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Abstract

For 2pmpl=2; let G be a simply connected Lie group with g0 ¼ soð2m; 2l � 2mÞ as Lie
algebra, let g ¼ k"p be the complexification of the usual Cartan decomposition, let K be the

analytic subgroup with Lie algebra k-g0; and let UðgÞ be the universal enveloping algebra of
g: This work examines the unitarity and K spectrum of representations in the ‘‘analytic

continuation’’ of discrete series of G; relating these properties to orbits in the nilpotent radical
of a certain parabolic subalgebra of g:
The roots with respect to the usual compact Cartan subalgebra are all 7ei7ej with

1piojpl: In the usual positive system of roots, the simple root em � emþ1 is noncompact and
the other simple roots are compact. Let q ¼ l"u be the parabolic subalgebra of g for which

em � emþ1 contributes to u and the other simple roots contribute to l; let L be the analytic

subgroup of G with Lie algebra l-g0; let LC ¼ IntgðlÞ; let 2dðuÞ be the sum of the roots

contributing to u; and let %q ¼ l" %u be the parabolic subalgebra opposite to q:

The members of u-p are nilpotent members of g: The group LC acts on u-p with finitely

many orbits, and the topological closure of each orbit is an irreducible algebraic variety. If Y

is one of these varieties, let RðY Þ be the dual coordinate ring of Y ; this is a quotient of the

algebra of symmetric tensors on u-p that carries a fully reducible representation of LC:

For sAZ; let ls ¼
Pm

k¼1 ð�l þ s
2
Þek: Then ls defines a one-dimensional ðl;LÞ module Cls

:

Extend this to a ð%q;LÞ module by having %u act by 0, and define Nðls þ 2dðuÞÞ ¼
UðgÞ#%qClsþ2dðuÞ: Let N 0ðls þ 2dðuÞÞ be the unique irreducible quotient of Nðls þ 2dðuÞÞ:
The representations under study are ps ¼ PSðNðls þ 2dðuÞÞÞ and p0s ¼ PSðN 0ðls þ 2dðuÞÞÞ;
where S ¼ dimðu-kÞ and PS is the Sth derived Bernstein functor.
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For s42l � 2; it is known that ps ¼ p0s and that p0s is in the discrete series. Enright,

Parthsarathy, Wallach, and Wolf showed for mpsp2l � 2 that ps ¼ p0s and that p0s is still
unitary. The present paper shows that p0s is unitary for 0pspm � 1 even though psap0s; and it
relates the K spectrum of the representations p0s to the representation of LC on a suitable RðYÞ
with Y depending on s: Use of a branching formula of D. E. Littlewood allows one to obtain

an explicit multiplicity formula for each K type in p0s; the variety Y is indispensable in the

proof. The chief tools involved are an idea of B. Gross and Wallach, a geometric

interpretation of Littlewood’s theorem, and some estimates of norms.

It is shown further that the natural invariant Hermitian form on p0s does not make p
0
s unitary

for so0 and that the K spectrum of p0s in these cases is not related in the above way to the

representation of LC on any RðYÞ:
A final section of the paper treats in similar fashion the simply connected Lie group with Lie

algebra g0 ¼ soð2m; 2l � 2m þ 1Þ; 2pmpl=2:

r 2003 Elsevier Inc. All rights reserved.
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Let G be a simple Lie group with maximal compact subgroup K and with a
compact Cartan subgroup T of G chosen to lie in K ; and let t0 be the Lie algebra of
T : It is known from the work of Harish-Chandra [HC] that the discrete series
representations of G; i.e., the irreducible unitary representations of G that are direct

summands of L2ðGÞ; occur in finitely many classes. Apart from repetitions, a class is
determined by a positive system of roots, and the representations in the class are
parametrized by the integral points in a translate of the corresponding dominant

cone of the dual ðit0Þ� of it0:Wallach [Wa1,Wa2] was the first to raise the question of
what properties these representations have when the parameter is moved outside the
cone. He studied these ‘‘analytically continued’’ representations initially in the case
for G=K Hermitian symmetric of a particularly nice kind of holomorphic discrete
series and later with coauthors Enright, B. Gross, Howe, Parthasarathy, and Wolf
[EHW,EPWW,GrW1,GrW2] in some other cases and for other groups G: The
fundamental problems are

(a) the identification of the continued parameters leading to reasonable unitary
representations, and

(b) the determination of the restrictions of the unitary representations to K :

The works [Wa1,Wa2] solved problem (a) completely for all of what will below be
called the ‘‘line-bundle cases’’ for G=K Hermitian symmetric when the positive
system of roots is the one compatible with the complex structure on G=K: For this
same situation, works [EHW,Ja] independently solved problem (a) for all ‘‘vector-
bundle cases.’’
For other groups almost all progress has concerned only the ‘‘Borel–de Siebenthal

positive systems’’ for the given group. Every simple Lie group with a compact
Cartan subgroup has such a positive system [BoS] (cf. [Kn2, Theorem 6.96]). The
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work [EPWW] solved problem (a) completely for all Borel–de Siebenthal positive
systems in all line-bundle cases for which a certain irreducibility condition is in force;
for these cases the answer to problem (b) is fairly easy to see. At about the same time
that [EPWW] was written, Vogan [Vo2] discovered a more widely applicable but less
sensitive theorem for detecting unitarity. The work [GrW2] went on to address both
problems (a) and (b) in line-bundle cases outside the range where the irreducibility
condition is in force, but only for G’s such that G=K has a quaternionic structure and
the positive system is compatible with that structure. More recently the work [Kn3]
solved problem (a) in nearly all line-bundle cases and in many vector-bundle cases
for all remaining linear classical groups, i.e., those linear classical groups that are not
of real-rank one and do not have G=K Hermitian symmetric. However, the methods
of [Kn3] fail for groups that do not have faithful matrix representations, and they
yield no insight into problem (b).

The present paper uses a completely different approach to solve problems (a) and
(b) completely for the line-bundle cases and a Borel–de Siebenthal positive system in
the simply connected covering groups of SOð2m; 2l � 2mÞ0 when 4p2mp2l � 2m;

i.e., 2pmpl=2: The main positive results for problem (a) are Theorems 8.1 and 8.2,
and the main positive results for problem (b) are Theorems 9.4 and 9.5. Modifications
necessary for SOð2m; 2l � 2m þ 1Þ0 with 2pmpl=2 are noted in the last section, and

thus the line-bundle cases are settled for one particular Borel–de Siebenthal ordering
for each of these groups. These results, in combination with results in the above cited
papers, solve problem (a) completely for the line-bundle cases in at least one Borel–de
Siebenthal positive system for each G other than split E7; split E8; and the simply
connected cover of SOð2m; 2l � 2m þ 1Þ0 when 2m4lX3:

A tool in the new approach is a theory of a certain kind of nilpotent orbits. There
are various theories about certain kinds of nilpotent orbits associated with
semisimple groups, whether in the Lie algebra g0 of G or in the complexified Lie

algebra g: Noël [No] and others have explained some of these theories and
relationships among them. The classification theorem that Noël proves seems to
include the orbits that arise here, but the ones here do not seem to be grouped in his
classification in a handy way for current purposes. We choose therefore to work
directly with the orbits that do arise.

In order to describe our results more quantitatively, let us introduce a minimal
amount of notation. More detail will be provided in Section 1. We start from G; K ;
T ; etc., as at the beginning. Let y be the Cartan involution of g0 corresponding to K ;
and let q ¼ l"u be a y-stable parabolic subalgebra of g of Borel–de Siebenthal type
relative to t: The Levi factor l is the complexification of l0 ¼ l-g0; and the analytic

subgroup L of G corresponding to l0 is a compact subgroup of K : For now, write LC

for IntgðlÞ: The orbits of interest will be those of LC on the noncompact part of the

nilpotent radical u of q:

The representations of initial interest will be cohomologically induced, in the sense
and notation of [KnV], from irreducible (finite-dimensional) ðl;LÞ modules. We speak
of line-bundle cases or vector-bundle cases according as the ðl;LÞ module is one
dimensional or higher dimensional; we shall work exclusively with the line-bundle cases.
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To describe cohomological induction, let l be the differential of a character of L;
and write Cl for its representation space. Let %q ¼ l" %u be the parabolic subalgebra
opposite to q; extend the l action on Cl to %q by having %u act by 0, and let NðlÞ
be the upside-down generalized Verma module NðlÞ ¼ UðgÞ#%qCl; where UðgÞ
is the universal enveloping algebra of g; NðlÞ is a ðg;LÞ module. If 2dðuÞ denotes
the sum of the roots of t in u; the ðg;KÞ module of initial interest is pðlÞ ¼
ðPg;K

g;L ÞSðNðlþ 2dðuÞÞÞ; where ðPg;K
g;L ÞS is a functor to be described in Section 1.

The ðg;LÞ module NðlÞ has a unique irreducible quotient N 0ðlÞ; and we let p0ðlÞ ¼
ðPg;K

g;L ÞSðN 0ðlþ 2dðuÞÞÞ; this is the actual ðg;KÞmodule of interest. Along the lines of
the problems mentioned at the beginning, the specific goals are to determine

(a) when p0ðlÞ is unitary, and, in such cases,
(b) what its K decomposition is.

To state results for G equal to a simply connected cover of SOð2m; 2l � 2mÞ0; we
need to pin l down a bit. For this group G; the dual of the complexified Cartan
subalgebra can be identified with l tuples, and integrality of such a tuple means that
the first m entries are all integers or all half integers and the last l � m entries are all
integers or all half integers. Write ls ¼ ð�l þ s

2
;y;�l þ s

2
; 0;y; 0Þ with s an integer;

the semicolon separates the first m entries from the last l � m: For reasons that will
be given in Section 1, we assume that sX2ð2m � lÞ: Put ps ¼ pðlsÞ and p0s ¼ p0ðlsÞ:
The answer to problem (a) appears in Table 1. Regard s as a decreasing parameter.
The new results in Table 1 concern som: for 0pspm � 1; there is unitarity, and

for so0; there is not.2 The proof of these new results involves an analytic step, which
will be carried out in Sections 6 and 7 below, and an algebraic step, which has been
largely carried out in [Kn4] and will be completed in Section 8 below. A by-product
of these steps is a first approximation to a solution of problem (b) for these
representations. A full solution requires additional steps that are taken in Section 9
of this paper. We return to this matter in a moment.
As far as the universal covers of indefinite orthogonal groups SOð2m; 2l � 2mÞ0

with 2pmpl=2 go, the paper [EPWW] had shown unitarity for sXm; and the
general ‘‘weakly fair’’ test in [Vo2]3 comes close to that, handling sXm þ 1; the
Gross–Wallach paper handled m ¼ 2; adding to the results of [EPWW] the
conclusion of unitarity for s ¼ 1 and 0 for the universal cover of SOð4; 2l � 4Þ0
when lX4: The paper [Kn3] had already proved the unitarity for all even sX0 when
2pmpl=2 except for s ¼ 0 when m ¼ l=2:
Authors of some other papers have constructed similar-appearing finite or infinite

sequences of small unitary representations of indefinite orthogonal groups. It seems
that these sequences often have some representations in common with the ones
obtained by analytic continuation of discrete series but are basically just different
sequences of representations. Two early papers of this kind are the ones by Strichartz
[St] and Vogan [Vo1]. Kostant [Kos1,Kos2] extensively investigated the s ¼ 0
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representation of the group SOð4; 4Þ0; which in effect had already been shown

to be unitary in [Vo1]. The same representation has been investigated also in
[BrK,GrW1,KaS].
Some other papers that have investigated for unitarity certain sequences of small

representations of indefinite orthogonal groups are [BiZ,Kob,ZhH]. Sections 8 and 9
of [EPWW], which are sections addressing examples other than analytic continua-
tion of discrete series, construct more sequences of this kind. The papers [Li1,Li2]
classify a certain kind of small representation for classical groups, and one may
expect that some of the representations shown now to be unitary are small in the
sense of Li’s papers. See [NOTY], for example.
In connection with problem (b), let p be the �1 eigenspace of y in g: The nilpotent

orbits in question are of LC on u-p; they are finite in number and, for the most part,
are parametrized by pairs of integers ðp; qÞ with 0pqpppm: Let Oðp; qÞ be the orbit
indexed by the pair ðp; qÞ: The only exception to the parametrization occurs when
l ¼ 2m; in this case the set that we define as Oðm; 0Þ consists of two orbits, which we

can denote Oðm; 0Þþ and Oðm; 0Þ�:
In Section 1 we follow [GrW2] and define a notion of a ðg;KÞ module that is

‘‘associated’’ to a particular orbit; this condition will relate the K types of the given
ðg;KÞ module to the action of L on the closure of the orbit. Table 2 gives the first
part of the answer to problem (b).
The first line of Table 2 follows from [EPWW] for all mX2: The next two lines of

the table are proved in [GrW2] for the case m ¼ 2: It is instructive to see the lattice of
orbit closures in the Gross–Wallach case. When m ¼ 2 and l44; the lattice is

Oð2; 2Þ
m

Oð2; 1Þ ’ Oð1; 1Þ
m m

Oð2; 0Þ ’ Oð1; 0Þ ’ Oð0; 0Þ

The arrows indicate inclusions into the closures. The representations p02; p
0
1; and p00

are associated to the members of the left column, and the other orbits play no role in
the correspondence. When m ¼ 2 and l ¼ 4; Oð2; 0Þ splits into two orbits, and p00 is
associated to Oð1; 0Þ; the other orbits outside the first column play no role in the
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Table 1

Unitary line-bundle cases p0s for universal cover of SOð2m; 2l � 2mÞ0; 2pmpl=2

Discrete series: s42l � 2

Limit of discrete series: s ¼ 2l � 2

Last [Vo2] unitary point: s ¼ m þ 1

Last [EPWW] unitary point: s ¼ m

Last unitary point: s ¼ 0

First nonunitary point:2 s ¼ �1
Last point under study: s ¼ �2ðl � 2mÞ
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correspondence. The dimensions of the orbits when m ¼ 2 and l ¼ 4 give a little
insight into matters; arranged in an array to match the configuration of the lattice,

they are
8
7 5
5; 5 4 0

2
4

3
5: The three five-dimensional orbits are conjugate under

triality, but none of these orbits plays a role in the correspondence under study of
representations to orbits. In the text of [GrW2], these dimensions of orbits are all
reduced by one because [GrW2] considers the orbits projectively.
For larger values of m; the lattice of orbit closures has the same triangular

appearance. Table 2 is asserting that the correspondence of orbits and representa-
tions p0s for larger values of m is similar to what happens for m ¼ 2:When l42m; the
ðg;KÞ modules p0m; p0m�1;y; p00 are associated to the orbits of the left column; the

other orbits play no role. When l ¼ 2m; the set Oðm; 0Þ splits into two orbits, and p00
is associated to Oðm � 1; 0Þ: These results will be proved in Section 9. The solution of
problem (a) gives a start to a solution to problem (b), and what is left in establishing
Table 2 is the proof that certain ideals in the symmetric algebra of u-p are prime.
We shall prove that these ideals are prime while addressing a second, ostensibly
deeper, aspect of problem (b).
The second aspect of problem (b) is to determine the K types and their

multiplicities explicitly when p0s is unitary. This step was carried out for m ¼ 2 in

[GrW2] with the aid of ‘‘Luna’s Slice Theorem’’ and some other tools. Those results
are insufficient for m42; and we shall make use of a branching theorem of D. E.
Littlewood for decomposing irreducible representations of UðnÞ upon restriction to
SOðnÞ: Littlewood’s theorem will be stated precisely in Section 1. Its use is the main
reason our results are limited to mpl=2: The K spectrum will be identified for
general m in Section 9 by using Littlewood’s theorem and the details of a
construction in [Kn4]; the appropriate orbit Oðp; qÞ in Table 2 will be indispensable
in the proof.
From the formulas for the K types and their multiplicities, one can see that a

unitary p0s has all its K types of multiplicity one if and only if s ¼ 0 or s ¼ 1: In these
cases the number of parameters for the K types is m þ 1 for s ¼ 1; m for l42m and
s ¼ 0; and m � 1 for l ¼ 2m and s ¼ 0: Among the unitary p0s’s, the only spherical

representations are the p00’s for l ¼ 2m; and the only ladder representation is the well-
studied case of p00 for l ¼ 4 and m ¼ 2:
The paper is organized as follows. Sections 1–5 contain preliminary material,

including statements of what is needed from [EPWW,GrW1,GrW2]. The solution
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Table 2

Association of p0s to orbits for universal cover of SOð2m; 2l � 2mÞ0; 2pmpl=2

p0s for sXm is associated to Oðm;mÞ
p0s for 0psom with ðl; sÞað2m; 0Þ is associated to Oðm; sÞ
p00 for l ¼ 2m is associated to Oðm � 1; 0Þ
p0s for so0 is associated to No orbit
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of problem (a) is in Sections 6–8, and the solution of problem (b) is in Section 9.
Section 10 addresses converse results for the two problems, and Section 11 discusses
the theory for SOð2m; 2l � 2m þ 1Þ0 that corresponds to Sections 6–10.

It is a pleasure to acknowledge helpful discussions with David Vogan concerning
Section 4 and the structure of the ideal in Section 9. This work was done in part while
I was a visitor at the Institute for Advanced Study in Princeton during 2000–02. I am
grateful to the Institute for its hospitality.

Note added in proof: Peter Trapa has circulated a preprint in which he proves that
the representations p0s for sX0 in Tables 1 and 4 are irreducible. The preprint is

entitled ‘‘Some small unipotent representations of indefinite orthogonal groups.’’

1. Setting

In this section we establish some notation for general G; as well as whatever
special notation we need for SOð2m; 2l � 2mÞ0: Groups will be denoted by upper-

case Latin letters, their Lie algebras will be denoted by the corresponding lower-case
German letters with a subscript 0, and the complexified Lie algebras (as well as some
complex Lie algebras and vector spaces that are not necessarily complexifications)
will be denoted by lower-case German letters with no subscript.
Let G; K ; and T be as at the start. The group G is to be simple with rankG ¼

rank K ; and T is a compact Cartan subgroup of G lying in K : Let g0 ¼ k0"p0 be the

Cartan decomposition of g0 corresponding to K ; and let y be the Cartan involution.

The complexified Cartan decomposition is written g ¼ k"p:
Let D be the set of roots of ðg; tÞ: Each such root is either compact or noncompact

according as its root vectors lie in k or p: A Borel–de Siebenthal positive system is a
positive system of roots for D for which there is exactly one noncompact simple root
and that root occurs at most twice in the highest root. Such a positive system always
exists, according to [BoS] (cf. [Kn2, Theorem 6.96]). We fix such a system and write

Dþ for it.

Out of such a Dþ; we can form a Borel–de Siebenthal parabolic subalgebra of g:
This subalgebra will be written q ¼ l"u: Its Levi factor l is built from t and the root
vectors for all roots in the span of the compact simple roots. The nilpotent radical u
is built from the root vectors for all remaining positive roots. The subalgebra q is y
stable, with l equal to the complexification of l0 ¼ l-g0: An important property of a
Borel–de Siebenthal parabolic subalgebra is that

½u;u-k	 ¼ 0: ð1:1Þ

Let L be the analytic subgroup of G with Lie algebra l0; L is a compact subgroup of
K : The opposite parabolic subalgebra to q is %q ¼ l" %u; where the ‘‘bar’’ denotes the
conjugation of g with respect to g0: The use of the ‘‘bar’’ symbol is to be

distinguished from the related function bar, which will be defined below. We write

LC initially for the group IntgðlÞ with Lie algebra l:
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To simplify the notation when dealing with the representation theory of compact
connected Lie groups, we shall often identify a highest weight with an irreducible
representation having that highest weight. More precisely, the expression H type is
permitted to refer indifferently to a highest weight for the compact connected group
H; or to a particular irreducible representation of H with the stated highest weight,
or to the equivalence class of irreducible representations of H with the stated highest
weight.

The group LC acts on u-p: This action yields an action by contragredient on the

dual ðu-pÞ� of u-p; and also it extends to the symmetric algebra Sðu-pÞ: We get
an action on the polynomial algebra Pðu-pÞ; as well, because Pðu-pÞ is canonically
isomorphic to the symmetric algebra of ðu-pÞ�:
We write Sdðu-pÞ and Pdðu-pÞ for the subspaces of elements homogeneous of

degree d: The representation of L on u-p is irreducible, and hence the center of L

acts by nonzero scalars on u-p: Then it follows that the action of the center can be
used to isolate the homogeneous components of members of Sðu-pÞ and Pðu-pÞ
and to give their degrees. Consequently a given L type appears in Sðu-pÞ or
Pðu-pÞ only finitely often.
Let C be a symmetric invariant bilinear form on g whose restriction to it0 is

positive definite. Under C; the vector spaces u-p and %u-p are nonsingularly paired,
and it follows that the mapping

bar : u-p-ðu-pÞ� with barðX Þ ¼ Cð %X; 
Þ ð1:2Þ

is a canonical conjugate-linear isomorphism. We use the notation bar to refer also to

the extension bar : Sðu-pÞ-Pðu-pÞ of this mapping. For lALC; the computation

CðAdðlÞX ;YÞ ¼CðAdð%lÞ %X;YÞ ¼ Cð %X;Adð%lÞ�1Y Þ

¼ barðXÞðAdð%lÞ�1YÞ ¼ ð%lðbarðX ÞÞÞðY Þ

shows that

barðAdðlÞX Þ ¼ %lðbarðX ÞÞ: ð1:3Þ

If we specify a subset V of u-p; it makes sense to speak of the ideal IV of all
polynomials on u-p that vanish on V : The quotient Pðu-pÞ=IV is called the

coordinate ring of V : If V is stable under LC; then so is IV ; and it follows that the

coordinate ring inherits a fully reducible action by LC:
Using V ; we introduce also the dual coordinate ring RðVÞ as a quotient of Sðu-pÞ:

The definition is RðVÞ ¼ Sðu-pÞ=JV ; where JV ¼ bar�1ðIV Þ: This JV is an ideal

even though bar is only conjugate linear. If V and thus IV are stable under LC; then
so is JV ; as a consequence of (1.3). In this case the dual coordinate ring inherits a

fully reducible action by LC; the multiplicity of an irreducible representation of LC in
the dual coordinate ring equals the multiplicity of the contragredient representation
in the coordinate ring.
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According to a theorem of Vinberg [Vi], there are only finitely many orbits of LC

in its action on u-p; and one of them is open and dense.4 (See Section 4.1 of [Ru]
and Section X.3 of the second edition of [Kn2] for expositions.) Let O be such an

orbit, and let Ocl be its closure. The holomorphic representation of LC on the dual
coordinate ring Sðu-pÞ=JOcl will be of great interest to us.

