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LIMITS OF DISCRETE SERIES WITH INFINITESIMAL
CHARACTER ZERO

HENRI CARAYOL AND A. W. KNAPP

ABSTRACT. For a connected linear semisimple Lie group G, this paper consid-
ers those nonzero limits of discrete series representations having infinitesimal
character 0, calling them totally degenerate. Such representations exist if and
only if G has a compact Cartan subgroup, is quasisplit, and is acceptable in
the sense of Harish-Chandra.

Totally degenerate limits of discrete series are natural objects of study
in the theory of automorphic forms: in fact, those automorphic representa-
tions of adelic groups that have totally degenerate limits of discrete series
as archimedean components correspond conjecturally to complex continuous
representations of Galois groups of number fields. The automorphic repre-
sentations in question have important arithmetic significance, but very little
has been proved up to now toward establishing this part of the Langlands
conjectures.

There is some hope of making progress in this area, and for that one needs
to know in detail the representations of G under consideration. The aim of
this paper is to determine the classification parameters of all totally degenerate
limits of discrete series in the Knapp—Zuckerman classification of irreducible
tempered representations, i.e., to express these representations as induced rep-
resentations with nondegenerate data.

The paper uses a general argument, based on the finite abelian reducibil-
ity group R attached to a specific unitary principal series representation of
G. First an easy result gives the aggregate of the classification parameters.
Then a harder result uses the easy result to match the classification param-
eters with the representations of G under consideration in representation-by-
representation fashion. The paper includes tables of the classification param-
eters for all such groups G.

(0.1) Let f = Y07, anq™ be a classical modular newform, understood to be
a normalized eigenform for the Hecke operators, of weight k for I'o(XN). Then
it is well known that the coefficients a, are algebraic integers and that once an
embedding of the algebraic closure Q of Q into Q, has been chosen, there exists a
continuous representation 7 of the Galois group Gal(Q/Q) into GL(2,Q,) such that
the Frobenius element F), for any prime p not dividing N satisfies Trace 7(F},) = ap.

In fact, two different situations arise corresponding to the two possibilities k& > 2
and k = 1. For weight k > 2, the construction of 7 is straightforward, based on
a decomposition of the cohomology of modular curves under Hecke operators. By
contrast, for weight £ = 1, one uses congruences between forms of different weights
to obtain, following Deligne and Serre, an “Artin” 2-dimensional representation, i.e.,
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one with finite image. This difference between weight > 2 and weight 1 is mirrored
by the archimedean component of the corresponding automorphic representation of
SL(2), which belongs to the discrete series in the first case and is a limit of discrete
series in the second case.

(0.2) Let G be a linear connected semisimple Lie group. Discrete series represen-
tations of G are those having square integrable matrix coefficients; they are unitary
representations. They exist if and only if the rank of G coincides with the rank of a
maximal compact subgroup K, and they were classified by Harish-Chandra [HC3].
In the classification each such representation is given nonuniquely by its Harish-
Chandra parameter A, which is a nonsingular linear functional on a compact Cartan
subalgebra t of the Lie algebra of G and is integral when a certain specific linear
functional p is subtracted from it. Denote this representation by ©(\). Two such
representations are equivalent if and only if their parameters are in the same orbit
under the action of the Weyl group Wi of K, which is generated by reflections with
respect to the compact roots. Since A is nonsingular, A is dominant with respect
to just one Weyl chamber C' of it. When the parameter A is moved by an integral
amount so as to become possibly singular while remaining inside C, one can still
associate a representation to the pair (A, C) (note that C is no longer determined
by A), and the new representation ©(\, C) is called a limit of discrete series. This
representation is irreducible or zero, and there is an easily stated criterion for de-
ciding which is the case; specifically (A, C) is 0 if and only if A is orthogonal to
some C-simple root that is compact. As above, ©()\,C’) is equivalent to O(X, C)
if and only if (X, C) is conjugate to (N, C’) by some element of Wi

(0.3) One would like to be able to generalize the classical construction (0.1) to
more general semisimple groups than SL(2), as is predicted to be possible by the
“Langlands philosophy.” In the modern theory of automorphic forms, one starts
from a semisimple algebraic group G over Q, and from an irreducible automorphic
representation 7 of the adelic group G(A). It is well known that m decomposes
as an infinite tensor product of p-adic representations m, (one for each prime p)
and one archimedean component 7., which is a representation of G(R). If the
representation 7, is algebraic in a sense that we do not want to make too precise
here (roughly speaking this means that it is associated to parameters that are
suitably integral), then an f-adic Galois representation should correspond to .
This should be the case in particular when 7, is a discrete series representation or
a limit of discrete series. For GG associated to a Hermitian symmetric domain and
Teo in the discrete series, a construction analogous to that explained in (0.1) above,
but with Shimura varieties replacing modular curves, should in principle work,
again according to the Langlands philosophy. Up to now this part of the Langlands
program has been carried out in only a limited number of examples. It has been
done, for instance, in [Cl] for some inner forms of unitary groups over totally real
fields. In these cases the construction produces representations of Galois groups, or
more precisely “motives,” that are reqular, meaning that the weights from the point
of view of algebraic geometry are all distinct. When the archimedean component is
a limit of discrete series, there should still exist associated Galois representations,
this time nonregular, i.e., having some coincidences between weights. There have
been very few results in this direction; the construction should be indirect, using
arithmetic congruences between automorphic representations. Such limits split
into two categories: the nondegenerate ones, whose parameter A is orthogonal to
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no compact root (being singular, it is orthogonal to some root and the requirement
is that this root cannot be a compact one); and the degenerate ones, for which
A is orthogonal to some compact root (necessarily not a C-simple one). For the
nondegenerate ones a construction analogous to that of Deligne—Serre should in
principle still work and give the desired results, but it has actually been done in only
a very limited number of cases. By contrast, degenerate limits never occur in the
cohomology (neither étale nor coherent) of any Shimura variety, and consequently
what happens with them is completely mysterious at present. What happens is
closely related to the problem of understanding the arithmetic properties of certain
Maass forms.

(0.4) We call a limit of discrete series totally degenerate if it is associated to the
parameter A = 0 and to a Weyl chamber C' for which no C-simple root is compact.
Such limits of discrete series have trivial infinitesimal character. Totally degenerate
implies degenerate except in a group with no compact root, i.e., a group isogenous
to a product of copies of SL(2,R). Automorphic representations with totally degen-
erate limits of discrete series as archimedean components correspond conjecturally
to Artin Galois representations; more accurately they should be associated with a
morphism of the Galois group into the complex L-group “G. Thus such represen-
tations have a strong and simple arithmetic meaning. In addition, they correspond
to each other by all known or conjectural cases of functoriality. So they play a very
important role in the arithmetic theory of automorphic forms. However, very little
is known about them except in the SL(2) case.

(0.5) A possible approach to get a grip on automorphic representations with
this kind of archimedean behavior has been proposed in [Cal: it was shown in this
article that automorphic representations of SU(2,1) with limits of discrete series
at archimedean places occur in the coherent cohomology of certain sheaves over
some complex-analytic varieties generalizing Shimura varieties; these varieties are
Griffiths—Schmid varieties, first studied by Griffiths as parameter spaces for vari-
ations of Hodge structures. Moreover [Cal proved that there is a nontrivial cup-
product interaction between those forms and more classical ones that have discrete
series (holomorphic or antiholomorphic) as infinite components. Similar results are
expected for more general groups; at present a study of such properties has been
undertaken only for quasisplit special unitary groups SU(n,n) and SU(n,n — 1),
but this kind of analysis should work more generally. In any case, to prove re-
sults similar to those of [Ca] requires very precise information about the totally
degenerate limit of discrete series under consideration. More precisely, the compu-
tation of the cohomology itself can be done simply from the data (0,C) defining
the representation, by making use of a result of Soergel [So]. But to go further,
especially to deal with cup products, one needs more, and for this purpose the full
classification machinery of [KnZ] is important. For example, in [Ca] one uses the
fact that the unique totally degenerate limit of discrete series for SU(2,1) is in fact
a principal series representation, one of the representations studied explicitly by
Wallach [Wa2] and more generally by K. Johnson and Wallach [JoW]. This explicit
information was used in [Cal] to obtain results relating to (g, K') cohomology and
automorphic forms, and to get a very precise and suitable tool to compute some
related objects (cup products, for instance). The aim of the present paper is to get
a correspondingly explicit description of totally degenerate limits of discrete series
for more general groups. Let us explain what that means exactly.
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(0.6) Limits of discrete series are “tempered” representations. Langlands [La]
proved that any irreducible tempered representation is a constituent of some “basic
representation induced from discrete series,” i.e., a constituent of a representation
unitarily induced from a parabolic subgroup M AN with a discrete series on M, a
unitary character on A, and the trivial representation on V.

The paper [KnZ] classified irreducible tempered representations by making use of
the more general notion of a basic representation, i.e., any representation unitarily
induced from a parabolic subgroup Q = M AN with a discrete series or limit of
discrete series & on M, a unitary character e” on A, and the trivial representation
on N. Let us associate the set of data (Q,&,v) to this representation. The paper
[KnZ] proved as its Corollary 8.8 that every irreducible tempered representation is
basic.

It turns out that nonzero basic representations can often be exhibited as basic
by means of two quite different sets of data. A typical example of this phenomenon
is precisely the totally degenerate limit of discrete series of G = SU(2,1), which
is realized at the same time as a spherical principal series. The full-fledged clas-
sification of irreducible tempered representations in [KnZ| makes use of a notion
of nondegeneracy of the data for a basic representation. The data set (Q,&,v) is
degenerate if the representation is zero or if another realization is possible with a
smaller parabolic subgroup; otherwise the data set is nondegenerate. Results in
§12 of [KnZ] give criteria in terms of roots to decide whether (Q,&,v) is degen-
erate. In particular a limit of discrete series O(X,C) for G is degenerate in the
sense of (0.3) if and only if the data set (G, ©(\, C),0) is degenerate in the present
sense. It is immediate that every nonzero basic representation can be rewritten
with nondegenerate data, and the classification theorem (Theorem 14.2 of [KnZ])
gives a criterion for a basic representation written with nondegenerate data to be
irreducible, namely that a certain explicit finite abelian group R is trivial. The
theorem goes on to say that (a) the irreducible basic representations written with
nondegenerate data exhaust the irreducible tempered representations and (b) two
irreducible basic representations written with nondegenerate data are equivalent if
and only if their sets of data are conjugate in the expected way.

(0.7) A nonzero limit of discrete series can therefore be written as an irreducible
basic representation with nondegenerate data, and the data for this purpose are
unique up to conjugacy. This set of data (or its conjugacy class) is what we take
as the classification parameter of the limit of discrete series representation. For
example, in the case of the totally degenerate limit of discrete series for G =
SU(2,1), the nondegenerate data are those that appear when this representation
is viewed as a spherical principal series. We can now ask a question that is natural
from the point of view of the classification recalled above: given a degenerate limit
of discrete series, find its classification parameter, that is to say, express it in terms
of nondegenerate data. Not only is this a natural question, but also, as explained
above, those parameters are often needed, in particular for some problems linked
to automorphic forms.

(0.8) The purpose of the present article is to give a complete answer to this
question in the case of totally degenerate limits of discrete series, i.e., those with
trivial infinitesimal character. Even though the problem can be solved more easily
and directly for some particular examples, e.g., for special unitary groups SU (n,n)
and SU(n,n — 1), we have found it necessary to have the solution in general.
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Indeed, as we have already suggested above, the importance of such representations
lies in the fact that their automorphic counterparts are conjecturally linked to
representations of the Galois group into the L-group. The fact that the family of
all of them is stable under all possible functoriality is another reason to deal with
all of them at once all in a general theorem.

The result we obtain is not available nor extractible from the existing literature,
even if the techniques and machinery we are going to use in this article have been
known to representation theorists for a long time; in particular, we make intensive
use of an algorithm in [KnZ] associated to “generalized Schmid identities” that lies
behind the classification of irreducible tempered representations. In the degenerate
case this gives a tool for obtaining a realization of a basic representation as an
induced representation with a new set of data corresponding to a smaller parabolic
subgroup.

In an effort to make the paper more readable to nonexperts —especially people
working in the theory of automorphic forms—we have given complete proofs of
most of our results. We have also included some material that is certainly known
to experts but is difficult or impossible to find in original sources or in texts.

The main result of the present article is Theorem 6.4, which expresses any totally
degenerate limit of discrete series ©(0,C) as a representation induced from non-
degenerate data, precisely described in a combinatorial way in terms of the Weyl
chamber C. Tables in §5 and §7 and further discussion in §7 explain our main result
in detail in particular cases.

