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Abstract. The subject of automorphic forms naturally leads one, in the context of

a semisimple Lie group G, to consider those limits of discrete series representations
having infinitesimal character 0. For the existence of such a representation that is

nonzero, it is necessary and sufficient that G have a compact Cartan subalgebra, be

quasisplit, and be acceptable in the sense of Harish-Chandra. This paper determines,
by a general argument, the parameters of such representations in the classification

of irreducible tempered representations, expressing those parameters in terms of the

finite abelian reducibility group R attached to a specific unitary principal series
representation of G. An easy result that at first seems irrelevant gives the aggregate

of the parameters; a harder result uses the easy result to match the parameters in
representation-by-representation fashion. The paper includes tables of the classifica-

tion parameters for all such groups G.

Let G be a linear connected semisimple Lie group. Discrete series representations
of G, those having square integrable matrix coefficients, were classified by Harish-
Chandra [HC3]. In the classification each such representation is given nonuniquely
by its Harish-Chandra parameter λ, which is a nonsingular linear functional on a
compact Cartan subalgebra t of the Lie algebra of G and is integral when a certain
specific linear functional ρ is subtracted from it. The parameter λ matches the
infinitesimal character of the representation, but the infinitesimal character of the
representation is determined only up to the operation of the Weyl group of the root
system of G. Since λ is nonsingular, λ is dominant with respect to just one Weyl
chamber C of it. When the parameter λ is moved so as to become possibly singular
inside C while remaining dominant, one can still associate a representation to λ,
and the new representation π(λ, C) is called a limit of discrete series. We still refer
to λ as its Harish-Chandra parameter. This representation is irreducible or zero,
and there is an easily stated criterion for deciding which is the case; another easily
stated criterion describes equivalences among these representations. Specifically
π(λ, C) is 0 if and only if λ is orthogonal to some C-simple root that is compact,
and π(λ′, C ′) is equivalent with π(λ, C) if and only if there is some member of the
Weyl group of the compact roots carrying (λ, C) to (λ′, C ′).

Each nonzero limit of discrete series is “tempered” in a sense to be recalled
later in the introduction and therefore has classification parameters in the known
classification [KnZ] of all irreducible tempered representations. If the Harish-
Chandra parameter λ is nonsingular with respect to all compact roots, then the
classification points to π(λ, C) itself and to nothing else. On the other hand, if
λ is singular with respect to some compact root and if π(λ, C) is nonzero, then
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the classifications points to some other realization of the representation; we refer
to π(λ, C) as degenerate in this case. Our interest, motivated by the theory of
automorphic forms, is in the following problem: Find the classification parameters
of each nonzero limit of discrete series of G with infinitesimal character 0. Of
course, the infinitesimal character is 0 if and only if the Harish-Chandra parameter
is 0.

For purposes of this introduction, let us elaborate on these matters for the groups
SU(1, 1) and SU(2, 1). The number of chambers C is 2 and 6 in the two cases. We
write a chamber by listing the simple roots for it. For SU(1, 1), let α be the root
commonly denoted e1 − e2. The Harish-Chandra parameters for the discrete series
are λ = ne1 with n a nonzero integer. Written with the chamber in place, they
are (ne1, {α}) for n > 0 and (ne1, {−α}) with n < 0. The limits of discrete series
with singular infinitesimal character have parameters (0, {α}) and (0, {−α}). The
group SU(1, 1) has no compact roots. Thus all these representations are distinct
and nonzero, and none of them is degenerate. We thus obtain exactly two distinct
nonzero limits of discrete series with infinitesimal character 0. Turning to SU(2, 1),
let α = e1 − e2 and β = e2 − e3. With the usual interpretation of the notation
SU(2, 1), α is compact and β is noncompact; the sum α + β is noncompact. The
integral forms are λ = me1 + ne2 for integers m and n. For the chamber {α, β}, in
which the first simple root is compact and the second simple root is noncompact,
we obtain discrete series when m > n > 0. If m ≥ n ≥ 0, we have limits of
discrete series, and these are zero exactly when m = n since λ is orthogonal to the
compact root α in this case. In particular, there exist nonzero limits of discrete
series relative to the chamber {α, β} with singular infinitesimal character. But the
most singular case (0, {α, β}) yields the zero representation, and no representation
in the nonzero cases is degenerate. Because reflection in α is in the Weyl group
corresponding to the compact roots and yields equivalent representations, we do not
need to investigate all five remaining chambers, only two of them. It is enough to
study {−α−β, α} and {α+β,−β}. For {−α−β, α}, in which the first simple root
is noncompact and the second simple root is compact, the dominant parameters
λ have 0 ≥ m ≥ n, and we get a zero representation exactly when m = n. In
particular, (0, {−α− β, α}) yields the zero representation and no representation in
the nonzero cases is degenerate. For {α+β,−β}, both simple roots are noncompact,
and something new happens. Here the dominant parameters λ have m ≥ 0 ≥ n,
and we always get a nonzero representation. In particular, (0, {α + β,−β}) yields
a nonzero limit of discrete series with infinitesimal character 0, and it is the only
nonzero limit of discrete series with infinitesimal character 0. This limit of discrete
series is degenerate, and we return to its realization in the classification later in the
introduction.

Discrete series and limits occur in the theory of automorphic forms. According
to the Langlands philosophy, if an automorphic representation of a reductive group
over a number field has limits of discrete series as archimedean components, one
should be able to construct from the automorphic representation some kind of rep-
resentations of the Galois group of a specific number field. When these archimedean
components belong to the discrete series, and when the group under consideration
is associated to a Shimura variety, then the construction should in principle be
possible by decomposing some `-adic cohomology groups associated to the variety.
Up to now this part of the Langlands program has been carried out only in a
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limited number of examples. It has been done, for instance, for some inner forms
of unitary groups over totally real fields. In these cases the construction produces
representations of Galois groups, or more precisely “motives,” that are regular,
meaning that the weights from the point of view of algebraic geometry are all
distinct.

Suppose now that the archimedean components of our automorphic representa-
tion are nonzero limits of discrete series with singular infinitesimal characters. Then
there should still exist associated Galois representations, this time nonregular, i.e.,
having some coincidences between weights. There have been very few results in
this direction; the construction should be indirect, using arithmetic congruences
between automorphic representations. The best known case and probably the
most striking one is the case of classical modular forms: In the case of weight
≥ 2 (corresponding to automorphic representations of GL(2) or SL(2) with an
essentially square-integrable representation at infinity), one gets 2-dimensional `-
adic representations by using modular curves and the Eichler–Shimura–Deligne
theory. In the case of weight 1 (associated to a nonzero limit of discrete series
corresponding to a 0 parameter), one obtains, following Deligne and Serre, an Artin
(complex continuous) 2-dimensional representation.

It is reasonable to expect the situation to be similar if one considers forms of
unitary groups that are quasisplit at archimedean places, i.e., are of type U(n, n)
or U(n, n − 1) there. It turns out for each of these groups that either one or two
inequivalent nonzero limits of discrete series exist with infinitesimal character 0,
and the conjectures predict that Artin n-dimensional Galois representations will
be associated to automorphic representations of this type. However, very little is
known in this direction except, of course, in the U(1, 1) case, which is essentially
equivalent to the SL(2) one. The difficulty comes from the fact that automorphic
forms of this type do not admit any known kind of algebro-geometric interpretation;
they are purely analytic objects, similar to Maass wave forms and indeed related to
such forms. The situation is equally mysterious, more generally, for all automorphic
representations whose archimedean components are any kind of limits of discrete
series that is degenerate in the above sense, whether of 0 infinitesimal character or
not. According to an unpublished result of Mirkovic, such forms cannot occur in the
Betti or étale cohomology of Shimura varieties, nor in their coherent cohomology.

There is one positive result. It has been shown in [Ca] for SU(2, 1) that auto-
morphic representations with limits of discrete series at archimedean places occur
in the coherent cohomology of some sheaves over some complex-analytic varieties
generalizing Shimura varieties; these varieties are Griffiths–Schmid varieties, first
studied by Griffiths as parameter spaces for variations of Hodge structures. More-
over [Ca] proved that there is a nontrivial cup-product interaction between those
forms and more classical ones that correspond to discrete series (holomorphic or
antiholomorphic) at infinity. Similar results are expected more generally for U(n, n)
or U(n, n−1), and a detailed study of the limits of discrete series with infinitesimal
character 0 will be necessary to prove such results. The first step of this study of
course consists in locating precisely these representations in a classification useful
for the theory of automorphic forms, namely in the classification of irreducible
tempered representations. This is the matter settled by the present paper.

Even though the problem can be solved rather easily and directly for U(n, n) and
U(n, n− 1), we have found no reason to limit ourselves to the unitary groups and
type An. Indeed, for a more general reductive algebraic group G, the Langlands
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philosophy associates conjecturally to any automorphic form whose archimedean
places have nonzero limits of discrete series with infinitesimal character 0, an Artin
(i.e., complex continuous) morphism of the Galois group into the L-group LG.
Thus such representations have a simple arithmetic meaning. In addition, they
correspond to each other by all known or conjectural cases of functoriality. So it
seems reasonable to us to solve the problem in this more general context.

Limits of discrete series date historically from the 1947 paper of V. Bargmann
on SL(2, R). Hints of limits of discrete series for other groups appear in the
work of Harish-Chandra on holomorphic discrete series in the 1950s and in his
papers [HC3] on general discrete series. After other authors did extensive work
on limits of holomorphic discrete series in the early 1970s, W. Schmid [Sc1] and
[Sc2] considered a wider class of limits of discrete series, beginning with the case
for SU(2, 1) mentioned above. Schmid worked in the context of character identities
and his project [HeS] with H. Hecht on the Blattner Conjecture.

General limits of discrete series were originally defined in [KnZ] for connected
G by application of Zuckerman’s translation functors [Z] to discrete series repre-
sentations. The classification in which we propose to locate the nonzero limits
of discrete series with infinitesimal character 0 is the classification of irreducible
tempered representations, i.e., those irreducible admissible representations having
K-finite matrix coefficients (K being a maximal compact subgroup of G) that are
in L2+ε(G) for every ε > 0. This classification was carried out in [KnZ] and will be
summarized in a moment.

A solution to our problem of finding the classification parameters of these repre-
sentations can be phrased in at least three ways. One of these gives an algorithm
involving choices and seems unsatisfactory except for studying examples, a second
of these gives a tidy but insufficient answer that merely identifies what set in
the classification of irreducible tempered representations corresponds to the set
of representations of interest, and the third of these actually describes the function
from the set of nonzero limits of discrete series with infinitesimal character 0 to the
set of parameters of irreducible tempered representations. The goal of the paper is
to address the third of these solutions, but our line of proof makes it necessary to
state and prove the first two along the way.

The techniques involved in this article have all been known to representation
theorists for a long time. In an effort to make the paper more readable to others—
especially people working in the theory of automorphic forms—we have given com-
plete proofs of most of our results. We have included also some material that is
certainly known to specialists but is difficult to find in original sources or in texts.

Apart from elementary facts about roots and structure theory, the techniques
consist largely of Harish-Chandra’s subquotient theorem [HC1], work by Satake
[Sa] and Wallach [Wa1] on restrictions of roots and an elaboration of that work
in [Kn1], the theorems of Langlands concerning tempered representations in [La],
the multiplicity-one theorem in [Kn2], and the techniques of [KnZ]. The papers
[Kn2] and [KnZ] rely on a great many theorems of other authors, the most notable
such theorems being Harish-Chandra’s theorem that irreducible global characters
are functions (Theorem 2 in [HC2]) and Harish-Chandra’s completeness theorem
(Theorem 38.1 in [HC5]), but we shall not recite those results.

Let us refer to any limit of discrete series that is nonzero and has infinitesimal
character 0 as totally degenerate. Totally degenerate implies degenerate except in a
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group with no compact roots; such a group is locally a product of copies of SU(1, 1).
Before describing the classification of irreducible tempered representations, let us
observe that the existence of totally degenerate limits of discrete series implies
that G is quasisplit and is acceptable in the sense of Harish-Chandra [HC4]. In
fact, “acceptable” means that the linear functional ρ in the first paragraph of this
paper is integral, and the integrality of ρ is necessary for 0 − ρ to be integral.
To see that G is quasisplit, let π be a totally degenerate limit of discrete series.
Using Harish-Chandra’s subquotient theorem, we embed π as a subquotient of some
nonunitary principal series representation, i.e., one induced from an irreducible
finite-dimensional representation of a minimal parabolic subgroup Qp = MpApNp of
G. The latter representation must then have matching infinitesimal character 0, and
hence the inducing representation of Mp must have infinitesimal character 0. Since
the infinitesimal character of a finite-dimensional representation is nonsingular, Mp

must have no roots. It follows that Mp is abelian, hence that G is quasisplit.
Conversely we shall see in §5 that totally degenerate limits of discrete series

always exist if G has a compact Cartan subalgebra, is quasisplit, and is acceptable
in the sense of Harish-Chandra.

Parenthetically the inducing multiplicative character on Ap above must be trivial
as well, and hence the principal series representation must be unitary; therefore π
actually embeds as a subrepresentation of a unitary principal series representation
for which the character of Ap is trivial and the representation of Mp is trivial on
the identity component of Mp. If we apply this fact to the unique totally degen-
erate limit of discrete series π for SU(2, 1) and use the fact that Mp is connected
for SU(2, 1), we find that π embeds in the spherical principal series with trivial
Ap parameter. This principal series representation is irreducible, and hence π is
equivalent with a spherical principal series representation in the case of SU(2, 1).
This realization of π as a spherical principal series representation will be the real-
ization pointed to in the classification of irreducible tempered representations. The
principal series representation π was one of the representations studied explicitly
by Wallach [Wa2] and more generally by K. Johnson and Wallach [JoW], and this
explicit information was used in [Ca] to obtain results relating to (g,K) cohomology
and automorphic forms.

Let us return to the classification of irreducible tempered representations and a
description of the solution of our problem. Another example of a tempered represen-
tation besides nonzero limits of discrete series, though possibly finitely reducible,
is any basic representation induced from discrete series, i.e., any representation
unitarily induced from a parabolic subgroup MAN with a discrete series on M ,
a unitary character on A, and the trivial representation on N . Langlands [La]
proved that any irreducible tempered representation is a constituent of some basic
representation induced from discrete series. He proved further a certain disjoint-
ness theorem—that two basic representations induced from discrete series have no
irreducible constituent in common or else are equivalent.

In giving a preliminary classification of the irreducible tempered representations,
the paper [KnZ] proceeded by identifying the irreducible constituents of basic rep-
resentations induced from discrete series. It made use of the more general notion of
a basic representation, i.e., any representation unitarily induced from a parabolic
subgroup Q = MAN with a discrete series or limit of discrete series ξ on M , a
unitary character eν on A, and the trivial representation on N . Let us associate
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the set of data (Q, ξ, ν) to this representation. The paper [KnZ] proved as its
Corollary 8.8 that every irreducible tempered representation is basic.

It turns out that nonzero basic representations can often be exhibited as basic
by means of two quite different sets of data. For example, we saw that there is one
totally degenerate limit of discrete series of G = SU(2, 1), and we found that that
representation can be regarded also as the spherical principal series representation
with trivial A parameter (the basic representation with MAN minimal parabolic,
with the trivial representation on M , and with the trivial character on A). The
full-fledged classification of irreducible tempered representations in [KnZ] makes
use of a notion of nondegeneracy of the data for a basic representation. The data
set (Q, ξ, ν) is degenerate if the representation is zero or if another realization is
possible with a smaller parabolic subgroup; otherwise the data set is nondegenerate.
Results in §12 of [KnZ] give criteria in terms of roots to decide whether (Q, ξ, ν)
is degenerate. In particular a limit of discrete series π(λ, C) for G is degenerate in
the earlier sense if and only if if the data set (G, π(λ, C), 0) is degenerate.