Let p0 be a ðg;KÞmodule, and suppose that p0 has a unique minimal K type, say L:
Following [GrW2], we say that p0 is associated to O if, for every L type s; the
multiplicity of the K type Lþ s in p0 equals the multiplicity of the L type s in
Sðu-pÞ=JOcl and if all K types in p0 and L types in Sðu-pÞ=JOcl are accounted for by

this correspondence.
Let us expand upon the definitions given earlier of the ðg;KÞmodules of interest to

us. If E is a complex subspace of g spanned by root spaces and a subspace of t; let

DðEÞ be the set of roots contributing to E; and let DþðEÞ be the set of positive roots
contributing to E: We write dðEÞ for half the sum of the members of DþðEÞ; and we
abbreviate dðgÞ as d: The symmetric invariant bilinear form C allows us to pair
members of it0 with members of it�0; say by g/Hg; and it gives us an inner product

/
; 
S on it�0: We write jgj2 for /g; gS:
Corollary 4.69 of [KnV] shows that iHdðuÞ is in the center Zl0 and that bðHdðuÞÞ40

for every member of DðuÞ: In fact, all the members b of Dðu-pÞ have bðHdðuÞÞ equal
to the same positive constant, and all the members b of Dðu-kÞ have bðHdðuÞÞ equal
to twice that positive constant. Let F be an irreducible finite-dimensional ðl;LÞ
module. If n is its highest weight, we may write F ¼ Fn; or F ¼ FL

n if there is a need to

emphasize the group. If F is one dimensional, i.e., if n is orthogonal to all members
of DðlÞ; then we may write Cn in place of Fn:
To describe cohomological induction in the situation of interest here, let Cl be a

one-dimensional ðl;LÞ module. Extend the l action on Cl to %q by having %u act by 0,
so that Cl becomes a ð%q;LÞ module. Define a ðg;LÞ module by

NðlÞ ¼ UðgÞ#%qCl:

Let Pg;K
g;L be the Bernstein functor defined on page 30 of [KnV]; this is a covariant

right-exact functor sending ðg;LÞ modules to ðg;KÞ modules.5 We shall use its Sth

derived functor ðPg;K
g;L ÞS; where S ¼ dimðu-kÞ: The ðg;KÞmodule of initial interest is

pðlÞ ¼ ðPg;K
g;L ÞSðNðlþ 2dðuÞÞÞ:
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4A linear holomorphic group action on a complex vector space with a dense orbit is called a

‘‘prehomogeneous vector space’’ in the literature. Sato–Kimura [SaK] gives a classification of the

irreducible such spaces, up to a certain kind of equivalence.
5The better-known Zuckerman functor Gg;K

g;L is defined on page 24 of [KnV] and is the dual of Pg;K
g;L in a

sense made precise in Chapter III of [KnV]. The Zuckerman functor is a covariant left-exact functor

sending ðg;LÞ modules to ðg;KÞ modules.
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Any ðg;LÞ module of the form NðlÞ has a unique irreducible quotient N 0ðlÞ; and we
define

p0ðlÞ ¼ ðPg;K
g;L ÞSðN 0ðlþ 2dðuÞÞÞ:

This is the actual ðg;KÞ module of interest.
The infinitesimal character of both pðlÞ and p0ðlÞ is lþ d: From Chapter VI of

[KnV], we know that if L ¼ lþ 2dðu-pÞ is DþðkÞ dominant, then the K type L
occurs in pðlÞ and p0ðlÞ with multiplicity one. Further it is shown in Corollary 8 of

[Kn1] that if L is DþðkÞ dominant6 and u-k is not 0, then L is the unique minimal K

type of pðlÞ and p0ðlÞ: We

assume throughout that L ¼ lþ 2dðu-pÞ is DþðkÞ dominant: ð1:4Þ

It is not known whether p0ðlÞ is irreducible under assumption (1.4). What is
known is that the unique irreducible subquotient %pðlÞ of pðlÞ containing the K type
L is also a subquotient of p0ðlÞ: For a proof, see Section 2 of [Kn3].
From [EPWW] the ðg;LÞ module Nðlþ 2dðuÞÞ carries a canonical invariant

Hermitian form known as the Shapovalov form, and this descends to be

nondegenerate on the quotient N 0ðlþ 2dðuÞÞ: Under ðPg;K
g;L ÞS; the Shapovalov form

is carried to pðlÞ and p0ðlÞ: When we speak of addressing the unitarity of p0ðlÞ; we
actually are referring to the definiteness or indefiniteness of this particular form.
Since p0ðlÞ may in principle be reducible, %pðlÞ or even p0ðlÞ could in principle be
unitary even though the Shapovalov form on p0ðlÞ is indefinite.
Let us record now what our notation looks like for the universal covering group G

of SOð2m; 2l � 2mÞ0: The Cartan subalgebra t0 of g0 is the usual one consisting

of two-by-two diagonal blocks 0
�ihj

�
ihj

0

�
; 1pjpl: The roots are given by D ¼

f7ej7ek j jakg; and we take Dþ ¼ fej7ek j jokg: A positive root ej7ek is

compact if j and k are both pm or both Xm þ 1: The only noncompact simple

root is em � emþ1; and hence Dþ is a Borel–de Siebenthal positive system. We identify

the linear form
Pl

j¼1cjej on t with the l-tuple ðc1;y; cm; cmþ1;y; clÞ; often

separating the first m entries and the last l � m by a semicolon. Such a linear form
is analytically integral for G if c1;y; cm are all integers or all half-integers and if
cmþ1;y; cl are all integers or all half-integers. Up to a positive multiplicative

constant the quadratic form j 
 j2 induced on it�0 by the symmetric invariant bilinear
form C is given by

jðc1;y; cm; cmþ1;y; clÞÞj2 ¼
Xl

j¼1
c2j ; ð1:5Þ

with all the entries cj real. There will be no harm in treating this positive

multiplicative constant as if it is 1.
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The parameter l of a one-dimensional ðl;LÞ module Cl has to be of the form

l ¼ ls ¼ �l þ s

2
;y;�l þ s

2
; 0;y; 0

� �
ð1:6Þ

for some integer s: The �l in (1.6) may be regarded as an additive normalization. We
define

ps ¼ pðlsÞ and p0s ¼ p0ðlsÞ:

The infinitesimal character of ps and p0s is ls þ d; and we set

L ¼ Ls ¼ ls þ 2dðu-pÞ ¼ s

2
þ l � 2m;y;

s

2
þ l � 2m; 0;y; 0

� �
:

By (1.4) we are assuming that Ls is DþðkÞ dominant, i.e., that

sX2ð2m � lÞ: ð1:7Þ

Then Ls is the highest weight of the unique minimal K type of ps and p0s:
Let us identify concretely the action of L on u-p: We write Mmn ¼ MmnðCÞ for

the vector space of m-by-n complex matrices.

Lemma 1.1. For the universal covering G of SOð2m; 2l � 2mÞ0 with 2pmpl=2; the

group AdgðLÞ is isomorphic to ðUðmÞ � SOð2l � 2mÞÞ=f71g and the space u-p is

isomorphic to Mm;2l�2m in such a way that the action of L on u-p corresponds to the

action of UðmÞ � SOð2l � 2mÞ on members X of Mm;2l�2m given by

uðXÞ ¼ uX for uAUðmÞ;
rðX Þ ¼ Xr�1 for rASOð2l � 2mÞ:

ð1:8Þ

The operations on the right-hand sides of (1.8) are matrix multiplications.

Proof. We know that l0 is compact, that l contains the Cartan subalgebra t; and that
DðlÞ ¼ f7ðei � ejÞ j iojpmg,f7ei7ej j moiojg: It is immediate that

l0DR"suðmÞ"soð2l � 2mÞDuðmÞ"soð2l � 2mÞ:

The adjoint action of AdgðLÞ on u-p is irreducible, and the highest weight is the

largest noncompact root, namely e1 þ emþ1: Consequently the representation of l0;
namely of uðmÞ"soð2l � 2mÞ; is the outer tensor product of the standard
representation of uðmÞ and the standard representation of soð2l � 2mÞ: Since the
standard representation of soð2l � 2mÞ is equivalent with its contragredient, we can
view the representation of l0 as occurring on Mm;2l�2m; the action being the Lie

algebra action corresponding to (1.8).
This representation on the Lie algebra level lifts to UðmÞ � SOð2l � 2mÞ; acting by

(1.8), and the only elements of UðmÞ � SOð2l � 2mÞ that act on Mm;2l�2m as the

identity are 71: On the other hand, no nontrivial element of AdgðLÞ acts on u-p as

ARTICLE IN PRESS
A.W. Knapp / Journal of Functional Analysis 209 (2004) 36–10046



the identity since u-p and %u-p generate g: Thus AdgðLÞ is isomorphic to the

quotient ðUðmÞ � SOð2l � 2mÞÞ=f71g in such a way that the action of AdgðLÞ on
u-p corresponds to the action of ðUðmÞ � SOð2l � 2mÞÞ=f71g on Mm;2l�2m:

Whenever there is a need to be concrete about the action of L on u-p; we shall
treat L as equal to UðmÞ � SOð2l � 2mÞ; with action on u-p as in (1.8), and we

shall not feel any need to quote Lemma 1.1. The group LC; which was tentatively
defined as IntgðlÞ; may be redefined as GLðm;CÞ � SOð2l � 2m;CÞ; it acts on u-p

by extension of the action (1.8). The actions of L and LC on Sðu-pÞ and Pðu-pÞ
may similarly be carried over to actions of UðmÞ � SOð2l � 2mÞ and GLðm;CÞ �
SOð2l � 2m;CÞ on SðMm;2l�2mÞ and PðMm;2l�2mÞ:
Because of this correspondence, a typical L type occurring in Sðu-pÞ will often be

written as s ¼ ðx; nÞ; where

x ¼ ða1;y; amÞ ð1:9aÞ

is a UðmÞ type and

n ¼ ðb1;y; bm; 0;y; 0Þ ð1:9bÞ

is an SOð2l � 2mÞ type.
Let x ¼

Pm
i¼1xiei be dominant integral for UðmÞ with xmX0; regard x also as

dominant integral for Uð2l � 2mÞ; and let n ¼
Pl�m

i¼1 niei be dominant integral for

SOð2l � 2mÞ: It is shown in (0.2) of [Kn4] as an application of invariant theory that

the L type s ¼ ðx; nÞ occurs in Sðu-pÞ as many times as the

SOð2l � 2mÞ type n occurs in the restriction of the Uð2l � 2mÞ
type x from Uð2l � 2mÞ to SOð2l � 2mÞ:

ð1:10Þ

Branching from UðnÞ to SOðnÞ is described by a 1940 theorem of D. E. Littlewood
[Lit] that will apply in (1.10) under the assumption lX2m and only then. Other
references having some bearing on Littlewood’s theorem include [Mal1,Mal2,-
Mu,Ne]. The statement of Littlewood’s theorem identifies nonnegative linear
combinations of the ei’s having different numbers of entries as long as the nonzero
entries match. An n-tuple will be said to be nonnegative if all its entries are
nonnegative. We work largely with nonnegative dominant integral forms, namely n-
tuples x ¼ ða1;y; anÞ with integer entries X0 such that a1X?Xan; and we define
jjxjj ¼

P
i ai: The depth of a nonnegative dominant integral form is defined to be the

number of nonzero entries.
If x; m; and n are nonnegative integral forms of depth pd; the Littlewood–

Richardson coefficient cxmn is the multiplicity of the irreducible representation of UðdÞ
with highest weight x in the tensor product of the irreducible UðdÞ representations
with respective highest weights m and n: If cxmn40; then it is easy to see that

jjxjj ¼ jjmjj þ jjnjj; ð1:11Þ
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that x� m and x� n are both nonnegative, and that m and n have depth p the depth
of x: Littlewood–Richardson coefficients can be computed by a well-known
combinatorial method that will not concern us.7 It follows from the method of

computation that cxmn is independent of d as long as x; m; and n all have depth pd:

If m is a nonnegative dominant integral form, we say that m is even if all of its
entries are even integers.

Theorem 1.2 (Littlewood). Fix n; and let x and n be nonnegative dominant integral

forms of depth pn=2: Then the multiplicity of the irreducible representation of SOðnÞ
of highest weight n in the restriction to SOðnÞ of the irreducible representation of UðnÞ
with highest weight x equals the sum over all nonnegative even dominant integral forms

m of the Littlewood–Richardson coefficients cxmn:

The sum in the theorem has only finitely many nonzero terms because of (1.11). In
verifying (1.10), one uses n ¼ 2l � 2m: The forms x and n have depth pm; which is
pn=2 because mpl � m:
It follows from Theorem 1.2 that if the multiplicity in question is 40; then jjxjj �

jjnjj is an even integer X0: We shall use this fact many times, writing 2t for the even
integer.
Not every SOðnÞ highest weight n occurring in the restriction of an irreducible

representation of UðnÞ with nonnegative highest weight x need be nonnegative if n is
even. These exceptional n’s can be handled by a simple trick, and we return to them
in Section 8.

2. SUðm; l � mÞ as a prototype

Before turning to the details for SOð2m; 2l � 2mÞ; it may be helpful to consider
briefly the linear isometry groups G ¼ SUðm; l � mÞ of indefinite Hermitian forms.
For these groups the theory of this paper reduces in many spots to results in linear
algebra and representation theory that are well known and fairly old. Let us assume
that 2pmpl=2:
The group SUðm; l � mÞ has G=K Hermitian symmetric, and we take a compatible

positive system of roots. Specifically the group K is SðUðmÞ � Uðl � mÞÞ; and we

take KC to be the determinant-one subgroup of GLðm;CÞ � GLðl � m;CÞ: The
Cartan subalgebra t is the diagonal subalgebra, the roots are the usual 7ðea � ebÞ
with aob; the positive roots are the ea � eb with aob; and the simple roots are the
ea � eaþ1: The simple root em � emþ1 is noncompact, and the other simple roots are

compact. Since G=K is Hermitian symmetric, the space p splits into the sum p ¼
pþ"p� of two abelian subalgebras stable under KC: The parabolic subalgebra q ¼
l"u is k"pþ for this example, and u-k is 0. Thus L ¼ K ; S ¼ dimðu-kÞ ¼ 0; and

ðPg;K
g;L ÞS is the identity.
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The Harish–Chandra decomposition (cf. [Kn2, Section VII.9]) shows that pþ may

be identified with the vector space of m-by-ðl � mÞ complex matrices, and KC acts on

pþ by ðk1; k2ÞðXÞ ¼ k1Xk�1
2 : This is the analog of Lemma 1.1. The action on the left

allows for arbitrary row operations on X ; and the action on the right allows for
arbitrary column operations. A familiar canonical-form theorem from linear algebra
says that any two X ’s of the same rank are in the same orbit,8 and consequently the
orbits are parametrized by the rank: OðmÞ;Oðm � 1Þ;y;Oð0Þ:
The parameter l of the one-dimensional ðl;LÞ ¼ ðk;KÞ module is given by an l-

tuple, and we write

l ¼ ls ¼ ð�l þ s;y;�l þ s; 0;y; 0Þ;

with the semicolon occurring after the mth entry. Our interest is in ps ¼ pðlsÞ ¼
Nðls þ 2dðuÞÞ and p0s ¼ p0ðlsÞ ¼ N 0ðls þ 2dðuÞÞ: The infinitesimal character of ps

and p0s is ls þ d; and we set

L ¼ Ls ¼ ls þ 2dðpþÞ ¼ ð�m þ s;y;�m þ s; � m;y;�mÞ:

This is always DþðkÞ dominant, but it is not always the unique minimal K type
parameter of ps; for example, when m ¼ l � m ¼ 2 and s ¼ �1; L and Lþ s are both

K types if s ¼ ð1; 1;�1;�1Þ; but jLþ sþ 2dðkÞj2 ¼ jLþ 2dðkÞj2: However, a brief
computation shows that L is the unique minimal K type parameter of ps and p0s if sX0:
The representations ps and p0s are what are studied as the analytic continuation of

the holomorphic discrete series in the line-bundle cases of this G: The unitarity of the
representations p0s for sX0 was proved by Wallach [Wa1,Wa2].

The methods of Sections 6–8 of this paper, which have [GrW1,GrW2] as their
starting point rather than [Wa1,Wa2], will reproduce Wallach’s results on unitarity
when applied to SUðm; l � mÞ: They will also provide some preliminary information
about the K types occurring in p0s in the unitary cases. The methods of Section 9,

which give more detailed information about K types, simplify in the case of
SUðm; l � mÞ to an exercise in classical invariant theory whose solution will be
written out below.
The theory in [GrW1,GrW2], as will be explained further in Section 5, looks for a

division of the L types sa0 in Sðu-pÞ into two kinds, one for which the difference

csðsÞ ¼ jls þ sþ dj2 � jls þ dj2 ð2:1Þ

is40 and one for which the subspace Vs of Sðu-pÞ transforming according to s lies
completely in an ideal Vss Sðu-pÞ of Sðu-pÞ; ss being a certain particular L type
depending on s such that csðssÞ ¼ 0: Some L types will fit both descriptions, but the
method requires having a way of deciding which class to put each L type in. For
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SOð2m; 2l � 2mÞ; this step is carried out in Theorem 7.1, which is fairly complicated
to prove.
For SUðm; l � mÞ; things are much simpler. We are considering the K types in

SðpþÞ: Since this is the same as the decomposition of the space of m-by-ðl � mÞ
matrices under UðmÞ on the left and Uðl � mÞ on the right, classical invariant theory,
particularly Corollary 4.5.19 and Theorem 5.27 of [GoW], tells us the answer

immediately. The K types in SðpþÞ correspond to all nonnegative dominant integral
forms ða1;y; amÞ for UðmÞ; the corresponding K type having highest weight

s ¼ ða1;y; am; 0;y; 0;�am;y;�a1Þ: ð2:2Þ

All multiplicities9 are 1.
With s as in (2.2), we compute (2.1) and find that

csðsÞ ¼ 2a1ða1 þ s � 1Þ þ?þ 2ajðaj þ s � 2j þ 1Þ
þ?þ 2amðam þ s � 2m þ 1Þ:

ð2:3Þ

For sXm; only the first kind of K type occurs in SðpþÞ: There is no ss; and (2.3)
shows that

1

2
csðsÞ ¼

Xm

j¼1
ða2j þ ajðs � mÞÞ þ

Xm

j¼1
ajðm þ 1� 2jÞ

¼
Xm

j¼1
ða2j þ ajðs � mÞÞ þ

X
1puovpm

ðau � avÞ:

The first term on the right-hand side is X0 for sXm with equality only if s ¼ 0; and
the second term is X0 because of the dominance condition. Thus csðsÞ40 for sa0:
It follows from the theory of [GrW1,GrW2], specifically from Theorem 5.2 below,
that p0s ¼ ps and that p0s is unitary for sXm: The comparable estimates for

SOð2m; 2l � 2mÞ are in Section 6 below.
For s with 0pspm � 1; the special ss has a1 ¼ ? ¼ asþ1 ¼ 1 and asþ2 ¼ ? ¼

am ¼ 0: Computation shows that it indeed has csðssÞ ¼ 0: We divide the K types in

SðpþÞ into two classes, those with asþ140 and those with asþ1 ¼ 0: For any s0 and s00

occurring in SðpþÞ; the product of their highest weight vectors (as symmetric tensors)
is a highest weight vector of Vs0þs00 ; since s0 þ s00 has multiplicity 1, we see that

Vs0þs00DVs0Vs00 : Use of this fact and the expansion-by-cofactors formula for
determinants shows that if s has asþ140; then VsDVss Sðu-pÞ: On the other hand,
if s has asþ1 ¼ 0; then (2.3) gives

1

2
csðsÞ ¼

Xs

j¼1
a2j þ

Xs

j¼1
ajðs þ 1� 2jÞ ¼

Xs

j¼1
a2j þ

X
1puovps

ðau � avÞ;
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and this is X0 with equality only if s ¼ 0: It follows from the Gross–Wallach theory
[GrW1,GrW2], specifically from Theorem 5.3 below, that p0s is unitary for 0pspm � 1

and that its K spectrum is the sum of Ls and the K spectrum of SðpþÞ=Vss SðpþÞ:
The comparable results for SOð2m; 2l � 2mÞ are in Sections 7 and 8 below.

One might quickly guess that the K spectrum of SðpþÞ=Vss SðpþÞ consists of all K

types with asþ1 ¼ 0; each with multiplicity one, but some argument is needed. This
argument is where the orbits play a critical role. It is apparent that the polynomials

pðXÞ vanishing on OðsÞ include all minors of X of size s þ 1; hence the ideal in PðpþÞ
generated by those minors. But it is not so apparent that no polynomials outside this

ideal vanish on OðsÞ: The question is whether the ideal in PðpþÞ generated by those
minors is prime. This is a question answered affirmatively by a version of the Second
Fundamental Theorem of classical invariant theory.
The ideal of all polynomials vanishing on OðsÞ is stable under K and hence is a

sum of its K types, each with multiplicity one. These K types are the contragredients

of K types occurring in SðpþÞ: The members of such a contragredient K type sc in

PðpþÞ vanish on OðsÞ if and only if a nonzero lowest-weight polynomial vanishes on
OðsÞ: The theorems quoted above from [GoW] give a formula for such a polynomial,
and inspection of the formula shows that the polynomial vanishes on OðsÞ only if
asþ1 ¼ 0: It follows that the ideal is indeed prime and that the K spectrum of

SðpþÞ=Vss SðpþÞ indeed is as asserted above. In the terminology of Section 1, p0s is
associated to the orbit OðsÞ: For further information about the role of invariant
theory, see [DeP,Ho]. The comparable argument for SOð2m; 2l � 2mÞ will be carried
out in Section 9.
Finally let us consider so0: In this case we form s0 ¼ ð1; 0;y; 0; 0;y; 0;�1Þ:

Direct computation gives csðs0Þ ¼ 2so0; and it follows from the theory of
[GrW1,GrW2] that the Shapovalov form for p0s does not exhibit p

0
s as unitary for

so0: A comparable result for SOð2m; 2l � 2mÞ will be given in Section 10.