(0.9) The proof of our theorem is a roundabout one, and what we do is approach
it by stages, establishing coarser results first. Some important steps are taken in §5,
where we prove that the sum of all the totally degenerate discrete series is equiva-
lent to an induced representation indgp (c ® 1 ® 1), specifically a unitary principal
series attached to some minimal parabolic Q, = M, A, Nywith the trivial character
on A, and a certain explicit 1-dimensional representation o of M, that is trivial
on the identity component. This induced representation naturally decomposes as
a certain sum of induced representations given with nondegenerate data; so we get
in this way the set of such data corresponding to the set of all totally degenerate
limits of discrete series. What remains to be done in §6 is to match factors on both
sides. This is possible because we know quite a bit of detail about ¢, which has
been introduced in §4: we have constructed it very precisely and then gathered a
great deal of information about it. This patient construction is rewarded at the end
because the theory of [KnZ| finally points to a canonical family of basic represen-
tations with nondegenerate data that exhibit the reducibility of indgp (c®1®1).
With a careful argument that copes with all the nonuniqueness that arises, we
can adjust the algorithm mentioned above so that it points to these same data,
and we can then sort out the results of the algorithmic solution and obtain the
representation-by-representation correspondence.

(0.10) The paper is organized as follows: The first two sections summarize some
known material on Cayley transforms and their use in setting up the algorithm
mentioned above. In §3 we work with two kinds of strongly orthogonal sequences
of roots through which the necessary choices will enter our work. In §4 we use
tools explicit or implicit in Satake [Sa] and Wallach [Wal] to construct the special
1-dimensional representation o of M, mentioned above that will determine the
unitary principal series representation of interest. In Proposition 4.3 we derive an
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important technical property of o that relates it to the problem at hand. Theorems
5.1 and 5.2 show that this principal series representation contains each totally
degenerate limit of discrete series representation with multiplicity one, and nothing
else. The theory of the R group is then applied routinely to yield the aggregate of
classification parameters in Theorem 5.5. The main result of the paper is Theorem
6.4, which gives the full answer to the problem and is proved by suitably rerouting
what the algorithm says. Some examples of particular interest are given in §7.
Tables in §5 and §7 show what Theorems 5.5 and 6.4 mean for all possible examples,
up to conjugacy.

1. CAYLEY TRANSFORMS

In this section we recall the behavior of Cayley transforms within the complex-
ification of a real semisimple Lie algebra. For more detail, see §VI.7 of [Kn3|. Let
g = €@ p be a Cartan decomposition of a real semisimple Lie algebra, let § be the
corresponding Cartan involution, let g€ be the complexification of g, and let an
overline indicate the conjugation of g€ with respect to g. Fix an invariant symmet-
ric bilinear form S on g€, and let (-, -) be the complex bilinear form induced on
the dual of any Cartan subalgebra of g©. We assume that S has been chosen so
that the restriction of (-, -) to the real span of the roots is a real inner product.
We put |a|? = (o, a).

Typical roots are denoted by «, (3, and £&. Two members o and  of the root
system of g with respect to a Cartan subalgebra are said to be orthogonal, written
a L B, if (o, 8) = 0. They are strongly orthogonal, written o L1 (3, if they are
nonproportional and neither of a & 8 is a root; equivalently they are strongly
orthogonal if they are orthogonal and it is false that both of o+ 3 are roots. If the
root, system is irreducible, two orthogonal roots can fail to be strongly orthogonal
only if the root system is of type B,,, C,, or Fy and the two roots are both short.

Fix a 0 stable Cartan subalgebra h of g. If b and a are the +1 and —1 eigenspaces
of h under 6, then h = b@a. Let A = A(g®, h®) be the set of roots. Within the Weyl
group of A, the reflection in a root « is denoted by s,. Roots are imaginary-valued
on b and real-valued on a, and a root « is accordingly called

imaginary if o is carried on b, i.e.; is 0 on a,
real if v is carried on a, i.e., is 0 on b,
complex if o is nonzero on a and nonzero on b.

If g, denotes the root space in g€ for the root «, then

(1.1) mzb@(gm o ga>

(€L,
« imaginary

is a 0 stable reductive subalgebra contained in the centralizer of a in g. It has the
properties that m N a = 0 and that the direct sum m & a is the centralizer Zy(a) of
a in g, and it is given by the formula m = {X € Zy(a) | S(X,a) = 0}. The abelian
subalgebra b is a compact Cartan subalgebra of m, and thus rank m = rank(mnN¢).

If q is any parabolic subalgebra of g, then [ = g N #q is the unique 6 stable Levi
factor of q. Define a to be the intersection of p with the center of q N 6q, and let
m={X € Zi(a) | S(X,a) = 0}. The parabolic subalgebra q is said to be cuspidal
if rank m = rank(mN ), hence if m has a Cartan subalgebra b contained in ¢. Then
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h = b P ais a b stable Cartan subalgebra, and the m just defined coincides with
the m constructed in (1.1). We say that q and m @ a are associated to h = b @ a.

For the m associated to the 6-stable Cartan subalgebra b, (1.1) allows us to iden-
tify the root system A(m®, bC) with the set of imaginary roots in A by restriction
of members of A to b®. The root space for such an imaginary root a must lie
completely within (mN€)€ or completely within (mNp)®, and we call a compact or
noncompact accordingly. If we want to emphasize the role of m in the construction,
we may use the terms “m-compact” or “m-noncompact.”

The Cayley transforms defined relative to a 6 stable Cartan subalgebra h = bda
and its associated m@a are of two kinds, one cg taken with respect to an imaginary
noncompact root and the other d, taken with respect to a real root. Each is a
certain kind of inner automorphism of g®.

The Cayley transform cg with respect to an imaginary m-noncompact root 3
takes us from the data (m,a,b) to data (m.,a,b,) such that dima, = dima + 1
and dim b, = dimb — 1. If E3 is a nonzero root vector for 3, then Ej is a nonzero
root vector for —3 and S(Eg, Eg) is > 0. Normalizing, we may assume that

(1.2) S(Eg, Ep) = 2/|6]>.

Then [Eg, Eg] = 2|8|2Hpg, where Hp is the member of h such that (H, Hg) = 8(H)
for all H € . If we set Hg = 2|8|72Hp, theniHé,Eﬁ,E_ﬁis a standard C basis
for a copy of s[(2,C) in g€, and {iH}, Eg + Eg, i(Eg — Eg)} is an R basis for a
copy of sl(2,R) within g. The automorphism cg of g is defined by

(1.3) cg = exp(ad §(Ej — Ep)).
It of course carries hC to a new Cartan subalgebra of g€. Calculation gives
cs(Hp) = Eg + Ep,
cs(Ep — Eg) = Eg — Ej,
cs(Ep + Ep) = —Hp,

and it follows that g N c(h*) = ker(Bly) ® R(Es + Eg). Thus the new Cartan
subalgebra cg(h®) is the complexification of

b =b. ®a. = (ker(Slo)) ® (a & R(Ep + Ep))-

If p is in the dual (h*)’, then we can define cs(y) in (hS)' by cp(p)(H) =
u(cgl(H*)). Under this definition, cg carries roots to roots.

Let us consider the meaning of having two Cayley transforms commute. Suppose
that 8 and 3’ are m-noncompact roots. Then (1.3) defines cg and cg/, and hence the
composition cgrcg is defined as an automorphism of gC. However, the interpretation
of the composition as simply a product of expressions (1.3) does not take into
account the effects on Cartan subalgebras: the factor cg carries h© to h<, and B’
is not given as a root relative to hC. To interpret the composition as a succession
of Cayley transforms, we should be working with c.,(s)cs instead of cgcg. A
condition is needed to be able to define c. (s, namely that cs(3’) is imaginary on
b, and is m.-noncompact.

The root cg(8’) will be imaginary if and only if 5 and 5’ are orthogonal. However,
orthogonality is not enough to make cg(#’) be m,-noncompact; for this purpose
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we need to assume that 3 and (3 are strongly orthogonal. In fact, the strong
orthogonality makes

(1.4) [Eg, Egr| = [Eg, E_pg] = [E_p,Eg| = [E_p, E_p] = 0.

Combining (1.3) and (1.4) shows that cg fixes Eg and Eg. Hence cg(f') is
m,-noncompact, and also

(15) CC[g(ﬁ’)Cﬁ = Cp/Cg3.
A second application of (1.4) shows that cgcs = cgegr, so that cc, pycs =
Ce, (8)CH/ and the two Cayley transforms commute in every sense.

If 8 and 3’ are merely orthogonal but not necessarily strongly orthogonal, the
situation is more complicated. In particular, cg(/5’) is m,-compact; see Lemma 5.4
of [KnW]| for details about what happens.

Partly because of the validity of (1.5) when the strongly orthogonal roots 8 and
3’ are imaginary and m-noncompact, we shall use the same symbol for a root &
and its Cayley transform cg(§) except possibly in the case that £ is G itself. This
convention will simplify the notation considerably when we work with a succession
of several Cayley transforms.

The Cayley transform d, with respect to a real root « takes us from the data
(m,a,b) to data (m*,a*, b*) such that dima* = dima — 1 and dim b* = dim b + 1.
If E,, is a nonzero root vector for «, then E, is a nonzero complex multiple of E,,
and we can normalize E, so that it is in g. Then 6F, is in g, is a root vector for
—a, and has the property that S(E,,0FE,) is < 0. Normalizing, we may assume
that S(Eq, 0Es) = —2/]al?. Then

(1.6) [Ea, —0E,] = 2|a| > H,.
If we set H!, = 2|a|2H,,, then {H/, E,,—0FE,} is a standard C basis for a copy of

sl(2,C) in g%, and in fact these basis elements all lie in g and therefore form an R
basis for a copy of s[(2, R) within g. The automorphism d,, of g* is defined by

(1.7) d, =exp(ad i §(0E, — E,)).
It of course carries hC to a new Cartan subalgebra of g&. Calculation gives
d.(H.) =i(E, +0E,),

do(E, —0E,) = E, — 0E,,

d.(E, +0E,) =iH.,
and it follows that g N d,(h®) = ker(aly) ® R(E, + 0E,). Thus the new Cartan
subalgebra d, (h®) is the complexification of

h* =b* ®a* = (b ®iR(E, + 0E,)) ® ker(aq).

In parallel with what happens for cg, formulas analogous to (1.4) and (1.5) hold
for d, and d, when the real roots a and o' are strongly orthogonal, and thus
the Cayley transforms d, and d,, commute under every interpretation of their
definitions. For what happens when « and o’ are merely orthogonal, see Lemma
5.4 of [KnW]. In analogy with the convention for the Cayley transform cg, we shall
use the same symbol for a root ¢ and its Cayley transform d,(§) except possibly
in the case that £ is « itself.

With a = ¢g(f) and with parameters defined suitably, cg and d, are inverses
of one another. In fact, we have only to define E, as the member of g given by
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Eo = §(—iH}, +i(Es — Eg)), and then we see readily from formulas (1.3), (1.6),
and (1.7) that d,cgs is the identity on g©.

2. GENERALIZED SCHMID IDENTITIES

In this section we assemble certain facts from [KnZ] concerning the ingredients
used in the classification of irreducible tempered representations of linear semi-
simple groups. Let G be a connected linear semisimple Lie group with Lie algebra
g, and let €, p, 0, g©, S, (-,-), and | - |?> be as in §1. Since G is linear, it has
a complexification G®. The analytic subgroup of G with Lie algebra £ is denoted
by K. If X and Y are two subgroups of G, we define W(X :Y) = Ny (X)/Zy (X),
the quotient of normalizer by centralizer; we use similar notation if one or both of
X and Y are subalgebras of gC.

We begin with some remarks about limits of discrete series for G. According to
[HC3|, G has discrete series representations if and only if G and K have equal rank.
We write this condition as rank G = rank K throughout the paper.

Limits of discrete series for G itself were defined in full generality in [KnZ].
Discrete series have nonsingular infinitesimal character, and [KnZ] introduced limits
of discrete series as certain representations with singular infinitesimal character.
But in this paper it will be more convenient to allow discrete series to be special
cases of limits of discrete series. The limits of discrete series were constructed from
the discrete series, and thus they exist (in our present enlarged definition in which
a singularity is no longer required) if and only if rank G = rank K.

