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Abstract

For 2<m</2, let G be a simply connected Lie group with g, = so(2m,2/ — 2m) as Lie
algebra, let g = £@ p be the complexification of the usual Cartan decomposition, let K be the
analytic subgroup with Lie algebra fn g, and let U(g) be the universal enveloping algebra of
g. This work examines the unitarity and K spectrum of representations in the “analytic
continuation” of discrete series of G, relating these properties to orbits in the nilpotent radical
of a certain parabolic subalgebra of g.

The roots with respect to the usual compact Cartan subalgebra are all +e;+e; with
1<i<j<I. In the usual positive system of roots, the simple root ¢,, — ¢, is noncompact and
the other simple roots are compact. Let ¢ = [@u be the parabolic subalgebra of g for which
em — ey contributes to u and the other simple roots contribute to [, let L be the analytic
subgroup of G with Lie algebra [ngy, let L® = Inty(I), let 26(n) be the sum of the roots
contributing to u, and let § = [@ 1 be the parabolic subalgebra opposite to q.

The members of unp are nilpotent members of g. The group L® acts on 1~ p with finitely
many orbits, and the topological closure of each orbit is an irreducible algebraic variety. If ¥
is one of these varieties, let R(Y) be the dual coordinate ring of Y; this is a quotient of the
algebra of symmetric tensors on unp that carries a fully reducible representation of L.

For seZ, let .y =>4, (—I +3)ex. Then A, defines a one-dimensional (I, L) module C;,.
Extend this to a (§,L) module by having ii act by 0, and define N(A;+20(u)) =
U(8) ®5C,12501)- Let N'(4;+20(u)) be the unique irreducible quotient of N (A, + 26(u)).
The representations under study are my = II5(N (/s +20(u))) and 7, = I g(N'(4s + 20(u))),
where S = dim(unf) and IIg is the Sth derived Bernstein functor.

*Supplementary data associated with this article can be found in online version at doi:10.1016/S0022-
1236(03)00254-4.
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For s>2/—2, it is known that m, =7, and that =} is in the discrete series. Enright,
Parthsarathy, Wallach, and Wolf showed for m<s<2/ — 2 that n, = n and that = is still
unitary. The present paper shows that 7} is unitary for 0<s<<m — 1 even though =, # 7}, and it
relates the K spectrum of the representations =, to the representation of L® on a suitable R(Y)
with Y depending on s. Use of a branching formula of D. E. Littlewood allows one to obtain
an explicit multiplicity formula for each K type in 7; the variety Y is indispensable in the
proof. The chief tools involved are an idea of B. Gross and Wallach, a geometric
interpretation of Littlewood’s theorem, and some estimates of norms.

It is shown further that the natural invariant Hermitian form on #, does not make 7/, unitary
for s<0 and that the K spectrum of 7 in these cases is not related in the above way to the
representation of L® on any R(Y).

A final section of the paper treats in similar fashion the simply connected Lie group with Lie
algebra g, = s0(2m, 2/ —2m+ 1), 2<m<//2.
© 2003 Elsevier Inc. All rights reserved.
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Let G be a simple Lie group with maximal compact subgroup K and with a
compact Cartan subgroup 7 of G chosen to lie in K, and let ty be the Lie algebra of
T. It is known from the work of Harish-Chandra [HC] that the discrete series
representations of G, i.e., the irreducible unitary representations of G that are direct
summands of L2(G), occur in finitely many classes. Apart from repetitions, a class is
determined by a positive system of roots, and the representations in the class are
parametrized by the integral points in a translate of the corresponding dominant
cone of the dual (itg)* of ity. Wallach [Wal,Wa2] was the first to raise the question of
what properties these representations have when the parameter is moved outside the
cone. He studied these “analytically continued” representations initially in the case
for G/K Hermitian symmetric of a particularly nice kind of holomorphic discrete
series and later with coauthors Enright, B. Gross, Howe, Parthasarathy, and Wolf
[EHW.EPWW,GrW1,GrW2] in some other cases and for other groups G. The
fundamental problems are

(a) the identification of the continued parameters leading to reasonable unitary
representations, and
(b) the determination of the restrictions of the unitary representations to K.

The works [Wal,Wa2] solved problem (a) completely for all of what will below be
called the “line-bundle cases” for G/K Hermitian symmetric when the positive
system of roots is the one compatible with the complex structure on G/K. For this
same situation, works [EHW,Ja] independently solved problem (a) for all “vector-
bundle cases.”

For other groups almost all progress has concerned only the “Borel-de Siebenthal
positive systems” for the given group. Every simple Lie group with a compact
Cartan subgroup has such a positive system [BoS] (cf. [Kn2, Theorem 6.96]). The
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work [EPWW] solved problem (a) completely for all Borel-de Siebenthal positive
systems in all line-bundle cases for which a certain irreducibility condition is in force;
for these cases the answer to problem (b) is fairly easy to see. At about the same time
that [EPWW] was written, Vogan [Vo2] discovered a more widely applicable but less
sensitive theorem for detecting unitarity. The work [GrW2] went on to address both
problems (a) and (b) in line-bundle cases outside the range where the irreducibility
condition is in force, but only for G’s such that G/K has a quaternionic structure and
the positive system is compatible with that structure. More recently the work [Kn3]
solved problem (a) in nearly all line-bundle cases and in many vector-bundle cases
for all remaining linear classical groups, i.e., those linear classical groups that are not
of real-rank one and do not have G/K Hermitian symmetric. However, the methods
of [Kn3] fail for groups that do not have faithful matrix representations, and they
yield no insight into problem (b).

The present paper uses a completely different approach to solve problems (a) and
(b) completely for the line-bundle cases and a Borel-de Siebenthal positive system in
the simply connected covering groups of SO(2m,2[ — 2m), when 4<2m<2/ — 2m,
i.e., 2<m<I/2. The main positive results for problem (a) are Theorems 8.1 and 8.2,
and the main positive results for problem (b) are Theorems 9.4 and 9.5. Modifications
necessary for SO(2m, 2l — 2m + 1), with 2<m<//2 are noted in the last section, and
thus the line-bundle cases are settled for one particular Borel-de Siebenthal ordering
for each of these groups. These results, in combination with results in the above cited
papers, solve problem (a) completely for the line-bundle cases in at least one Borel-de
Siebenthal positive system for each G other than split E;, split Eg, and the simply
connected cover of SO(2m, 2/ — 2m + 1), when 2m>1>3.

A tool in the new approach is a theory of a certain kind of nilpotent orbits. There
are various theories about certain kinds of nilpotent orbits associated with
semisimple groups, whether in the Lie algebra g, of G or in the complexified Lie
algebra g. Noé€l [No] and others have explained some of these theories and
relationships among them. The classification theorem that No€l proves seems to
include the orbits that arise here, but the ones here do not seem to be grouped in his
classification in a handy way for current purposes. We choose therefore to work
directly with the orbits that do arise.

In order to describe our results more quantitatively, let us introduce a minimal
amount of notation. More detail will be provided in Section 1. We start from G, K,
T, etc., as at the beginning. Let 0 be the Cartan involution of g, corresponding to K,
and let g = [@u be a f-stable parabolic subalgebra of g of Borel-de Siebenthal type
relative to t. The Levi factor [ is the complexification of Iy = Ing,, and the analytic
subgroup L of G corresponding to Iy is a compact subgroup of K. For now, write L©
for Inty(I). The orbits of interest will be those of L* on the noncompact part of the
nilpotent radical u of q.

The representations of initial interest will be cohomologically induced, in the sense
and notation of [KnV], from irreducible (finite-dimensional) (I, L) modules. We speak
of line-bundle cases or vector-bundle cases according as the (I, L) module is one
dimensional or higher dimensional; we shall work exclusively with the line-bundle cases.



A.W. Knapp | Journal of Functional Analysis 209 (2004) 36—100 39

To describe cohomological induction, let 4 be the differential of a character of L,
and write C, for its representation space. Let § = [@ 11 be the parabolic subalgebra
opposite to g, extend the I action on C, to § by having @i act by 0, and let N(4)
be the upside-down generalized Verma module N (1) = U(g) ®;C;, where U(g)
is the universal enveloping algebra of g; N(/) is a (g, L) module. If 26(u) denotes

the sum of the roots of t in u, the (g,K) module of initial interest is n(d) =
(Hg:f)S(N(Z+25(u))), where (Hgf)s is a functor to be described in Section 1.
The (g, L) module N (1) has a unique irreducible quotient N’(1), and we let 7'(1) =

(Hg:IL()S(N’(l + 26(u))); this is the actual (g, K) module of interest. Along the lines of
the problems mentioned at the beginning, the specific goals are to determine

(a) when #/(1) is unitary, and, in such cases,
(b) what its K decomposition is.

To state results for G equal to a simply connected cover of SO(2m, 2] — 2m),, we
need to pin A down a bit. For this group G, the dual of the complexified Cartan
subalgebra can be identified with / tuples, and integrality of such a tuple means that
the first m entries are all integers or all half integers and the last / — m entries are all
integers or all half integers. Write 4, = (—=/+3, ..., =/ +35;0, ...,0) with 5 an integer;
the semicolon separates the first m entries from the last / — m. For reasons that will
be given in Section 1, we assume that s>2(2m —[). Put n, = n(4y) and 7, = 7'(4,).
The answer to problem (a) appears in Table 1. Regard s as a decreasing parameter.

The new results in Table 1 concern s<m: for 0<s<m — 1, there is unitarity, and
for <0, there is not.” The proof of these new results involves an analytic step, which
will be carried out in Sections 6 and 7 below, and an algebraic step, which has been
largely carried out in [Kn4] and will be completed in Section 8 below. A by-product
of these steps is a first approximation to a solution of problem (b) for these
representations. A full solution requires additional steps that are taken in Section 9
of this paper. We return to this matter in a moment.

As far as the universal covers of indefinite orthogonal groups SO(2m, 2/ — 2m),
with 2<m<1/2 go, the paper [EPWW] had shown unitarity for s>m, and the
general “weakly fair” test in [Vo2]® comes close to that, handling s>m + 1; the
Gross—Wallach paper handled m =2, adding to the results of [EPWW] the
conclusion of unitarity for s =1 and 0 for the universal cover of SO(4,2/ —4),
when />4. The paper [Kn3] had already proved the unitarity for all even s>0 when
2<m<1/2 except for s = 0 when m = [/2.

Authors of some other papers have constructed similar-appearing finite or infinite
sequences of small unitary representations of indefinite orthogonal groups. It seems
that these sequences often have some representations in common with the ones
obtained by analytic continuation of discrete series but are basically just different
sequences of representations. Two early papers of this kind are the ones by Strichartz
[St] and Vogan [Vol]. Kostant [Kosl,Kos2] extensively investigated the s =0

2See Section 1 for a precise statement.
3See p. 35 of [KnV] for the terminology “weakly fair.”
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Table 1

Unitary line-bundle cases 7, for universal cover of SO(2m, 2l — 2m),, 2<m<1/2
Discrete series: §>21 -2

Limit of discrete series: s=21-2

Last [Vo2] unitary point: s=m+1

Last [EPWW] unitary point: s=m

Last unitary point: s=0

First nonunitary point:? s=-1

Last point under study: s==2(l-2m)

representation of the group SO(4,4),, which in effect had already been shown
to be unitary in [Vol]. The same representation has been investigated also in
[BrK,GrW1,KaS].

Some other papers that have investigated for unitarity certain sequences of small
representations of indefinite orthogonal groups are [BiZ,Kob,ZhH]. Sections 8 and 9
of [EPWW], which are sections addressing examples other than analytic continua-
tion of discrete series, construct more sequences of this kind. The papers [Lil,Li2]
classify a certain kind of small representation for classical groups, and one may
expect that some of the representations shown now to be unitary are small in the
sense of Li’s papers. See [NOTY], for example.

In connection with problem (b), let p be the —1 eigenspace of 6 in g. The nilpotent
orbits in question are of LT on 1N p; they are finite in number and, for the most part,
are parametrized by pairs of integers (p, ¢) with 0<g<p<m. Let O(p, q) be the orbit
indexed by the pair (p,q). The only exception to the parametrization occurs when
| = 2m; in this case the set that we define as (/(m, 0) consists of two orbits, which we
can denote ((m,0)" and O(m,0)".

In Section 1 we follow [GrW2] and define a notion of a (g, K) module that is
“associated” to a particular orbit; this condition will relate the K types of the given
(g, K) module to the action of L on the closure of the orbit. Table 2 gives the first
part of the answer to problem (b).

The first line of Table 2 follows from [EPWW] for all m>2. The next two lines of
the table are proved in [GrW2] for the case m = 2. It is instructive to see the lattice of
orbit closures in the Gross—Wallach case. When m = 2 and />4, the lattice is

0(2,2)
T

02,1) « 0(1,1)
T 7

02,0) « 0(1,0) < ©(0,0)

The arrows indicate inclusions into the closures. The representations 75, m}, and =,
are associated to the members of the left column, and the other orbits play no role in
the correspondence. When m = 2 and / = 4, (0(2,0) splits into two orbits, and 7, is
associated to (’(1,0); the other orbits outside the first column play no role in the
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Table 2

Association of 7} to orbits for universal cover of SO(2m, 2] — 2m),, 2<m<1/2

7, for s>m is associated to O(m,m)

7, for 0<s<m with (/,s) # (2m, 0) is associated to O(m,s)

g, for [ = 2m is associated to O(m—1,0)
7, for s<0 is associated to No orbit

correspondence. The dimensions of the orbits when m =2 and / =4 give a little
insight into matters; arranged in an array to match the configuration of the lattice,
8
they are 7 5 . The three five-dimensional orbits are conjugate under
55 4 0
triality, but none of these orbits plays a role in the correspondence under study of
representations to orbits. In the text of [GrW2], these dimensions of orbits are all
reduced by one because [GrW2] considers the orbits projectively.

For larger values of m, the lattice of orbit closures has the same triangular
appearance. Table 2 is asserting that the correspondence of orbits and representa-
tions 7/ for larger values of m is similar to what happens for m = 2. When /> 2m, the
(g, K) modules =), ), ,, ..., n; are associated to the orbits of the left column; the
other orbits play no role. When / = 2m, the set ¢/(m,0) splits into two orbits, and =,
is associated to O(m — 1,0). These results will be proved in Section 9. The solution of
problem (a) gives a start to a solution to problem (b), and what is left in establishing
Table 2 is the proof that certain ideals in the symmetric algebra of unp are prime.
We shall prove that these ideals are prime while addressing a second, ostensibly
deeper, aspect of problem (b).

The second aspect of problem (b) is to determine the K types and their
multiplicities explicitly when = is unitary. This step was carried out for m =2 in
[GrW2] with the aid of “Luna’s Slice Theorem” and some other tools. Those results
are insufficient for m>2, and we shall make use of a branching theorem of D. E.
Littlewood for decomposing irreducible representations of U(n) upon restriction to
SO(n). Littlewood’s theorem will be stated precisely in Section 1. Its use is the main
reason our results are limited to m<//2. The K spectrum will be identified for
general m in Section 9 by using Littlewood’s theorem and the details of a
construction in [Kn4]; the appropriate orbit O(p, ¢) in Table 2 will be indispensable
in the proof.

From the formulas for the K types and their multiplicities, one can see that a
unitary 7, has all its K types of multiplicity one if and only if s = 0 or s = 1. In these
cases the number of parameters for the K types is m + 1 for s = 1, m for /> 2m and
s =0, and m — 1 for / = 2m and s = 0. Among the unitary n/’s, the only spherical
representations are the n;,’s for / = 2m, and the only ladder representation is the well-
studied case of nj, for / =4 and m = 2.

The paper is organized as follows. Sections 1-5 contain preliminary material,
including statements of what is needed from [EPWW,GrW1,GrW2]. The solution
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of problem (a) is in Sections 6-8, and the solution of problem (b) is in Section 9.
Section 10 addresses converse results for the two problems, and Section 11 discusses
the theory for SO(2m,2/ — 2m + 1), that corresponds to Sections 6-10.

It is a pleasure to acknowledge helpful discussions with David Vogan concerning
Section 4 and the structure of the ideal in Section 9. This work was done in part while
I was a visitor at the Institute for Advanced Study in Princeton during 2000-02. I am
grateful to the Institute for its hospitality.

Note added in proof: Peter Trapa has circulated a preprint in which he proves that
the representations 7, for s>0 in Tables 1 and 4 are irreducible. The preprint is
entitled “Some small unipotent representations of indefinite orthogonal groups.”

1. Setting

In this section we establish some notation for general G, as well as whatever
special notation we need for SO(2m,2] — 2m),. Groups will be denoted by upper-
case Latin letters, their Lie algebras will be denoted by the corresponding lower-case
German letters with a subscript 0, and the complexified Lie algebras (as well as some
complex Lie algebras and vector spaces that are not necessarily complexifications)
will be denoted by lower-case German letters with no subscript.

Let G, K, and T be as at the start. The group G is to be simple with rank G =
rank K, and T is a compact Cartan subgroup of G lying in K. Let g, = Ty @ p, be the
Cartan decomposition of g, corresponding to K, and let § be the Cartan involution.
The complexified Cartan decomposition is written g = £@ p.

Let A be the set of roots of (g,t). Each such root is either compact or noncompact
according as its root vectors lie in f or p. A Borel-de Siebenthal positive system is a
positive system of roots for A for which there is exactly one noncompact simple root
and that root occurs at most twice in the highest root. Such a positive system always
exists, according to [BoS] (cf. [Kn2, Theorem 6.96]). We fix such a system and write
A" for it.

Out of such a 4™, we can form a Borel-de Siebenthal parabolic subalgebra of g.
This subalgebra will be written q = [@u. Its Levi factor [ is built from t and the root
vectors for all roots in the span of the compact simple roots. The nilpotent radical u
is built from the root vectors for all remaining positive roots. The subalgebra q is 0
stable, with I equal to the complexification of [y = Ing,. An important property of a
Borel-de Siebenthal parabolic subalgebra is that

u,unt] = 0. (1.1)

Let L be the analytic subgroup of G with Lie algebra Iy; L is a compact subgroup of
K. The opposite parabolic subalgebra to g is § = [@ 11, where the “bar’ denotes the
conjugation of g with respect to g,. The use of the ‘“bar” symbol is to be
distinguished from the related function bar, which will be defined below. We write
LE initially for the group Inty(I) with Lie algebra I.
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To simplify the notation when dealing with the representation theory of compact
connected Lie groups, we shall often identify a highest weight with an irreducible
representation having that highest weight. More precisely, the expression H type is
permitted to refer indifferently to a highest weight for the compact connected group
H, or to a particular irreducible representation of H with the stated highest weight,
or to the equivalence class of irreducible representations of H with the stated highest
weight.

The group L® acts on unp. This action yields an action by contragredient on the
dual (unp)” of unp, and also it extends to the symmetric algebra S(unyp). We get
an action on the polynomial algebra P(1np), as well, because P(1tnp) is canonically
isomorphic to the symmetric algebra of (unp)”.

