LIMITS OF DISCRETE SERIES WITH
INFINITESIMAL CHARACTER ZERO
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ABSTRACT. The subject of automorphic forms naturally leads one, in the context of
a semisimple Lie group G, to consider those limits of discrete series representations
having infinitesimal character 0. For the existence of such a representation that is
nonzero, it is necessary and sufficient that G have a compact Cartan subalgebra, be
quasisplit, and be acceptable in the sense of Harish-Chandra. This paper determines,
by a general argument, the parameters of such representations in the classification
of irreducible tempered representations, expressing those parameters in terms of the
finite abelian reducibility group R attached to a specific unitary principal series
representation of G. An easy result that at first seems irrelevant gives the aggregate
of the parameters; a harder result uses the easy result to match the parameters in
representation-by-representation fashion. The paper includes tables of the classifica-
tion parameters for all such groups G.

Let G be a linear connected semisimple Lie group. Discrete series representations
of G, those having square integrable matrix coefficients, were classified by Harish-
Chandra [HC3]. In the classification each such representation is given nonuniquely
by its Harish-Chandra parameter A\, which is a nonsingular linear functional on a
compact Cartan subalgebra t of the Lie algebra of G and is integral when a certain
specific linear functional p is subtracted from it. The parameter A\ matches the
infinitesimal character of the representation, but the infinitesimal character of the
representation is determined only up to the operation of the Weyl group of the root
system of G. Since A is nonsingular, A is dominant with respect to just one Weyl
chamber C' of it. When the parameter A is moved so as to become possibly singular
inside C' while remaining dominant, one can still associate a representation to A,
and the new representation w(\, C) is called a limit of discrete series. We still refer
to A as its Harish-Chandra parameter. This representation is irreducible or zero,
and there is an easily stated criterion for deciding which is the case; another easily
stated criterion describes equivalences among these representations. Specifically
m(A, C) is 0 if and only if A is orthogonal to some C-simple root that is compact,
and 7(X\, C") is equivalent with m(X, C') if and only if there is some member of the
Weyl group of the compact roots carrying (A, C) to (N, C").

Each nonzero limit of discrete series is “tempered” in a sense to be recalled
later in the introduction and therefore has classification parameters in the known
classification [KnZ] of all irreducible tempered representations. If the Harish-
Chandra parameter \ is nonsingular with respect to all compact roots, then the
classification points to 7(A, C) itself and to nothing else. On the other hand, if
A is singular with respect to some compact root and if w(\, C) is nonzero, then
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the classifications points to some other realization of the representation; we refer
to (A, C) as degenerate in this case. Our interest, motivated by the theory of
automorphic forms, is in the following problem: Find the classification parameters
of each nonzero limit of discrete series of G with infinitesimal character 0. Of
course, the infinitesimal character is 0 if and only if the Harish-Chandra parameter
is 0.

For purposes of this introduction, let us elaborate on these matters for the groups
SU(1,1) and SU(2,1). The number of chambers C is 2 and 6 in the two cases. We
write a chamber by listing the simple roots for it. For SU(1,1), let « be the root
commonly denoted e; — es. The Harish-Chandra parameters for the discrete series
are A = ne; with n a nonzero integer. Written with the chamber in place, they
are (ney, {a}) for n > 0 and (ne1, {—a}) with n < 0. The limits of discrete series
with singular infinitesimal character have parameters (0, {a}) and (0, {—«}). The
group SU(1,1) has no compact roots. Thus all these representations are distinct
and nonzero, and none of them is degenerate. We thus obtain exactly two distinct
nonzero limits of discrete series with infinitesimal character 0. Turning to SU(2, 1),
let « = e — ey and B = ey — e3. With the usual interpretation of the notation
SU(2,1), a is compact and ( is noncompact; the sum « + 3 is noncompact. The
integral forms are A = me; + ney for integers m and n. For the chamber {«, 8}, in
which the first simple root is compact and the second simple root is noncompact,
we obtain discrete series when m > n > 0. If m > n > 0, we have limits of
discrete series, and these are zero exactly when m = n since A is orthogonal to the
compact root « in this case. In particular, there exist nonzero limits of discrete
series relative to the chamber {«, 8} with singular infinitesimal character. But the
most singular case (0, {c, 8}) yields the zero representation, and no representation
in the nonzero cases is degenerate. Because reflection in « is in the Weyl group
corresponding to the compact roots and yields equivalent representations, we do not
need to investigate all five remaining chambers, only two of them. It is enough to
study {—a—f, a} and {a+ 3, —8}. For {—a— 3, a}, in which the first simple root
is noncompact and the second simple root is compact, the dominant parameters
A have 0 > m > n, and we get a zero representation exactly when m = n. In
particular, (0,{—a — 3, a}) yields the zero representation and no representation in
the nonzero cases is degenerate. For {a+ 3, —(3}, both simple roots are noncompact,
and something new happens. Here the dominant parameters A have m > 0 > n,
and we always get a nonzero representation. In particular, (0, {a + 8, —(}) yields
a nonzero limit of discrete series with infinitesimal character 0, and it is the only
nonzero limit of discrete series with infinitesimal character 0. This limit of discrete
series is degenerate, and we return to its realization in the classification later in the
introduction.

Discrete series and limits occur in the theory of automorphic forms. According
to the Langlands philosophy, if an automorphic representation of a reductive group
over a number field has limits of discrete series as archimedean components, one
should be able to construct from the automorphic representation some kind of rep-
resentations of the Galois group of a specific number field. When these archimedean
components belong to the discrete series, and when the group under consideration
is associated to a Shimura variety, then the construction should in principle be
possible by decomposing some ¢-adic cohomology groups associated to the variety.
Up to now this part of the Langlands program has been carried out only in a
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limited number of examples. It has been done, for instance, for some inner forms
of unitary groups over totally real fields. In these cases the construction produces
representations of Galois groups, or more precisely “motives,” that are regular,
meaning that the weights from the point of view of algebraic geometry are all
distinct.

Suppose now that the archimedean components of our automorphic representa-
tion are nonzero limits of discrete series with singular infinitesimal characters. Then
there should still exist associated Galois representations, this time nonregular, i.e.,
having some coincidences between weights. There have been very few results in
this direction; the construction should be indirect, using arithmetic congruences
between automorphic representations. The best known case and probably the
most striking one is the case of classical modular forms: In the case of weight
> 2 (corresponding to automorphic representations of GL(2) or SL(2) with an
essentially square-integrable representation at infinity), one gets 2-dimensional (-
adic representations by using modular curves and the Eichler—Shimura—Deligne
theory. In the case of weight 1 (associated to a nonzero limit of discrete series
corresponding to a 0 parameter), one obtains, following Deligne and Serre, an Artin
(complex continuous) 2-dimensional representation.

It is reasonable to expect the situation to be similar if one considers forms of
unitary groups that are quasisplit at archimedean places, i.e., are of type U(n,n)
or U(n,n — 1) there. It turns out for each of these groups that either one or two
inequivalent nonzero limits of discrete series exist with infinitesimal character 0,
and the conjectures predict that Artin m-dimensional Galois representations will
be associated to automorphic representations of this type. However, very little is
known in this direction except, of course, in the U(1,1) case, which is essentially
equivalent to the SL(2) one. The difficulty comes from the fact that automorphic
forms of this type do not admit any known kind of algebro-geometric interpretation;
they are purely analytic objects, similar to Maass wave forms and indeed related to
such forms. The situation is equally mysterious, more generally, for all automorphic
representations whose archimedean components are any kind of limits of discrete
series that is degenerate in the above sense, whether of 0 infinitesimal character or
not. According to an unpublished result of Mirkovic, such forms cannot occur in the
Betti or étale cohomology of Shimura varieties, nor in their coherent cohomology.

There is one positive result. It has been shown in [Ca] for SU(2,1) that auto-
morphic representations with limits of discrete series at archimedean places occur
in the coherent cohomology of some sheaves over some complex-analytic varieties
generalizing Shimura varieties; these varieties are Griffiths—Schmid varieties, first
studied by Griffiths as parameter spaces for variations of Hodge structures. More-
over [Ca] proved that there is a nontrivial cup-product interaction between those
forms and more classical ones that correspond to discrete series (holomorphic or
antiholomorphic) at infinity. Similar results are expected more generally for U(n,n)
or U(n,n—1), and a detailed study of the limits of discrete series with infinitesimal
character 0 will be necessary to prove such results. The first step of this study of
course consists in locating precisely these representations in a classification useful
for the theory of automorphic forms, namely in the classification of irreducible
tempered representations. This is the matter settled by the present paper.

Even though the problem can be solved rather easily and directly for U(n,n) and
U(n,n — 1), we have found no reason to limit ourselves to the unitary groups and
type A,. Indeed, for a more general reductive algebraic group G, the Langlands
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philosophy associates conjecturally to any automorphic form whose archimedean
places have nonzero limits of discrete series with infinitesimal character 0, an Artin
(i.e., complex continuous) morphism of the Galois group into the L-group *G.
Thus such representations have a simple arithmetic meaning. In addition, they
correspond to each other by all known or conjectural cases of functoriality. So it
seems reasonable to us to solve the problem in this more general context.

Limits of discrete series date historically from the 1947 paper of V. Bargmann
on SL(2,R). Hints of limits of discrete series for other groups appear in the
work of Harish-Chandra on holomorphic discrete series in the 1950s and in his
papers [HC3] on general discrete series. After other authors did extensive work
on limits of holomorphic discrete series in the early 1970s, W. Schmid [Sc1] and
[Sc2] considered a wider class of limits of discrete series, beginning with the case
for SU(2,1) mentioned above. Schmid worked in the context of character identities
and his project [HeS] with H. Hecht on the Blattner Conjecture.

General limits of discrete series were originally defined in [KnZ] for connected
G by application of Zuckerman’s translation functors [Z] to discrete series repre-
sentations. The classification in which we propose to locate the nonzero limits
of discrete series with infinitesimal character 0 is the classification of irreducible
tempered representations, i.e., those irreducible admissible representations having
K-finite matrix coefficients (K being a maximal compact subgroup of G) that are
in L27¢(G) for every e > 0. This classification was carried out in [KnZ] and will be
summarized in a moment.

A solution to our problem of finding the classification parameters of these repre-
sentations can be phrased in at least three ways. One of these gives an algorithm
involving choices and seems unsatisfactory except for studying examples, a second
of these gives a tidy but insufficient answer that merely identifies what set in
the classification of irreducible tempered representations corresponds to the set
of representations of interest, and the third of these actually describes the function
from the set of nonzero limits of discrete series with infinitesimal character 0 to the
set of parameters of irreducible tempered representations. The goal of the paper is
to address the third of these solutions, but our line of proof makes it necessary to
state and prove the first two along the way.

The techniques involved in this article have all been known to representation
theorists for a long time. In an effort to make the paper more readable to others—
especially people working in the theory of automorphic forms—we have given com-
plete proofs of most of our results. We have included also some material that is
certainly known to specialists but is difficult to find in original sources or in texts.

Apart from elementary facts about roots and structure theory, the techniques
consist largely of Harish-Chandra’s subquotient theorem [HC1], work by Satake
[Sa] and Wallach [Wal] on restrictions of roots and an elaboration of that work
in [Knl], the theorems of Langlands concerning tempered representations in [La],
the multiplicity-one theorem in [Kn2], and the techniques of [KnZ]. The papers
[Kn2] and [KnZ] rely on a great many theorems of other authors, the most notable
such theorems being Harish-Chandra’s theorem that irreducible global characters
are functions (Theorem 2 in [HC2]) and Harish-Chandra’s completeness theorem
(Theorem 38.1 in [HC5H]), but we shall not recite those results.

Let us refer to any limit of discrete series that is nonzero and has infinitesimal
character 0 as totally degenerate. Totally degenerate implies degenerate except in a
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group with no compact roots; such a group is locally a product of copies of SU(1,1).
Before describing the classification of irreducible tempered representations, let us
observe that the existence of totally degenerate limits of discrete series implies
that G is quasisplit and is acceptable in the sense of Harish-Chandra [HC4]. In
fact, “acceptable” means that the linear functional p in the first paragraph of this
paper is integral, and the integrality of p is necessary for 0 — p to be integral.
To see that G is quasisplit, let m be a totally degenerate limit of discrete series.
Using Harish-Chandra’s subquotient theorem, we embed 7 as a subquotient of some
nonunitary principal series representation, i.e., one induced from an irreducible
finite-dimensional representation of a minimal parabolic subgroup @, = M, A, N, of
G. The latter representation must then have matching infinitesimal character 0, and
hence the inducing representation of M, must have infinitesimal character 0. Since
the infinitesimal character of a finite-dimensional representation is nonsingular, M,
must have no roots. It follows that M, is abelian, hence that G is quasisplit.

Conversely we shall see in §5 that totally degenerate limits of discrete series
always exist if G has a compact Cartan subalgebra, is quasisplit, and is acceptable
in the sense of Harish-Chandra.

Parenthetically the inducing multiplicative character on A, above must be trivial
as well, and hence the principal series representation must be unitary; therefore m
actually embeds as a subrepresentation of a unitary principal series representation
for which the character of A, is trivial and the representation of M, is trivial on
the identity component of M,. If we apply this fact to the unique totally degen-
erate limit of discrete series 7 for SU(2,1) and use the fact that M, is connected
for SU(2,1), we find that 7 embeds in the spherical principal series with trivial
A, parameter. This principal series representation is irreducible, and hence 7 is
equivalent with a spherical principal series representation in the case of SU(2,1).
This realization of 7 as a spherical principal series representation will be the real-
ization pointed to in the classification of irreducible tempered representations. The
principal series representation m was one of the representations studied explicitly
by Wallach [Wa2] and more generally by K. Johnson and Wallach [JoW], and this
explicit information was used in [Ca] to obtain results relating to (g, K') cohomology
and automorphic forms.

Let us return to the classification of irreducible tempered representations and a
description of the solution of our problem. Another example of a tempered represen-
tation besides nonzero limits of discrete series, though possibly finitely reducible,
is any basic representation induced from discrete series, i.e., any representation
unitarily induced from a parabolic subgroup M AN with a discrete series on M,
a unitary character on A, and the trivial representation on N. Langlands [La]
proved that any irreducible tempered representation is a constituent of some basic
representation induced from discrete series. He proved further a certain disjoint-
ness theorem—that two basic representations induced from discrete series have no
irreducible constituent in common or else are equivalent.

In giving a preliminary classification of the irreducible tempered representations,
the paper [KnZ] proceeded by identifying the irreducible constituents of basic rep-
resentations induced from discrete series. It made use of the more general notion of
a basic representation, i.e., any representation unitarily induced from a parabolic
subgroup @ = M AN with a discrete series or limit of discrete series £ on M, a
unitary character e” on A, and the trivial representation on N. Let us associate
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the set of data (Q,&,v) to this representation. The paper [KnZ] proved as its
Corollary 8.8 that every irreducible tempered representation is basic.