Under the assumption that rank G = rank K, the construction of any limit of
discrete series representation in [KnZ|] begins with an application of the theory in
[Zu] to a discrete series representation to move the infinitesimal character by an
integral form while preserving dominance. Initially the construction produces not
a representation of GG, but a representation of the Lie algebra g on a complex vector
space of K-finite vectors, together with a compatible representation of K. This kind
of pair of representations of g and K is known as a (g, K) module. A roundabout
argument in [KnZ], summarized as Theorem 1.1d, shows that this (g, K) module is
irreducible (or zero) and is infinitesimally unitary, i.e., carries an inner product with
respect to which g acts in skew-Hermitian fashion and K acts in unitary fashion.
Harish-Chandra’s subquotient theorem in the form given in [Le] shows that any
irreducible (g, K') module is (nonuniquely) the underlying space of K-finite vectors
for an irreducible representation of G in a Hilbert space. Consequently we can
apply Theorem 9 of [HCI] to see that the completion of the inner-product space for
any irreducible infinitesimally unitary (g, K) module becomes in a unique way the
underlying space of a compatible irreducible unitary representation of G. Therefore
the limit of discrete series can be regarded canonically as an irreducible unitary
representation of G. This is the point of view of the present paper, and (g, K)
modules need play no further role.

A limit of discrete series is defined to be totally degenerate if it is nonzero and
its infinitesimal character is 0. The existence of totally degenerate limits of discrete
series for G implies that G is acceptable in the sense of Harish-Chandra [HC4], i.e.,
that the linear functional p in (0.2) (half the sum of the positive roots relative to
a compact Cartan subalgebra) is integral. In fact, the effect of applying [Zu] as
in the previous paragraph is to translate the infinitesimal character by an integral
parameter. Since a discrete series with infinitesimal character A can exist only when
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A — p is integral, a limit of discrete series with infinitesimal character 0 can exist
only when 0 — p is integral, hence only when p is integral. Thus two necessary
conditions for the existence of a totally degenerate limit of discrete series are that
rank G = rank K and that G is acceptable in the sense of Harish-Chandra. An
example of a group with rank G = rank K that is not acceptable is SL(2,R)/{+1}.
Shortly we shall see that a third necessary condition for the existence of a totally
degenerate limit of discrete series is that G is quasisplit. We shall see in Theorem
5.1 that conversely totally degenerate limits of discrete series always exist if G has
rank G = rank K, is quasisplit, and is acceptable in the sense of Harish-Chandra.

Returning to the general setting in which G does not necessarily have rank G =
rank K, we need some information about the disconnectedness of Cartan subgroups
and parabolic subgroups. A reference for this material is [Kn3], §§VIL.7-8. Fix a ¢
stable Cartan subalgebra h = b @ a of g, and let B be the analytic subgroup of K
corresponding to b. For any real root a, define

(2.1) Yo = exp(2mila|"2H,);

this element centralizes fj and has order at most 2. We let F/(B) be the subgroup
of B generated by all the elements ~, for all real roots @. Then F(B)B is the
centralizer of h in K. Let ¢ = m @ a ® n be a cuspidal parabolic subalgebra
associated to h. We write Q = MAN for the Langlands decomposition of the
corresponding parabolic subgroup, namely for the normalizer of q in G. Then the
center Zys of M is given by

(2.2) Zy = F(B)Zwm,,

where My is the identity component of M. The group Mj is reductive and has
rank My = rank (My N K) and therefore has discrete series. We put M# = M Zy,
so that

(2.3) M# = MyF(B).

Limits of discrete series representations for M were defined and parametrized
in [KnZ], and we follow [KnZ] in working with their global characters. Each such
representation is built in stages. A limit of discrete series representation on the
identity component Mj is determined by its Harish-Chandra parameter A, which
gives the infinitesimal character, and by a Weyl chamber C' (or positive system for
A(m® %)) that makes A dominant; the representation exists if and only if e*~* is
well defined as a multiplicative character of B, p being half the sum of the positive
imaginary roots in any ordering. If A is nonsingular, then C is unique and the
representation is in the discrete series.

We write ©Mo(\, C) for the global character. To extend the corresponding rep-
resentation to M#, we adjoin a multiplicative character x of Z,; that is compatible
with @™o (), C). Because of (2.2), it is enough that x be defined on F(B); the com-
patibility condition is that x agree with e*~# on F(B). The global character of the
resulting limit of discrete series representation of M# is denoted by 6 * (N Cyx).
Finally the limit of discrete series representations of M are obtained by induc-
tion to M of these representations of M#, and the global characters are written
OM(X,C,x). An important property of these characters is as follows:

(2.4) ©M(\ C,x) =0 if and only if (\,a) =0

for some C-simple compact root o € A(m®, b%).
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The sufficiency is known as the Hecht-Schmid identity and first appeared in
[HeS]. The necessity is Theorem 1.1b of [KnZ]. A necessary and sufficient con-
dition for equality of the global characters @ (X, C,x) and ©M (N, C’, x') of two
nonzero limits of discrete series is known and appears as Theorem 1.1c of [KnZl:
the condition is that ¥ = x’ and there exists a member of the normalizer of B in
M carrying (A, C) to (N, C"). Every nonzero limit of discrete series representation
is irreducible, tempered, and unitary.

In the special case that the Cartan subalgebra is maximally noncompact, so that
a is maximal abelian in p, we use subscripts p on various subalgebras and subgroups.
The Cartan subalgebra is h, = b, @ a,, and the cuspidal parabolic subalgebra is
denoted by Qp, = M, A,N,. A special feature of this case is that M;# = M, so
that

(2.5) My = (My)oF(By).

For the case in which rank G = rank K, we mentioned just before (2.1) that G
can have totally degenerate limits of discrete series only if G is quasisplit. To see
this necessity, let ™ be a totally degenerate limit of discrete series. Using Harish-
Chandra’s subquotient theorem in [HC2|, we embed 7 as a subquotient of some
nonunitary principal series representation, i.e., one induced from an irreducible
finite-dimensional representation of a minimal parabolic subgroup @, = M, A, N, of
G. The latter representation must then have matching infinitesimal character 0, and
hence the inducing representation of M, must have infinitesimal character 0. Since
the infinitesimal character of a finite-dimensional representation is nonsingular, M,
must have no roots. It follows that M, is abelian, hence that G is quasisplit.

Returning to the general case with h = b @ a and Q = M AN, suppose that
OM(X,C,x) is a limit of discrete series character of M. If v is a real-valued linear
functional on a, we let

OMAN, C,x,v) =0M(\,C,x)® ",

which is a global character for M A. If we tensor with the trivial character of N
and induce to G, we obtain global characters

indg oMAN, O, x,v),

which are called basic characters. In the special case that ©M (X, C, x) is a discrete
series character of M, we call indg OMA(N,C, x,v) a basic character induced from
discrete series. It is known that basic characters are unaffected by changing the
subgroup N of the parabolic subgroup Q. A basic representation is a representation
whose global character is a basic character.

A basic representation does not necessarily uniquely determine the data of a
basic character, even up to conjugacy. Sometimes a basic character can be written
in terms of data from two different Cartan subalgebras obtained from one another
by one or more Cayley transforms. This kind of change is typically made in stages,
and the change at a single stage is implemented by means of a “generalized Schmid
identity.” Generalized Schmid identities are of two possible kinds, the distinction
having to do with the relationship between the centers of the two groups M. The
notation is as follows. We start from a 6 stable Cartan subalgebra h* = b* @ a*
and an associated parabolic subgroup Q* = M*A*N*. Let a be a noncompact
imaginary root, i.e., a noncompact root of (m*<, b*®), and suppose that the Cayley
transform cg leads from the data (m*, a*, b*) to data (m,a,b) and that a = cz(a).
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According to Lemma 2.2 of [KnZ], the inclusion mapping of Zys into Zy (M NM*#)
yields an isomorphism

(2.6) Zat ) A0, e Y Zagy Zage = Zag (M O MF#) /(M 0 M*#),

the groups on either side of (2.6) have order at most 2, and the groups have order
exactly 2 if and only if the reflection sg is in W(B*: M™*), i.e., if and only if the
root reflection sy has a representative in M*.

To state the identities, let us introduce

2.7)

Q
I

a Weyl chamber in ib*,

o™ = unique Weyl chamber of ib containing the orthogonal projection

Projib(c) = Projib(sac)a

pa = half sum of roots of (g%, (a @ b)*) whose restriction to a is ca with ¢ > 0,

Q)

¢ = multiplicative character of {1,v4} given by ((v4) = (—1)2<”‘*’a>/‘0‘|2.

According to Theorem 4.3 of [KnZ], if & is C-simple as a noncompact root of
(m*C,6*C) and if data X, x, and v for @M 47 (X, C, x, ) are such that
(i) A — pas- is b*-integral, and e*~PM* agrees with y on Zp- N B¥,
(i) (\a) =0,
(iii) A is C-dominant (and hence also s5C-dominant),
then either (a) or (b) holds as follows:
(a) If sz is not in W(B*: M*), then Znr = {1,va} Zn, Zra+ and

OM A (N, C, x,v) + OM A (N, 550, x,v) = ind P14 ©MA(N5, C™°, (@ x, v @),

where C° and ( are defined as in (2.7).

(b) If s5 is in W(B*: M*), then | Zas /{1, va} Zaty Zas+| = 2. Let C°° and ¢ be
defined as in (2.7), and let (¢ ® x)* and (¢ @ x)~ denote the two extensions of
¢@eP=Pmlle @y to Zys. Then

OM AN, C,x,v) = ind M A OMAN, O, (Co )T, v B 0)
=indM AL L OMAN,, C (C® x) T, v ®0).

The displayed formulas in (a) and (b) above will be called generalized Schmid
identities of types (a) and (b), respectively. In both cases we can of course extend
the global characters to M*A* N* by adjoining the trivial character of N*, and then
we can induce to G, obtaining a character identity for basic characters for G. In
the case of (b), or in the case of (a) if the second term on the left side is 0, these
identities allow us to take a basic character given in terms of data for (m*,a*, b*)
and rewrite it in terms of data for (m,a,b). In the case of (a), we can use the
analog of (2.4) for (m*, a*,b*) to determine whether the second term on the left
side is 0. The order of W(B*: M*) determines whether (a) or (b) is the applicable
generalized Schmid identity.

In the terminology of §12 of [KnZ|, we say that a basic character written as
indg* OM A" (X,C,x,v) is given by nondegenerate data if, for each root & of
(m*€,p*C) with (\,@) = 0, the reflection sz is not in W(B*:M*). The char-
acter is automatically nonzero in this case. Proposition 12.1 of [KnZ] says that the
data set of a nonzero basic character indS. @M*A*()\, C, x, V) is nondegenerate if
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and only if ©M 47 (X, C, x, v) is not the full left side of a generalized Schmid iden-
tity of type (a) or type (b). It follows that every nonzero basic character can be
rewritten in terms of nondegenerate data.

A nonzero basic character is not necessarily irreducible. When written in terms
of nondegenerate data, it is irreducible if and only if a certain computable finite
abelian group R is trivial. We discuss this group R further when we need it in §5.

By a theorem of Langlands [La] (see also Harish-Chandra [HC4] and Trombi
[Tt]), every irreducible tempered representation of G is a subrepresentation of a
basic representation induced from discrete series and hence is unitary.

The classification theorems say that every irreducible tempered representation
is basic and therefore can be written with nondegenerate data. Two irreducible
tempered characters written in terms of nondegenerate data are equal if and only
if their sets of data are conjugate in a suitable sense. The conjugacy class of this
set of data constitutes the set of classification parameters of the representation.

The goal of this paper is to identify the classification parameters of each totally
degenerate limit of discrete series. In principle this problem can be solved by taking
the given representation and iterating generalized Schmid identities until we arrive
at nondegenerate data, but it is not clear a priori how to abstract the results
from this algorithm so as to obtain a useful theorem. It turns out that a different
approach yields a tidier formulation of the result. What we shall do in effect is
to overshoot the answer and pass all the way to a maximally noncompact Cartan
subgroup; then we shall retrace some of our steps. For this purpose we need to be
able to invert generalized Schmid identities.

Thus let us start from a 6 stable Cartan subalgebra h = b @ a and an associated
parabolic subgroup Q = M AN. Let « be a real root, and suppose that the Cayley
transform d,, leads from the data (m,a,b) to data (m*,a*, b*) and that & = d ().
According to Theorem 6.1 of [KnZ], a given character written as

. M*A* MA
indpprea- 07 (Anr, COnry Xoas Var)

is the right side of a generalized Schmid identity of type (a) or (b) obtained from
a as above if and only if (v, o) = 0 and
Xt (1a) = (~1)2Pd/le,

where p, is given by (2.7). When these conditions are satisfied, the definitions of

A, X, and v are
N A on b,
0 on Ha,

X:XM|ZM*’ and V =VM|a*,

and the Weyl chamber C' in ib* can be taken to be any chamber such that
(i) Am @0 is C-dominant,
(ii) (C'nib) N Cys has nonempty interior, and
(iii) @ is C-positive.
It will be important for us that the definitions of A, x, and v do not depend on
Cpr- Thus if we have several basic characters differing only in what chambers are

involved, then we can use each or none of them as the right side of a generalized
Schmid identity, and all the left sides will involve the common values of A, x, and v.
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3. STRONGLY ORTHOCGONAL SYSTEMS OF ROOTS

In this section we construct the sequences of noncompact roots that will in-
corporate the required element of choice into our determination of classification
parameters, and we study the properties of these sequences. We continue with the
notation of §2. We assume further that g has a compact Cartan subalgebra, and we
take t to be such a subalgebra that is contained in €. Fix a maximally noncompact
0 stable Cartan subalgebra h,. Our objective in this section is to examine maximal
sets of strongly orthogonal roots.