We write S?(unp) and P?(unp) for the subspaces of elements homogeneous of
degree d. The representation of L on unp is irreducible, and hence the center of L
acts by nonzero scalars on unp. Then it follows that the action of the center can be
used to isolate the homogeneous components of members of S(1np) and P(unp)
and to give their degrees. Consequently a given L type appears in S(unp) or
P(unp) only finitely often.

Let C be a symmetric invariant bilinear form on g whose restriction to ity is
positive definite. Under C, the vector spaces unp and it N p are nonsingularly paired,
and it follows that the mapping

bar : unp— (unp)" with bar(X) = C(X,-) (1.2)

is a canonical conjugate-linear isomorphism. We use the notation bar to refer also to
the extension bar : S(unp)— P(unp) of this mapping. For /e L®, the computation

C(Ad(D)X,Y)=CAd(DX, Y) = C(X,Ad()"'Y)

=bar(X)(Ad(D)'Y) = (I(bar(X)))(Y)

shows that

bar(Ad(N)X) = l(bar(X)). (1.3)

If we specify a subset V' of unp, it makes sense to speak of the ideal 1), of all
polynomials on unyp that vanish on V. The quotient P(unyp)/Iy is called the
coordinate ring of V. If V is stable under L, then so is Iy, and it follows that the
coordinate ring inherits a fully reducible action by LC.

Using V, we introduce also the dual coordinate ring R(V') as a quotient of S(unp).
The definition is R(V) = S(unp)/Jy, where Jy = bar~'(Iy). This Jy is an ideal
even though bar is only conjugate linear. If V' and thus 7 are stable under L®, then
so is Jy, as a consequence of (1.3). In this case the dual coordinate ring inherits a
fully reducible action by L®; the multiplicity of an irreducible representation of Lt in
the dual coordinate ring equals the multiplicity of the contragredient representation
in the coordinate ring.
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According to a theorem of Vinberg [Vi], there are only finitely many orbits of L®
in its action on unp, and one of them is open and dense.* (See Section 4.1 of [Ru]
and Section X.3 of the second edition of [Kn2] for expositions.) Let @ be such an
orbit, and let ¢! be its closure. The holomorphic representation of L® on the dual
coordinate ring S(unyp)/J, will be of great interest to us.

Let 7’ be a (g, K) module, and suppose that #’ has a unique minimal K type, say 4.
Following [GrW2], we say that n' is associated to O if, for every L type o, the
multiplicity of the K type A+ ¢ in 7’ equals the multiplicity of the L type ¢ in
S(unp)/Ja and if all K types in 7’ and L types in S(unp)/J« are accounted for by
this correspondence.

Let us expand upon the definitions given earlier of the (g, K) modules of interest to
us. If E is a complex subspace of g spanned by root spaces and a subspace of t, let
A(E) be the set of roots contributing to E, and let AT (E) be the set of positive roots
contributing to E. We write d(E) for half the sum of the members of 47 (E), and we
abbreviate 0(g) as 0. The symmetric invariant bilinear form C allows us to pair
members of ity with members of it), say by y+— H,, and it gives us an inner product
{+,-> on it;. We write |y|2 for {(y,y>.

Corollary 4.69 of [KnV] shows that iHs, is in the center Z;, and that f(Hs) >0
for every member of A(u). In fact, all the members f§ of 4(unp) have f(Hs ) equal
to the same positive constant, and all the members f of A(unf) have B(Hy(,)) equal
to twice that positive constant. Let F be an irreducible finite-dimensional (I, L)
module. If v is its highest weight, we may write F = F,, or F = FL if there is a need to
emphasize the group. If F is one dimensional, i.e., if v is orthogonal to all members
of A(I), then we may write C, in place of F,.

To describe cohomological induction in the situation of interest here, let C, be a
one-dimensional ([, L) module. Extend the [ action on C, to § by having ii act by 0,
so that C, becomes a (§, L) module. Define a (g, L) module by

N(2) = U(g) ®5C;.

Let I1 gf be the Bernstein functor defined on page 30 of [KnV]; this is a covariant
right-exact functor sending (g, L) modules to (g, K) modules.” We shall use its Sth
derived functor (IT gf) 5, where S = dim(unf). The (g, K) module of initial interest is

n(A) = (I37) (N (2 + 28(w))).

*A linear holomorphic group action on a complex vector space with a dense orbit is called a
“prehomogeneous vector space” in the literature. Sato—Kimura [SaK] gives a classification of the
irreducible such spaces, up to a certain kind of equivalence.

5The better-known Zuckerman functor I' gf is defined on page 24 of [KnV] and is the dual of H‘gf ina
sense made precise in Chapter III of [KnV]. The Zuckerman functor is a covariant left-exact functor
sending (g, L) modules to (g, K) modules.
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Any (g, L) module of the form N (1) has a unique irreducible quotient N’(1), and we
define

(7)) = (I57) (N (4 +205(n))).

This is the actual (g, K) module of interest.

The infinitesimal character of both n(1) and #'(4) is A + 0. From Chapter VI of
[KnV], we know that if A =74+ 26(unp) is 47 (f) dominant, then the K type A
occurs in 7(A) and 7/(1) with multiplicity one. Further it is shown in Corollary 8 of
[Knl] that if A4 is 47 (f) dominant® and unfis not 0, then A is the unique minimal K
type of n(4) and n'(1). We

assume throughout that A4 = 42+ 25(unp) is 4" (f) dominant. (1.4)

It is not known whether n'(1) is irreducible under assumption (1.4). What is
known is that the unique irreducible subquotient 77(1) of 7(1) containing the K type
A is also a subquotient of #’'(1). For a proof, see Section 2 of [Kn3].

From [EPWW] the (g,L) module N (44 26(u)) carries a canonical invariant
Hermitian form known as the Shapovalov form, and this descends to be
nondegenerate on the quotient N’'(A + 26(u)). Under (ngf)s, the Shapovalov form
is carried to 7(1) and n'(1). When we speak of addressing the unitarity of 7'(4), we
actually are referring to the definiteness or indefiniteness of this particular form.
Since 7/(4) may in principle be reducible, (1) or even n’'(1) could in principle be
unitary even though the Shapovalov form on #'(7) is indefinite.

Let us record now what our notation looks like for the universal covering group G
of SO(2m,2] —2m),. The Cartan subalgebra t; of g, is the usual one consisting

of two-by-two diagonal blocks (fi),,v "ﬁf
7

{tejter|j#k}, and we take A" ={e¢;ter|j<k}. A positive root e¢;te; is
compact if j and k are both <m or both >m + 1. The only noncompact simple
root is e,; — e,+1, and hence 4™ is a Borel-de Siebenthal positive system. We identify

), 1<j<!I. The roots are given by 4 =

the linear form Zjl':ﬁ?iej on t with the /-tuple (ci,...,Cm;Cme1,...,c1), often

separating the first m entries and the last / — m by a semicolon. Such a linear form
is analytically integral for G if ¢y, ..., ¢, are all integers or all half-integers and if
Cm+1, ---,¢; are all integers or all half-integers. Up to a positive multiplicative

constant the quadratic form | - |2 induced on it; by the symmetric invariant bilinear
form C is given by

|(c1,...,cm;cm+1,...,c;))|zzzcf, (L.5)
=

with all the entries ¢; real. There will be no harm in treating this positive
multiplicative constant as if it is 1.

SIf unt =0, then A is necessarily 47 (f) dominant but is not necessarily minimal.



46 A.W. Knapp | Journal of Functional Analysis 209 (2004) 36—100
The parameter A of a one-dimensional (I, L) module C, has to be of the form

P - (—z+%,...,—l+f~o,...,o) (1.6)

27

for some integer s. The —/ in (1.6) may be regarded as an additive normalization. We
define

n, =mn(4) and 7@, =7'(l).
The infinitesimal character of n; and 7} is A, + J, and we set

A=Ay = s +20(unp) = (%Jrl—Zm,...,%+Z—2m;0,...,0).

By (1.4) we are assuming that A, is 47 (f) dominant, i.e., that
§22(2m —1). (1.7)

Then A, is the highest weight of the unique minimal K type of 7, and 7.
Let us identify concretely the action of L on unp. We write M,,,, = M,,,(C) for
the vector space of m-by-n complex matrices.

Lemma 1.1. For the universal covering G of SO(2m, 2] —2m), with 2<m<1/2, the
group Ady(L) is isomorphic to (U(m) x SO(2] —2m))/{£1} and the space unyp is
isomorphic to My, 2oy in such a way that the action of L on unyp corresponds to the
action of U(m) x SO(2] — 2m) on members X of My, 21_om given by

u(X)=uX  for ueU(m),

r(X)=Xr"' for reSO(2l —2m). (1.8)

The operations on the right-hand sides of (1.8) are matrix multiplications.

Proof. We know that [; is compact, that [ contains the Cartan subalgebra t, and that
A ={x(e; —¢) |i<j<m}u{te te | m<i<j}. Itis immediate that

ly=R®su(m) @ so(2] — 2m) = u(m) @ so(2] — 2m).

The adjoint action of Ady(L) on unp is irreducible, and the highest weight is the
largest noncompact root, namely e; + e, ;. Consequently the representation of Iy,
namely of u(m)@®so(2/ —2m), is the outer tensor product of the standard
representation of u(m) and the standard representation of so(2/ — 2m). Since the
standard representation of so(2/ — 2m) is equivalent with its contragredient, we can
view the representation of [y as occurring on M,,2_»,, the action being the Lie
algebra action corresponding to (1.8).

This representation on the Lie algebra level lifts to U(m) x SO(2] — 2m), acting by
(1.8), and the only elements of U(m) x SO(2] — 2m) that act on M, 22, as the
identity are + 1. On the other hand, no nontrivial element of Ady(L) acts on unp as
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the identity since unp and finp generate g. Thus Ady(L) is isomorphic to the
quotient (U(m) x SO(2] —2m))/{+ 1} in such a way that the action of Ady(L) on
unp corresponds to the action of (U(m) x SO(2/ —2m))/{£1} on M, 21—2m.

Whenever there is a need to be concrete about the action of L on unyp, we shall
treat L as equal to U(m) x SO(2] — 2m), with action on unp as in (1.8), and we
shall not feel any need to quote Lemma 1.1. The group L®, which was tentatively
defined as Inty(I), may be redefined as GL(m, C) x SO(2/ — 2m,C); it acts on unp
by extension of the action (1.8). The actions of L and L® on S(unp) and P(unp)
may similarly be carried over to actions of U(m) x SO(2/ —2m) and GL(m,C) x
S0(2l — 27’1/1, C) on S(Mm2172m) and P(Mm,2lf2m)-

Because of this correspondence, a typical L type occurring in S(unp) will often be
written as ¢ = (£, v), where

E=(ay,...,an) (1.9a)
isa U(m) type and
v= (b1, ..., bm,0,...,0) (1.9b)

is an SO(2] — 2m) type.
Let £ =>"" e be dominant integral for U(m) with &, >0, regard ¢ also as
dominant integral for U(2/ —2m), and let v = Zf;;”v,-e,- be dominant integral for

SO(2] — 2m). Tt is shown in (0.2) of [Kn4] as an application of invariant theory that

the L type ¢ = (&,v) occurs in S(unp) as many times as the
SO(2] — 2m) type v occurs in the restriction of the U(2/ —2m)  (1.10)
type ¢ from U(2/ —2m) to SO(2/ — 2m).

Branching from U (n) to SO(n) is described by a 1940 theorem of D. E. Littlewood
[Lit] that will apply in (1.10) under the assumption />2m and only then. Other
references having some bearing on Littlewood’s theorem include [Mall,Mal2,-
Mu,Ne]. The statement of Littlewood’s theorem identifies nonnegative linear
combinations of the ¢;’s having different numbers of entries as long as the nonzero
entries match. An n-tuple will be said to be nonnegative if all its entries are
nonnegative. We work largely with nonnegative dominant integral forms, namely n-
tuples & = (ay, ...,a,) with integer entries >0 such that a; > --- >a,, and we define
[1€]| = >, ai. The depth of a nonnegative dominant integral form is defined to be the
number of nonzero entries.

If ¢ u, and v are nonnegative integral forms of depth <d, the Littlewood-
Richardson coefficient cf;v is the multiplicity of the irreducible representation of U(d)
with highest weight ¢ in the tensor product of the irreducible U(d) representations
with respective highest weights u and v. If ¢, >0, then it is easy to see that

v

HENT = Haall + [v1], (1.11)
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that ¢ — p and ¢ — v are both nonnegative, and that y and v have depth < the depth
of ¢. Littlewood—Richardson coefficients can be computed by a well-known
combinatorial method that will not concern us.” It follows from the method of
computation that cfw is independent of d as long as &, u, and v all have depth <d.

If 1 is a nonnegative dominant integral form, we say that u is even if all of its
entries are even integers.

Theorem 1.2 (Littlewood). Fix n, and let & and v be nonnegative dominant integral
forms of depth <n/2. Then the multiplicity of the irreducible representation of SO(n)
of highest weight v in the restriction to SO(n) of the irreducible representation of U(n)
with highest weight £ equals the sum over all nonnegative even dominant integral forms
u of the Littlewood—Richardson coefficients cf:‘,.

The sum in the theorem has only finitely many nonzero terms because of (1.11). In
verifying (1.10), one uses n = 2/ — 2m. The forms ¢ and v have depth <m, which is
<n/2 because m</ — m.

It follows from Theorem 1.2 that if the multiplicity in question is >0, then ||£|| —
[|[v|| is an even integer >0. We shall use this fact many times, writing 2¢ for the even
integer.

Not every SO(n) highest weight v occurring in the restriction of an irreducible
representation of U(n) with nonnegative highest weight ¢ need be nonnegative if 7 is
even. These exceptional v’s can be handled by a simple trick, and we return to them
in Section 8.

2. SU(m, | — m) as a prototype

Before turning to the details for SO(2m, 2/ — 2m), it may be helpful to consider
briefly the linear isometry groups G = SU(m, [ — m) of indefinite Hermitian forms.
For these groups the theory of this paper reduces in many spots to results in linear
algebra and representation theory that are well known and fairly old. Let us assume
that 2<m<1/2.

The group SU(m,! — m) has G/K Hermitian symmetric, and we take a compatible
positive system of roots. Specifically the group K is S(U(m) x U(l —m)), and we
take K¢ to be the determinant-one subgroup of GL(m,C) x GL(I —m,C). The
Cartan subalgebra t is the diagonal subalgebra, the roots are the usual + (e, — ep)
with a <b, the positive roots are the e, — ¢, with a<b, and the simple roots are the
e, — €¢4+1. The simple root ¢,, — e,,4] 1s noncompact, and the other simple roots are
compact. Since G/K is Hermitian symmetric, the space p splits into the sum p =
pT@p~ of two abelian subalgebras stable under K. The parabolic subalgebra q =
[@uis I@p™ for this example, and unfis 0. Thus L = K, S = dim(unf) = 0, and
(I'[?‘IL()S is the identity.

"See [Mac] for the combinatorial method and a proof of its validity.
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The Harish—-Chandra decomposition (cf. [Kn2, Section VII.9]) shows that p* may
be identified with the vector space of m-by-(/ — m) complex matrices, and K© acts on
p* by (ki,k2)(X) = ki Xk5'. This is the analog of Lemma 1.1. The action on the left
allows for arbitrary row operations on X, and the action on the right allows for
arbitrary column operations. A familiar canonical-form theorem from linear algebra
says that any two X’s of the same rank are in the same orbit,® and consequently the
orbits are parametrized by the rank: O(m), O(m — 1), ..., 0(0).

The parameter 4 of the one-dimensional (I, L) = (f, K) module is given by an /-
tuple, and we write

A=As=(=l+s...,—=1+s 0,...,0),

with the semicolon occurring after the mth entry. Our interest is in 7wy = n(4y) =
N(As+20(un)) and n, = 7'(4) = N'(As +26(n)). The infinitesimal character of =
and 7, is A, + d, and we set

A=Ay =) +20(pT) = (—m+s,....—m+s; —m,...,—m).

This is always 47 (f) dominant, but it is not always the unique minimal K type
parameter of 7y; for example, when m =/ —m =2 and s = —1, 4 and 4 + ¢ are both
K types if o = (1,1;—1,—1), but |4+ o+ 26(F)|* = |4 + 26()|*. However, a brief
computation shows that A is the unique minimal K type parameter of 7, and =} if s>0.

The representations 7, and 7, are what are studied as the analytic continuation of
the holomorphic discrete series in the line-bundle cases of this G. The unitarity of the
representations 7, for s=0 was proved by Wallach [Wal,Wa2].

The methods of Sections 6-8 of this paper, which have [GrW1,GrW2] as their
starting point rather than [Wal,Wa2], will reproduce Wallach’s results on unitarity
when applied to SU(m,! — m). They will also provide some preliminary information
about the K types occurring in 7} in the unitary cases. The methods of Section 9,
which give more detailed information about K types, simplify in the case of
SU(m,l —m) to an exercise in classical invariant theory whose solution will be
written out below.

The theory in [GrW1,GrW2], as will be explained further in Section 5, looks for a
division of the L types 6 #0 in S(1np) into two kinds, one for which the difference

es(0) = |As+ 0+ 0> = |ig + 0 (2.1)

is >0 and one for which the subspace V7 of S(unp) transforming according to o lies
completely in an ideal Vo S(unp) of S(uunp), o, being a certain particular L type
depending on s such that ¢;(a,) = 0. Some L types will fit both descriptions, but the
method requires having a way of deciding which class to put each L type in. For

8The simple Lie groups Sp(n, R) and SO*(2n) are other groups with G/K Hermitian symmetric, and
familiar canonical-form theorems yield the orbits for them, as well. For Sp(n, R) the relevant theorem is
the principal-axis theorem for complex symmetric matrices, and for SO*(2n) the relevant theorem is the
corresponding result for complex skew-symmetric matrices.
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SO(2m, 2] — 2m), this step is carried out in Theorem 7.1, which is fairly complicated
to prove.

For SU(m,l —m), things are much simpler. We are considering the K types in
S(p*). Since this is the same as the decomposition of the space of m-by-(I —m)
matrices under U(m) on the left and U(/ — m) on the right, classical invariant theory,
particularly Corollary 4.5.19 and Theorem 5.27 of [GoW], tells us the answer
immediately. The K types in S(p™) correspond to all nonnegative dominant integral
forms (ay, ..., a,) for U(m), the corresponding K type having highest weight

o= (ar,....,am; 0,...,0, —ay, ...,—ay). (2.2)

All multiplicities® are 1.
With ¢ as in (2.2), we compute (2.1) and find that

c(0) =2ai(ar +s—1)+ - +2a;(aj+5—-2j+ 1)

2.3
+ 4+ 2apm(am +5s—2m+1). (23)

For s=m, only the first kind of K type occurs in S(p*). There is no g, and (2.3)
shows that

1
3 ¢s(0)

I
Ms

(a +aj(s—m))+
1 J

(4,2+a_1‘(5—m))+ Z (ay — ay).