It turns out that nonzero basic representations can often be exhibited as basic
by means of two quite different sets of data. For example, we saw that there is one
totally degenerate limit of discrete series of G = SU(2,1), and we found that that
representation can be regarded also as the spherical principal series representation
with trivial A parameter (the basic representation with M AN minimal parabolic,
with the trivial representation on M, and with the trivial character on A). The
full-fledged classification of irreducible tempered representations in [KnZ] makes
use of a notion of nondegeneracy of the data for a basic representation. The data
set (Q,&,v) is degenerate if the representation is zero or if another realization is
possible with a smaller parabolic subgroup; otherwise the data set is nondegenerate.
Results in §12 of [KnZ] give criteria in terms of roots to decide whether (Q,¢&,v)
is degenerate. In particular a limit of discrete series w(A, C) for G is degenerate in
the earlier sense if and only if if the data set (G, 7(\, C),0) is degenerate.

In the degenerate case [KnZ] gives a noncanonical global character identity for
obtaining a realization of a basic representation as an induced representation with
a smaller parabolic subgroup, hence with the new set of data. It is immediate
that every nonzero basic representation can be rewritten with nondegenerate data,
and the classification theorem (Theorem 14.2 of [KnZ]) gives a criterion for a basic
representation written with nondegenerate data to be irreducible, namely that a
certain explicit finite abelian group R is trivial. The theorem goes on to say that (a)
the irreducible basic representations written with nondegenerate data exhaust the
irreducible tempered representations and (b) two irreducible basic representations
written with nondegenerate data are equivalent if and only if their sets of data are
conjugate in the expected way.

A nonzero limit of discrete series can therefore be written as an irreducible basic
representation with nondegenerate data, and the data for this purpose are unique
up to conjugacy. This set of data (or its conjugacy class) is what we take as the
classification parameter of the nonzero limit of discrete series representation. When
G = SU(1,1), the two totally degenerate limits of discrete series have classification
parameters with M = G, AN = 1, and the inducing data on M equal to the limit of
discrete series. When G = SU(2,1), the unique totally degenerate limit of discrete
series has classification parameter with Q = M AN minimal parabolic, with the
trivial representation of M, and with the trivial character of A.

Now we can return to our problem of locating the totally degenerate limits of
discrete series in the classification of irreducible tempered representations. For a
first step the character identity mentioned above in effect provides an algorithm for
getting the solution in any particular case. At each stage of the algorithm, however,
some choices are involved, and it is not directly apparent how to anticipate the
possible answers. Thus this solution has to be regarded as serviceable for handling
examples but not useful as a solution to the problem.

For a second step, there is a direct and easy way of obtaining the set of classifica-
tion parameters of all the totally degenerate limits of discrete series. Unfortunately
this step provides no clue how to match a particular totally degenerate limit of
discrete series with a classification parameter, and thus one might be tempted to
discard it. But let us persevere, as this step will ultimately help us unravel the
algorithm systematically. We start from the observation above that any totally
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degenerate limit of discrete series representation 7 is a subrepresentation of a uni-
tary principal series representation with the trivial character on A, and a certain
representation o of M, that is trivial on the identity component. This unitary
principal series representation indgp (0 ® 1 ® 1) is not unique because conjugate
inducing data yield equivalent principal series representations. There is a certain
amount of uniqueness, however: the Langlands disjointness theorem of [La] shows
that any two unitary principal series representations in which 7 embeds come from
conjugate data. Now let us consider a second totally degenerate limit of discrete
series representation 7/. With G as a complexification of G, it is easy to see that
the global characters of 7 and 7’ are conjugate via the normalizer of G in GC.
Tracking down this conjugacy, we find that 7 and 7’ embed in the same unitary
principal series. Finally the global character identities of [KnZ] show that any
irreducible constituent of indgp (c ®1®1) is a totally degenerate limit of discrete
series. Since the irreducible constituents of imdgp (0 ®1® 1) have multiplicity one
by [Kn2], the set of constituents is exactly the set of totally degenerate limits of
discrete series, apart from equivalence. The preliminary classification theorem in
[KnZ] gives the classification parameters of these representations canonically and
explicitly in terms of the R group of indgp (c ® 1 ®1), and thus we obtain the set
of parameters of all the totally degenerate limit of discrete series representations.

The key idea for solving the announced problem is that the second step is actually
helpful, but only if we know quite a bit of detail about o. Instead of obtaining this
information deductively, we proceed by writing down a specific o constructively,
obtaining this detail by a lengthy calculation with roots, and then showing easily
that o has the properties mentioned in the previous paragraph. The theory of
[KnZ] points to a canonical family of basic representations with nondegenerate
data that exhibit the reducibility of indgp (c®1®1). With a careful argument that
copes with all the nonuniqueness that arises, we can adjust the algorithmic solution
mentioned above so that it points to these same data, and we can then sort out the
results of the algorithmic solution and obtain the representation-by-representation
correspondence.

The paper is organized as follows: The first two sections summarize some known
material on Cayley transforms and their use in setting up the algorithm that lies
behind the classification of irreducible tempered representations. In §3 we work with
two kinds of strongly orthogonal sequences of roots through which the necessary
choices will enter our work. In §4 we use tools explicit or implicit in Satake [Sa]
and Wallach [Wal] to construct the special 1-dimensional representation o of M,
mentioned above that will determine the unitary principal series representation
of interest. In Proposition 4.3 we derive an important technical property of o
that relates it to the problem at hand. Theorems 5.1 and 5.2 show that this
principal series representation contains each totally degenerate limit of discrete
series representation with multiplicity one, and nothing else. The theory of the R
group is then applied routinely to yield the aggregate of classification parameters
in Theorem 5.5. The main result of the paper is Theorem 6.4, which gives the full
answer to the problem and is proved by suitably rerouting what the algorithm says.
Some examples of particular interest are given in §7. Tables in §5 and §7 show what
Theorems 5.5 and 6.4 mean for all possible examples, up to conjugacy.
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1. CAYLEY TRANSFORMS

In this section we recall the behavior of Cayley transforms within the complexi-
fication of a real semisimple Lie algebra. For more detail, see §VI.7 of [Kn3|. Let
g = £® p be a Cartan decomposition of a real semisimple Lie algebra, let 6 be
the corresponding Cartan involution, let g€ be the complexification of g, and let an
overline indicate the conjugation of g€ with respect to g. Fix an invariant symmetric
bilinear form S on g®, and let (-, -) be the complex bilinear form induced on the
dual of any Cartan subalgebra of g®. We assume that S has been chosen so that
the restriction of (-, -) to the real span of the roots is a real inner product. We
put [af? = (a, a).

Typical roots are denoted «, 3, and £&. Two members a and [ of the root
system of g* with respect to a Cartan subalgebra are said to be orthogonal, written
a L B, if {(a,B) = 0. They are strongly orthogonal, written o L1 (3, if they are
nonproportional and neither of @ + 8 is a root; equivalently they are strongly
orthogonal if they are orthogonal and it is false that both of o &= are roots. If the
root system is irreducible, two orthogonal roots can fail to be strongly orthogonal
only if the root system is of type B,,, C,, or F; and the two roots are both short.

Fix a 0 stable Cartan subalgebra h of g. If b and a are the 41 and —1 eigenspaces
of h under 6, then h = b@a. Let A = A(g®, h®) be the set of roots. Within the Weyl
group of A, the reflection in a root « is denoted s,. Roots are imaginary-valued
on b and real-valued on a, and a root « is accordingly called

imaginary if av is carried on b, i.e., is 0 on a
real if v is carried on a, i.e.,is O on b
complex if o is nonzero on a and nonzero on b.

If g, denotes the root space for the root «, then

m=bt® P ga (1.1)

a€EA,
« imaginary

is a 0 stable reductive subalgebra contained in the centralizer of a in g. It has the
properties that mNa = 0 and that the direct sum m @ a is the centralizer Zg(a) of
ain g, and it is given by the formula m = {X € Z;(a) | S(X,a) = 0}. The abelian
subalgebra b is a compact Cartan subalgebra of m, and thus rank m = rank(m N ¢).
If q is any parabolic subalgebra of g, then [ = g N f#q is the unique 6 stable Levi
factor of q. Define a to be the intersection of p with the center of q N fq, and let
m = {X € Z(a) | S(X,a) = 0}. The parabolic subalgebra ¢ is said to be cuspidal
if rank m = rank(mN¢€), hence if m has a Cartan subalgebra b contained in €. Then
h = b P ais a b stable Cartan subalgebra, and the m just defined coincides with
the m constructed in (1.1). We say that q and m @ a are associated to h = b @ a.
Because of (1.1) we can identify the root system A(m®, b%) with the set of imag-
inary roots in A by restriction of members of A to b®. The root space for such an
imaginary root a must lie completely within (mM)€ or completely within (mNp)®,
and we call a compact or noncompact accordingly. If we want to emphasize the role
of m in the construction, we may use the terms “m-compact” or “m-noncompact.”
The Cayley transforms defined relative to a 6 stable Cartan subalgebra h = bda
and its associated m@ a are of two kinds, one cg taken with respect to an imaginary
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noncompact root and the other d, taken with respect to a real root. Each is a
certain kind of inner automorphism of g©.

The Cayley transform cg with respect to an imaginary m-noncompact root 3
takes us from the data (m,a,b) to data (m.,as,b,) such that dima, = dima + 1
and dim b, = dimb — 1. If F3 is a nonzero root vector for 3, then Fj3 is a nonzero
root vector for —3 and S(Eg, Eg) is > 0. Normalizing, we may assume that

S(Eg, Ep) = 2/|6>. (1.2)

Then [Eg, Eg) = 2|8|2Hg, where Hpg is the member of h such that (H, Hg) = (H)
for all H € . If we set Hg = 2|8|72Hjg, theniHé,Eﬁ,@is a standard C basis
for a copy of s[(2,C) in g€, and {iH}, Es + Eg, i(Eg — Eg)} is an R basis for a
copy of sl(2,R) within g. The automorphism cg of g© is defined by

cs = exp(adf (Es — Ep)). (1.3)
It of course carries hC to a new Cartan subalgebra of g&. Calculation gives

c3(Hp) = Eg+ Ep
c3(Es — Eg) = Eg — Eg
c3(Eg + Eg) = —Hj,

and it follows that g N cs(h*) = ker(Bly) ® R(Es + Eg). Thus the new Cartan
subalgebra cg(h©) is the complexification of

b = b, @ a. = (ker(Blp)) @ (a ® R(Es + Ep)).

If p is in the dual (§€)’, then we can define cg(u) in (hS)' by cg(p)(H.) =
u(cgl(H*)). Under this definition, cg carries roots to roots.

Let us consider the meaning of having two Cayley transforms commute. Suppose
that § and 8" are m-noncompact roots. Then (1.3) defines ¢z and cg/, and hence the
composition cgrcg is defined as an automorphism of gC. However, the interpretation
of the composition as simply a product of expressions (1.3) does not take into
account the effects on Cartan subalgebras: the factor cg carries < to hS, and 3’
is not given as a root relative to hC. To interpret the composition as a succession
of Cayley transforms, we should be working with c¢, g cs instead of cgcg. A
condition is needed to be able to define c.,g/), namely that cs(f') is imaginary on
b, and is m,-noncompact.

The root c¢3(8’) will be imaginary if and only if 5 and 5’ are orthogonal. However,
orthogonality is not enough to make cg(8’) be m,-noncompact; for this purpose
we need to assume that 3 and (' are strongly orthogonal. In fact, the strong
orthogonality makes

[Ep, Ep| = [Eg, E_p| = [E_p, Ep| = [E_p, E_g] = 0. (1.4)

Combining (1.3) and (1.4) shows that cs fixes Eg and Eg. Hence cg(f') is
m,-noncompact, and also

Ccﬁ(ﬁ/)Cg = CprCg. (1.5)
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A second application of (1.4) shows that cgcg = cpcgr, so that cc s =
Ce,l (B)CH’ and the two Cayley transforms commute in every sense.

If 3 and 3 are merely orthogonal but not necessarily strongly orthogonal, the
situation is more complicated. In particular, cg(5’) is m.-compact; see Lemma 5.4
of [KnW] for details about what happens.

Partly because of the validity of (1.5) when the strongly orthogonal roots 3 and
3 are imaginary and m-noncompact, we shall use the same symbol for a root &
and its Cayley transform cg(§) except possibly in the case that ¢ is § itself. This
convention will simplify the notation considerably when we work with a succession
of several Cayley transforms.

The Cayley transform d, with respect to a real root a takes us from the data
(m,a,b) to data (m*, a*, b*) such that dima* = dima — 1 and dim b* = dimb + 1.
If E, is a nonzero root vector for «, then E, is a nonzero complex multiple of E,,
and we can normalize F, so that it is in g. Then §F,, is in g, is a root vector for
—a, and has the property that S(E,,0FE,) is < 0. Normalizing, we may assume
that S(E,,0E,) = —2/|al>. Then

[Ea, —0E,] = 2|a|2H,,. (1.6)

If we set H!, = 2|a| 2H,, then {H!, E,, —0E,} is a standard C basis for a copy of
s[(2,C) in g, and in fact these basis elements all lie in g and therefore form an R
basis for a copy of s[(2,R) within g. The automorphism d of g€ is defined by

do =exp(adi §(0E, — Eq)). (1.7)
It of course carries hC to a new Cartan subalgebra of g€. Calculation gives

do(H.,) = i(Ea + 0E,)
do(Eq — 0F,) = Eq — 0,
do(Eq + 0E,) = iH,,

and it follows that g N da(h®) = ker(aly) ® R(E, + 0E,). Thus the new Cartan
subalgebra d, (h*) is the complexification of

h* =b6"@a* = (b @ iR(Ey + 0E,)) @ ker(alq).

In parallel with what happens for cg, formulas analogous to (1.4) and (1.5) hold
for d, and d, when the real roots a and o' are strongly orthogonal, and thus
the Cayley transforms d, and d,, commute under every interpretation of their
definitions. For what happens when o and o’ are merely orthogonal, see Lemma
5.4 of [KuW]. In analogy with the convention for the Cayley transform cg, we shall
use the same symbol for a root ¢ and its Cayley transform d,(§) except possibly
in the case that £ is « itself.

With o = cg(3) and with parameters defined suitably, cg and d, are inverses
of one another. In fact, we have only to define F, as the member of g given by
E, = %(sz’ﬁ +i(Eg — Eg)), and then we see readily from formulas (1.3), (1.6),
and (1.7) that d,cs is the identity on g©.
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2. GENERALIZED SCHMID IDENTITIES

In this section we assemble certain facts from [KnZ] concerning the ingredients
used in the classification of irreducible tempered representations of linear semi-
simple groups. Let G be a connected linear semisimple Lie group with Lie algebra
g, and let €, p, 0, g, S, (-, -), and | - |? be as in §1. Since G is linear, it has a
complexification GC. The analytic subgroup of G with Lie algebra ¢ is denoted K.
If X and Y are two subgroups of G, we define W(X:Y) = Ny (X)/Zy(X), the
quotient of normalizer by centralizer; we use similar notation if one or both of X
and Y are subalgebras of g©.