We begin with strongly orthogonal sequences of real roots relative to by, where
the situation is easy and is handled by the following proposition. We shall be doing
successive Cayley transforms d,, with respect to the members of such a sequence,
using an inverted generalized Schmid identity for each member of the sequence.
Part of the effect of the assumed strong orthogonality is to ensure that these Cayley
transforms commute.

Proposition 3.1. Under the assumptions that rank g = rank & and that b, =
by, @ ay is mazimally noncompact, there exists a strongly orthogonal sequence of real
roots on b, whose restrictions to a, span the dual a;.

Proof. Since rank g = rank ¢, Problem 10a of Chapter VI of [Kn3] (along with its
answer in the Hints for Solutions of Problems) shows that there exists k € K with
Ad(k) = 6 on g and in particular on h,. That is, Ad(k) is +1 on b, and —1 on a,.
This element k yields an element w of the Weyl group W(f)(g :g%) that acts this way.
Applying Proposition 2.72 (Chevalley’s Lemma) of [Kn3] recursively, we obtain an

orthogonal sequence of roots ay, ..., a; that vanish on b, and have w = 54, - - - 54,.
Then aj, ..., q; are orthogonal real roots and span a;. We shall adjust these roots

to make them strongly orthogonal.

Without loss of generality, suppose that g is simple. The roots of g have at most
two lengths, and there can be no problem unless two of them, say «; and «;, are
short and are such that a; & «; are roots. In this case, we replace a; and «; in the
sequence by «; 4+ a; and o; — ;. The orthogonality of the sequence is maintained,
and the two new roots, being long, cannot interfere with strong orthogonality. By
successive elimination in this way of pairs that are orthogonal but not strongly
orthogonal, we keep reducing the number of such pairs, and ultimately we arrive
at the desired sequence.

In the context of Proposition 3.1, we shall need to expand roots on b, in terms
of the strongly orthogonal sequence of real roots and a remainder term carried on
b,. We need this expansion only when g is quasisplit. Confining our attention to g
quasisplit makes the expansion easier to state for complex roots, and thus we limit
the statement of the following proposition to g quasisplit.

Proposition 3.2. Let g be quasisplit and simple with rank g = rank £, and suppose
that g is not of type Ga. Let h, = b, ® a, be a 0 stable mazimally noncompact
Cartan subalgebra of g, and let aq,...,q; be a strongly orthogonal set of real roots
in A(g®, f)f) that spans ay,. Lexicographic use of ay,...,a; determines uniquely a
set AT = At (g, f)f) of positive roots. Suppose that B is a positive root other than
some «;. Then the expansion of B in terms of ay,...,qq is of one of six kinds: If
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0 is real, then [ is given by one of the four kinds

18] = los| = |ar| = [os| = |a,
(31 B=ila;tia +iastioy with i < min{r, s, t},

and the indices r, s,t distinct,

= = s > ,
(32) B=3laita,+Lla, with  J 11 =lail = las| > oy
i < min{r, s}, and r # s,
= = > . R
(3:3) §=ai % jo, * fa, ity 4\ =lee] =l > ]
i < min{r, s}, and r # s,
< r| = ils
(34) f=joi*ja, with {ﬁ' o] = e
1< T

If B is complex, then all roots have the same length and (3 is of one of the two kinds

= |y,
(3.5) B=zta;+w with 1] = fei )
w nonzero, carried on by,
= |ai| = lag|, 1 <7
(3.6) B=1to;+ia, +w with 18 = le] = | T|’ ’
w nonzero, carried on by.

Remark. Strongly orthogonal sets ajq,...,q; of the type in the statement of the
proposition exist by virtue of Proposition 3.1.

Proof. As to the uniqueness of AT, adjoin some vectors to the end of the sequence
ai, ..., qp so that the result is an orthogonal basis of a; @ibj,. In the corresponding
ordering, the sign of every root is determined by «;, . .., a; since g quasisplit implies
that no root is carried on b,. Thus the system A™ of positive roots is independent
of what elements were adjoined to form the orthogonal basis.

Let us classify the kinds of roots that are possible. One case is that g is real.
Since aq, ..., q; spans ap, we have § = Zj cjoj. Taking the inner product with a;
gives ¢; = (ﬁ,aj>/|ozj| , so that

(B, aj)
37) B=2
j=1

We double this equation, take the norm squared, and divide by |3|? to obtain
4(8, ;)2
(3.8) 1=3" M.
J

Let us discard those terms on the right side of (3.8) that are 0. Since § is not
some *o; and since we have discarded G» by hypothesis, each remaining term is
1 or 2. So there are at most 4 nonzero terms in (3.7). The first one has positive
coefficient since 3 is assumed positive; let us write o; for that «;. The indices for
the remaining terms will be 7, s, ¢ as necessary.
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First suppose that |3] = |o;|. Apart from permuting indices after ¢, (3.8) reads
4=14+1+1+1o0r4=1+2+1. These yield (3.1), (3.2), and

18] = leu| = |as| < o],

3.9 =loj+ Lo, + Lo, ith
(3.9) f=pmEqyor a0 W i < min{r, s}, and r # s.

If (3.9) holds, then 2(8, +a,.)/|B]? = 2, so that +a, — 23 is a root. Since
ta, — 20 = ta, — (v T ap £ a,) = —a; F g,

we obtain a contradiction to the assumption that «; and «; are strongly orthogonal.
Thus (3.9) cannot occur.
Next suppose that |3] > |«;|. Then (3.8) reads 4 =2+1+1 or 4 = 2+ 2. These
yield (3.3) and
> || = ||,
08 =qa; +a with {w' o] = o]
i<,
which cannot occur because «; and «, are strongly orthogonal.
Finally suppose that || < |o;]. Then (3.8) reads 4 =2+2o0r 4 =2+1+ 1.
These yield (3.4) and

18] = lar| = las| < lail,

3.10 =Llo,+La, +1a, with
(3.10) F=2 2 2 v i < min{r, s}, and r # s.

Except for various signs, the situation of (3.10) can be transformed into (3.9) by
interchanging ¢ and r, and we saw that (3.9) cannot occur because of the strong or-
thogonality of oy, ..., ;. Thus (3.10) cannot occur either, and the only possibilities
are (3.1) through (3.4) if 3 is real.

The other case is that 3 is complex. Since b, # 0, g is not split. Since g is
assumed quasisplit, g€ must admit a nontrivial outer automorphism. Therefore all
roots have the same length. Let us write § = ¢ 4+ w for the decomposition of 3
according to h, = a, @ by. Then B =e—w = —0f is aroot of the same length that
is not a multiple of 8. Consequently

2(8,8)
16/

equals —1, 0, or +1. We can rule out +1 since 3— 3 would have to be an imaginary
root and we know that there are no imaginary roots. In the two remaining cases,
we have |g|? = ¢y|3]? with ¢y = 1/4 if (3.11) is —1 and ¢, = 1/2 if (3.11) is 0.

We write ¢ = 2221 cja; and compute that ¢; = (B, a;)/|a;|>. Then ¢ =

2221 ((B,a;)/]aj|?)aj, and it follows that

(3.11)

a; 2|62

the second equality followmg since all roots have the same length. If ¢, = 1/4, then
the right side of (3.12) is 1, and [ has to be as in (3.5). If ¢, = 1/2, then the right
side of (3.12) is 2, and (8 has to be as in (3.6).

!
(3.12) Z HB00)” i) (Bray) # 0},

Now we examine strongly orthogonal sequences of roots relative to the compact
Cartan subalgebra t. Since each such root is imaginary, each such root is compact
or noncompact. Our interest will be in the case that all the roots are noncompact
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and some other conditions are satisfied. The reason for insisting on strong orthog-
onality is analogous to the reason for the strong orthogonality in the case above for
real roots: We shall be doing successive Cayley transforms cg with respect to the
members of such a sequence, using a (direct) generalized Schmid identity for each
member of the sequence. The strong orthogonality ensures, among other things,
that these Cayley transforms commute.

The noncompactness and the other conditions we impose make the discussion
more complicated than it was in Proposition 3.1 for real roots. A preliminary step
is to normalize root vectors suitably. For each pair +3 of noncompact roots, we
normalize Eg as in (1.2) and define E_g = Ez. Then

(3.13) Es+E_3 and i(Eg—FE_g) areing.

To get started, let A+ (g, %) be a positive system for A(g®, t€). We make the
following definition, which is slightly different from the one in §4 of [KunW]. A

sequence g, . .., of noncompact positive roots in A will be called a fundamental
sequence for A+ (gC ©) if
(i) a1,...,qq are strongly orthogonal,
(i) a; is a simple root in the subsystem of roots orthogonal to aq,...,a;_1,
for 1 <j <l

(ili) ap = Zé:l R(Eq, + E_q,) is maximal abelian in p.

This definition is internally consistent in the following senses: the subsystem of

roots orthogonal to a1, ..., ;1 is certainly a root system, (3.13) shows that each
E.; + E_4; is in g, and the noncompactness of «; implies that E,, and E_,; lie
o C
in p~.

To be absolutely complete, we should insert the following lemma, which was not
included in [KnW] but was implicitly applied in §4 of [KnW]| in the construction of
certain sequences of noncompact positive roots; these sequences will appear in the
proof of Proposition 3.4 below.

Lemma 3.3. If Q is a root system and « is in Q, then Q' ={8€ Q|8 LL a} is
empty or is a root subsystem of Q with the property that when 31 and B2 are in €
and 31 + B2 is in Q, then B1 + B is in .

Proof. Without loss of generality we may assume that €2 is irreducible, that there
are roots of two lengths, that the root « is short, that there exists a long root 7,
and that |y|? = 2|a|?. Let 8; and B2 be in €, and suppose 31 + 32 is in Q. We are
to prove that 81 + B2 LL a.

We are given 81 L L aand B2 L1 «, and hence 81 + 02 La. If 1+ 06 L1 «
fails, then 81 + B2 + « is in . Hence 31 + (5 is short, and at least one of #; and
(2 is short. Say (o is short. Then we have

2(B1 + B2+ «, B) o 2(B2, B1)
|51]? |51]?

This is > 0 since (9 is short. Therefore (81 + 2 + a) — 1 = P2 + « is a root, in
contradiction to the hypothesis #2 L 1 «.

+0.

Proposition 3.4. Under the assumption that g has a compact Cartan subalgebra
t C ¥, any positive system AT (g€, (C) of the root system A(g®, %) has a fundamental
sequence.
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Proof. We may assume that A = A(g®, t®) is irreducible. First let us dispose of
Go. Take a; to be a simple root that is noncompact; one exists as long as g is
noncompact. Then take ag to be the unique positive root orthogonal to «;. This
is noncompact in every case, and the sequence a1, as has the required properties.

When A is not of type Ga, Proposition 4.5 of [KnW] shows that there exists a
sequence ay, ..., q; of positive noncompact roots such that

(a) the a; form a strongly orthogonal set,

(b) a, = Zé-:l R(Eq; + E_q,) is maximal abelian in p,

(c) «; is a simple root in the subsystem of roots strongly orthogonal to all of
aq,...,0;_1, which is empty or is a root system by virtue of Lemma 3.3
above,

(d) for each positive noncompact root 3, the first c; such that ¢; is not strongly
orthogonal to 3 satisfies |a;| > |3].

Then (a) and (b) prove (i) and (iii), and (c) proves (ii) if all roots have the same
length.

It is possible to give a general argument for (ii) in the case that there are two
root lengths, but for brevity we give a case-by-case argument that uses the detailed
analysis in §4 of [KnWJ. If A is of type C,, or Fy with some long root noncompact,
then the sequence constructed in [KnW] has all roots long, and the system of roots
orthogonal to a1,...,a;_1 coincides with the system strongly orthogonal to those
roots. Hence the sequence constructed in [KnW] satisfies (ii) in these cases.

If g is noncompact with A of type F; and with all noncompact roots short, then
the sequence consists of one noncompact simple root from A, and (ii) holds.

For A of type By, [KnW]| shows that the constructed sequence can be taken to
be of the form

(3.14) certain e; —ej, possible e;, corresponding e; + e;.

Orthogonality relative to a long root is the same as strong orthogonality, and hence
there is no problem with (ii) for the first members of (3.14). One easily checks
that the possible e, and the corresponding e; + e; are all simple in the system of
roots orthogonal to all the members of the first group, and hence each of them is
simple in the smaller system of roots orthogonal to all members of the sequence
that precede it. This handles (ii) for A of type B,,.