1 I<u<v<m

aj(m+1—2j)
=1

.
Il

Il
,Ms

J

The first term on the right-hand side is >0 for s>m with equality only if ¢ = 0, and
the second term is >0 because of the dominance condition. Thus ¢;(¢) >0 for o #0.
It follows from the theory of [GrW1,GrW2], specifically from Theorem 5.2 below,
that n, =m, and that =, is unitary for s>m. The comparable estimates for
SO(2m, 2l — 2m) are in Section 6 below.

For s with 0<s<m — 1, the special o, has a; = --- = a1 =1 and agp = -+ =
am = 0. Computation shows that it indeed has ¢(a,) = 0. We divide the K types in
S(p*) into two classes, those with a;,; >0 and those with a;.; = 0. For any ¢’ and ¢”
occurring in S(p ™), the product of their highest weight vectors (as symmetric tensors)
is a highest weight vector of V7*7"; since ¢’ + ¢” has multiplicity 1, we see that
ot c o e’ Use of this fact and the expansion-by-cofactors formula for
determinants shows that if ¢ has a,,1 >0, then V° < V% S(uunp). On the other hand,
if ¢ has a;,; = 0, then (2.3) gives

%CS(U):XS:a]Z+zS:Q/(S+I_2] Za + Z (au — ay),

Jj=1 Jj=1 I<u<v<s

?For the other cases with G/K Hermitian symmetric, the decomposition still is multiplicity free and is
given by a formula in [Sc].
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and this is >0 with equality only if ¢ = 0. It follows from the Gross—Wallach theory
[GrW1,GrW2], specifically from Theorem 5.3 below, that 7/, is unitary for 0 <s<m — 1
and that its K spectrum is the sum of A, and the K spectrum of S(p*)/VoS(p™).
The comparable results for SO(2m, 2] — 2m) are in Sections 7 and 8 below.

One might quickly guess that the K spectrum of S(p™)/V?S(p*) consists of all K
types with a;,; = 0, each with multiplicity one, but some argument is needed. This
argument is where the orbits play a critical role. It is apparent that the polynomials
p(X) vanishing on @(s) include all minors of X of size s + 1, hence the ideal in P(p™)
generated by those minors. But it is not so apparent that no polynomials outside this
ideal vanish on (/(s). The question is whether the ideal in P(p™) generated by those
minors is prime. This is a question answered affirmatively by a version of the Second
Fundamental Theorem of classical invariant theory.

The ideal of all polynomials vanishing on @(s) is stable under K and hence is a
sum of its K types, each with multiplicity one. These K types are the contragredients
of K types occurring in S(p*). The members of such a contragredient K type ¢¢ in
P(p™) vanish on O(s) if and only if a nonzero lowest-weight polynomial vanishes on
O(s). The theorems quoted above from [GoW] give a formula for such a polynomial,
and inspection of the formula shows that the polynomial vanishes on @(s) only if
agr1 = 0. It follows that the ideal is indeed prime and that the K spectrum of
S(p*)/V?S(p™) indeed is as asserted above. In the terminology of Section 1, 7} is
associated to the orbit ((s). For further information about the role of invariant
theory, see [DeP,Ho]. The comparable argument for SO(2m, 2] — 2m) will be carried
out in Section 9.

Finally let us consider s<0. In this case we form oo = (1,0,...,0; 0,...,0,—1).
Direct computation gives c¢s(g¢) =2s<0, and it follows from the theory of
[GrW1,GrW2] that the Shapovalov form for 7, does not exhibit 7, as unitary for
§<0. A comparable result for SO(2m, 2] — 2m) will be given in Section 10.

3. Orbits

This section concerns the orbits of L® in its action on unp when g, is the Lie
algebra so(2m, 2/ — 2m) with 2<m< /2. We use the identification in Lemma 1.1 of
unp with M,,2_>,. The action of LT of unp is transformed into the action of
GL(m,C) x SO(2] —2m,C) on M, 2/_on as in (1.8).

A typical element of M, >, will be denoted X. By XX, we mean the m-by-m
matrix product of X and its transpose; the (a,b)th entry of XX is the ordinary dot

product of the ath and bth rows of X. Here “dot product” refers to the complex

. . 2/-2
bilinear form on given by v-w =" v,w,.

When it is necessary to number the rows and columns of members of M, 2/_2m, We
number the rows as 1, ..., m and the columns as 1, ...,/ —m, 1, ..., (I — m)". The first
occurrence of this numbering will in effect be with the example that follows the
statement of Proposition 3.1.

62172111
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Proposition 3.1. In the action (1.8) on My, 2,—2 when 2<m<l1/2,
(a) the orbits of GL(m,C) x O(2] — 2m,C) are exactly the sets

O(p,q) = {X €My2_on|rank X = p and rank XX" = ¢}

Jor 0<g<p<m,

(b) the dimension of O(p,q) is p(2l —m —p) —3p—q)(p —q + 1),

(c) all the sets O(p,q) with one exception remain single orbits when the action is
restricted to GL(m,C) x SO(2] — 2m, C), the one exception being O(m,0) in the
case that [ = 2m,

(d) the set O(m,0) is the union ©(m,0)" L O(m,0)” of two orbits under GL(m,C) x
SOQ21 —2m,C) if I =2m, and in this case the topological closure of each of
O(m,0)" and O(m,0)" is an algebraic variety.

Example. Let us write members of M,, 2>, as block-type row vectors, with m
columns grouped first, then / — m more, m more, and the last / — m. Let X be the
matrix

X = (diag(1, ...,1,1,...,1,0,...,0) 0 diag(i,...,i,0,...,0,0,...,0) 0) (3.1)

with u, ¢, and v members in the respective segments of diagonal entries of the
indicated diagonal matrices. This X has rank u + ¢, and

XX' = diag(0, ...,0,1, ...,1,0, ...,0)

has rank ¢. Therefore X is in O(u + ¢, q). We shall make use of this X in the proof
below and in Sections 8 and 9.

Proposition 3.1 is a kind of canonical-form result, though not a basic one of linear
algebra. We take it as a result that is in principle well known but in practice maybe
less well known. Accordingly we give a sketch of the proof, providing detail about
only some of the points of the argument. We make repeated use of a variant of the
Gram-Schmidt orthogonalization process, beginning with a lemma.

Lemma 3.2. If wy, ..., w. is a linearly independent set in C" with w, - wp = 04 and if
c<n, then there exists wey1 with wi, ..., w..1 linearly independent and w1 - w, equal
to 0 for a<c and equal to 1 for a=c+ 1.

Remark. Here ¢, indicates the Kronecker delta, which is 1 if a = b and 0 if a#b.

Proof of Lemma 3.2. Let veC” be independent of wy,...,w., and define w=
v—>¢_, (v-wg)w,. Computation shows that w-w, =0 for a<c and that w-w =
vev—=Y o (v wa)z. If w-w=0, then a suitable multiple of w will serve as w,.
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Arguing by contradiction, we may thus assume that

C

VU= Z (v-wa)? (3.2)
a=1
for every v such that v, wy, ..., w. is linearly independent. If v,wy, ..., w, is linearly

dependent, we must have v = >, (v w,)w,. Computation shows that we again
have (3.2). Thus we may assume that (3.2) holds for every ve C".

Polarization of (3.2) gives u-v = >, (u-wy)(v- w,) for all u and v in C". Define
M,; = e, - wy for r<n and s<c¢, where {e,} is the standard basis of C". Then

C

¢
5ab =€y €p = Z (ea ' Ws)(eb . Ws) = Z MasMbs
s=1

s=1

for a and b <n. Hence MM" equals the identity, and M has rank >n. However, M
has rank equal at most to its number of columns, which is ¢ and is <n. Thus we have
a contradiction, and the lemma follows.

Proof of Proposition 3.1 (Sketch). For (a), it is a simple matter to check that each
O(p, q) is stable under GL(m,C) x O(2] — 2m,C). We are to check that O(p,q) is a
single orbit. Start with a given matrix in M,, 2_2,. Any elementary row operation on
that matrix amounts to an operation by GL(m, C) and hence transforms the matrix
within the same orbit. Doing row reduction, we may therefore assume that the first p
rows of the matrix are linearly independent and the last m — p rows are 0. Let V' be
the linear span of the rows, and regard V as a subspace of C¥~%". Further row
operations show that we may replace the nonzero rows of our matrix by any basis of
V without leaving the orbit.

Let U be the subspace of elements w of ¥ such that w-w' = 0 for all w' eV, and
put u =dim¢ U. Write u+ g for the dimension of V. We shall construct 2u + ¢
linearly independent members of C*~>" denoted x, and y, for 1<a<u, denoted z,
for u+ 1<a<u+ ¢, and having the following properties:

(1) distinct members of the set have dot product 0, and each member of the set has
dot product 1 with itself,
(i1) the elements zy, ...,z, form a basis of U when z, is defined as x, + iy,,
(iii) the elements zy, ..., Zy, Zyt1, ..., Zutq, With 21, ..., z, as in (ii), form a basis of V.

Then we define an ordered basis {v, | 1 <a</ — m}U{vy | 1<a<l —m} of C*~" as
follows: We let v, =x, and vy =y, for 1<a<u, and we let v, =z, for
u+ 1<a<u+ g. Taking (i) into account, we use Lemma 3.2 to construct the remain-
ing v,’s and v,’s so that distinct members of the basis have dot product 0 and
each member of the basis has dot product 1 with itself. Let g be the (2/ — 2m)-by-
(2] — 2m) matrix whose rows are the basis vectors v, and v, for 1<a</—m.
Then g is in O(2/ —2m,C), and (ii) shows that if X is as in (3.1), then Xy is the
matrix whose rows are zi, ..., Zu, Zut1, .-+ Zut+q, 0, ..., 0. By (iil), Xg is in the orbit of
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O(2] — 2m, C) that we are studying. Hence every element of @(u + ¢, ¢) is in the same
orbit as X.

Thus the proof of (a) in the proposition will be complete once a construction is
made so that (i)—(iii) are valid. We begin with an inductive construction that starts
with any basis wy,...,w, of U and transforms it into the desired basis zi, ..., z,.
Decompose w; = x| + iy into its real and imaginary parts. From the real and
imaginary parts of w;-w; =0, we obtain x;-x;=y;-y;>0 and x;-y; =0.
Renormalizing w; suitably, we may assume that x; - x; = y; - y; = 1. We take z;
to be this renormalized version of w;. Proceeding inductively, suppose that zi, ...,z
have been constructed so that span{zi,...,z;} = span{w,...,w,} and each z,
decomposes into real and imaginary parts as z, = X, + 1y, With X, - Xp = V4 - Vb = Oup
and x, - y, = 0 whenever the indices are all <¢. Define

13

Z= Wi — Z (Wil - Xa)Wa.

a=1

This is a nonzero element of U, and we readily check that x,-z=y,-z=0fora<t.
Since z is in U, z-z=0. We decompose z into its real and imaginary parts as
z=x+1iy, and we obtain x-x =y-y>0 and x-y =0. It is not asserted that x
and y are in U. Normalizing z to z,;;, we may assume that z,,; = x4 + iy, With
X4l - Xeg 1 = Vg1 - Vip1 = 1 and xgy1 -y = 0. From x, -z =y, -z = 0 for a<t, we
have x, - z;11 = Y4 - zio1 = 0. Extraction of real and imaginary parts shows that x,
and y, have dot product 0 with x,.; and y,;;. This completes the induction and
shows that the basis zj, ..., z, of U has the required properties.

Extend zj,...,z, to an ordered basis zi,...,Zu, Wutl, ..., Wurg Of V. For
u+ 1<a<u+ ¢q, define inductively

u a—1
Z=w, — E (xp - wo)zp — E (zp - Wa)zp-
b=1 b=u+1
We readily check that z is orthogonal to xi, yi, ..., Xu, Vu, Zutl, ---Za—1, and then we
normalize z to become z,. The inductive construction of a basis zy, ..., z,44 of V' is

complete, and we see that it has all the required properties.

For (b) in the proposition, we compute the Lie algebra of the isotropy subgroup at
each of the points X in (3.1), using the method of Sato—Kimura [SaK, pp. 109-110],
and the dimension formula follows. We shall not need the actual formula, and we
omit the details.

For (c) we observe that except in the case of ()(m,0) when / = 2m, the special X
in (3.1) has a column of 0’s. Thus X is fixed by a certain diagonal matrix in
O(2] — 2m,C) that has one diagonal entry —1 and all other diagonal entries +1,
and (c) follows.

For (d) we suppose that / = 2m. Let vy, ..., v, be the rows of a matrix X in M, 5,
and consider the map X +v; A == AUy, Of My, 2, into \™ C>”. This map is given by a
vector-valued polynomial p equivariant under O(2m,C) and invariant up to a
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determinant factor under GL(m, C). The representation of SO(2m,C) on \” C*" is
reducible, with two irreducible invariant subspaces. Write A" C*" =V, @V,
accordingly, and let E; and E, be the projections. The set where Ejop is 0 is stable
under GL(m, C) x SO(n,C), and the same is true of E,op. Using formulas of Section
1 of [Kn4] for the action of root vectors of so(2m, C), we can see that the X of (3.1)
for O(m,0) is a highest weight vector of one of the two irreducible subspaces V; and
V3, say Vi, and that X with its last column negated (call it X”) is a highest weight
vector of the other irreducible subspace V. Then we have E;(p(X))#0, E»(p(X)) =
0, Ei(p(X")) =0, and E,(p(X’))#0. Thus the zero loci of Ejop and E,op within
(O(m,0) are nontrivial, and (d) follows. This completes the proof of the proposition.

We shall be interested in the dual coordinate ring R(¢) = S(unyp)/J a of various
orbits. Recall from Section 1 that a (g, K) module with a unique minimal K type A is
associated to the orbit O if, for every L type o, the multiplicity of the K type A + ¢ in
n’ equals the multiplicity of the L type ¢ in S(unp)/J,« and if all K types in n’ and L
types in S(unp)/J are accounted for by this correspondence.

The dual coordinate ring was defined in Section 1 by passing between S(unp) and
P(unp) by means of the canonical conjugate-linear algebra automorphism given by
bar in (1.2). In order to work with ideals in S(unp), we need a way of handling the
mapping bar. This does not seem to be so easy to do directly, and our approach will
be indirect. We shall take advantage of the identification of unp with M, 22y
in order to define another isomorphism x(-) of S(unp) with P(unyp). This
isomorphism will be complex linear, but it will be noncanonical because the
identification of unp with M,, »_», is noncanonical. In Proposition 3.3 we address
the problem of relating bar and x(-).

For X in M,,2_2,, we let

Xap(X) and x4 (X) for 1<a<m and 1<b<]—m (3.3)

be the entry functions on the matrices in un p. Each of these is a linear function on
unp, and together they form a basis of the dual space (1tnp)*, which is the same as
P'(unp).

We now introduce the basis of unp of which (3.3) is the dual basis. Define

X, and X,y for 1<a<m and 1<b</ —m (3.4)

to be matrices that are 1 in the indicated entries and are 0 elsewhere. We define x(-)
on unp by sending basis to dual basis: x(Xu») = xs and x(Xuy) = xuy. Then we
extend x(-) to a complex-vector-space isomorphism of unp onto P! (1np) and from
there to a complex-linear algebra isomorphism of S(unp) onto P(unp).

The paper [Kn4] makes extensive use of a certain formal “dot product” that will
come up again below in Section 9. For 1 <a<m, let X, denote the row vector

Xa = (Xal /Ya,lfm Xal’ Xa,(l—m)')
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whose entries are m-by-(2/ — 2m) matrices. For a and b between 1 and m, define

~

—m
Xa Xy = (Xachc + Xa(‘/va(‘/)

c=1

as a member of S?(1np). The function x(-) relates this formal dot product to ordinary
dot products. Namely X — x(X, - X;)(X), for | <a<m and 1<b<m, picks out the
ordinary dot product of the ath and bth rows of the matrix X in M,, »;_>,,. This, as we
have already noted, is the same as the (a, b)th entry of the matrix product XX'.

The identification of unp with M,,»;_», in effect picks out a real form of unp,
namely the real subspace of members of unp that correspond to real matrices.
Accordingly we can use this identification to define a conjugate-linear involution

(-)Conj of unp by complex conjugation of the corresponding matrix. We extend this
to a conjugate-linear involution of S(up). In addition, the map (-)*®¥ on unp
yields a conjugate-linear involution ()™ of P(unp) by p™(X) = (p(X %)) for
pin P(unp), the outer conj on the right-hand side indicating complex conjugation of
the numerical values of p.

Proposition 3.3. Up to a global nonzero constant, bar can be computed as the
conj

composition of x(-) followed by (-)

Remark. In using bar to pass from S(inp) to P(unp), we shall really be interested
in the effect of bar on complex vector subspaces of S(unyp). For this purpose the
global constant in the proposition plays no role. We shall therefore work with bar,

x(+), and ()™ as if this constant were 1. In cases where we have closure under
complex conjugation, such as with all polynomials vanishing on a set defined by
polynomials with real coefficients, we can consequently treat bar and x(-) as if they
produce the same results. The sets O(p,q) are examples of sets defined by
polynomials with real coefficients; however, (m,0)* and ¢(m,0)” are not asserted
to have this property.

Proof. It will be more convenient to work with the version of (-)COnj on unyp. Let us
check that

() Mex(-) = x(-) ()™, (3:5)

the (-)°°™ on the left being the one on P(unyp) and the one on the right being the one
on S(unp). Both sides of (3.5) are conjugate-linear, multiplicative, and linear, and
thus it is enough to check their equality on members X of unp. The question is
whether

(e(X))%™ < x(xom).
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On an element Y eunp, the respective sides are
(x(X)(Ym)*™ and  x(XV)(Y).

Both expressions are conjugate-linear in X and linear in Y, and it is enough to
check their equality for X and Y equal to basis vectors. This is routine, and (3.5)
follows.

Thus we are to compare bar with x(-)o(-)™"™. Let / be a member of L, which we
regard as U(m) x SO(2] — 2m), the action on matrices being as in (1.8). If X is in
unp, then (1.6) shows that bar(Ad(/)X) = I(bar(X)), i.e.,

bar commutes with the action of L. (3.6)

Since we are realizing L concretely as U(m) x SO(2] — 2m), it is meaningful to
speak of complex conjugation and transpose of members of L. Writing /(X) as a
matrix product uXs~! with ue U(m) and se SO(2] — 2m) when X is in M,/ 2, We
compute the complex conjugates of the entries x,;,(/(X)) and x, (/(X)) of /(X), and
we compare the results with the entries of /(X°°). The result is that

(1(X))eom = eom (xom). (3.7)
Similarly, we check by using bases that
[(x(X)) = x((IF'H"(X)) for Xeunp. (3.8)

Combining (3.7) and (3.8), we see that x(-)o(-)**™ commutes with the action of L.
Then we bring (3.6) to bear and conclude that

bar~"ox(-)e(-)*" (3.9)

is a complex-linear self map of unp that commutes with L. Since L acts irreducibly
on uNnyp, Schur’s Lemma says that (3.9) is a scalar. This completes the proof.