In the degenerate case [KnZ] gives a noncanonical global character identity for
obtaining a realization of a basic representation as an induced representation with
a smaller parabolic subgroup, hence with the new set of data. It is immediate
that every nonzero basic representation can be rewritten with nondegenerate data,
and the classification theorem (Theorem 14.2 of [KnZ]) gives a criterion for a basic
representation written with nondegenerate data to be irreducible, namely that a
certain explicit finite abelian group R is trivial. The theorem goes on to say that (a)
the irreducible basic representations written with nondegenerate data exhaust the
irreducible tempered representations and (b) two irreducible basic representations
written with nondegenerate data are equivalent if and only if their sets of data are
conjugate in the expected way.

A nonzero limit of discrete series can therefore be written as an irreducible basic
representation with nondegenerate data, and the data for this purpose are unique
up to conjugacy. This set of data (or its conjugacy class) is what we take as the
classification parameter of the nonzero limit of discrete series representation. When
G = SU(1, 1), the two totally degenerate limits of discrete series have classification
parameters with M = G, AN = 1, and the inducing data on M equal to the limit of
discrete series. When G = SU(2, 1), the unique totally degenerate limit of discrete
series has classification parameter with Q = MAN minimal parabolic, with the
trivial representation of M , and with the trivial character of A.

Now we can return to our problem of locating the totally degenerate limits of
discrete series in the classification of irreducible tempered representations. For a
first step the character identity mentioned above in effect provides an algorithm for
getting the solution in any particular case. At each stage of the algorithm, however,
some choices are involved, and it is not directly apparent how to anticipate the
possible answers. Thus this solution has to be regarded as serviceable for handling
examples but not useful as a solution to the problem.

For a second step, there is a direct and easy way of obtaining the set of classifica-
tion parameters of all the totally degenerate limits of discrete series. Unfortunately
this step provides no clue how to match a particular totally degenerate limit of
discrete series with a classification parameter, and thus one might be tempted to
discard it. But let us persevere, as this step will ultimately help us unravel the
algorithm systematically. We start from the observation above that any totally
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degenerate limit of discrete series representation π is a subrepresentation of a uni-
tary principal series representation with the trivial character on Ap and a certain
representation σ of Mp that is trivial on the identity component. This unitary
principal series representation indG

Qp
(σ ⊗ 1 ⊗ 1) is not unique because conjugate

inducing data yield equivalent principal series representations. There is a certain
amount of uniqueness, however: the Langlands disjointness theorem of [La] shows
that any two unitary principal series representations in which π embeds come from
conjugate data. Now let us consider a second totally degenerate limit of discrete
series representation π′. With GC as a complexification of G, it is easy to see that
the global characters of π and π′ are conjugate via the normalizer of G in GC.
Tracking down this conjugacy, we find that π and π′ embed in the same unitary
principal series. Finally the global character identities of [KnZ] show that any
irreducible constituent of indG

Qp
(σ ⊗ 1⊗ 1) is a totally degenerate limit of discrete

series. Since the irreducible constituents of indG
Qp

(σ ⊗ 1⊗ 1) have multiplicity one
by [Kn2], the set of constituents is exactly the set of totally degenerate limits of
discrete series, apart from equivalence. The preliminary classification theorem in
[KnZ] gives the classification parameters of these representations canonically and
explicitly in terms of the R group of indG

Qp
(σ ⊗ 1⊗ 1), and thus we obtain the set

of parameters of all the totally degenerate limit of discrete series representations.

The key idea for solving the announced problem is that the second step is actually
helpful, but only if we know quite a bit of detail about σ. Instead of obtaining this
information deductively, we proceed by writing down a specific σ constructively,
obtaining this detail by a lengthy calculation with roots, and then showing easily
that σ has the properties mentioned in the previous paragraph. The theory of
[KnZ] points to a canonical family of basic representations with nondegenerate
data that exhibit the reducibility of indG

Qp
(σ⊗1⊗1). With a careful argument that

copes with all the nonuniqueness that arises, we can adjust the algorithmic solution
mentioned above so that it points to these same data, and we can then sort out the
results of the algorithmic solution and obtain the representation-by-representation
correspondence.

The paper is organized as follows: The first two sections summarize some known
material on Cayley transforms and their use in setting up the algorithm that lies
behind the classification of irreducible tempered representations. In §3 we work with
two kinds of strongly orthogonal sequences of roots through which the necessary
choices will enter our work. In §4 we use tools explicit or implicit in Satake [Sa]
and Wallach [Wa1] to construct the special 1-dimensional representation σ of Mp

mentioned above that will determine the unitary principal series representation
of interest. In Proposition 4.3 we derive an important technical property of σ
that relates it to the problem at hand. Theorems 5.1 and 5.2 show that this
principal series representation contains each totally degenerate limit of discrete
series representation with multiplicity one, and nothing else. The theory of the R
group is then applied routinely to yield the aggregate of classification parameters
in Theorem 5.5. The main result of the paper is Theorem 6.4, which gives the full
answer to the problem and is proved by suitably rerouting what the algorithm says.
Some examples of particular interest are given in §7. Tables in §5 and §7 show what
Theorems 5.5 and 6.4 mean for all possible examples, up to conjugacy.
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1. Cayley Transforms

In this section we recall the behavior of Cayley transforms within the complexi-
fication of a real semisimple Lie algebra. For more detail, see §VI.7 of [Kn3]. Let
g = k ⊕ p be a Cartan decomposition of a real semisimple Lie algebra, let θ be
the corresponding Cartan involution, let gC be the complexification of g, and let an
overline indicate the conjugation of gC with respect to g. Fix an invariant symmetric
bilinear form S on gC, and let 〈 · , · 〉 be the complex bilinear form induced on the
dual of any Cartan subalgebra of gC. We assume that S has been chosen so that
the restriction of 〈 · , · 〉 to the real span of the roots is a real inner product. We
put |α|2 = 〈α, α〉.

Typical roots are denoted α, β, and ξ. Two members α and β of the root
system of gC with respect to a Cartan subalgebra are said to be orthogonal, written
α ⊥ β, if 〈α, β〉 = 0. They are strongly orthogonal, written α ⊥⊥ β, if they are
nonproportional and neither of α ± β is a root; equivalently they are strongly
orthogonal if they are orthogonal and it is false that both of α±β are roots. If the
root system is irreducible, two orthogonal roots can fail to be strongly orthogonal
only if the root system is of type Bn, Cn, or F4 and the two roots are both short.

Fix a θ stable Cartan subalgebra h of g. If b and a are the +1 and −1 eigenspaces
of h under θ, then h = b⊕a. Let ∆ = ∆(gC, hC) be the set of roots. Within the Weyl
group of ∆, the reflection in a root α is denoted sα. Roots are imaginary-valued
on b and real-valued on a, and a root α is accordingly called

imaginary if α is carried on b, i.e., is 0 on a

real if α is carried on a, i.e., is 0 on b

complex if α is nonzero on a and nonzero on b.

If gα denotes the root space for the root α, then

m = b⊕
⊕
α∈∆,

α imaginary

gα (1.1)

is a θ stable reductive subalgebra contained in the centralizer of a in g. It has the
properties that m ∩ a = 0 and that the direct sum m⊕ a is the centralizer Zg(a) of
a in g, and it is given by the formula m = {X ∈ Zg(a) | S(X, a) = 0}. The abelian
subalgebra b is a compact Cartan subalgebra of m, and thus rankm = rank(m∩ k).

If q is any parabolic subalgebra of g, then l = q ∩ θq is the unique θ stable Levi
factor of q. Define a to be the intersection of p with the center of q ∩ θq, and let
m = {X ∈ Zl(a) | S(X, a) = 0}. The parabolic subalgebra q is said to be cuspidal
if rankm = rank(m∩ k), hence if m has a Cartan subalgebra b contained in k. Then
h = b ⊕ a is a θ stable Cartan subalgebra, and the m just defined coincides with
the m constructed in (1.1). We say that q and m⊕ a are associated to h = b⊕ a.

Because of (1.1) we can identify the root system ∆(mC, bC) with the set of imag-
inary roots in ∆ by restriction of members of ∆ to bC. The root space for such an
imaginary root α must lie completely within (m∩k)C or completely within (m∩p)C,
and we call α compact or noncompact accordingly. If we want to emphasize the role
of m in the construction, we may use the terms “m-compact” or “m-noncompact.”

The Cayley transforms defined relative to a θ stable Cartan subalgebra h = b⊕a
and its associated m⊕a are of two kinds, one cβ taken with respect to an imaginary
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noncompact root and the other dα taken with respect to a real root. Each is a
certain kind of inner automorphism of gC.

The Cayley transform cβ with respect to an imaginary m-noncompact root β
takes us from the data (m, a, b) to data (m∗, a∗, b∗) such that dim a∗ = dim a + 1
and dim b∗ = dim b− 1. If Eβ is a nonzero root vector for β, then Eβ is a nonzero
root vector for −β and S(Eβ , Eβ) is > 0. Normalizing, we may assume that

S(Eβ , Eβ) = 2/|β|2. (1.2)

Then [Eβ , Eβ ] = 2|β|−2Hβ , where Hβ is the member of h such that 〈H,Hβ〉 = β(H)
for all H ∈ h. If we set H ′

β = 2|β|−2Hβ , then {H ′
β , Eβ , Eβ} is a standard C basis

for a copy of sl(2, C) in gC, and {iH ′
β , Eβ + Eβ , i(Eβ − Eβ)} is an R basis for a

copy of sl(2, R) within g. The automorphism cβ of gC is defined by

cβ = exp(adπ
4 (Eβ − Eβ)). (1.3)

It of course carries hC to a new Cartan subalgebra of gC. Calculation gives

cβ(H ′
β) = Eβ + Eβ

cβ(Eβ − Eβ) = Eβ − Eβ

cβ(Eβ + Eβ) = −H ′
β ,

and it follows that g ∩ cβ(hC) = ker(β|h) ⊕ R(Eβ + Eβ). Thus the new Cartan
subalgebra cβ(hC) is the complexification of

h∗ = b∗ ⊕ a∗ = (ker(β|b))⊕ (a⊕ R(Eβ + Eβ)).

If µ is in the dual (hC)′, then we can define cβ(µ) in (hC
∗ )′ by cβ(µ)(H∗) =

µ(c−1
β (H∗)). Under this definition, cβ carries roots to roots.
Let us consider the meaning of having two Cayley transforms commute. Suppose

that β and β′ are m-noncompact roots. Then (1.3) defines cβ and cβ′ , and hence the
composition cβ′cβ is defined as an automorphism of gC. However, the interpretation
of the composition as simply a product of expressions (1.3) does not take into
account the effects on Cartan subalgebras: the factor cβ carries hC to hC

∗ , and β′

is not given as a root relative to hC
∗ . To interpret the composition as a succession

of Cayley transforms, we should be working with ccβ(β′)cβ instead of cβ′cβ . A
condition is needed to be able to define ccβ(β′), namely that cβ(β′) is imaginary on
h∗ and is m∗-noncompact.

The root cβ(β′) will be imaginary if and only if β and β′ are orthogonal. However,
orthogonality is not enough to make cβ(β′) be m∗-noncompact; for this purpose
we need to assume that β and β′ are strongly orthogonal. In fact, the strong
orthogonality makes

[Eβ , Eβ′ ] = [Eβ , E−β′ ] = [E−β , Eβ′ ] = [E−β , E−β′ ] = 0. (1.4)

Combining (1.3) and (1.4) shows that cβ fixes Eβ′ and Eβ′ . Hence cβ(β′) is
m∗-noncompact, and also

ccβ(β′)cβ = cβ′cβ . (1.5)
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A second application of (1.4) shows that cβ′cβ = cβcβ′ , so that ccβ(β′)cβ =
ccβ′ (β)cβ′ and the two Cayley transforms commute in every sense.

If β and β′ are merely orthogonal but not necessarily strongly orthogonal, the
situation is more complicated. In particular, cβ(β′) is m∗-compact; see Lemma 5.4
of [KnW] for details about what happens.

Partly because of the validity of (1.5) when the strongly orthogonal roots β and
β′ are imaginary and m-noncompact, we shall use the same symbol for a root ξ
and its Cayley transform cβ(ξ) except possibly in the case that ξ is β itself. This
convention will simplify the notation considerably when we work with a succession
of several Cayley transforms.

The Cayley transform dα with respect to a real root α takes us from the data
(m, a, b) to data (m∗, a∗, b∗) such that dim a∗ = dim a− 1 and dim b∗ = dim b + 1.
If Eα is a nonzero root vector for α, then Eα is a nonzero complex multiple of Eα,
and we can normalize Eα so that it is in g. Then θEα is in g, is a root vector for
−α, and has the property that S(Eα, θEα) is < 0. Normalizing, we may assume
that S(Eα, θEα) = −2/|α|2. Then

[Eα,−θEα] = 2|α|−2Hα. (1.6)

If we set H ′
α = 2|α|−2Hα, then {H ′

α, Eα,−θEα} is a standard C basis for a copy of
sl(2, C) in gC, and in fact these basis elements all lie in g and therefore form an R
basis for a copy of sl(2, R) within g. The automorphism dα of gC is defined by

dα = exp(ad i π
4 (θEα − Eα)). (1.7)

It of course carries hC to a new Cartan subalgebra of gC. Calculation gives

dα(H ′
α) = i(Eα + θEα)

dα(Eα − θEα) = Eα − θEα

dα(Eα + θEα) = iH ′
α,

and it follows that g ∩ dα(hC) = ker(α|h) ⊕ R(Eα + θEα). Thus the new Cartan
subalgebra dα(hC) is the complexification of

h∗ = b∗ ⊕ a∗ = (b⊕ iR(Eα + θEα))⊕ ker(α|a).

In parallel with what happens for cβ , formulas analogous to (1.4) and (1.5) hold
for dα and dα′ when the real roots α and α′ are strongly orthogonal, and thus
the Cayley transforms dα and dα′ commute under every interpretation of their
definitions. For what happens when α and α′ are merely orthogonal, see Lemma
5.4 of [KnW]. In analogy with the convention for the Cayley transform cβ , we shall
use the same symbol for a root ξ and its Cayley transform dα(ξ) except possibly
in the case that ξ is α itself.

With α = cβ(β) and with parameters defined suitably, cβ and dα are inverses
of one another. In fact, we have only to define Eα as the member of g given by
Eα = 1

2 (−iH ′
β + i(Eβ − Eβ)), and then we see readily from formulas (1.3), (1.6),

and (1.7) that dαcβ is the identity on gC.
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2. Generalized Schmid Identities

In this section we assemble certain facts from [KnZ] concerning the ingredients
used in the classification of irreducible tempered representations of linear semi-
simple groups. Let G be a connected linear semisimple Lie group with Lie algebra
g, and let k, p, θ, gC, S, 〈 · , · 〉, and | · |2 be as in §1. Since G is linear, it has a
complexification GC. The analytic subgroup of G with Lie algebra k is denoted K.
If X and Y are two subgroups of G, we define W (X :Y ) = NY (X)/ZY (X), the
quotient of normalizer by centralizer; we use similar notation if one or both of X
and Y are subalgebras of gC.

The first thing that is needed is information about the disconnectedness of Car-
tan subgroups and parabolic subgroups. A reference for this material is [Kn3],
§§VII.7–8. Fix a θ stable Cartan subalgebra h = b ⊕ a of g, and let B be the
analytic subgroup of K corresponding to b. For any real root α, define

γα = exp(2πi|α|−2Hα); (2.1)

this element centralizes h and has order at most 2. We let F (B) be the subgroup
of B generated by all the elements γα for all real roots α. Then F (B)B is the
centralizer of h in K. Let q = m ⊕ a ⊕ n be a cuspidal parabolic subalgebra
associated to h. We write Q = MAN for the Langlands decomposition of the
corresponding parabolic subgroup, namely for the normalizer of q in G. Then the
center ZM of M is given by

ZM = F (B)ZM0 , (2.2)

where M0 is the identity component of M . We put M# = MZM , so that

M# = M0F (B). (2.3)

Limits of discrete series representations for M were defined and parametrized in
[KnZ], and one works with their global characters. Each such representation is built
in stages. A limit of discrete series representation on the identity component M0

is determined by its Harish-Chandra parameter λ, which gives the infinitesimal
character, and by a Weyl chamber C (or positive system for ∆(mC, bC) ) that
makes λ dominant; the representation exists if and only if eλ−ρ is well defined
as a multiplicative character of B, ρ being half the sum of the positive imaginary
roots in any ordering. If λ is nonsingular, then C is unique and the representation
is in the discrete series. In [KnZ], the term “limit of discrete series” was reserved
for the case that λ is singular, but in this paper it will be more convenient to allow
discrete series to be special cases of limits of discrete series.