The last case is that g is noncompact with A of type C,, and with all noncompact
roots short. We follow the construction of [KnW] step by step. Selection of the first
noncompact simple root a; = e; — e; means that the strongly orthogonal system
consists of all roots not involving indices ¢ and j, while the larger orthogonal system
consists of (e; +e;) in addition to all roots not involving indices ¢ and j. The root
e; + e; is simple in the latter system. The next step produces some oy = e5 — €.
Indices s and ¢ are to be discarded, except that +(es + e;) remains in the system
of roots orthogonal to ai,as. Again e; + e; is simple in the latter system. The
construction continues in this way, and each selection of an «; is seen to be of a
simple root in the system of roots orthogonal to a,...,a;_1. This completes the
proof.

4. THE REPRESENTATION o OF M,

In this section, under some assumptions on G, we explicitly construct a certain
1-dimensional representation o of the group M, of a minimal parabolic subgroup
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of G and prove a key technical result about it. It will be seen in §5 that the
unitary principal series representation built from o and the trivial character of A,
is equivalent with the direct sum of all totally degenerate limits of discrete series
representations, each occurring with multiplicity 1.

We continue with notation as in §2. Fix a maximally noncompact 6 stable Cartan
subalgebra b, = b, @ a, of g, and let M, be the centralizer of a, in K. Following
standard terminology, we refer to the nonzero simultaneous eigenvalues of ad a, on
g as restricted roots. These are the nonzero restrictions to a, of the roots. Typical
restricted roots are denoted by € or 7, except that, in the case of the restriction to
ap of a real root, we may denote the restricted root and the root by the same letter
if there is no possibility of confusion. The set of restricted roots will be denoted by
3. Tt is a root system, possibly not reduced.

For each restricted root ¢, let H, be the element of a, such that e(H) = S(H, H.)
for all H in ap, S being our invariant bilinear form. Since G is linear, it makes sense
to define

(4.1) Ye = exp 2mile| T2 H..

In the special case that € = alq, for a real root «, this definition is consistent with
the one in (2.1). It is known that each element 7. lies in M, and has order at
most 2. It follows from (2.3) that (M, )o and the elements +. together generate M,.

If € is a restricted root, we write s. for the Weyl group reflection in €. This
notation is sufficiently consistent with the definition in §1 of reflection in a real
root that it will not cause any confusion. For two restricted roots € and 7, direct
computation from (4.1) gives

2
(4.2) Ysye = 75772]<€’n>/|5‘ .

For the most part we shall use (4.2) in the following form: If g is simple and is not
of type G, then

- if (e, 0, Re, and || > |n],
(43) - {7 W iflen) £0, n¢ el 2 Il

Ve if (¢,7) #0, n ¢ Re, and [¢] < [n].

Let € be a restricted root, and let m(g) be the sum of the multiplicities of ce as
a restricted root for all ¢ > 0. If m(e) > 1, then [Knl] or Corollary 7.69 of [Kn3]
shows that ~. is in (M, )o. Hence M, is generated by (M},)o and all the v, for which
m(e) = 1. These latter €’s are the restrictions to a, of real roots.

If positive systems of roots and restricted roots are specified, the positive systems
are compatible if every root that restricts to a positive restricted root is a positive
root. One way to obtain compatible systems is to define positivity relative to a
lexicographic ordering of a; @ ibj, in which every positive element of aj is larger
than every element of ib;J. For example, one could choose a basis of a;, adjoin a
basis of by, and form the corresponding lexicographic orderings.

If compatible positive systems are imposed on the restricted roots and the roots,
then any restricted root ¢ for which m(e) = 1 is conjugate via a member of
W(a, : K) to a simple restricted root ¢’ with m(e’) = 1. Applying (4.2), we readily
see that M, is generated by (M, )y and all the . for which € is a simple restricted
root with m(e) = 1.

Satake [Sa] found relationships between simple roots and simple restricted roots
in the setting of compatible positive systems. In part he proved that any simple

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



5630 HENRI CARAYOL AND A. W. KNAPP

restricted root is the restriction to a, of a simple root, and conversely the restric-
tion to ap of a simple root is 0 or is a simple restricted root. In more detail the
simple roots that are real restrict to simple restricted roots, the complex roots that
are simple occur in pairs that restrict to the same simple restricted root, and the
restrictions obtained in this way are linearly independent and exhaust the sim-
ple restricted roots. These results in part limit the possibilities for the quotient
M, /(My)o. By contrast Theorem 2.1 of Wallach [Wal] limits the flexibility in
defining finite-dimensional representations of G in terms of the flexibility in defin-
ing representations of M,. Implicit in the results of [Sa] and [Wal] together is the
extent to which (Mp)o and the above elements 7. are independent of one another.
We make the resulting structure theorem explicit in Proposition 4.2 below, writing
it in the form that will be useful to us. Proposition 4.2 uses Theorem 2.1 of [Wall
only as a pointer toward the method of proof, and thus [Wal] does not need to be
cited in the proof given below.

Lemma 4.1 (Satake). Fiz compatible positive systems for A(gC, h(g) and the re-
stricted roots. If B is a simple root that vanishes on by, then the restricted root
€ = Bla, has m(e) = 1.

Proof. By one of the Satake results quoted above, ¢ is a simple restricted root. On
the other hand, we know from [Knl] that the only positive multiples of ¢ that can
be restricted roots are 1 and % Since ¢ is simple, the equation ¢ = %5 + %5 shows
that %5 cannot be a restricted root.

Arguing by contradiction, suppose that m(e) > 1. By what we have just seen,
some pair a* = ¢ £ w consists of positive roots, with w a nonzero element carried
on b,. Then w must be a root, and there is no loss of generality in assuming that
it is positive. The formula ¢ = o~ + w exhibits € as the sum of positive roots and
contradicts the fact that € was assumed simple. Hence m(e) = 1.

Proposition 4.2 (Satake-Wallach). Suppose that G has a simply connected com-
plezification. Fiz compatible positive systems for A(g®, [](E) and the restricted roots.
Then there exists a unique 1-dimensional representation o of My such that o is 1
on the identity component (My)o and o(v:) equals —1 for every simple restricted
root with m(e) = 1.

Remark. If rank G = rank K, then the hypothesis that G has a simply connected
complexification implies that G is acceptable in the sense of Harish-Chandra.

Proof. Uniqueness is immediate since M, is generated by (M, )¢ and the elements
~e for all simple restricted roots € with m(e) = 1. For existence define a highest
weight A on bf by the formula

2(\, a) {1 if v is a simple root and is real,

|a]? 0 if « is a simple root and is nonreal.

Since G has a simply connected complexification, there exists an irreducible rep-
resentation 7y of G with highest weight \. When the underlying complex vector
space V is decomposed into restricted weight spaces, the highest restricted weight
is /\‘%7 and we let V7 be the corresponding weight space. The subgroup M, leaves
V1 stable, and it is well known (Lemma 8.48 of [Kn3]) that (M,)o acts irreducibly
in it. Let o be the representation of M, in this space. The highest weight of o is
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)\|b . From the structure of the simple roots, the linear span of the nonreal simple
P

roots contains the dual of by. Since A is orthogonal to each nonreal simple root, A
vanishes on b,. Thus /\|b =0, and o is trivial on (M,)o. If « is real and simple,
p

then o(74) = exp(A\(2miH, /|a]?)) = exp(mi(2(\, ) /|a|?)) = exp(7i) = —1.

Proposition 4.3. Suppose that G is quasisplit and that g has a compact Cartan
subalgebra t C €. Fiz compatible positive systems for A(g®, h‘g) and the restricted
roots. Suppose that aq, ..., is a strongly orthogonal sequence of real roots whose
restrictions to a, span a; and that AT coincides with the unique positive system of
roots determined by lexicographic use of ax,...,qq. For 1 < j <, let po, be half
the sum of the positive roots that are orthogonal to ay,...,a;-1 but not to o;. If o
is a 1-dimensional representation of My such that o is 1 on the identity component
(My)o and o(:) equals —1 for every simple restricted root with m(e) =1, then

0(Ya,) = (=1)2Pee /el gy < <.

Remarks. Proposition 3.2 notes that lexicographic use of «aq,...,q; determines a
unique positive system of roots. Proposition 4.2 proves that the representation o
in the current proposition exists if G has a simply connected complexification. The
quantity po; is necessarily a positive multiple of «; since there are no imaginary
roots and the set of roots contributing to Pa; is closed under each of Sajprre 1S

Proof. In proving the displayed formula, we may assume that g is simple. Assume
temporarily that g is not split G5. Let § be half the sum of the members of A* =

A (g%, b5). The particular ordering that we have chosen makes § = Zé:l Pay’
there is no contribution from 5;3 because there are no imaginary roots and the

positive complex roots are closed under —f. From this equation we obtain

2<57 aj> _ 2<po¢j;aj>
|aj[? |aj[?

(4.4)

Therefore use of (3.7) shows that any simple root [ satisfies

l l

200, aj) (B, 2(pa,, ) (B, ;)
4.5 =2 i (0. ) eyt
45) FEEDIE ik “ 2 ToE

The given lexicographic ordering determines by restriction a set 31 of positive
restricted roots. For fixed k£ with 0 < k < [, the set of restricted roots orthogonal
to aq, ...,k is a root subsystem Y, and any member of ¥ whose expansion in
terms of a, ..., a; begins with a positive multiple of «; for some i < k is greater, in
the lexicographic ordering, than every member of ;. It follows that the restricted
roots that are simple in ¥ and are needed for the expansion of a member of ¥,
all lie in ). Consequently, for 0 < k£ < [ — 1, the expansion of ay41 in terms of
simple restricted roots involves some member of ¥ that is not in ¥j41.

We shall prove the displayed formula asserted in the proposition by induction
downward on j for 1 < j < [. The base case of the induction is the empty statement
that the assertion is true for indices beyond I. Assume inductively that the assertion
in the displayed formula is true for indices i + 1 up through /. By the argument in
the previous paragraph, let ¢ be a simple restricted root whose expansion in terms
of ay, ..., oy begins with a positive multiple of a;. From Satake [Sa), there is some
simple root 3 such that € = 4, .

Jj=1
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According to Proposition 3.2, the expansion of 8 in terms of simple roots begins
with «; or %ai. That proposition gives us seven possibilities for the expansion of
[, and we look at each one in turn. One is that § = «;, the next four are that 3 is
real and is as in one of the formulas (3.1) through (3.4), and the last two are that
is complex and is as in (3.5) or (3.6). In any event the fact that 3 is simple means
that the coefficients of any of «,, as, and o that occur in the relevant formula
(3.1) through (3.6) are negative.

If B = «;, then Lemma 4.1 says that § = «a;, regarded as a restricted root, has
m(B) = 1. By definition we have o(y3) = —1. Meanwhile 1 = 2(6, o;)/]a;|* =
2(pa,;, i) /|il? by (4.4), and thus (71)2<p%‘>°‘i>/|°‘i‘2 = —1. Therefore o(va,;) =
(—1)2(/’aiaai>/\ai|2 as required, and the inductive step is complete if 3 = .

If 8 is as in (3.1), then 8 = %ai — %ar — %as — %ozt with all the relevant root
lengths equal. Hence —sq4,3 = Sq,.Sq,5q, 3, and (4.3) yields Yo, Y8 = Yo, Yas Yo, V8-
This formula and induction give

(Vo) = 0 (Yar Yoru Yo, )

(4.6) = (=1)2parsan)/lonl* (_1)Apaes)/losl® (_1)2(pap.ar)/ o]’

On the other hand, (4.5) and the equality of all the lengths give

2<pai7ai> 1 2<pa7.7ar> 12<,0a57as> 12</0at;04t>

4.7 1=1 _ 1 _
4.7) Tl 2 Jar? 2 P e

2

Multiplying (4.7) by 2, using each side as an exponent of (—1), and substituting
from (4.6), we obtain

+1 — (_1)2<p(¥i1ai>/‘ai|2(_1)2<p0¢7~1a7‘>/|a7‘|2 (_1)2<pas >as>/‘0‘5|2(_1)2<l7at ,040/‘0&1,‘2
= (=1)2Pap@id/lil 5 (),

i

This completes the inductive step if § is as in (3.1).

If 8 is as in (3.2), then 3 = 2o — o, — Lo, with |3 = || = || > || Hence
—S0; B = Sa,.Sa.0, and (4.3) yields Ya,78 = Va.Va,¥3- This formula and induction
give

(48)  0() =00, %0,) = (-1 l0el (12 en il
On the other hand, (4.5) and the relationships among the lengths give

2<p04' ai> 2<p0t~ ar> 2<pa Oé5>
4.9 1=1 i _ 1 r) 1 s '
( ) 2 ‘Oéi 2 ‘047'|2 2 |as‘2

Multiplying (4.9) by 2, using each side as an exponent of (—1), and substituting
from (4.8), we obtain

w10) 1 = (—1)Xeape)/leil® () Xparar)/lar® (_1)2pagae) /sl
— (DR o (o, ).