3. Orbits

This section concerns the orbits of LC in its action on u-p when g0 is the Lie

algebra soð2m; 2l � 2mÞ with 2pmpl=2: We use the identification in Lemma 1.1 of

u-p with Mm;2l�2m: The action of LC of u-p is transformed into the action of

GLðm;CÞ � SOð2l � 2m;CÞ on Mm;2l�2m as in (1.8).

A typical element of Mm;2l�2m will be denoted X : By XX tr; we mean the m-by-m

matrix product of X and its transpose; the ða; bÞth entry of XX tr is the ordinary dot
product of the ath and bth rows of X : Here ‘‘dot product’’ refers to the complex

bilinear form on C2l�2m given by v 
 w ¼
P2l�2m

a¼1 vawa:

When it is necessary to number the rows and columns of members of Mm;2l�2m; we

number the rows as 1;y;m and the columns as 1;y; l � m; 10;y; ðl � mÞ0: The first
occurrence of this numbering will in effect be with the example that follows the
statement of Proposition 3.1.
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Proposition 3.1. In the action (1.8) on Mm;2m�2l when 2pmpl=2;

(a) the orbits of GLðm;CÞ � Oð2l � 2m;CÞ are exactly the sets

Oðp; qÞ ¼ fXAMm;2l�2m j rank X ¼ p and rank XX tr ¼ qg

for 0pqpppm;

(b) the dimension of Oðp; qÞ is pð2l � m � pÞ � 1
2
ðp � qÞðp � q þ 1Þ;

(c) all the sets Oðp; qÞ with one exception remain single orbits when the action is

restricted to GLðm;CÞ � SOð2l � 2m;CÞ; the one exception being Oðm; 0Þ in the

case that l ¼ 2m;

(d) the set Oðm; 0Þ is the union Oðm; 0Þþ,Oðm; 0Þ� of two orbits under GLðm;CÞ �
SOð2l � 2m;CÞ if l ¼ 2m; and in this case the topological closure of each of

Oðm; 0Þþ and Oðm; 0Þ� is an algebraic variety.

Example. Let us write members of Mm;2l�2m as block-type row vectors, with m

columns grouped first, then l � m more, m more, and the last l � m: Let X be the
matrix

X ¼ ðdiagð1;y; 1; 1;y; 1; 0;y; 0Þ 0 diagði;y; i; 0;y; 0; 0;y; 0Þ 0Þ ð3:1Þ

with u; q; and v members in the respective segments of diagonal entries of the
indicated diagonal matrices. This X has rank u þ q; and

XX tr ¼ diagð0;y; 0; 1;y; 1; 0;y; 0Þ

has rank q: Therefore X is in Oðu þ q; qÞ: We shall make use of this X in the proof
below and in Sections 8 and 9.

Proposition 3.1 is a kind of canonical-form result, though not a basic one of linear
algebra. We take it as a result that is in principle well known but in practice maybe
less well known. Accordingly we give a sketch of the proof, providing detail about
only some of the points of the argument. We make repeated use of a variant of the
Gram–Schmidt orthogonalization process, beginning with a lemma.

Lemma 3.2. If w1;y;wc is a linearly independent set in Cn with wa 
 wb ¼ dab and if

con; then there exists wcþ1 with w1;y;wcþ1 linearly independent and wcþ1 
 wa equal

to 0 for aoc and equal to 1 for a ¼ c þ 1:

Remark. Here dab indicates the Kronecker delta, which is 1 if a ¼ b and 0 if aab:

Proof of Lemma 3.2. Let vACn be independent of w1;y;wc; and define w ¼
v �

Pc
a¼1 ðv 
 waÞwa: Computation shows that w 
 wa ¼ 0 for apc and that w 
 w ¼

v 
 v �
Pc

a¼1 ðv 
 waÞ2: If w 
 wa0; then a suitable multiple of w will serve as wcþ1:
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Arguing by contradiction, we may thus assume that

v 
 v ¼
Xc

a¼1
ðv 
 waÞ2 ð3:2Þ

for every v such that v;w1;y;wc is linearly independent. If v;w1;y;wc is linearly

dependent, we must have v ¼
Pc

a¼1 ðv 
 waÞwa: Computation shows that we again

have (3.2). Thus we may assume that (3.2) holds for every vACn:

Polarization of (3.2) gives u 
 v ¼
Pc

a¼1 ðu 
 waÞðv 
 waÞ for all u and v in Cn: Define

Mrs ¼ er 
 ws for rpn and spc; where ferg is the standard basis of Cn: Then

dab ¼ ea 
 eb ¼
Xc

s¼1
ðea 
 wsÞðeb 
 wsÞ ¼

Xc

s¼1
MasMbs

for a and b pn: Hence MM tr equals the identity, and M has rank Xn: However, M

has rank equal at most to its number of columns, which is c and ison: Thus we have
a contradiction, and the lemma follows.

Proof of Proposition 3.1 (Sketch). For (a), it is a simple matter to check that each
Oðp; qÞ is stable under GLðm;CÞ � Oð2l � 2m;CÞ: We are to check that Oðp; qÞ is a
single orbit. Start with a given matrix in Mm;2l�2m: Any elementary row operation on

that matrix amounts to an operation by GLðm;CÞ and hence transforms the matrix
within the same orbit. Doing row reduction, we may therefore assume that the first p

rows of the matrix are linearly independent and the last m � p rows are 0. Let V be

the linear span of the rows, and regard V as a subspace of C2l�2m: Further row
operations show that we may replace the nonzero rows of our matrix by any basis of
V without leaving the orbit.
Let U be the subspace of elements w of V such that w 
 w0 ¼ 0 for all w0AV ; and

put u ¼ dimC U : Write u þ q for the dimension of V : We shall construct 2u þ q

linearly independent members of C2l�2m denoted xa and ya for 1papu; denoted za

for u þ 1papu þ q; and having the following properties:

(i) distinct members of the set have dot product 0, and each member of the set has
dot product 1 with itself,

(ii) the elements z1;y; zu form a basis of U when za is defined as xa þ iya;
(iii) the elements z1;y; zu; zuþ1;y; zuþq; with z1;y; zu as in (ii), form a basis of V :

Then we define an ordered basis fva j 1papl � mg,fva0 j 1papl � mg of C2l�2m as
follows: We let va ¼ xa and va0 ¼ ya for 1papu; and we let va ¼ za for
u þ 1papu þ q: Taking (i) into account, we use Lemma 3.2 to construct the remain-
ing va’s and va0 ’s so that distinct members of the basis have dot product 0 and
each member of the basis has dot product 1 with itself. Let g be the ð2l � 2mÞ-by-
ð2l � 2mÞ matrix whose rows are the basis vectors va and va0 for 1papl � m:
Then g is in Oð2l � 2m;CÞ; and (ii) shows that if X is as in (3.1), then Xg is the
matrix whose rows are z1;y; zu; zuþ1;y; zuþq; 0;y; 0: By (iii), Xg is in the orbit of
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Oð2l � 2m;CÞ that we are studying. Hence every element of Oðu þ q; qÞ is in the same
orbit as X :
Thus the proof of (a) in the proposition will be complete once a construction is

made so that (i)–(iii) are valid. We begin with an inductive construction that starts
with any basis w1;y;wu of U and transforms it into the desired basis z1;y; zu:
Decompose w1 ¼ x1 þ iy1 into its real and imaginary parts. From the real and
imaginary parts of w1 
 w1 ¼ 0; we obtain x1 
 x1 ¼ y1 
 y140 and x1 
 y1 ¼ 0:
Renormalizing w1 suitably, we may assume that x1 
 x1 ¼ y1 
 y1 ¼ 1: We take z1
to be this renormalized version of w1: Proceeding inductively, suppose that z1;y; zt

have been constructed so that spanfz1;y; ztg ¼ spanfw1;y;wtg and each za

decomposes into real and imaginary parts as za ¼ xa þ iya with xa 
 xb ¼ ya 
 yb ¼ dab

and xa 
 yb ¼ 0 whenever the indices are all pt: Define

z ¼ wtþ1 �
Xt

a¼1
ðwtþ1 
 xaÞwa:

This is a nonzero element of U ; and we readily check that xa 
 z ¼ ya 
 z ¼ 0 for apt:
Since z is in U ; z 
 z ¼ 0: We decompose z into its real and imaginary parts as
z ¼ x þ iy; and we obtain x 
 x ¼ y 
 y40 and x 
 y ¼ 0: It is not asserted that x

and y are in U : Normalizing z to ztþ1; we may assume that ztþ1 ¼ xtþ1 þ iytþ1 with
xtþ1 
 xtþ1 ¼ ytþ1 
 ytþ1 ¼ 1 and xtþ1 
 ytþ1 ¼ 0: From xa 
 z ¼ ya 
 z ¼ 0 for apt; we
have xa 
 ztþ1 ¼ ya 
 ztþ1 ¼ 0: Extraction of real and imaginary parts shows that xa

and ya have dot product 0 with xtþ1 and ytþ1: This completes the induction and
shows that the basis z1;y; zu of U has the required properties.
Extend z1;y; zu to an ordered basis z1;y; zu;wuþ1;y;wuþq of V : For

u þ 1papu þ q; define inductively

z ¼ wa �
Xu

b¼1
ðxb 
 waÞzb �

Xa�1
b¼uþ1

ðzb 
 waÞzb:

We readily check that z is orthogonal to x1; y1;y; xu; yu; zuþ1;yza�1; and then we
normalize z to become za: The inductive construction of a basis z1;y; zuþq of V is

complete, and we see that it has all the required properties.
For (b) in the proposition, we compute the Lie algebra of the isotropy subgroup at

each of the points X in (3.1), using the method of Sato–Kimura [SaK, pp. 109–110],
and the dimension formula follows. We shall not need the actual formula, and we
omit the details.
For (c) we observe that except in the case of Oðm; 0Þ when l ¼ 2m; the special X

in (3.1) has a column of 0’s. Thus X is fixed by a certain diagonal matrix in
Oð2l � 2m;CÞ that has one diagonal entry �1 and all other diagonal entries þ1;
and (c) follows.
For (d) we suppose that l ¼ 2m: Let v1;y; vm be the rows of a matrix X in Mm;2m;

and consider the map X/v14?4vm of Mm;2m into
Vm

C2m: This map is given by a
vector-valued polynomial p equivariant under Oð2m;CÞ and invariant up to a
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determinant factor under GLðm;CÞ: The representation of SOð2m;CÞ on
Vm

C2m is

reducible, with two irreducible invariant subspaces. Write
Vm

C2m ¼ V1"V2

accordingly, and let E1 and E2 be the projections. The set where E13p is 0 is stable
under GLðm;CÞ � SOðn;CÞ; and the same is true of E23p: Using formulas of Section
1 of [Kn4] for the action of root vectors of soð2m;CÞ; we can see that the X of (3.1)
for Oðm; 0Þ is a highest weight vector of one of the two irreducible subspaces V1 and
V2; say V1; and that X with its last column negated (call it X 0) is a highest weight
vector of the other irreducible subspace V2: Then we have E1ðpðX ÞÞa0; E2ðpðXÞÞ ¼
0; E1ðpðX 0ÞÞ ¼ 0; and E2ðpðX 0ÞÞa0: Thus the zero loci of E13p and E23p within
Oðm; 0Þ are nontrivial, and (d) follows. This completes the proof of the proposition.

We shall be interested in the dual coordinate ring RðOÞ ¼ Sðu-pÞ=JOcl of various

orbits. Recall from Section 1 that a ðg;KÞ module with a unique minimal K type L is
associated to the orbit O if, for every L type s; the multiplicity of the K type Lþ s in
p0 equals the multiplicity of the L type s in Sðu-pÞ=JOcl and if all K types in p0 and L

types in Sðu-pÞ=JOcl are accounted for by this correspondence.

The dual coordinate ring was defined in Section 1 by passing between Sðu-pÞ and
Pðu-pÞ by means of the canonical conjugate-linear algebra automorphism given by
bar in (1.2). In order to work with ideals in Sðu-pÞ; we need a way of handling the
mapping bar. This does not seem to be so easy to do directly, and our approach will
be indirect. We shall take advantage of the identification of u-p with Mm;2l�2m

in order to define another isomorphism xð
Þ of Sðu-pÞ with Pðu-pÞ: This
isomorphism will be complex linear, but it will be noncanonical because the
identification of u-p with Mm;2l�2m is noncanonical. In Proposition 3.3 we address

the problem of relating bar and xð
Þ:
For X in Mm;2l�2n; we let

xabðXÞ and xab0 ðXÞ for 1papm and 1pbpl � m ð3:3Þ

be the entry functions on the matrices in u-p: Each of these is a linear function on

u-p; and together they form a basis of the dual space ðu-pÞ�; which is the same as

P1ðu-pÞ:
We now introduce the basis of u-p of which (3.3) is the dual basis. Define

Xab and Xab0 for 1papm and 1pbpl � m ð3:4Þ

to be matrices that are 1 in the indicated entries and are 0 elsewhere. We define xð
Þ
on u-p by sending basis to dual basis: xðXabÞ ¼ xab and xðXab0 Þ ¼ xab0 : Then we

extend xð
Þ to a complex-vector-space isomorphism of u-p onto P1ðu-pÞ and from
there to a complex-linear algebra isomorphism of Sðu-pÞ onto Pðu-pÞ:
The paper [Kn4] makes extensive use of a certain formal ‘‘dot product’’ that will

come up again below in Section 9. For 1papm; let Xa denote the row vector

Xa ¼ ðXa1 ? Xa;l�m Xa10 ? Xa;ðl�mÞ0 Þ
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whose entries are m-by-ð2l � 2mÞ matrices. For a and b between 1 and m; define

Xa 
 Xb ¼
Xl�m

c¼1
ðXacXbc þ Xac0Xbc0 Þ

as a member of S2ðu-pÞ: The function xð
Þ relates this formal dot product to ordinary
dot products. Namely X/xðXa 
 XbÞðXÞ; for 1papm and 1pbpm; picks out the
ordinary dot product of the ath and bth rows of the matrix X in Mm;2l�2m: This, as we

have already noted, is the same as the ða; bÞth entry of the matrix product XX tr:

The identification of u-p with Mm;2l�2m in effect picks out a real form of u-p;
namely the real subspace of members of u-p that correspond to real matrices.
Accordingly we can use this identification to define a conjugate-linear involution

ð
Þconj of u-p by complex conjugation of the corresponding matrix. We extend this

to a conjugate-linear involution of Sðu-pÞ: In addition, the map ð
Þconj on u-p

yields a conjugate-linear involution ð
Þconj of Pðu-pÞ by pconjðX Þ ¼ ðpðX conjÞÞconj for
p in Pðu-pÞ; the outer conj on the right-hand side indicating complex conjugation of
the numerical values of p:

Proposition 3.3. Up to a global nonzero constant, bar can be computed as the

composition of xð
Þ followed by ð
Þconj:

Remark. In using bar to pass from Sðu-pÞ to Pðu-pÞ; we shall really be interested
in the effect of bar on complex vector subspaces of Sðu-pÞ: For this purpose the
global constant in the proposition plays no role. We shall therefore work with bar,

xð
Þ; and ð
Þconj as if this constant were 1. In cases where we have closure under
complex conjugation, such as with all polynomials vanishing on a set defined by
polynomials with real coefficients, we can consequently treat bar and xð
Þ as if they
produce the same results. The sets Oðp; qÞ are examples of sets defined by

polynomials with real coefficients; however, Oðm; 0Þþ and Oðm; 0Þ� are not asserted
to have this property.

Proof. It will be more convenient to work with the version of ð
Þconj on u-p: Let us
check that

ð
Þconj3xð
Þ ¼ xð
Þ3ð
Þconj; ð3:5Þ

the ð
Þconj on the left being the one on Pðu-pÞ and the one on the right being the one
on Sðu-pÞ: Both sides of (3.5) are conjugate-linear, multiplicative, and linear, and
thus it is enough to check their equality on members X of u-p: The question is
whether

ðxðXÞÞconj¼? xðX conjÞ:
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On an element YAu-p; the respective sides are

ðxðXÞðY conjÞÞconj and xðX conjÞðY Þ:

Both expressions are conjugate-linear in X and linear in Y ; and it is enough to
check their equality for X and Y equal to basis vectors. This is routine, and (3.5)
follows.

Thus we are to compare bar with xð
Þ3ð
Þconj: Let l be a member of L; which we
regard as UðmÞ � SOð2l � 2mÞ; the action on matrices being as in (1.8). If X is in
u-p; then (1.6) shows that barðAdðlÞXÞ ¼ lðbarðXÞÞ; i.e.,

bar commutes with the action of L: ð3:6Þ

Since we are realizing L concretely as UðmÞ � SOð2l � 2mÞ; it is meaningful to
speak of complex conjugation and transpose of members of L: Writing lðX Þ as a
matrix product uXs�1 with uAUðmÞ and sASOð2l � 2mÞ when X is in Mm;2l�2m; we
compute the complex conjugates of the entries xabðlðXÞÞ and xab0 ðlðXÞÞ of lðXÞ; and
we compare the results with the entries of lðX conjÞ: The result is that

ðlðXÞÞconj ¼ lconjðX conjÞ: ð3:7Þ

Similarly, we check by using bases that

lðxðXÞÞ ¼ xððl�1ÞtrðXÞÞ for XAu-p: ð3:8Þ

Combining (3.7) and (3.8), we see that xð
Þ3ð
Þconj commutes with the action of L:
Then we bring (3.6) to bear and conclude that

bar�13xð
Þ3ð
Þconj ð3:9Þ

is a complex-linear self map of u-p that commutes with L: Since L acts irreducibly
on u-p; Schur’s Lemma says that (3.9) is a scalar. This completes the proof.

4. Enright–Parthasarathy–Wallach–Wolf theory

In this section we return to the general setting described in the first part of Section
1, with g0 not necessarily equal to soð2m; 2l � 2mÞ: The essential assumption about

the setting is that the positive system Dþ is of Borel–de Siebenthal type, so that
½u; u-k	 ¼ 0 as in (1.1).
The heart of [EPWW] for our purposes is Sections 3 and 6. The proof of the first

result in Section 3 of that paper seems less than convincing, and we supply our own
argument. Our argument ends at the end of the remarks following Lemma 4.3 below.
We begin with quite a general result; its content is well known, but it does not seem
to have been completely proved in the literature.
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Lemma 4.1. Let ZðkÞ be the center of the universal enveloping algebra of k: Suppose

that V is a UðkÞ module and U is a UðkÞ submodule. If U and V=U are ZðkÞ finite, then

so is V : Suppose in addition that w0; w1;y; wn are distinct nonzero homomorphisms of

ZðkÞ into C; that z � w0ðzÞ acts as 0 on V=U ; and that
Qn

j¼1 ðz � wiðzÞÞ acts as 0 on U :

Then
Qn

j¼0 ðz � wiðzÞÞ acts as 0 on V ; and there exists a UðkÞ stable subspace Y of V

such that

(a) V ¼ U"Y ;
(b) U is the sum of the primary subspaces for w1;y; wn;
(c) every element of Y is annihilated by z � w0ðzÞ for all zAZðkÞ:

Remark. The primary subspace for wi is defined to be the subspace of vAV for which

ðz � wiðzÞÞn
v ¼ 0 for all zAZðkÞ and for some n ¼ nðv; zÞ: Under the assumption of

ZðkÞ finiteness, the n can be taken independent of v and z:

Proof. Let I1 ¼ AnnZðkÞðUÞ and I2 ¼ AnnZðkÞðV=UÞ be the annihilators of U and

V=U in ZðkÞ: These have finite codimension in ZðkÞ by the assumed ZðkÞ finiteness.
Define I1I2 to be the set of sums of products from I1 and I2: If z1 is in I1 and z2 is in
I2; then any v in V has z2ðv þ UÞ ¼ U and thus z2ðvÞAU : Since z1ðuÞ ¼ 0 for all
uAU ; z1z2 is in AnnZðkÞðVÞ: In other words, I1I2 is contained in AnnZðkÞðVÞ:
By a theorem of Chevalley [KnV, Theorem 7.30], ZðkÞ is isomorphic as an algebra

to a full polynomial algebra and is therefore Noetherian. We shall use a standard
argument for Noetherian algebras to prove that I1I2 has finite codimension in ZðkÞ;
and then it will follow that V is ZðkÞ finite.
The vector space ZðkÞ=I1 is finite dimensional since the ZðkÞ module U is ZðkÞ

finite, and we let x1 þ I1;y; xr þ I1 be a vector-space basis. Since ZðkÞ is Noetherian,
the ideal I2 is finitely generated, say with y1;y; ys as generators. Let us show that
fxiyj þ I1I2g is a spanning set for the vector space I2=I1I2: In fact, any x in I2 is of the

form x ¼
Ps

j¼1 zjyj with zj in ZðkÞ: For each j; write zj þ I1 ¼
Pr

i¼1 cijxi þ I1 with

cijAC: Then zjyj ¼
Pr

i¼1 cijxiyj þ I1I2; and x ¼
Ps

j¼1
Pr

i¼1 cijxiyj þ I1I2: Thus I2=I1I2

is finite dimensional. Since dimZðkÞ=I1I2 ¼ dimZðkÞ=I2 þ dim I2=I1I2; we conclude
that ZðkÞ=I1I2 is finite dimensional. Consequently AnnZðkÞðVÞ has finite codimension
in ZðkÞ; and the ZðkÞ module V is ZðkÞ finite. This proves the first conclusion of the
lemma.
Now suppose in addition that w0; w1;y; wn are distinct nonzero homomorphisms

of ZðkÞ into C; that z � w0ðzÞ acts as 0 on V=U ; and that
Qn

j¼1 ðz � wiðzÞÞ acts as 0 on
U : If v is in V ; then ðz � w0ðzÞÞðv þ UÞ ¼ U and hence u ¼ ðz � w0ðzÞÞðvÞ is in U :

Applying
Qn

j¼1 ðz � wiðzÞÞ to u; we see that
Qn

j¼0 ðz � wiðzÞÞðvÞ ¼ 0: This proves the

second conclusion of the lemma.
If the primary subspace V 0 of V for some homomorphism w0 : ZðkÞ-C is

nonzero, then Corollary 7.27 of [KnV] shows that there exists v0a0 in V 0 with zv0 ¼
w0ðzÞv0 for all zAZðkÞ: Substituting into

Qn
j¼0 ðz � wiðzÞÞðv0Þ ¼ 0; we see thatQn

j¼0 ðw0ðzÞ � wiðzÞÞðv0Þ ¼ 0 for all z and therefore that
Qn

j¼0 ðw0ðzÞ � wiðzÞÞ ¼ 0

for all z: From Lemma 7.14 of [KnV], we can then conclude that w0 ¼ wi for some i:
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Consequently the primary decomposition of V ; given by Proposition 7.20 of
[KnV], is V ¼

P
"n

i¼0 Vi; where Vi is the primary subspace of V for wi; 0pipn:
Define Y ¼ V0; and then V ¼ ð

P
"n

i¼1 ViÞ"Y :

To prove (a) and (b), let us show that U ¼
P

"n
i¼1Vi: Since

Qn
j¼1 ðz � wjðzÞÞ is 0

on U ; the primary decomposition for U shows that UD
P

"n
i¼1 Vi: For the reverse

inclusion let us observe that if vAV satisfies cðzÞðz � wiðzÞÞPðzÞðvÞAU for a scalar-
valued function cðzÞ and a polynomial PðzÞ; then the fact that

cðzÞðz � w0ðzÞÞPðzÞðvÞ ¼ cðzÞPðzÞðz � w0ðzÞÞðvÞAPðzÞðUÞDU

implies, upon subtraction, that cðzÞðw0ðzÞ � wiðzÞÞPðzÞðvÞ is in U : Let ia0: It follows

by induction from this observation that if vAV has ðz � wiðzÞÞkðvÞ in U ; then

ðw0ðzÞ � wiðzÞÞkðvÞ is in U : In particular, if ðz � wiðzÞÞkðvÞ ¼ 0 for all z; then

ðw0ðzÞ � wiðzÞÞkðvÞ is in U : By Lemma 7.14 of [KnV], there exists zAZðkÞ with
w0ðzÞawiðzÞ; and we see that v is in U : Hence Vi is contained in U : This proves (a)
and (b).
Since V ¼ U"Y ; Y is isomorphic to V=U : Therefore z � w0ðzÞ acts as 0 on Y :

This proves (c).