We write ΘM0(λ, C) for the global character. To extend the corresponding repre-
sentation to M#, we adjoin a multiplicative character χ of ZM that is compatible
with ΘM0(λ, C). Because of (2.2), it is enough that χ be defined on F (B); the
compatibility condition is that χ agree with eλ−ρ on F (B). The global character of
the resulting limit of discrete series representation of M# is denoted ΘM#

(λ, C, χ).
Finally the limit of discrete series representations of M are obtained by induc-
tion to M of these representations of M#, and the global characters are written
ΘM (λ, C, χ). An important property of these characters is as follows:

ΘM (λ, C, χ) = 0 if and only if 〈λ, α〉 = 0

for some C-simple compact root α ∈ ∆(mC, bC). (2.4)
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The sufficiency is known as the Hecht–Schmid identity and first appeared in [HeS].
The necessity is Theorem 1.1b of [KnZ]. A necessary and sufficient condition for
equality of the global characters ΘM (λ, C, χ) and ΘM (λ′, C ′, χ′) of two nonzero
limits of discrete series is known and appears as Theorem 1.1c of [KnZ]: the condi-
tion is that χ = χ′ and there exists a member of the normalizer of B in M carrying
(λ, C) to (λ′, C ′). Every nonzero limit of discrete series representation is irreducible
tempered. A limit of discrete series is called a totally degenerate limit of discrete
series if it is nonzero and its Harish-Chandra parameter is 0.

In the special case that the Cartan subalgebra is maximally noncompact, so that
a is maximal abelian in p, we use subscripts p on various subalgebras and subgroups.
The Cartan subalgebra is hp = bp ⊕ ap, and the cuspidal parabolic subalgebra is
denoted Qp = MpApNp. A special feature of this case is that M#

p = Mp, so that

Mp = (Mp)0F (Bp). (2.5)

Returning to the general case with h = b ⊕ a and Q = MAN , suppose that
ΘM (λ, C, χ) is a limit of discrete series character of M . If ν is a real-valued linear
functional on a, we let

ΘMA(λ, C, χ, ν) = ΘM (λ, C, χ)⊗ eiν ,

which is a global character for MA. If we tensor with the trivial character of N
and induce to G, we obtain global characters

indG
Q ΘMA(λ, C, χ, ν),

which are called basic characters. In the special case that ΘM (λ, C, χ) is a discrete
series character of M , we call indG

Q ΘMA(λ, C, χ, ν) a basic character induced from
discrete series. It is known that basic characters are unaffected by changing the
subgroup N of the parabolic subgroup Q. A basic representation is a representation
whose global character is a basic character.

A basic representation does not necessarily determine uniquely the data of a
basic character, even up to conjugacy. Sometimes a basic character can be written
in terms of data from two different Cartan subalgebras obtained from one another
by one or more Cayley transforms. This kind of change is typically made in stages,
and the change at a single stage is implemented by means of a “generalized Schmid
identity.” Generalized Schmid identities are of two possible kinds, the distinction
having to do with the relationship between the centers of the two groups M . The
notation is as follows. We start from a θ stable Cartan subalgebra h∗ = b∗ ⊕ a∗

and an associated parabolic subgroup Q∗ = M∗A∗N∗. Let α̃ be a noncompact
imaginary root, i.e., a noncompact root of (m∗C, b∗C), and suppose that the Cayley
transform ceα leads from the data (m∗, a∗, b∗) to data (m, a, b) and that α = ceα(α̃).
According to Lemma 2.2 of [KnZ], the inclusion mapping of ZM into ZM (M∩M∗#)
yields an isomorphism

ZM/{1, γα}ZM0ZM∗ ∼= ZM (M ∩M∗#)/(M ∩M∗#), (2.6)

the groups on either side of (2.6) have order at most 2, and the groups have order
exactly 2 if and only if the reflection seα is in W (B∗ :M∗), i.e., if and only if the
root reflection seα has a representative in M∗.
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To state the identities, let us introduce

C = a Weyl chamber in ib∗

C
seα = unique Weyl chamber of ib containing the orthogonal projection

Projib(C) = Projib(seαC) (2.7)

ρα = half sum of roots of (gC, (a⊕ b)C) whose restriction to a is cα with c > 0

ζ = multiplicative character of {1, γα} given by ζ(γα) = (−1)2〈ρα,α〉/|α|2 .

According to Theorem 4.3 of [KnZ], if α̃ is C-simple as a noncompact root of
(m∗C, b∗C) and if data λ, χ, and ν for ΘM∗A∗

(λ, C, χ, ν) are such that
(i) λ− ρM∗ is b∗-integral, and eλ−ρM∗ agrees with χ on ZM∗ ∩B∗,
(ii) 〈λ, α̃〉 = 0,
(iii) λ is C-dominant (and hence also seαC-dominant),

then either (a) or (b) holds as follows:
(a) If seα is not in W (B∗ :M∗), then ZM = {1, γα}ZM0ZM∗ and

ΘM∗A∗
(λ, C, χ, ν) + ΘM∗A∗

(λ, seαC,χ, ν) = indM∗A∗

P∩M∗A∗ΘMA(λ|b, C
seα, ζ ⊗ χ, ν ⊕ 0),

where C
seα and ζ are defined as in (2.7).

(b) If seα is in W (B∗ :M∗), then |ZM/{1, γα}ZM0ZM∗ | = 2. Let C
seα and ζ be

defined as in (2.7), and let (ζ ⊕ χ)+ and (ζ ⊕ χ)− denote the two extensions of
ζ ⊗ e(λ−ρM )|b ⊗ χ to ZM . Then

ΘM∗A∗
(λ, C, χ, ν) = indM∗A∗

P∩M∗A∗ΘMA(λ|b, C
seα, (ζ ⊗ χ)+, ν ⊕ 0)

= indM∗A∗

P∩M∗A∗ΘMA(λ|b, C
seα, (ζ ⊗ χ)−, ν ⊕ 0).

The displayed formulas in (a) and (b) above will be called generalized Schmid
identities of types (a) and (b), respectively. In both cases we can of course extend
the global characters to M∗A∗N∗ by adjoining the trivial character of N∗ and then
induce to G, obtaining a character identity for basic characters for G. In the case
of (b), or in the case of (a) if the second term on the left side is 0, these identities
allow us to take a basic character given in terms of data for (m∗, a∗, b∗) and rewrite
it in terms of data for (m, a, b). In the case of (a), we can use the analog of (2.4) for
(m∗, a∗, b∗) to determine whether the second term on the left side is 0. The order
of W (B∗ :M∗) determines whether (a) or (b) is the applicable generalized Schmid
identity.

In the terminology of §12 of [KnZ], we say that a basic character written as
indG

Q∗ ΘM∗A∗
(λ, C, χ, ν) is given by nondegenerate data if, for each root α̃ of

(m∗C, b∗C) with 〈λ, α̃〉 = 0, the reflection seα is not in W (B∗ :M∗). The character is
automatically nonzero in this case. Proposition 12.1 of [KnZ] says that the data set
of a nonzero basic character indG

Q∗ ΘM∗A∗
(λ, C, χ, ν) is nondegenerate if and only

if ΘM∗A∗
(λ, C, χ, ν) is not the full left side of a generalized Schmid identity of type

(a) or type (b). It follows that every nonzero basic character can be rewritten in
terms of nondegenerate data.

A nonzero basic character is not necessarily irreducible. When written in terms
of nondegenerate data, it is irreducible if and only if a certain computable finite
abelian group R is trivial. We discuss this group R further when we need it in §5.
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By a theorem of Langlands [La] (see also Harish-Chandra [HC4] and Trombi
[Tr]), every irreducible tempered representation of G is a subrepresentation of a
basic representation induced from discrete series and hence is infinitesimally unitary.

The classification theorems say that every irreducible tempered representation
is basic and therefore can be written with nondegenerate data. Two irreducible
tempered characters written in terms of nondegenerate data are equal if and only
if their sets of data are conjugate in a suitable sense. The conjugacy class of this
set of data constitutes the set of classification parameters of the representation.

The goal of this paper is to identify the classification parameters of each totally
degenerate limit of discrete series. In principle this problem can be solved by taking
the given representation and iterating generalized Schmid identities until we arrive
at nondegenerate data, but it is not clear a priori how to abstract the results
from this algorithm so as to obtain a useful theorem. It turns out that a different
approach yields a tidier formulation of the result. What we shall do in effect is
to overshoot the answer and pass all the way to a maximally noncompact Cartan
subgroup; then we shall retrace some of our steps. For this purpose we need to be
able to invert generalized Schmid identities.

Thus let us start from a θ stable Cartan subalgebra h = b⊕ a and an associated
parabolic subgroup Q = MAN . Let α be a real root, and suppose that the Cayley
transform dα leads from the data (m, a, b) to data (m∗, a∗, b∗) and that α̃ = dα(α).
According to Theorem 6.1 of [KnZ], a given character written as

indM∗A∗

P∩M∗A∗ΘMA(λM , CM , χM , νM )

is the right side of a generalized Schmid identity of type (a) or (b) obtained from
α̃ as above if and only if 〈νM , α〉 = 0 and

χM (γα) = (−1)2〈ρα,α〉/|α|2 ,

where ρα is given by (2.7). When these conditions are satisfied, the definitions of
λ, χ, and ν are

λ =
{

λM on b

0 on Heα,

χ = χM |ZM∗ , and ν = νM |a∗ ,

and the Weyl chamber C in ib∗ can be taken to be any chamber such that
(i) λM ⊕ 0 is C-dominant,
(ii) (C ∩ ib) ∩ CM has nonempty interior, and
(iii) α̃ is C-positive.

It will be important for us that the definitions of λ, χ, and ν do not depend on
CM . Thus if we have several basic characters differing only in what chambers are
involved, then we can use each or none of them as the right side of a generalized
Schmid identity, and all the left sides will involve the common values of λ, χ, and ν.

3. Strongly Orthogonal Systems of Roots

In this section we construct the sequences of noncompact roots that will in-
corporate the required element of choice into our determination of classification
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parameters, and we study the properties of these sequences. We continue with the
notation of §2. We assume further that g has a compact Cartan subalgebra, and we
take t to be such a subalgebra that is contained in k. Fix a maximally noncompact
θ stable Cartan subalgebra hp. Our objective in this section is to examine maximal
sets of strongly orthogonal roots.

We begin with strongly orthogonal sequences of real roots relative to hp, where
the situation is easy and is handled by the following proposition. We shall be doing
successive Cayley transforms dα with respect to the members of such a sequence,
using an inverted generalized Schmid identity for each member of the sequence.
Part of the effect of the assumed strong orthogonality is to ensure that these Cayley
transforms commute.

Proposition 3.1. Under the assumptions that rank g = rank k and that hp =
bp⊕ap is maximally noncompact, there exists a strongly orthogonal sequence of real
roots on hp whose restrictions to ap span the dual a′p.

Proof. Since rank g = rank k, Problem 10a of Chapter VI of [Kn3] (along with its
answer in the Hints for Solutions of Problems) shows that there exists k ∈ K with
Ad(k) = θ on g and in particular on hp. That is, Ad(k) is +1 on bp and −1 on ap.
This element k yields an element w of the Weyl group W (hC

p : gC) that acts this way.
Applying Proposition 2.72 (Chevalley’s Lemma) of [Kn3] recursively, we obtain an
orthogonal sequence of roots α1, . . . , αl that vanish on bp and have w = sα1 · · · sαl

.
Then α1, . . . , αl are orthogonal real roots and span a′p. We shall adjust these roots
to make them strongly orthogonal.

Without loss of generality, suppose that g is simple. The roots of g have at most
two lengths, and there can be no problem unless two of them, say αi and αj , are
short and are such that αi ±αj are roots. In this case, we replace αi and αj in the
sequence by αi + αj and αi −αj . The orthogonality of the sequence is maintained,
and the two new roots, being long, cannot interfere with strong orthogonality. By
successive elimination in this way of pairs that are orthogonal but not strongly
orthogonal, we keep reducing the number of such pairs, and ultimately we arrive
at the desired sequence.

In the context of Proposition 3.1, we shall need to expand roots on hp in terms
of the strongly orthogonal sequence of real roots and a remainder term carried on
bp. We need this expansion only when g is quasisplit. Confining our attention to g
quasisplit makes the expansion easier to state for complex roots, and thus we limit
the statement of the following proposition to g quasisplit.

Proposition 3.2. Let g be quasisplit and simple with rank g = rank k, and suppose
that g is not of type G2. Let hp = bp ⊕ ap be a θ stable maximally noncompact
Cartan subalgebra of g, and let α1, . . . , αl be a strongly orthogonal set of real roots
in ∆(gC, hC

p ) that spans a′p. Lexicographic use of α1, . . . , αl determines uniquely a
set ∆+ = ∆+(gC, hC

p ) of positive roots. Suppose that β is a positive root other than
some αi. Then the expansion of β in terms of α1, . . . , αl is of one of six kinds: If
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β is real, then β is given by one of the four kinds

β = 1
2αi ± 1

2αr ± 1
2αs ± 1

2αt with


|β| = |αi| = |αr| = |αs| = |αt|,
i < min{r, s, t},
and the indices r, s, t distinct,

(3.1)

β = 1
2αi ± αr ± 1

2αs with
{ |β| = |αi| = |αs| > |αr|,

i < min{r, s}, and r 6= s,
(3.2)

β = αi ± 1
2αr ± 1

2αs with
{ |β| = |αr| = |αs| > |αi|,

i < min{r, s}, and r 6= s,
(3.3)

β = 1
2αi ± 1

2αr with
{ |β| < |αr| = |αi|,

i < r.
(3.4)

If β is complex, then all roots have the same length and β is of one of the two kinds

β = 1
2αi + ω with

{ |β| = |αi|,
ω nonzero, carried on bp,

(3.5)

β = 1
2αi ± 1

2αr + ω with
{ |β| = |αi| = |αr|, i < r,

ω nonzero, carried on bp.
(3.6)

Remark. Strongly orthogonal sets α1, . . . , αl of the type in the statement of the
proposition exist by virtue of Proposition 3.1.

Proof. As to the uniqueness of ∆+, adjoin some elements to the end of the sequence
α1, . . . , αl so that the result is an orthogonal basis of a′p⊕ ib′p. In the corresponding
ordering, the sign of every root is determined by α1, . . . , αl since g quasisplit implies
that no root is carried on bp. Thus the system ∆+ of positive roots is independent
of what elements were adjoined to form the orthogonal basis.

Let us classify the kinds of roots that are possible. One case is that β is real.
Since α1, . . . , αl spans a′p, we have β =

∑
j cjαj . Taking the inner product with αj

gives cj = 〈β, αj〉/|αj |2, so that

β =
l∑

j=1

〈β, αj〉
|αj |2

αj . (3.7)

We double this equation, take the norm squared, and divide by |β|2 to obtain

4 =
l∑

j=1

4〈β, αj〉2

|αj |2|β|2
. (3.8)

Let us discard those terms on the right side of (3.8) that are 0. Since β is not
some ±αj and since we have discarded G2 by hypothesis, each remaining term is
1 or 2. So there are at most 4 nonzero terms in (3.7). The first one has positive
coefficient since β is assumed positive; let us write αi for that αj . The indices for
the remaining terms will be r, s, t as necessary.
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First suppose that |β| = |αi|. Apart from permuting indices after i, (3.8) reads
4 = 1 + 1 + 1 + 1 or 4 = 1 + 2 + 1. These yield (3.1), (3.2), and

β = 1
2αi ± 1

2αr ± 1
2αs with

{ |β| = |αi| = |αs| < |αr|,
i < min{r, s}, and r 6= s.

(3.9)

If (3.9) holds, then 2〈β,±αr〉/|β|2 = 2, so that ±αr − 2β is a root. Since

±αr − 2β = ±αr − (αi ± αr ± αs) = −αi ∓ αs,

we obtain a contradiction to the assumption that αi and αs are strongly orthogonal.
Thus (3.9) cannot occur.