This completes the inductive step if 5 is as in (3.2).

If 8 is as in (3.3), then 8 = a; — 3o, — 2o, with |8] = |a,| = || > |o;|. Hence
—Sa; 3 = Sa,.5q.0, and (4.3) yields Ya,v8 = Va.Va,¥3- This formula and induction
give the same result as in (4.8). On the other hand, (4.5) and the relationships
among the lengths give the same result as in (4.9). Thus (4.10) again follows, and
the inductive step is complete if 3 is as in (3.3).
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If 3 is as in (3.4), then 8 = 1a; — 3, with |8] < |oy| = |ay|. Hence sga; =
o — 2(|aﬁ¢|,25>13 =a; —20=0a; — (@, — ) = a, and (4.3) yields Y5Ya; = Vo, Also
o(y3) = —1 by Lemma 4.1. These formulas and induction give
(4.11) 7(1a.) = 007, ) = —(=1)*Pereri/lerl,

On the other hand, (4.5) and the relationships among the lengths give

2<po¢-a0‘i> 2<p06~7a7">
4.12 1= T T
( ) ‘OéiP |Ot7«‘2

Using each side as an exponent of (—1) and substituting from (4.11), we obtain

1= (_1)2<pai,ai)/\o¢i|2(_1)2<par,ar>/|ar|2 _ _(_1)2<pai,m>/\ml2a(% ).

This completes the inductive step if 3 is as in (3.4).

If B is as in (3.5), then 8 = 1a; +w, and (4.5) gives 2(pa,, ;) /|a;|? = 2. Hence
(=1)2(peisei)/loil® = 41, On the other hand, the roots contributing to m(c;) upon
restriction to a, include %ai + w, %ozi — w, and ;. Hence v,, lies in (M) and
0(Ya;) = +1. Therefore o(v,,) = (—1)2<pﬂz'’O‘i>/‘°‘i|27 and the inductive step is
complete if 5 is as in (3.5).

If B is as in (3.6), then 5 = %ai — %ar 4+ w. Put e = %ai — %ar. Since € + w
and € — w both yield € upon restriction to a,, 7. lies in (M,)o and o(y.) = +1.
Computation gives s.(a,) = a;, and hence Y., = Yo,. Therefore (+1)o(Va,) =
0(7¥e)0(Va,) = 0(Va,;). This formula and induction give

(4.13) 0(Ya,) = 0(Va,) = (71)2(par,a,,.>/\a7,‘2.
Meanwhile (4.5) gives

2<po¢i7ai> . 12<,0a7,;04i>
|a; |2 > o

_1
=3
Multiplying by 2, using each side as an exponent of (—1), and substituting from
(4.13), we obtain

+1= (_1)2<paiaai>/\ail2(_1)2<pamar>/|ar|2 _ (_1)2<paiaai>/\ailzg(7ai)_

This completes the inductive step if § is as in (3.6).

To complete the proof of Proposition 4.3, we must verify the proposition for split
(2. Roots and restricted roots are the same for this group since it is split. There
are two cases for the sequence {ay,as}. One is that oy is long and ay is short. In
this case we find that

2 1 2 a2
(Pa ;11> 3 ang 2lPas ;12> _1
|| |z

so that
(4.14) (—1)2paren)/lanl” — (_1)2pag.2)/lezl® — _q
The simple roots are as and § = %al — %O[g. Then o(74,) = —1 by definition. Also
we have —so, 3 = $a1 + 3o = s4,8. Thus (4.2) gives Y5Ya, = YgVas, and hence
(415) U(VCH) = U(’Yaz) =-L

Comparison of (4.14) and (4.15) completes the argument in this case.
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The other case is that «; is short and «s is long. In this case we find that

2<pa17a1>:5 and 2<pa2,a2>

=1
o [? |z |? ’

so that (4.14) is still valid. The simple roots are as and § = %al — %Oég. Then
0(Ya,) = —1 by definition. We have —s,, 8 = a1 + 302 = Sq, 3. Thus (4.2) again
gives vgYa, = V87Va, and yields the consequence (4.15). Comparison of (4.14) and
(4.15) again completes the argument.

5. SUM OF ALL TOTALLY DEGENERATE LIMITS OF DISCRETE SERIES

In this section we show first that the unitary principal series representation
corresponding to o on M, and the trivial character on A, is the sum of all the
totally degenerate limits of discrete series if ¢ is defined as in §4. This step is
carried out in Theorems 5.1 and 5.2. It is automatic from Theorem 7.1 of [Kn2]
that the multiplicities in this decomposition are all 1. We might mention that
it follows from Harish-Chandra’s subquotient theorem and a little extra argument
(which actually is contained in the proofs of Theorems 5.1 and 5.2 below) that there
is some irreducible representation of M, with this property, but we are interested
in isolating the possible choices for this representation and seeing that o is one of
them.

The concrete information assembled in §4 about ¢ allows us to do more. The
main thing is that it allows us to apply the part of the theory of the R group in [KnZ]
to give concretely the classification parameters of the irreducible constituents of the
corresponding principal series representation; these will be described in Theorem 5.5
and will be listed for each simple group in Table 5.1. Parenthetically it allows us also
to see that totally degenerate limits of discrete series exist whenever o makes sense;
thus G has totally degenerate limits of discrete series if and only if rank G = rank K,
G is quasisplit, and G is acceptable in the sense of Harish-Chandra (i.e., half the
sum of the positive roots is analytically integral). We continue with notation as in
84.

Theorem 5.1. Let G be quasisplit with rank G = rank K, and suppose that G
is acceptable in the sense of Harish-Chandra. Fix a strongly orthogonal sequence

o1,...,0ap of real roots relative to b, whose restrictions to a, span a;J, and let
At = At (g, hf) be the unique positive system determined by aq,...,q;. Impose

the relative ordering on restricted roots. Then there exists a unique 1-dimensional
representation o of M, such that o is 1 on the identity component (My)o and
o(v:) equals —1 for every simple restricted root with m(e) = 1. If N, denotes the
analytic subgroup of G corresponding to the sum of the restricted-root spaces for the
positive restricted roots and if Qp is My Ay Ny, then each irreducible constituent of
indgp (c ®1®1) is a totally degenerate limit of discrete series representation.

Remarks. Proposition 3.1 guarantees that «,...,q; exists, and Proposition 3.2
guarantees that AT is uniquely determined by ai,...,q;. Under the ordering,
every positive element of a; is greater than every element of ib;, and therefore AT
consistently defines a compatible notion of positivity for restricted roots.

Proof. Let us assume for the moment that G has a simply connected complexi-
fication. The existence and uniqueness of o are then given by Proposition 4.2.
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Proposition 4.3 shows that

(5.1) 0(a,) = (—1)Hemsel/leol

for 1 < j <, and we know that the global character of indgp (c®1®1) is of the
form

(5.2) indg, ©Mr4»(0,iby, 0|p(s,),0).

We wish to invert generalized Schmid identities relative to dg,, . . . ,da, so that (5.2)

can be rewritten one step at a time in terms of data for a Cartan subalgebra whose
compact part is one dimension larger. The condition for doing so is stated at the
end of §2 and has two parts to it. One part concerns the a, parameter; since this
parameter is 0 in our situation, it presents no difficulty. The other part concerns
the values of o|p(p,)(Va;) = 0(7a,) for j =1,...,1, and (5.1) says that this part
of the condition is satisfied. Therefore we can rewrite (5.2) as the sum of one or
two characters built from a Cartan subalgebra that incorporates &; = dq, (o) as a
noncompact imaginary root, and we can rewrite each of those as the sum of one or
two characters from a Cartan subalgebra that also incorporates ay_1 = dq,_, (@1—1)
as a noncompact imaginary root. The imaginary root q; remains noncompact after
d,,_, because a;_; and o are strongly orthogonal. We continue in this way through
oj—1,-..,a1. At each step the data other than the chambers (and the implied
sets of positive roots) are the same in all the new characters that arise, as was
remarked at the end of §2. Since the restrictions of «y,...,a; span a;, the final
Cartan subalgebra is compact. Thus all the global characters after the last stage
are limits of discrete series, and their infinitesimal character in each case is 0. Some
of these global characters may be 0, but at least one of them is nonzero because
(5.2) is nonzero. Each of the nonzero limits of discrete series is irreducible because
nonzero limits of discrete series are always irreducible (Theorem 1.1 of [KnZ]).
This completes the proof under the assumption that G has a simply connected
complexification.

Now suppose that the linear group G is merely acceptable. Choose a covering
group G with a simply connected complexification, and let Z be the kernel of
the covering map G — G. Apply the special case just considered to the group
é, obtaining a representation ¢ of the group M,. Let @p = M,A,N, be the
minimal parabolic subgroup such that indgp (6 ® 1 ® 1) is exhibited as a sum of

totally degenerate limits of discrete series. Let any of the latter be 7(0, C). Since
G is acceptable and 0 is algebraically integral, 77(0,C') is trivial on Z. Therefore

indg (0 ®1®1) is trivial on Z, and we conclude that & is trivial on Z. Then
P

o descends to a representation o of M,. This proves the existence of o, and the
uniqueness is immediate from the fact that M, is generated by (M), and the

elements v, for the simple restricted roots € with m(e) = 1. This completes the
proof.

Theorem 5.2. Let G be quasisplit with rank G = rank K, and suppose that G is
acceptable in the sense of Harish-Chandra. Then G has a totally degenerate limit
of discrete series representation. Fix one of the representations of this kind that is
produced by Theorem 5.1, and write its global character as ©%(0,C) relative to some
compact Cartan subalgebra t of g contained in €. Let U be the analytic subgroup of
G® with Lie algebra w= ¢ @®ip. Then the global character of any totally degenerate
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limit of discrete series representation of G is of the form ©%(0, Ad(u)C) for some
member u of the normalizer Ny (4,8,p) of t, €, and p in U. Moreover every totally
degenerate limit of discrete series representation is a constituent of the unitary
principal series representation indgp (c®1®1) of Theorem 5.1.

Remark. U is a compact form of G.

Proof. 1t is immediate from Theorem 5.1 that G has a totally degenerate limit of
discrete series representation. We can write its global character as ©%(0, C). Since
0%(0,C) is nonzero, the Hecht-Schmid identity shows that every C-simple root
relative to A(g®, t*) is noncompact. Any other totally degenerate limit of discrete
series representation has a global character of the form ©%(0,C"). The action of the
Weyl group W (t€:g®) is transitive on the set of chambers, and each Weyl group
element has a representative in U. Thus we can choose u € U normalizing t with
¢’ = Ad(u)C. The transformation Ad(u) carries the C-simple roots to the C’-
simple roots, and every C’-simple root is noncompact since ©%(0,C") is assumed
nonzero. Thus Ad(u) preserves type—compact or noncompact—for simple roots.
An easy induction allows us to extend this conclusion to all positive roots and to
their negatives. For example, if the result is known for a compact root o and a
noncompact root (3, then the root vectors satisfy

Ad(w)[Ea, E) = [Ad(u) Ea, Ad(u) Eg] € [€°, 5] C p°,

so that Ad(u) carries the noncompact root a + 3 to a noncompact root. The
conclusion is that Ad(u) preserves type for all roots. Consequently Ad(u) carries
£C to itself and pC to itself. But also Ad(u) carries the Lie algebra u = € @ ip to
itself, and hence it carries the intersections € = uN€® and p = iuNp® to themselves.
This proves that v is in Ny (¢, €, p).

If 7 is a unitary representation of G on a Hilbert space H and if ¢ is an auto-
morphism of G, we define 7% to be the unitary representation of G on H given by
7 = mop ! If ¢ is an inner automorphism, then 7% will of course be unitarily
equivalent with .

Suppose now that 7 is a representation with global character ©%(0,C), and let
¢(z) = uzu~! for z € G. The same argument that establishes (1.14) in [KnZ]
proves that 7% has global character ©% (0, Ad(u)C).