4. Enright—Parthasarathy—Wallach—-Wolf theory

In this section we return to the general setting described in the first part of Section
1, with g, not necessarily equal to so(2m, 2] — 2m). The essential assumption about
the setting is that the positive system A1 is of Borel-de Siebenthal type, so that
[u,unf] =0 asin (1.1).

The heart of [EPWW] for our purposes is Sections 3 and 6. The proof of the first
result in Section 3 of that paper seems less than convincing, and we supply our own
argument. Our argument ends at the end of the remarks following Lemma 4.3 below.
We begin with quite a general result; its content is well known, but it does not seem
to have been completely proved in the literature.
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Lemma 4.1. Let Z(X) be the center of the universal enveloping algebra of ¥. Suppose
that V is a U () module and U is a U(Y) submodule. If U and V' /U are Z(X) finite, then
so is V. Suppose in addition that y, 1, ..., %, are distinct nonzero homomorphisms of
Z(¥) into C, that z — y,(z) acts as 0 on VU, and that [[;_, (z — y;(z)) acts as 0 on U.

Then [Ti_y (z — 1:(2)) acts as 0 on V, and there exists a U(¥) stable subspace Y of 'V
such that

(@ V=U®Y,
(b) U is the sum of the primary subspaces for yy, ..., fn,
(c) every element of Y is annihilated by z — y,(z) for all ze Z(¥).

Remark. The primary subspace for y; is defined to be the subspace of ve V' for which
(z = 7;(2))"'v =0 for all ze Z(T) and for some n = n(v,z). Under the assumption of
Z (%) finiteness, the n can be taken independent of v and z.

Proof. Let I} = Anngz)(U) and I, = Anngq) (V' /U) be the annihilators of U and
V' /U in Z(1). These have finite codimension in Z(f) by the assumed Z(¥) finiteness.
Define I; I, to be the set of sums of products from 7; and . If z; is in I} and z, is in
b, then any v in V has z;(v+ U) = U and thus z3(v)e U. Since z;(u) = 0 for all
ue U, ziz3 is in Anngy (V). In other words, 1115 is contained in Annyq (V).

By a theorem of Chevalley [KnV, Theorem 7.30], Z(¥) is isomorphic as an algebra
to a full polynomial algebra and is therefore Noectherian. We shall use a standard
argument for Noetherian algebras to prove that I;I; has finite codimension in Z(f),
and then it will follow that ¥ is Z(¥) finite.

The vector space Z()/I; is finite dimensional since the Z(f) module U is Z(¥)
finite, and we let x; + I, ..., x, + I; be a vector-space basis. Since Z(f) is Noetherian,
the ideal I, is finitely generated, say with yy, ..., y, as generators. Let us show that
{xiy; + I I} is a spanning set for the vector space I,/ I,. In fact, any x in I is of the
form x = Y7, zjy; with z; in Z(f). For each j, write z; + 1) = >, ¢jx; + I with
C,:/EC. Then Zjyj = Z;‘:l CiXiyj + ILL,and x = Z;:I er-:l CiXiyj + I, I,. Thus 12/1112
is finite dimensional. Since dim Z(¥)/I,I; = dim Z(f)/I, + dim I, /I, I, we conclude
that Z()/1, 1, is finite dimensional. Consequently Anng) (V') has finite codimension
in Z(f), and the Z(¥) module V" is Z(f) finite. This proves the first conclusion of the
lemma.

Now suppose in addition that y, y, ..., x, are distinct nonzero homomorphisms
of Z(f) into C, that z — y,(z) acts as 0 on V'/U, and that H]":l (z— y,(2)) actsas 0 on
U.If visin V, then (z — y0(z))(v+ U) = U and hence u = (z — yy(z))(v) is in U.
Applying [T, (z — x:(2)) to u, we see that [, (z — x:(z))(v) = 0. This proves the
second conclusion of the lemma.

If the primary subspace V' of V for some homomorphism y':Z(f)—>C is
nonzero, then Corollary 7.27 of [KnV] shows that there exists v’ #0 in V' with zv' =
7 (2)v" for all zeZ(f). Substituting into [[_, (z —y(2))(v') =0, we see that
[To (X(2) = 2:(2))(¥') =0 for all z and therefore that []’_, (¥'(z) —xi(2)) =0

for all z. From Lemma 7.14 of [KnV], we can then conclude that y' = y, for some i.
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Consequently the primary decomposition of ¥V, given by Proposition 7.20 of
[KnV], is V' => @, Vi, where V; is the primary subspace of V for y;, 0<i<n.
Define ¥ = V), and then V' = (3" @7, V) @Y.

To prove (a) and (b), let us show that U =3 @_; V;. Since [[1_, (z —y;(2)) is 0
on U, the primary decomposition for U shows that U< )" @7, V;. For the reverse
inclusion let us observe that if ve V satisfies ¢(z)(z — y;(z))P(z)(v) e U for a scalar-
valued function ¢(z) and a polynomial P(z), then the fact that

c(2)(z = 10(2) P(2)(v) = ¢(2) P(2)(z = 10(2))(v) € P(2)(U) U

implies, upon subtraction, that ¢(z)(y,(z) — %;(2))P(z)(v) is in U. Let i#0. It follows
by induction from this observation that if ve ¥ has (z — y,(z))*(v) in U, then
(20(2) = 2:(2))¥(v) is in U. In particular, if (z—7;(z))*(t) =0 for all z, then
(20(2) = 7:(2))¥(v) is in U. By Lemma 7.14 of [KnV], there exists ze Z(f) with
%0(z) # x;:(z), and we see that v is in U. Hence V; is contained in U. This proves (a)
and (b).

Since V=U@®Y, Y is isomorphic to V/U. Therefore z — y,(z) acts as 0 on Y.
This proves (c).

We turn to the setting of the first part of Section 1, with a Borel-de Siebenthal
positive system 4" in place. We work with a one-dimensional (I, L) module C +25(w)-
For the parameter A under consideration, the essential assumption is (1.4), namely
that A = A+ 25(unp) is 4™ (f) dominant.

Define

dy = {A+20(n),0(u)), (4.1)

where (-, - is the inner product on it; defined in Section 1. We know that there is a
positive constant ¢ such that

0 for all peA(l),

{B,o(u)y = ¢ ¢ forall fed(unp), (4.2)
2¢ for all fed(unt).

We have a (g, L) isomorphism
N(A+26(1)) = U(9) ®5C 1250 = U(1) ® cCjyasm),
and it follows that every weight of N(1 + 26(u)) is of the form

o =2A+26u)+ Z ngp, (4.3)
ped(u)

where the ng are integers >0. Referring to (4.1) and (4.2), we see that every weight @
of N(Z +26(u)) has {w,o(u)) = dy + kc for some integer k>0. Let Ny be the direct
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sum of all weight spaces of N(414 20(u)) for which <{w,o(u)> =dy+ kc. The
subspace Ny is stable under L.

Let N(/ + 26(u))""" be the (I, L) module consisting of all i nf invariant vectors of
N(A+256(u)). If F, = FE is an irreducible L stable subspace of N(4 + 26(u))" " with
highest weight v, then it follows from the above considerations that F, lies in a single
Ny and that any other irreducible L stable subspace F, with the same highest weight
lies in the same N.

Lemma 4.2 (Cf. Enright et al. [EPWW, Lemma 3.1]). With A as above, if F, is an
irreducible L stable subspace of N ( + 26(u))" " with highest weight v, then U (%)(F,)
is an irreducible (¥, L) submodule of N(A+ 206(u)) isomorphic to U(Y) ®s~t Fy and
having ¥ infinitesimal character v+ 6(1) — o(unt). The expression v —26(unt) is
AT (Y) dominant, and hence so is v+ 6(1) — d(unt) = (v = 25(unt)) +6(F). If v is
another irreducible L stable subspace of N (). +25(w))""" and if it has highest weight
v with V' #v, then the infinitesimal-character parameters of U(Y)®gz~t F, and
U(Y) ® g~t Fv are not conjugate by the Weyl group of t.

Proof. With v as in the statement of the lemma, U(f) ® 5~: F,, has T infinitesimal
character v + o(I) — 5(unt), according to Theorem 5.24 of [KnV]. By assumption, v
is A7(I) dominant. Since d(unf) is orthogonal to A(I), v—25(unt) is 47(1)
dominant. By (4.3) we can write v = 4+ 26(ut) + > 4. 4, 1B with all ny>0. Then

v—20(unt) =1+20(unp) + Z ngf = A+ Z ngp.
ped(u) peA(u)

If o is in A(unft), then {A,a> >0 by (1.4); also {f,a) =0 for fed(u) by (1.1).
Hence <v—25(unt),a) >0. Thus v — 25(unf) is 47 (f) dominant, and it follows
that v+ 6(I) — d(unt) is 4" (f) dominant.

In the case of v with v/ #v, we obtain v/ 4 (1) — s(unt) #v + () — 6(unft) with
both expressions A" (f) dominant. Then it follows that v + (1) — 5(unt) and
v+ d(I) — 6(unt) cannot be conjugate by the Weyl group of {.

To see that U(T) ® 5+t F, is irreducible, we can quote the general Corollary 5.105
of [KnV] or we can argue more simply by contradiction as follows: If M is a proper
nonzero U(¥) submodule, then M contains an irreducible L stable subspace F,» for
which (v 0(u)) is a minimum, by (4.2) and (4.3). This v/ cannot equal v. By
Frobenius reciprocity (Propositions 2.34 and 2.57e of [KnV]), the nonzero (§nf, L)
inclusion of F,» into U(f) ® 5~ F, yields a nonzero (¥, L) map of U(¥) @5t Fy» into
U(f)®g5~t Fy. Since v'#v, the f infinitesimal characters v’ + 6(I) — d(unft) and
v+ d(I) — 6(unt) are not conjugate by the Weyl group of f. From this contradiction
we conclude that U(¥) ® 51 F, is irreducible.

We can now return to the (f, L) submodule U(f)(F,) of N(Z+ 26(u)). Since F, is
assumed to consist of finf invariant vectors, the same kind of argument with
Frobenius reciprocity uses the inclusion of F, into U(f)(F,) to obtain a nonzero
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(f,L) map of U(f) ® ~t Fy into U(T)(F,). This map is clearly onto U(f)(F,), and it
has to be one—one since U(f) ® 5+t F, is irreducible. Therefore U ()(F,) is isomorphic
to U(f) ®amf Fv.

Lemma 4.3 (Cf. Enright et al. [EPWW, Lemma 3.1]). With 1 as above, N (A + 26(u))
is semisimple as a (Y, L) module. Every irreducible (¥, L) submodule contains, for a
unique v, an irreducible L stable subspace F, of N (A + 25(11))1_mf with highest weight v,
is isomorphic to U(Y) @5t Fy for that v, and has t infinitesimal character the A™(¥)
dominant expression v+ 6(1) — o(unt).

Proof. Recall that Nj is the sum of the weight spaces of N(4 + 2(u1)) for which the
weight o has {w,d(u)) =dy + kc. Define Vj = U(f)(Z;‘:O Nj). We shall prove
inductively on k that V. is a sum of irreducible f submodules. Then it follows that
every member of N (A + 2d(u)) lies in a finite sum of irreducible f modules and hence
that N (4 + 26(u)) is semisimple as a (f, L) module. The rest will be easy.

In the case of V), every member of Ny is invariant under gnf. By Lemma 4.2 any
irreducible L stable subspace of N, therefore generates an irreducible U(¥)
submodule. Thus Vj is a sum of irreducible f submodules. Fix an L type v occurring
in Ny, and let F,, be the isotypic subspace of Ny of type v. Then ¥} is the direct sum of
the U(f) stable subspaces U(¥)(F,), and the vth such space has infinitesimal character
v+0(l) —o(unt). As v varies, these infinitesimal-character parameters are
nonconjugate under the Weyl group of f, according to Lemma 4.2, and therefore
iteration of Lemma 4.1 shows that V) is Z(f) finite and [ ], (z — %,35()-sunt)(2)) acts
as 0 on it.

Inductively assume that Vj;_; is Z(f) finite and that the product of all
eXPressions z — x,.s5(1-sunt)(2), Z€Z(T), acts as 0 on it, where v runs through the
L types that occur in N(‘;‘“f, ...,N};‘ff. We shall prove the corresponding statement
for k.

The idea is to apply Lemma 4.1 with U as Vj_; and V as V}, but the possibility of
having more than one L type in N; that is not fully accounted for by Vi_in Ny
complicates matters. Thus let L; be an L stable complement to Vj_; n Ny in Ni. We
shall pass from Vj_; to Vj in a number of steps equal to the number of L types
appearing in L. For each such L type v, let F, be the isotypic subspace of L
of type v. Let v, ...,v, be these L types. Suppose inductively on r that U =
Vi1 + UX)(F, + - +F, ) is a sum of irreducible ¥ submodules, that U is Z(¥)
finite, and that the product of all z — y,, 5151 (2), € Z(T), acts as 0 on it, where
v runs through the L types that occur in Ngmf, e N,E‘_”‘lf and the L types vi, ..., v,_1.

Put V=V, 1 +U®DF, + - +F,). In V/U, all weights that minimize
{w,o(u)) have to be fint invariant vectors. Since U and V both contain all
weight spaces of N(2 4+ 20(unt)) for weights w with {(w,d(u)) <dy + kc and since
V contains F, but U does not, the expression {w,d(u)) is minimized at value
dy + ke by @ = v, among all weights of ¥/ U. The space F, maps one-one into V' /U,
and its image therefore consists entirely of ii N f invariant vectors. Write this image as
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the direct sum of irreducible L stable subspaces. Each of these subspaces, by the
same argument as in the proof of Lemma 4.2, generates an irreducible f submodule
of V/U, necessarily of infinitesimal character v, 4+ J(I) — d(unft). Form the pre-
image in V' of the sum of these subspaces. This pre-image contains U and F, , and it
therefore must be all of V. Consequently V/U has infinitesimal character
vy + () —o(unt) and is the sum of irreducible f submodules. Applying
Lemma 4.1, we find a f submodule Y of V such that V= U® Y. Necessarily Y is
isomorphic to V/U, and hence V is still the sum of irreducible f submodules.
Although Y is not asserted to contain F,, it does contain a subspace of Nj
isomorphic to £, and disjoint from U. Every vector of this subspace has to be fint
invariant, and thus v, is an L type occurring in N,‘;‘“f. Lemma 4.1 shows that the
product of all z — 7, 50)-_sunt) (2), z€ Z(F), acts as 0 on V/, where v runs through the
L types that occur in Nt ... NIl and the L types vi, ..., V.

This completes the inner induction and allows us to conclude that V7 is Z(¥) finite
and that the product of all z — ¥, 505w~ (2), € Z(T), acts as 0 on Vi, where v runs
through the L types that occur in N(';‘“f7 ...,N};‘“f. Thus the induction on k is
complete, and N(/4 + 26(u)) is semisimple.

If an irreducible (f, L) submodule V' is given, let F, be an irreducible L invariant
subspace of 7 with {(v,d(u) ) as small as possible. The members of F, are necessarily
fintinvariant, and Lemma 4.2 shows that V" is isomorphic to U(¥) ® 5~ F, and has
infinitesimal character the A™(f) dominant expression v+ (I) —d(unf). If V
contains another irreducible L stable subspace F, of iint invariant vectors, then
Lemma 4.2 shows U(f)(Fy) has infinitesimal character v' + 6(1) — d(unft). For this
to be conjugate to v + 6(1) — 6(unf), Lemma 4.2 says that we must have v/ = v. But
the L type v occurs just once in U(f) ® 5~1 Fy, and hence F,, = F,. This completes the
proof of Lemma 4.3.

Remark. Lemma 4.3 proves everything that is asserted in the statement of
Lemma 3.1 of [EPWW]. However, the proof of Lemma 3.1 in [EPWW] con-
tains an additional statement that will be useful to us. The assumptions on
/ are unchanged. From Lemma 4.3 we know that N(4 + 20(u)) is isomorphic as a
(f,L) module to a direct sum of (f,L) modules U(f) ®g5~: Fy, the F,’s and their
multiplicities being given by the decomposition of the (I, L) module N (4 4 25(u))*"".
The additional statement in the proof of Lemma 3.1 of [EPWW] identifies this (I, L)

module concretely as
N7 +206u)" " = S(unp) ®Cji250u) (4.4)
and hence we obtain a (I, L) isomorphism
NG+ 26(0) = UD) @3S p) ® T2 (4.5)

The action of @int on S(uNp)®Cjio50) is understood to be trivial. The
isomorphism in (4.5) is extremely complicated and in particular appears to depend
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on /; it was asserted without proof in [EPWW], and Lemmas 4.1-4.3 in the present
paper provide a way to derive it that we give in a moment. Possibly the authors of
[EPWW] intended that (4.5) is initially to be viewed with a certain understood
nontrivial action of iinf on S(unp) and then that (4.5) holds also with the trivial
action. The usual action of iinf on S(unp) is obtained by identifying unp with
p/(§np) and having iint act on p by the adjoint representation, but this quotient
action is 0 for our setting because [inf, unp]=[iinp].

One can derive (4.5), with the trivial action of tin¥, fairly easily from Lemmas 4.2
and 4.3. Corresponding to the Bernstein functor Hgf on the g level is a Bernstein

functor H:f on the f level, and Proposition 2.69 of [KnV] shows that these are

related by forgetful functors according to the formula IT if oF ELL ~ ’fL oIl gf More

importantly Proposition 2.115 of [KnV] shows that this relationship extends to the
Sth derived functor:

1K fL fL K
(Hf,L)SofgL—g7 (HZL)S (4.6)

Formula (4.6) says that the K decomposition of the effect of (Hgf) sona(g,L)

module can be computed by using the derived Bernstein functor on the f level. The
effect of a derived Bernstein functor on the f level may be computed by the algebraic
version of the Borel-Weil-Bott theorem given as (4.170) of [KnV]. In our case the
functor is to be applied in the top dimension, which is S, and the result is

FX if v—25(unt) is 47(f) dominant,

(M) (U O @5t )= { A 47)

if not.

Lemma 4.2 shows that v — 26(unf) is necessarily 4" (f) dominant, and hence we are
always in the first case. Combining this fact with Lemma 4.3, we obtain the following
equality of multiplicities:

[ (/“ + 25(11))uﬁf FL} = [ (;“) FvK—Z(S(umf)]K' (48)
On the other hand, Corollary 7 of [Knl] shows that
[TE()“) FVKZ()(umf)] [S(ump)®ei+26 FL]L7 (49)

and (4.4) follows by combining (4.8) and (4.9).
Let us restate (4.9) as a proposition.

Proposition 4.4. Under the assumption that C; is a one-dimensional (1, L) module such

that A = J+28(unp) is AT(Y) dominant, the K types that occur in n(1) are of the

form FA+J, where FL is an L type in S(unp). Moreover the multiplicities of F Aﬂ, in
n(2) and of FE in S(unyp) match.
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Proof. The only thing left unsaid is that the form of S(uNp) ® C; 125u), With Cj o501
one dimensional, allows us to read off the L types as the sum of 1+ 25(u) and any
highest weight of S(unp).