Next suppose that |β| > |αi|. Then (3.8) reads 4 = 2+1+1 or 4 = 2+2. These
yield (3.3) and

β = αi ± αr with
{ |β| > |αi| = |αr|,

i < r,

which cannot occur because αi and αr are strongly orthogonal.
Finally suppose that |β| < |αi|. Then (3.8) reads 4 = 2 + 2 or 4 = 2 + 1 + 1.

These yield (3.4) and

β = 1
2αi ± 1

2αr ± 1
2αs with

{ |β| = |αr| = |αs| < |αi|,
i < min{r, s}, and r 6= s.

(3.10)

Except for various signs, the situation of (3.10) can be transformed into (3.9) by
interchanging i and r, and we saw that (3.9) cannot occur because of the strong or-
thogonality of α1, . . . , αl. Thus (3.10) cannot occur either, and the only possibilities
are (3.1) through (3.4) if β is real.

The other case is that β is complex. Since bp 6= 0, g is not split. Since g is
assumed quasisplit, gC must admit a nontrivial outer automorphism. Therefore all
roots have the same length. Let us write β = ε + ω for the decomposition of β
according to hp = ap⊕ bp. Then β = ε−ω = −θβ is a root of the same length that
is not a multiple of β. Consequently

2〈β, β〉
|β|2

(3.11)

equals −1, 0, or +1. We can rule out +1 since β−β would have to be an imaginary
root and we know that there are no imaginary roots. In the two remaining cases,
we have |ε|2 = c0|β|2 with c0 = 1/4 if (3.11) is −1 and c0 = 1/2 if (3.11) is 0.

We write ε =
∑l

j=1 cjαj and compute that cj = 〈β, αj〉/|αj |2. Then ε =∑l
j=1 (〈β, αj〉/|αj |2)αj , and it follows that

4c0 =
l∑

j=1

4〈β, αj〉2

|αj |2|β|2
= #{αj | 〈β, αj〉 6= 0}, (3.12)

the second equality following since all roots have the same length. If c0 = 1/4, then
the right side of (3.12) is 1, and β has to be as in (3.5). If c0 = 1/2, then the right
side of (3.12) is 2, and β has to be as in (3.6).
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Now we examine strongly orthogonal sequences of roots relative to the compact
Cartan subalgebra t. Since each such root is imaginary, each such root is compact
or noncompact. Our interest will be in the case that all the roots are noncompact
and some other conditions are satisfied. The reason for insisting on strong orthog-
onality is analogous to the reason for the strong orthogonality in the case above for
real roots: We shall be doing successive Cayley transforms cβ with respect to the
members of such a sequence, using a (direct) generalized Schmid identity for each
member of the sequence. The strong orthogonality ensures, among other things,
that these Cayley transforms commute.

The noncompactness and the other conditions we impose make the discussion
more complicated than it was in Proposition 3.1 for real roots. A preliminary step
is to normalize root vectors suitably. For each pair ±β of noncompact roots, we
normalize Eβ as in (1.2) and define E−β = Eβ . Then

Eβ + E−β and i(Eβ − E−β) are in g. (3.13)

To get started, let ∆+(gC, tC) be a positive system for ∆(gC, tC). We make the
following definition, which is slightly different from the one in §4 of [KnW]. A
sequence α1, . . . , αl of noncompact positive roots in ∆ will be called a fundamental
sequence for ∆+(gC, tC) if

(i) α1, . . . , αl are strongly orthogonal,
(ii) αj is a simple root in the subsystem of roots orthogonal to α1, . . . , αj−1, for

1 ≤ j ≤ l,
(iii) ap =

∑l
j=1 R(Eαj

+ E−αj
) is maximal abelian in p.

This definition is internally consistent in the following senses: the subsystem of
roots orthogonal to α1, . . . , αj−1 is certainly a root system, (3.13) shows that each
Eαj

+ E−αj
is in g, and the noncompactness of αj implies that Eαj

and E−αj
lie

in pC.
To be absolutely complete, we should insert the following lemma, which was not

included in [KnW] but was implicitly applied in §4 of [KnW] in the construction of
certain sequences of noncompact positive roots; these sequences will appear in the
proof of Proposition 3.4 below.

Lemma 3.3. If Ω is a root system and α is in Ω, then Ω′ = {β ∈ Ω | β ⊥⊥ α} is
empty or is a root subsystem of Ω with the property that when β1 and β2 are in Ω′

and β1 + β2 is in Ω, then β1 + β2 is in Ω′.

Proof. Without loss of generality we may assume that Ω is irreducible, that there
are roots of two lengths, that the root α is short, that there exists a long root γ,
and that |γ|2 = 2|α|2. Let β1 and β2 be in Ω′, and suppose β1 + β2 is in Ω. We are
to prove that β1 + β2 ⊥⊥ α.

We are given β1 ⊥⊥ α and β2 ⊥⊥ α, and hence β1 + β2 ⊥ α. If β1 + β2 ⊥⊥ α
fails, then β1 + β2 + α is in Ω. Hence β1 + β2 is short, and at least one of β1 and
β2 is short. Say β2 is short. Then we have

2〈β1 + β2 + α, β1〉
|β1|2

= 2 +
2〈β2, β1〉
|β1|2

+ 0.

This is > 0 since β2 is short. Therefore (β1 + β2 + α) − β1 = β2 + α is a root, in
contradiction to the hypothesis β2 ⊥⊥ α.
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Proposition 3.4. Under the assumption that g has a compact Cartan subalgebra
t ⊆ k, any positive system ∆+(gC, tC) of the root system ∆(gC, tC) has a fundamental
sequence.

Proof. We may assume that ∆ = ∆(gC, tC) is irreducible. First let us dispose of
G2. Take α1 to be a simple root that is noncompact; one exists as long as g is
noncompact. Then take α2 to be the unique positive root orthogonal to α1. This
is noncompact in every case, and the sequence α1, α2 has the required properties.

When ∆ is not of type G2, Proposition 4.5 of [KnW] shows that there exists a
sequence α1, . . . , αl of positive noncompact roots such that

(a) the αj form a strongly orthogonal set,
(b) ap =

∑l
j=1 R(Eαj

+ E−αj
) is maximal abelian in p,

(c) αj is a simple root in the subsystem of roots strongly orthogonal to all of
α1, . . . , αj−1, which is empty or is a root system by virtue of Lemma 3.3
above,

(d) for each positive noncompact root β, the first αj such that αj is not strongly
orthogonal to β satisfies |αj | ≥ |β|.

Then (a) and (b) prove (i) and (iii), and (c) proves (ii) if all roots have the same
length.

It is possible to give a general argument for (ii) in the case that there are two
root lengths, but for brevity we give a case-by-case argument that uses the detailed
analysis in §4 of [KnW]. If ∆ is of type Cn or F4 with some long root noncompact,
then the sequence constructed in [KnW] has all roots long, and the system of roots
orthogonal to α1, . . . , αj−1 coincides with the system strongly orthogonal to those
roots. Hence the sequence constructed in [KnW] satisfies (ii) in these cases.

If g is noncompact with ∆ of type F4 and with all noncompact roots short, then
the sequence consists of one noncompact simple root from ∆, and (ii) holds.

For ∆ of type Bn, [KnW] shows that the constructed sequence can be taken to
be of the form

certain ei − ej , possible ek, corresponding ei + ej . (3.14)

Orthogonality relative to a long root is the same as strong orthogonality, and hence
there is no problem with (ii) for the first members of (3.14). One checks easily
that the possible ek and the corresponding ei + ej are all simple in the system of
roots orthogonal to all the members of the first group, and hence each of them is
simple in the smaller system of roots orthogonal to all members of the sequence
that precede it. This handles (ii) for ∆ of type Bn.

The last case is that g is noncompact with ∆ of type Cn and with all noncompact
roots short. We follow the construction of [KnW] step by step. Selection of the first
noncompact simple root α1 = ei − ej means that the strongly orthogonal system
consists of all roots not involving indices i and j, while the larger orthogonal system
consists of ±(ei +ej) in addition to all roots not involving indices i and j. The root
ei + ej is simple in the latter system. The next step produces some α2 = es − et.
Indices s and t are to be discarded, except that ±(es + et) remains in the system
of roots orthogonal to α1, α2. Again es + et is simple in the latter system. The
construction continues in this way, and each selection of an αj is seen to be of a
simple root in the system of roots orthogonal to α1, . . . , αj−1. This completes the
proof.
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4. The Representation σ of Mp

In this section, under some assumptions on G, we construct explicitly a certain
1-dimensional representation σ of the group Mp of a minimal parabolic subgroup
of G and prove a key technical result about it. It will be seen in §5 that the
unitary principal series representation built from σ and the trivial character of Ap

is equivalent with the direct sum of all totally degenerate limits of discrete series
representations, each occurring with multiplicity 1.

We continue with notation as in §2. Fix a maximally noncompact θ stable Cartan
subalgebra hp = bp ⊕ ap of g, and let Mp be the centralizer of ap in K. Following
standard terminology, we refer to the nonzero simultaneous eigenvalues of ad ap on
g as restricted roots. These are the nonzero restrictions to ap of the roots. Typical
roots are denoted ε or η, except that, in the case of the restriction to ap of a real
root, we may denote the restricted root and the root by the same letter if there is
no possibility of confusion. The set of restricted roots will be denoted Σ. It is a
root system, possibly not reduced.

For each restricted root ε, let Hε be the element of ap such that ε(H) = S(H,Hε)
for all H in ap, S being our invariant bilinear form. Since G is linear, it makes sense
to define

γε = exp 2πi|ε|−2Hε. (4.1)

In the special case that ε = α|ap for a real root α, this definition is consistent with
the one in (2.1). It is known that each element γε lies in Mp and has order at
most 2. It follows from (2.3) that (Mp)0 and the elements γε together generate Mp.

If ε is a restricted root, we write sε for the Weyl group reflection in ε. This
notation is sufficiently consistent with the definition in §1 of reflection in a real
root that it will not cause any confusion. For two restricted roots ε and η, direct
computation from (4.1) gives

γsηε = γεγ
2〈ε,η〉/|ε|2
η . (4.2)

For the most part we shall use (4.2) in the following form: If g is simple and is not
of type G2, then

γsηε =
{

γεγη if 〈ε, η〉 6= 0, η /∈ Rε, and |ε| ≥ |η|
γε if 〈ε, η〉 6= 0, η /∈ Rε, and |ε| < |η|.

(4.3)

Let ε be a restricted root, and let m(ε) be the sum of the multiplicities of cε as
a restricted root for all c > 0. If m(ε) > 1, then [Kn1] or Corollary 7.69 of [Kn3]
shows that γε is in (Mp)0. Hence Mp is generated by (Mp)0 and all the γε for which
m(ε) = 1. These latter ε’s are the restrictions to ap of real roots.

If positive systems of roots and restricted roots are specified, the positive systems
are compatible if every root that restricts to a positive restricted root is a positive
root. One way to obtain compatible systems is to define positivity relative to a
lexicographic ordering of a′p ⊕ ib′p in which every positive element of a′p is larger
than every element of ib′p. For example, one could choose a basis of a′p, adjoin a
basis of ib′p, and form the corresponding lexicographic orderings.

If compatible positive systems are imposed on the restricted roots and the roots,
then any restricted root ε for which m(ε) = 1 is conjugate via a member of
W (ap :K) to a simple restricted root ε′ with m(ε′) = 1. Applying (4.2), we readily
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see that Mp is generated by (Mp)0 and all the γε for which ε is a simple restricted
root with m(ε) = 1.

Satake [Sa] found relationships between simple roots and simple restricted roots
in the setting of compatible positive systems. In part he proved that any simple
restricted root is the restriction to ap of a simple root, and conversely the restriction
to ap of a simple root is 0 or is a simple restricted root. In more detail the
simple roots that are real restrict to simple restricted roots, the complex roots
that are simple occur in pairs that restrict to the same simple restricted root,
and the restrictions obtained in this way are linearly independent and exhaust the
simple restricted roots. These results in part limit the possibilities for the quotient
Mp/(Mp)0. By contrast Theorem 2.1 of Wallach [Wa1] limits the flexibility in
defining finite-dimensional representations of G in terms of the flexibility in defining
representations of Mp. Implicit in the results of [Sa] and [Wa1] together is the
extent to which (Mp)0 and the above elements γε are independent of one another.
We make the resulting structure theorem explicit in Proposition 4.2 below, writing
it in the form that will be useful to us. Proposition 4.2 uses Theorem 2.1 of [Wa1]
only as a pointer toward the method of proof, and thus [Wa1] does not need to be
cited in the proof given below.

Lemma 4.1 (Satake). Fix compatible positive systems for ∆(gC, hC
p ) and the re-

stricted roots. If β is a simple root that vanishes on bp, then the restricted root
ε = β|ap has m(ε) = 1.

Proof. By one of the Satake results quoted above, ε is a simple restricted root. On
the other hand, we know from [Kn1] that the only positive multiples of ε that can
be restricted roots are 1 and 1

2 . Since ε is simple, the equation ε = 1
2ε + 1

2ε shows
that 1

2ε cannot be a restricted root.
Arguing by contradiction, suppose that m(ε) > 1. By what we have just seen,

some pair α± = ε± ω consists of positive roots, with ω a nonzero element carried
on ibp. Then ω must be a root, and there is no loss of generality in assuming that
it is positive. The formula ε = α− + ω exhibits ε as the sum of positive roots and
contradicts the fact that ε was assumed simple. Hence m(ε) = 1.

Proposition 4.2 (Satake–Wallach). Suppose that G has a simply connected com-
plexification. Fix compatible positive systems for ∆(gC, hC

p ) and the restricted roots.
Then there exists a unique 1-dimensional representation σ of Mp such that σ is 1
on the identity component (Mp)0 and σ(γε) equals −1 for every simple restricted
root with m(ε) = 1.

Proof. Uniqueness is immediate since Mp is generated by (Mp)0 and the elements
γε for all simple restricted roots ε with m(ε) = 1. For existence define a highest
weight λ on hC

p by the formula

2〈λ, α〉
|α|2

=
{

1 if α is a simple root and is real
0 if α is a simple root and is nonreal.

Since G has a simply connected complexification, there exists an irreducible rep-
resentation πλ of G with highest weight λ. When the underlying complex vector
space V is decomposed into restricted weight spaces, the highest restricted weight
is λ

∣∣
ap

, and we let V1 be the corresponding weight space. The subgroup Mp leaves
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V1 stable, and it is well known (Lemma 8.48 of [Kn3]) that (Mp)0 acts irreducibly
in it. Let σ be the representation of Mp in this space. The highest weight of σ is
λ
∣∣
bp

. From the structure of the simple roots, the linear span of the nonreal simple
roots contains the dual of bp. Since λ is orthogonal to each nonreal simple root, λ
vanishes on bp. Thus λ

∣∣
bp

= 0, and σ is trivial on (Mp)0. If α is real and simple,
then σ(γα) = exp(λ(2πiHα/|α|2)) = exp(πi(2〈λ, α〉/|α|2)) = exp(πi) = −1.

Proposition 4.3. Suppose that G is quasisplit and that g has a compact Cartan
subalgebra t ⊆ k. Fix compatible positive systems for ∆(gC, hC

p ) and the restricted
roots. Suppose that α1, . . . , αl is a strongly orthogonal sequence of real roots whose
restrictions to ap span a′p and that ∆+ coincides with the unique positive system of
roots determined by lexicographic use of α1, . . . , αl. For 1 ≤ j ≤ l, let ραj be half
the sum of the positive roots that are orthogonal to α1, . . . , αj−1 but not to αj. If σ
is a 1-dimensional representation of Mp such that σ is 1 on the identity component
(Mp)0 and σ(γε) equals −1 for every simple restricted root with m(ε) = 1, then

σ(γαj
) = (−1)2〈ραj

,αj〉/|αj |2 for 1 ≤ j ≤ l.

Remarks. Proposition 3.2 notes that lexicographic use of α1, . . . , αl determines a
unique positive system of roots. Proposition 4.2 proves that the representation σ
in the current proposition exists if G has a simply connected complexification. The
quantity ραj

is necessarily a positive multiple of αj since there are no imaginary
roots and the set of roots contributing to ραj

is closed under each of sαj+1 , . . . , sαl
.