From the embedding of 7 into L = indgp (0 ®1®1), it follows that 7% embeds
into LY. We shall adjust ¢ by an inner automorphism to exhibit an equivalence
between L and L¥. Specifically we forget about the fact that u normalizes t and
remember only that w is in U and u normalizes g, £, and p. The space Ad(u)(ay)
is maximal abelian in p, and we can find k; € K so that Ad(kiu)(ap) = a,.
The various possibilities for n, are conjugate via the Weyl group W(a, : K), and
thus we can find k» € K so that Ad(kskiu) carries a, to itself and preserves
positivity of simple restricted roots. Then conjugation by kzkiv maps M, and N,
to themselves. Let us put v = kokju and redefine ¢ by ¢(z) = vav~!. For the
redefined ¢, we work with L? = (indgp (c ®1®1))¥. Let us say for definiteness
that the induced representations act on the left, with the transformation law being
on the right. We define an operator P on the space of L¥ (i.e., the space of L) by
F(z) = (Pf)(x) = f(¢~tx) = f(v"tawv), and we readily check that P carries the
space of L¥ in one-one fashion onto the space for L' = indgp (c?®1®1) and that
P exhibits these representations as equivalent: L'(g)(Pf)(z) = P((L¥(9))f)(z).
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To show that L% is equivalent with L, it is therefore enough to show that o¥

equals o, i.e., that o(v"'mv) = o(m) for all m € M,. Conjugation of M, by

v™! carries (My)o to itself, and o is 1 on (M,)o. Thus it is enough to show that
(v 1y.v) = o(7e) for every simple restricted root e. Here v~ 1vy.v = Yad(v-1)e, and
we have arranged that conjugation by v~! maps the set of simple restricted roots
to itself. It also preserves multiplicities. Thus if € is a simple restricted root with
m(e) = 1, so is Ad(v~1)e. The definition of o then shows that ¢ is —1 on both ~.
and Yaq(v-1)e- Hence 0¥ = 0.

What all this shows is that a representation with global character ©(0,C") =
©%(0,Ad(u)C) embeds in a representation equivalent with indgp (c®1®1), and
the theorem is thus completely proved.

Corollary 5.3. Let G be quasisplit with rank G = rank K, and suppose that G is
acceptable in the sense of Harish-Chandra. Let U be the analytic subgroup of G©
with Lie algebra uw = €@ ip. If Ny(t, €, p) denotes the subgroup of elements of U
normalizing t, €, and p, then the inclusions of Ny (t, ¢, p) first into Ny (8) and then
into Ngc(g) descend to isomorphisms

(5.3) Ny (t € p)/Nk(t) = Ny (8)/K = Nge(9)/G-

Consequently the set of totally degenerate limits of discrete series characters of G
is parametrized by either of the groups Ny (8)/K or Ngc(g)/G.

Proof. A member of Ny (€) normalizes ¢ and ¢ @ ip. Hence it normalizes ip, p, and
t®p = g. Therefore Ny(t,8,p) C Ny(t) C Nge(g). Since Ni(t) C K C G, the

inclusions descend to homomorphisms
(5.4) Nu(t, & p)/Nk(t) = Nu(t)/K — Nge(g)/G-

To see that the maps (5.4) are one-one, we have to see that Ny (t,€,p)NG C Nk (t).
It is enough to see that U N G C K. Since G = K expp, it is enough to see that
Unexpp=1. If X #0is in p, then Ad(exp X) acts fully reducibly with positive
eigenvalues on g©, while any member of Ad(U) acts with all eigenvalues of modulus
1 since U is compact. The two can coincide only if all the eigenvalues are 1, and
then Ad(expX) =1, ad X =0, and X = 0. Thus the maps (5.4) are one-one.

To see that the first map in (5.4) is onto, let u be given in Ny (¥). Then Ad(uw)
carries t to a maximal abelian subspace of ¢, and we can find k¥ € K such that
Ad(ku) carries t to itself. The element ku normalizes t, ¢, and p. Then ku is in
Ny(t, € p), and the K coset of our original element u is exhibited as in the image
of the first map of (5.4).

To see that the second map in (5.4) is onto, let g be given in Nge(g). By the
global Cartan decomposition of G, write ¢ = wexp Z with u € U and Z € iu.
The space g is stable under the Cartan involution of g€, which is +1 on u and —1
on iu, and thus Lemma 7.22 of [Kn3| applies and shows that v and Z separately
normalize g. Here u is in Ny (), which we have already observed is a subset of
Nge(g). Meanwhile, Z is in it @ p. Write Z = Z; + Z5 accordingly. Then Zs is
in p C g and hence normalizes g. So Z; normalizes g. Since Z; is in ig, we obtain
[Z1,9] CigNg = 0, and hence iZ; is in the center of g. This is 0, and thus we
conclude that g = uz with z = exp Z in G. Thus our member g of Ngc(g) is in
the same G coset as u, which we have seen is in Ny (£).

Now consider the last assertion of the corollary. From Theorem 5.2 we know
that there is at least one such character, and it is of the form ©%(0,C) for some
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chamber C. Also we know that any other one is of the form ©%(0, Ad(u)C) with
w in Ny(t, € p). We want to know the isotropy subgroup, i.e., those elements
u € Ny(t,&p) with ©9(0, Ad(u)C) = ©%(0,C). Theorem 1.1c of [KnZ] gives a
condition—that Ad(u)C = Ad(g)C for some ¢ in Ng(t). Let g = kexp X be the
global Cartan decomposition of g. Lemma 7.22 of [Kn3] shows that k and exp X
separately normalize t. Since t is a Cartan subalgebra, it equals its own normalizer,
and thus X is in t. Hence Ad(u)C = Ad(k)C for some k in Ng(t). Since the
Weyl group W (t:U) acts simply transitively on the Weyl chambers, k~1u is in
expt. Thus w is in Ng(t). Consequently Ny (t,€,p)/Nk(t) parametrizes the set of
characters of totally degenerate limits of discrete series of G, and the last assertion
of the corollary follows from the isomorphisms (5.3).

The theory of the R group in [KnZ] tells how to obtain the classification pa-
rameters of the irreducible constituents of indgp (c ® 1 ®1). To describe matters
easily, let us assume that G is simple, and let us take advantage of the fact that o is
1-dimensional. (For the general case, see p. 438 of [KnZ].) If k € K normalizes ay,
then we set ko(m) = o(k~'mk). Since o is 1-dimensional, the right side does not
change when £ is multiplied by a member of the centralizer M, of a, in K. Thus
it makes sense to to speak of wo for any w in the Weyl group W (a, : K), which is
the same as the Weyl group of the system X of restricted roots. Let

Wo ={w e W(ay:K) | wo =0c}.

To get at the R group, one defines a certain subset X! of 3. For 1-dimensional o
when the irreducible root system ¥ is reduced,

S, ={ein 3| o(y.) = +1}.

We shall not need the definition of ¥/ when 3 is not reduced. The reason is that
M, is connected in this case (see [Knl]), and o reduces to the trivial representation;
the R group is easily seen from its definition to be trivial in this case.

In any event, ¥/ is closed under its own reflections, and these reflections are in
W,. It follows readily that W, is the semidirect product of the Weyl group W, of
¥/ and the subgroup

Ry ={reW,|re>0foralle>0inX}.

Proposition 8.4 of [KnZ] says that there is a set H = H, = {&1,...,&p} of real
roots in AT (g®, h(g) that are superorthogonal in the sense that no nontrivial linear
combination of &;,...,&, is a root, every member r of R, is the product of the
reflections in the restrictions to a, of the members of some subset of H, and every
member £ of H has the property that s¢ is a factor of some member of R,.

Table 5.1 tells what H is for all simple G under study. In most cases the group
R, has order 1 or 2. In the cases of order 2, the nontrivial element of R, is the
product of the reflections in H. The only case for which R, has order greater than 2
is Do, and then R, has order 4; two of the nontrivial elements are

Sean—1—e2nSean_1+tean and Se;—eaSez—es """ Sean_sz—ean—_25ean_1—€2n>

and the third is the product of these two. In §6 we shall need the following result,
which is obvious by inspection from Table 5.1.
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Table 5.1. Set H, of real roots identified by R,

A b Names of Simple | m(e) for Each | |Ry| Ho
Restricted Roots Simple
Restricted Root
Agp_1 Cn €; — €jt1, 2 for short ¢ 2 2e,
1<j<n-1; 1 for long €
2e,
Asp | (BC), not needed 3 for short ¢ 1 1%}
2 for medium ¢
BQn BQn €; — €541, 1 for all € 2 €25—1 €25,
1<7<2n-1; I<j<n
€2n
B2n+1 B2n+1 €; — €541, 1 for all ¢ 2 €251 €25,
1<7<2n I1<j<m
€2n41 €an+1
Ch C, €; — €jt1, 1 for all ¢ 2 2e,
1<j<n—1
2ey,
Dgn Dgn €j — €541, 1 for all ¢ 4 €251 —€25,
1< <2n-1; 1<j<m
€an—1+ea, €on—1+tea,
D2n+1 Bgn €; — €541, 2 for short ¢ 2 €25—1—€25,
1< <2n—-1; 1 for long e 1<5<n
€2n
FEg Fy not needed 2 for short ¢ 1 10
1 for long €
Er By Roots €; with 1 for all ¢ 2 €7, €5, €9
. . 2
Jasin (765431
FEg FEg not needed 1 for all ¢ 1 %]
Fy Fy not needed 1 for all £ 1 %)
Go G not needed 1 for all ¢ 1 %]

5639

Proposition 5.4. Let G be quasisplit with rank G = rank K, and suppose that G
is acceptable in the sense of Harish-Chandra. Let o be defined as in Theorem 5.1,
and let other notation be as above. Then all the members of H = H, are simple
T001S.

Returning to G not necessarily simple, let dyy = ?:1 d¢; be the product of the
Cayley transforms in all of the roots £; € H. We define a new parabolic subgroup
@ = MAN by saying that dy leads from the data (my,a,,b,) to data (m,a,b).
Put Ej =dy(§) for 1 <j<p.

The only chamber in ib, is b, itself. Because of the superorthogonality of the
members of H, it is apparent when G is split that there are exactly 2P chambers
in 7b. These are determined by specifying p signs s; = +1, 1 < j < p, and taking
a chamber to be the set where the p roots 5151, ey spgp are positive. When G is
merely quasisplit, the same conclusion is valid, but it is much less apparent. For
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the relevant fact we appeal to Lemma 8.5 of [KnZ|, which shows that the only
imaginary roots in A(m®, bC) are £&;,...,4E,.

Let Wy be the group of order 27 generated by the reflections in &1, ...,§p, and
let

(5.5) By = {w € Wi

for each r in R,, w and r have an even
number of factors s¢; in common ’

Using dy¢, we can regard members of W7, as permuting the 2P chambers of 7b simply
transitively. The subgroup Ep gets identified with the set of members realizable in
M. Theorems 8.7 and 12.3 of [KnZ] then yield the following.

Theorem 5.5. Let G be quasisplit with rank G = rank K, and suppose that G is
acceptable in the sense of Harish-Chandra. Let indgp (c ®1®1) be defined as in

Theorem 5.1, with character indgp M4 (0, iby, 0’|F(Bp), 0), and let other notation
be as above. Then (5.5) sets up a canonical isomorphism of Wy /Ey onto the dual
group R,. Moreover,

(5.6) indg ©MrA»(0,iby,0|p(s,),0) = > indg ©MA(0,wC, 0| p(p),0)
wEWH/E"H%EU

for any choice C of the 2P chambers in ib. The characters on the right side of (5.6)
are all nonzero and irreducible, and they are given by nondegenerate data.

6. CLASSIFICATION OF TOTALLY DEGENERATE LIMITS OF DISCRETE SERIES

In this section we give the classification of totally degenerate limits of discrete
series, matching each such representation to one of the irreducible constituents of
the principal series representation whose character appears on the left side of (5.6).
Since the characters of the irreducible constituents have been written on the right
side of (5.6) with nondegenerate data, this matching process will indeed complete
the classification.

We continue with notation as in §4, and we shall also make use of the notation
concerning the R group introduced in §5. We use t to denote a compact Cartan
subalgebra of g contained in €. A choice will be made in this section of a maximally
noncompact f stable Cartan subalgebra b, = b, © a, of g, the choice depending
on the totally degenerate limit of discrete series character that we are given. Then
we let M, and A, be defined as usual. Once a lexicographic ordering has been
introduced on a; @ ib; such that every positive element of a; is greater than every
element of iby,, then we obtain a set At(gC, bf) of positive roots, a compatible set
of positive restricted roots, and a subgroup N,. We let Q, = M, A,N,.

The idea of the proof of the classification is to start with a totally degenerate limit
of discrete series character ©% (0, C'), construct a fundamental sequence aj, . . ., &; of
strongly orthogonal noncompact roots relative to the positive system determined
by C, and arrange that the generalized Schmid identities corresponding to the [
Cayley transforms cg; lead through the stage at the right side of (5.6) and onward
to the principal series character on the left side of (5.6). Then in effect we can
invert the last few generalized Schmid identities by means of the appropriate Cayley
transforms d,, and obtain the desired equality of irreducible characters. An example
will illustrate what is supposed to happen.
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Example. In D, let the C-simple roots in A(g®, %) be
€1 — €2, € — €3, €3 — €4, €4 — €5, €5 — €5, €5 + €6.
A fundamental sequence of strongly orthogonal noncompact roots is
&1 = €1 —e€g, ag — €3 — €4, &3 — €5 — €g, &4 =e1 t+eq, a5 = €3+ ey, a(; = e5 1 €5.