The remainder of Section 3 and much of Section 6 of [EPWW] examine what
happens to the Shapovalov form on N(A+ 2d(u)). The paper shows that the
restriction of this form to the fin{ invariant vectors is what is important. Each L-
type multiplicity in N (4 + 25(1))""" matches a corresponding K-type multiplicity
after application of the derived Bernstein functor on the K level, the Shapovalov
form is transported functorially, and the signatures match. It is then shown that the
forms for the various K types have been transported consistently, so that the form is
meaningful on 7(4). The details of this construction will not be needed here.

A feature of the Shapovalov form is that it descends to a nonsingular form on the
unique irreducible quotient N’(14 20(u)). A consequence of this fact and the
controlling behavior of the finf invariant vectors is that if the Shapovalov form can
be shown to be positive definite on N (4 + 26(11))" ", then N (4 + 25(u1)) is irreducible
and equals N'(A+20(u)). The paper [EPWW] makes use of this observation to
prove irreducibility of N(A+ 2d(u)) in certain cases, and the Gross—Wallach papers
[GrW1,GrW2] use the observation to identify N'(4 + 25(1u)) when N (4 + 2d(u)) is
reducible.

5. Gross—Wallach theory

We continue with the setting of Section 4: 4™ is a Borel-de Siebenthal positive
system, and C; 5(,) is a one-dimensional (I, L) module such that A = 4+ 26(unp)
is A*(f) dominant.

The Gross—Wallach theory in [GrW1,GrW2] nominally applies to a Borel-
de Siebenthal positive system only if the system is compatible with a quaternionic
structure on G/K, but in fact some of the theory’s tools apply to all Borel-
de Siebenthal positive systems.

According to (4.4), N (4 + 26(u))""" can be identified with S(1np) ® Cj425(w)- When
the Shapovalov form is transferred to S(uNp)® C;124(,), the effect of applying the
theory of [EPWW] is to allow the unitarity of n'(1) to be investigated by making an
appropriate study of S(np) @ C;125,). In the Gross-Wallach theory this is done by
induction on the degree of the S(1np) part of members of S(NP) @ C; 25

Let g be an L type. The subspace of S(unp) transforming according to ¢ will be
denoted V. If V20, then V7 lies completely within one homogeneous component
S4(unp), namely the one with

{a,0(u)) =dc, (5.1)

where ¢ is the positive constant in (4.2). Formula (5.1) allows us to associate the
homogeneous degree d to the L type o appearing in S(unp). In the notation of
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Section 4, if ¢ has homogeneous degree d, then ¢ is one of the L types appearing in
NanN (L4 26(u))" P,

Proposition 10.3 of [GrW2] is the critical result that is valid for our general setting
but is proved in that paper only in the context of a positive system compatible with a
quaternionic structure on G/K. The statement in our general setting is as follows.

Proposition 5.1 (Gross—Wallach). Normalize root vectors so that 0X, = —X_, and
(X, X_,] = H, for every root a. Let ¢ be an L type with V°<=S%(unyp), and define

ci(0) = |o+ A+ 0> — |1+ 3], (5.2)
where | - |2 is the quadratic form induced on ity by the symmetric invariant bilinear form

C. Let v be a member of Ngn N (1 + 2(5(11))£mp corresponding to a member of V°.
Then the Shapovalov form {-,-} on N(J.+ 26(u))*"" has

c;(o){v,v} =2 Z {X_ v, X_,v}. (5.3)

aeA(unp)

Proof (Sketch). We give the part of the proof where [GrW2] uses notation that is
more special than necessary. Let Q and Q(I) be the Casimir elements for g and [. The
relevant formula that replaces (10.4) of [GrW2] is

Q=0() - 2Hsy+2 > XX,+2 > XX, (5.4)

xeA(unp) aeA(unt)
The various properties of v make
X_pv=0 for all fed(uni),
Qo= (|24 5] = [P,
QMo = (|4 +25() + o + () — |6(1)]),
2H s, (v) =2{A+20(n) +a,0(u) Ho.
Substitution into (5.4) gives

c(o)v+2 Z X, X_,v=0,
oaeA(unp)

and then one arrives at (5.3) by the same kind of argument as in the last paragraph of
the proof in [GrW2, p. 104].

The reason that Proposition 5.1 lends itself to an induction is that X_,v on the
right-hand side of (5.3) is in Ny_j AN (4 + 28(u))* " by (1.1). As long as ¢;(c) is not
0, (5.3) is a formula for the Shapovalov form on Ny N (2 + 25(1))*"" in terms of
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the form on Ny_; "N (/. + 25(u))""". The following two theorems are restatements
of the consequences that [GrW2] derives in its Propositions 11.1 and 11.5 from
Proposition 5.1 above. Our standard assumptions about A are in force.

Theorem 5.2 (Gross—Wallach). Suppose that every L highest weight ¢ #0 in S(unp)
has ¢;(6)>0. Then N'(2 4 20(u)) = N(A + 26(u)), and the Shapovalov form on m(J.)
exhibits 7(1) as infinitesimally unitary.

Theorem 5.3 (Gross—Wallach). Suppose that every L highest weight ¢ #0 in S(unp)
of homogeneous degree <d has c;,(6)>0 and that G is an L highest weight of
homogeneous degree d with ¢;,(6) =0. Let Q(A+26(u)) be the quotient of
N(A+26(n)) by the smallest (g, L) submodule containing all int invariant vectors
of L type 6 + A+ 25(v1). Then the L types of Q(5.+ 26(w))" ', with their multiplicities,
are the sum of A+ 25(u) and the L types of S(unp)/VeS(unyp). If the L types
o+ A4 251) of O(4+25(w)""" all have ¢;(6)>0 for a0, then Q().+ 25(n)) =
N'(A+26(un)), and the Shapovalov form on 7'(1) exhibits n'(1) as infinitesimally
unitary.

Among the universal covering groups of indefinite orthogonal groups, the ones
that satisfy the assumptions of [GrW1,GrW2] concerning a quaternionic structure
are the covers of SO(4,n), with n>3. For n even, the representations studied by
Gross and Wallach are 5, ), and 7;,. The representations n5 are studied by means of
Theorem 5.2; n} and n;, except for 7, in SO(4,4),, are studied by means of Theorem
5.3. The one exceptional representation 7j, in SO(4,4), requires a slight refinement of
Theorem 5.3 that we shall not bother to formulate. The results below for the
representations 7, of the universal covering group of SO(2m,2l —2m), with
2<m<1/2 will need the slight refinement only when s =0 and / = 2m.

6. Inequalities, Part I

In this section we specialize our considerations to g, = so(2m, 2/ — 2m), using the
notation of Section 1. Then ny = n(4,) and n, = 7/(/,) with /, as in (1.6). The paper
[EPWW] proved that n, = 7, for s>m and that, for these s’s, the Shapovalov form
exhibits 7, as infinitesimally unitary. The proof in [EPWW] was based on techniques
that we did not discuss in detail in Section 4.

A different proof of this theorem can be based on Theorem 5.2, and two lemmas in
this different proof are needed for our work with 7}, when s<m. Put

¢s(0) = ¢;,(0) (6.1)

with ¢, (o) as in (5.2). According to Theorem 5.2, the results about 7, for s=m will
follow if it is shown that every L type ¢ #0 in S(unp) has ¢;(¢) >0. The two lemmas
in this section establish that inequality and something more.
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Following the notation in (1.9), we write L types ¢ as ¢ = (¢,v), where & =
(a1, ...,am) is a U(m) type and v=(by,...,by,0,...,0) is an SO(2/ —2m)
type. If I =2m, then b,, will be the last entry of v, and it can in principle be
negative when v is dominant; the cases with b, negative can be handled
by a simple trick, and we return to them in Section 8. For now, we shall assume
that b,,>0.

With b,, understood to be >0, define

= Zm: aj and B= ib, (6.2)
=1 =1

The quadratic form ||2 for these groups is given by the sum of squares of the
entries, as in (1.5).

Lemma 6.1. 37 [(b; +1 —m —j)* — (I —m —j)*|=mB + 2(I — 2m)B.

j=1

Proof. The left-hand side is

=Y b +2> bl —m—j)

=> (b7 —by) = B+2Y bim+1—j)+2> b(l—2m). (6.3)
In the third term of the right-hand side of (6.3), when j<m + 1 —j,

bi(m +1 =) + bms1—yj =35 (bj + bwsr—) (m + 1) + 5 (b; — b)) (m + 1 = 2)

%(b +bm+1—/)(m+ 1) (64)

If m is odd, so that there is a middle term with j = m + 1 — j, then that j has
bi(m+1—j)=3bi(m+1). (6.5)
Summing over j in (6.4) and (6.5), we obtain
2> bi(m+1—j)=(m+1)B.
Thus (6.3) is
> (b7 — bj) + mB+2(1 — 2m)B=mB + 2(I — 2m)B,

the final inequality holding since b};bj for all ;.
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Lemma 6.2. Assume (&,v)#(0,0). Define r by the condition that a,>0 and
a1 = - =a, =0. Then

lo 4 25+ 0> = |45 + 0|

Zi (a}—aj)+(5—r)z4+ Z (ay — ay) + mB+2(1 — 2m)B,

j=1 1<u<v<r

and the right-hand side is >0 if s>r.

Remark. In particular the right-hand side is >0 if s=m. In this case Theorem 5.2 is
applicable, showing for s>m that ny ==, and that the Shapovalov form
on =/ exhibits =n, as infinitesimally unitary. In the terminology we are
using concerning orbits, Proposition 4.4 therefore says that =, is associated to
O(m,m) if s=m.

Proof. Using Lemma 6.1, we have

lo + 25+ 0 — |45 + 6]

m

(@ = +35) =+ 2] + 3 [+ 1 =m =) = (1= m =)’

Jj=1

Il
: 1M

\Y

(@ = +49)' (=7 +49)"] +-mB+ 201 —2m)B

~.
- T

(@ =) (7 +59)°] +mB+ 2 2m)B

~.
Il

af + Z aj(s — 2j) + mB+2(l — 2m)B
=

(a]2 — aj) +Z ags —r Z aj—i—z (r+1-=2j)aj +mB+2(l —2m)B
= = =

|
M‘

~.
Il

|
M‘

~.
Il

; ')"‘(S—V)zr:aj-i- Z (a, — ay,) +mB+ 2(I —2m)B.
=

I<u<v<r

~
Il
-

I
—
2

[
2

When s>, each term on the right-hand side is >0. For the right-hand side to be 0,

we must have B=0 and a_lz =a; for all j. From B =0, we obtain v =10. Then

Theorem 1.2 implies that £ has to be even. Since a]? = a; for all j, we obtain £ = 0.

Since the hypotheses exclude (&,v) = (0,0), the argument is complete.
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7. Inequalities, Part 11

In this section we continue with the notation of Section 6, using the notation of
Section 1 specialized to g, = so(2m,2(I — m)). Then n, = n(4s) and ©, = n'(4,) with
/s as in (1.6).

Our goal in this section and the next is to use the Gross—Wallach theory to prove
that the Shapovalov form exhibits 7, as infinitesimally unitary for 0<s<m. The
main new step in the proof of unitarity is Theorem 7.1 below. We shall prove
Theorem 7.1a in this section and Theorem 7.1b in Section 8. Afterward, still in
Section 8, we shall apply the Gross—Wallach theory, particularly Theorem 5.3, and
deduce the first consequences.

As in Section 6 we write L types in S(unp) as ¢ = (£, v) with ¢ and v as in (1.9).
We continue with ¢(o) as defined in (6.1), with the mth entry b,, of v understood to
be >0, and with the sums 4 and B as defined in (6.2). Recall from Section 5 that V7
is defined to be the isotypic subspace of S(unp) of type o. Put

s+1
o5 = (Z 2e;, 0) for 0<s<m. (7.1)
i=1

Theorem 1.2 and fact (1.10) show that o, occurs exactly once in S(unp), and direct
calculation shows that ¢;(a;) = 0.

Theorem 7.1. For g, = so(2m, 2] — 2m) with 2<m<1/2, suppose that 0<s<m. Let
o = (&v)#(0;0) be an L type occurring in S(unyp), and define t by 2t = A — B.

@) If [a1/2) + -+ + [as/2] =1, then c¢;(6)=0 with equality only if | =2m, s =0,
a=-=a,=1,and by =+ =b,, =1.
(b) If [a1/2) + -+ + [as/2] <t, then V7 is contained in V*S(unp).

Remark. The number ¢ in the theorem is an integer >0 by (1.10) and Theorem 1.2.
The function [-] is the greatest-integer function.

Lemma 7.2. Assume a#0. Define r by the condition that a,>0 and a,.| = --- =
ay, = 0. Then

,
e(0) =lo+ i+ 0 =+l (gs—20+ Y (aw—a)
Jj=1 I<u<v<r

with equality only if | =2m,r=m, a, = - =a, =1, and by = --- =b,, = 1.

Proof. Using 4 = B+ 2t, we have

(s—r)A+mB=sA—rB—2tr+mB= Z (ajs — 2t) + (m — r)B.
J=1
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Substitution into Lemma 6.2 gives

lo + s+ 0 — |45 + 6]

~

= (ajz —a;) + Xr: (ajs —2t) + Z (ay — ay)

1 j=1 I<u<v<r

+ (m—r)B+2(l-2m)B

~.
I

<

> (ajs — 2t) + Z (ay — ay).

1 I1<u<v<r

~.
Il

For equality to hold at the last step, we must have ajz =a; for all j and also
(m—r)B+2(l—2m)B=0. Thus a¢; =1 or 0 for each j. In this case, (1.10) and
Theorem 1.2 show that a; = b; for each j; hence B#0 unless ¢ = 0. Since we are
assuming that ¢#0, we conclude from (m —r)B+2(/ —2m)B=0 that m —r =0
and / — 2m = 0. The lemma follows.

Lemma 7.3. Define r as in Lemma 7.2. If s<r and [a; /2] + - + [as/2] > ¢, then

r

Z (ajs —2t) + Z (ay — ay) =0.

j=1 I1<u<v<r

Equality holds only if no a; equals 1 or else all a, are even for 1 <u<s.

Proof. Define /' by the conditions that ¢;>2 for 1 <j</ and a; = 1 for ' + 1 <j<r.
We distinguish two cases, ' <s and s<7'.
First suppose ' <s. Then we have

r v r 4

Z (ajs—Zt):Z (ajs — 2t) + Z (s —21) = (ajs —2t) + (r—1')(s — 21)

= =1 J=rH =1

~.

and

> (r— )21~ s),

with equality at the next-to-last step only if ¥/ = r or else all a, are even for 1 <u<s.
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Adding we obtain

I
I
&
‘\
-

since ¥ <s. Again equality holds only if ¥/ = r or else all a, are even for 1 <u<s.
Second suppose s<r. Then we still have

r I r r

S ais—2) = (as =20+ Y (s=20)=>  (ajs—20)+ (r—+)(s—21),

J=1 J=1 J=r'+1 J=1

and this time we have

>, (a—a >ZZ —aa+ZZ o)

I<u<v<r u=1 v=r'+1 u=1 v=s+1
r/
=(r—7) E (ay (¥ —s) g a, — s E a,
u=1 u=s+1
s
> (r—17) E (ay (¥ —s) g ay, — S g ay,
u=1 u=s+1

(r—r (ZZau/2 —s) (r — ) Zau—s Z a,
>0 —r)2t—s)+ (' —s) Zau—s Z ay,

u=s+1

with equality at the next-to-last step only if ¥ = r or else all a, are even for 1 <u<s.
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Adding, we obtain

r

Z (ajs — 2t) + Z (ay — ay)

j=1 I1<u<v<r
’,/
ZE (ajs —2t) + (' —s) E aj—s E a;
j= J=s+1
/
E aj—r' E 20a;/2]+ (F — ) E aj—s E aj
Jj=1 Jj=s+1
E 1+ s E aj—r E aj+ (r =) E a—s E a;
Jj=1 J=s+1 Jj=s+1
:0’

with equality at the first > sign only if #/ = r or else all @, are even for 1 <u<s. This
completes the proof.

Proof of Theorem 7.1(a). If s>r, then strict inequality holds in Theorem 7.1a as a
result of Lemma 6.2. If s<r, then Lemmas 7.2 and 7.3 combine to give the inequality
with > in place. If equality holds with s<r, then Lemma 7.2 says that / = 2m,
a=--=a,=1, and by = --- = b,,. From equality in Lemma 7.3, we conclude
that no a; equals 1 (which is false) or else that all a, are even for 1 <u<s. Since all a,
are in fact odd, s must equal 0.

8. Unitarity

In this section we prove Theorem 7.1b concerning g, = so(2m, 2] — 2m),, and we
use the Gross—Wallach theory to derive two consequences of the theorem. One
consequence is the unitarity of 7, for 0<s<m, and the other is a first description of
the K spectrum of 7, for these same values of s.

Proof of Theorem 7.1(b). We begin with some preliminary remarks. By (1.10) and
Theorem 1.2 every even nonnegative dominant integral p = (y, ..., u,) has the
property that (u,0) occurs with multiplicity one in S(unp). That is, V*0 is
irreducible. If =y’ + " with ¢ and y” nonnegative dominant integral and even,
then the product in S(unp) of a nonzero highest weight vector in V#:0) and a
nonzero highest weight vector in 7“0 is a nonzero highest weight vector in V(#9).
Since V#9) is irreducible, it follows that

P (10) = (W' 0) pr(u",0) (8.1)
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Inclusion (8.1) leads one to consider the spaces V7, ..., V1 which are special
instances of V#9); here oy, ..., 0,1 are as in (7.1). The form of the highest weight
vectors of these spaces is given in Proposition 3.2 of [Kn4] as certain determinants
whose entries are in S?(unp), and, in combination with the expansion-by-cofactors
formula, it implies inclusions

Voacrostuny), VeSVoS (unyp),..., Ve Vo5 (unp). (8.2)
Suppose that u has depth r, so that u = (y, ..., 4,0, ...,0). Then we can write
(1,0) = 3 (g — t)ao + -+ +5 (1o = 1,)0r2 + 3 1,0,-1.

Since p, >0, iteration of (8.1) and use of (8.2) yields

V(MU) c PO YO0 ... YOr2. Y2 YO Ol O
T N—— ——— ———
%(ylfyz) times %(,u,.,lfy,,) times %,u,.fl times
< Vo'S(unp), where r = depth pu. (8.3)

Returning to the proof of the theorem, suppose that ¢ = (£,v)#(0,0) occurs in
S(unp) and has the property that [a;/2] + -+ + [a,/2]<t. By (1.9), (1.10), and
Theorem 1.2, the multiplicity of ¢ in S(unp) equals the sum of the Littlewood—
Richardson coefficients cfw over all even nonnegative dominant integral u such
1€l = Ilul] + ]|v]], & — u is nonnegative, and u has depth <m. For such a y, write
w= (.-, 1,). Then 2t = A — B = ||¢]| — ||v|| = ||¢||- Since & — u is nonnegative,
we have u;<a; for 1<i<m, and since u is even, we have u,;<2[a;/2] for each i.
The given condition [a;/2]+ --- + [a;/2] <t therefore implies that any p with
¢, >0 has

ft e g <2[ar /2] + o+ 20as /2] <2t = |||
This condition implies that
fe1 >0 if ¢, >0.