Proof. In proving the displayed formula, we may assume that g is simple. Assume
temporarily that g is not split G2. Let δ be half the sum of the members of ∆+ =
∆+(gC, hC

p ). The particular ordering that we have chosen makes δ =
∑l

j=1 ραj ;
there is no contribution from b′p because there are no imaginary roots and the
positive complex roots are closed under −θ. From this equation we obtain

2〈δ, αj〉
|αj |2

=
2〈ραj , αj〉
|αj |2

. (4.4)

Therefore use of (3.7) shows that any simple root β satisfies

1 =
2〈δ, β〉
|β|2

=
l∑

j=1

2〈δ, αj〉
|β|2

〈β, αj〉
|αj |2

=
l∑

j=1

2〈ραj , αj〉
|αj |2

〈β, αj〉
|β|2

. (4.5)

The given lexicographic ordering determines by restriction a set Σ+ of positive
restricted roots. For fixed k with 0 ≤ k ≤ l, the set of restricted roots orthogonal
to α1, . . . , αk is a root subsystem Σk, and any member of Σ whose expansion in
terms of α1, . . . , αl begins with a positive multiple of αi for some i ≤ k is greater, in
the lexicographic ordering, than every member of Σk. It follows that the restricted
roots that are simple in Σ+ and are needed for the expansion of a member of Σk

all lie in Σk. Consequently, for 0 ≤ k ≤ l − 1, the expansion of αk+1 in terms of
simple restricted roots involves some member of Σk that is not in Σk+1.

We shall prove the displayed formula asserted in the proposition by induction
downward on j for 1 ≤ j ≤ l. The base case of the induction is the empty statement
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that the assertion is true for indices beyond l. Assume inductively that the assertion
in the displayed formula is true for indices i + 1 up through l. By the argument in
the previous paragraph, let ε be a simple restricted root whose expansion in terms
of α1, . . . , αl begins with a positive multiple of αi. From Satake [Sa], there is some
simple root β such that ε = β|αp .

According to Proposition 3.2, the expansion of β in terms of simple roots begins
with αi or 1

2αi. That proposition gives us seven possibilities for the expansion of
β, and we look at each one in turn. One is that β = αi, the next four are that β is
real and is as in one of the formulas (3.1) through (3.4), and the last two are that β
is complex and is as in (3.5) or (3.6). In any event the fact that β is simple means
that the coefficients of any of αr, αs, and αt that occur in the relevant formula
(3.1) through (3.6) are negative.

If β = αi, then Lemma 4.1 says that β = αi, regarded as a restricted root, has
m(β) = 1. By definition we have σ(γβ) = −1. Meanwhile 1 = 2〈δ, αi〉/|αi|2 =
2〈ραi

, αi〉/|αi|2 by (4.4), and thus (−1)2〈ραi
,αi〉/|αi|2 = −1. Therefore σ(γαi

) =
(−1)2〈ραi

,αi〉/|αi|2 as required, and the inductive step is complete if β = αi.
If β is as in (3.1), then β = 1

2αi − 1
2αr − 1

2αs − 1
2αt with all the relevant root

lengths equal. Hence −sαiβ = sαrsαssαtβ, and (4.3) yields γαiγβ = γαtγαsγαrγβ .
This formula and induction give

σ(γαi) = σ(γαtγαsγαr )

= (−1)2〈ραt ,αt〉/|αt|2(−1)2〈ραs ,αs〉/|αs|2(−1)2〈ραr ,αr〉/|αr|2 .
(4.6)

On the other hand, (4.5) and the equality of all the lengths give

1 = 1
2

2〈ραi
, αi〉

|αi|2
− 1

2

2〈ραr
, αr〉

|αr|2
− 1

2

2〈ραs
, αs〉

|αs|2
− 1

2

2〈ραt
, αt〉

|αt|2
. (4.7)

Multiplying (4.7) by 2, using each side as an exponent of (−1), and substituting
from (4.6), we obtain

+1 = (−1)2〈ραi
,αi〉/|αi|2(−1)2〈ραr ,αr〉/|αr|2(−1)2〈ραs ,αs〉/|αs|2(−1)2〈ραt ,αt〉/|αt|2

= (−1)2〈ραi
,αi〉/|αi|2σ(γαi

).

This completes the inductive step if β is as in (3.1).
If β is as in (3.2), then β = 1

2αi − αr − 1
2αs with |β| = |αi| = |αs| > |αr|. Hence

−sαi
β = sαr

sαs
β, and (4.3) yields γαi

γβ = γαs
γαr

γβ . This formula and induction
give

σ(γαi) = σ(γαsγαr ) = (−1)2〈ραs ,αs〉/|αs|2(−1)2〈ραr ,αr〉/|αr|2 . (4.8)

On the other hand, (4.5) and the relationships among the lengths give

1 = 1
2

2〈ραi
, αi〉

|αi|2
− 1

2

2〈ραr
, αr〉

|αr|2
− 1

2

2〈ραs
, αs〉

|αs|2
. (4.9)

Multiplying (4.9) by 2, using each side as an exponent of (−1), and substituting
from (4.8), we obtain

+1 = (−1)2〈ραi
,αi〉/|αi|2(−1)2〈ραr ,αr〉/|αr|2(−1)2〈ραs ,αs〉/|αs|2

= (−1)2〈ραi
,αi〉/|αi|2σ(γαi

).
(4.10)



24 HENRI CARAYOL AND A. W. KNAPP

This completes the inductive step if β is as in (3.2).
If β is as in (3.3), then β = αi − 1

2αr − 1
2αs with |β| = |αr| = |αs| > |αi|. Hence

−sαiβ = sαrsαsβ, and (4.3) yields γαiγβ = γαsγαrγβ . This formula and induction
give the same result as in (4.8). On the other hand, (4.5) and the relationships
among the lengths give the same result as in (4.9). Thus (4.10) again follows, and
the inductive step is complete if β is as in (3.3).

If β is as in (3.4), then β = 1
2αi − 1

2αr with |β| < |αr| = |αi|. Hence sβαi =
αi − 2〈αi,β〉

|β|2 β = αi − 2β = αi − (αi − αr) = αr, and (4.3) yields γβγαi
= γαr

. Also
σ(γβ) = −1 by Lemma 4.1. These formulas and induction give

σ(γαi) = σ(γβγαr ) = −(−1)2〈ραr ,αr〉/|αr|2 . (4.11)

On the other hand, (4.5) and the relationships among the lengths give

1 =
2〈ραi

, αi〉
|αi|2

− 2〈ραr
, αr〉

|αr|2
. (4.12)

Using each side as an exponent of (−1) and substituting from (4.11), we obtain

−1 = (−1)2〈ραi
,αi〉/|αi|2(−1)2〈ραr ,αr〉/|αr|2 = −(−1)2〈ραi

,αi〉/|αi|2σ(γαi
).

This completes the inductive step if β is as in (3.4).
If β is as in (3.5), then β = 1

2αi + ω, and (4.5) gives 2〈ραi
, αi〉/|αi|2 = 2. Hence

(−1)2〈ραi
,αi〉/|αi|2 = +1. On the other hand, the roots contributing to m(αi) upon

restriction to ap include 1
2αi + ω, 1

2αi − ω, and αi. Hence γαi lies in (Mp)0 and
σ(γαi

) = +1. Therefore σ(γαi
) = (−1)2〈ραi

,αi〉/|αi|2 , and the inductive step is
complete if β is as in (3.5).

If β is as in (3.6), then β = 1
2αi − 1

2αr + ω. Put ε = 1
2αi − 1

2αr. Since ε + ω
and ε − ω both yield ε upon restriction to ap, γε lies in (Mp)0 and σ(γε) = +1.
Computation gives sε(αr) = αi, and hence γεγαr

= γαi
. Therefore (+1)σ(γαr

) =
σ(γε)σ(γαr ) = σ(γαi). This formula and induction give

σ(γαi
) = σ(γαr

) = (−1)2〈ραr ,αr〉/|αr|2 . (4.13)

Meanwhile (4.5) gives

1 = 1
2

2〈ραi
, αi〉

|αi|2
− 1

2

2〈ραr
, αi〉

|αr|2
.

Multiplying by 2, using each side as an exponent of (−1), and substituting from
(4.13), we obtain

+1 = (−1)2〈ραi
,αi〉/|αi|2(−1)2〈ραr ,αr〉/|αr|2 = (−1)2〈ραi

,αi〉/|αi|2σ(γαi).

This completes the inductive step if β is as in (3.6).
To complete the proof of Proposition 4.3, we must verify the proposition for split

G2. Roots and restricted roots are the same for this group since it is split. There
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are two cases for the sequence {α1, α2}. One is that α1 is long and α2 is short. In
this case we find that

2〈ρα1 , α1〉
|α1|2

= 3 and
2〈ρα2 , α2〉
|α2|2

= 1,

so that
(−1)2〈ρα1 ,α1〉/|α1|2 = (−1)2〈ρα2 ,α2〉/|α2|2 = −1. (4.14)

The simple roots are α2 and β = 1
2α1− 3

2α2. Then σ(γα2) = −1 by definition. Also
we have −sα1β = 1

2α1 + 3
2α2 = sα2β. Thus (4.2) gives γβγα1 = γβγα2 , and hence

σ(γα1) = σ(γα2) = −1. (4.15)

Comparison of (4.14) and (4.15) completes the argument in this case.
The other case is that α1 is short and α2 is long. In this case we find that

2〈ρα1 , α1〉
|α1|2

= 5 and
2〈ρα2 , α2〉
|α2|2

= 1,

so that (4.14) is still valid. The simple roots are α2 and β = 1
2α1 − 1

2α2. Then
σ(γα2) = −1 by definition. We have −sα1β = 1

2α1 + 1
2α2 = sα2β. Thus (4.2) again

gives γβγα1 = γβγα2 and yields the consequence (4.15). Comparison of (4.14) and
(4.15) again completes the argument.

5. Sum of All Totally Degenerate Limits of Discrete Series

In this section we show first that the unitary principal series representation
corresponding to σ on Mp and the trivial character on Ap is the sum of all the
totally degenerate limits of discrete series if σ is defined as in §4. This step is
carried out in Theorems 5.1 and 5.2. It is automatic from Theorem 7.1 of [Kn2]
that the multiplicities in this decomposition are all 1. As was mentioned in the
introduction it follows from Harish-Chandra’s subquotient theorem and a little
extra argument (which actually is contained in the proofs of Theorems 5.1 and 5.2
below) that there is some irreducible representation of Mp with this property, but
we are interested in isolating the possible choices for this representation and seeing
that σ is one of them.

The concrete information assembled in §4 about σ allows us to do more. The
main thing is that it allows us to apply the part of the theory of the R group in [KnZ]
to give concretely the classification parameters of the irreducible constituents of the
corresponding principal series representation; these will be described in Theorem 5.5
and will be listed for each simple group in Table 5.1. Parenthetically it allows us also
to see that totally degenerate limits of discrete series exist whenever σ makes sense;
thus G has totally degenerate limits of discrete series if and only if rank G = rankK,
G is quasisplit, and G is acceptable in the sense of Harish-Chandra (i.e., half the
sum of the positive roots in analytically integral). We continue with notation as in
§4.

Theorem 5.1. Let G be quasisplit with rank G = rank K, and suppose that G
is acceptable in the sense of Harish-Chandra. Fix a strongly orthogonal sequence
α1, . . . , αl of real roots relative to hp whose restrictions to ap span a′p, and let
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∆+ = ∆+(gC, hC
p ) be the unique positive system determined by α1, . . . , αl. Impose

the relative ordering on restricted roots. Then there exists a unique 1-dimensional
representation σ of Mp such that σ is 1 on the identity component (Mp)0 and
σ(γε) equals −1 for every simple restricted root with m(ε) = 1. If Np denotes the
analytic subgroup of G corresponding to the sum of the restricted-root spaces for the
positive restricted roots and if Qp is MpApNp, then each irreducible constituent of
indG

Qp
(σ ⊗ 1⊗ 1) is a totally degenerate limit of discrete series representation.

Remarks. Proposition 3.1 guarantees that α1, . . . , αl exists, and Proposition 3.2
guarantees that ∆+ is uniquely determined by α1, . . . , αl. Under the ordering,
every positive element of a′p is greater than every element of ib′p, and therefore ∆+

consistently defines a compatible notion of positivity for restricted roots.

Proof. Let us assume for the moment that G has a simply connected complexi-
fication. The existence and uniqueness of σ are then given by Proposition 4.2.
Proposition 4.3 shows that

σ(γαj
) = (−1)2〈ραj

,αj〉/|αj |2 (5.1)

for 1 ≤ j ≤ l, and we know that the global character of indG
Qp

(σ ⊗ 1⊗ 1) is of the
form

indG
Qp

ΘMpAp(0, ibp, σ|F (Bp), 0). (5.2)

We wish to invert generalized Schmid identities relative to dαl
, . . . ,dα1 so that

(5.2) can be rewritten one step at a time in terms of data for a Cartan subalgebra
whose compact part is one dimension larger. The condition for doing so is stated
at the end of §2 and has two parts to it. One part concerns the ap parameter;
since this parameter is 0 in our situation, it presents no difficulty. The other
part concerns the values of σ|F (Bp)(γαj

) = σ(γαj
) for j = l, . . . , 1, and (5.1) says

that this part of the condition is satisfied. Therefore we can rewrite (5.2) as the
sum of one or two characters built from a Cartan subalgebra that incorporates
α̃l = dαl

(αl) as a noncompact imaginary root, and we can rewrite each of those
as the sum of one or two characters from a Cartan subalgebra that incorporates
also α̃l−1 = dαl−1(αl−1) as a noncompact imaginary root. The imaginary root
α̃l remains noncompact after dαl−1 because αl−1 and αl are strongly orthogonal.
We continue in this way through αl−1, . . . , α1. At each step the data other than
the chambers (and the implied sets of positive roots) are the same in all the new
characters that arise, as was remarked at the end of §2. Since the restrictions of
αl, . . . , α1 span a′p, the final Cartan subalgebra is compact. Thus all the global
characters after the last stage are limits of discrete series, and their infinitesimal
character in each case is 0. Some of these global characters may be 0, but at
least one of them is nonzero because (5.2) is nonzero. Each of the nonzero limits
of discrete series is irreducible because nonzero limits of discrete series are always
irreducible (Theorem 1.1 of [KnZ]). This completes the proof under the assumption
that G has a simply connected complexification.

Now suppose that G is merely acceptable. Choose a covering group G̃ with a
simply connected complexification, and let Z be the kernel of the covering map G̃ →
G. Apply the special case just considered to the group G̃, obtaining a representation
σ̃ of the group M̃p. Let Q̃p = M̃pApNp be the minimal parabolic subgroup such
that ind eGeQp

(σ̃ ⊗ 1⊗ 1) is exhibited as a sum of totally degenerate limits of discrete
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series. Let any of the latter be π̃(0, C). Since G is acceptable and 0 is algebraically
integral, π̃(0, C) is trivial on Z. Therefore ind eGeQp

(σ̃ ⊗ 1⊗ 1) is trivial on Z, and we
conclude that σ̃ is trivial on Z. Then σ̃ descends to a representation σ of Mp. This
proves the existence of σ, and the uniqueness is immediate from the fact that Mp

is generated by (Mp)0 and the elements γε for the simple restricted roots ε with
m(ε) = 1. This completes the proof.

Theorem 5.2. Let G be quasisplit with rank G = rank K, and suppose that G is
acceptable in the sense of Harish-Chandra. Then G has a totally degenerate limit
of discrete series representation. Fix one of the representations of this kind that is
produced by Theorem 5.1, and write its global character as ΘG(0, C) relative to some
compact Cartan subalgebra t of g contained in k. Let U be the analytic subgroup of
GC with Lie algebra u = k⊕ ip. Then the global character of any totally degenerate
limit of discrete series representation of G is of the form ΘG(0,Ad(u)C) for some
member u of the normalizer NU (t, k, p) of t, k, and p in U . Moreover every totally
degenerate limit of discrete series representation is a constituent of the unitary
principal series representation indG

Qp
(σ ⊗ 1⊗ 1) of Theorem 5.1.