The first thing that is needed is information about the disconnectedness of Car-
tan subgroups and parabolic subgroups. A reference for this material is [Kn3],
88 VIL.7-8. Fix a @ stable Cartan subalgebra h = b @ a of g, and let B be the
analytic subgroup of K corresponding to b. For any real root «, define

Yo = exp(2mila| "2 Hy); (2.1)

this element centralizes h and has order at most 2. We let F(B) be the subgroup
of B generated by all the elements ~, for all real roots @. Then F(B)B is the
centralizer of h in K. Let ¢ = m & a & n be a cuspidal parabolic subalgebra
associated to h. We write Q@ = MAN for the Langlands decomposition of the
corresponding parabolic subgroup, namely for the normalizer of q in G. Then the
center Zp; of M is given by

Zut = F(B)Zu,, (2.2)

where My is the identity component of M. We put M# = M Z,;, so that
M# = MyF(B). (2.3)

Limits of discrete series representations for M were defined and parametrized in
[KnZ], and one works with their global characters. Each such representation is built
in stages. A limit of discrete series representation on the identity component M,
is determined by its Harish-Chandra parameter A\, which gives the infinitesimal
character, and by a Weyl chamber C (or positive system for A(m® 6%)) that
makes A dominant; the representation exists if and only if e*~? is well defined
as a multiplicative character of B, p being half the sum of the positive imaginary
roots in any ordering. If A is nonsingular, then C' is unique and the representation
is in the discrete series. In [KnZ], the term “limit of discrete series” was reserved
for the case that A is singular, but in this paper it will be more convenient to allow
discrete series to be special cases of limits of discrete series.

We write ©Mo (), C) for the global character. To extend the corresponding repre-
sentation to M#, we adjoin a multiplicative character x of Zj; that is compatible
with ©Mo(\ C). Because of (2.2), it is enough that x be defined on F(B); the
compatibility condition is that y agree with e*~? on F(B). The global character of
the resulting limit of discrete series representation of M# is denoted ©M * (N Cx).
Finally the limit of discrete series representations of M are obtained by induc-
tion to M of these representations of M#, and the global characters are written
OM (X, C,x). An important property of these characters is as follows:

OM (X, C, x) = 0 if and only if (\,a) =0

for some C-simple compact root o € A(m®,6%).  (2.4)
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The sufficiency is known as the Hecht—Schmid identity and first appeared in [HeS].
The necessity is Theorem 1.1b of [KnZ]. A necessary and sufficient condition for
equality of the global characters @M (X, C,x) and ©M ()X, C’,x') of two nonzero
limits of discrete series is known and appears as Theorem 1.1c of [KnZ]: the condi-
tion is that y = x’ and there exists a member of the normalizer of B in M carrying
(A, C) to (N, C"). Every nonzero limit of discrete series representation is irreducible
tempered. A limit of discrete series is called a totally degenerate limit of discrete
series if it is nonzero and its Harish-Chandra parameter is 0.

In the special case that the Cartan subalgebra is maximally noncompact, so that
a is maximal abelian in p, we use subscripts p on various subalgebras and subgroups.
The Cartan subalgebra is h, = b, ® a,, and the cuspidal parabolic subalgebra is

denoted Qp = My A, Ny. A special feature of this case is that M;# = M,, so that
My = (My)oF(By). (2.5)

Returning to the general case with h = b @ a and Q = M AN, suppose that
OM (X, C, ) is a limit of discrete series character of M. If v is a real-valued linear
functional on a, we let

OMAN, O, x,v) = 0M(\ C,x) ® ",

which is a global character for M A. If we tensor with the trivial character of N
and induce to G, we obtain global characters

ind§ ©M4(\, C, x,v),

which are called basic characters. In the special case that @M (), C, x) is a discrete
series character of M, we call indg OMA(N,C,x,v) a basic character induced from
discrete series. It is known that basic characters are unaffected by changing the
subgroup N of the parabolic subgroup Q. A basic representation is a representation
whose global character is a basic character.

A basic representation does not necessarily determine uniquely the data of a
basic character, even up to conjugacy. Sometimes a basic character can be written
in terms of data from two different Cartan subalgebras obtained from one another
by one or more Cayley transforms. This kind of change is typically made in stages,
and the change at a single stage is implemented by means of a “generalized Schmid
identity.” Generalized Schmid identities are of two possible kinds, the distinction
having to do with the relationship between the centers of the two groups M. The
notation is as follows. We start from a 6 stable Cartan subalgebra h* = b* & a*
and an associated parabolic subgroup Q* = M*A*N*. Let a be a noncompact
imaginary root, i.e., a noncompact root of (m*®, b*®), and suppose that the Cayley
transform cz leads from the data (m*, a*, b*) to data (m, a, b) and that o = cz(@).
According to Lemma 2.2 of [KnZ], the inclusion mapping of Zy; into Zr (M NM*#)
yields an isomorphism

Zar) {1, Ya} Zagy Zare = Zag (M O M*#) /(M 0 M*#), (2.6)

the groups on either side of (2.6) have order at most 2, and the groups have order
exactly 2 if and only if the reflection sz is in W(B*: M*), i.e., if and only if the
root reflection sz has a representative in M*.
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To state the identities, let us introduce

C = a Weyl chamber in ib*

C = unique Weyl chamber of ib containing the orthogonal projection
Proj;p (C) = Proj;p(s5C) (2.7)

pe = half sum of roots of (g%, (a ® b)) whose restriction to a is ca with ¢ > 0

¢ = multiplicative character of {1,v4} given by ((74) = (—1)2<p“’a>/|a|2.

According to Theorem 4.3 of [KnZ], if & is C-simple as a noncompact root of
(m*C, 6*C) and if data A, x, and v for ©M 4" (X, C, x, v) are such that
(i) A — pas- is b*-integral, and e*~PM* agrees with y on Zy- N B¥,
(i) (A, @) =0,
(iii) A is C-dominant (and hence also szC-dominant),

then either (a) or (b) holds as follows:
(a) If sz is not in W(B*: M*), then Zy; = {1,7a}Zr, Za+ and

OM AT (N, C,x,v) + OM A (N, 550, x,v) = ind M. 1. OMA(N]o, C7, ¢ @ x, v @ 0),

where C°% and ¢ are defined as in (2.7).

(b) If s5 is in W(B*: M*), then |Zns/{1,7¥a}Zato Zas+| = 2. Let C°* and ¢ be
defined as in (2.7), and let (¢ @ x)* and (¢ @ x)~ denote the two extensions of
C@ePr=Pmlle @y to Zys. Then

OM AT (X, O, x,v) = ind¥ 1. 4. OMA (N6, O, (C @ X) T, v @ 0)
= indM . 4. 0MA(N, O, (C@ x) T, v @ 0).

The displayed formulas in (a) and (b) above will be called generalized Schmid
identities of types (a) and (b), respectively. In both cases we can of course extend
the global characters to M*A* N* by adjoining the trivial character of N* and then
induce to G, obtaining a character identity for basic characters for G. In the case
of (b), or in the case of (a) if the second term on the left side is 0, these identities
allow us to take a basic character given in terms of data for (m*, a*, b*) and rewrite
it in terms of data for (m,a,b). In the case of (a), we can use the analog of (2.4) for
(m*,a*,b*) to determine whether the second term on the left side is 0. The order
of W(B*: M*) determines whether (a) or (b) is the applicable generalized Schmid
identity.

In the terminology of §12 of [KnZ], we say that a basic character written as
ind§. ©M A°(X,C, x,v) is given by nondegenerate data if, for each root a of
(m*C p*C) with (A, @) = 0, the reflection s is not in W (B*: M*). The character is
automatically nonzero in this case. Proposition 12.1 of [KnZ] says that the data set
of a nonzero basic character ind§, @M 4™ (X, C, x,v) is nondegenerate if and only
if @M"A” (X, C, x,v) is not the full left side of a generalized Schmid identity of type
(a) or type (b). It follows that every nonzero basic character can be rewritten in
terms of nondegenerate data.

A nonzero basic character is not necessarily irreducible. When written in terms
of nondegenerate data, it is irreducible if and only if a certain computable finite
abelian group R is trivial. We discuss this group R further when we need it in §5.
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By a theorem of Langlands [La] (see also Harish-Chandra [HC4] and Trombi
[Tr]), every irreducible tempered representation of G is a subrepresentation of a
basic representation induced from discrete series and hence is infinitesimally unitary.

The classification theorems say that every irreducible tempered representation
is basic and therefore can be written with nondegenerate data. Two irreducible
tempered characters written in terms of nondegenerate data are equal if and only
if their sets of data are conjugate in a suitable sense. The conjugacy class of this
set of data constitutes the set of classification parameters of the representation.

The goal of this paper is to identify the classification parameters of each totally
degenerate limit of discrete series. In principle this problem can be solved by taking
the given representation and iterating generalized Schmid identities until we arrive
at nondegenerate data, but it is not clear a priori how to abstract the results
from this algorithm so as to obtain a useful theorem. It turns out that a different
approach yields a tidier formulation of the result. What we shall do in effect is
to overshoot the answer and pass all the way to a maximally noncompact Cartan
subgroup; then we shall retrace some of our steps. For this purpose we need to be
able to invert generalized Schmid identities.

Thus let us start from a 6 stable Cartan subalgebra h = b @ a and an associated
parabolic subgroup @Q = M AN. Let « be a real root, and suppose that the Cayley
transform d,, leads from the data (m, a, b) to data (m*, a*, b*) and that & = d, ().
According to Theorem 6.1 of [KnZ], a given character written as

s AMT AT MA
lndPﬂM*A*(—) (AM,CM,XM,VM)

is the right side of a generalized Schmid identity of type (a) or (b) obtained from
& as above if and only if (vjr,a) = 0 and

X (Ya) = (—1)2pased/ ol

where p,, is given by (2.7). When these conditions are satisfied, the definitions of

A, X, and v are
A b
A= { M on
0 on Hg,

X = XM|Zye s and V= VUn|a-,

and the Weyl chamber C' in ib* can be taken to be any chamber such that

(1) Am @0 is C-dominant,

(ii) (C'nib) N Chs has nonempty interior, and

(iii) « is C-positive.
It will be important for us that the definitions of A\, x, and v do not depend on
C)s. Thus if we have several basic characters differing only in what chambers are
involved, then we can use each or none of them as the right side of a generalized
Schmid identity, and all the left sides will involve the common values of A, x, and v.

3. STRONGLY ORTHOGONAL SYSTEMS OF ROOTS

In this section we construct the sequences of noncompact roots that will in-
corporate the required element of choice into our determination of classification
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parameters, and we study the properties of these sequences. We continue with the
notation of §2. We assume further that g has a compact Cartan subalgebra, and we
take t to be such a subalgebra that is contained in €. Fix a maximally noncompact
6 stable Cartan subalgebra h,. Our objective in this section is to examine maximal
sets of strongly orthogonal roots.

We begin with strongly orthogonal sequences of real roots relative to b, where
the situation is easy and is handled by the following proposition. We shall be doing
successive Cayley transforms d, with respect to the members of such a sequence,
using an inverted generalized Schmid identity for each member of the sequence.
Part of the effect of the assumed strong orthogonality is to ensure that these Cayley
transforms commute.

Proposition 3.1. Under the assumptions that rank g = rank & and that bh, =
b, ®a, is mazimally noncompact, there exists a strongly orthogonal sequence of real
roots on b, whose restrictions to a, span the dual a;.

Proof. Since rank g = rank €, Problem 10a of Chapter VI of [Kn3] (along with its
answer in the Hints for Solutions of Problems) shows that there exists k € K with
Ad(k) =6 on g and in particular on b,. That is, Ad(k) is +1 on b, and —1 on a,.
This element k yields an element w of the Weyl group T/V(h(pc : g©) that acts this way.
Applying Proposition 2.72 (Chevalley’s Lemma) of [Kn3] recursively, we obtain an
orthogonal sequence of roots oy, ..., aq that vanish on b, and have w = 54, - - - 54,.
Then «, ..., a; are orthogonal real roots and span a;. We shall adjust these roots
to make them strongly orthogonal.

Without loss of generality, suppose that g is simple. The roots of g have at most
two lengths, and there can be no problem unless two of them, say o; and «;, are
short and are such that a; & «; are roots. In this case, we replace a; and «; in the
sequence by a; + o; and a; — ;. The orthogonality of the sequence is maintained,
and the two new roots, being long, cannot interfere with strong orthogonality. By
successive elimination in this way of pairs that are orthogonal but not strongly
orthogonal, we keep reducing the number of such pairs, and ultimately we arrive
at the desired sequence.

In the context of Proposition 3.1, we shall need to expand roots on b, in terms
of the strongly orthogonal sequence of real roots and a remainder term carried on
b,. We need this expansion only when g is quasisplit. Confining our attention to g
quasisplit makes the expansion easier to state for complex roots, and thus we limit
the statement of the following proposition to g quasisplit.

Proposition 3.2. Let g be quasisplit and simple with rank g = rank ¢, and suppose
that g is not of type Go. Let b, = b, ® a, be a 0 stable mazimally noncompact
Cartan subalgebra of g, and let ay,...,q; be a strongly orthogonal set of real roots
in A(gC, h(g) that spans a;,. Lexicographic use of ay,...,q; determines uniquely a
set AT = At (gC, hf) of positive roots. Suppose that 3 is a positive root other than
some «;. Then the expansion of B in terms of ay,...,q; is of one of six kinds: If
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0 is real, then [ is given by one of the four kinds

and the indices r, s,t distinct,

16| = leu| = las| > fex],

8= %ai +a, £ %ozs with (3.2)

i < min{r, s}, and r # s,
18] = law| = las| > feul,

i < min{r, s}, and r # s,
18] < law| = |el,

1<,

18] = lei| =[] = as| = |aul,
B=1a;tia, +ias+iay with i < min{r, s,t}, (3.1)

/6 = Q; + %ar + %Oés (33)

B=1a;+1a, with { (3.4)

If B is complex, then all roots have the same length and § is of one of the two kinds

= |Q; 5
B=1a+w with 11 = e , (3.5)
w nonzero, carried on by,
= |ai| = |ag|, T <,
8= %aii%ar—&—w with 18] = el = | T‘, (3.6)
w nonzero, carried on by.

Remark. Strongly orthogonal sets aq,...,q; of the type in the statement of the
proposition exist by virtue of Proposition 3.1.

Proof. As to the uniqueness of A", adjoin some elements to the end of the sequence
a1, ...,qp so that the result is an orthogonal basis of a; @ib]’a. In the corresponding
ordering, the sign of every root is determined by «s, . .., a; since g quasisplit implies
that no root is carried on b,. Thus the system A™ of positive roots is independent
of what elements were adjoined to form the orthogonal basis.