That is, the depth r of u satisfies s + 1 <r. Combining this conclusion with (8.3) and
(8.2), we obtain

D e poiS(unp) s VESunyp) if civ>0. (8.4)

We now appeal to Theorem 0.1 of [Kn4], which implies that

pEn <yl Z p(w0). (8.5)

1 with ci_‘. >0,
ueven
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Combining (8.4) and (8.5), we obtain
Ve cpoS(uny),
and the proof is complete.

Before applying Theorem 7.1 to the unitarity problem, let us return to the fact that
when / = 2m, an L type ¢ = (&, v) with v = (by, ..., b,,) that occurs in S(unp) need
not have b,,>0. We introduce the notation

v = (b1, ...,bp_1,—by) and |v| = (b1, ..., b1, |bm]). (8.6)

This |v| cannot be squared, and thus there should be no confusion with the definition
of [v|* as a sum of squares. Restriction from U(2m) to SO(2m) of the representation
¢ always yields the SO(2m) types v and v with the same multiplicity because one can
restrict first to O(2m) and then to SO(2m). Theorem 1.2 always applies to (&, |v]),
and although v itself need not be nonnegative, we can always conclude that the
multiplicity with which the irreducible representation of SO(2m) with highest weight
v appears in the restriction to SO(2m) of the irreducible representation of U(2m)
with highest weight £ is equal to the sum over all nonnegative even dominant integral
forms u of the Littlewood—Richardson coefficients Cil»‘\'

The multiplicity formula (1.10) for S(unp) remains valid whether or not v is

ot

nonnegative, and thus 7Y has the same dimension as V&), In fact, we can pass

from V(&) to V(&) by

extending the vector-space isomorphism X — X diag(1,...,1,—1) (8.7)
of unyp with itself to an algebra automorphism of S(unp). '
Finally it is immediate from (6.1) and (5.2) that
cs(v) = ¢ (vF) = ¢5(|v]). (8.8)

If we redefine B as 37" ||, then Theorem 7.1 remains true for / = 2m whether or
not v is nonnegative. In fact, if v is nonnegative, we know the theorem to be true. To

transfer the conclusion for v into one for v#, we have only to use (8.8) to obtain (a) in
Theorem 7.1 and then (8.7) to obtain (b).

Theorem 8.1. For g, =s0(2m,2] —2m) with 2<m<l/2, if 0<s<m but
(I,5)# (2m,0), then 7, is infinitesimally unitary and the K spectrum of 7, is given by
the sum of Ay = Ay + 20(unp) and the L spectrum of S(unp)/VoS(unp).

Proof. First assume that />2m. We have ¢;(a,) = 0, and V% lies in S?(unp) for
d = 2(s + 1). Suppose that ¢ occurs in S(unp) for some d and that ¢;(¢) <0. Then
Theorem 7.1 shows that V7<= V% S(unp), and it follows that ¢ >2(s + 1). Thus the
hypotheses of Theorem 5.3 are satisfied for 6 = a;.
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That theorem says that if Q(4; + 26(ut)) denotes the quotient of N(4; + 25(u)) by
the smallest (g,L) submodule containing all iinf invariant vectors of L type

05+ Ay +20(u), then the L types of Q(A, +25(u))*"", with their multiplicities, are
the sum of A; + 26(u) and the L types of S(unp)/VS(unp).

Theorem 7.1 shows that the L types of this kind are limited to at most those ¢’s
occurring in S(unyp) such that [a;/2] + --+ + [a5/2] =1, and it shows further that,
apart from o = (0,0), these L types all have ¢;(¢) >0. From the remaining part of
Theorem 5.3, it follows that Q(A; + 26(u)) = N'(A; + 26(u)) and that the Shapova-
lov form on 7, exhibits 7/ as infinitesimally unitary.

Since N (A + 26(u)) is semisimple (Lemma 4.3), we know that the K types of 7} are
a subset of the K types of n; and in particular are the sum of —25(unt) and the L
types of N'(Z+ 26(u)). Consequently, they are the sum of A, and the L types of
S(unp)/VoS(unp).

Now assume that / = 2m but that s#0. The new ingredient is that v = (b, ..., by,)
can have b,,<0. If we take into account the remarks concerning v and v# that
precede the present theorem, then we see that Theorem 7.1 applies here and that the
above part of the present proof goes through.

Theorem 8.2. For g, = so(2m,2m) with 2<m, n is infinitesimally unitary and the K
spectrum of m, is given by the sum of Ay = Ao + 20(unp) and the L spectrum of

Sunp)/(Vo 4+ D 4 V(”#))S(ump)7
where 1= (1,...,1).

Proof. As in the proof of Theorem 8.1, but with / = 2m and with s taken to be 0, we
see that the hypotheses of Theorem 5.3 are satisfied for 6 = ay.

That theorem says that if Q(Zy + 26(u1)) denotes the quotient of N(4g + 26(u)) by
the smallest (g,L) submodule containing all inf invariant vectors of L type
o0 + J + 20(1), then the L types of O(Z + 25(u))*"", with their multiplicities, are
the sum of Ag + 26(u) and the L types of S(unp)/V*S(unp).

Theorem 7.1, as amended before the statement of Theorem 8.1, shows that the L
types of this kind are limited to at most those ¢ occurring in S(1tnp) such that 1 = 0,
and it shows further that, apart from

¢=(0,0, o=(1,1), and o=(1,1%),

these L types all have ¢o(g)>0. For the two exceptional ¢’s, we have ¢y((1,1)) =0
and ¢o((1,1%)) = 0.

Since there are exceptional ¢’s, the remaining part of Theorem 5.3 does not apply.
But a slight refinement of the theorem, which allows for a second iteration of the
quotient process and which we shall not state, applies and leads us immediately to
the conclusion of the theorem.
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9. K spectrum

In this section we continue with the notation of Sections 6-8 concerning the Lie
algebra g, = s0(2m,2/ — 2m) for 2<m=<//2. Theorems 8.1 and 8.2 gave us a first
formula for the K spectrum of 7, when 0 <s<m, showing that the K spectrum, with
multiplicities, is the sum of the minimal K type parameter A, and the L spectrum of
either

Sunp)/V>S(unp) (9.1a)
or
Sunp)/ (Ve 4y 4 V“J#))S(ur\p). (9.1b)

Our goal in this section is to improve on these results by identifying the L spectrum
of each quotient (9.1) with the L spectrum of the dual coordinate ring of a suitable
orbit closure O(p, q)d. To make this identification, we shall prove an ostensibly more
difficult result, which gives an explicit formula for the multiplicity of each L type
of (9.1) in terms of Littlewood-Richardson coefficients. The main results are
Theorems 9.4 and 9.5.

This section will make extensive use of material from [Kn4]. What is needed from
that paper is not only isolated results but also the overall approach. We shall quote
specific results from [Kn4] as we need them.

Lemma 1.1 above identified S(unp) with the space M, 22, of rectangular
complex matrices, and we shall take this identification for granted in this section.
Typically we shall continue to write the space of symmetric tensors as S(unp) even
though it might sometimes better be viewed as S(M,,2/-2m).

The mapping bar of (1.2) gave us a canonical conjugate-linear algebra
isomorphism of S(unp) onto P(unp). An effect of our isomorphism of unp with
My, 51-2m 1 to pick out a real form of unp, namely the real vector space of members
of unp that correspond to real matrices. From this isomorphism we constructed in
Section 3 a noncanonical complex-linear algebra isomorphism x(-) of S(1np) onto
P(unp). For getting at dual coordinate rings, we shall need to be able to work with
the function bar. This function seems rather difficult to compute directly, and we
shall instead compute it indirectly with the aid of x(-). We therefore review the
construction in Section 3 of x(-) briefly.

The rows of M2 >, are numbered 1,...,m, and the columns are
numbered 1,..../—m,1',...(I—m)'. For X in M, 2,, we let x,(X) and
Xay (X), with 1 <a<m and 1<b</— m, denote the entry functions on the matrices
in unp. Each of these is a member of the space P'(unp) of homogeneous first-order
polynomials on unyp. Define X, and X, for 1<a<m and 1<b</—m, to be
matrices that are 1 in the indicated entries and are 0 elsewhere. For future reference,
we set

Zyy = Xy —iXyy for 1<a<m and 1<b</ —m. (9.2)
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We define x(-) on a basis of matrices by x(Xu) = X and x(Xu) = xar, and we
extend x(-) to a complex-vector-space isomorphism of unp onto P'(unp). The
further extension of x(-) to S(unp) is our complex-linear algebra isomorphism of
S(unp) onto P(unp).

Of particular interest is the effect of x(-) on the “dot products” in Section 3,
namely that X - x(X, - X;)(X), for 1 <a<m and 1<b<m, picks out the ordinary
dot product of the ath and bth rows of the matrix X. This is the same as the (a,b)th
entry of the matrix product XX,

The presence of a real form of unyp allowed us also to define in Section 3 a

complex conjugation mapping (-)°®” on unp, regarded as a space of complex
matrices, and to extend it to a conjugate-linear algebra automorphism of S(unp)
and P(unp). It was shown in Proposition 3.3 that bar can be computed, up to a

nonzero global constant, as x(-) followed by (-)*°™. As far as bar is concerned, we
shall really be interested only in its effect on vector spaces, and this global constant
will play no role. Thus we shall work with the global constant as if it is 1. We can
then compute bar by means of the easier function x(-) whenever we have closure
under ().

One technique of [Kn4] was to concentrate especially on matrices X with a certain
triangular property. The following definition quantifies a version of this triangular
property.

Call a member X of M, 2 om quasi-upper triangular if it has the following
properties:

(@) xp(X) =1 for 1<b<m,
(b) xbb/(X)aé — i for ISbém,
(©) x4 (X) =0 for a>b,

(d) xu(X) =0 for a#b,

@) xp(X)=0if m<b<l—m.

Condition (b) is arranged so that if Z,, is as in (9.2), then x(Z,,)(X) cannot be 0
when X is quasi-upper triangular. Every quasi-upper triangular matrix X has rank
m. An example of a quasi-upper triangular matrix is given in (3.1) when v = 0.

Lemma 9.1. Let T = {t,} be any m-by-m symmetric matrix over C. Then there exists
a quasi-upper triangular matrix X in My, 1o, for which the matrix product XX
equals T.

Proof. We define x,,(X) and x,v(X) inductively downward on a and, for each fixed
a, inductively downward on b for a<<b<<m. The base case of the induction is a = m,
and we take, partly as required by (a) in the definition above,

Xmm(X) =1 and xfnm’(X) = lym — 1.

For x,.w(X), we use either square root except that we disallow X, (X) = —i
because of (b) in the definition of quasi-upper triangular. Suppose inductively on a
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that we have defined row indices >a. Define inductively on b

xam(X) = lam,
Xam—1 (X) = lam-1— xum(X)xmfl.m(X)v

Xav(X) = tap — Xam (X )Xpm(X) — -+ = Xapr1(X)xpp1(X) for a<b<m,
and then put

xaa(X) =1 and xt%a’(X) =lag — 1 _xi,aJrl(X) - _xt%m(X)r
avoiding —i as a choice for x,,(X) in order that (b) will be satisfied. This completes
the inductive definition of the entries of X that might be nonzero, and the entries of
X specified as 0 in (c)—(e) of the definition of quasi-upper triangular are taken to be
0. The resulting X has the required properties.

Let D = {Du} < <p<m be an (7) tuple of nonnegative integers, and put ||D|| =
> u<b Dap- The paper [Knd] made extensive use of the members P(D) of S(unp)
defined by

P(D) =[] (Xa-X5)"". (9.3)

a<b

The element P(D) lies in the homogeneous component S¢(unp) of S(unp) with
d = 2||D||. Proposition 3.4 of [Kn4] shows that the elements P(D) with 2||D|| equal
to a fixed d span the space of SO(2] — 2m) invariant members of S?(1np) and that
this span coincides with the direct sum of all 0 for even nonnegative dominant
integral u with ||u|| = d, the spaces V*) each being of multiplicity one.

Lemma 9.2. If the polynomial X+ x(> apP(D))(X) vanishes on all quasi-upper
triangular X € My, 21—y with rank XX = s, then it vanishes everywhere on O(m,s).

Proof. The value at X of the polynomial function X — x(X, - X3)(X) depends only
on the entries of the matrix product XX, and hence the same thing is true of the
value at X of X —x(>_apP(D))(X). Let X' € O(m, s) be given, and use Lemma 9.1 to
choose a quasi-upper triangular matrix X" € M, /—2, such that the matrix products
X' X" and X" X" are equal. Since any quasi-upper triangular matrix has rank m, X"
lies in O(m,s). Also x(> apP(D))(X') = x(>_apP(D))(X"). The lemma follows.

The key tool of [Kn4] was a certain endomorphism ¢ of S(unp) that extracted a
totally upper-triangular part. Define a linear mapping ¢ of M, »_2, to itself by its
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values on a basis:

X, if a<b,
(P(Xab): .

0 if a>b, (9.4)
. )_{Xab, if a=b, '
PRETZN0if asb.

Then extend ¢, without changing its name, to an algebra endomorphism
of S(unp) sending 1 to 1. An important property of ¢ for our current purposes
is that

o(X)=X if X is quasi-upper triangular in unp. (9.5)

Lemma 9.3. If M is in S(unyp) and X is in unyp, then

Proof. If M = M, M,, then

x(M)(@(X)) = x(MiMz)(p(X)) = x(M1)(p(X)) x(M2)(e(X))
and
x(@(M))(X) = x(op(Mi1M2))(X) = x(¢(M1)p(M2))(X)
=x(p(M1))(X) x(¢(M2))(X).

It follows that there is no loss in generality in assuming that M is homogeneous of
degree 1. Since both sides of the desired formula are bilinear in M and X, we may
assume that M is X,;, or X, and that X is X,y or X.4. In the two cases (i) M = X
and X = X,y and (ii)) M = X,y and X = Xy, x(M)(e(X)) and x(¢p(M))(X) are
both 0.

Case (iii) is that M = X, and X = X;. In this case we find that

xa;,(Xcd) if ng}
0 if e>d

x(Xab)((ﬂ(Xc )) — { {5uc5hd if ng,

0 if not,

whereas

X(Xab)(Xcd) if a<b, B OucOpa  1f a<h,
0 ifa>b f 0 if not.

x( (X)) (Xed) = {

If 04:0pqa = 1, then @ = ¢ and b =d, so that a<b if and only if ¢<d. Our two
expressions are thus equal in this case. If d,.0,¢ = 0, then both expressions are 0 and
we again have equality. This completes case (iii).
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Case (iv) is that M = X,y and X = X,;. In this case we find that

Xab' (Xm'/) if c=d 5,”5;”1 if ¢ = d,
X Xar) (9 (Xea')) = { 0 if c#d } - {0 if not

whereas

Xub’)(Xcd”) if a= b} o {5a05bd if a= b;
0 it ab | 10 if not.

< (X)) (Xet) = {x<

If 0,:0ps =1, then a =c and b =d, so that a = b if and only if ¢ =d. Our two
expressions are thus equal in this case. If d,.0,¢ = 0, then both expressions are 0 and
we again have equality. This completes case (iv).

Theorem 9.4. For g, =s0(2m,2] —2m) with 2<m<l/2, if 0<s<m but
(1,5)# (2m,0), then

(@) O(m,s) is the locus of common zeros of the ideal in P(unp) that corresponds to
the ideal Vo S(unyp) in S(unyp) under bar,

(b) the ideal VoS(unp) is prime in S(unp), and therefore R(O(m,s)?) equals
Sunp)/V=Sunp),

(¢) the multiplicity of the L type (£,v) in R(O(m,s)?) is uci‘lvl’

all even nonnegative dominant integral p for U(m) such that p,, , = - = p,, = 0.

the sum being over

Here ci b S the Littlewood—Richardson coefficient for multiplicities in a tensor
product for U(m).

Remark. In view of Theorem 8.1, conclusion (b) says for 0<s<m and (/,s) # (2m, 0)
that n/ is associated to the orbit @(m, s). The conclusion that VS(1nyp) is prime in
this case is not new; see Theorem 5.7 of [DeP].

Proof. First we prove (a). By Corollary 3.6 of [Kn4], the space V'’ equals the linear

span of all (s 4 1)-by-(s + 1) minors of det({X, - X»}1<a<m). Let us use the function
1<b<m

x(+) to set up the correspondence of ideals between S(1np) and P(unp), checking

afterward that bar and x(-) yield the same result. Generators of the ideal in question

in P(unp) are then all polynomials X —det({x(Xj, - Xj,)(X)}1<a<s+1). These are
1<h<stl
the (s + 1)-by-(s + 1) minors of the matrix XX, and their common locus of zeros is
the set of all X € M, 22, for which rank(XX")<s, i.e., the union of all ¢(p, ¢) with
0<g<min(s,p). On the other hand, the zero locus contains ¢(m, s) and is a union of
orbits. Adjusting matrix (3.1) for ¢ = s and v = 0 by making some of the nonzero
entries tend to 0 in a suitable fashion, we see that the closure of ((m,s) contains all
orbits O(p, ¢) with 0<g<min(s, p). Thus x(V*S(unp)) has O(m, s)" as its common
locus of zeros. The use of x(+) in place of bar was legitimate because x(VS(unp)) is
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closed under complex conjugation; specifically the alternating tensors that generate
Vo take real values on real matrices. This proves (a).

The part of the proof just completed identifies the zero locus of the ideal
x(VS(unp)) in P(unp) as O(m, ). Let I be the ideal of all polynomials vanishing
on O(m,s)®, and let J = bar~'(I) be the corresponding ideal of S(unp). From the
proof just completed, we know that I = x(J).

We turn to (b) and (c). Fix an L type (&, v). First we show that

the multiplicity of (£,v) in V%S(unp) is at least 3 ¢
u

mwlvl?
the sum being over all even nonnegative dominant integral (9-6)
u for U(m) such that pg, >0.
Then we show that
the multiplicity of (&,v) in J is at most 3 ¢,
o 9.7)

the sum being over the same p’s as in (9.6).

Since the multiplicities in question are finite and since the multiplicity in (9.6) has to
be < the multiplicity in (9.7), it follows that J = V°S(unp) and that

(¢,v) has multiplicity in J equal to ci y» the sum being over all
wo (9.8)
even nonnegative dominant integral p for U(m) such that ug >0.

The zero locus in question, namely @(m, s)°, is the closure of an orbit of a connected

complex Lie group acting holomorphically; it follows that @ (m, s)Cl is an irreducible
variety. Therefore J is prime. Hence V%S(uunp) is prime. Modulo proofs of (9.6)
and (9.7), this proves (b). By (1.10) and Theorem 1.2,

the total multiplicity of the L type (&,v) in S(unp) is equal to
> cfl N the sum being over all even nonnegative dominant (9.9)
u

integral p for U(m).

Subtracting the multiplicity formula in (9.8) from the formula in (9.9), we obtain
conclusion (c).