Remark. U is a compact form of G.

Proof. It is immediate from Theorem 5.1 that G has a totally degenerate limit of
discrete series representation. We can write its global character as ΘG(0, C). Since
ΘG(0, C) is nonzero, the Hecht-Schmid identity shows that every C-simple root
relative to ∆(gC, tC) is noncompact. Any other totally degenerate limit of discrete
series representation has a global character of the form ΘG(0, C ′). The action of
the Weyl group W (tC : gC) is transitive on the set of chambers, and each Weyl
group element has a representative in U . Thus we can choose u ∈ U normalizing
t with C ′ = Ad(u)C. The transformation Ad(u) carries the C-simple roots to the
C ′-simple roots, and every C ′-simple root is noncompact since ΘG(0, C ′) is assumed
nonzero. Thus Ad(u) preserves type—compact or noncompact—for simple roots.
An easy induction allows us to extend this conclusion to all positive roots and to
their negatives. For example, if the result is known for a compact root α and a
noncompact root β, then the root vectors satisfy

Ad(u)[Eα, Eβ ] = [Ad(u)Eα,Ad(u)Eβ ] ⊆ [kC, pC] ⊆ pC,

so that Ad(u) carries the noncompact root α + β to a noncompact root. The
conclusion is that Ad(u) preserves type for all roots. Consequently Ad(u) carries
kC to itself and pC to itself. But also Ad(u) carries the Lie algebra u = k ⊕ ip to
itself, and hence it carries the intersections k = u∩kC and p = iu∩pC to themselves.
This proves that u is in NU (t, k, p).

If π is a unitary representation of G on a Hilbert space H and if ϕ is an
automorphism of G, we define πϕ to be the unitary representation of G on H
given by πϕ = π ◦ ϕ−1. If ϕ is an inner automorphism, then πϕ will of course be
unitarily equivalent with π.

Suppose now that π is a representation with global character ΘG(0, C), and let
ϕ(x) = uxu−1 for x ∈ G. The same argument that establishes (1.14) in [KnZ]
proves that πϕ has global character ΘG(0,Ad(u)C).

From the embedding of π into L = indG
Qp

(σ ⊗ 1⊗ 1), it follows that πϕ embeds
into Lϕ. We shall adjust ϕ by an inner automorphism to exhibit an equivalence
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between L and Lϕ. Specifically we forget about the fact that u normalizes t and
remember only that u is in U and u normalizes g, k, and p. The space Ad(u)(ap)
is maximal abelian in p, and we can find k1 ∈ K so that Ad(k1u)(ap) = ap.
The various possibilities for np are conjugate via the Weyl group W (ap :K), and
thus we can find k2 ∈ K so that Ad(k2k1u) carries ap to itself and preserves
positivity of simple restricted roots. Then conjugation by k2k1u maps Mp and Np

to themselves. Let us put v = k2k1u and redefine ϕ by ϕ(x) = vxv−1. For the
redefined ϕ, we work with Lϕ = (indG

Qp
(σ ⊗ 1 ⊗ 1))ϕ. Let us say for definiteness

that the induced representations act on the left, with the transformation law being
on the right. We define an operator P on the space of Lϕ (i.e., the space of L) by
F (x) = (Pf)(x) = f(ϕ−1x) = f(v−1xv), and we readily check that P carries the
space of Lϕ in one-one fashion onto the space for L′ = indG

Qp
(σϕ ⊗ 1⊗ 1) and that

P exhibits these representations as equivalent: L′(g)(Pf)(x) = P ((Lϕ(g))f)(x).
To show that Lϕ is equivalent with L, it is therefore enough to show that σϕ

equals σ, i.e., that σ(v−1mv) = σ(m) for all m ∈ Mp. Conjugation of Mp by
v−1 carries (Mp)0 to itself, and σ is 1 on (Mp)0. Thus it is enough to show that
σ(v−1γεv) = σ(γε) for every simple restricted root ε. Here v−1γεv = γAd(v−1)ε, and
we have arranged that conjugation by v−1 maps the set of simple restricted roots
to itself. It also preserves multiplicities. Thus if ε is a simple restricted root with
m(ε) = 1, so is Ad(v−1)ε. The definition of σ then shows that σ is −1 on both γε

and γAd(v−1)ε. Hence σϕ = σ.
What all this shows is that a representation with global character ΘG(0, C ′) =

ΘG(0,Ad(u)C) embeds in a representation equivalent with indG
Qp

(σ ⊗ 1 ⊗ 1), and
the theorem is thus completely proved.

Corollary 5.3. Let G be quasisplit with rank G = rank K, and suppose that G is
acceptable in the sense of Harish-Chandra. Let U be the analytic subgroup of GC

with Lie algebra u = k ⊕ ip. If NU (t, k, p) denotes the subgroup of elements of U
normalizing t, k, and p, then the inclusions of NU (t, k, p) first into NU (k) and then
into NGC(g) descend to isomorphisms

NU (t, k, p)/NK(t) ∼= NU (k)/K ∼= NGC(g)/G. (5.3)

Consequently the set of totally degenerate limits of discrete series characters of G
is parametrized by either of the groups NU (k)/K or NGC(g)/G.

Proof. A member of NU (k) normalizes k and k⊕ ip. Hence it normalizes ip, p, and
k ⊕ p = g. Therefore NU (t, k, p) ⊆ NU (k) ⊆ NGC(g). Since NK(t) ⊆ K ⊆ G, the
inclusions descend to homomorphisms

NU (t, k, p)/NK(t) → NU (k)/K → NGC(g)/G. (5.4)

To see that the maps (5.4) are one-one, we have to see that NU (t, k, p)∩G ⊆ NK(t).
It is enough to see that U ∩ G ⊆ K. Since G = K exp p, it is enough to see that
U ∩ exp p = 1. If X 6= 0 is in p, then Ad(exp X) acts fully reducibly with positive
eigenvalues on gC, while any member of Ad(U) acts with all eigenvalues of modulus
1 since U is compact. The two can coincide only if all the eigenvalues are 1, and
then Ad(expX) = 1, adX = 0, and X = 0. Thus the maps (5.4) are one-one.

To see that the first map in (5.4) is onto, let u be given in NU (k). Then Ad(u)
carries t to a maximal abelian subspace of k, and we can find k ∈ K such that
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Ad(ku) carries t to itself. The element ku normalizes t, k, and p. Then ku is in
NU (t, k, p), and the K coset of our original element u is exhibited as in the image
of the first map of (5.4).

To see that the second map in (5.4) is onto, let g be given in NGC(g). By the
global Cartan decomposition of GC, write g = u expZ with u ∈ U and z ∈ iu.
The space g is stable under the Cartan involution of gC, which is +1 on u and −1
on iu, and thus Lemma 7.22 of [Kn3] applies and shows that u and Z separately
normalize g. Here u is in NU (k), which we have already observed is a subset of
NGC(g). Meanwhile, Z is in ik ⊕ p. Write Z = Z1 + Z2 accordingly. Then Z2 is
in p ⊆ g and hence normalizes g. So Z1 normalizes g. Since Z1 is in ig, we obtain
[Z1, g] ⊆ ig ∩ g = 0 and hence iZ1 is in the center of g. This is 0, and thus we
conclude that g = uz with z = expZ2 in G. Thus our member g of NGC(g) is in
the same G coset as u, which we have seen is in NU (k).

Now consider the last assertion of the corollary. From Theorem 5.2 we know
that there is at least one such character, and it is of the form ΘG(0, C) for some
chamber C. Also we know that any other one is of the form ΘG(0,Ad(u)C) with
u in NU (t, k, p). We want to know the isotropy subgroup, i.e., those elements
u ∈ NU (t, k, p) with ΘG(0,Ad(u)C) = ΘG(0, C). Theorem 1.1c of [KnZ] gives a
condition—that Ad(u)C = Ad(g)C for some g in NG(t). Let g = k expX be the
global Cartan decomposition of g. Lemma 7.22 of [Kn3] shows that k and exp X
separately normalize t. Since t is a Cartan subalgebra, it equals its own normalizer,
and thus X is in t. Hence Ad(u)C = Ad(k)C for some k in NK(t). Since the
Weyl group W (t :U) acts simply transitively on the Weyl chambers, k−1u is in
exp t. Thus u is in NK(t). Consequently NU (t, k, p)/NK(t) parametrizes the set of
characters of totally degenerate limits of discrete series of G, and the last assertion
of the corollary follows from the isomorphisms (5.3).

The theory of the R group in [KnZ] tells how to obtain the classification pa-
rameters of the irreducible constituents of indG

Qp
(σ ⊗ 1 ⊗ 1). To describe matters

easily, let us assume that G is simple, and let us take advantage of the fact that σ is
1-dimensional. (For the general case, see p. 438 of [KnZ].) If k ∈ K normalizes ap,
then we set kσ(m) = σ(k−1mk). Since σ is 1-dimensional, the right side does not
change when k is multiplied by a member of the centralizer Mp of ap in K. Thus
it makes sense to to speak of wσ for any w in the Weyl group W (ap :K), which is
the same as the Weyl group of the system Σ of restricted roots. Let

Wσ = {w ∈ W (ap :K) | wσ = σ}.

To get at the R group, one defines a certain subset Σ′
σ of Σ. For 1-dimensional σ

when the irreducible root system Σ is reduced,

Σ′
σ = {ε in Σ | σ(γε) = +1}.

We shall not need the definition of Σ′
σ when Σ is not reduced. The reason is that

Mp is connected in this case (see [Kn1]), and σ reduces to the trivial representation;
the R group is easily seen from its definition to be trivial in this case.

In any event, Σ′
σ is closed under its own reflections, and these reflections are in

Wσ. It follows readily that Wσ is the semidirect product of the Weyl group W ′
σ of

Σ′
σ and the subgroup

Rσ = {r ∈ Wσ | rε > 0 for all ε > 0 in Σ′
σ}.
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Proposition 8.4 of [KnZ] says that there is a set H = Hσ = {ξ1, . . . , ξp} of real
roots in ∆+(gC, hC

p ) that are superorthogonal in the sense that no nontrivial linear
combination of ξ1, . . . , ξp is a root, every member r of Rσ is the product of the
reflections in the restrictions to ap of the members of some subset of H, and every
member ξ of H has the property that sξ is is a factor of some member of Rσ.

Table 5.1 tells what H is for all simple G under study. In most cases the group
Rσ has order 1 or 2. In the cases of order 2, the nontrivial element of Rσ is the
product of the reflections in H. The only case for which Rσ has order greater than 2
is D2n, and then Rσ has order 4; two of the nontrivial elements are

se2n−1−e2nse2n−1+e2n and se1−e2se3−e4 · · · se2n−3−e2n−2se2n−1−e2n ,

and the third is the product of these two. In §6 we shall need the following result,
which is obvious by inspection from Table 5.1.

Proposition 5.4. Let G be quasisplit with rank G = rank K, and suppose that G
is acceptable in the sense of Harish-Chandra. Let σ be defined as in Theorem 5.1,
and let other notation be as above. Then all the members of H = Hσ are simple
roots.
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∆ Σ Names of Simple m(ε) for Each |Rσ| Hσ

Restricted Roots Simple
Restricted Root

A2n−1 Cn ej − ej+1, 2 for short ε 2 2en

1 ≤ j ≤ n−1 1 for long ε
2en

A2n (BC)n not needed 3 for short ε 1 ∅
2 for medium ε

B2n B2n ej − ej+1, 1 for all ε 2 e2j−1−e2j ,
1 ≤ j ≤ 2n−1; 1 ≤ j ≤ n

e2n

B2n+1 B2n+1 ej − ej+1, 1 for all ε 2 e2j−1−e2j ,
1 ≤ j ≤ 2n; 1 ≤ j ≤ n;

e2n+1 e2n+1

Cn Cn ej − ej+1, 1 for all ε 2 2en

1 ≤ j ≤ n−1;
2en

D2n D2n ej − ej+1, 1 for all ε 4 e2j−1−e2j ,
1 ≤ j ≤ 2n−1; 1 ≤ j ≤ n;

e2n−1+e2n e2n−1+e2n

D2n+1 B2n ej − ej+1, 2 for short ε 2 e2j−1−e2j ,
1 ≤ j ≤ 2n−1; 1 for long ε 1 ≤ j ≤ n

e2n

E6 F4 not needed 2 for short ε 1 ∅
1 for long ε

E7 E7 Roots εj with 1 for all ε 2 ε7, ε5, ε2

j as in
(

2
765431

)
E8 E8 not needed 1 for all ε 1 ∅
F4 F4 not needed 1 for all ε 1 ∅
G2 G2 not needed 1 for all ε 1 ∅

Table 5.1. Set Hσ of real roots identified by Rσ

Returning to G not necessarily simple, let dH =
∏p

j=1 dξj be the product of the
Cayley transforms in all of the roots ξj ∈ H. We define a new parabolic subgroup
Q = MAN by saying that dH leads from the data (mp, ap, bp) to data (m, a, b).
Put ξ̃j = dH(ξ) for 1 ≤ j ≤ p.

The only chamber in ibp is ibp itself. Because of the superorthogonality of the
members of H, it is apparent when G is split that there are exactly 2p chambers
in ib. These are determined by specifying p signs sj = ±1, 1 ≤ j ≤ p, and taking
a chamber to be the set where the p roots s1ξ̃1, . . . , spξ̃p are positive. When G is
merely quasisplit, the same conclusion is valid, but it is much less apparent. For
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the relevant fact we appeal to Lemma 8.5 of [KnZ], which shows that the only
imaginary roots in ∆(mC, bC) are ±ξ̃1, . . . ,±ξ̃p.

Let WH be the group of order 2p generated by the reflections in ξ1, . . . , ξp, and
let

EH =
{

w ∈ WH

∣∣∣∣ for each r in Rσ, w and r have an even
number of factors sξj

in common

}
. (5.5)

Using dH, we can regard members of WH as permuting the 2p chambers of ib simply
transitively. The subgroup EH gets identified with the set of members realizable in
M . Theorems 8.7 and 12.3 of [KnZ] then yield the following.

Theorem 5.5. Let G be quasisplit with rank G = rank K, and suppose that G is
acceptable in the sense of Harish-Chandra. Let indG

Qp
(σ ⊗ 1 ⊗ 1) be defined as in

Theorem 5.1, with character indG
Qp

ΘMpAp(0, ibp, σ|F (Bp), 0), and let other notation
be as above. Then (5.5) sets up a canonical isomorphism of WH/EH onto the dual
group R̂σ. Moreover,

indG
Qp

ΘMpAp(0, ibp, σ|F (Bp), 0) =
∑

w∈WH/EH∼= bRσ

indG
Q ΘMA(0, wC, σ|F (B), 0) (5.6)

for any choice C of the 2p chambers in ib. The characters on the right side of (5.6)
are all nonzero and irreducible, and they are given by nondegenerate data.

6. Classification of Totally Degenerate Limits of Discrete Series

In this section we give the classification of totally degenerate limits of discrete
series, matching each such representation to one of the irreducible constituents of
the principal series representation whose character appears on the left side of (5.6).
Since the characters of the irreducible constituents have been written on the right
side of (5.6) with nondegenerate data, this matching process will indeed complete
the classification.

We continue with notation as in §4, and we shall make use also of the notation
concerning the R group introduced in §5. We use t to denote a compact Cartan
subalgebra of g contained in k. A choice will be made in this section of a maximally
noncompact θ stable Cartan subalgebra hp = bp ⊕ ap of g, the choice depending
on the totally degenerate limit of discrete series character that we are given. Then
we let Mp and Ap be defined as usual. Once a lexicographic ordering has been
introduced on a′p ⊕ ib′p such that every positive element of a′p is greater than every
element of ib′p, then we obtain a set ∆+(gC, hC

p ) of positive roots, a compatible set
of positive restricted roots, and a subgroup Np. We let Qp = MpApNp.

The idea of the proof of the classification is to start with a totally degenerate limit
of discrete series character ΘG(0, C), construct a fundamental sequence α̃1, . . . α̃l of
strongly orthogonal noncompact roots relative to the positive system determined
by C, and arrange that the generalized Schmid identities corresponding to the l
Cayley transforms ceαj

lead through the stage at the right side of (5.6) and onward
to the principal series character on the left side of (5.6). Then in effect we can
invert the last few generalized Schmid identities by means of the appropriate Cayley
transforms dα and obtain the desired equality of irreducible characters. An example
will illustrate what is supposed to happen.