We turn to the setting of the first part of Section 1, with a Borel–de Siebenthal

positive system Dþ in place. We work with a one-dimensional ðl;LÞ module Clþ2dðuÞ:

For the parameter l under consideration, the essential assumption is (1.4), namely

that L ¼ lþ 2dðu-pÞ is DþðkÞ dominant.
Define

d0 ¼ /lþ 2dðuÞ; dðuÞS; ð4:1Þ

where /
; 
S is the inner product on it�0 defined in Section 1. We know that there is a

positive constant c such that

/b; dðuÞS ¼
0 for all bADðlÞ;
c for all bADðu-pÞ;
2c for all bADðu-kÞ:

8><
>: ð4:2Þ

We have a ðq;LÞ isomorphism

Nðlþ 2dðuÞÞ ¼ UðgÞ#%qClþ2dðuÞDUðuÞ#CClþ2dðuÞ;

and it follows that every weight of Nðlþ 2dðuÞÞ is of the form

o ¼ lþ 2dðuÞ þ
X

bADðuÞ
nbb; ð4:3Þ

where the nb are integersX0: Referring to (4.1) and (4.2), we see that every weight o
of Nðlþ 2dðuÞÞ has /o; dðuÞS ¼ d0 þ kc for some integer kX0: Let Nk be the direct
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sum of all weight spaces of Nðlþ 2dðuÞÞ for which /o; dðuÞS ¼ d0 þ kc: The
subspace Nk is stable under L:

Let Nðlþ 2dðuÞÞ %u-k be the ðl;LÞ module consisting of all %u-k invariant vectors of

Nðlþ 2dðuÞÞ: If Fn ¼ F L
n is an irreducible L stable subspace of Nðlþ 2dðuÞÞ %u-k with

highest weight n; then it follows from the above considerations that Fn lies in a single
Nk and that any other irreducible L stable subspace F 0

n with the same highest weight

lies in the same Nk:

Lemma 4.2 (Cf. Enright et al. [EPWW, Lemma 3.1]). With l as above, if Fn is an

irreducible L stable subspace of Nðlþ 2dðuÞÞ %u-k
with highest weight n; then UðkÞðFnÞ

is an irreducible ðk;LÞ submodule of Nðlþ 2dðuÞÞ isomorphic to UðkÞ#%q-k Fn and

having k infinitesimal character nþ dðlÞ � dðu-kÞ: The expression n� 2dðu-kÞ is

DþðkÞ dominant, and hence so is nþ dðlÞ � dðu-kÞ ¼ ðn� 2dðu-kÞÞ þ dðkÞ: If n0 is

another irreducible L stable subspace of Nðlþ 2dðuÞÞ %u-k
and if it has highest weight

n0 with n0an; then the infinitesimal-character parameters of UðkÞ#%q-k Fn and

UðkÞ#%q-k Fn0 are not conjugate by the Weyl group of k:

Proof. With n as in the statement of the lemma, UðkÞ#%q-k Fn has k infinitesimal

character nþ dðlÞ � dðu-kÞ; according to Theorem 5.24 of [KnV]. By assumption, n
is DþðlÞ dominant. Since dðu-kÞ is orthogonal to DðlÞ; n� 2dðu-kÞ is DþðlÞ
dominant. By (4.3) we can write n ¼ lþ 2dðuÞ þ

P
bADðuÞ nbb with all nbX0: Then

n� 2dðu-kÞ ¼ lþ 2dðu-pÞ þ
X

bADðuÞ
nbb ¼ Lþ

X
bADðuÞ

nbb:

If a is in Dðu-kÞ; then /L; aSX0 by (1.4); also /b; aSX0 for bADðuÞ by (1.1).

Hence /n� 2dðu-kÞ; aSX0: Thus n� 2dðu-kÞ is DþðkÞ dominant, and it follows

that nþ dðlÞ � dðu-kÞ is DþðkÞ dominant.
In the case of n0 with n0an; we obtain n0 þ dðlÞ � dðu-kÞanþ dðlÞ � dðu-kÞ with

both expressions DþðkÞ dominant. Then it follows that n0 þ dðlÞ � dðu-kÞ and
nþ dðlÞ � dðu-kÞ cannot be conjugate by the Weyl group of k:
To see that UðkÞ#%q-k Fn is irreducible, we can quote the general Corollary 5.105

of [KnV] or we can argue more simply by contradiction as follows: If M is a proper
nonzero UðkÞ submodule, then M contains an irreducible L stable subspace Fn00 for
which /n00; dðuÞS is a minimum, by (4.2) and (4.3). This n00 cannot equal n: By
Frobenius reciprocity (Propositions 2.34 and 2.57e of [KnV]), the nonzero ð%q-k;LÞ
inclusion of Fn00 into UðkÞ#%q-k Fn yields a nonzero ðk;LÞ map of UðkÞ#%q-k Fn00 into

UðkÞ#%q-k Fn: Since n00an; the k infinitesimal characters n00 þ dðlÞ � dðu-kÞ and

nþ dðlÞ � dðu-kÞ are not conjugate by the Weyl group of k: From this contradiction
we conclude that UðkÞ#%q-k Fn is irreducible.

We can now return to the ðk;LÞ submodule UðkÞðFnÞ of Nðlþ 2dðuÞÞ: Since Fn is
assumed to consist of %u-k invariant vectors, the same kind of argument with
Frobenius reciprocity uses the inclusion of Fn into UðkÞðFnÞ to obtain a nonzero
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ðk;LÞ map of UðkÞ#%q-k Fn into UðkÞðFnÞ: This map is clearly onto UðkÞðFnÞ; and it

has to be one–one since UðkÞ#%q-k Fn is irreducible. Therefore UðkÞðFnÞ is isomorphic

to UðkÞ#%q-k Fn:

Lemma 4.3 (Cf. Enright et al. [EPWW, Lemma 3.1]). With l as above, Nðlþ 2dðuÞÞ
is semisimple as a ðk;LÞ module. Every irreducible ðk;LÞ submodule contains, for a

unique n; an irreducible L stable subspace Fn of Nðlþ 2dðuÞÞ %u-k
with highest weight n;

is isomorphic to UðkÞ#%q-k Fn for that n; and has k infinitesimal character the DþðkÞ
dominant expression nþ dðlÞ � dðu-kÞ:

Proof. Recall that Nk is the sum of the weight spaces of Nðlþ 2dðuÞÞ for which the

weight o has /o; dðuÞS ¼ d0 þ kc: Define Vk ¼ UðkÞð
Pk

j¼0 NjÞ: We shall prove

inductively on k that Vk is a sum of irreducible k submodules. Then it follows that
every member of Nðlþ 2dðuÞÞ lies in a finite sum of irreducible k modules and hence
that Nðlþ 2dðuÞÞ is semisimple as a ðk;LÞ module. The rest will be easy.
In the case of V0; every member of N0 is invariant under %q-k: By Lemma 4.2 any

irreducible L stable subspace of N0 therefore generates an irreducible UðkÞ
submodule. Thus V0 is a sum of irreducible k submodules. Fix an L type n occurring
in N0; and let F̃n be the isotypic subspace of N0 of type n: Then V0 is the direct sum of

the UðkÞ stable subspaces UðkÞðF̃nÞ; and the nth such space has infinitesimal character
nþ dðlÞ � dðu-kÞ: As n varies, these infinitesimal-character parameters are
nonconjugate under the Weyl group of k; according to Lemma 4.2, and therefore
iteration of Lemma 4.1 shows that V0 is ZðkÞ finite and

Q
n ðz � wnþdðlÞ�dðu-kÞðzÞÞ acts

as 0 on it.
Inductively assume that Vk�1 is ZðkÞ finite and that the product of all

expressions z � wnþdðlÞ�dðu-kÞðzÞ; zAZðkÞ; acts as 0 on it, where n runs through the

L types that occur in N %u-k
0 ;y;N %u-k

k�1 : We shall prove the corresponding statement

for k:
The idea is to apply Lemma 4.1 with U as Vk�1 and V as Vk; but the possibility of

having more than one L type in Nk that is not fully accounted for by Vk�1-Nk

complicates matters. Thus let Lk be an L stable complement to Vk�1-Nk in Nk: We
shall pass from Vk�1 to Vk in a number of steps equal to the number of L types

appearing in Lk: For each such L type n; let F̃n be the isotypic subspace of Lk

of type n: Let n1;y; nr be these L types. Suppose inductively on r that U ¼
Vk�1 þ UðkÞðF̃n1 þ?þ F̃nr�1Þ is a sum of irreducible k submodules, that U is ZðkÞ
finite, and that the product of all z � wnþdðlÞ�dðu-kÞðzÞ; zAZðkÞ; acts as 0 on it, where

n runs through the L types that occur in N %u-k
0 ;y;N %u-k

k�1 and the L types n1;y; nr�1:

Put V ¼ Vk�1 þ UðkÞðF̃n1 þ?þ F̃nr
Þ: In V=U ; all weights that minimize

/o; dðuÞS have to be %u-k invariant vectors. Since U and V both contain all
weight spaces of Nðlþ 2dðu-kÞÞ for weights o with /o; dðuÞSod0 þ kc and since

V contains F̃nr
but U does not, the expression /o; dðuÞS is minimized at value

d0 þ kc by o ¼ nr among all weights of V=U : The space F̃nr
maps one-one into V=U ;

and its image therefore consists entirely of %u-k invariant vectors. Write this image as
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the direct sum of irreducible L stable subspaces. Each of these subspaces, by the
same argument as in the proof of Lemma 4.2, generates an irreducible k submodule
of V=U ; necessarily of infinitesimal character nr þ dðlÞ � dðu-kÞ: Form the pre-

image in V of the sum of these subspaces. This pre-image contains U and F̃nr
; and it

therefore must be all of V : Consequently V=U has infinitesimal character
nr þ dðlÞ � dðu-kÞ and is the sum of irreducible k submodules. Applying
Lemma 4.1, we find a k submodule Y of V such that V ¼ U"Y : Necessarily Y is
isomorphic to V=U ; and hence V is still the sum of irreducible k submodules.

Although Y is not asserted to contain F̃nr
; it does contain a subspace of Nk

isomorphic to F̃nr
and disjoint from U : Every vector of this subspace has to be %u-k

invariant, and thus nr is an L type occurring in N %u-k
k : Lemma 4.1 shows that the

product of all z � wnþdðlÞ�dðu-kÞðzÞ; zAZðkÞ; acts as 0 on V ; where n runs through the

L types that occur in N %u-k
0 ;y;N %u-k

k�1 and the L types n1;y; nr:

This completes the inner induction and allows us to conclude that Vk is ZðkÞ finite
and that the product of all z � wnþdðlÞ�dðu-kÞðzÞ; zAZðkÞ; acts as 0 on Vk; where n runs

through the L types that occur in N %u-k
0 ;y;N %u-k

k : Thus the induction on k is

complete, and Nðlþ 2dðuÞÞ is semisimple.
If an irreducible ðk;LÞ submodule V is given, let Fn be an irreducible L invariant

subspace of V with /n; dðuÞS as small as possible. The members of Fn are necessarily

%u-k invariant, and Lemma 4.2 shows that V is isomorphic to UðkÞ#%q-k Fn and has

infinitesimal character the DþðkÞ dominant expression nþ dðlÞ � dðu-kÞ: If V

contains another irreducible L stable subspace Fn0 of %u-k invariant vectors, then
Lemma 4.2 shows UðkÞðFn0 Þ has infinitesimal character n0 þ dðlÞ � dðu-kÞ: For this
to be conjugate to nþ dðlÞ � dðu-kÞ; Lemma 4.2 says that we must have n0 ¼ n: But
the L type n occurs just once in UðkÞ#%q-k Fn; and hence Fn0 ¼ Fn: This completes the

proof of Lemma 4.3.

Remark. Lemma 4.3 proves everything that is asserted in the statement of
Lemma 3.1 of [EPWW]. However, the proof of Lemma 3.1 in [EPWW] con-
tains an additional statement that will be useful to us. The assumptions on
l are unchanged. From Lemma 4.3 we know that Nðlþ 2dðuÞÞ is isomorphic as a
ðk;LÞ module to a direct sum of ðk;LÞ modules UðkÞ#%q-k Fn; the Fn’s and their

multiplicities being given by the decomposition of the ðl;LÞmodule Nðlþ 2dðuÞÞ %u-k:
The additional statement in the proof of Lemma 3.1 of [EPWW] identifies this ðl;LÞ
module concretely as

Nðlþ 2dðuÞÞ %u-kDSðu-pÞ#Clþ2dðuÞ; ð4:4Þ

and hence we obtain a ðk;LÞ isomorphism

Nðlþ 2dðuÞÞDUðkÞ#%q-kðSðu-pÞ#Clþ2dðuÞÞ: ð4:5Þ

The action of %u-k on Sðu-pÞ#Clþ2dðuÞ is understood to be trivial. The

isomorphism in (4.5) is extremely complicated and in particular appears to depend
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on l; it was asserted without proof in [EPWW], and Lemmas 4.1–4.3 in the present
paper provide a way to derive it that we give in a moment. Possibly the authors of
[EPWW] intended that (4.5) is initially to be viewed with a certain understood
nontrivial action of %u-k on Sðu-pÞ and then that (4.5) holds also with the trivial
action. The usual action of %u-k on Sðu-pÞ is obtained by identifying u-p with
p=ð%q-pÞ and having %u-k act on p by the adjoint representation, but this quotient
action is 0 for our setting because ½ %u-k; u-p	D½ %u-p	:

One can derive (4.5), with the trivial action of %u-k; fairly easily from Lemmas 4.2

and 4.3. Corresponding to the Bernstein functor Pg;K
g;L on the g level is a Bernstein

functor Pk;K
k;L on the k level, and Proposition 2.69 of [KnV] shows that these are

related by forgetful functors according to the formula Pk;K
k;L 3F

k;L
g;LDFk;L

g;K3P
g;K
g;L : More

importantly Proposition 2.115 of [KnV] shows that this relationship extends to the
Sth derived functor:

ðPk;K
k;L ÞS3F

k;L
g;LDFk;L

g;K3ðP
g;K
g;L ÞS: ð4:6Þ

Formula (4.6) says that the K decomposition of the effect of ðPg;K
g;L ÞS on a ðg;LÞ

module can be computed by using the derived Bernstein functor on the k level. The
effect of a derived Bernstein functor on the k level may be computed by the algebraic
version of the Borel–Weil–Bott theorem given as (4.170) of [KnV]. In our case the
functor is to be applied in the top dimension, which is S; and the result is

ðPk;K
k;L ÞSðUðkÞ#%q-k FnÞLD

FK
n�2dðu-kÞ if n� 2dðu-kÞ is DþðkÞ dominant;

0 if not:

(
ð4:7Þ

Lemma 4.2 shows that n� 2dðu-kÞ is necessarily DþðkÞ dominant, and hence we are
always in the first case. Combining this fact with Lemma 4.3, we obtain the following
equality of multiplicities:

½Nðlþ 2dðuÞÞ %u-k : F L
n 	L ¼ ½pðlÞ : F K

n�2dðu-kÞ	K : ð4:8Þ

On the other hand, Corollary 7 of [Kn1] shows that

½pðlÞ : F K
n�2dðu-kÞ	K ¼ ½Sðu-pÞ#Clþ2dðuÞ : FL

n 	L; ð4:9Þ

and (4.4) follows by combining (4.8) and (4.9).
Let us restate (4.9) as a proposition.

Proposition 4.4. Under the assumption that Cl is a one-dimensional ðl;LÞ module such

that L ¼ lþ 2dðu-pÞ is DþðkÞ dominant, the K types that occur in pðlÞ are of the

form F K
Lþs; where FL

s is an L type in Sðu-pÞ: Moreover the multiplicities of FK
Lþs in

pðlÞ and of F L
s in Sðu-pÞ match.
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Proof. The only thing left unsaid is that the form of Sðu-pÞ#Clþ2dðuÞ; with Clþ2dðuÞ
one dimensional, allows us to read off the L types as the sum of lþ 2dðuÞ and any
highest weight of Sðu-pÞ:

The remainder of Section 3 and much of Section 6 of [EPWW] examine what
happens to the Shapovalov form on Nðlþ 2dðuÞÞ: The paper shows that the
restriction of this form to the %u-k invariant vectors is what is important. Each L-

type multiplicity in Nðlþ 2dðuÞÞ %u-k matches a corresponding K-type multiplicity
after application of the derived Bernstein functor on the K level, the Shapovalov
form is transported functorially, and the signatures match. It is then shown that the
forms for the various K types have been transported consistently, so that the form is
meaningful on pðlÞ: The details of this construction will not be needed here.
A feature of the Shapovalov form is that it descends to a nonsingular form on the

unique irreducible quotient N 0ðlþ 2dðuÞÞ: A consequence of this fact and the
controlling behavior of the %u-k invariant vectors is that if the Shapovalov form can

be shown to be positive definite on Nðlþ 2dðuÞÞ %u-k; then Nðlþ 2dðuÞÞ is irreducible
and equals N 0ðlþ 2dðuÞÞ: The paper [EPWW] makes use of this observation to
prove irreducibility of Nðlþ 2dðuÞÞ in certain cases, and the Gross–Wallach papers
[GrW1,GrW2] use the observation to identify N 0ðlþ 2dðuÞÞ when Nðlþ 2dðuÞÞ is
reducible.

5. Gross–Wallach theory

We continue with the setting of Section 4: Dþ is a Borel–de Siebenthal positive
system, and Clþ2dðuÞ is a one-dimensional ðl;LÞ module such that L ¼ lþ 2dðu-pÞ
is DþðkÞ dominant.
The Gross–Wallach theory in [GrW1,GrW2] nominally applies to a Borel–

de Siebenthal positive system only if the system is compatible with a quaternionic
structure on G=K ; but in fact some of the theory’s tools apply to all Borel–
de Siebenthal positive systems.

According to (4.4), Nðlþ 2dðuÞÞ %u-k can be identified with Sðu-pÞ#Clþ2dðuÞ:When

the Shapovalov form is transferred to Sðu-pÞ#Clþ2dðuÞ; the effect of applying the

theory of [EPWW] is to allow the unitarity of p0ðlÞ to be investigated by making an
appropriate study of Sðu-pÞ#Clþ2dðuÞ: In the Gross–Wallach theory this is done by

induction on the degree of the Sðu-pÞ part of members of Sðu-pÞ#Clþ2dðuÞ:

Let s be an L type. The subspace of Sðu-pÞ transforming according to s will be
denoted Vs: If Vsa0; then Vs lies completely within one homogeneous component

Sdðu-pÞ; namely the one with

/s; dðuÞS ¼ dc; ð5:1Þ

where c is the positive constant in (4.2). Formula (5.1) allows us to associate the
homogeneous degree d to the L type s appearing in Sðu-pÞ: In the notation of
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Section 4, if s has homogeneous degree d; then s is one of the L types appearing in

Nd-Nðlþ 2dðuÞÞ %u-p:
Proposition 10.3 of [GrW2] is the critical result that is valid for our general setting

but is proved in that paper only in the context of a positive system compatible with a
quaternionic structure on G=K : The statement in our general setting is as follows.

Proposition 5.1 (Gross–Wallach). Normalize root vectors so that y %Xa ¼ �X�a and

½Xa;X�a	 ¼ Ha for every root a: Let s be an L type with VsDSdðu-pÞ; and define

clðsÞ ¼ jsþ lþ dj2 � jlþ dj2; ð5:2Þ

where j 
 j2 is the quadratic form induced on it�0 by the symmetric invariant bilinear form

C: Let v be a member of Nd-Nðlþ 2dðuÞÞ %u-p
corresponding to a member of Vs:

Then the Shapovalov form f
; 
g on Nðlþ 2dðuÞÞ %u-k
has

clðsÞfv; vg ¼ 2
X

aADðu-pÞ
fX�av;X�avg: ð5:3Þ

Proof (Sketch). We give the part of the proof where [GrW2] uses notation that is
more special than necessary. Let O and OðlÞ be the Casimir elements for g and l: The
relevant formula that replaces (10.4) of [GrW2] is

O ¼ OðlÞ � 2HdðuÞ þ 2
X

aADðu-pÞ
XaX�a þ 2

X
aADðu-kÞ

XbX�b: ð5:4Þ

The various properties of v make

X�bv ¼ 0 for all bADðu-kÞ;

Ov ¼ð jlþ dj2 � jdj2Þv;

OðlÞv ¼ð jlþ 2dðuÞ þ sþ dðlÞj2 � jdðlÞj2Þv;

2HdðuÞðvÞ ¼ 2/lþ 2dðuÞ þ s; dðuÞSv:

Substitution into (5.4) gives

clðsÞv þ 2
X

aADðu-pÞ
XaX�av ¼ 0;

and then one arrives at (5.3) by the same kind of argument as in the last paragraph of
the proof in [GrW2, p. 104].