Let us classify the kinds of roots that are possible. One case is that ( is real.
Since aq, ..., q; spans a p, we have § = Z cja;. Taking the inner product with «;
gives ¢; = (3, a;)/|aj]?, so that

G=3" @O"; . (3.7)
Jj=1 J

We double this equation, take the norm squared, and divide by |3|? to obtain

4—Z|6’a3 (3.8)

Let us discard those terms on the right side of (3.8) that are 0. Since 8 is not
some +a; and since we have discarded G2 by hypothesis, each remaining term is
1 or 2. So there are at most 4 nonzero terms in (3.7). The first one has positive
coefficient since (3 is assumed positive; let us write «; for that a;. The indices for
the remaining terms will be 7, s,t as necessary.
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First suppose that || = |a;|. Apart from permuting indices after i, (3.8) reads
4=14+14+1+1o0r4=1+2+1. These yield (3.1), (3.2), and

18] = leu| = las| < o],

3.9
i < min{r, s}, and r # s. (3.9)

0= %ai + %ozr + %ozs with {

If (3.9) holds, then 2(3, +a,.)/|3|*> = 2, so that +a, — 23 is a root. Since
ta, — 208 =+ta, — (; T £ a5) = —a; F as,

we obtain a contradiction to the assumption that a; and a, are strongly orthogonal.
Thus (3.9) cannot occur.

Next suppose that || > |o;|. Then (3.8) reads 4 =2+1+1 or 4 = 2+ 2. These
yield (3.3) and
1Bl > |ai| = |l
<7,

8 =a; £« with {

which cannot occur because «; and «,. are strongly orthogonal.
Finally suppose that |3] < |a;|. Then (3.8) reads 4 =2+2o0r4 =241+ 1.
These yield (3.4) and

18] = || = [as| < |l

3.10
i < min{r, s}, and r # s. (3.10)

8= %ai + %ar + %as with {

Except for various signs, the situation of (3.10) can be transformed into (3.9) by
interchanging ¢ and r, and we saw that (3.9) cannot occur because of the strong or-
thogonality of a, ..., ;. Thus (3.10) cannot occur either, and the only possibilities
are (3.1) through (3.4) if 3 is real.

The other case is that 3 is complex. Since b, # 0, g is not split. Since g is
assumed quasisplit, g* must admit a nontrivial outer automorphism. Therefore all
roots have the same length. Let us write 8 = ¢ + w for the decomposition of 3
according to b, = a, @ b,. Then B =¢e—w=—001is aroot of the same length that
is not a multiple of 5. Consequently

2(8, B)
1612

(3.11)

equals —1, 0, or +1. We can rule out +1 since 3 — 3 would have to be an imaginary
root and we know that there are no imaginary roots. In the two remaining cases,
we have |¢]? = ¢|8]? with ¢, = 1/4 if (3.11) is —1 and ¢, = 1/2 if (3.11) is 0.

We write ¢ = 25‘:1 cjaj and compute that ¢; = (3,a;)/|j|?>. Then ¢ =
Z;Zl ((B,a;)/]aj|?)aj, and it follows that

l

4(B, a;)?
tey = 3 ol = #lay | (.05) £ 0% (312)
j=1 "
the second equality following since all roots have the same length. If ¢, = 1/4, then
the right side of (3.12) is 1, and /3 has to be as in (3.5). If ¢, = 1/2, then the right
side of (3.12) is 2, and § has to be as in (3.6).
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Now we examine strongly orthogonal sequences of roots relative to the compact
Cartan subalgebra t. Since each such root is imaginary, each such root is compact
or noncompact. Our interest will be in the case that all the roots are noncompact
and some other conditions are satisfied. The reason for insisting on strong orthog-
onality is analogous to the reason for the strong orthogonality in the case above for
real roots: We shall be doing successive Cayley transforms cg with respect to the
members of such a sequence, using a (direct) generalized Schmid identity for each
member of the sequence. The strong orthogonality ensures, among other things,
that these Cayley transforms commute.

The noncompactness and the other conditions we impose make the discussion
more complicated than it was in Proposition 3.1 for real roots. A preliminary step
is to normalize root vectors suitably. For each pair £+8 of noncompact roots, we
normalize Eg as in (1.2) and define E_g = Eg. Then

Es+E_3 and i(Eg—FE_g) areing. (3.13)

To get started, let At (g, t*) be a positive system for A(g®,t¢). We make the
following definition, which is slightly different from the one in §4 of [KnW]. A

sequence g, . .., a; of noncompact positive roots in A will be called a fundamental
sequence for A+ (gC C) if
(i) aq,...,qq are strongly orthogonal,
(ii) ¢ is a simple root in the subsystem of roots orthogonal to a1, ..., a;_1, for
1<j<i,

(ili) ap = 22:1 R(Eq; + E_o,) is maximal abelian in p.

This definition is internally consistent in the following senses: the subsystem of
roots orthogonal to a1, ..., a;_1 is certainly a root system, (3.13) shows that each
E.; + E_q; is in g, and the noncompactness of «; implies that E,, and E_,; lie
in pC.

To be absolutely complete, we should insert the following lemma, which was not
included in [KnW] but was implicitly applied in §4 of [KnW] in the construction of
certain sequences of noncompact positive roots; these sequences will appear in the
proof of Proposition 3.4 below.

Lemma 3.3. If Q is a root system and o is in Q, then Q' ={€ Q|3 LL a} is
empty or is a Toot subsystem of Q with the property that when 31 and (B2 are in €
and 31 + B2 is in Q, then B1 + B is in .

Proof. Without loss of generality we may assume that € is irreducible, that there
are roots of two lengths, that the root « is short, that there exists a long root 7,
and that |y]?2 = 2|a|?. Let 81 and (B2 be in €', and suppose 31 + 32 is in 2. We are
to prove that 81 + B2 L1 a.

We are given 1 1 1 aand B3 L1 a, and hence f1 + G2 L a. If 1+ 02 L1 «
fails, then 7 + (B2 + « is in 2. Hence 31 4+ (32 is short, and at least one of 31 and
(2 is short. Say (35 is short. Then we have

2(B1 + B2+ o, B1) _9. 2(B2, B1)
|51 2 |B1]?

This is > 0 since (5 is short. Therefore (31 + B2 + a) — f1 = B2 + « is a root, in
contradiction to the hypothesis #o L1 «.

+ 0.
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Proposition 3.4. Under the assumption that g has a compact Cartan subalgebra
t C &, any positive system A1 (gC, tC) of the root system A(g®, %) has a fundamental
sequence.

Proof. We may assume that A = A(g®, %) is irreducible. First let us dispose of
G5. Take a; to be a simple root that is noncompact; one exists as long as g is
noncompact. Then take ay to be the unique positive root orthogonal to a;. This
is noncompact in every case, and the sequence oy, as has the required properties.

When A is not of type Ga, Proposition 4.5 of [KnW] shows that there exists a
sequence ag, . . ., of positive noncompact roots such that

(a) the a; form a strongly orthogonal set,

(b) a, = Eé‘:l R(Eq; + E_q,;) is maximal abelian in p,

(c) «; is a simple root in the subsystem of roots strongly orthogonal to all of
aq,...,a;-1, which is empty or is a root system by virtue of Lemma 3.3
above,

(d) for each positive noncompact root 3, the first a; such that «; is not strongly
orthogonal to § satisfies |a;| > |5].

Then (a) and (b) prove (i) and (iii), and (c) proves (ii) if all roots have the same
length.

It is possible to give a general argument for (ii) in the case that there are two
root lengths, but for brevity we give a case-by-case argument that uses the detailed
analysis in §4 of [KnW]. If A is of type C,, or Fy with some long root noncompact,
then the sequence constructed in [KnW] has all roots long, and the system of roots
orthogonal to aq,...,a;_1 coincides with the system strongly orthogonal to those
roots. Hence the sequence constructed in [KnW] satisfies (ii) in these cases.

If g is noncompact with A of type Fy and with all noncompact roots short, then
the sequence consists of one noncompact simple root from A, and (ii) holds.

For A of type B,,, [KnW] shows that the constructed sequence can be taken to
be of the form

certain e; —e;, possible ey, corresponding e; + e;. (3.14)

Orthogonality relative to a long root is the same as strong orthogonality, and hence
there is no problem with (ii) for the first members of (3.14). One checks easily
that the possible e, and the corresponding e; + e; are all simple in the system of
roots orthogonal to all the members of the first group, and hence each of them is
simple in the smaller system of roots orthogonal to all members of the sequence
that precede it. This handles (ii) for A of type B,,.

The last case is that g is noncompact with A of type C,, and with all noncompact
roots short. We follow the construction of [KnW] step by step. Selection of the first
noncompact simple root o; = e; — e; means that the strongly orthogonal system
consists of all roots not involving indices ¢ and j, while the larger orthogonal system
consists of (e; +e;) in addition to all roots not involving indices ¢ and j. The root
e; + e; is simple in the latter system. The next step produces some oy = e5 — €.
Indices s and t are to be discarded, except that +(es + e;) remains in the system
of roots orthogonal to ay,as. Again ez + e; is simple in the latter system. The
construction continues in this way, and each selection of an «; is seen to be of a
simple root in the system of roots orthogonal to a1, ...,a;_1. This completes the
proof.
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4. THE REPRESENTATION ¢ OF M,

In this section, under some assumptions on G, we construct explicitly a certain
1-dimensional representation o of the group M, of a minimal parabolic subgroup
of G and prove a key technical result about it. It will be seen in §5 that the
unitary principal series representation built from ¢ and the trivial character of A,
is equivalent with the direct sum of all totally degenerate limits of discrete series
representations, each occurring with multiplicity 1.

We continue with notation as in §2. Fix a maximally noncompact 8 stable Cartan
subalgebra h, = b, @ a, of g, and let M, be the centralizer of a, in K. Following
standard terminology, we refer to the nonzero simultaneous eigenvalues of ad a, on
g as restricted roots. These are the nonzero restrictions to a, of the roots. Typical
roots are denoted ¢ or 7, except that, in the case of the restriction to a, of a real
root, we may denote the restricted root and the root by the same letter if there is
no possibility of confusion. The set of restricted roots will be denoted . It is a
root, system, possibly not reduced.

For each restricted root ¢, let H. be the element of a, such that e(H) = S(H, H.)
for all H in ap,, S being our invariant bilinear form. Since G is linear, it makes sense
to define

Ye = exp 2mile| "2 H.. (4.1)

In the special case that ¢ = a|ap for a real root «, this definition is consistent with
the one in (2.1). It is known that each element 7. lies in M, and has order at
most 2. It follows from (2.3) that (M, )o and the elements ~y. together generate M,.

If € is a restricted root, we write s. for the Weyl group reflection in . This
notation is sufficiently consistent with the definition in §1 of reflection in a real
root that it will not cause any confusion. For two restricted roots € and 7, direct
computation from (4.1) gives

2
Yage = e 2EMIL, (4.2)

For the most part we shall use (4.2) in the following form: If g is simple and is not
of type Go, then

N { Vg if (e,m) #0, n ¢ Re, and [e| > |n|
spe —

. (4.3)
Ve if (e,n) #0, n ¢ Re, and [e] <|[n].

Let € be a restricted root, and let m(e) be the sum of the multiplicities of ce as
a restricted root for all ¢ > 0. If m(e) > 1, then [Knl] or Corollary 7.69 of [Kn3]
shows that ~, is in (M,)o. Hence M, is generated by (M, )o and all the 7, for which
m(e) = 1. These latter €’s are the restrictions to a, of real roots.

If positive systems of roots and restricted roots are specified, the positive systems
are compatible if every root that restricts to a positive restricted root is a positive
root. One way to obtain compatible systems is to define positivity relative to a
lexicographic ordering of a; @ ibj, in which every positive element of aj, is larger
than every element of ib;. For example, one could choose a basis of a;, adjoin a
basis of by, and form the corresponding lexicographic orderings.

If compatible positive systems are imposed on the restricted roots and the roots,
then any restricted root € for which m(e) = 1 is conjugate via a member of
W (a, : K) to a simple restricted root ¢’ with m(e’) = 1. Applying (4.2), we readily
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see that M, is generated by (M, )y and all the . for which € is a simple restricted
root with m(e) = 1.

Satake [Sa] found relationships between simple roots and simple restricted roots
in the setting of compatible positive systems. In part he proved that any simple
restricted root is the restriction to a, of a simple root, and conversely the restriction
to a, of a simple root is 0 or is a simple restricted root. In more detail the
simple roots that are real restrict to simple restricted roots, the complex roots
that are simple occur in pairs that restrict to the same simple restricted root,
and the restrictions obtained in this way are linearly independent and exhaust the
simple restricted roots. These results in part limit the possibilities for the quotient
M,/(My)o. By contrast Theorem 2.1 of Wallach [Wal] limits the flexibility in
defining finite-dimensional representations of G in terms of the flexibility in defining
representations of M,. Implicit in the results of [Sa] and [Wal] together is the
extent to which (Mp)o and the above elements 7. are independent of one another.
We make the resulting structure theorem explicit in Proposition 4.2 below, writing
it in the form that will be useful to us. Proposition 4.2 uses Theorem 2.1 of [Wal]
only as a pointer toward the method of proof, and thus [Wal] does not need to be
cited in the proof given below.

Lemma 4.1 (Satake). Fiz compatible positive systems for A(gC, b(g) and the re-
stricted roots. If B is a simple root that vanishes on by, then the restricted root
€ = Bla, has m(e) = 1.

Proof. By one of the Satake results quoted above, ¢ is a simple restricted root. On
the other hand, we know from [Knl] that the only positive multiples of ¢ that can
be restricted roots are 1 and 3. Since ¢ is simple, the equation € = & + 3¢ shows
that %5 cannot be a restricted root.

Arguing by contradiction, suppose that m(e) > 1. By what we have just seen,
some pair a = & £ w consists of positive roots, with w a nonzero element carried
on ¢by. Then w must be a root, and there is no loss of generality in assuming that
it is positive. The formula ¢ = o~ 4+ w exhibits ¢ as the sum of positive roots and
contradicts the fact that € was assumed simple. Hence m(e) = 1.

Proposition 4.2 (Satake-Wallach). Suppose that G has a simply connected com-
plexification. Fiz compatible positive systems for A(g®, h(g) and the restricted roots.
Then there exists a unique 1-dimensional representation o of My such that o is 1
on the identity component (My)o and o(v:) equals —1 for every simple restricted
root with m(g) = 1.

Proof. Uniqueness is immediate since M, is generated by (M, )¢ and the elements
ve for all simple restricted roots ¢ with m(e) = 1. For existence define a highest
weight A on b(g by the formula

2(\, ) 1 if v is a simple root and is real

a2 10 if o is a simple root and is nonreal.