LIMITS OF DISCRETE SERIES WITH INFINITESIMAL CHARACTER ZERO 33

Example. In D6, let the C-simple roots in ∆(gC, tC) be

e1 − e2, e2 − e3, e3 − e4, e4 − e5, e5 − e6, e5 + e6.

A fundamental sequence of strongly orthogonal noncompact roots is

α̃1 = e1− e2, α̃2 = e3− e4, α̃3 = e5− e6, α̃4 = e1 + e2, α̃5 = e3 + e4, α̃6 = e5 + e6.

We apply each Cayley transform ceαj
and arrive at a maximally noncompact θ stable

Cartan subalgebra hp = bp ⊕ ap. We put αj = ceαj
(α̃j), but we leave the notation

ej unchanged because there is little possibility of confusion. Our basis of a′p is

α1 = e1− e2, α2 = e3− e4, α3 = e5− e6, α4 = e1 + e2, α5 = e3 + e4, α6 = e5 + e6,

and this is to be used lexicographically to define positive roots in ∆(gC, hC
p ) and

then to define σ in Theorem 5.1. Computation shows that the resulting simple
roots are

e1 + e2, −e2 − e3, e3 + e4, −e4 − e5, e5 − e6, e5 + e6.

On the other hand, Table 5.1 shows that Hσ consists of the first, third, fifth, and
sixth simple roots in ∆+(gC, hC

p ). Thus

Hσ = {e1 + e2, e3 + e4, e5 − e6, e5 + e6} = {α3, α4, α5, α6}.

We know from Theorems 5.1 and 5.2 that use of the six generalized Schmid identi-
ties corresponding to α̃1 through α̃6 leads us from our given representation to the
principal series representation built from σ. Application of the inverted generalized
Schmid identities corresponding to dHσ

takes us from the principal series repre-
sentation to its irreducible constituents. Since Hσ consists of the last four of our
αj ’s and since dαj can be regarded as the inverse of ceαj

, it is reasonable to expect
that we can get to the irreducible constituents of the principal series representation
by using just the first two generalized Schmid identities, those corresponding to α̃1

and α̃2. Using just those two identities, we obtain an equality of our given totally
degenerate limit of discrete series character with one of the characters on the right
side of (5.6). Sorting matters out, we obtain the desired match.

There are two obstructions to having this process work in general. One is illus-
trated by changing the fundamental sequence in the above example to α̃1, α̃4, α̃2,
α̃5, α̃3, α̃6. Computation shows that this change does not affect ∆+(gC, hC

p ). Thus
we still have Hσ = {e1 + e2, e3 + e4, e5 − e6, e5 + e6}, but the interpretation of
Hσ in terms of the fundamental sequence is that Hσ consists of four of our αj ’s
yet not the last four. This is not a serious problem, and Lemma 6.1 will address it
satisfactorily.

The other obstruction is illustrated in B3 by using the fundamental sequence

α̃1 = e3, α̃2 = e1 − e2, α̃3 = e1 + e2.

We form α1 = e3, α2 = e1 − e2, α3 = e1 + e2 and find that the simple roots of
∆+(gC, hC

p ) are e3 − e1, e1 + e2, −e2. Table 5.1 says that Hσ consists of the first
and third simple roots, thus of e3− e1 and −e2. But neither of these roots is in our
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sequence. This is a more serious problem and will be addressed by Lemma 6.2 and
the definition of “good fundamental sequence” that follows it.

In a reduced root system a simple root will be called isolated if it is orthogonal
to all other simple roots in the system. Equivalently a simple root α in a system is
isolated if there is no root β in the system such that α + β is a root. Relative to a
compact Cartan subalgebra and a positive system of roots for it, let α̃1, . . . , α̃l be
a fundamental sequence. Let us say that α̃j is of the first kind if it is not isolated
as a simple root in the system of roots orthogonal to α̃1, . . . , α̃j−1, or of the second
kind if it is isolated.

Lemma 6.1. Under the assumption that g has a compact Cartan subalgebra t ⊆ k,
let ∆+(gC, tC) be a positive system for ∆(gC, tC), and suppose that

α̃1, . . . , α̃l (6.1)

is a fundamental sequence for ∆+(gC, tC).
(a) If, for some k with 1 ≤ k ≤ l−1, α̃k is isolated as a simple root in the system

of roots orthogonal to α̃1, . . . , α̃k−1, then

α̃1, . . . , α̃k−1, α̃k+1, α̃k, α̃k+2, . . . , α̃l (6.2)

is another fundamental sequence for ∆+(gC, tC) and the type of each root—first kind
or second kind—is not changed.

(b) Let c = ceαl
· · · cfα1 be the composition of the commuting Cayley transforms

from (6.1) or (6.2), and suppose that c leads from the data (g, 0, t) to (mp, ap, bp)
and that αj = c(α̃j) for 1 ≤ j ≤ l is the corresponding set of strongly orthogonal real
roots in ∆(gC, hp), where hp = bp ⊕ ap. Then the sequence of real roots α1, . . . , αl

and the sequence obtained by applying c to (6.2) determine the same positive system
∆+(gC, hC

p ).

Proof. Define

∆k−1 = {ξ ∈ ∆(gC, tC) | 〈ξ, α̃j〉 = 0 for 1 ≤ j ≤ k − 1}
∆k = {ξ ∈ ∆(gC, tC) | 〈ξ, α̃j〉 = 0 for 1 ≤ j ≤ k}
∆′

k = {ξ ∈ ∆(gC, tC) | 〈ξ, α̃j〉 = 0 for 1 ≤ j ≤ k − 1 and j = k + 1}.

The sequence (6.2) certainly consists of positive noncompact roots satisfying (i)
and (iii) in the definition of fundamental sequence in §3. To show that (ii) holds
for (6.2), we are to show that
(ii-a) α̃k+1 is a simple root in ∆k−1, and
(ii-b) α̃k is a simple root in ∆′

k.
Condition (ii-b) is automatic since α̃k is simple in the larger system ∆k−1.

Arguing by contradiction, suppose that (ii-a) fails. Then α̃k+1 = β + β′, where
β and β′ are positive roots in ∆k−1. Let α̃k, γ1, . . . , γm be the simple roots in this
subsystem. By assumption, α̃k is orthogonal to γ1, . . . , γm. We expand β and β′

in terms of α̃k, γ1, . . . , γm as β = c0α̃k +
∑m

j=1 cjγj and β′ = c′0α̃k +
∑m

j=1 c′jγj

for some coefficients ≥ 0, and we take the inner product of everything with α̃k.
Then we obtain 〈β, α̃k〉 = c0|α̃k|2 and 〈β′, α̃k〉 = c′0|α̃k|2 with c0 and c′0 both ≥ 0.
Addition gives 0 = 〈α̃k+1, α̃k〉 = 〈β +β′, α̃k〉 = (c0 + c′0)|α̃k|2, and we conclude that
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c0 = c′0 = 0. Consequently β and β′ are linear combinations of γ1, . . . , γm, and so
is α̃k+1. Since γ1, . . . , γm are by assumption orthogonal to α̃k and to α̃1, . . . , α̃k−1,
the root α̃k+1 is exhibited as a nonsimple root in ∆k, and we have arrived at a
contradiction. Thus (6.2) is a fundamental sequence.

To complete the proof of (a), we need to see that the type (first kind or second
kind) of each of α̃k and α̃k+1 is not affected by switching them in the sequence.
We have seen that α̃k and α̃k+1 are both simple in ∆k−1. We are given that α̃k

is isolated in ∆k−1. Then no root β in ∆k−1 is such that β + α̃k is a root. In
particular, β + α̃k cannot be a root if β is in ∆′

k, and hence α̃k is isolated in ∆′
k.

Thus α̃k is of the second kind in both sequences.
Similarly if α̃k+1 is isolated in ∆k−1, then it is isolated in ∆k. Thus if α̃k+1 is of

the second kind in (6.2), it is of the second kind in (6.1). In the converse direction,
suppose that α̃k+1 is of the first kind in (6.2), i.e., that α̃k+1 fails to be isolated
in ∆k−1. Then β + α̃k+1 is a root for some root β in ∆k−1. If 〈β, α̃k〉 6= 0, then
±β + α̃k is a root for some β in ∆k−1 and some choice of sign, and this contradicts
the assumption that α̃k is isolated in ∆k−1. So 〈β, α̃k〉 = 0, and β + α̃k+1 is a
root with β orthogonal to α̃1, . . . , α̃k. Thus α̃k+1 fails to be isolated in ∆k. This
completes the proof of (a).

For (b) we argue by contradiction. If (b) is false, then there exists some root
β in ∆k−1 with 〈β, α̃k〉 < 0 and 〈β, α̃k+1〉 > 0. This root β cannot be −α̃k since
〈−α̃k, α̃k+1〉 = 0, and thus β + α̃k is a root. Since β is in ∆k, α̃k is not isolated in
∆k, in contradiction to hypothesis. This proves (b).

Lemma 6.2. Under the assumptions that g is quasisplit, is simple, has a compact
Cartan subalgebra t ⊆ k, and has roots β1 and β2 with |β1|2 = 2|β2|2, suppose
that ∆+(gC, tC) is a positive system for ∆(gC, tC) in which every simple root is
noncompact. Then g has a fundamental sequence α̃1, . . . , α̃l of strongly orthogonal
noncompact positive roots in which all of α̃1, . . . , α̃l−1 are long. In any fundamental
sequence, α̃l is of the second kind.

Remark. When 2 ≤ m ≤ n, the conclusion of this lemma fails for g = sp(m,n),
which is not quasisplit.

Proof. The root system in question has to be of type Bn, Cn, or F4. Since none
of these systems has a nontrivial outer automorphism, g has to be split. Thus the
fundamental sequence has to be a basis for the roots. The only roots orthogonal to
α̃1, . . . , α̃l−1 are then the multiples of α̃l; the root α̃l is simple in this system, and
hence α̃l is of the second kind.

In split Cn, the fundamental sequence, in standard notation, has to consist
of 2en, 2en−1, . . . , 2e1, and no short roots appear. In split F4, every fundamental
sequence consists of four long roots, and no short roots appear. In B2n, the sequence
consisting of e2j−1 − ej , e2j−1 + e2j for 1 ≤ j ≤ n is fundamental with no short
roots. Finally, in B2n+1, the sequence consisting of the roots for B2n followed by
e2n+1 is fundamental, and only the last member of the sequence is short.

If g has a compact Cartan subalgebra t ⊆ k and if a positive system ∆+(gC, tC)
is specified, a fundamental sequence α̃1, . . . , α̃l of strongly orthogonal positive non-
compact roots will be said to be good if within each irreducible component of
∆(gC, tC) in which there are roots β1 and β2 with |β1|2 = 2|β2|2, at most one
member of the part of the sequence within this component is short and it is the
last one for this component.
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Lemma 6.3. Let g be quasisplit and have a compact Cartan subalgebra t ⊆ k. Fix
a positive system for ∆(gC, tC), and suppose that every simple root is noncompact.
Then there exists a good fundamental sequence of positive noncompact roots.

Proof. Proposition 3.4 shows that a fundamental sequence exists. Fix an irreducible
component ∆1 of ∆(gC, tC) in which there are roots β1 and β2 with |β1|2 = 2|β2|2.
The subsequence of the fundamental sequence consisting just of those roots that lie
in ∆1 is fundamental for that component, and Lemma 6.2 says that we can replace
it by a good fundamental sequence for that component. Repeating this procedure
for the other irreducible components of ∆(gC, tC), we obtain a good fundamental
sequence for ∆(gC, tC).

Theorem 6.4. Let G be quasisplit and acceptable in the sense of Harish-Chandra,
and suppose that g has a compact Cartan subalgebra t ⊆ k. Suppose that ΘG(0, C)
is a totally degenerate limit of discrete series character written in terms of t. Let
α̃1, . . . , α̃l be a good fundamental sequence of strongly orthogonal positive non-
compact roots relative to the positive system of ∆(gC, tC) determined by C. Let
c = ceα1 · · · ceαl

be the composition of Cayley transforms, and suppose that c leads
from the data (g, 0, t) to data (mp, ap, bp) and that αj = c(α̃j) for 1 ≤ j ≤ l is the
resulting strongly orthogonal sequence of real roots in ∆(gC, hp), where hp = bp⊕ap.
Use the sequence α1, . . . , αl lexicographically to determine a unique positive system
∆+(gC, hC

p ), and define σ to be the 1-dimensional representation of Mp such that σ
is 1 on the identity component (Mp)0 and σ(γε) equals −1 for every simple restricted
root ε with m(ε) = 1. Let Hσ be the set of superorthogonal real roots defined in
§5, and let p = |Hσ|. Each member of Hσ is one of the roots α1, . . . , αl, and the
members of the sequence α1, . . . , αl can be permuted without changing ∆+(gC, hC

p )
so that the members of Hσ are the last p, namely αl−p+1, . . . , αl. Define dH to be
the composition

∏
α∈Hσ

dα, and suppose that dH leads from the data (mp, ap, bp)
to data (m, a, b) as in §5. Then

ΘG(0, C) = indG
Q ΘMA(0, CM , σ|F (B), 0), (6.3)

where CM is the unique chamber in ib for which the p roots dH(α), α ∈ Hσ, are
CM -positive, and (6.3) exhibits the given totally degenerate limit of discrete series
as rewritten with nondegenerate data.

Remarks. The sequence α̃1, . . . , α̃l exists by Lemma 6.3. The transformed sequence
α1, . . . , αl determines lexicographically a unique positive system ∆+(gC, hC

p ) by
Proposition 3.2. The representation σ exists and is unique according to Theorem
5.1. In the proof we may assume that the root system contains no component G2

because Table 5.1 shows that the R group is trivial for G2.

Proof. We begin by adjusting the given sequence α̃1, . . . , α̃l in ∆(gC, tC) a little.
Lemma 6.2 says that the exceptional short roots are of the second kind, and Lemma
6.1 allows us to move them to the end of the sequence without affecting ∆+(gC, hC

p ).
A second application of Lemma 6.1 allows us to move all remaining members of
the sequence that are of the second kind to the end of the sequence but just before
the exceptional short roots. Roots of the first kind are still of the first kind, roots
of the second kind are still of the second kind, and ∆+(gC, hC

p ) is unchanged. At
the end of the adjustments, all the roots of the first kind precede all the roots
of the second kind, and all the ordinary roots of the second kind precede all the
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exceptional short roots of the second kind. The sequence is still good. Let us
retain the names α̃1, . . . , α̃l for the adjusted sequence, and let us refer to a member
αj of the corresponding sequence α1, . . . , αl as being first kind, second kind, or
exceptional short if α̃j has that property.

As in the proof of Proposition 4.3, let Σk be the subsystem of restricted roots
orthogonal to α1, . . . , αk. We saw in that proof that the simple restricted roots
needed for the expansion of any member of Σk are in Σk. For each k, the restriction
to a′p of the real root αk lies in Σk−1 but not in Σk. Thus Σk−1 contains at least
one more simple restricted root than Σk does. Since the total number of simple
restricted roots coincides with the total number of αj ’s, it follows for each j with
1 ≤ j ≤ l that there exists one and only one simple restricted root whose expansion
in terms of α1, . . . , αl begins with a positive multiple of αj . Let us write εj for this
simple restricted root.

Let Hσ be the set of superorthogonal real roots defined in §5. Proposition 5.4
observes that each such root β is simple in ∆+(gC, hC

p ). The main step in the proof
is to show that β is one of the roots αj and is of the second kind.

If β is in Hσ, then β is simple. Consequently, as we observed before Lemma 4.1,
a theorem of Satake [Sa] shows that the restriction of β to a′p is a simple restricted
root. In the notation above, the restriction of β is therefore of the form εj for some
unique j. Arguing by contradiction, suppose that some member of Hσ is not one of
α1, . . . , αl. Among all β in Hσ, we can then choose the one β = β0 whose associated
εj has j as small as possible so that εj 6= αj . Let i be this smallest value of j. Fix
an element w of Rσ having the reflection sβ0 as one of its commuting factors.