The reason that Proposition 5.1 lends itself to an induction is that X�av on the

right-hand side of (5.3) is in Nd�1-Nðlþ 2dðuÞÞ %u-k by (1.1). As long as clðsÞ is not
0, (5.3) is a formula for the Shapovalov form on Nd-Nðlþ 2dðuÞÞ %u-k in terms of
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the form on Nd�1-Nðlþ 2dðuÞÞ %u-k: The following two theorems are restatements
of the consequences that [GrW2] derives in its Propositions 11.1 and 11.5 from
Proposition 5.1 above. Our standard assumptions about l are in force.

Theorem 5.2 (Gross–Wallach). Suppose that every L highest weight sa0 in Sðu-pÞ
has clðsÞ40: Then N 0ðlþ 2dðuÞÞ ¼ Nðlþ 2dðuÞÞ; and the Shapovalov form on pðlÞ
exhibits pðlÞ as infinitesimally unitary.

Theorem 5.3 (Gross–Wallach). Suppose that every L highest weight sa0 in Sðu-pÞ
of homogeneous degree od has clðsÞ40 and that *s is an L highest weight of

homogeneous degree d with clð *sÞ ¼ 0: Let Qðlþ 2dðuÞÞ be the quotient of

Nðlþ 2dðuÞÞ by the smallest ðg;LÞ submodule containing all %u-k invariant vectors

of L type *sþ lþ 2dðuÞ: Then the L types of Qðlþ 2dðuÞÞ %u-k; with their multiplicities,

are the sum of lþ 2dðuÞ and the L types of Sðu-pÞ=V *sSðu-pÞ: If the L types

sþ lþ 2dðuÞ of Qðlþ 2dðuÞÞ %u-k
all have clðsÞ40 for sa0; then Qðlþ 2dðuÞÞ ¼

N 0ðlþ 2dðuÞÞ; and the Shapovalov form on p0ðlÞ exhibits p0ðlÞ as infinitesimally

unitary.

Among the universal covering groups of indefinite orthogonal groups, the ones
that satisfy the assumptions of [GrW1,GrW2] concerning a quaternionic structure
are the covers of SOð4; nÞ0 with nX3: For n even, the representations studied by

Gross and Wallach are p02; p
0
1; and p00: The representations p

0
2 are studied by means of

Theorem 5.2; p01 and p00; except for p
0
0 in SOð4; 4Þ0; are studied by means of Theorem

5.3. The one exceptional representation p00 in SOð4; 4Þ0 requires a slight refinement of
Theorem 5.3 that we shall not bother to formulate. The results below for the
representations p0s of the universal covering group of SOð2m; 2l � 2mÞ0 with

2pmpl=2 will need the slight refinement only when s ¼ 0 and l ¼ 2m:

6. Inequalities, Part I

In this section we specialize our considerations to g0 ¼ soð2m; 2l � 2mÞ; using the
notation of Section 1. Then ps ¼ pðlsÞ and p0s ¼ p0ðlsÞ with ls as in (1.6). The paper

[EPWW] proved that p0s ¼ ps for sXm and that, for these s’s, the Shapovalov form

exhibits p0s as infinitesimally unitary. The proof in [EPWW] was based on techniques

that we did not discuss in detail in Section 4.
A different proof of this theorem can be based on Theorem 5.2, and two lemmas in

this different proof are needed for our work with p0s when som: Put

csðsÞ ¼ cls
ðsÞ ð6:1Þ

with cls
ðsÞ as in (5.2). According to Theorem 5.2, the results about ps for sXm will

follow if it is shown that every L type sa0 in Sðu-pÞ has csðsÞ40: The two lemmas
in this section establish that inequality and something more.
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Following the notation in (1.9), we write L types s as s ¼ ðx; nÞ; where x ¼
ða1;y; amÞ is a UðmÞ type and n ¼ ðb1;y; bm; 0;y; 0Þ is an SOð2l � 2mÞ
type. If l ¼ 2m; then bm will be the last entry of n; and it can in principle be
negative when n is dominant; the cases with bm negative can be handled
by a simple trick, and we return to them in Section 8. For now, we shall assume
that bmX0:
With bm understood to be X0; define

A ¼
Xm

j¼1
aj and B ¼

Xm

j¼1
bj: ð6:2Þ

The quadratic form j 
 j2 for these groups is given by the sum of squares of the
entries, as in (1.5).

Lemma 6.1.
Pm

j¼1 ½ðbj þ l � m � jÞ2 � ðl � m � jÞ2	XmB þ 2ðl � 2mÞB:

Proof. The left-hand side is

¼
X

b2j þ 2
X

bjðl � m � jÞ

¼
X

ðb2j � bjÞ � B þ 2
X

bjðm þ 1� jÞ þ 2
X

bjðl � 2mÞ: ð6:3Þ

In the third term of the right-hand side of (6.3), when jom þ 1� j;

bjðm þ 1� jÞ þ bmþ1�j j ¼ 1
2 ðbj þ bmþ1�jÞðm þ 1Þ þ 1

2 ðbj � bmþ1�jÞðm þ 1� 2jÞ

X
1
2
ðbj þ bmþ1�jÞðm þ 1Þ: ð6:4Þ

If m is odd, so that there is a middle term with j ¼ m þ 1� j; then that j has

bjðm þ 1� jÞ ¼ 1
2

bjðm þ 1Þ: ð6:5Þ

Summing over j in (6.4) and (6.5), we obtain

2
X

bjðm þ 1� jÞXðm þ 1ÞB:

Thus (6.3) is

X

X
ðb2j � bjÞ þ mB þ 2ðl � 2mÞBXmB þ 2ðl � 2mÞB;

the final inequality holding since b2j Xbj for all j:
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Lemma 6.2. Assume ðx; nÞað0; 0Þ: Define r by the condition that ar40 and

arþ1 ¼ ? ¼ am ¼ 0: Then

jsþ ls þ dj2 � jls þ dj2

X

Xr

j¼1
ða2j � ajÞ þ ðs � rÞA þ

X
1puovpr

ðau � avÞ þ mB þ 2ðl � 2mÞB;

and the right-hand side is 40 if sXr:

Remark. In particular the right-hand side is 40 if sXm: In this case Theorem 5.2 is
applicable, showing for sXm that ps ¼ p0s and that the Shapovalov form

on p0s exhibits p0s as infinitesimally unitary. In the terminology we are

using concerning orbits, Proposition 4.4 therefore says that p0s is associated to

Oðm;mÞ if sXm:

Proof. Using Lemma 6.1, we have

jsþ ls þ dj2 � jls þ dj2

¼
Xm

j¼1
aj � j þ 1

2
s

� �2� �j þ 1
2

s
� �2h i

þ
Xm

j¼1
½ðbj þ l � m � jÞ2 � ðl � m � jÞ2	

X

Xm

j¼1
aj � j þ 1

2
s

� �2� �j þ 1
2

s
� �2h i

þ mB þ 2ðl � 2mÞB

¼
Xr

j¼1
aj � j þ 1

2
s

� �2� �j þ 1
2

s
� �2h i

þ mB þ 2ðl � 2mÞB

¼
Xr

j¼1
a2j þ

Xr

j¼1
ajðs � 2jÞ þ mB þ 2ðl � 2mÞB

¼
Xr

j¼1
ða2j � ajÞ þ

Xr

j¼1
ajs � r

Xr

j¼1
aj þ

Xr

j¼1
ðr þ 1� 2jÞaj þ mB þ 2ðl � 2mÞB

¼
Xr

j¼1
ða2j � ajÞ þ ðs � rÞ

Xr

j¼1
aj þ

X
1puovpr

ðau � avÞ þ mB þ 2ðl � 2mÞB:

When sXr; each term on the right-hand side is X0: For the right-hand side to be 0,

we must have B ¼ 0 and a2j ¼ aj for all j: From B ¼ 0; we obtain n ¼ 0: Then

Theorem 1.2 implies that x has to be even. Since a2j ¼ aj for all j; we obtain x ¼ 0:

Since the hypotheses exclude ðx; nÞ ¼ ð0; 0Þ; the argument is complete.
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7. Inequalities, Part II

In this section we continue with the notation of Section 6, using the notation of
Section 1 specialized to g0 ¼ soð2m; 2ðl � mÞÞ: Then ps ¼ pðlsÞ and p0s ¼ p0ðlsÞ with
ls as in (1.6).
Our goal in this section and the next is to use the Gross–Wallach theory to prove

that the Shapovalov form exhibits p0s as infinitesimally unitary for 0psom: The
main new step in the proof of unitarity is Theorem 7.1 below. We shall prove
Theorem 7.1a in this section and Theorem 7.1b in Section 8. Afterward, still in
Section 8, we shall apply the Gross–Wallach theory, particularly Theorem 5.3, and
deduce the first consequences.
As in Section 6 we write L types in Sðu-pÞ as s ¼ ðx; nÞ with x and n as in (1.9).

We continue with csðsÞ as defined in (6.1), with the mth entry bm of n understood to
be X0; and with the sums A and B as defined in (6.2). Recall from Section 5 that Vs

is defined to be the isotypic subspace of Sðu-pÞ of type s: Put

ss ¼
Xsþ1
i¼1

2ei; 0

 !
for 0psom: ð7:1Þ

Theorem 1.2 and fact (1.10) show that ss occurs exactly once in Sðu-pÞ; and direct
calculation shows that csðssÞ ¼ 0:

Theorem 7.1. For g0 ¼ soð2m; 2l � 2mÞ with 2pmpl=2; suppose that 0psom: Let

s ¼ ðx; nÞað0; 0Þ be an L type occurring in Sðu-pÞ; and define t by 2t ¼ A � B:

(a) If ½a1=2	 þ?þ ½as=2	Xt; then csðsÞX0 with equality only if l ¼ 2m; s ¼ 0;
a1 ¼ ? ¼ am ¼ 1; and b1 ¼ ? ¼ bm ¼ 1:

(b) If ½a1=2	 þ?þ ½as=2	ot; then Vs is contained in Vss Sðu-pÞ:

Remark. The number t in the theorem is an integer X0 by (1.10) and Theorem 1.2.
The function ½
	 is the greatest-integer function.

Lemma 7.2. Assume sa0: Define r by the condition that ar40 and arþ1 ¼ ? ¼
am ¼ 0: Then

csðsÞ ¼ jsþ ls þ dj2 � jls þ dj2X
Xr

j¼1
ðajs � 2tÞ þ

X
1puovpr

ðau � avÞ

with equality only if l ¼ 2m; r ¼ m; a1 ¼ ? ¼ am ¼ 1; and b1 ¼ ? ¼ bm ¼ 1:

Proof. Using A ¼ B þ 2t; we have

ðs � rÞA þ mB ¼ sA � rB � 2tr þ mB ¼
Xr

j¼1
ðajs � 2tÞ þ ðm � rÞB:
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Substitution into Lemma 6.2 gives

jsþ ls þ dj2 � jls þ dj2

X

Xr

j¼1
ða2j � ajÞ þ

Xr

j¼1
ðajs � 2tÞ þ

X
1puovpr

ðau � avÞ

þ ðm � rÞB þ 2ðl � 2mÞB

X

Xr

j¼1
ðajs � 2tÞ þ

X
1puovpr

ðau � avÞ:

For equality to hold at the last step, we must have a2j ¼ aj for all j and also

ðm � rÞB þ 2ðl � 2mÞB ¼ 0: Thus aj ¼ 1 or 0 for each j: In this case, (1.10) and

Theorem 1.2 show that aj ¼ bj for each j; hence Ba0 unless s ¼ 0: Since we are

assuming that sa0; we conclude from ðm � rÞB þ 2ðl � 2mÞB ¼ 0 that m � r ¼ 0
and l � 2m ¼ 0: The lemma follows.

Lemma 7.3. Define r as in Lemma 7.2. If sor and ½a1=2	 þ?þ ½as=2	Xt; then

Xr

j¼1
ðajs � 2tÞ þ

X
1puovpr

ðau � avÞX0:

Equality holds only if no aj equals 1 or else all au are even for 1pups:

Proof. Define r0 by the conditions that ajX2 for 1pjpr0 and aj ¼ 1 for r0 þ 1pjpr:

We distinguish two cases, r0ps and sor0:
First suppose r0ps: Then we have

Xr

j¼1
ðajs � 2tÞ ¼

Xr0

j¼1
ðajs � 2tÞ þ

Xr

j¼r0þ1
ðs � 2tÞ ¼

Xr0

j¼1
ðajs � 2tÞ þ ðr � r0Þðs � 2tÞ

and

X
1puovpr

ðau � avÞX
Xr0

u¼1

Xr

v¼r0þ1
ðau � avÞ ¼ ðr � r0Þ

Xr0

u¼1
ðau � 1Þ

¼ ðr � r0Þ
Xs

u¼1
ðau � 1Þ

X ðr � r0Þ
Xs

u¼1
2½au=2	 � s

 !

X ðr � r0Þð2t � sÞ;

with equality at the next-to-last step only if r0 ¼ r or else all au are even for 1pups:
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Adding we obtain

Xr

j¼1
ðajs � 2tÞ þ

X
1puovpr

ðau � avÞX
Xr0

j¼1
ðajs � 2tÞ

¼ s
Xr0

j¼1
aj � 2r0t

X s
Xr0

j¼1
aj � r0

Xs

j¼1
2½aj=2	

¼ s
Xr0

j¼1
aj � r0

Xr0

j¼1
2½aj=2	

X s
Xr0

j¼1
aj � r0

Xr0

j¼1
aj

¼ðs � r0Þ
Xr0

j¼1
aj

X 0

since r0ps: Again equality holds only if r0 ¼ r or else all au are even for 1pups:
Second suppose sor0: Then we still have

Xr

j¼1
ðajs � 2tÞ ¼

Xr0

j¼1
ðajs � 2tÞ þ

Xr

j¼r0þ1
ðs � 2tÞ ¼

Xr0

j¼1
ðajs � 2tÞ þ ðr � r0Þðs � 2tÞ;

and this time we have

X
1puovpr

ðau � avÞX
Xr0

u¼1

Xr

v¼r0þ1
ðau � avÞ þ

Xs

u¼1

Xr0

v¼sþ1
ðau � avÞ

¼ ðr � r0Þ
Xr0

u¼1
ðau � 1Þ þ ðr0 � sÞ

Xs

u¼1
au � s

Xr0

u¼sþ1
au

X ðr � r0Þ
Xs

u¼1
ðau � 1Þ þ ðr0 � sÞ

Xs

u¼1
au � s

Xr0

u¼sþ1
au

X ðr � r0Þ
Xs

u¼1
2½au=2	 � s

 !
þ ðr0 � sÞ

Xs

u¼1
au � s

Xr0

u¼sþ1
au

X ðr � r0Þð2t � sÞ þ ðr0 � sÞ
Xs

u¼1
au � s

Xr0

u¼sþ1
au;

with equality at the next-to-last step only if r0 ¼ r or else all au are even for 1pups:
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Adding, we obtain

Xr

j¼1
ðajs � 2tÞ þ

X
1puovpr

ðau � avÞ

X

Xr0

j¼1
ðajs � 2tÞ þ ðr0 � sÞ

Xs

j¼1
aj � s

Xr0

j¼sþ1
aj

Xs
Xr0

j¼1
aj � r0

Xs

j¼1
2½aj=2	 þ ðr0 � sÞ

Xs

j¼1
aj � s

Xr0

j¼sþ1
aj

Xs
Xs

j¼1
aj þ s

Xr0

j¼sþ1
aj � r0

Xs

j¼1
aj þ ðr0 � sÞ

Xs

j¼1
aj � s

Xr0

j¼sþ1
aj

¼ 0;

with equality at the first X sign only if r0 ¼ r or else all au are even for 1pups: This
completes the proof.

Proof of Theorem 7.1(a). If sXr; then strict inequality holds in Theorem 7.1a as a
result of Lemma 6.2. If sor; then Lemmas 7.2 and 7.3 combine to give the inequality
with X in place. If equality holds with sor; then Lemma 7.2 says that l ¼ 2m;
a1 ¼ ? ¼ am ¼ 1; and b1 ¼ ? ¼ bm: From equality in Lemma 7.3, we conclude
that no aj equals 1 (which is false) or else that all au are even for 1pups: Since all au

are in fact odd, s must equal 0.

8. Unitarity

In this section we prove Theorem 7.1b concerning g0 ¼ soð2m; 2l � 2mÞ0; and we

use the Gross–Wallach theory to derive two consequences of the theorem. One
consequence is the unitarity of p0s for 0psom; and the other is a first description of

the K spectrum of p0s for these same values of s:

Proof of Theorem 7.1(b). We begin with some preliminary remarks. By (1.10) and
Theorem 1.2 every even nonnegative dominant integral m ¼ ðm1;y; mmÞ has the

property that ðm; 0Þ occurs with multiplicity one in Sðu-pÞ: That is, V ðm;0Þ is
irreducible. If m ¼ m0 þ m00 with m0 and m00 nonnegative dominant integral and even,

then the product in Sðu-pÞ of a nonzero highest weight vector in V ðm0;0Þ and a

nonzero highest weight vector in V ðm00;0Þ is a nonzero highest weight vector in V ðm;0Þ:

Since V ðm;0Þ is irreducible, it follows that

V ðm;0ÞDV ðm0;0ÞV ðm00;0Þ: ð8:1Þ
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Inclusion (8.1) leads one to consider the spaces Vs0 ;y;Vsm�1 ; which are special

instances of V ðm;0Þ; here s0;y; sm�1 are as in (7.1). The form of the highest weight
vectors of these spaces is given in Proposition 3.2 of [Kn4] as certain determinants

whose entries are in S2ðu-pÞ; and, in combination with the expansion-by-cofactors
formula, it implies inclusions

Vs1DVs0S2ðu-pÞ; Vs2DVs1S2ðu-pÞ;y; Vsm�1DVsm�2S2ðu-pÞ: ð8:2Þ

Suppose that m has depth r; so that m ¼ ðm1;y; mr; 0;y; 0Þ: Then we can write

ðm; 0Þ ¼ 1
2
ðm1 � m2Þs0 þ?þ 1

2
ðmr�1 � mrÞsr�2 þ 1

2
mrsr�1:

Since mr40; iteration of (8.1) and use of (8.2) yields

V ðm;0ÞD Vs0?Vs0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
1
2
ðm1�m2Þ times

? Vsr�2?Vsr�2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
1
2
ðmr�1�mrÞ times

Vsr�1 Vsr�1?Vsr�1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
1
2
mr�1 times

DVsr�1Sðu-pÞ; where r ¼ depth m: ð8:3Þ

Returning to the proof of the theorem, suppose that s ¼ ðx; nÞað0; 0Þ occurs in
Sðu-pÞ and has the property that ½a1=2	 þ?þ ½as=2	ot: By (1.9), (1.10), and
Theorem 1.2, the multiplicity of s in Sðu-pÞ equals the sum of the Littlewood–

Richardson coefficients cxmn over all even nonnegative dominant integral m such

jjxjj ¼ jjmjj þ jjnjj; x� m is nonnegative, and m has depth pm: For such a m; write
m ¼ ðm1;y; mmÞ: Then 2t ¼ A � B ¼ jjxjj � jjnjj ¼ jjmjj: Since x� m is nonnegative,
we have mipai for 1pipm; and since m is even, we have mip2½ai=2	 for each i:
The given condition ½a1=2	 þ?þ ½as=2	ot therefore implies that any m with

cxmn40 has

m1 þ?þ msp2½a1=2	 þ?þ 2½as=2	o2t ¼ jjmjj:

This condition implies that

msþ140 if cxmn40:

That is, the depth r of m satisfies s þ 1pr: Combining this conclusion with (8.3) and
(8.2), we obtain

V ðm;0ÞDVsr�1Sðu-pÞDVss Sðu-pÞ if cxmn40: ð8:4Þ

We now appeal to Theorem 0.1 of [Kn4], which implies that

V ðx;nÞDV ðn;nÞ
X

m with cxm;n40;
m even

V ðm;0Þ: ð8:5Þ
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Combining (8.4) and (8.5), we obtain

V ðx;nÞDVss Sðu-pÞ;

and the proof is complete.

Before applying Theorem 7.1 to the unitarity problem, let us return to the fact that
when l ¼ 2m; an L type s ¼ ðx; nÞ with n ¼ ðb1;y; bmÞ that occurs in Sðu-pÞ need
not have bmX0: We introduce the notation

n# ¼ ðb1;y; bm�1;�bmÞ and jnj ¼ ðb1;y; bm�1; jbmjÞ: ð8:6Þ

This jnj cannot be squared, and thus there should be no confusion with the definition
of jnj2 as a sum of squares. Restriction from Uð2mÞ to SOð2mÞ of the representation
x always yields the SOð2mÞ types n and n# with the same multiplicity because one can
restrict first to Oð2mÞ and then to SOð2mÞ: Theorem 1.2 always applies to ðx; jnjÞ;
and although n itself need not be nonnegative, we can always conclude that the
multiplicity with which the irreducible representation of SOð2mÞ with highest weight
n appears in the restriction to SOð2mÞ of the irreducible representation of Uð2mÞ
with highest weight x is equal to the sum over all nonnegative even dominant integral

forms m of the Littlewood–Richardson coefficients cxm;jnj:

The multiplicity formula (1.10) for Sðu-pÞ remains valid whether or not n is

nonnegative, and thus V ðx;nÞ has the same dimension as V ðx;n#Þ: In fact, we can pass

from V ðx;nÞ to V ðx;n#Þ by

extending the vector-space isomorphism X/X diagð1;y; 1;�1Þ
of u-p with itself to an algebra automorphism of Sðu-pÞ:

ð8:7Þ

Finally it is immediate from (6.1) and (5.2) that

csðnÞ ¼ csðn#Þ ¼ csðjnjÞ: ð8:8Þ

If we redefine B as
Pm

j¼1jbj j; then Theorem 7.1 remains true for l ¼ 2m whether or

not n is nonnegative. In fact, if n is nonnegative, we know the theorem to be true. To

transfer the conclusion for n into one for n#; we have only to use (8.8) to obtain (a) in
Theorem 7.1 and then (8.7) to obtain (b).