Thus we are to prove (9.6) and (9.7). For (9.6) it is enough to handle v
nonnegative. We observe from (8.2) and (8.3) that V"*0 is contained in the ideal
Vo S(unp) whenever u is an even nonnegative dominant integral form for U(m)
such that u,_; >0. By Theorem 0.1 of [Kn4], we have

V(iﬁv) c Z @ V(l‘,t’) V(y,O)’
u
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the sum being over all even nonnegative dominant integral u for U(m). The sum on
the right is direct, and therefore the multiplicity of the L type (£, v) in S(unp) equals
the sum of the multiplicities for that L type in each product V") w0 The

multiplicity for a particular product is just ‘uv since Theorem 0.1 of [Kn4] shows

multiplication from V) ® V(#0 to V0 0 to be one-one. Since we have just
seen that a product V0V for which pu, , is >0 is necessarily contained in
VosS(unyp), the lower bound (9.6) on the multiplicity of (£, v) in V%S(unp)
follows.

Now consider (9.7). Again it is enough to handle v nonnegative. The multiplicity
of the L type (&,v) in J equals the dimension of the space of highest weight vectors in
V(&) such that the corresponding polynomial vanishes on (/(m,s). Theorem 4.1 of
[Knd] gives a fairly explicit formula for each highest weight vector ¢, of
type (¢,v) in the tensor product V"' ®3:, V0 and Theorem 0.1 of [Kn4] says
that, under the multiplication mapping .# on S(unp), this space of highest weight
vectors in the tensor product maps one-one onto the space of highest weight vectors
in P&,

Suppose that .Z(¢;,) is in J, i.e., that x(.#(p;,)) vanishes on O(m,s), and
suppose that X € @(m,s) is quasi-upper triangular. The formula in Theorem 4.1 of
[Kn4] says that we can write

M(Pe ) = ZaDP + other terms, (9.10)

where

o(ZO) =11 Z», ¢(other terms) =0,
, (9.11)
and ) apP(D)#0 if ¢;,#0.

Here ¢ is the homomorphism of S(unp) into itself defined in (9.4). Since X is
quasi-upper triangular, (9.5) shows that ¢(X) = X. The fact that X is in ¢(m, s) then
implies that

o
Il
=

since o(X) =X
(M (P ,)))(X) by Lemma 9.3

Il
=
N N N
X
<-
Aty
N
S~—
p=R
>

- x(H ZZ;) (X) x(o(SapP(D)(X) by (9.10) and (9.11)
(xpp(X) — ixpp (X)) x(3_apP(D))(¢(X)) by (9.2) and Lemma 9.3

(epp (X) — ixpyy (X)) x(3oap P(D))(X) since p(X) = X.
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The factor [], (x,,(X) — X,y (X))" is not zero since X is quasi-upper triangular, and
thus the function x(>_apP(D)) vanishes at every quasi-upper triangular X in O(im, s).
By Lemma 9.2, the function x(> apP(D)) vanishes identically on ((m,s).

The element Y apP(D) is a member of > @ V0 the sum being over all even
nonnegative dominant integral u such that cf“, #0. Any average of translates by L of
the function x(>_apP(D)) has to vanish identically on O(m,s), and in particular the
projection operator corresponding to a single V% when applied to x(> apP(D)),
has to give 0. We are interested in seeing what conditions are imposed on u by this
requirement.

Thus suppose that Y apP(D) is a nonzero vector of a single V*¥ and that
x(Y_apP(D)) vanishes identically on @(m,s). The subspace of members M of V()
such that x(M) vanishes identically on O(m, s) is stable under L, and we know from
(1.10) and Theorem 1.2 that V®® is irreducible. Consequently x(M) vanishes
identically on ((m, s) for every M in V(#0),

We apply this conclusion with M equal to a nonzero highest weight vector of
V' w0) - According to Proposition 3.2 of [Kn4], M has to be a nonzero multiple of

m %(ﬂ,, ~Hpi1)
H det({Xa : Xb}1<a<p>

p=1 1<b<p
Thus
m 2ty =ttp41)
11 det({x(X,, : Xb)(X)}lgag,,) (9.12)
p=1 I<b<p

has to vanish for all X in O(m,s). For X of the form
X = (diag(1,...,1,1,...,1) 0 diag(0,...,0,i,...,7) 0),

with m — s entries of i, the matrix whose upper left determinants figure into (9.12) is
diag(1, ...,1,0,...,0), with s diagonal entries of 1. The determinant is 1 for p =
1,2,...,sand is 0 for p>s. For that X, we see that some p, has to >0 with p>s for
(9.12) to be 0, i.e., that u,; has to be >0. The upper bound (9.7) on the multiplicity
of the L type (&,v) in J follows, and the proof of the theorem is complete.

Theorem 9.5. For g, = so(2m,2m) with 2<m and 1 = (1,...,1),

(@) O(m — 1,0) is the locus of common zeros of the ideal in P(unp) that corresponds
to the ideal (V° + V) + VAYNS(uAp) in S(unp) under bar,

(b) the ideal (Vo + VLD 4 V(l'fl#))S(ump) is prime in S(unyp), and therefore
R(O(m —1,0)") equals Sunp)/ (Vo + VI L A1) g1 Ap),

(¢) the multiplicity of the L type (£,v) in R(O(m —1,0)) is 1 if & = v with vy, = 0,
and it is 0 otherwise.
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Remark. In view of Theorem 8.2, conclusion (b) says for / = 2m and s = 0 that x, is
associated to the orbit ¢(m — 1,0).

Proof. If (£,v) is an L type in the quotient
Sunp)/ (Vo 4y 4 I/“‘l#))S(ump)7 (9.13)
it is already an L type in the quotient
S(unp)/VS(unp). (9.14)

The same argument as for Theorem 9.4 shows that all the conclusions of that
theorem hold for (/,s) = (2m,0) except for the primeness of the ideal V?S(unp).
Thus the multiplicity of the L type (&, v) in (9.14) is 3 c; ol the sum being over all
even nonnegative dominant integral u for U(m) such that p; =0. The only
possibility is that u = 0, and thus (1.10) and Theorem 1.2 show that v = & or v = &7,

So the decomposition of (9.14) under L is into all L types (£, &) and (¢, é#), each with
multiplicity one.

Put &= (&,...,&,). If &,>0, then we can write &=1+¢&, where & =
(¢ —1,...,¢, — 1) is nonnegative dominant integral for U(m). The product of

highest weight vectors of VD and V(€¢) is a highest weight Vector for V(&9),
Since (1.10) and Theorem 1.2 show (&, &) to have multiplicity one in V(¢4 it follows
that V&9 c VD€ Consequently the L type (&,¢) does not occur in (9.13).

Similarly (¢, %) does not occur. Thus the only L types that can occur in (9.13) are
the ones (&, &) with &, = 0, and they have multiplicity at most one.
Let us now prove (a). The locus of common zeros of the ideal in P(unp)

corresponding to VoS(uunp) is @(m,O)Cl. Proposition 1.3 of [Kn4] shows that the
nonzero highest weight vectors of ¥(I') are the nonzero multiples of

det({sz}1<a<m>7

1<bsm

with Z,, as in (9.2), and a similar argument shows that the nonzero highest weight

vectors of 1) are the nonzero multiples of the same determinant except that for
b =m we use

conj .
Zab ! = Xop + i Xy

in place of Z,. Application of root vectors of so(2/ — 2m), using the formulas of
Section 1 of [Knd], shows that VD + V(1% is spanned by all determinants

wm, the same one for all a. The

whose b column consists of either Z, or Z
corresponding polynomials are the functions X + det (x(Zab)(X ) or x(Z5M)(X ))7

and a few column operations readily show that these vanish simultaneously
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exactly when X has rank <m — 1. Therefore the locus of common zeros of the ideal
corresponding to

(Vo + V) 4 O gAp)

equals the closure of @(m,0)n U;L‘OI O(m—1,p), which equals the closure of
O(m—1,0).

Now we can prove (b) and (c). We have seen that the only possible L types in
(9.13), hence in R(O(m — l,O)CI)7 are the various (&, ) with £,, = 0. For any such L
type, Proposition 1.4 of [Kn4] shows that the nonzero highest weight vectors of (¢
are the nonzero multiples of

m—1 Ep—Ep
H det({Zab}ISaSp) )
=1

1<b<p

with Z, as in (9.2). The corresponding polynomial is

m—1 &=
xe ] det({xab(X) - ixa,,,(X)}lgag,,> . (9.15)
p=1

1<b<p
The m-by-2m matrix given in block form by
(diag(1,...,1,0) diag(i, ...,i,0))

isin O(m — 1,0). If we take X in (9.15) to be this matrix, we obtain 2"~ as the value
of (9.15). Thus the polynomial (9.15) does not vanish on O(m — 1,0), and we see that
every L type (&, &) with £,, = 0 occurs in R(O(m — 1, O)CI). Then (b) and (c) follow,
and the proof of the theorem is complete.

10. Converse results

In this section we continue with the notation of Sections 6-8 concerning the Lie
algebra g, = so(2m,2/ —2m) for 2<m<[/2. In the previous sections we have
established the unitarity of « for s>0 and identified the K spectrum completely. In
the present section we deal with s<0. By (1.7) we then have 2(2m — ) <s<0.

Proposition 10.1. For g, = so(2m, 2] — 2m) with 2<m<1[/2, suppose that s satisfies
2(2m — 1)< s<0. Then cs(a)>0 for all o of homogeneous degree 1, and cs(6) <0 for
some ¢ of homogeneous degree 2. Therefore the Shapovalov form on 1, is indefinite and
does not exhibit 7', as unitary.
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Proof. By (1.10) and Theorem 1.2 the only ¢ of homogeneous degree 1 is ¢ =
(1,0,...,0; 1,0, ...,0). This has

es(0) = o+ Zs + 0] — |4 + 6
:((1 —1+%s)2—(—1+%s)2> (A l—m—1 = —m—1))
=(—1+s)+ Q2 -2m—1)
> (=1+2Qm—1)+ @2l —2m—1)
=2(m—1)
> 0.
Now put ¢ = g9 = (2,0, ...,0; 0, ...,0). This ¢ has homogeneous degree 2, and
¢s(00) =00 + A + 0 — |25 + 0|
—2— 141~ (=141
=2s
< 0.

The argument in [GrW2] that proves Theorems 5.2 and 5.3 above then allows us to
conclude that the Shapovalov form on 7/ is indefinite.'’

Proposition 10.2. For g, = so(2m, 2] — 2m) with 2<m</2, suppose that s satisfies
2(2m — 1) <s<0.

(@) If s is even, let r = X(—s), so that r is an integer with 1<r<I — 2m. Put
o =(r+1)o=Q2(r+1),0,...,0; 0,...,0).

Then 6o + A + 20(1) is an L type of N (Js + 28(w))" "' but ¢’ + A + 20(u) is not,
and it follows that 7, is associated to no orbit (or union of orbits).
() If s is odd, let r = (1 — s), so that r is an integer with 1<r<I — 2m. Put

d =+ 1o =Q2>+1),2(r+1),0,...,0;0, ...,0).

Then 6 + A + 20(1) is an L type of N'(Zs + 25(w))" ™" but o’ + A + 26(u) is not,
and it follows that 7, is associated to no orbit (or union of orbits).

10Cf. [GrW2, top of p. 109].
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The proof will occupy the remainder of this section. We shall prove all of (a) but
shall limit part of the proof of (b) to a sketch. By way of preliminaries, let
J(%s + 20(u)) be the largest proper (g, L) submodule of N(4; + 26(u)). Lemma 4.3
shows that N(A;+20(u)) is semisimple as a (f,L) module, and therefore
N(As+25(u)) =N'(A; +26(un)) ®J (A5 + 20(u)) as (£, L) modules. Consequently

N (% +28(u)" T2 N (A + 26(1)" T @ J (A + 26(u))* !

as L modules. By (4.4) the left-hand side is ~S(unp)®C;, ;254 as an L module,
and it follows that

N'(Js +20()" =S’ ®Cy 250y and  J (4 +20(w)" =T ®C;, 4250

for some L submodules S’ and J of S(unp). The statement that 7, is associated to
some orbit or union of orbits ¥ would mean that J can be taken to be an ideal in
S(unp) in such a way that S’=~S(unp)/J is the dual coordinate ring of Y. In
particular, it would not be possible for S’ to contain nonzero nilpotent elements. If
M e S(unp) is a nonzero highest weight vector of ¥ in the case of (a), or of V! in
the case of (b), then M descends to a nonzero element of S’ according to the
conclusion of the proposition while M2+ descends to 0. Thus the coset M +
S(unp) is a nonzero nilpotent element in S’, and S’ cannot be the dual coordinate
ring of any subset of unp.

Thus we have only to prove the statements in the proposition about L types in

N'(s 4 26(u))*"". First we prove the assertions about oy and ;. Let ¢ be an L type
of lowest possible homogenous degree in the L submodule J defined in the previous
paragraph. Then every member of L type o + A, +25(u) in J (A +20(u))" " is @i
invariant, and the same argument as in the third paragraph of the proof of Lemma
4.2 shows that o + A, + 2(u) is conjugate to A, + 26(u) under the Weyl group of .
Hence | + Ay + 20(u)|* = |4 + 20(0)[*, i.e., ¢(a) = 0.

In the case of (a), we first check that this lowest possible degree is =2 by
computing c,(o) for all o of lower nonzero homogeneous degree. The only such o is
(1,0,...,0; 1,0, ...,0), and we saw in the proof of Proposition 10.1 that this ¢ has
¢s(0)>0. We next check that the L type o9, which has homogeneous degree 2, does
not occur in J by checking that ¢;(gg) #0. Indeed, we saw that ¢;(gp) = 25<0 in the
proof of Proposition 10.1, and thus ¢y does not occur in J.

In the case of (b), we first check that the lowest possible degree is >4. The ¢’s of
lower degree, for which we need to check that ¢,(a)#0, are (1,0, ...,0; 1,0, ...,0),
(1,1,0,...,0; 1,1,0,...,0), (2,0,...,0;0,...,0), (2,0,...,0;2,0,...,0), and the
ones

(ar, ..., am; by, ... by, 0, ....,0)

of homogeneous degree 3. We have already checked the first and third of these, and
direct computation shows that the second and fourth have c¢;(¢)>0. If ¢ has
homogeneous degree 3, put 4 = Z;’;la} and B = Z;”:lbj as in (6.2). We compute
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modulo 2 and find that

the last congruence following from the next-to-last paragraph of Section 1. Here
A =3 and s is odd, and we see consequently that ¢;(g) cannot be 0. Finally we check
that the L type o, which has homogeneous degree 4, does not occur in J by checking
that ¢;(g)#0. Indeed, we compute that ¢;(g)) = 2s +2(—2 +5) <0, and thus g
does not occur in J.

The main step in the proof of Proposition 10.2 is to show that the L type
o + Ay + 26(11), which has multiplicity 1 in N (A, +28(u))* ", lies in J (A + 25(u))*"".
We do so by checking that a nonzero highest weight vector of L type o’ + A, + 26(u)
in N(A +25u))*™" is @i invariant. Being fi invariant, it has the property that
U(l+u) of it is a proper (g, L) submodule of N(4;+ 26(u)) and therefore lies in
J (s + 28(11)). Again by the i invariance, it lies in J(i; + 20(1))"*"". Thus the proof
will be complete once we have identified such a vector and proved that it is invariant
under ii.

For this step it will be convenient to have a multiplication table for so(2/, C). First
of all, with the invariant form C(-,-) chosen so that |o|* = 1 for all roots «, we appeal
to Theorem 6.6 of [Kn2] and to [Gre] in order to choose root vectors E, for the roots
o in such a way that [E,, E_,] = H, for all « and that the constants N, g such that
[E,, Eg] = N, gE, s whenever «, ff, and o + f§ are roots satisfy

(i) N_y_p = —N,p for all roots o and S,
(ii) Nyp = Np, = N, for all roots «, , and y of sum 0, and
(iii) the formulas for N, g in Table 3 hold whenever « and f are roots and « + S is a
positive root.
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Table 3

Multiplication table in so(2/,C) for roots o and f involving indices i <j<k when o + f is a positive root
Formula o B Nop
(1) e + e ej — e -1
2) e — e e+ ek —1
3) e; + e —€ — ek +1
4) e — e —ej + ek +1
(%) eite —e + e -1
(6) e — ¢ €j+€k +1
(7) ei+e —ej — e —1
®) e —e e — ey +1
) e +e —e; + e +1
(10) —e; +¢; e+ e +1
(11 e +e¢ —e; — e +1
(12) —ei+e e — e +1

Consider (a) in the proposition. In N (4s + 20(u)), let 1, 55,y denote the canonical
generator 1 ® 1, the latter factor of 1 denoting the unit element of C; 55, Put

!
E = E Eel+ekEe|7ek
k=m+1

as a member of U(g). This has weight (. To complete the proof of (a), we show that
the nonzero element E'!1 Js+28(0) Of N(4s +26(11)) is a highest weight vector under [,
evidently of weight (r+ 1)a¢ + A; + 20(u), and is annihilated by ii.

Concerning the interaction of E and root vectors in [, let us check that

[Eei—e,, E] =0 for 1<p<m, (10.1)
[Et(e,—¢,), E] =0 for 1<p<g<m, (10.2)
[Ee,+e, E] =0 for m<p<l, (10.3)
[E_¢,+e,E] =0 for m<p<lI. (10.4)

In fact, (10.1) and (10.2) are trivial. For (10.3) with the plus sign, we have

i

/
[Eep+enE] = Z [Eep"'C’I’EC)]"'ek}E@]_ek + Z Eeive, [Eep'*‘@l’E@l—@k]
k=m-+1 k=m+1

=0+ Ee1+e,7 [Ee +ep» Eelfep] + E81+e/ [Ee,,+e/7 Eel 731]

74

= - E€1+8,;E€1+€/ + E€1+€1E€1+8p =0
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by (6) and (2) in Table 3. For (10.3) with the minus sign, we have

/ /
[Eep—enE] = Z [Eep—ﬁlaE€1+ek}E€1—€A + Z E€l+€k [Eep—é’/vE@l—(’k]
k=m+1 k=m+1

= [Ee,,—em Ee;-}—e;}Ee] —e; + Eel+e,, [Eep—e17 Eel—ep]
= e|+e[,Ee]—e, - Ee|+e[,Ee]—e, =0

by (1) and (8) in Table 3. This proves (10.3). For (10.4) with the plus sign,
we have

/ /
[E—e,,+e1vE] = Z [E—e,,+ela Eel—o—ek}Eel—ek + Z Eel+ek [E—e,,—o—eu Eel—ek}
k=m+1 k=m-+1

= [E*Q;Jré’ﬁ EequEere,) + Eeite [Efe/,ﬂva Eere/]
:Eel+e/Eelfep - EeHrE/Eelfe,, =0

by (5) and (4) in Table 3. For (10.4) with the minus sign, we have

/ /
[E*c’pfelvE] = Z [EfepfeuE81+€JC]E€1*€’JC + Z Eel+€k [Efe/ﬁe/’Eelfé’k}

k=m+1 k=m-+1
=[E_¢,—ers Eerre,| Eey—e, + [E—e,—e)) Eey o)) Eey—e + 0
=E¢—¢Eei—c, = Eey—¢,Ee,—¢, = 0
by (7) and (3) in Table 3. This proves (10.4). If o and § are roots, then
([Ex, Eg), E] = [Ey, [Ep, E]] — [Ep, [Es, E]],
and it follows from (10.3) and (10.4) that
[Eie e, E) =0 for m<p<g<l (10.5)

for all choices of signs. If o is any member of A(I) other than a root —e; + ¢, with
1 <p<m, then it follows from (10.1), (10.2), (10.5), and the identity E, 1; 550,y =0
that

t
EJ(E™ 1 0500) = ZEk [E., EJE™ 1, 0500 + EVE, 1 550 = 0 (10.6)
=0

for all 1> — 1. In particular this formula is valid for any o in A*(l) if t=r.
Consequently E™!1 J+26(u) 18 @ highest weight vector under L.