We expand this real root β0 in terms of α1, . . . , αl and form the irreducible root
subsystem to which β0 belongs. We saw that we may disregard split G2. Applying
Proposition 3.2, we obtain a list of possibilities for the expansion of β0. Since β0

begins with a positive multiple of αi, is not αi itself, and is real, the only possibilities
are (3.1) through (3.4). The coefficients of any of αr, αs, and αt that appear have
to be < 0 since β0 is simple. An expansion (3.3) cannot occur since the condition
|αi| < |αr| in (3.3) is incompatible with the fact that the fundamental sequence is
good. Thus the only possibilities are (3.1), (3.2), and (3.4).

If β0 is of the form (3.4), we can write β0 = 1
2αi − 1

2αr with i < r and with
|β0| < |αr| = |αi|. We have sβ0(αi) = αr, and (4.2) gives γβ0γαi

= γαr
. The

definition of σ makes σ(γβ0) = −1, and thus exactly one of σ(γαi) or σ(γαr ) is +1.
Since the element w of Rσ is a product of reflections in members of Hσ, we can
write w = sβ0sβ1 · · · sβm

with β1, . . . , βm in Hσ and with no repeated factors in the
expansion. The associated simple εj ’s for βl with l ≥ 1 have j > i or else βl is
some αk with k < i, and each such βl is strongly orthogonal to β0. Since each βj

with j ≥ 1 is orthogonal to β0 and does not contain αi in its expansion, no βj for
j ≥ 1 contains αr in its expansion either. So we have w(αi) = sβm · · · sβ1sβ0(αi) =
sβm

· · · sβ1(αr) = αr and similarly w(αr) = αi. If σ(γαi
) = +1, then the equalities

σ(γαr
) = −1 and w(αi) = αr show that w does not preserve the set of positive

restricted roots η for which m(η) = 1 and σ(γη) = +1; if σ(γαr
) = +1, then the

equalities σ(γαi) = −1 and w(αr) = αi similarly show that w does not preserve the
set of positive restricted roots η for which m(η) = 1 and σ(γη) = +1. We have seen
that one of these alternatives must hold, and thus (3.4) leads to a contradiction.
So β0 is of the form (3.1) or (3.2). In particular, |β0| = |αi|.

In the remark with Proposition 4.3, we observed that 2ραi
is a multiple of αi.

Let us digress to compute the parity of this multiple. We have to take into account
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αi itself and all the forms of roots indicated by (3.1) through (3.6). From β as in
(3.1), we get a contribution from each of the eight combinations of signs, and the
sum is 4αi. Similarly, when all signs are taken into account, we get 2αi from (3.2)
and 2αi from (3.3), and we get 2αi from (3.6) if ±ω are both used. Thus 2ραi

is
the sum of an odd multiple of αi and whatever contribution we get from (3.4) and
(3.5). If (3.5) makes any contribution, then we have seen in the proof of Proposition
4.3 that the corresponding irreducible component of Σ is of type (BC)n, and that
component contributes nothing to the group Rσ, according to Table 5.1. Thus if
(3.5) makes any contribution to 2ραi

, then β0 could not have been in Hσ, and we
would not have been considering index i.

Continuing our digression, let us see that (3.4) cannot make any contribution to
2ραi under the assumption that β0 is in Hσ. Suppose on the contrary that there
exists a real root of the form β = 1

2αi− 1
2αr with |β| < |αi| = |αr|. The restrictions

to ap of β and αi are nonorthogonal nonproportional restricted roots, and they are
in the same irreducible component of Σ as the restriction of β0. This component
must therefore be of one of the types (BC)n, F4, Cn, or Bn. We can rule out
(BC)n and F4 since Table 5.1 shows that such a component contributes nothing
to Rσ and leads to the conclusion that β0 is not in Hσ. Since αi and β0 are long,
nonorthogonal, and nonproportional, we can rule out Cn. Thus the component of
β0, αi, and β in Σ may be assumed to be of type Bn. If σ(γβ) = −1, then the same
argument that rules out β0 of the form (3.4) rules out the existence of β now. Thus
σ(γβ) = +1. Since β is short, it is conjugate via reflections in long simple restricted
roots to plus or minus a short simple root. Taking (4.3) into account, we see that
γβ equals γε for the unique short simple restricted root ε, and ε has m(ε) = 1.
But then +1 = σ(γβ) = σ(γε) = −1 by definition of σ, and we have arrived at a
contradiction. Thus we may assume that no root of the form (3.4) occurs for our
index i if β0 is as in (3.1) or (3.2) and β0 belongs to Hσ.

The upshot of our digression is that we may assume that

(−1)2〈ραi
,αi〉/|αi|2 = −1.

Therefore Proposition 4.3 shows that

σ(γαi
) = −1. (6.4)

Moreover, we already saw that β0 has to be of the form (3.1) or (3.2).
Suppose that β0 is of the form (3.1), namely β0 = 1

2αi − 1
2αr − 1

2αs − 1
2αt. Put

β′0 = 1
2αi + 1

2αr + 1
2αs + 1

2αt. From β′0 = −sαi(β0) and (4.3), we obtain

σ(γβ′0
) = σ(γαi

)σ(γβ0). (6.5)

Because σ(γβ0) = −1, (6.4) and (6.5) allow us to conclude that σ(γβ′0
) = +1. Since

sβ0(β
′
0) = αi and since all roots other than β0 that contribute to the element w

of Rσ either begin their expansions after αi or else are of the form αk with k < i,
we obtain w(β′0) = αi. This equality gives a contradiction because, by (6.4), it
exhibits w as not preserving the set of positive restricted roots ε with m(ε) = 1
and σ(γε) = +1. Thus β0 cannot be of the form (3.1).

Suppose that β0 is of the form (3.2), namely β0 = 1
2αi − 1

2αr − 1
2αs with |β0| =

|αi| = |αr| > |αs|. Put β′0 = 1
2αi + 1

2αr + 1
2αs. From β′0 = −sαi(β0), (4.3), and

(6.4), we obtain
σ(γβ′0

) = σ(γαi
)σ(γβ0) = (−1)(−1) = +1.
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From sβ0(β
′
0) = αi, we deduce w(β′0) = αi, and we again obtain a contradiction.

Consequently β0 cannot be of the form (3.2), and all possibilities for β0 are ruled
out. We conclude that every member of Hσ is of the form αj for some j.

Now let αj be a member of Hσ. We know that αj is simple for ∆+(gC, hC
p ). Let

us see that it is of the second kind, i.e., that it is isolated in the system of roots
orthogonal to α1, . . . , αj−1. This condition means that αj is the only positive root
for ∆+(gC, hC

p ) whose expansion in terms of α1, . . . , αl and ib′p begins with a positive
multiple of αj . If β is a positive root whose expansion begins with 1

2αj , then the
same thing is true of −sαj (β), and αj = β +(−sαj (β)) gives the contradiction that
αj is not simple for ∆+(gC, hC

p ). If β is a positive root whose expansion begins
with αi, then β = αi + ξ, where ξ is a root orthogonal to αi. If ξ is negative,
then αi = β + (−ξ) exhibits αi as not simple, contradiction. If ξ is positive, then
−sαi

(β) is positive and sαi
(ξ) = ξ, so that αi = −sαi

(β) + ξ exhibits αi as not
simple, contradiction. Consequently αj is of the second kind.

Let p be the number of roots in Hσ. Because of the result of the previous
paragraph, Lemma 6.1 allows us to adjust the fundamental sequence α̃1, . . . , α̃l

further so that the p roots α̃j with αj ∈ Hσ are the last p members of the sequence.
Lemma 6.1 says also that the positive system ∆+(gC, hC

p ) is unchanged.
Let us restate our construction in a way that takes into account all the different

ways we were led to ∆+(gC, hC
p ). Starting from the chamber C in it, we formed a

fundamental sequence α̃1, . . . , α̃l relative to ∆+(gC, tC). For c equal to the composi-
tion of all the ceαj

, we used c to pass from the data (g, 0, t) to data (mp, ap, bp) and to
define αj = c(α̃j) as a member of ∆(gC, hC

p ). The sequence α1, . . . , αl enabled us to
introduce a lexicographic ordering and define ∆+(gC, hC

p ). In terms of this positive
system we could define σ. The group Rσ relative to this same positive system led
us to Hσ, which consists of αl−p+1, . . . , αl. From §5 we know that all the totally
degenerate limits of discrete series lie in the induced representation from σ and
that the characters of the irreducible constituents of this induced representation
are realized with nondegenerate data as indG

Q ΘMA(0, CM , σ|F (B), 0), where the
Cayley transform dH = dαl−p+1 · · ·dαl

leads from the data (mp, ap, bp) to the data
(m, a, b). Since ceαj

and dαj
can be arranged to be exact inverses of one another, we

can pass from the data (g, 0, t) to the data (m, a, b) more directly by the composition
cH = cl−p · · · c1. The inverted generalized Schmid identities are exactly that—the
same identities read from right to left instead of left to right. Consequently the
generalized Schmid identities for the factors of cH show us how to pass from our
given totally degenerate character ΘG(0, C) to a situation where the character has
been rewritten with nondegenerate data.

Now we can prove the conclusions of the theorem. What we have to do is identify
the correct chamber CM of ib in terms of the starting chamber C. Let us follow
what happens to the chamber through each use of some ceαj

. Say that the relevant
Cartan subalgebra is hj = bj⊕aj after using cαj

· · · cα1 , 1 ≤ j ≤ l−p. The chamber
after using ceα1 is C

seα1, the unique Weyl chamber of ib1 containing Projib1(C). Thus
we have

C
seα1⊇ Projib1(C).

Hence

(Cseα1)seα2⊇ Projib2(C
seα1) ⊇ Projib2(Projib1(C)) = Projib2(C). (6.6)
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Iterating, we obtain

CM = (· · · ((Cseα1)seα2) · · · )seαl−p ⊇ Projib(C).

If H is in C, then

Projib(H) = H −
l−p∑
j=1

α̃j(H)
|α̃j |2

Heαj
. (6.7)

An imaginary positive root β̃ of (mC, bC) extends uniquely to an imaginary positive
root of (gC, tC) that is orthogonal to α̃1, . . . , α̃l−p. Then β̃ takes the same value on
H in C that it takes on the two sides of (6.7). On C, it is positive, and we conclude
from (6.6) that every such β̃ is positive on a certain open subset of

CM = (· · · ((Cseα1)seα2) · · · )seαl−p.

In particular, α̃l−p+1, . . . , α̃l are positive on this open set. We saw in Theorem
5.5 that the chambers of ib are 2p in number and are distinguished by the signs
of α̃l−p+1, . . . , α̃l on them. The conclusion is that the desired chamber CM is the
unique one where α̃l−p+1, . . . , α̃l are all positive, and the proof is complete.

7. Particular Cases

1) Groups of type A. The groups in question of type A are G = SU(n, n)
and G = SU(n + 1, n), and most of the development in §§4–6 of this paper is
unnecessary for these cases. For SU(n + 1, n), we see from Appendix C of [Kn3]
that Mp is connected, and it follows that σ is trivial; the unitary spherical principal
series is irreducible for any G, and thus the only totally degenerate limit of discrete
series representation is the spherical principal series representation with trivial Ap

parameter. The case of SU(n, n) is only slightly more subtle. The group Mp has
two components in this case. A good fundamental sequence is e1−e2, e3−e4, . . . ,
and we can check directly that all the intermediate M groups are connected. If we
think of applying generalized Schmid identities in succession corresponding to the
Cayley transforms ceα, we see that the question comes down to what happens at
the last step, specifically whether the applicable generalized Schmid identity is of
type (a) or type (b). This is the question whether the last seα is in W (B∗ :M∗)
or not. Direct computation shows that it is not, and the identity to use is of type
(a). Then we get reducibility into two pieces, and this reducibility is understood at
the last step. Thus we get nondegenerate data one step removed from the minimal
parabolic subalgebra.

2) Other classical groups. The full theory is needed in most of the other classical
cases, and the results are summarized in Table 7.1; the table includes also the
exceptional cases and refers to them by Cartan’s numbering, which is reproduced
in Appendix C of [Kn3]. Let us think in terms of starting from a compact Cartan
subalgebra and applying a succession of generalized Schmid identities. A curious
feature of the classical cases is that the stage at which we find nondegenerate data,
namely |Hσ| steps away from a minimal parabolic subalgebra, is always the first
stage at which m∗ becomes the sum of an abelian subalgebra and a direct sum of
copies of sl(2, R). As the table shows, this coincidence is no longer valid for the
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exceptional groups, i.e., the entries in the last two columns of Table 7.1 are not
equal for the exceptional groups.

The computations in the classical cases are straightforward, particularly in the
presence of Table 5.1. The case of Cn is a little special in that the good fundamen-
tal sequence has to be 2en, 2en−1, . . . , 2e1. For the other classical cases, a good
fundamental sequence is obtained by using as many as possible of the roots e1−e2,
e3−e4, . . . and following them with the corresponding e1+e2, e3+e4, . . . . In the
case of B2n+1, one adjoins e2n+1 at the end.

∆ g Real Number α̃j Number α̃j |Hσ|
Rank Of Of

First Kind Second Kind
A2n−1 su(n, n) n n− 1 1 1
A2n su(n+1, n) n n 0 0
B2n so(2n+1, 2n) 2n n n n

B2n+1 so(2n+2, 2n+1) 2n + 1 n n + 1 n + 1
Cn sp(n, R) n n− 1 1 1
D2n so(2n, 2n) 2n n− 1 n + 1 n + 1

D2n+1 so(2n+2, 2n) 2n n n n

E6 E II 4 3 1 0
E7 E V 7 3 4 3
E8 E VIII 8 4 4 0
F4 F I 4 2 2 0
G2 G 2 1 1 0

Table 7.1. Comparison of |Hσ| with the number of roots α̃j

of the second kind in a standard good fundamental sequence

3) Split E7. The only exceptional simple group under study for which the R
group of the special σ is nontrivial is split E7, and some comments are in order
about this case. A good fundamental sequence is constructed as follows. Fix C.
Number the C-simple roots in the Dynkin diagram as βj with j as in

(
2

765431

)
. Put

α̃1 = β7

α̃2 = α̃1 + 2β6 + 2β5 + 2β4 + β3 + β2

α̃3 = β3

α̃4 = α̃2 + β5 + 2β4 + 2β3 + β2 + 2β1

α̃5 = β5 + 2β4 + β3 + β2

α̃6 = β5

α̃7 = β2.

During the construction, the system orthogonal to α̃1 is of type D6, with simple
roots consisting of β1, β2, β3, β4, β5, and α̃2. The subsystem orthogonal to α̃2 is
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of type D4 + A1, with the simple roots of D4 consisting of β2, β3, β4, β5 and with
A1 formed from α̃5. The subsystem orthogonal to α̃3 = β3 has four isolated simple
roots, namely α̃4, α̃5, β2, and β5. These remarks explain the entries in the fourth
and fifth columns of Table 7.1 for E7.

To trace what happens for E7 in Theorem 6.4, we remove the tildes from the roots
α̃j and use the roots αj to impose a lexicographic ordering and obtain ∆+(gC, hC

p ).
Examining the proof of Proposition 4.3, we can quickly write the expansions of the
simple roots ξj in this system in terms of the basis α1, . . . , α8 as

ξ1 = 1
2 (α1 − α2 − α3 − α4)

ξ2 = 1
2 (α2 − α3 − α5 − α6)

ξ3 = 1
2 (α3 − α4 − α5 − α7)

ξ4 = α4

ξ5 = α5

ξ6 = α6

ξ7 = α7.

Computing the inner products 〈ξi, ξj〉, we can form a Dynkin diagram. Then we see
that the numbering of the simple roots as ξj corresponds to j as in

(
7

625341

)
. Table

5.1 says that the roots in Hσ are the simple roots in the positions X in
(

X
X0X000

)
.

These are the roots ξ5 = α5, ξ6 = α6, and ξ7 = α7, and we have a confirmation of
the prediction from the proof of Theorem 6.4 that the members of Hσ all lie in the
sequence α1, . . . , α8 and are of the second kind.
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