Since G has a simply connected complexification, there exists an irreducible rep-

resentation 7, of G with highest weight A\. When the underlying complex vector

space V is decomposed into restricted weight spaces, the highest restricted weight

is )\|a , and we let V; be the corresponding weight space. The subgroup M, leaves
P
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V1 stable, and it is well known (Lemma 8.48 of [Kn3]) that (M,)o acts irreducibly

in it. Let o be the representation of M, in this space. The highest weight of o is

)\‘ p, - from the structure of the simple roots, the linear span of the nonreal simple
P

roots contains the dual of b,. Since X is orthogonal to each nonreal simple root, A
vanishes on b,. Thus /\|bp =0, and o is trivial on (My)o. If o is real and simple,
then o(v4) = exp(A(2miHy /|a]?)) = exp(mi(2()\, a)/|a|?)) = exp(mi) = —1.

Proposition 4.3. Suppose that G is quasisplit and that g has a compact Cartan
subalgebra t C €. Fiz compatible positive systems for A(gC, hg) and the restricted
roots. Suppose that aq,...,qq is a strongly orthogonal sequence of real roots whose
restrictions to a, span a; and that AT coincides with the unique positive system of
roots determined by lexicographic use of a1,...,a;. For 1 < j <1, let po, be half
the sum of the positive roots that are orthogonal to o, ..., o5_1 but not to a;. If o
is a 1-dimensional representation of My such that o is 1 on the identity component
(My)o and o(7:) equals —1 for every simple restricted root with m(e) =1, then

0 (o) = (—1)2Pese/leal” gy < <.

Remarks. Proposition 3.2 notes that lexicographic use of a,...,q; determines a
unique positive system of roots. Proposition 4.2 proves that the representation o
in the current proposition exists if G has a simply connected complexification. The
quantity po; is necessarily a positive multiple of «; since there are no imaginary
roots and the set of roots contributing to p,, is closed under each of Soi1s- 1 Say-

Proof. In proving the displayed formula, we may assume that g is simple. Assume
temporarily that g is not split G. Let § be half the sum of the members of At =
At (gC, h§)~ The particular ordering that we have chosen makes § = Z;:l Pays
there is no contribution from bj, because there are no imaginary roots and the

positive complex roots are closed under —f. From this equation we obtain

2<67 aj> _ 2<p0lj7aj>
|z [? s

(4.4)

Therefore use of (3.7) shows that any simple root 3 satisfies

The given lexicographic ordering determines by restriction a set T of positive
restricted roots. For fixed k with 0 < k <[, the set of restricted roots orthogonal
to aq,...,qp is a root subsystem Y, and any member of ¥ whose expansion in
terms of aq, ..., a; begins with a positive multiple of «; for some i < k is greater, in
the lexicographic ordering, than every member of Y. It follows that the restricted
roots that are simple in ¥ and are needed for the expansion of a member of ¥,
all lie in ¥j. Consequently, for 0 < k <[ — 1, the expansion of a1 in terms of
simple restricted roots involves some member of ¥ that is not in ¥y 1.

We shall prove the displayed formula asserted in the proposition by induction
downward on j for 1 < j <. The base case of the induction is the empty statement
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that the assertion is true for indices beyond I. Assume inductively that the assertion
in the displayed formula is true for indices ¢ 4+ 1 up through I. By the argument in
the previous paragraph, let ¢ be a simple restricted root whose expansion in terms
of a1, ..., begins with a positive multiple of ;. From Satake [Sa], there is some
simple root 3 such that ¢ = (|, .

According to Proposition 3.2, the expansion of 3 in terms of simple roots begins
with «; or %ai. That proposition gives us seven possibilities for the expansion of
3, and we look at each one in turn. One is that 8 = «;, the next four are that ( is
real and is as in one of the formulas (3.1) through (3.4), and the last two are that 3
is complex and is as in (3.5) or (3.6). In any event the fact that § is simple means
that the coefficients of any of «,, as, and «; that occur in the relevant formula
(3.1) through (3.6) are negative.

If 8 = «;, then Lemma 4.1 says that § = «;, regarded as a restricted root, has
m(B) = 1. By definition we have o(y3) = —1. Meanwhile 1 = 2(6, a;)/]a;|* =

2(pa;, i) /|oil® by (4.4), and thus (=1)Xpap )/l — _1 Therefore 0(Yo;) =
(—1)2(Peisa)/loil* a5 required, and the inductive step is complete if 8 = .
If §is as in (3.1), then g = %ai — %ar — %as — %at with all the relevant root

lengths equal. Hence —sq,8 = Sq,.Sa,Sa, 0, and (4.3) yields Vo, 78 = Yoy Yo Yo, V3-
This formula and induction give

U(’yai ) = U('Yat Yoo '704,,.)

4.6
 (1)2pap0nd lanl® (1y2pes )l ()20 ) ol (4.6)
On the other hand, (4.5) and the equality of all the lengths give
1= l2<pai7ai> o 12<p04r7a7‘> i l2<pa57a8> . l2<p&t7at> (4 7)
27 2 27 oy 2 27 a2 2 w2 :

Multiplying (4.7) by 2, using each side as an exponent of (—1), and substituting
from (4.6), we obtain

1 = (1) 2P0 /loil® (1 y20ppar) /el ()20, xe) 0l (1) 20000} o
= (=1)2peaid/loal oy .
This completes the inductive step if 5 is as in (3.1).

If 8 is as in (3.2), then 3 = Lo — o, — 2o, with |8] = |a;] = || > |a,|. Hence
—Sa:3 = Sa, 80,0, and (4.3) yields Yo, 78 = Yo, Vo, ¥s- This formula and induction
give

2 2
0(Va,) = 0(Ya,Va,) = (_1)2<pasyas>/las\ (_1)2<pa7‘70‘7‘>/‘0‘7‘| ) (4.8)
On the other hand, (4.5) and the relationships among the lengths give

1=420e il L0 en ] 1TV e Tel (4.9)

Multiplying (4.9) by 2, using each side as an exponent of (—1), and substituting
from (4.8), we obtain

i (_1)2<pai7ai>/|ail2(_1)2<par7ar>/|a7‘|2(_1)2<Pa5,()ts)/‘()zs|2
(4.10)
— (_1)2<pa,¢704@)/| il 0(7{11‘)‘
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This completes the inductive step if § is as in (3.2).

If 3 is as in (3.3), then 3 = a; — 2o, — Lo, with |B] = |a,| = || > |a;|. Hence
—Sa; 3 = Sa,5q,0, and (4.3) yields Yo, 78 = Vo, Ya.y3- This formula and induction
give the same result as in (4.8). On the other hand, (4.5) and the relationships
among the lengths give the same result as in (4.9). Thus (4.10) again follows, and
the inductive step is complete if § is as in (3.3).

If 8 is as in (3.4), then 8 = Ja; — 3o, with |3] < |a,| = |a;|. Hence sga; =

o — 2<|‘27i§5>ﬁ =a; —20=0a; — (@, — o) =, and (4.3) yields Y8Va; = Va,.- Also

o(y3) = —1 by Lemma 4.1. These formulas and induction give

0(Var) = 0(Y3Ya,) = —(—1)2Pem )/l (4.11)
On the other hand, (4.5) and the relationships among the lengths give

L = Hpai i) 2pa,, ) (4.12)

|oui[? |ar[?

Using each side as an exponent of (—1) and substituting from (4.11), we obtain

i)/ |? o) /|an|? o)/ |?
1= (_1)2<pf¥1‘7(1%>/‘ il (_1)2<p0¢7‘7 )/l — _(_1)2<Pa17 i)/ |l O—(fyai).

This completes the inductive step if 3 is as in (3.4).

If 8 is as in (3.5), then 8 = Ja; +w, and (4.5) gives 2(pq,, ;) /|a;|? = 2. Hence
(—1)2<f’%’O‘i>/‘o‘i|2 = +1. On the other hand, the roots contributing to m(«;) upon
restriction to a, include %ai + w, %ai —w, and «;. Hence 7v,, lies in (M,)o and
0(Va,) = +1. Therefore o(va,) = (—1)Xrasa/loil® and the inductive step is
complete if 3 is as in (3.5).

If 8 is as in (3.6), then § = %ai — %ar +w. Put e = %ai — %ar. Since € + w
and € — w both yield € upon restriction to a,, 7. lies in (M) and o(y.) = +1.
Computation gives sc(a;) = «;, and hence V.7V,, = Va,. Therefore (+1)0(Va,) =
0(¥:)0(Ya,.) = 0(Ya,; ). This formula and induction give

2
0(Ya,) = 0(7a,) = (~1)2Perant/lorl, (4.13)

Meanwhile (4.5) gives

Multiplying by 2, using each side as an exponent of (—1), and substituting from
(4.13), we obtain

+1= (_1)2(pui,ai>/\ail2(_1)2<ﬂa,-,arr»>/|av~\2 = (_1)2(pui’ai>/\ailga(%_).

This completes the inductive step if 3 is as in (3.6).
To complete the proof of Proposition 4.3, we must verify the proposition for split
G>. Roots and restricted roots are the same for this group since it is split. There
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are two cases for the sequence {ay, as}. One is that «; is long and «s is short. In
this case we find that

2{pa 2{pasy;
(o 2@1> 3 ang 2lPas Qaz> _1
o | |z
so that
(—1)2paran/leal® — (_1)2pazaz)/loa® — 1, (4.14)
The simple roots are as and 3 = %al — %ag. Then o(74,) = —1 by definition. Also

we have —so, 3 = 31 + 3o = 54,0. Thus (4.2) gives Y5Ya, = YgVas, and hence

O’(,yal) = O'(’YO@) =-1 (415)

Comparison of (4.14) and (4.15) completes the argument in this case.
The other case is that «; is short and as is long. In this case we find that

so that (4.14) is still valid. The simple roots are as and § = %al — %052. Then
0(Ya,) = —1 by definition. We have —sq,3 = a1 + Fa2 = sq,3. Thus (4.2) again
gives vgYa, = V87Ya, and yields the consequence (4.15). Comparison of (4.14) and

(4.15) again completes the argument.

5. SuM OF ALL TOTALLY DEGENERATE LIMITS OF DISCRETE SERIES

In this section we show first that the unitary principal series representation
corresponding to o on M, and the trivial character on A, is the sum of all the
totally degenerate limits of discrete series if o is defined as in §4. This step is
carried out in Theorems 5.1 and 5.2. It is automatic from Theorem 7.1 of [Kn2]
that the multiplicities in this decomposition are all 1. As was mentioned in the
introduction it follows from Harish-Chandra’s subquotient theorem and a little
extra argument (which actually is contained in the proofs of Theorems 5.1 and 5.2
below) that there is some irreducible representation of M, with this property, but
we are interested in isolating the possible choices for this representation and seeing
that o is one of them.

The concrete information assembled in §4 about o allows us to do more. The
main thing is that it allows us to apply the part of the theory of the R group in [KnZ]
to give concretely the classification parameters of the irreducible constituents of the
corresponding principal series representation; these will be described in Theorem 5.5
and will be listed for each simple group in Table 5.1. Parenthetically it allows us also
to see that totally degenerate limits of discrete series exist whenever o makes sense;
thus G has totally degenerate limits of discrete series if and only if rank G = rank K,
G is quasisplit, and G is acceptable in the sense of Harish-Chandra (i.e., half the
sum of the positive roots in analytically integral). We continue with notation as in
84.

Theorem 5.1. Let G be quasisplit with rank G = rank K, and suppose that G
is acceptable in the sense of Harish-Chandra. Fix a strongly orthogonal sequence
ai,...,ap of real roots relative to b, whose restrictions to a, span a;,, and let
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At = A“‘(gc7 bf) be the unique positive system determined by aq,...,q;. Impose
the relative ordering on restricted roots. Then there exists a unique 1-dimensional
representation o of M, such that o is 1 on the identity component (My)o and
o(7Ve) equals —1 for every simple restricted root with m(e) = 1. If N, denotes the
analytic subgroup of G corresponding to the sum of the restricted-root spaces for the
positive restricted roots and if Qp is My Ay, Ny, then each irreducible constituent of
indgp (0 ®1®1) is a totally degenerate limit of discrete series representation.

Remarks. Proposition 3.1 guarantees that aq,...,q; exists, and Proposition 3.2
guarantees that AT is uniquely determined by aq,...,q;. Under the ordering,
every positive element of ay, is greater than every element of ibj,, and therefore AT
consistently defines a compatible notion of positivity for restricted roots.

Proof. Let us assume for the moment that G has a simply connected complexi-
fication. The existence and uniqueness of ¢ are then given by Proposition 4.2.
Proposition 4.3 shows that

7(a;) = (=1)*er e/l (5.1)

for 1 < j <[, and we know that the global character of indgp (c ®1®1) is of the
form
indg €M% (0,iby, 0] p(5,),0)- (5.2)

We wish to invert generalized Schmid identities relative to dg,,...,dq, so that
(5.2) can be rewritten one step at a time in terms of data for a Cartan subalgebra
whose compact part is one dimension larger. The condition for doing so is stated
at the end of §2 and has two parts to it. One part concerns the a, parameter;
since this parameter is 0 in our situation, it presents no difficulty. The other
part concerns the values of o|p(p,)(Va,) = 0(Va,;) for j =1,...,1, and (5.1) says
that this part of the condition is satisfied. Therefore we can rewrite (5.2) as the
sum of one or two characters built from a Cartan subalgebra that incorporates
a; = dy, (oq) as a noncompact imaginary root, and we can rewrite each of those
as the sum of one or two characters from a Cartan subalgebra that incorporates
also aj—1 = dg,_,(ay—1) as a noncompact imaginary root. The imaginary root
a; remains noncompact after d,, , because o;_; and «; are strongly orthogonal.
We continue in this way through «a;_1,...,a;. At each step the data other than
the chambers (and the implied sets of positive roots) are the same in all the new
characters that arise, as was remarked at the end of §2. Since the restrictions of
Qag,...,0q span a;, the final Cartan subalgebra is compact. Thus all the global
characters after the last stage are limits of discrete series, and their infinitesimal
character in each case is 0. Some of these global characters may be 0, but at
least one of them is nonzero because (5.2) is nonzero. Each of the nonzero limits
of discrete series is irreducible because nonzero limits of discrete series are always
irreducible (Theorem 1.1 of [KnZ]). This completes the proof under the assumption
that G has a simply connected complexification.

Now suppose that G is merely acceptable. Choose a covering group G with a
simply connected complexification, and let Z be the kernel of the covering map G —
G. Apply the special case just considered to the group G, obtaining a representation
o of the group M,. Let @p = M,A,N, be the minimal parabolic subgroup such
that indgp (0 ®1®1) is exhibited as a sum of totally degenerate limits of discrete
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series. Let any of the latter be 7(0, C'). Since G is acceptable and 0 is algebraically
integral, (0, C) is trivial on Z. Therefore indg (0 ®1®1) is trivial on Z, and we
conclude that o is trivial on Z. Then o descendg to a representation o of M. This
proves the existence of o, and the uniqueness is immediate from the fact that M,
is generated by (M,)o and the elements 7. for the simple restricted roots ¢ with
m(e) = 1. This completes the proof.