Theorem 8.1. For g0 ¼ soð2m; 2l � 2mÞ with 2pmpl=2; if 0psom but

ðl; sÞað2m; 0Þ; then p0s is infinitesimally unitary and the K spectrum of p0s is given by

the sum of Ls ¼ ls þ 2dðu-pÞ and the L spectrum of Sðu-pÞ=Vss Sðu-pÞ:

Proof. First assume that l42m: We have csðssÞ ¼ 0; and Vss lies in Sdðu-pÞ for
d ¼ 2ðs þ 1Þ: Suppose that s occurs in Sdðu-pÞ for some d and that csðsÞp0: Then
Theorem 7.1 shows that VsDVss Sðu-pÞ; and it follows that dX2ðs þ 1Þ: Thus the
hypotheses of Theorem 5.3 are satisfied for *s ¼ ss:
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That theorem says that if Qðls þ 2dðuÞÞ denotes the quotient of Nðls þ 2dðuÞÞ by
the smallest ðg;LÞ submodule containing all %u-k invariant vectors of L type

ss þ ls þ 2dðuÞ; then the L types of Qðls þ 2dðuÞÞ %u-k; with their multiplicities, are
the sum of ls þ 2dðuÞ and the L types of Sðu-pÞ=Vss Sðu-pÞ:
Theorem 7.1 shows that the L types of this kind are limited to at most those s’s

occurring in Sðu-pÞ such that ½a1=2	 þ?þ ½as=2	Xt; and it shows further that,
apart from s ¼ ð0; 0Þ; these L types all have csðsÞ40: From the remaining part of
Theorem 5.3, it follows that Qðls þ 2dðuÞÞ ¼ N 0ðls þ 2dðuÞÞ and that the Shapova-
lov form on p0s exhibits p

0
s as infinitesimally unitary.

Since Nðlþ 2dðuÞÞ is semisimple (Lemma 4.3), we know that the K types of p0s are
a subset of the K types of ps and in particular are the sum of �2dðu-kÞ and the L

types of N 0ðlþ 2dðuÞÞ: Consequently, they are the sum of Ls and the L types of
Sðu-pÞ=Vss Sðu-pÞ:
Now assume that l ¼ 2m but that sa0: The new ingredient is that n ¼ ðb1;y; bmÞ

can have bmo0: If we take into account the remarks concerning n and n# that
precede the present theorem, then we see that Theorem 7.1 applies here and that the
above part of the present proof goes through.

Theorem 8.2. For g0 ¼ soð2m; 2mÞ with 2pm; p00 is infinitesimally unitary and the K

spectrum of p00 is given by the sum of L0 ¼ l0 þ 2dðu-pÞ and the L spectrum of

Sðu-pÞ=ðVs0 þ V ð1;1Þ þ V ð1;1#ÞÞSðu-pÞ;

where 1 ¼ ð1;y; 1Þ:

Proof. As in the proof of Theorem 8.1, but with l ¼ 2m and with s taken to be 0; we
see that the hypotheses of Theorem 5.3 are satisfied for *s ¼ s0:
That theorem says that if Qðl0 þ 2dðuÞÞ denotes the quotient of Nðl0 þ 2dðuÞÞ by

the smallest ðg;LÞ submodule containing all %u-k invariant vectors of L type

s0 þ l0 þ 2dðuÞ; then the L types of Qðl0 þ 2dðuÞÞ %u-k; with their multiplicities, are
the sum of l0 þ 2dðuÞ and the L types of Sðu-pÞ=Vs0Sðu-pÞ:
Theorem 7.1, as amended before the statement of Theorem 8.1, shows that the L

types of this kind are limited to at most those s occurring in Sðu-pÞ such that t ¼ 0;
and it shows further that, apart from

s ¼ ð0; 0Þ; s ¼ ð1; 1Þ; and s ¼ ð1; 1#Þ;

these L types all have c0ðsÞ40: For the two exceptional s’s, we have c0ðð1; 1ÞÞ ¼ 0

and c0ðð1; 1#ÞÞ ¼ 0:
Since there are exceptional s’s, the remaining part of Theorem 5.3 does not apply.

But a slight refinement of the theorem, which allows for a second iteration of the
quotient process and which we shall not state, applies and leads us immediately to
the conclusion of the theorem.
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9. K spectrum

In this section we continue with the notation of Sections 6–8 concerning the Lie
algebra g0 ¼ soð2m; 2l � 2mÞ for 2pmpl=2: Theorems 8.1 and 8.2 gave us a first

formula for the K spectrum of p0s when 0psom; showing that the K spectrum, with

multiplicities, is the sum of the minimal K type parameter Ls and the L spectrum of
either

Sðu-pÞ=Vss Sðu-pÞ ð9:1aÞ

or

Sðu-pÞ=ðVs0 þ V ð1;1Þ þ V ð1;1#ÞÞSðu-pÞ: ð9:1bÞ

Our goal in this section is to improve on these results by identifying the L spectrum
of each quotient (9.1) with the L spectrum of the dual coordinate ring of a suitable

orbit closure Oðp; qÞcl: To make this identification, we shall prove an ostensibly more
difficult result, which gives an explicit formula for the multiplicity of each L type
of (9.1) in terms of Littlewood–Richardson coefficients. The main results are
Theorems 9.4 and 9.5.
This section will make extensive use of material from [Kn4]. What is needed from

that paper is not only isolated results but also the overall approach. We shall quote
specific results from [Kn4] as we need them.
Lemma 1.1 above identified Sðu-pÞ with the space Mm;2l�2m of rectangular

complex matrices, and we shall take this identification for granted in this section.
Typically we shall continue to write the space of symmetric tensors as Sðu-pÞ even
though it might sometimes better be viewed as SðMm;2l�2mÞ:
The mapping bar of (1.2) gave us a canonical conjugate-linear algebra

isomorphism of Sðu-pÞ onto Pðu-pÞ: An effect of our isomorphism of u-p with
Mm;2l�2m is to pick out a real form of u-p; namely the real vector space of members
of u-p that correspond to real matrices. From this isomorphism we constructed in
Section 3 a noncanonical complex-linear algebra isomorphism xð
Þ of Sðu-pÞ onto
Pðu-pÞ: For getting at dual coordinate rings, we shall need to be able to work with
the function bar. This function seems rather difficult to compute directly, and we
shall instead compute it indirectly with the aid of xð
Þ: We therefore review the
construction in Section 3 of xð
Þ briefly.
The rows of Mm;2l�2m are numbered 1;y;m; and the columns are

numbered 1;y; l � m; 10;yðl � mÞ0: For X in Mm;2l�2n; we let xabðXÞ and

xab0 ðXÞ; with 1papm and 1pbpl � m; denote the entry functions on the matrices

in u-p: Each of these is a member of the space P1ðu-pÞ of homogeneous first-order
polynomials on u-p: Define Xab and Xab0 ; for 1papm and 1pbpl � m; to be
matrices that are 1 in the indicated entries and are 0 elsewhere. For future reference,
we set

Zab ¼ Xab � iXab0 for 1papm and 1pbpl � m: ð9:2Þ
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We define xð
Þ on a basis of matrices by xðXabÞ ¼ xab and xðXab0 Þ ¼ xab0 ; and we

extend xð
Þ to a complex-vector-space isomorphism of u-p onto P1ðu-pÞ: The
further extension of xð
Þ to Sðu-pÞ is our complex-linear algebra isomorphism of
Sðu-pÞ onto Pðu-pÞ:
Of particular interest is the effect of xð
Þ on the ‘‘dot products’’ in Section 3,

namely that X/xðXa 
 XbÞðXÞ; for 1papm and 1pbpm; picks out the ordinary
dot product of the ath and bth rows of the matrix X : This is the same as the ða; bÞth
entry of the matrix product XX tr:
The presence of a real form of u-p allowed us also to define in Section 3 a

complex conjugation mapping ð
Þconj on u-p; regarded as a space of complex
matrices, and to extend it to a conjugate-linear algebra automorphism of Sðu-pÞ
and Pðu-pÞ: It was shown in Proposition 3.3 that bar can be computed, up to a

nonzero global constant, as xð
Þ followed by ð
Þconj: As far as bar is concerned, we
shall really be interested only in its effect on vector spaces, and this global constant
will play no role. Thus we shall work with the global constant as if it is 1. We can
then compute bar by means of the easier function xð
Þ whenever we have closure

under ð
Þconj:
One technique of [Kn4] was to concentrate especially on matrices X with a certain

triangular property. The following definition quantifies a version of this triangular
property.
Call a member X of Mm;2l�2m quasi-upper triangular if it has the following

properties:

(a) xbbðX Þ ¼ 1 for 1pbpm;
(b) xbb0 ðXÞa� i for 1pbpm;
(c) xabðX Þ ¼ 0 for a4b;
(d) xab0 ðXÞ ¼ 0 for aab;
(e) xabðX Þ ¼ 0 if mobpl � m:

Condition (b) is arranged so that if Zpp is as in (9.2), then xðZppÞðX Þ cannot be 0
when X is quasi-upper triangular. Every quasi-upper triangular matrix X has rank
m: An example of a quasi-upper triangular matrix is given in (3.1) when v ¼ 0:

Lemma 9.1. Let T ¼ ftabg be any m-by-m symmetric matrix over C: Then there exists

a quasi-upper triangular matrix X in Mm;2l�2m for which the matrix product XX tr

equals T :

Proof. We define xabðX Þ and xab0 ðX Þ inductively downward on a and, for each fixed
a; inductively downward on b for apbpm: The base case of the induction is a ¼ m;
and we take, partly as required by (a) in the definition above,

xmmðXÞ ¼ 1 and x2
mm0 ðXÞ ¼ tmm � 1:

For xmm0 ðXÞ; we use either square root except that we disallow xmm0 ðXÞ ¼ �i

because of (b) in the definition of quasi-upper triangular. Suppose inductively on a
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that we have defined row indices 4a: Define inductively on b

xamðXÞ ¼ tam;

xa;m�1ðXÞ ¼ ta;m�1 � xamðXÞxm�1;mðXÞ;
^

xabðXÞ ¼ tab � xamðXÞxbmðX Þ �?� xa;bþ1ðXÞxb;bþ1ðX Þ for aobom;

and then put

xaaðX Þ ¼ 1 and x2
aa0 ðXÞ ¼ taa � 1� x2

a;aþ1ðXÞ �?� x2
amðXÞ;

avoiding �i as a choice for xaa0 ðXÞ in order that (b) will be satisfied. This completes
the inductive definition of the entries of X that might be nonzero, and the entries of
X specified as 0 in (c)–(e) of the definition of quasi-upper triangular are taken to be
0. The resulting X has the required properties.

Let D ¼ fDabg1papbpm be an ðm
2
Þ tuple of nonnegative integers, and put jjDjj ¼P

apb Dab: The paper [Kn4] made extensive use of the members PðDÞ of Sðu-pÞ
defined by

PðDÞ ¼
Y
apb

ðXa 
 XbÞDab : ð9:3Þ

The element PðDÞ lies in the homogeneous component Sdðu-pÞ of Sðu-pÞ with
d ¼ 2jjDjj: Proposition 3.4 of [Kn4] shows that the elements PðDÞ with 2jjDjj equal
to a fixed d span the space of SOð2l � 2mÞ invariant members of Sdðu-pÞ and that

this span coincides with the direct sum of all V ðm;0Þ for even nonnegative dominant

integral m with jjmjj ¼ d; the spaces V ðm;0Þ each being of multiplicity one.

Lemma 9.2. If the polynomial X/xð
P

aDPðDÞÞðXÞ vanishes on all quasi-upper

triangular XAMm;2l�2m with rank XX tr ¼ s; then it vanishes everywhere on Oðm; sÞ:

Proof. The value at X of the polynomial function X/xðXa 
 XbÞðXÞ depends only
on the entries of the matrix product XX tr; and hence the same thing is true of the
value at X of X/xð

P
aDPðDÞÞðXÞ: Let X 0AOðm; sÞ be given, and use Lemma 9.1 to

choose a quasi-upper triangular matrix X 00AMm;2l�2m such that the matrix products

X 0X 0tr and X 00X 00tr are equal. Since any quasi-upper triangular matrix has rank m; X 00

lies in Oðm; sÞ: Also xð
P

aDPðDÞÞðX 0Þ ¼ xð
P

aDPðDÞÞðX 00Þ: The lemma follows.

The key tool of [Kn4] was a certain endomorphism j of Sðu-pÞ that extracted a
totally upper-triangular part. Define a linear mapping j of Mm;2l�2m to itself by its
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values on a basis:

jðXabÞ ¼
Xab if apb;

0 if a4b;

�

jðXab0 Þ ¼
Xab0 if a ¼ b;

0 if aab:

� ð9:4Þ

Then extend j; without changing its name, to an algebra endomorphism
of Sðu-pÞ sending 1 to 1. An important property of j for our current purposes
is that

jðXÞ ¼ X if X is quasi-upper triangular in u-p: ð9:5Þ

Lemma 9.3. If M is in Sðu-pÞ and X is in u-p; then

xðMÞðjðX ÞÞ ¼ xðjðMÞÞðX Þ:

Proof. If M ¼ M1M2; then

xðMÞðjðX ÞÞ ¼ xðM1M2ÞðjðX ÞÞ ¼ xðM1ÞðjðX ÞÞ xðM2ÞðjðX ÞÞ

and

xðjðMÞÞðXÞ ¼ xðjðM1M2ÞÞðXÞ ¼ xðjðM1ÞjðM2ÞÞðXÞ

¼ xðjðM1ÞÞðX Þ xðjðM2ÞÞðX Þ:

It follows that there is no loss in generality in assuming that M is homogeneous of
degree 1. Since both sides of the desired formula are bilinear in M and X ; we may
assume that M is Xab or Xab0 and that X is Xcd or Xcd 0 : In the two cases (i) M ¼ Xab

and X ¼ Xcd 0 and (ii) M ¼ Xab0 and X ¼ Xcd ; xðMÞðjðXÞÞ and xðjðMÞÞðXÞ are
both 0.
Case (iii) is that M ¼ Xab and X ¼ Xcd : In this case we find that

xðXabÞðjðXcdÞÞ ¼
xabðXcdÞ if cpd

0 if c4d

� �
¼

dacdbd if cpd;

0 if not;

�

whereas

xðjðXabÞÞðXcdÞ ¼
xðXabÞðXcdÞ if apb;

0 if a4b

� �
¼

dacdbd if apb;

0 if not:

�

If dacdbd ¼ 1; then a ¼ c and b ¼ d; so that apb if and only if cpd: Our two
expressions are thus equal in this case. If dacdbd ¼ 0; then both expressions are 0 and
we again have equality. This completes case (iii).
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Case (iv) is that M ¼ Xab0 and X ¼ Xcd 0 : In this case we find that

xðXab0 ÞðjðXcd 0 ÞÞ ¼
xab0 ðXcd 0 Þ if c ¼ d

0 if cad

� �
¼

dacdbd if c ¼ d;

0 if not;

�

whereas

xðjðXab0 ÞÞðXcd 0 Þ ¼
xðXab0 ÞðXcd 0 Þ if a ¼ b

0 if aab

� �
¼

dacdbd if a ¼ b;

0 if not:

�

If dacdbd ¼ 1; then a ¼ c and b ¼ d; so that a ¼ b if and only if c ¼ d: Our two
expressions are thus equal in this case. If dacdbd ¼ 0; then both expressions are 0 and
we again have equality. This completes case (iv).

Theorem 9.4. For g0 ¼ soð2m; 2l � 2mÞ with 2pmpl=2; if 0psom but

ðl; sÞað2m; 0Þ; then

(a) Oðm; sÞ is the locus of common zeros of the ideal in Pðu-pÞ that corresponds to

the ideal Vss Sðu-pÞ in Sðu-pÞ under bar,

(b) the ideal Vss Sðu-pÞ is prime in Sðu-pÞ; and therefore RðOðm; sÞclÞ equals

Sðu-pÞ=Vss Sðu-pÞ;
(c) the multiplicity of the L type ðx; nÞ in RðOðm; sÞclÞ is

P
mcxm;jnj; the sum being over

all even nonnegative dominant integral m for UðmÞ such that msþ1 ¼ ? ¼ mm ¼ 0:

Here cxm;jnj is the Littlewood–Richardson coefficient for multiplicities in a tensor

product for UðmÞ:

Remark. In view of Theorem 8.1, conclusion (b) says for 0psom and ðl; sÞað2m; 0Þ
that p0s is associated to the orbit Oðm; sÞ: The conclusion that Vss Sðu-pÞ is prime in

this case is not new; see Theorem 5.7 of [DeP].

Proof. First we prove (a). By Corollary 3.6 of [Kn4], the space Vss equals the linear
span of all ðs þ 1Þ-by-ðs þ 1Þ minors of detðfXa 
 Xbg1papm

1pbpm

Þ: Let us use the function

xð
Þ to set up the correspondence of ideals between Sðu-pÞ and Pðu-pÞ; checking
afterward that bar and xð
Þ yield the same result. Generators of the ideal in question
in Pðu-pÞ are then all polynomials X/detðfxðXia 
 XjbÞðXÞg1papsþ1

1pbpsþ1
Þ: These are

the ðs þ 1Þ-by-ðs þ 1Þ minors of the matrix XX tr; and their common locus of zeros is

the set of all XAMm;2l�2m for which rankðXX trÞps; i.e., the union of all Oðp; qÞ with
0pqpminðs; pÞ: On the other hand, the zero locus contains Oðm; sÞ and is a union of
orbits. Adjusting matrix (3.1) for q ¼ s and v ¼ 0 by making some of the nonzero
entries tend to 0 in a suitable fashion, we see that the closure of Oðm; sÞ contains all
orbits Oðp; qÞ with 0pqpminðs; pÞ: Thus xðVss Sðu-pÞÞ has Oðm; sÞcl as its common
locus of zeros. The use of xð
Þ in place of bar was legitimate because xðVss Sðu-pÞÞ is
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closed under complex conjugation; specifically the alternating tensors that generate
Vss take real values on real matrices. This proves (a).
The part of the proof just completed identifies the zero locus of the ideal

xðVss Sðu-pÞÞ in Pðu-pÞ as Oðm; sÞcl: Let I be the ideal of all polynomials vanishing

on Oðm; sÞcl; and let J ¼ bar�1ðIÞ be the corresponding ideal of Sðu-pÞ: From the
proof just completed, we know that I ¼ xðJÞ:
We turn to (b) and (c). Fix an L type ðx; nÞ: First we show that

the multiplicity of ðx; nÞ in Vss Sðu-pÞ is at least
P
m

cxm;jnj;

the sum being over all even nonnegative dominant integral

m for UðmÞ such that msþ140:

ð9:6Þ

Then we show that

the multiplicity of ðx; nÞ in J is at most
P
m

cxm;jnj;

the sum being over the same m’s as in ð9:6Þ:
ð9:7Þ

Since the multiplicities in question are finite and since the multiplicity in (9.6) has to
be p the multiplicity in (9.7), it follows that J ¼ Vss Sðu-pÞ and that

ðx; nÞ has multiplicity in J equal to
P
m

cxm;jnj; the sum being over all

even nonnegative dominant integral m for UðmÞ such that msþ140:
ð9:8Þ

The zero locus in question, namely Oðm; sÞcl; is the closure of an orbit of a connected
complex Lie group acting holomorphically; it follows that Oðm; sÞcl is an irreducible
variety. Therefore J is prime. Hence Vss Sðu-pÞ is prime. Modulo proofs of (9.6)
and (9.7), this proves (b). By (1.10) and Theorem 1.2,

the total multiplicity of the L type ðx; nÞ in Sðu-pÞ is equal toP
m

cxm;jnj; the sum being over all even nonnegative dominant

integral m for UðmÞ:

ð9:9Þ

Subtracting the multiplicity formula in (9.8) from the formula in (9.9), we obtain
conclusion (c).
Thus we are to prove (9.6) and (9.7). For (9.6) it is enough to handle n

nonnegative. We observe from (8.2) and (8.3) that V ðm;0Þ is contained in the ideal
Vss Sðu-pÞ whenever m is an even nonnegative dominant integral form for UðmÞ
such that msþ140: By Theorem 0.1 of [Kn4], we have

V ðx;nÞD
XM

m
V ðn;nÞV ðm;0Þ;
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the sum being over all even nonnegative dominant integral m for UðmÞ: The sum on
the right is direct, and therefore the multiplicity of the L type ðx; nÞ in Sðu-pÞ equals
the sum of the multiplicities for that L type in each product V ðn;nÞV ðm;0Þ: The

multiplicity for a particular product is just cxmn since Theorem 0.1 of [Kn4] shows

multiplication from V ðn;nÞ#V ðm;0Þ to V ðn;nÞV ðm;0Þ to be one-one. Since we have just

seen that a product V ðn;nÞV ðm;0Þ for which msþ1 is 40 is necessarily contained in

Vss Sðu-pÞ; the lower bound (9.6) on the multiplicity of ðx; nÞ in Vss Sðu-pÞ
follows.
Now consider (9.7). Again it is enough to handle n nonnegative. The multiplicity

of the L type ðx; nÞ in J equals the dimension of the space of highest weight vectors in

V ðx;nÞ such that the corresponding polynomial vanishes on Oðm; sÞ: Theorem 4.1 of
[Kn4] gives a fairly explicit formula for each highest weight vector fx;n of

type ðx; nÞ in the tensor product V n;n#
P

mV ðm;0Þ; and Theorem 0.1 of [Kn4] says

that, under the multiplication mapping M on Sðu-pÞ; this space of highest weight
vectors in the tensor product maps one-one onto the space of highest weight vectors

in V ðx;nÞ:
Suppose that Mðfx;nÞ is in J; i.e., that xðMðfx;nÞÞ vanishes on Oðm; sÞ; and

suppose that XAOðm; sÞ is quasi-upper triangular. The formula in Theorem 4.1 of
[Kn4] says that we can write

Mðfx;nÞ ¼ ZðnÞ
X

aDPðDÞ þ other terms; ð9:10Þ

where

jðZðnÞÞ ¼
Q
p

Z
np
pp; jðother termsÞ ¼ 0;

and
P

aDPðDÞa0 if fx;na0:
ð9:11Þ

Here j is the homomorphism of Sðu-pÞ into itself defined in (9.4). Since X is
quasi-upper triangular, (9.5) shows that jðX Þ ¼ X : The fact that X is in Oðm; sÞ then
implies that

0 ¼ xðMðfx;nÞÞðXÞ
¼ xðMðfx;nÞÞðjðX ÞÞ since jðXÞ ¼ X

¼ xðjðMðfx;nÞÞÞðX Þ by Lemma 9:3

¼ x
Q
p

Z
np
pp

 !
ðXÞ x j

P
aDPðDÞð Þð ÞðXÞ by ð9:10Þ and ð9:11Þ

¼
Q
p

ðxppðXÞ � ixpp0 ðX ÞÞnp x
P

aDPðDÞð ÞðjðXÞÞ by ð9:2Þ and Lemma 9:3

¼
Q
p

ðxppðXÞ � ixpp0 ðX ÞÞnp x
P

aDPðDÞð ÞðX Þ since jðXÞ ¼ X :
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The factor
Q

p ðxppðXÞ � xpp0 ðXÞÞnp is not zero since X is quasi-upper triangular, and

thus the function x
P

aDPðDÞð Þ vanishes at every quasi-upper triangular X in Oðm; sÞ:
By Lemma 9.2, the function xð

P
aDPðDÞÞ vanishes identically on Oðm; sÞ:

The element
P

aDPðDÞ is a member of
P

"V ðm;0Þ; the sum being over all even

nonnegative dominant integral m such that cxmna0: Any average of translates by L of

the function xð
P

aDPðDÞÞ has to vanish identically on Oðm; sÞ; and in particular the

projection operator corresponding to a single V ðm;0Þ; when applied to xð
P

aDPðDÞÞ;
has to give 0. We are interested in seeing what conditions are imposed on m by this
requirement.