Now let us show that E'*! 1 Js+28(u) 18 annihilated by ii. First we consider the effect
of E_, +.,. We use lines (9) and (12) of Table 3, the latter with « and f replaced by
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their negatives, and then we use line (6) of Table 3 to obtain

/
[E_ei+e E] = Z ([E—evers Eervei ) Eer—ep + Eeyver[E-eyvers Eer—e])
k=m+1
/-1
Z ([EfelJre/v Eel+ek]Eel —ek + E81+ek [E7e|+e17 Eel 7ek])
k=m+1

- Ee|+é’1H€1 —e

/-1 /-1
= - § Eek+e/Eelfe/‘. + § EC’[‘H.’/(Ef(’/rH_’/ - E€1+€[H£’1*8/

k=m+1 k=m+1
-1 =
= - § Eelfe/cEek+e, + E Ee1+ekEfek+e,
k=m+1 k=m+1

-1
- Z [E€k+l’l’E€]—¢’k} - E81+€1H€1—E/

k=m+1
/-1 /-1
- — Z EelfekEekJre[ + Z E€]+€’kE*ek+(’l
k=m-+1 k=m+1
+ (l —m — 1)E€1+el — EeH,e/He]fel. (107)

Since 1 425y is 1t invariant, we have

E e i B 1 050y = Y ENE_eiver, EJE™ 1 o500 (10.8)

r
J=0

When we substitute from (10.7) for [E_,, i, E] in (10.8), the two sums on the right-
hand side of (10.7) contribute 0 because of (10.6) with « equal to e; + ¢; or —ei + ¢;
and with t =r —j — 1. Thus

r
E—el-HthLl 1)..\,+26(u) = (1 —m— 1) Z Eel-HqEr 1/1.\+25(u)
=0

r
- Z Ee1+6/EjHelfe[Er_j l/lx+25(u)
=

= (1 —m — 1)(1’ + 1)E€1+€1Er 1).:+26(u)

<€1 — ey, (V _j)zel >Eel+e,Er 1)v5+26(u)
Jj=0

"
E€1 +E]E H€|—€1 1/15-&-2(5(11)
Jj=0
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= ((lml)(r+l)i ler —ep, (r—j)2er)

J=0
—(r+1)<e; — ey, A+ 26(u) >> EevoE" 1) 125
—0. (10.9)

The set of members X of g with X(E™!1 J+25()) = 0 is closed under brackets. It
contains root vectors for —e; +¢; and all +e, —¢; with m<g</ and therefore
contains root vectors for all —e; e, with m <g</. Since it contains also root vectors
for Fe,+e;, it contains root vectors for all —e;+e, with m<g</. By (10.1) it
contains E,, _, for 1 <p<m, and therefore it contains root vectors for all —e,+e,
with 1<p<m<g<I. In other words it contains iinp. Since any member of it is
the sum of two members of iinp, it contains all of ii. This completes the proof of (a)
in the proposition.

Consider (b) in the proposition. We continue to denote the canonical generator of
N (s +26(u)) by 1, 1250 The idea is to produce a member Q of U(u) of weight
(r+1)oy such that Q(1; 554,)) is a highest weight vector in N(4; + 25(u)) under [,
evidently of weight (r + 1)o; 4+ A; + 26(u), and is annihilated by ii. In outline the
argument is similar to what was done for (a), but the details of the argument are
considerably more complicated than for (a) because the individual root vectors that
enter the definition of 2 do not commute. Accordingly we shall give only a sketch of
the argument.

Let S(g) be the symmetric algebra, and let S:S(g)— U(g) be symmetrization.
Define

/
Xll = E E€1+61\,E817€k7
k=m+1
/

XIZ - Z (Ee]+ekEez—ek + Ee]—ekEez-o—ek)a
k=m+1

/
X22 = § Eez +ex Eez —ek
k=m+1

X =X11Xn —%Xlzy

— 1
Y _E€]+61X22 - §E€2+€1X12

as members of S(g). Here S(X) has weight o in U(u), and so does E? ,, . The
elements S(X) and E; ,, commute. The intention is to take as Q a suitable linear
combination of terms (E2 ., )/&(X)"' 7.

The first computations are done in S(g). One shows that the root vectors E+,, +,
for m<p<q<l, Ei(, ., for 2<p<q<m, E,(, ), and E, ., and E,_,, for
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2 <p<m have 0 bracket with X. Since © commutes with ad, S(X) is in particular a
highest weight vector under 1.
Next one shows with some effort that

(1) [E€’2+€/’ e(X)] = E€1+£’26(Y) and
(i) [S(X), S(¥)] = 4 Eeyvor (R: + aE2

v+, Ro) for a certain constant a,

where R, for p>0 is the member of U(g) defined by
Ry = Eoy o S(XY + S(X) Epyro,- (10.10)

Meanwhile one computes in S(g) that
[EfeHrEn X] = - Ee|+e/Hel *€1X22 - EeerE/E*ewerll
+ %He]—e/Engre/XlZ + %EelJre/E—elJrerD
-1

+ Z (_EekJrezEé'l*é’k+E€1+6A»E*€k+e/)X22
k=m+1

/-1
2 : 1
+ 2 (EL’A'+C’1EC’2—C’I( - E_(’I(+€IE(’2+C’k)X]2'
k=m+1

It will be convenient to abbreviate these eight sums of terms as Ia, I1a, Ib, IIb, Il1a,
IVa, IIIb, and IVb. When we apply symmetrization to these eight sums of terms,
each monomial ABCD in &(g) has a particular factor 4 that we want to have at the
right end, namely

H, _., in the case of Ia and Ib,
E_, 1., in the case of Ila and IIb,
E. . in the case of Illa and IIIb,

E_. e, in the case of IVa and IVb.

We then use the formula
24S(ABCD) =12&(BCD)A + 2BS(CD)A + 2CES(BD)A + 2DS(BC)A

+ 28(CD)BA + 28(BD)CA + 2&(BC)DA
+ 6[4, S(BCD)] + 2B[4, S(CD)] + 2C[4, (BD)] + 2D[4, S(BC)]
+ 28(CD)|A, B] + 2&(BD)[A4, C] + 2&(BC)[A4, D).

After a tedious and hazardous calculation, we are able to conclude that

(i) [E—¢jqe, S(X)|o = (j—1)S(Y)v+ bE, 1, Rov for any veN(A;+20(u)) of
weight A, +25(u) +j(e; + e;) with the property that v is invariant under
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E_, .., and under all £, 4., with m<k<I; the constant b is independent of j
and v.

Next an induction on ¢=>0 produces simultaneous proofs of the following four
formulas:

® For all p with 0<p<gq,

p+1

R,S(X) + S(X)R, = 2R, +Z ¢ 51+62Rp+1 -
j=1

for suitable constants ¢; depending on p.
® For all p with 1<p<y,

ptl
= 2
S(X)R, 1S(X) = Ryy1 + Z GE o Rys1
j=1

for suitable constants ¢; depending on p.

® Ifris 0 or 1, then

—1 g+i-1

S(X)RES(X)" " = Z GEY o Reioi—i
=0

=

T
(=]

for suitable constants ¢; depending on ¢.
® For suitable constants ¢;,

[S(Y), S(X)7] = é,lmzcEg;% -

Putting all these facts together, one obtains, for 0<p<r+ 1, the formula

2r—2p+2
[E—C’H-ezv EeH—eszr 6(X)p] 1/1‘;+25(”)

r r k
= (‘(’ —p+ DEITR, + Z beEg PR, 1k> 1), +250)
>0

for suitable constants b; depending on p. Finally an inductive construction from this
formula allows one to exhibit constants w, for 0<p<r + 1 with w,;; = 1 such that
the operator Q = Z[’f}] 0pE. P S(X) has E_ie(R1,1250) = 0. It is then a
simple matter to see that the root vectors for the other roots in A(iinp) annihilate
Q1 125 and to conclude that it annihilates Q1 55,). This concludes the sketch of
the argument for the main step of (b) in the proposition.



A.W. Knapp | Journal of Functional Analysis 209 (2004) 36—100 95
11. Theory for SO(2m, 2] — 2m + 1),

This section establishes most of the comparable results for the simply connected
covering group of SO(2m,2] —2m+ 1), with 2<m<//2, noting any significant
differences in the proofs between what happens in these groups and what happened
in the previous sections. For the most part the theory is easier for these new groups.
Lemma 1.1 gets replaced by a slightly tidier result, namely that Ad,(L) is isomorphic
to U(m) x SO(2] —2m + 1) and unp is isomorphic to M,, 2_2p+1 in such a way that
the action of L on unp corresponds to the action of U(m) x SO(2/ —2m + 1) on
matrices with U(m) acting on the left and SO(2/ — 2m + 1) acting on the right.

Fact (1.10) about this action, quoted from [Kn4], remains true with only
notational changes:

the L type ¢ = (&,v) occurs in S(unp) as many times as the
SO(2] —2m + 1) type v occurs in the restriction of the U2/ —2m + 1) (11.1)
type ¢ from U(2/ —2m+ 1) to SO21 —2m + 1).

Littlewood’s theorem (Theorem 1.2) is valid independently of the parity of », and in
combination with (11.1) it gives us an explicit multiplicity formula for each L type in
S(unp). Highest weights for the action of L on S(1tnp) are in particular of the form
g = (&, v) with ¢ nonnegative dominant integral for U(m) and v dominant integral
for SO(2] —2m + 1).

One simplification for so(2m, 2/ — 2m + 1), as opposed to so(2m, 2] — 2m), is that
the representations of L, written again as ¢ = (&, v), have v nonnegative since v is the
highest weight of a rotation group SO(2/ — 2m + 1). Another simplification is that
there is nothing special about 7y and 7, in the case (/,s) = (2m,0); this case can be
handled at the same time as the other unitary cases.

Now let us be specific about notation. Let

A=lds=(=1+4(s=1),...,=I+%(s—1); 0,...,0) with seZ.
Then

Ao+ o= (=14+%s,—2+%s,...,—m+is;i—m—1 .1,
s+ o) =(GF(s—1=m), ... .5(s=1-m);0,...,0),

Ag=2s+20(unp) = (I-2m+1+5(s—1),....0 —2m+1+1(s—1);0,...,0).

In the notation of Section 1, we take m, = n(4,) and 7, = 7/(4,). Assumption (1.4)
concerning A = A; is valid for

s=202m—1) — 1. (11.2)
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Under this condition, A, is 4" (f) dominant, and the K type A; occurs
with multiplicity 1 in =y and =. It is the unique minimal K type of these (g, K)
modules.

The unitarity/nonunitarity of the representations 7, is summarized in Table 4,
with the same reservations about notation as in Section 1. Quantitative
statements of the results appear later in this section. The new results in
Table 4 concern s<m: for 0<s<m — 1, there is unitarity, and for s<O0, there is
not. The paper [EPWW] had settled s>m, and the paper [GrW2] had settled s>0
for m = 2.

The analog of Proposition 3.1 is simpler for SO(2m, 2] — 2m + 1), and the proof
requires only small notational changes. The orbits of GL(m,C) x O(2] —2m+ 1,C)
on M, 2—om+1 are given by

O(p,q) = {X €My2-2m+1 |rank X = p and rank XX = g}

for 0<g<p<m. All of the ()(p, ¢)’s remain single orbits when the action is restricted
to GL(m,C) x SO(2] — 2m + 1, C). The association of representations 7} to orbits is
summarized in Table 5. The first line of Table 5 follows from [EPWW] for all m>2,
and the second line of the table is proved in [GrW2] for the case m = 2. There has
been no attempt to examine s <0 for this table; the presence of roots of two different
lengths would complicate the already-complicated analysis in the proof of
Proposition 10.2.

Now let us examine the statements and proofs in Sections 6—10 to see what
changes are needed in handling so(2m, 2/ — 2m + 1). For the analog of Section 6, we
put ¢s(6) = ¢,,(0) as in (6.1), and we write the L types in S(unp) as ¢ = (&, v) with
E=(a,...,am), v= (b1, ....0n,0,...,0), and b, always >0. Let 4 =>7" a; and

Table 4

Unitary line-bundle cases 7, for universal cover of SO(2m,2l —2m+ 1), 2<m<l!/2
Discrete series: s>21—1

Limit of discrete series: s=2/—1

Last [Vo2] unitary point: s=m+1

Last [EPWW] unitary point: s=m

Last unitary point: s=0

First nonunitary point: s=—1

Last point under study: s=-=2(l-2m) -1

Table 5

Association of 7 to orbits for universal cover of SO(2m,2] —2m+ 1), 2<m<l/2

, for s=>m is associated to O(m,m)
7, for 0<s<m is associated to O(m,s)
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B=37"b;as in (6.2). In place of Lemma 6.1, we have

Xm: [(b_,-+z—m—j+5)2—(1—m—j+§)2] >(m+1)B+2(I—2m)B,  (11.3)
J=1

the adjustment resulting from the contribution of % from various places in . To
adjust Lemma 6.2, we leave the hypotheses alone, and the conclusion is that

o+ s+ 0 — |45 + 6

~

>N (@ —a)+(s—nNAd+ Y (@ —a)+ (m+1)B+2(—2m)B, (11.4)
j=1 I<u<v<r
the right side being >0 if s>r. The only change in the proof is that we use (11.3)
instead of Lemma 6.1. Then the previously known results follow: that n, = = for
s>=m, that 7, is unitary in these cases, and that x| is associated to ¢(m,m) in these
cases.

For the analogs of results in Section 7, we continue to define oy as in (7.1), and we
still have ¢;(a5) = 0 for 0<s<m. To adjust Theorem 7.1, we leave the hypotheses
alone, except for changing so(2m,2] —2m) to so(2m,2] —2m+ 1), and the new
conclusions are that

(@) If [a1/2] + --- + [as/2] >1, then ¢4(o)>0.
(b) If [a1/2) + -+ + [as/2] <t, then V7 is contained in V7 S(unp).

The analog of Lemma 7.2 is unchanged except that equality never holds. The reason
is that equality implies (m + 1 — r)B = 0 and af = g; for all j. Since r <m, we see that
B =0. When all g; are <1, each a; has to equal b; by (11.1) and Theorem 1.2; thus
¢ =0 and v = 0 in contradiction to the hypothesis that ¢+ (0,0). Lemma 7.3 needs
no change, except that we no longer need the statement about what happens when
equality holds. Then the proof of Theorem 7.1a goes over in the new setting with
only minor changes.

This brings us to Section 8. The proof of Theorem 7.1b in that section requires no
change, and we arrive at the analog of Theorem 8.1, which is as follows.

Theorem 11.1. For g, = so(2m, 2] —2m+ 1) with 2<m<1/2, if 0<s<m, then 7 is
infinitesimally unitary and the K spectrum of 7, is given by the sum of A, =
As +20(unyp) and the L spectrum of S(unp)/V>S(unp).

The first four paragraphs of the proof of Theorem 8.1 apply here, and the fact that
there are no exceptional L types in the analog of Theorem 7.1a means that the case
(I,s) = (2m,0) needs no special treatment in Theorem 11.1. As a consequence, there
is no need for an analog of Theorem 8.2.

Adjusting Section 9 involves some slight notational complications. A compensat-
ing simplification is that the L spectrum in question is the one in (9.1a), and (9.1b)
plays no role.
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The columns of members of M,, 22,41 need to be indexed in a more complicated
way than was used in Section 9. Namely we number them as

Lo l—m1, ... (I-m),w.

We define X, o, for 1 <a<m to be the matrix that is 1 in the indicated entry and 0
elsewhere. The definition of Z,, is unchanged from (9.2), and column oo plays no
role. In the definition of a quasi-upper triangular matrix X, we add the further

property
(f) xa.m(X) =0 for 1<a<<m.

Lemma 9.1 needs no change in its statement to translate into the current setting, but
we need to add in the proof the definition x4 (X) =0 for 1<a<m. Lemma 9.2
requires no change at all, and the definition of the homomorphism ¢ in (9.4) has to
be expanded to include the additional line ¢(X, ,,) = 0. Then, as in (9.5), it is still
true that @(X) = X if X is quasi-upper triangular in unp.

The statement of Lemma 9.3 needs no change, but extra cases must be considered
in the proof. We have to allow for the possibility that M is X, ,, or X is X, . In
these cases the conclusion of the lemma, namely that x(M)(¢(X)) = x(o(M))(X), is
true because both sides can be checked to be 0. That brings us to the analog of
Theorem 9.4, which is as follows.

Theorem 11.2. If g, = s0(2m, 2] — 2m + 1) with 2<m<1/2 and if 0<s<m, then

(@) O(m,s) is the locus of common zeros of the ideal in P(unp) that corresponds to
the ideal V7 S(unyp) in S(unyp) under bar,

(b) the ideal VoS(unvp) is prime in S(unp), and therefore R(O(m,s)?) equals
S(unp)/V=S(unp),

(¢) the multiplicity of the L type (¢,v) in R(O(m,s)") is 3
even nonnegative dominant integral p for U(m) such that p, = --- = u,, = 0.
Here cfw is the Littlewood—Richardson coefficient for multiplicities in a tensor
product for U(m).

g" .
(s the sum being over all

The proof of Theorem 11.2 requires only minor notational changes in the proof of
Theorem 9.4. Conclusion (b) of Theorem 11.2 says for 0<s<m that 7/, is associated
to the orbit ((m, s), as is asserted in Table 5. As with so(2m, 2] — 2m), the conclusion
that V?S(unp) is prime for this situation is not new; see Theorem 5.7 of [DeP].

Finally we come to Section 10. The analog of Proposition 10.1 is the following; the
new proof involves only minor changes to the proof of Proposition 10.1.

Proposition 11.3. In g, = s0(2m, 2] — 2m + 1) with 2<m<1/2, suppose that s satisfies
2(2m —1) — 1<5<0. Then c5(6) >0 for all o of homogeneous degree 1, and ¢,(c) <0
Sor some o of homogeneous degree 2. Therefore the Shapovalov form on T, is indefinite
and does not exhibit T, as unitary.



A.W. Knapp | Journal of Functional Analysis 209 (2004) 36—100 99

Proposition 11.3 verifies the last line of Table 4.
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