Theorem 5.2. Let G be quasisplit with rank G = rank K, and suppose that G is
acceptable in the sense of Harish-Chandra. Then G has a totally degenerate limit
of discrete series representation. Fiz one of the representations of this kind that is
produced by Theorem 5.1, and write its global character as ©F (0, C) relative to some
compact Cartan subalgebra t of g contained in €. Let U be the analytic subgroup of
G® with Lie algebra u = ¢ @ ip. Then the global character of any totally degenerate
limit of discrete series representation of G is of the form ©%(0, Ad(u)C) for some
member u of the normalizer Ny (t,8,p) of t, ¢, and p in U. Moreover every totally
degenerate limit of discrete series representation is a constituent of the unitary
principal series representation indg|D (c ®1®1) of Theorem 5.1.

Remark. U is a compact form of G.

Proof. Tt is immediate from Theorem 5.1 that G has a totally degenerate limit of
discrete series representation. We can write its global character as ©%(0,C). Since
©%(0,C) is nonzero, the Hecht-Schmid identity shows that every C-simple root
relative to A(g®, t€) is noncompact. Any other totally degenerate limit of discrete
series representation has a global character of the form ©%(0,C”). The action of
the Weyl group W (t€:g®) is transitive on the set of chambers, and each Weyl
group element has a representative in U. Thus we can choose u € U normalizing
t with C' = Ad(u)C. The transformation Ad(u) carries the C-simple roots to the
C’-simple roots, and every C’-simple root is noncompact since % (0, C’) is assumed
nonzero. Thus Ad(u) preserves type—compact or noncompact—for simple roots.
An easy induction allows us to extend this conclusion to all positive roots and to
their negatives. For example, if the result is known for a compact root o and a
noncompact root (3, then the root vectors satisfy

Ad(w)[Ea, E) = [Ad(u) Ea, Ad(u) Eg] € [€°, 5] C p°,

so that Ad(u) carries the noncompact root a + 8 to a noncompact root. The
conclusion is that Ad(u) preserves type for all roots. Consequently Ad(u) carries
£C to itself and pC to itself. But also Ad(u) carries the Lie algebra u = £ @ ip to
itself, and hence it carries the intersections ¢ = uN€® and p = suNp® to themselves.
This proves that w is in Ny(t, € p).

If 7 is a unitary representation of G on a Hilbert space H and if ¢ is an
automorphism of GG, we define 7% to be the unitary representation of G on H
given by 79 = mo ¢~ L. If v is an inner automorphism, then 7% will of course be
unitarily equivalent with .

Suppose now that 7 is a representation with global character ©%(0,C), and let
¢(z) = uzu~! for z € G. The same argument that establishes (1.14) in [KnZ]
proves that 7% has global character © (0, Ad(u)C).

From the embedding of 7 into L = indg (0 ® 1 ® 1), it follows that 7¥ embeds
into LY. We shall adjust ¢ by an inner automorphism to exhibit an equivalence
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between L and L¥. Specifically we forget about the fact that u normalizes t and
remember only that w is in U and w normalizes g, €, and p. The space Ad(u)(ay)
is maximal abelian in p, and we can find k; € K so that Ad(kiu)(ap) = a,.
The various possibilities for n, are conjugate via the Weyl group W (a, : K), and
thus we can find ks € K so that Ad(kzkiu) carries a, to itself and preserves
positivity of simple restricted roots. Then conjugation by kskiu maps M, and N,
to themselves. Let us put v = kokju and redefine ¢ by ¢(z) = vav~!. For the
redefined ¢, we work with L¥ = (ind§ (0 ® 1 ® 1))¢. Let us say for definiteness
that the induced representations act on the left, with the transformation law being
on the right. We define an operator P on the space of L? (i.e., the space of L) by
F(z) = (Pf)(z) = f(¢~tx) = f(v~taw), and we readily check that P carries the
space of L¥ in one-one fashion onto the space for L' = indgp (6 ®1®1) and that
P exhibits these representations as equivalent: L'(g)(Pf)(z) = P((L¥(g))f)(z).
To show that L¥ is equivalent with L, it is therefore enough to show that o¥

equals o, ie., that o(v"'mv) = o(m) for all m € M,. Conjugation of M, by

v™! carries (My)o to itself, and o is 1 on (My)o. Thus it is enough to show that
o(v1yev) = o(7:) for every simple restricted root e. Here v™'7.v = Yaq(y-1)e, and
we have arranged that conjugation by v~! maps the set of simple restricted roots
to itself. It also preserves multiplicities. Thus if € is a simple restricted root with
m(e) =1, so is Ad(v~!)e. The definition of o then shows that o is —1 on both ~,
and Yaq(y-1)e- Hence 0¥ = o.

What all this shows is that a representation with global character ©%(0,C") =
©%(0,Ad(u)C) embeds in a representation equivalent with indgp (c®1®1), and

the theorem is thus completely proved.

Corollary 5.3. Let G be quasisplit with rank G = rank K, and suppose that G is
acceptable in the sense of Harish-Chandra. Let U be the analytic subgroup of G©
with Lie algebra uw = ¢ @ ip. If Ny(t, €, p) denotes the subgroup of elements of U
normalizing t, €, and p, then the inclusions of Ny (t,€,p) first into Ny (8) and then
into Ngc(g) descend to isomorphisms

Nuy(t,8,p)/Nk(t) = Ny(t)/K = Nge(g)/G. (5.3)

Consequently the set of totally degenerate limits of discrete series characters of G
is parametrized by either of the groups Ny (€)/K or Ngc(g)/G.

Proof. A member of Ny (€) normalizes ¢ and € @ ip. Hence it normalizes ip, p, and
t®p = g. Therefore Ny (t,¢p) C Ny(t) C Nge(g). Since Ni(t) € K C G, the
inclusions descend to homomorphisms

Ny (t € p)/Nk(t) — Nu(t)/K — Nge(g)/G. (5-4)

To see that the maps (5.4) are one-one, we have to see that Ny (t, €, p)NG C Ng(t).
It is enough to see that U NG C K. Since G = Kexpp, it is enough to see that
UnNexpp=1. If X #0is in p, then Ad(exp X) acts fully reducibly with positive
eigenvalues on g©, while any member of Ad(U) acts with all eigenvalues of modulus
1 since U is compact. The two can coincide only if all the eigenvalues are 1, and
then Ad(expX) =1, ad X =0, and X = 0. Thus the maps (5.4) are one-one.

To see that the first map in (5.4) is onto, let u be given in Ny (¢). Then Ad(uw)
carries t to a maximal abelian subspace of ¢, and we can find k¥ € K such that
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Ad(ku) carries t to itself. The element ku normalizes t, ¢, and p. Then ku is in
Ny (t,8,p), and the K coset of our original element u is exhibited as in the image
of the first map of (5.4).

To see that the second map in (5.4) is onto, let g be given in Ngc(g). By the
global Cartan decomposition of G, write g = uexp Z with u € U and z € iu.
The space g is stable under the Cartan involution of g€, which is +1 on u and —1
on iu, and thus Lemma 7.22 of [Kn3] applies and shows that v and Z separately
normalize g. Here u is in Ny (8), which we have already observed is a subset of
Ncge(g). Meanwhile, Z is in i€ @ p. Write Z = Z; + Z5 accordingly. Then Z; is
in p C g and hence normalizes g. So Z; normalizes g. Since Z; is in ig, we obtain
[Z1,9] C igNg = 0 and hence iZ; is in the center of g. This is 0, and thus we
conclude that g = uz with z = exp Z2 in G. Thus our member g of Ngec(g) is in
the same G coset as u, which we have seen is in Ny (£).

Now consider the last assertion of the corollary. From Theorem 5.2 we know
that there is at least one such character, and it is of the form ©%(0,C) for some
chamber C. Also we know that any other one is of the form ©%(0, Ad(u)C) with
u in Ny(t, € p). We want to know the isotropy subgroup, i.e., those elements
u € Ny(t, & p) with ©9(0, Ad(u)C) = ©%(0,C). Theorem 1.1c of [KnZ] gives a
condition—that Ad(u)C = Ad(g)C for some g in Ng(t). Let g = kexp X be the
global Cartan decomposition of g. Lemma 7.22 of [Kn3] shows that k& and exp X
separately normalize t. Since t is a Cartan subalgebra, it equals its own normalizer,
and thus X is in t. Hence Ad(u)C = Ad(k)C for some k in Nk(t). Since the
Weyl group W (t:U) acts simply transitively on the Weyl chambers, k~1u is in
expt. Thus u is in Ng(t). Consequently Ny (t, € p)/Nk(t) parametrizes the set of
characters of totally degenerate limits of discrete series of G, and the last assertion
of the corollary follows from the isomorphisms (5.3).

The theory of the R group in [KnZ] tells how to obtain the classification pa-
rameters of the irreducible constituents of indgp (c ®1®1). To describe matters
easily, let us assume that G is simple, and let us take advantage of the fact that o is
1-dimensional. (For the general case, see p. 438 of [KnZ|.) If k € K normalizes a,
then we set ko(m) = o(k~'mk). Since o is 1-dimensional, the right side does not
change when k is multiplied by a member of the centralizer M, of a, in K. Thus
it makes sense to to speak of wo for any w in the Weyl group W(a, : K), which is
the same as the Weyl group of the system X of restricted roots. Let

We={weW(a,:K)|wo=o0}.

To get at the R group, one defines a certain subset 3/ of ¥. For 1-dimensional o
when the irreducible root system X is reduced,

¥o={einX|o(y)=+1}.

We shall not need the definition of ¥/ when ¥ is not reduced. The reason is that
M, is connected in this case (see [Knl]), and o reduces to the trivial representation;
the R group is easily seen from its definition to be trivial in this case.

In any event, X! is closed under its own reflections, and these reflections are in
W,. It follows readily that W, is the semidirect product of the Weyl group W/ of
¥/ and the subgroup

R, ={reW,|re>0foralle>0in X }.
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Proposition 8.4 of [KnZ] says that there is a set H = H, = {&1,...,&p} of real
roots in AT (g®, hf) that are superorthogonal in the sense that no nontrivial linear
combination of £;,...,&, is a root, every member r of R, is the product of the
reflections in the restrictions to a, of the members of some subset of H, and every
member £ of H has the property that s¢ is is a factor of some member of R,.

Table 5.1 tells what H is for all simple G under study. In most cases the group
R, has order 1 or 2. In the cases of order 2, the nontrivial element of R, is the
product of the reflections in H. The only case for which R, has order greater than 2
is Da,, and then R, has order 4; two of the nontrivial elements are

Sean—1—eanSean_1+ean and Se;—exSez—es """ Sean_sz—ean—_25ean_1—€2n>

and the third is the product of these two. In §6 we shall need the following result,
which is obvious by inspection from Table 5.1.

Proposition 5.4. Let G be quasisplit with rank G = rank K, and suppose that G
is acceptable in the sense of Harish-Chandra. Let o be defined as in Theorem 5.1,
and let other notation be as above. Then all the members of H = H, are simple
T001S.
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A z Names of Simple m(e) for Each |Rs| H,
Restricted Roots Simple
Restricted Root
Agn_l Cn €j — €j+1, 2 for short ¢ 2 26n
1<j<n-1 1 for long €
2e,
Asn [ (BC), not needed 3 for short ¢ 1 1%}
2 for medium &
Bgn BQn €j — €j+1, 1 for all ¢ 2 €25—1 €25,
1<j<2n—1; 1<j<n
€2n
Bgn+1 B2n+1 €j — €j+1, 1 for all € 2 €25—1 €25,
1< <2m; 1<j<m
€an+1 €2n+1
Cp Ch €j — €j+1, 1 for all € 2 2e,,
1<j<n-1
2en,
Dgn Dgn €j — €541, 1 for all € 4 €25-1—€25,
1<j<2n-1 1<j<mn
€an—1+€2n €2n—1+€2n
D2n+1 Bgn €j — €541, 2 for short ¢ 2 €25—-1—€2j5,
1<75<2n—-1; 1 for long € 1<53<n
€an
FEg Fy not needed 2 for short & 1 %]
1 for long €
E- E; Roots ¢; with 1 for all ¢ 2 €7, €5, €2
.. 2
Jas <765431>
FEg Eg not needed 1 for all ¢ 1 %]
Fy Fy not needed 1 for all € 1 1%
Go Goy not needed 1 for all € 1 1%

Table 5.1. Set H, of real roots identified by R,

Returning to G not necessarily simple, let dyy = ?:1 d¢; be the product of the
Cayley transforms in all of the roots §; € H. We define a new parabolic subgroup
Q = MAN by saying that dy leads from the data (m,,a,,b,) to data (m,a,b).
Put §~7 =dy(&) for 1 <j <p.

The only chamber in ib, is ib, itself. Because of the superorthogonality of the
members of H, it is apparent when G is split that there are exactly 2P chambers
in 7b. These are determined by specifying p signs s; = £1, 1 < j < p, and taking
a chamber to be the set where the p roots 3151, ceey s,,é}, are positive. When G is
merely quasisplit, the same conclusion is valid, but it is much less apparent. For



32 HENRI CARAYOL AND A. W. KNAPP

the relevant fact we appeal to Lemma 8.5 of [KnZ], which shows that the only
imaginary roots in A(m®, b%) are £¢;,...,£&,.

Let Wy be the group of order 2P generated by the reflections in &;,...,§p, and
let

FEy = {w € Wy (55)

for each r in R,, w and r have an even
number of factors s¢; in common ’

Using dy¢, we can regard members of Wy, as permuting the 2P chambers of ib simply
transitively. The subgroup Ey gets identified with the set of members realizable in
M. Theorems 8.7 and 12.3 of [KnZ] then yield the following.

Theorem 5.5. Let G be quasisplit with rank G = rank K, and suppose that G is
acceptable in the sense of Harish-Chandra. Let indglg (c ®1®1) be defined as in

Theorem 5.1, with character indgp ©MeAp (0,iby, 0| r(B,),0), and let other notation
be as above. Then (5.5) sets up a canonical isomorphism of Wy /Ey onto the dual
group R,. Moreover,

ind§ ©M2 4 (0,iby, 0| p(s,),0) = > indg ©M4(0,wC, o] p(p),0) (5.6)
weWy /Ex =R,

for any choice C' of the 2P chambers in ib. The characters on the right side of (5.6)
are all nonzero and irreducible, and they are given by nondegenerate data.

6. CLASSIFICATION OF TOTALLY DEGENERATE LIMITS OF DISCRETE SERIES

In this section we give the classification of totally degenerate limits of discrete
series, matching each such representation to one of the irreducible constituents of
the principal series representation whose character appears on the left side of (5.6).
Since the characters of the irreducible constituents have been written on the right
side of (5.6) with nondegenerate data, this matching process will indeed complete
the classification.

We continue with notation as in §4, and we shall make use also of the notation
concerning the R group introduced in §5. We use t to denote a compact Cartan
subalgebra of g contained in €. A choice will be made in this section of a maximally
noncompact ¢ stable Cartan subalgebra b, = b, @ a, of g, the choice depending
on the totally degenerate limit of discrete series character that we are given. Then
we let M, and A, be defined as usual. Once a lexicographic ordering has been
introduced on ay, @ ibj, such that every positive element of a;, is greater than every
element of bj,, then we obtain a set At (g®, bf) of positive roots, a compatible set
of positive restricted roots, and a subgroup N,. We let Q, = M, A, N,.

