4.8] (see [ V3, Proposition 4.7] for the case of derived functor modules). On
the other hand, because we have already established the isomorphism (6.2) as
K-modules in Step 2(b), and because irreducible constituents of the degenerate
principal series here are characterized only by the K-types, we can now conclude
that the above translation functor sends the irreducible quotient
“S._(v+ 2kp))” to “S, _(v)” (with an abuse of notation). Hence the isomor-
phisms (6.2) of (g, K)-modules follow. [J

Remark 6.3 In [Ko2] (p = 1), we have taken an alternative approach, that is, to
find all discrete series first and then to obtain the branching formula. The latter
part is based on explicit K-type formulas of corresponding discrete series. Here we
use a special property that the restriction of these discrete series to K forms linearly
independent K-modules.

Finally, we mention the relation of these discrete series and the degenerate
principal series. We note that indefinite Stiefel manifolds U(p,q)/U (p — 1, q) and
Sp(p, 9)/Sp(p — 1, q) are principal bundles over semisimple symmetric spaces of
rank one. Like the base spaces which are symmetric, we can define the boundary
map of discrete series for the above Stiefe]l manifolds (one of the terms of the
asymptotic expansion vanishes because of square integrability). This leads to an
embedding of discrete series to the degenerate principal series of U(p, g) or Sp(p, q)
which are dual to those considered in the above proof.

62 G,(R) < SO,(4, 3).

Let G = SOy(4,3) o K = K; x K; = SO(4) x SO(3) and represent the root system
of fas A, t°) = {+(f; £ /2), 1f5}. We define f-stable parabolic subalgebras by
q1:= q(f3) and g, := q(f1) (see Definition 2.1). Let H, := SOq(4, 2), H;:= SO, (3, 3)
be subgroups (naturally embedded) in G. Then it is well-known {see also Fact 5.5)

Disc(G/H,) = {#},(Tyy,): A€N + 4}, Disc(G/H;) = {RZ(Tsy,): AN + 3} .

Denote by X the generalized flag variety of Gg¢ containing q,. There are 4 K¢-
orbits on X, say, 2, {compact), 2, (compact), 2,, and 25 (open) such that
dimg 2; = i (i =1,2,4,5), and that 2;5q; and K acts trivially on 2; (j = 1, 2).
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Next, let G’ = G,(R) be a non-compact real form of an exceptional simple Lie
group G¢ = G,(C) with K’ ~ SO(4). We choose a compact short root o and
a non-compact short root . We define 6-stable parabolic subalgebras by g} := q(«)
and q5:= q(f). Denote by Y the generalized flag variety of G¢ containing q'. Then
Y3q3. Let 2] be the K¢ orbit through qj (j = 1, 2). We embed ©: G’ 5 G so that
1(K') < K. Wealso write : for its complexification and its differential. Then the map
¥ X > Y, q—1"{q) is well-defined, giving a Gg-equivariant isomorphism be-
tween X and Y. It is easy to see 1*(2;)2q; (j = 1, 2). Because

e ~sl2, C)@sl2, C) - e =~ (512, C) @ sl(2, €©)) P sl(2, €)

is given by (X, Y)—(X, Y, Y) up to Ad(K¢), we have 1(fg) + fc =fc (j=1,2).
Because the action of K¢ on 2; is trivial and that of K¢ is transitive, 1(K¢) acts
transitively on 2;. This means 1*(2;) = 2;(j = 1, 2). Thus the local cohomology on
X with support 2; with coefficients in an invertible sheaf of @®-modules is isomor-
phic to that on Y with support 2;via 1* (j = 1, 2). By the duality of Harish-Chandra
modules between 2-module construction and cohomological parabolic induction
[HMSW, C]), we have the first half of the following theorem, while the latter half is
a direct consequence of Example 5.2 and Theorem 5.4.

Theorem 6.4 (joint work with T. Uzawa)
() (Crrim = (A (Cn) (AN +1),
RV (Cap,) 6wy = (RLHT,p), (AN +3),
Disc(G,(R)/SUR, 1)) = {(#S)(C1): AN + 3},
Disc(G,(IR)/SL(3,R)) = {(ﬂ%)z((]jw):ie]N +3}.

Remark 6.5 There are 5 K¢ orbits 2; on Y with dim¢ 2; =i (i = 1,2, 3, 4, 5) such
that 1*(2;) = 2 (i = 1, 2, 5), 1*(24) = 25 U 2, and the boundary 025 = 2 L 25.

The irreducibility of the (g/, K')-modules (%#3)! (C;,) and (#3)*(C,;) at A = }in
Theorem 3.6 is not known to the author. In this sense there is a little abuse of
notation in the latter part of the above theorem.
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