Thus suppose that
P

aDPðDÞ is a nonzero vector of a single V ðm;0Þ and that

xð
P

aDPðDÞÞ vanishes identically on Oðm; sÞ: The subspace of members M of V ðm;0Þ

such that xðMÞ vanishes identically on Oðm; sÞ is stable under L; and we know from

(1.10) and Theorem 1.2 that V ðm;0Þ is irreducible. Consequently xðMÞ vanishes

identically on Oðm; sÞ for every M in V ðm;0Þ:
We apply this conclusion with M equal to a nonzero highest weight vector of

V ðm;0Þ: According to Proposition 3.2 of [Kn4], M has to be a nonzero multiple of

Ym
p¼1

det fXa 
 Xbg1papp
1pbpp

�  1
2
ðmp�mpþ1Þ

0
@

1
A:

Thus

Ym
p¼1

det fxðXa 
 XbÞðXÞg1papp
1pbpp

�  1
2
ðmp�mpþ1Þ

ð9:12Þ

has to vanish for all X in Oðm; sÞ: For X of the form

X ¼ ðdiagð1;y; 1; 1;y; 1Þ 0 diagð0;y; 0; i;y; iÞ 0Þ;

with m � s entries of i; the matrix whose upper left determinants figure into (9.12) is
diagð1;y; 1; 0;y; 0Þ; with s diagonal entries of 1. The determinant is 1 for p ¼
1; 2;y; s and is 0 for p4s: For that X ; we see that some mp has to 40 with p4s for

(9.12) to be 0, i.e., that msþ1 has to be 40: The upper bound (9.7) on the multiplicity

of the L type ðx; nÞ in J follows, and the proof of the theorem is complete.

Theorem 9.5. For g0 ¼ soð2m; 2mÞ with 2pm and 1 ¼ ð1;y; 1Þ;

(a) Oðm � 1; 0Þ is the locus of common zeros of the ideal in Pðu-pÞ that corresponds

to the ideal ðVs0 þ V ð1;1Þ þ V ð1;1#ÞÞSðu-pÞ in Sðu-pÞ under bar,

(b) the ideal ðVs0 þ V ð1;1Þ þ V ð1;1#ÞÞSðu-pÞ is prime in Sðu-pÞ; and therefore

RðOðm � 1; 0ÞclÞ equals Sðu-pÞ=ðVs0 þ V ð1;1Þ þ V ð1;1#ÞÞSðu-pÞ;
(c) the multiplicity of the L type ðx; nÞ in RðOðm � 1; 0ÞclÞ is 1 if x ¼ n with nm ¼ 0;

and it is 0 otherwise.
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Remark. In view of Theorem 8.2, conclusion (b) says for l ¼ 2m and s ¼ 0 that p00 is
associated to the orbit Oðm � 1; 0Þ:

Proof. If ðx; nÞ is an L type in the quotient

Sðu-pÞ=ðVs0 þ V ð1;1Þ þ V ð1;1#ÞÞSðu-pÞ; ð9:13Þ

it is already an L type in the quotient

Sðu-pÞ=Vs0Sðu-pÞ: ð9:14Þ

The same argument as for Theorem 9.4 shows that all the conclusions of that
theorem hold for ðl; sÞ ¼ ð2m; 0Þ except for the primeness of the ideal Vs0Sðu-pÞ:
Thus the multiplicity of the L type ðx; nÞ in (9.14) is

P
mcxm;jnj; the sum being over all

even nonnegative dominant integral m for UðmÞ such that m1 ¼ 0: The only

possibility is that m ¼ 0; and thus (1.10) and Theorem 1.2 show that n ¼ x or n ¼ x#:
So the decomposition of (9.14) under L is into all L types ðx; xÞ and ðx; x#Þ; each with
multiplicity one.

Put x ¼ ðx1;y; xmÞ: If xm40; then we can write x ¼ 1þ x0; where x0 ¼
ðx1 � 1;y; xm � 1Þ is nonnegative dominant integral for UðmÞ: The product of

highest weight vectors of V ð1;1Þ and V ðx0;x0Þ is a highest weight vector for V ðx;xÞ:

Since (1.10) and Theorem 1.2 show ðx; xÞ to have multiplicity one in V ðx;xÞ; it follows

that V ðx;xÞDV ð1;1ÞV ðx0;x0Þ: Consequently the L type ðx; xÞ does not occur in (9.13).

Similarly ðx; x#Þ does not occur. Thus the only L types that can occur in (9.13) are
the ones ðx; xÞ with xm ¼ 0; and they have multiplicity at most one.
Let us now prove (a). The locus of common zeros of the ideal in Pðu-pÞ

corresponding to Vs0Sðu-pÞ is Oðm; 0Þcl: Proposition 1.3 of [Kn4] shows that the

nonzero highest weight vectors of V ð1;1Þ are the nonzero multiples of

det fZabg1papm
1pbpm

�  
;

with Zab as in (9.2), and a similar argument shows that the nonzero highest weight

vectors of V ð1;1#Þ are the nonzero multiples of the same determinant except that for
b ¼ m we use

Z
conj
ab ¼ Xab þ iXab0

in place of Zab: Application of root vectors of soð2l � 2mÞ; using the formulas of

Section 1 of [Kn4], shows that V ð1;1Þ þ V ð1;1#Þ is spanned by all determinants

whose bth column consists of either Zab or Z
conj
ab0 ; the same one for all a: The

corresponding polynomials are the functions X/det xðZabÞðXÞ or xðZconj
ab ÞðXÞ

� �
;

and a few column operations readily show that these vanish simultaneously
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exactly when X has rank pm � 1: Therefore the locus of common zeros of the ideal
corresponding to

ðVs0 þ V ð1;1Þ þ V ð1;1#ÞÞSðu-pÞ

equals the closure of Oðm; 0Þ-
Sm�1

p¼0 Oðm � 1; pÞ; which equals the closure of

Oðm � 1; 0Þ:
Now we can prove (b) and (c). We have seen that the only possible L types in

(9.13), hence in RðOðm � 1; 0ÞclÞ; are the various ðx; xÞ with xm ¼ 0: For any such L

type, Proposition 1.4 of [Kn4] shows that the nonzero highest weight vectors of V ðx;xÞ

are the nonzero multiples of

Ym�1

p¼1
det fZabg1papp

1pbpp

�  xp�xpþ1

;

with Zab as in (9.2). The corresponding polynomial is

X/
Ym�1

p¼1
det fxabðX Þ � ixab0 ðXÞg1papp

1pbpp

�  xp�xpþ1

: ð9:15Þ

The m-by-2m matrix given in block form by

ðdiagð1;y; 1; 0Þ diagði;y; i; 0ÞÞ

is in Oðm � 1; 0Þ: If we take X in (9.15) to be this matrix, we obtain 2m�1 as the value
of (9.15). Thus the polynomial (9.15) does not vanish on Oðm � 1; 0Þ; and we see that
every L type ðx; xÞ with xm ¼ 0 occurs in RðOðm � 1; 0ÞclÞ: Then (b) and (c) follow,
and the proof of the theorem is complete.

10. Converse results

In this section we continue with the notation of Sections 6–8 concerning the Lie
algebra g0 ¼ soð2m; 2l � 2mÞ for 2pmpl=2: In the previous sections we have

established the unitarity of p0s for sX0 and identified the K spectrum completely. In

the present section we deal with so0: By (1.7) we then have 2ð2m � lÞpso0:

Proposition 10.1. For g0 ¼ soð2m; 2l � 2mÞ with 2pmpl=2; suppose that s satisfies

2ð2m � lÞpso0: Then csðsÞ40 for all s of homogeneous degree 1, and csðsÞo0 for

some s of homogeneous degree 2. Therefore the Shapovalov form on p0s is indefinite and

does not exhibit p0s as unitary.
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Proof. By (1.10) and Theorem 1.2 the only s of homogeneous degree 1 is s ¼
ð1; 0;y; 0; 1; 0;y; 0Þ: This has

csðsÞ ¼ jsþ ls þ dj2 � jls þ dj2

¼ 1� 1þ 1
2
s

� �2� �1þ 1
2
s

� �2� �
þ ðð1þ l � m � 1Þ2 � ðl � m � 1Þ2Þ

¼ ð�1þ sÞ þ ð2l � 2m � 1Þ

X ð�1þ 2ð2m � lÞÞ þ ð2l � 2m � 1Þ

¼ 2ðm � 1Þ

4 0:

Now put s ¼ s0 ¼ ð2; 0;y; 0; 0;y; 0Þ: This s has homogeneous degree 2, and

csðs0Þ ¼ js0 þ ls þ dj2 � jls þ dj2

¼ 2� 1þ 1
2

s
� �2� �1þ 1

2
s

� �2
¼ 2s

o 0:

The argument in [GrW2] that proves Theorems 5.2 and 5.3 above then allows us to
conclude that the Shapovalov form on p0s is indefinite.

10

Proposition 10.2. For g0 ¼ soð2m; 2l � 2mÞ with 2pmpl=2; suppose that s satisfies

2ð2m � lÞpso0:

(a) If s is even, let r ¼ 1
2
ð�sÞ; so that r is an integer with 1prpl � 2m: Put

s0 ¼ ðr þ 1Þs0 ¼ ð2ðr þ 1Þ; 0;y; 0; 0;y; 0Þ:

Then s0 þ ls þ 2dðuÞ is an L type of N 0ðls þ 2dðuÞÞ %u-k
but s0 þ ls þ 2dðuÞ is not,

and it follows that p0s is associated to no orbit (or union of orbits).

(b) If s is odd, let r ¼ 1
2
ð1� sÞ; so that r is an integer with 1prpl � 2m: Put

s0 ¼ ðr þ 1Þs1 ¼ ð2ðr þ 1Þ; 2ðr þ 1Þ; 0;y; 0; 0;y; 0Þ:

Then s1 þ ls þ 2dðuÞ is an L type of N 0ðls þ 2dðuÞÞ %u-k
but s0 þ ls þ 2dðuÞ is not,

and it follows that p0s is associated to no orbit (or union of orbits).
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The proof will occupy the remainder of this section. We shall prove all of (a) but
shall limit part of the proof of (b) to a sketch. By way of preliminaries, let
Jðls þ 2dðuÞÞ be the largest proper ðg;LÞ submodule of Nðls þ 2dðuÞÞ: Lemma 4.3
shows that Nðls þ 2dðuÞÞ is semisimple as a ðk;LÞ module, and therefore
Nðls þ 2dðuÞÞDN 0ðls þ 2dðuÞÞ"Jðls þ 2dðuÞÞ as ðk;LÞ modules. Consequently

Nðls þ 2dðuÞÞ %u-kDN 0ðls þ 2dðuÞÞ %u-k"Jðls þ 2dðuÞÞ %u-k

as L modules. By (4.4) the left-hand side is DSðu-pÞ#Clsþ2dðuÞ as an L module,

and it follows that

N 0ðls þ 2dðuÞÞ %u-kDS0#Clsþ2dðuÞ and Jðls þ 2dðuÞÞ %u-kDJ#Clsþ2dðuÞ

for some L submodules S0 and J of Sðu-pÞ: The statement that p0s is associated to

some orbit or union of orbits Y would mean that J can be taken to be an ideal in
Sðu-pÞ in such a way that S0DSðu-pÞ=J is the dual coordinate ring of Y : In
particular, it would not be possible for S0 to contain nonzero nilpotent elements. If
MASðu-pÞ is a nonzero highest weight vector of Vs0 in the case of (a), or of Vs1 in
the case of (b), then M descends to a nonzero element of S0 according to the

conclusion of the proposition while M2ðrþ1Þ descends to 0. Thus the coset M þ
Sðu-pÞ is a nonzero nilpotent element in S0; and S0 cannot be the dual coordinate
ring of any subset of u-p:
Thus we have only to prove the statements in the proposition about L types in

N 0ðls þ 2dðuÞÞ %u-k: First we prove the assertions about s0 and s1: Let s be an L type
of lowest possible homogenous degree in the L submodule J defined in the previous

paragraph. Then every member of L type sþ ls þ 2dðuÞ in Jðls þ 2dðuÞÞ %u-k is %u

invariant, and the same argument as in the third paragraph of the proof of Lemma
4.2 shows that sþ ls þ 2dðuÞ is conjugate to ls þ 2dðuÞ under the Weyl group of k:

Hence jsþ ls þ 2dðuÞj2 ¼ jls þ 2dðuÞj2; i.e., csðsÞ ¼ 0:
In the case of (a), we first check that this lowest possible degree is X2 by

computing csðsÞ for all s of lower nonzero homogeneous degree. The only such s is
ð1; 0;y; 0; 1; 0;y; 0Þ; and we saw in the proof of Proposition 10.1 that this s has
csðsÞ40: We next check that the L type s0; which has homogeneous degree 2, does
not occur in J by checking that csðs0Þa0: Indeed, we saw that csðs0Þ ¼ 2so0 in the
proof of Proposition 10.1, and thus s0 does not occur in J:
In the case of (b), we first check that the lowest possible degree is X4: The s’s of

lower degree, for which we need to check that csðsÞa0; are ð1; 0;y; 0; 1; 0;y; 0Þ;
ð1; 1; 0;y; 0; 1; 1; 0;y; 0Þ; ð2; 0;y; 0; 0;y; 0Þ; ð2; 0;y; 0; 2; 0;y; 0Þ; and the
ones

ða1;y; am; b1;y; bm; 0;y; 0Þ

of homogeneous degree 3. We have already checked the first and third of these, and
direct computation shows that the second and fourth have csðsÞ40: If s has

homogeneous degree 3, put A ¼
Pm

j¼1aj and B ¼
Pm

j¼1bj as in (6.2). We compute
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modulo 2 and find that

csðsÞ ¼
Xm

j¼1
aj � j þ 1

2
s

�  2

� �j þ 1

2
s

�  2
 !

þ
Xm

j¼1
ððbj � j þ l � mÞ2 � ð�j þ l � mÞ2Þ

¼
Xm

j¼1
ajðaj � 2j þ sÞ þ

Xm

j¼1
bjðbj � 2j þ 2l � 2mÞ

�
Xm

j¼1
a2j þ As þ

Xm

j¼1
b2j

�
Xm

j¼1
aj þ As þ

Xm

j¼1
bj

¼ðA þ BÞ þ As

�ðA � BÞ þ As

�As;

the last congruence following from the next-to-last paragraph of Section 1. Here
A ¼ 3 and s is odd, and we see consequently that csðsÞ cannot be 0. Finally we check
that the L type s1; which has homogeneous degree 4, does not occur in J by checking
that csðs1Þa0: Indeed, we compute that csðs1Þ ¼ 2s þ 2ð�2þ sÞo0; and thus s1
does not occur in J:
The main step in the proof of Proposition 10.2 is to show that the L type

s0 þ ls þ 2dðuÞ; which has multiplicity 1 in Nðls þ 2dðuÞÞ %u-k; lies in Jðls þ 2dðuÞÞ %u-k:
We do so by checking that a nonzero highest weight vector of L type s0 þ ls þ 2dðuÞ
in Nðls þ 2dðuÞÞ %u-k is %u invariant. Being %u invariant, it has the property that
Uðl þ uÞ of it is a proper ðg;LÞ submodule of Nðls þ 2dðuÞÞ and therefore lies in

Jðls þ 2dðuÞÞ: Again by the %u invariance, it lies in Jðls þ 2dðuÞÞ %u-k: Thus the proof
will be complete once we have identified such a vector and proved that it is invariant
under %u:
For this step it will be convenient to have a multiplication table for soð2l;CÞ: First

of all, with the invariant form Cð
; 
Þ chosen so that jaj2 ¼ 1 for all roots a; we appeal
to Theorem 6.6 of [Kn2] and to [Gre] in order to choose root vectors Ea for the roots
a in such a way that ½Ea;E�a	 ¼ Ha for all a and that the constants Na;b such that

½Ea;Eb	 ¼ Na;bEaþb whenever a; b; and aþ b are roots satisfy

(i) N�a;�b ¼ �Na;b for all roots a and b;
(ii) Na;b ¼ Nb;g ¼ Ng;a for all roots a; b; and g of sum 0, and

(iii) the formulas for Na;b in Table 3 hold whenever a and b are roots and aþ b is a

positive root.
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Consider (a) in the proposition. In Nðls þ 2dðuÞÞ; let 1lsþ2dðuÞ denote the canonical

generator 1#1; the latter factor of 1 denoting the unit element of Clsþ2dðuÞ: Put

E ¼
Xl

k¼mþ1
Ee1þek

Ee1�ek

as a member of UðgÞ: This has weight s0: To complete the proof of (a), we show that

the nonzero element Erþ11lsþ2dðuÞ of Nðls þ 2dðuÞÞ is a highest weight vector under l;

evidently of weight ðr þ 1Þs0 þ ls þ 2dðuÞ; and is annihilated by %u:
Concerning the interaction of E and root vectors in l; let us check that

½Ee1�ep
;E	 ¼ 0 for 1oppm; ð10:1Þ

½E7ðep�eqÞ;E	 ¼ 0 for 1opoqpm; ð10:2Þ

½Eep7el
;E	 ¼ 0 for mopol; ð10:3Þ

½E�ep7el
;E	 ¼ 0 for mopol: ð10:4Þ

In fact, (10.1) and (10.2) are trivial. For (10.3) with the plus sign, we have

½Eepþel
;E	 ¼

Xl

k¼mþ1
½Eepþel

;Ee1þek
	Ee1�ek

þ
Xl

k¼mþ1
Ee1þek

½Eepþel
;Ee1�ek

	

¼ 0þ Ee1þep
½Eepþel

;Ee1�ep
	 þ Ee1þel

½Eepþel
;Ee1�el

	

¼ � Ee1þep
Ee1þel

þ Ee1þel
Ee1þep

¼ 0
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Table 3

Multiplication table in soð2l;CÞ for roots a and b involving indices iojok when aþ b is a positive root

Formula a b Na;b

(1) ei þ ek ej � ek �1
(2) ei � ek ej þ ek �1
(3) ei þ ek �ej � ek þ1
(4) ei � ek �ej þ ek þ1
(5) ei þ ej �ej þ ek �1
(6) ei � ej ej þ ek þ1
(7) ei þ ej �ej � ek �1
(8) ei � ej ej � ek þ1
(9) ei þ ej �ei þ ek þ1
(10) �ei þ ej ei þ ek þ1
(11) ei þ ej �ei � ek þ1
(12) �ei þ ej ei � ek þ1

A.W. Knapp / Journal of Functional Analysis 209 (2004) 36–100 89



by (6) and (2) in Table 3. For (10.3) with the minus sign, we have

½Eep�el
;E	 ¼

Xl

k¼mþ1
½Eep�el

;Ee1þek
	Ee1�ek

þ
Xl

k¼mþ1
Ee1þek

½Eep�el
;Ee1�ek

	

¼ ½Eep�el
;Ee1þel

	Ee1�el
þ Ee1þep

½Eep�el
;Ee1�ep

	

¼Ee1þep
Ee1�el

� Ee1þep
Ee1�el

¼ 0

by (1) and (8) in Table 3. This proves (10.3). For (10.4) with the plus sign,
we have

½E�epþel
;E	 ¼

Xl

k¼mþ1
½E�epþel

;Ee1þek
	Ee1�ek

þ
Xl

k¼mþ1
Ee1þek

½E�epþel
;Ee1�ek

	

¼ ½E�epþel
;Ee1þep

	Ee1�ep
þ Ee1þel

½E�epþel
;Ee1�el

	

¼Ee1þel
Ee1�ep

� Ee1þel
Ee1�ep

¼ 0

by (5) and (4) in Table 3. For (10.4) with the minus sign, we have

½E�ep�el
;E	 ¼

Xl

k¼mþ1
½E�ep�el

;Ee1þek
	Ee1�ek

þ
Xl

k¼mþ1
Ee1þek

½E�ep�el
;Ee1�ek

	