The idea of the proof of the classification is to start with a totally degenerate limit
of discrete series character ©%(0, C), construct a fundamental sequence &y, . . . a; of
strongly orthogonal noncompact roots relative to the positive system determined
by C, and arrange that the generalized Schmid identities corresponding to the [
Cayley transforms cg, lead through the stage at the right side of (5.6) and onward
to the principal series character on the left side of (5.6). Then in effect we can
invert the last few generalized Schmid identities by means of the appropriate Cayley
transforms d,, and obtain the desired equality of irreducible characters. An example
will illustrate what is supposed to happen.
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Ezample. In Dg, let the C-simple roots in A(g®, t€) be
e] — eg, €2 — €3, €3 — €4, €4 — €5, €5 — €6, €5 + €g.
A fundamental sequence of strongly orthogonal noncompact roots is
Q1 = €1 —eg, Qg = e3—€4, O3 = €5 —€g, 04 = €1 + €2, Q5 = €3+ €4, Qg = €5+ €4.

We apply each Cayley transform cz; and arrive at a maximally noncompact 6 stable
Cartan subalgebra h, = b, © a,. We put a; = cg,(@;), but we leave the notation
e; unchanged because there is little possibility of confusion. Our basis of a, is

] = €1 —€2, Qg = €3 — €4, O3 = €5 —€g, A4 = €]+ €2, Q5 = €3+ €4, 0 = €5+ €g,

and this is to be used lexicographically to define positive roots in A(g®, hg) and
then to define o in Theorem 5.1. Computation shows that the resulting simple
roots are

€1 + e, —ey —e€3, €3+ €4, —€4 — €5, €5 — €6, €5+ €6.

On the other hand, Table 5.1 shows that H, consists of the first, third, fifth, and
sixth simple roots in A* (g, h§)~ Thus

Ho ={e1+e2, es+es, €5 —es, €5 +eg} ={as, au, a5, ag}.

We know from Theorems 5.1 and 5.2 that use of the six generalized Schmid identi-
ties corresponding to &y through ag leads us from our given representation to the
principal series representation built from o. Application of the inverted generalized
Schmid identities corresponding to dj, takes us from the principal series repre-
sentation to its irreducible constituents. Since H, consists of the last four of our
a;’s and since d,, can be regarded as the inverse of ¢z, it is reasonable to expect
that we can get to the irreducible constituents of the principal series representation
by using just the first two generalized Schmid identities, those corresponding to ay
and ag. Using just those two identities, we obtain an equality of our given totally
degenerate limit of discrete series character with one of the characters on the right
side of (5.6). Sorting matters out, we obtain the desired match.

There are two obstructions to having this process work in general. One is illus-
trated by changing the fundamental sequence in the above example to ay, ay, s,
as, a3, og. Computation shows that this change does not affect AT (g®, b$)~ Thus
we still have H, = {e1 + €2, e3 + e4, €5 — €5, €5 + €6}, but the interpretation of
H, in terms of the fundamental sequence is that H, consists of four of our «;’s
yet not the last four. This is not a serious problem, and Lemma 6.1 will address it
satisfactorily.

The other obstruction is illustrated in Bz by using the fundamental sequence

Q) =e3, g = €1 —e2, A3 = €1 + €ea.

We form a1 = e3, as = e; — e3, ag = e1 + eo and find that the simple roots of
AT (gC, hg) are e3 — e1, €1 + ea, —eg. Table 5.1 says that H, consists of the first
and third simple roots, thus of e3 —e; and —ey. But neither of these roots is in our
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sequence. This is a more serious problem and will be addressed by Lemma 6.2 and
the definition of “good fundamental sequence” that follows it.

In a reduced root system a simple root will be called isolated if it is orthogonal
to all other simple roots in the system. Equivalently a simple root a in a system is
isolated if there is no root g in the system such that o + ( is a root. Relative to a
compact Cartan subalgebra and a positive system of roots for it, let ay,...,q; be
a fundamental sequence. Let us say that &; is of the first kind if it is not isolated
as a simple root in the system of roots orthogonal to &1,...,a;_1, or of the second
kind if it is isolated.

Lemma 6.1. Under the assumption that g has a compact Cartan subalgebra t C €,
let AT (g%, %) be a positive system for A(g€,t%), and suppose that

a1,..., 8 (6.1)

is a fundamental sequence for AT (g%, %),

(a) If, for some k with 1 < k <1—1, ay, is isolated as a simple root in the system
of roots orthogonal to ay,...,Q_1, then

Qpyee ey O 1, Oy 1, Oy, Oy 2, ..., (62)

is another fundamental sequence for At (g%, t%) and the type of each root—first kind
or second kind—is not changed.

(b) Let ¢ = cg, ---c5; be the composition of the commuting Cayley transforms
from (6.1) or (6.2), and suppose that ¢ leads from the data (g,0,t) to (my,ap, by)
and that a; = c(@;) for 1 < j < is the corresponding set of strongly orthogonal real
roots in A(gC, hyp), where h, = b, G a,. Then the sequence of real roots as, ...,
and the sequence obtained by applying c to (6.2) determine the same positive system
AT (g%, b5).

Proof. Define

Apr ={€e A 5) | (€,a;) =0for 1 <j<k—1}
Ap={6e A" ") | (a5 =0for 1 <j <k}
=16 A ) | (6,a)=0for 1<j<k—1landj=Fk+1}.

The sequence (6.2) certainly consists of positive noncompact roots satisfying (i)
and (iii) in the definition of fundamental sequence in §3. To show that (ii) holds
for (6.2), we are to show that

(ii-a) Qg1 is a simple root in Ag_q, and

(ii-b) @y is a simple root in A} .
Condition (ii-b) is automatic since ay, is simple in the larger system Aj_;.

Arguing by contradiction, suppose that (ii-a) fails. Then ag41 = 8+ 3, where

B and (3 are positive roots in Ag_1. Let ag,v1,...,vm be the simple roots in this
subsystem. By assumption, &y is orthogonal to v1,...,vm. We expand 8 and 5’
in terms of ag,V1,...,¥m as 3 = cod + Z;n:1 ¢;v; and ' = chag + Z;n:l i
for some coefficients > 0, and we take the inner product of everything with ay.
Then we obtain (3, dax) = colag|? and (8', ax) = cp|ax|? with ¢o and ¢} both > 0.
Addition gives 0 = (a1, ar) = (B+ ', ak) = (co+ch)|ak|?, and we conclude that
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¢p = ¢, = 0. Consequently 8 and /3’ are linear combinations of v, ..., vm, and so
iS Q1. Since 71, ..., vVm are by assumption orthogonal to ay and to ay, ..., ax—1,
the root a1 is exhibited as a nonsimple root in A, and we have arrived at a
contradiction. Thus (6.2) is a fundamental sequence.

To complete the proof of (a), we need to see that the type (first kind or second
kind) of each of ay and @41 is not affected by switching them in the sequence.
We have seen that oy and ayy1 are both simple in Ax_;. We are given that ay,
is isolated in Ag_q. Then no root B in Ag_q is such that 8 + ay is a root. In
particular, 3 + & cannot be a root if 8 is in A}, and hence &y, is isolated in A
Thus ay, is of the second kind in both sequences.

Similarly if 41 is isolated in Ag_1, then it is isolated in Ay. Thus if agyq is of
the second kind in (6.2), it is of the second kind in (6.1). In the converse direction,
suppose that a1 is of the first kind in (6.2), i.e., that a4 fails to be isolated
in Agp_1. Then 8+ @41 is a root for some root 8 in Ag_;. If (G, ax) # 0, then
+06+ ay, is a root for some 3 in Ay_1 and some choice of sign, and this contradicts
the assumption that ay is isolated in Ag_1. So (B,ax) = 0, and 8 + ag41 is a
root with 3 orthogonal to aq,...,ar. Thus a4 fails to be isolated in Ay. This
completes the proof of (a).

For (b) we argue by contradiction. If (b) is false, then there exists some root
0 in Ag_1 with (8, ax) < 0 and (8, ak+1) > 0. This root § cannot be —aqy, since
(—ag, ag+1) = 0, and thus 8 + @y, is a root. Since 3 is in Ay, & is not isolated in
Ay, in contradiction to hypothesis. This proves (b).

Lemma 6.2. Under the assumptions that g is quasisplit, is simple, has a compact
Cartan subalgebra t C €, and has roots 31 and B2 with |B1]? = 2|Ba2|?, suppose
that AT (g%, %) is a positive system for A(g®,tC) in which every simple root is
noncompact. Then g has a fundamental sequence oy, ..., a; of strongly orthogonal
noncompact positive roots in which all of ay,...,q;_1 are long. In any fundamental
sequence, ay is of the second kind.

Remark. When 2 < m < n, the conclusion of this lemma fails for g = sp(m,n),
which is not quasisplit.

Proof. The root system in question has to be of type B, C,, or Fy. Since none
of these systems has a nontrivial outer automorphism, g has to be split. Thus the
fundamental sequence has to be a basis for the roots. The only roots orthogonal to
ai,...,qp_1 are then the multiples of a;; the root ; is simple in this system, and
hence a; is of the second kind.

In split C),, the fundamental sequence, in standard notation, has to consist
of 2e,, 2e,_1,...,2e1, and no short roots appear. In split F}, every fundamental
sequence consists of four long roots, and no short roots appear. In Bs,, the sequence
consisting of esj_1 — e;, eaj_1 + eg; for 1 < j < n is fundamental with no short
roots. Finally, in By, 11, the sequence consisting of the roots for Bs, followed by
€an+1 1s fundamental, and only the last member of the sequence is short.

If g has a compact Cartan subalgebra t C € and if a positive system A+ (g%, %)
is specified, a fundamental sequence aq, . .., a; of strongly orthogonal positive non-
compact roots will be said to be good if within each irreducible component of
A(g®,t%) in which there are roots 3; and B» with |31 = 2|32|?, at most one
member of the part of the sequence within this component is short and it is the
last one for this component.
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Lemma 6.3. Let g be quasisplit and have a compact Cartan subalgebra t C €. Fix
a positive system for A(g®,t%), and suppose that every simple root is noncompact.
Then there exists a good fundamental sequence of positive noncompact roots.

Proof. Proposition 3.4 shows that a fundamental sequence exists. Fix an irreducible
component A; of A(g®, t€) in which there are roots 3 and £ with |31 |2 = 2|32|?.
The subsequence of the fundamental sequence consisting just of those roots that lie
in A; is fundamental for that component, and Lemma 6.2 says that we can replace
it by a good fundamental sequence for that component. Repeating this procedure
for the other irreducible components of A(g®,t*), we obtain a good fundamental
sequence for A(g®, t©).

Theorem 6.4. Let G be quasisplit and acceptable in the sense of Harish-Chandra,
and suppose that g has a compact Cartan subalgebra t C €. Suppose that ©%(0,C)
is a totally degenerate limit of discrete series character written in terms of t. Let
ai,...,qp be a good fundamental sequence of strongly orthogonal positive mon-
compact roots relative to the positive system of A(g®, ) determined by C. Let
c = cg, - Cg, be the composition of Cayley transforms, and suppose that c leads
from the data (g,0,t) to data (my,a,,b,) and that o; = c(a;) for 1 < j <[ is the
resulting strongly orthogonal sequence of real roots in A(g®, hp), where h, = b, Day.
Use the sequence ay, ..., qp lexicographically to determine a unique positive system
At (gC, hf), and define o to be the 1-dimensional representation of M, such that o
is 1 on the identity component (M, )o and o(v.) equals —1 for every simple restricted
root € with m(e) = 1. Let H, be the set of superorthogonal real roots defined in
85, and let p = |H,|. Fach member of H, is one of the roots ay,...,q;, and the
members of the sequence oy, ...,y can be permuted without changing A (g®, f)(g)
so that the members of H, are the last p, namely cqy_py1,...,0q. Define dy to be
the composition HaeHU d., and suppose that dy leads from the data (my,a,,by)
to data (m,a,b) as in §5. Then

©%(0,C) = ind§ ©M4(0,Car, 0| (), 0), (6.3)

where Cyp is the unique chamber in ib for which the p roots dy(«), o € H,, are
Cr-positive, and (6.3) exhibits the given totally degenerate limit of discrete series
as rewritten with nondegenerate data.

Remarks. The sequence oy, . . ., (g exists by Lemma 6.3. The transformed sequence
Qq,...,qp determines lexicographically a unique positive system A+(gc,h§) by
Proposition 3.2. The representation ¢ exists and is unique according to Theorem
5.1. In the proof we may assume that the root system contains no component G,
because Table 5.1 shows that the R group is trivial for Gs.

Proof. We begin by adjusting the given sequence ar,...,q; in A(g®,tC) a little.
Lemma 6.2 says that the exceptional short roots are of the second kind, and Lemma
6.1 allows us to move them to the end of the sequence without affecting A*(g®, b(g).
A second application of Lemma 6.1 allows us to move all remaining members of
the sequence that are of the second kind to the end of the sequence but just before
the exceptional short roots. Roots of the first kind are still of the first kind, roots
of the second kind are still of the second kind, and A*+ (g€, [)f) is unchanged. At
the end of the adjustments, all the roots of the first kind precede all the roots
of the second kind, and all the ordinary roots of the second kind precede all the
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exceptional short roots of the second kind. The sequence is still good. Let us
retain the names @, . .., q; for the adjusted sequence, and let us refer to a member
a; of the corresponding sequence o, ...,0q as being first kind, second kind, or
exceptional short if a; has that property.

As in the proof of Proposition 4.3, let ¥ be the subsystem of restricted roots
orthogonal to ai,...,a;. We saw in that proof that the simple restricted roots
needed for the expansion of any member of ¥, are in ;. For each k, the restriction
to a; of the real root ay, lies in Xp_1 but not in 3. Thus X;_; contains at least
one more simple restricted root than ¥j does. Since the total number of simple
restricted roots coincides with the total number of «;’s, it follows for each j with
1 < j < that there exists one and only one simple restricted root whose expansion
in terms of oy, ..., a; begins with a positive multiple of a;. Let us write €; for this
simple restricted root.

Let H, be the set of superorthogonal real roots defined in §5. Proposition 5.4
observes that each such root 3 is simple in A* (g%, hf). The main step in the proof
is to show that 3 is one of the roots «; and is of the second kind.

If B is in H,, then ( is simple. Consequently, as we observed before Lemma 4.1,
a theorem of Satake [Sa] shows that the restriction of 3 to aj, is a simple restricted
root. In the notation above, the restriction of 3 is therefore of the form ¢; for some
unique j. Arguing by contradiction, suppose that some member of H,, is not one of
a1, ..., Among all 5 in H,, we can then choose the one 8 = [y whose associated
€; has j as small as possible so that €; # «;. Let ¢ be this smallest value of j. Fix
an element w of R, having the reflection sg, as one of its commuting factors.

We expand this real root fJy in terms of a,...,a; and form the irreducible root
subsystem to which Gy belongs. We saw that we may disregard split G,. Applying
Proposition 3.2, we obtain a list of possibilities for the expansion of §y. Since [
begins with a positive multiple of «;, is not «; itself, and is real, the only possibilities
are (3.1) through (3.4). The coefficients of any of «;,., s, and «; that appear have
to be < 0 since fy is simple. An expansion (3.3) cannot occur since the condition
|| < |ay| in (3.3) is incompatible with the fact that the fundamental sequence is
good. Thus the only possibilities are (3.1), (3.2), and (3.4).

If By is of the form (3.4), we can write fy = %ai — %ozr with 7 < r and with
|Bo] < |ar| = |ai|. We have sg,(c;) = a,, and (4.2) gives v3,Ya; = Va,.- The
definition of o makes o(vyg,) = —1, and thus exactly one of (7q,;) or 0(7a,.) is +1.
Since the element w of R, is a product of reflections in members of H,, we can
write w = sg,88, - - - 83,, With (1,..., Bp in H, and with no repeated factors in the
expansion. The associated simple €;’s for §; with [ > 1 have j > ¢ or else 3; is
some oy, with k£ < 4, and each such 3; is strongly orthogonal to (y. Since each 3;
with j > 1 is orthogonal to 3y and does not contain ¢; in its expansion, no 3; for
j > 1 contains «; in its expansion either. So we have w(o;) = sga,, -+ 58,58, () =
sg,, -+ g, () = o and similarly w(a,) = a;. If 0(7,,) = +1, then the equalities

0(Ya,) = —1 and w(e;) = a, show that w does not preserve the set of positive
restricted roots n for which m(n) = 1 and o(v,) = +1; if 0(va,.) = +1, then the
equalities 0(Vq,) = —1 and w(a,) = a; similarly show that w does not preserve the

set of positive restricted roots 7 for which m(n) =1 and o(v,) = +1. We have seen
that one of these alternatives must hold, and thus (3.4) leads to a contradiction.
So [y is of the form (3.1) or (3.2). In particular, |Gy| = |a|.

In the remark with Proposition 4.3, we observed that 2p,, is a multiple of ;.
Let us digress to compute the parity of this multiple. We have to take into account
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a; itself and all the forms of roots indicated by (3.1) through (3.6). From [ as in
(3.1), we get a contribution from each of the eight combinations of signs, and the
sum is 4ey;. Similarly, when all signs are taken into account, we get 2a; from (3.2)
and 2«; from (3.3), and we get 2a; from (3.6) if +w are both used. Thus 2p,, is
the sum of an odd multiple of a; and whatever contribution we get from (3.4) and
(3.5). If (3.5) makes any contribution, then we have seen in the proof of Proposition
4.3 that the corresponding irreducible component of ¥ is of type (BC),, and that
component contributes nothing to the group R, according to Table 5.1. Thus if
(3.5) makes any contribution to 2p,,, then Gy could not have been in H,, and we
would not have been considering index 1.

Continuing our digression, let us see that (3.4) cannot make any contribution to
2pq,; under the assumption that Gy is in H,. Suppose on the contrary that there
exists a real root of the form 8 = 1a; — S, with [8] < |a;| = |a,|. The restrictions
to a, of # and «; are nonorthogonal nonproportional restricted roots, and they are
in the same irreducible component of ¥ as the restriction of 8y. This component
must therefore be of one of the types (BC),, Fy, C,, or B,. We can rule out
(BC),, and Fj since Table 5.1 shows that such a component contributes nothing
to R, and leads to the conclusion that 3y is not in H,. Since «; and [ are long,
nonorthogonal, and nonproportional, we can rule out C),. Thus the component of
Bo, a;, and § in 3 may be assumed to be of type B,,. If o(y3) = —1, then the same
argument that rules out Gy of the form (3.4) rules out the existence of § now. Thus
o(y3) = +1. Since 3 is short, it is conjugate via reflections in long simple restricted
roots to plus or minus a short simple root. Taking (4.3) into account, we see that
vg equals 7. for the unique short simple restricted root e, and ¢ has m(e) = 1.
But then +1 = o(v3) = 0(7:) = —1 by definition of ¢, and we have arrived at a
contradiction. Thus we may assume that no root of the form (3.4) occurs for our
index i if By is as in (3.1) or (3.2) and 3y belongs to H,.

The upshot of our digression is that we may assume that

(—1)2papo)/loil® = 7,

Therefore Proposition 4.3 shows that

o (Yar) = ~L. (6.4)

Moreover, we already saw that Gy has to be of the form (3.1) or (3.2).
Suppose that Fy is of the form (3.1), namely Gy = %ai — %ar — %as - %at. Put

By = %ai + %ar + %as + %at. From () = —$4,(0o) and (4.3), we obtain

a(v8y) = (Ve ) (3, )- (6.5)

Because o(v3,) = —1, (6.4) and (6.5) allow us to conclude that o(vyg,) = +1. Since
$8,(0y) = oy and since all roots other than §y that contribute to the element w
of R, either begin their expansions after «; or else are of the form «y with k < i,
we obtain w(8)) = «;. This equality gives a contradiction because, by (6.4), it
exhibits w as not preserving the set of positive restricted roots e with m(e) = 1
and o(v.) = +1. Thus fy cannot be of the form (3.1).

Suppose that 3y is of the form (3.2), namely Sy = %ai - %ar - %as with |5g| =
| = || > |- Put By = 2oy + 2oy + 2o, From ) = —sa,(6o), (4.3), and
(6.4), we obtain

o(1,) = 0 )r(v3) = (—1)(=1) = +1,



LIMITS OF DISCRETE SERIES WITH INFINITESIMAL CHARACTER ZERO 39

From sg,(5}) = oy, we deduce w(3)) = «;, and we again obtain a contradiction.
Consequently (y cannot be of the form (3.2), and all possibilities for Gy are ruled
out. We conclude that every member of H, is of the form «; for some j.

Now let or; be a member of H,. We know that a; is simple for A (g%, bf). Let
us see that it is of the second kind, i.e., that it is isolated in the system of roots
orthogonal to a1, ..., a;_;. This condition means that o; is the only positive root
for AT (g%, f)‘g) whose expansion in terms of oy, . .., oy and iby, begins with a positive
multiple of ;. If B is a positive root whose expansion begins with %ozj, then the
same thing is true of —s,;(3), and a; = B+ (—s4,(5)) gives the contradiction that
a; is not simple for At(gC, bf). If 8 is a positive root whose expansion begins
with «;, then 8 = «a; + &, where £ is a root orthogonal to «;. If £ is negative,
then «; = B + (=€) exhibits a; as not simple, contradiction. If £ is positive, then
—5q,(0) is positive and s,,(§) = &, so that «a; = —s,,(8) + £ exhibits «; as not
simple, contradiction. Consequently o is of the second kind.

Let p be the number of roots in H,. Because of the result of the previous
paragraph, Lemma 6.1 allows us to adjust the fundamental sequence aq,...,q
further so that the p roots o; with «; € H, are the last p members of the sequence.
Lemma 6.1 says also that the positive system AT (g®, hg) is unchanged.

Let us restate our construction in a way that takes into account all the different
ways we were led to AT (gC, hf). Starting from the chamber C in it, we formed a
fundamental sequence aj, . . ., &; relative to AT (g®, t€). For c equal to the composi-
tion of all the cg,, we used ¢ to pass from the data (g, 0, t) to data (my, a,, by) and to
define a; = c(a;) as a member of A(g®, hf). The sequence aq, ..., a; enabled us to
introduce a lexicographic ordering and define A* (g€, bg). In terms of this positive
system we could define 0. The group R, relative to this same positive system led
us to H,, which consists of oy_p11,..., . From §5 we know that all the totally
degenerate limits of discrete series lie in the induced representation from o and
that the characters of the irreducible constituents of this induced representation
are realized with nondegenerate data as indg @MA(O,CM,O'|F(B),O), where the
Cayley transform dy = dg,_,., - - da, leads from the data (my, ay, by) to the data
(m,a,b). Since cg, and d,, can be arranged to be exact inverses of one another, we
can pass from the data (g, 0, t) to the data (m, a, b) more directly by the composition
cx = Cj_p - --c1. The inverted generalized Schmid identities are exactly that—the
same identities read from right to left instead of left to right. Consequently the
generalized Schmid identities for the factors of ¢y show us how to pass from our
given totally degenerate character ©%(0, C) to a situation where the character has
been rewritten with nondegenerate data.

Now we can prove the conclusions of the theorem. What we have to do is identify
the correct chamber C; of ib in terms of the starting chamber C. Let us follow
what happens to the chamber through each use of some cz,. Say that the relevant
Cartan subalgebra is h; = b; @a; after using ¢, - €a,, 1 < j < I—p. The chamber
after using cz, is C°*1, the unique Weyl chamber of ib; containing Proj;p, (C'). Thus
we have

C*% 2 Projyp, (C).

Hence

(C*1)*%2 2 Projip, (C°%1) 2 Projss, (Projis, (C)) = Projip, (C). (6.6)
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Iterating, we obtain
Cut = (- ((C°) %) --+)™1=0 D Projy (C).

If H is in C, then
1—
Projis(H) = H —

J

<
N

;(H)
* Jay)?

H,. (6.7)

An imaginary positive root B of (m®, b®) extends uniquely to an imaginary positive
root of (g, t®) that is orthogonal to ay, ..., aj—p. Then B takes the same value on
H in C that it takes on the two sides of (6.7). On C, it is positive, and we conclude
from (6.6) that every such B is positive on a certain open subset of

Cut = (- ((C°F)°%) .. )5y,

In particular, &;_p41,...,0; are positive on this open set. We saw in Theorem
5.5 that the chambers of ¢b are 2P in number and are distinguished by the signs
of &j_pt1,...,0; on them. The conclusion is that the desired chamber Cys is the
unique one where &;_p11,...,q; are all positive, and the proof is complete.

7. PARTICULAR CASES

1) Groups of type A. The groups in question of type A are G = SU(n,n)
and G = SU(n + 1,n), and most of the development in §§4—6 of this paper is
unnecessary for these cases. For SU(n + 1,n), we see from Appendix C of [Kn3|
that M, is connected, and it follows that o is trivial; the unitary spherical principal
series is irreducible for any G, and thus the only totally degenerate limit of discrete
series representation is the spherical principal series representation with trivial A,
parameter. The case of SU(n,n) is only slightly more subtle. The group M, has
two components in this case. A good fundamental sequence is e; —eq, e3—ey, ... ,
and we can check directly that all the intermediate M groups are connected. If we
think of applying generalized Schmid identities in succession corresponding to the
Cayley transforms cg, we see that the question comes down to what happens at
the last step, specifically whether the applicable generalized Schmid identity is of
type (a) or type (b). This is the question whether the last sz is in W(B*: M*)
or not. Direct computation shows that it is not, and the identity to use is of type
(a). Then we get reducibility into two pieces, and this reducibility is understood at
the last step. Thus we get nondegenerate data one step removed from the minimal
parabolic subalgebra.

2) Other classical groups. The full theory is needed in most of the other classical
cases, and the results are summarized in Table 7.1; the table includes also the
exceptional cases and refers to them by Cartan’s numbering, which is reproduced
in Appendix C of [Kn3|. Let us think in terms of starting from a compact Cartan
subalgebra and applying a succession of generalized Schmid identities. A curious
feature of the classical cases is that the stage at which we find nondegenerate data,
namely |H,| steps away from a minimal parabolic subalgebra, is always the first
stage at which m* becomes the sum of an abelian subalgebra and a direct sum of
copies of sl(2,R). As the table shows, this coincidence is no longer valid for the
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exceptional groups, i.e., the entries in the last two columns of Table 7.1 are not
equal for the exceptional groups.

The computations in the classical cases are straightforward, particularly in the
presence of Table 5.1. The case of C,, is a little special in that the good fundamen-
tal sequence has to be 2e,, 2¢,,_1, ...,2e;. For the other classical cases, a good
fundamental sequence is obtained by using as many as possible of the roots e; —es,
e3—ey, ... and following them with the corresponding e;+es, e3+ey, ... . In the
case of By,1, one adjoins eg,4+1 at the end.

A g Real |Number &; | Number a; |Ho|
Rank Of Of
First Kind | Second Kind
Agpq su(n,n) n n—1 1 1
Az su(n+1,n) n n 0 0
Bay, s0(2n+1,2n) 2n n n n
Bonp s0(2n+2,2n+1) |2n+1 n n+1 n+1
Cp sp(n,R) n n—1 1 1
Dy, s0(2n,2n) 2n n—1 n+1 n+1
Daoppa s0(2n+2,2n) 2n n n n
E¢ EII 4 3 1 0
Er EV 7 3 4 3
Eg E VIII 8 4 4 0
Fy F1I 4 2 2 0
Gy G p 1 1 0

Table 7.1. Comparison of |H,| with the number of roots &;
of the second kind in a standard good fundamental sequence

3) Split E7. The only exceptional simple group under study for which the R
group of the special ¢ is nontrivial is split E7, and some comments are in order
about this case. A good fundamental sequence is constructed as follows. Fix C.
Number the C-simple roots in the Dynkin diagram as 3; with j as in ( 2 ) Put

765431
ayp = fr
Qg = a1 + 206 + 205 + 284 + 3 + B2
as =3

Qg = o+ 5 + 204+ 283+ 2+ 261
as = fB5 + 204 + B3 + B2

as = 35

ar = [Ba.

During the construction, the system orthogonal to ; is of type Dg, with simple
roots consisting of (1, B2, B3, B4, b5, and as. The subsystem orthogonal to ay is
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of type D4 + Ap, with the simple roots of Dy consisting of 32, 83, B4, O5 and with
A; formed from as. The subsystem orthogonal to a3 = (33 has four isolated simple
roots, namely g, as, B2, and (5. These remarks explain the entries in the fourth
and fifth columns of Table 7.1 for Ex.

To trace what happens for £7 in Theorem 6.4, we remove the tildes from the roots
a; and use the roots «; to impose a lexicographic ordering and obtain At (gC, b(g).
Examining the proof of Proposition 4.3, we can quickly write the expansions of the

simple roots &; in this system in terms of the basis a1,...,ag as
S %(011 — Qg —az — ay)
§a = %(042 — a3 — a5 —ag)
& = 3(a3 — g — a5 — ay)
§a =y
& =as
&6 = a6
& = ar.

Computing the inner products (§;,&;), we can form a Dynkin diagram. Then we see
that the numbering of the simple roots as £; corresponds to j as in (625;41). Table
5.1 says that the roots in H, are the simple roots in the positions X in (XOXOOO).
These are the roots &5 = a5, &g = ag, and &7 = a7, and we have a confirmation of
the prediction from the proof of Theorem 6.4 that the members of H,, all lie in the

sequence o, ...,ag and are of the second kind.
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