¼ ½E�ep�el
;Ee1þep

	Ee1�ep
þ ½E�ep�el

;Ee1þel
	Ee1�el

þ 0

¼Ee1�el
Ee1�ep

� Ee1�ep
Ee1�el

¼ 0

by (7) and (3) in Table 3. This proves (10.4). If a and b are roots, then

½½Ea;Eb	;E	 ¼ ½Ea; ½Eb;E		 � ½Eb; ½Ea;E		;

and it follows from (10.3) and (10.4) that

½E7ep7eq
;E	 ¼ 0 for mopoqpl ð10:5Þ

for all choices of signs. If a is any member of DðlÞ other than a root �e1 þ ep with

1oppm; then it follows from (10.1), (10.2), (10.5), and the identity Ea 1lsþ2dðuÞ ¼ 0

that

EaðEtþ1 1lsþ2dðuÞÞ ¼
Xt

k¼0
Ek½Ea;E	Et�k 1lsþ2dðuÞ þ Etþ1Ea 1lsþ2dðuÞ ¼ 0 ð10:6Þ

for all tX� 1: In particular this formula is valid for any a in DþðlÞ if t ¼ r:

Consequently Erþ1 1lsþ2dðuÞ is a highest weight vector under l:

Now let us show that Erþ1 1lsþ2dðuÞ is annihilated by %u: First we consider the effect

of E�e1þel
: We use lines (9) and (12) of Table 3, the latter with a and b replaced by
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their negatives, and then we use line (6) of Table 3 to obtain

½E�e1þel
;E	 ¼

Xl

k¼mþ1
ð½E�e1þel

;Ee1þek
	Ee1�ek

þ Ee1þek
½E�e1þel

;Ee1�ek
	Þ

¼
Xl�1

k¼mþ1
ð½E�e1þel

;Ee1þek
	Ee1�ek

þ Ee1þek
½E�e1þel

;Ee1�ek
	Þ

� Ee1þel
He1�el

¼ �
Xl�1

k¼mþ1
Eekþel

Ee1�ek
þ
Xl�1

k¼mþ1
Ee1þek

E�ekþel
� Ee1þel

He1�el

¼ �
Xl�1

k¼mþ1
Ee1�ek

Eekþel
þ
Xl�1

k¼mþ1
Ee1þek

E�ekþel

�
Xl�1

k¼mþ1
½Eekþel

;Ee1�ek
	 � Ee1þel

He1�el

¼ �
Xl�1

k¼mþ1
Ee1�ek

Eekþel
þ
Xl�1

k¼mþ1
Ee1þek

E�ekþel

þ ðl � m � 1ÞEe1þel
� Ee1þel

He1�el
: ð10:7Þ

Since 1lsþ2dðuÞ is %u invariant, we have

E�e1þel
Erþ1 1lsþ2dðuÞ ¼

Xr

j¼0
Ej½E�e1þel

;E	Er�j 1lsþ2dðuÞ: ð10:8Þ

When we substitute from (10.7) for ½E�e1þel
;E	 in (10.8), the two sums on the right-

hand side of (10.7) contribute 0 because of (10.6) with a equal to ek þ el or �ek þ el

and with t ¼ r � j � 1: Thus

E�e1þel
Erþ1 1lsþ2dðuÞ ¼ ðl � m � 1Þ

Xr

j¼0
Ee1þel

Er 1lsþ2dðuÞ

�
Xr

j¼0
Ee1þel

EjHe1�el
Er�j 1lsþ2dðuÞ

¼ ðl � m � 1Þðr þ 1ÞEe1þel
Er 1lsþ2dðuÞ

�
Xr

j¼0
/e1 � el ; ðr � jÞ2e1SEe1þel

Er 1lsþ2dðuÞ

�
Xr

j¼0
Ee1þel

ErHe1�el
1lsþ2dðuÞ
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¼ ðl � m � 1Þðr þ 1Þ �
Xr

j¼0
/e1 � el ; ðr � jÞ2e1S

 

� ðr þ 1Þ/e1 � el ; ls þ 2dðuÞS
!

Ee1þel
Er 1lsþ2dðuÞ

¼ 0: ð10:9Þ

The set of members X of g with XðErþ1 1lsþ2dðuÞÞ ¼ 0 is closed under brackets. It

contains root vectors for �e1 þ el and all 7eq � el with moqol and therefore

contains root vectors for all �e17eq with moqol: Since it contains also root vectors

for 8eq7el ; it contains root vectors for all �e17eq with moqpl: By (10.1) it

contains Ee1�ep
for 1oppm; and therefore it contains root vectors for all �ep7eq

with 1pppmoqpl: In other words it contains %u-p: Since any member of %u-k is
the sum of two members of %u-p; it contains all of %u: This completes the proof of (a)
in the proposition.
Consider (b) in the proposition. We continue to denote the canonical generator of

Nðls þ 2dðuÞÞ by 1lsþ2dðuÞ: The idea is to produce a member O of UðuÞ of weight
ðr þ 1Þs1 such that Oð1lsþ2dðuÞÞ is a highest weight vector in Nðls þ 2dðuÞÞ under l;

evidently of weight ðr þ 1Þs1 þ ls þ 2dðuÞ; and is annihilated by %u: In outline the
argument is similar to what was done for (a), but the details of the argument are
considerably more complicated than for (a) because the individual root vectors that
enter the definition of O do not commute. Accordingly we shall give only a sketch of
the argument.
Let SðgÞ be the symmetric algebra, and let S : SðgÞ-UðgÞ be symmetrization.

Define

X11 ¼
Xl

k¼mþ1
Ee1þek

Ee1�ek
;

X12 ¼
Xl

k¼mþ1
ðEe1þek

Ee2�ek
þ Ee1�ek

Ee2þek
Þ;

X22 ¼
Xl

k¼mþ1
Ee2þek

Ee2�ek
;

X ¼X11X22 � 1
4

X 2
12;

Y ¼Ee1þel
X22 � 1

2
Ee2þel

X12

as members of SðgÞ: Here SðXÞ has weight s1 in UðuÞ; and so does E2
e1þe2

: The

elements SðXÞ and E2
e1þe2

commute. The intention is to take as O a suitable linear

combination of terms ðE2
e1þe2

Þ j
SðX Þrþ1�j:

The first computations are done in SðgÞ: One shows that the root vectors E7ep7eq

for mopoqpl; E7ðep�eqÞ for 2opoqpm; E7ðe1�e2Þ; and Ee1�ep
and Ee2�ep

for
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2oppm have 0 bracket with X : Since S commutes with ad; SðXÞ is in particular a
highest weight vector under l:
Next one shows with some effort that

(i) ½Ee2þel
;SðXÞ	 ¼ Ee1þe2SðY Þ and

(ii) ½SðXÞ;SðYÞ	 ¼ �1
2

Ee1þe2ðR1 þ aE2
e1þe2

R0Þ for a certain constant a;

where Rp for pX0 is the member of UðgÞ defined by

Rp ¼ Ee2þel
SðXÞp þ SðXÞp

Ee2þel
: ð10:10Þ

Meanwhile one computes in SðgÞ that
½E�e1þel

;X 	 ¼ � Ee1þel
He1�el

X22 � Ee2þel
E�e1þe2X11

þ 1
2

He1�el
Ee2þel

X12 þ 1
2

Ee1þel
E�e1þe2X12

þ
Xl�1

k¼mþ1
ð�Eekþel

Ee1�ek
þ Ee1þek

E�ekþel
ÞX22

þ
Xl�1

k¼mþ1

1
2
ðEekþel

Ee2�ek
� E�ekþel

Ee2þek
ÞX12:

It will be convenient to abbreviate these eight sums of terms as Ia, IIa, Ib, IIb, IIIa,
IVa, IIIb, and IVb. When we apply symmetrization to these eight sums of terms,
each monomial ABCD in SðgÞ has a particular factor A that we want to have at the
right end, namely

He1�el
in the case of Ia and Ib;

E�e1þe2 in the case of IIa and IIb;

Eekþel
in the case of IIIa and IIIb;

E�ekþel
in the case of IVa and IVb:

We then use the formula

24SðABCDÞ ¼ 12SðBCDÞA þ 2BSðCDÞA þ 2CSðBDÞA þ 2DSðBCÞA

þ 2SðCDÞBA þ 2SðBDÞCA þ 2SðBCÞDA

þ 6½A;SðBCDÞ	 þ 2B½A;SðCDÞ	 þ 2C½A;SðBDÞ	 þ 2D½A;SðBCÞ	

þ 2SðCDÞ½A;B	 þ 2SðBDÞ½A;C	 þ 2SðBCÞ½A;D	:

After a tedious and hazardous calculation, we are able to conclude that

(iii) ½E�e1þel
;SðXÞ	v ¼ ð j � rÞSðYÞv þ bEe1þe2R0v for any vANðls þ 2dðuÞÞ of

weight ls þ 2dðuÞ þ jðe1 þ e2Þ with the property that v is invariant under
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E�e1þe2 and under all E7ekþel
with mokol; the constant b is independent of j

and v:

Next an induction on qX0 produces simultaneous proofs of the following four
formulas:

* For all p with 0pppq;

RpSðXÞ þ SðX ÞRp ¼ 2Rpþ1 þ
Xpþ1
j¼1

cjE
2j
e1þe2Rpþ1�j

for suitable constants cj depending on p:
* For all p with 1pppq;

SðXÞRp�1SðX Þ ¼ Rpþ1 þ
Xpþ1
j¼1

cjE
2j
e1þe2Rpþ1�j

for suitable constants cj depending on p:
* If t is 0 or 1, then

Xq�1
j¼0

SðXÞ j
RtSðX Þq�j�1 ¼

Xqþt�1

i¼0
ciE

2i
e1þe2

Rqþt�1�i

for suitable constants ci depending on t:
* For suitable constants ci;

½SðYÞ;SðXÞq	 ¼ Ee1þe2

Xq

i¼0
ciE

2i
e1þe2

Rq�i:

Putting all these facts together, one obtains, for 0pppr þ 1; the formula

½E�e1þel
;E

2r�2pþ2
e1þe2 SðXÞp	 1lsþ2dðuÞ

¼ �ðr � p þ 1ÞE2r�2pþ1
e1þe2 Rp þ

X
kX0

bkE
2r�2pþ3þ2k
e1þe2 Rp�1�k

 !
1lsþ2dðuÞ

for suitable constants bk depending on p: Finally an inductive construction from this
formula allows one to exhibit constants op for 0pppr þ 1 with orþ1 ¼ 1 such that

the operator O ¼
Prþ1

p¼0opE
2r�2pþ2
e1þe2 SðX Þp has E�e1þel

ðO1lsþ2dðuÞÞ ¼ 0: It is then a

simple matter to see that the root vectors for the other roots in Dð %u-pÞ annihilate
O1lsþ2dðuÞ and to conclude that %u annihilates O1lsþ2dðuÞ: This concludes the sketch of

the argument for the main step of (b) in the proposition.
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11. Theory for SOð2m; 2l � 2m þ 1Þ0

This section establishes most of the comparable results for the simply connected
covering group of SOð2m; 2l � 2m þ 1Þ0 with 2pmpl=2; noting any significant

differences in the proofs between what happens in these groups and what happened
in the previous sections. For the most part the theory is easier for these new groups.
Lemma 1.1 gets replaced by a slightly tidier result, namely that AdgðLÞ is isomorphic

to UðmÞ � SOð2l � 2m þ 1Þ and u-p is isomorphic to Mm;2l�2mþ1 in such a way that
the action of L on u-p corresponds to the action of UðmÞ � SOð2l � 2m þ 1Þ on
matrices with UðmÞ acting on the left and SOð2l � 2m þ 1Þ acting on the right.
Fact (1.10) about this action, quoted from [Kn4], remains true with only

notational changes:

the L type s ¼ ðx; nÞ occurs in Sðu-pÞ as many times as the

SOð2l � 2m þ 1Þ type n occurs in the restriction of the Uð2l � 2m þ 1Þ
type x from Uð2l � 2m þ 1Þ to SOð2l � 2m þ 1Þ:

ð11:1Þ

Littlewood’s theorem (Theorem 1.2) is valid independently of the parity of n; and in
combination with (11.1) it gives us an explicit multiplicity formula for each L type in
Sðu-pÞ: Highest weights for the action of L on Sðu-pÞ are in particular of the form
s ¼ ðx; nÞ with x nonnegative dominant integral for UðmÞ and n dominant integral
for SOð2l � 2m þ 1Þ:
One simplification for soð2m; 2l � 2m þ 1Þ; as opposed to soð2m; 2l � 2mÞ; is that

the representations of L; written again as s ¼ ðx; nÞ; have n nonnegative since n is the
highest weight of a rotation group SOð2l � 2m þ 1Þ: Another simplification is that
there is nothing special about ps and p0s in the case ðl; sÞ ¼ ð2m; 0Þ; this case can be

handled at the same time as the other unitary cases.
Now let us be specific about notation. Let

l ¼ ls ¼ �l þ 1
2
ðs � 1Þ;y;�l þ 1

2
ðs � 1Þ; 0;y; 0

� �
with sAZ:

Then

ls þ d ¼ �1þ 1
2

s;�2þ 1
2

s;y;�m þ 1
2

s; l � m � 1
2
;y; 1

2

� �
;

ls þ dðuÞ ¼ 1
2
ðs � 1� mÞ;y; 1

2
ðs � 1� mÞ; 0;y; 0

� �
;

Ls ¼ ls þ 2dðu-pÞ ¼ l � 2m þ 1þ 1
2 ðs � 1Þ;y; l � 2m þ 1þ 1

2 ðs � 1Þ; 0;y; 0
� �

:

In the notation of Section 1, we take ps ¼ pðlsÞ and p0s ¼ p0ðlsÞ: Assumption (1.4)

concerning L ¼ Ls is valid for

sX2ð2m � lÞ � 1: ð11:2Þ
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Under this condition, Ls is DþðkÞ dominant, and the K type Ls occurs
with multiplicity 1 in ps and p0s: It is the unique minimal K type of these ðg;KÞ
modules.
The unitarity/nonunitarity of the representations p0s is summarized in Table 4,

with the same reservations about notation as in Section 1. Quantitative
statements of the results appear later in this section. The new results in
Table 4 concern som: for 0pspm � 1; there is unitarity, and for so0; there is
not. The paper [EPWW] had settled sXm; and the paper [GrW2] had settled sX0
for m ¼ 2:
The analog of Proposition 3.1 is simpler for SOð2m; 2l � 2m þ 1Þ0; and the proof

requires only small notational changes. The orbits of GLðm;CÞ � Oð2l � 2m þ 1;CÞ
on Mm;2l�2mþ1 are given by

Oðp; qÞ ¼ fXAMm;2l�2mþ1 j rankX ¼ p and rank XX tr ¼ qg

for 0pqpppm: All of the Oðp; qÞ’s remain single orbits when the action is restricted
to GLðm;CÞ � SOð2l � 2m þ 1;CÞ: The association of representations p0s to orbits is

summarized in Table 5. The first line of Table 5 follows from [EPWW] for all mX2;
and the second line of the table is proved in [GrW2] for the case m ¼ 2: There has
been no attempt to examine so0 for this table; the presence of roots of two different
lengths would complicate the already-complicated analysis in the proof of
Proposition 10.2.
Now let us examine the statements and proofs in Sections 6–10 to see what

changes are needed in handling soð2m; 2l � 2m þ 1Þ: For the analog of Section 6, we
put csðsÞ ¼ cls

ðsÞ as in (6.1), and we write the L types in Sðu-pÞ as s ¼ ðx; nÞ with
x ¼ ða1;y; amÞ; n ¼ ðb1;y; bm; 0;y; 0Þ; and bm always X0: Let A ¼

Pm
j¼1aj and
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Table 4

Unitary line-bundle cases p0s for universal cover of SOð2m; 2l � 2m þ 1Þ0; 2pmpl=2

Discrete series: s42l � 1

Limit of discrete series: s ¼ 2l � 1

Last [Vo2] unitary point: s ¼ m þ 1

Last [EPWW] unitary point: s ¼ m

Last unitary point: s ¼ 0

First nonunitary point: s ¼ �1
Last point under study: s ¼ �2ðl � 2mÞ � 1

Table 5

Association of p0s to orbits for universal cover of SOð2m; 2l � 2m þ 1Þ0; 2pmpl=2

p0s for sXm is associated to Oðm;mÞ
p0s for 0psom is associated to Oðm; sÞ
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B ¼
Pm

j¼1bj as in (6.2). In place of Lemma 6.1, we have

Xm

j¼1
bj þ l � m � j þ 1

2

� �2� l � m � j þ 1
2

� �2h i
Xðm þ 1ÞB þ 2ðl � 2mÞB; ð11:3Þ

the adjustment resulting from the contribution of 1
2
from various places in d: To

adjust Lemma 6.2, we leave the hypotheses alone, and the conclusion is that

jsþ ls þ dj2 � jls þ dj2

X

Xr

j¼1
ða2j � ajÞ þ ðs � rÞA þ

X
1puovpr

ðau � avÞ þ ðm þ 1ÞB þ 2ðl � 2mÞB; ð11:4Þ

the right side being 40 if sXr: The only change in the proof is that we use (11.3)
instead of Lemma 6.1. Then the previously known results follow: that ps ¼ p0s for
sXm; that p0s is unitary in these cases, and that p0s is associated to Oðm;mÞ in these

cases.
For the analogs of results in Section 7, we continue to define ss as in (7.1), and we

still have csðssÞ ¼ 0 for 0psom: To adjust Theorem 7.1, we leave the hypotheses
alone, except for changing soð2m; 2l � 2mÞ to soð2m; 2l � 2m þ 1Þ; and the new
conclusions are that

(a) If ½a1=2	 þ?þ ½as=2	Xt; then csðsÞ40:
(b) If ½a1=2	 þ?þ ½as=2	ot; then Vs is contained in Vss Sðu-pÞ:

The analog of Lemma 7.2 is unchanged except that equality never holds. The reason

is that equality implies ðm þ 1� rÞB ¼ 0 and a2j ¼ aj for all j: Since rpm; we see that

B ¼ 0: When all aj are p1; each aj has to equal bj by (11.1) and Theorem 1.2; thus

x ¼ 0 and n ¼ 0 in contradiction to the hypothesis that sað0; 0Þ: Lemma 7.3 needs
no change, except that we no longer need the statement about what happens when
equality holds. Then the proof of Theorem 7.1a goes over in the new setting with
only minor changes.
This brings us to Section 8. The proof of Theorem 7.1b in that section requires no

change, and we arrive at the analog of Theorem 8.1, which is as follows.

Theorem 11.1. For g0 ¼ soð2m; 2l � 2m þ 1Þ with 2pmpl=2; if 0psom; then p0s is

infinitesimally unitary and the K spectrum of p0s is given by the sum of Ls ¼
ls þ 2dðu-pÞ and the L spectrum of Sðu-pÞ=Vss Sðu-pÞ:

The first four paragraphs of the proof of Theorem 8.1 apply here, and the fact that
there are no exceptional L types in the analog of Theorem 7.1a means that the case
ðl; sÞ ¼ ð2m; 0Þ needs no special treatment in Theorem 11.1. As a consequence, there
is no need for an analog of Theorem 8.2.
Adjusting Section 9 involves some slight notational complications. A compensat-

ing simplification is that the L spectrum in question is the one in (9.1a), and (9.1b)
plays no role.
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The columns of members of Mm;2l�2mþ1 need to be indexed in a more complicated

way than was used in Section 9. Namely we number them as

1;y; l � m; 10;y; ðl � mÞ0;N:

We define Xa;N for 1papm to be the matrix that is 1 in the indicated entry and 0

elsewhere. The definition of Zab is unchanged from (9.2), and column N plays no
role. In the definition of a quasi-upper triangular matrix X ; we add the further
property

(f) xa;NðX Þ ¼ 0 for 1papm:

Lemma 9.1 needs no change in its statement to translate into the current setting, but
we need to add in the proof the definition xa;NðXÞ ¼ 0 for 1papm: Lemma 9.2

requires no change at all, and the definition of the homomorphism j in (9.4) has to
be expanded to include the additional line jðXa;NÞ ¼ 0: Then, as in (9.5), it is still

true that jðXÞ ¼ X if X is quasi-upper triangular in u-p:
The statement of Lemma 9.3 needs no change, but extra cases must be considered

in the proof. We have to allow for the possibility that M is Xa;N or X is Xc;N: In
these cases the conclusion of the lemma, namely that xðMÞðjðX ÞÞ ¼ xðjðMÞÞðX Þ; is
true because both sides can be checked to be 0. That brings us to the analog of
Theorem 9.4, which is as follows.

Theorem 11.2. If g0 ¼ soð2m; 2l � 2m þ 1Þ with 2pmpl=2 and if 0psom; then

(a) Oðm; sÞ is the locus of common zeros of the ideal in Pðu-pÞ that corresponds to

the ideal Vss Sðu-pÞ in Sðu-pÞ under bar,

(b) the ideal Vss Sðu-pÞ is prime in Sðu-pÞ; and therefore RðOðm; sÞclÞ equals

Sðu-pÞ=Vss Sðu-pÞ;
(c) the multiplicity of the L type ðx; nÞ in RðOðm; sÞclÞ is

P
mcxm;n; the sum being over all

even nonnegative dominant integral m for UðmÞ such that msþ1 ¼ ? ¼ mm ¼ 0:

Here cxm;n is the Littlewood–Richardson coefficient for multiplicities in a tensor

product for UðmÞ:

The proof of Theorem 11.2 requires only minor notational changes in the proof of
Theorem 9.4. Conclusion (b) of Theorem 11.2 says for 0psom that p0s is associated
to the orbit Oðm; sÞ; as is asserted in Table 5. As with soð2m; 2l � 2mÞ; the conclusion
that Vss Sðu-pÞ is prime for this situation is not new; see Theorem 5.7 of [DeP].
Finally we come to Section 10. The analog of Proposition 10.1 is the following; the

new proof involves only minor changes to the proof of Proposition 10.1.

Proposition 11.3. In g0 ¼ soð2m; 2l � 2m þ 1Þ with 2pmpl=2; suppose that s satisfies

2ð2m � lÞ � 1pso0: Then csðsÞ40 for all s of homogeneous degree 1, and csðsÞo0
for some s of homogeneous degree 2. Therefore the Shapovalov form on p0s is indefinite

and does not exhibit p0s as unitary.
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Proposition 11.3 verifies the last line of Table 4.
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