We apply each Cayley transform cz; and arrive at a maximally noncompact 6 stable
Cartan subalgebra h, = b, © a,. We put a; = cg,(@;), but we leave the notation
e; unchanged because there is little possibility of confusion. Our basis of a; is

Q) =e€1 —e€2, Qg = €3 —€4, 3 = €5 — €5, (g = €] T €2, A5 = €3+ €4, O = €5+ €g,

and this is to be used lexicographically to define positive roots in A(g®, b%) and
then to define ¢ in Theorem 5.1. Computation shows that the resulting simple
roots are

€1+ ez, —€z —e€3, €3+ €4, —€4 — €5, €5 — €6, €5+ €6.
On the other hand, Table 5.1 shows that H, consists of the first, third, fifth, and
sixth simple roots in A (gC, h(g). Thus

Ho = {e1 + ez, e3 +eu, e5 —eg, €5 + e} = {as, au, as, as}.

We know from Theorems 5.1 and 5.2 that use of the six generalized Schmid identi-
ties corresponding to &y through ag leads us from our given representation to the
principal series representation built from o. Application of the inverted generalized
Schmid identities corresponding to dy, takes us from the principal series repre-
sentation to its irreducible constituents. Since H, consists of the last four of our
a;’s and since dg; can be regarded as the inverse of cg,, it is reasonable to expect
that we can get to the irreducible constituents of the principal series representation
by using just the first two generalized Schmid identities, those corresponding to a;
and as. Using just those two identities, we obtain an equality of our given totally
degenerate limit of discrete series character with one of the characters on the right
side of (5.6). Sorting matters out, we obtain the desired match.

There are two obstructions to having this process work in general. One is illus-
trated by changing the fundamental sequence in the above example to ay, ay, s,
as, a3, ag. Computation shows that this change does not affect AT (g®, hg). Thus
we still have H, = {e1 + ea, e3 + e4, €5 — €5, €5 + €}, but the interpretation of
H, in terms of the fundamental sequence is that H, consists of four of our «;’s
yet not the last four. This is not a serious problem, and Lemma 6.1 will address it
satisfactorily.

The other obstruction is illustrated in Bs by using the fundamental sequence

Q1 = €3, Qg =e€e1 — ey, (i3 = €1 + e2.

We form a7 = e3, as = €1 — €3, az = €1 + e3 and find that the simple roots of
At (g, f)‘g) are e3 — eq, e] + ey, —es. Table 5.1 says that H, consists of the first
and third simple roots, thus of e3 —e; and —e5. But neither of these roots is in our
sequence. This is a more serious problem and will be addressed by Lemma 6.2 and
the definition of “good fundamental sequence” that follows it.

In a reduced root system a simple root will be called isolated if it is orthogonal
to all other simple roots in the system. Equivalently a simple root « in a system is
isolated if there is no root 3 in the system such that a4 3 is a root. Relative to a
compact Cartan subalgebra and a positive system of roots for it, let ay,...,q; be
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a fundamental sequence. Let us say that o is of the first kind if it is not isolated
as a simple root in the system of roots orthogonal to &y, ..., a;_1, or of the second
kind if it is isolated.

Lemma 6.1. Under the assumption that g has a compact Cartan subalgebra t C €,
let AT (g%, %) be a positive system for A(g€,t%), and suppose that

(6.1) 1,..., 8

is a fundamental sequence for At (g, t©).
(a) If, for some k with 1 < k <I1—1, &y is isolated as a simple oot in the system
of roots orthogonal to aq,...,a,_1, then

(62) &17"'7ak‘717ak‘+17&k7ak‘+27'~'7al
is another fundamental sequence for A1 (g%, t%) and the type of each root— first kind
or second kind—is not changed.

(b) Let ¢ = cg, -+ -c5; be the composition of the commuting Cayley transforms
from (6.1) or (6.2), and suppose that ¢ leads from the data (g,0,t) to (my,ap,by)
and that a; = c(a;) for 1 < j <1 is the corresponding set of strongly orthogonal real

roots in A(gC, hp), where h, = b, G a,. Then the sequence of real roots as, ...,
and the sequence obtained by applying c to (6.2) determine the same positive system
AT (g%, b5).

Proof. Define
Ap ={£e A@g5t°) [ (6, a;) =0 for 1 <j <k —1},
A ={£€ A% | (¢, a;) =0 for 1 < j <k},
=16 A O) | (€a;)=0for 1<j<k—1landj=Fk+1}.

The sequence (6.2) certainly consists of positive noncompact roots satisfying (i)
and (iii) in the definition of fundamental sequence in §3. To show that (ii) holds
for (6.2), we are to show that

(ii-a) @41 is a simple root in Ag_q, and

(ii-b) @y is a simple root in A
Condition (ii-b) is automatic since ay, is simple in the larger system Ay _;.

Arguing by contradiction, suppose that (ii-a) fails. Then agy; = 8+ ', where
0B and (3 are positive roots in Ag_1. Let ag,v1,...,%m be the simple roots in this
subsystem. By assumption, &y, is orthogonal to ~vi,...,7vm,. We expand 8 and '
in terms of ax,V1,...,¥m as B = coly + Z;"Zl ¢jvj and B = cjau, + Z;"Zl i
for some coefficients > 0, and we take the inner product of everything with ay.
Then we obtain (3, ax) = colag|? and (8', ax) = cp|ax|? with ¢o and ¢} both > 0.
Addition gives 0 = (ayy1,ax) = (B+ ', ax) = (co+ch)|ax|?, and we conclude that
¢ = ¢, = 0. Consequently 5 and 5’ are linear combinations of v1,...,vm, and so
is Qg41. Since 71, ..., v, are by assumption orthogonal to ay and to ay, ..., ak—1,
the root a1 is exhibited as a nonsimple root in Ay, and we have arrived at a
contradiction. Thus (6.2) is a fundamental sequence.

To complete the proof of (a), we need to see that the type (first kind or second
kind) of each of &y and a1 is not affected by switching them in the sequence.
We have seen that aj and agy1 are both simple in Ag_;. We are given that ay,
is isolated in Ag_;. Then no root 3 in Ag_q is such that § + ay is a root. In
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particular, 3 + @y cannot be a root if 8 is in A}, and hence ay, is isolated in A,
Thus ay, is of the second kind in both sequences.

Similarly if a1 is isolated in Ag_q, then it is isolated in Ag. Thus if agyq is of
the second kind in (6.2), it is of the second kind in (6.1). In the converse direction,
suppose that @41 is of the first kind in (6.2), i.e., that &gy fails to be isolated
in Ag_1. Then 8+ qgy1 is a root for some root 8 in Ag_q. If (3, ax) # 0, then
+06+ ay, is a root for some 3 in Ag_;1 and some choice of sign, and this contradicts
the assumption that ay is isolated in Ag_1. So (B,ax) = 0, and § + ag41 is a
root with 3 orthogonal to a,...,a,. Thus ag4q fails to be isolated in Ag. This
completes the proof of (a).

For (b) we argue by contradiction. If (b) is false, then there exists some root
B in Ag_y with (8, @) < 0 and (83, ak+1) > 0. This root § cannot be —ay, since
(—ag, ag+1) = 0, and thus 0 + ay, is a root. Since 3 is in Ag, ay is not isolated in
Ag, in contradiction to the hypothesis. This proves (b).

Lemma 6.2. Under the assumptions that g is quasisplit, is simple, has a compact
Cartan subalgebra t C €, and has roots 31 and By with |B1]? = 2|Ba|?, suppose
that AT (g%, t%) is a positive system for A(g®,tC) in which every simple root is
noncompact. Then g has a fundamental sequence oy, ..., a; of strongly orthogonal
noncompact positive roots in which all of ay,...,q;_1 are long. In any fundamental
sequence, oy is of the second kind.

Remark. When 2 < m < n, the conclusion of this lemma fails for g = sp(m,n),
which is not quasisplit.

Proof. The root system in question has to be of type B,, C,, or Fy. Since none
of these systems has a nontrivial outer automorphism, g has to be split. Thus the
fundamental sequence has to be a basis for the roots. The only roots orthogonal to
ai,...,q;_1 are then the multiples of ay; the root a; is simple in this system, and
hence «; is of the second kind.

In split C),, the fundamental sequence, in standard notation, has to consist
of 2e,, 2e,_1,...,2e1, and no short roots appear. In split Fy, every fundamental
sequence consists of four long roots, and no short roots appear. In Bs,,, the sequence
consisting of ex;j_1 — e;, egj_1 + ey for 1 < j < n is fundamental with no short
roots. Finally, in By, 1, the sequence consisting of the roots for Bs, followed by
ean+1 is fundamental, and only the last member of the sequence is short.

If g has a compact Cartan subalgebra t C € and if a positive system A¥(g®, %)
is specified, a fundamental sequence aq, . .., a; of strongly orthogonal positive non-
compact roots will be said to be good if within each irreducible component of
A(g®, %) in which there are roots 41 and By with |31 = 2|f2]?, at most one
member of the part of the sequence within this component is short, and it is the
last one for this component.

Lemma 6.3. Let g be quasisplit and have a compact Cartan subalgebra t C €. Fix
a positive system for A(g®, 1), and suppose that every simple root is noncompact.
Then there exists a good fundamental sequence of positive noncompact roots.

Proof. Proposition 3.4 shows that a fundamental sequence exists. Fix an irreducible
component A; of A(g®, t€) in which there are roots 81 and (s with |51 [? = 2|32|?.
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The subsequence of the fundamental sequence consisting just of those roots that lie
in A; is fundamental for that component, and Lemma 6.2 says that we can replace
it by a good fundamental sequence for that component. Repeating this procedure
for the other irreducible components of A(g®,t%), we obtain a good fundamental
sequence for A(g®, t%).

Theorem 6.4. Let G be quasisplit and acceptable in the sense of Harish-Chandra,
and suppose that g has a compact Cartan subalgebra t C €. Suppose that ©F(0,C)
is a totally degenerate limit of discrete series character written in terms of t. Let
ay,...,qp be a good fundamental sequence of strongly orthogonal positive non-
compact roots relative to the positive system of A(g®,tC) determined by C. Let
Cc = cg, - €5 be the composition of Cayley transforms, and suppose that c leads
from the data (g,0,t) to data (my,a,,by,) and that oj = c(&;) for 1 < j <1 is the
resulting strongly orthogonal sequence of real roots in A(g®, b,), where hp = by, Day.
Use the sequence aq, ..., qp lexicographically to determine a unique positive system
At (gC, hg), and define o to be the 1-dimensional representation of M, such that
o is 1 on the identity component (My,)o and o(v.) equals —1 for every simple re-
stricted root € with m(e) = 1. Let H, be the set of superorthogonal real roots defined
in §5, and let p = |Hy|. Fach member of H, is one of the roots aq, ..., ap, and the
members of the sequence ..., q; can be permuted without changing A™ (g, b‘g)
so that the members of H, are the last p, namely aj_pi1,...,a;. Define dy to be
the composition [[,cy, da, and suppose that dy leads from the data (my,ap, by)
to data (m,a,b) as in §5. Then

(6.3) 0%(0,C) = indg ©M4(0, Car, 0| p(p),0),

where Cyy is the unique chamber in ib for which the p roots dy (), o € H,, are
Cr-positive, and (6.3) exhibits the given totally degenerate limit of discrete series
as rewritten with nondegenerate data.

Remarks. The sequence ay, . . ., aq exists by Lemma 6.3. The transformed sequence
ai,...,op determines lexicographically a unique positive system A*(gC, h(g) by
Proposition 3.2. The representation o exists and is unique according to Theo-
rem 5.1. In the proof we may assume that the root system contains no component
G5 because Table 5.1 shows that the R group is trivial for Gs.

Proof. We begin by adjusting the given sequence ay,...,a; in A(g®, %) a little.
Lemma 6.2 says that the exceptional short roots are of the second kind, and Lemma
6.1 allows us to move them to the end of the sequence without affecting A* (g, bf).
A second application of Lemma 6.1 allows us to move all remaining members of
the sequence that are of the second kind to the end of the sequence but just before
the exceptional short roots. Roots of the first kind are still of the first kind, roots
of the second kind are still of the second kind, and AT (g%, bT) is unchanged. At
the end of the adjustments, all the roots of the first kind precede all the roots
of the second kind, and all the ordinary roots of the second kind precede all the
exceptional short roots of the second kind. The sequence is still good. Let us
retain the names &y, . .., q; for the adjusted sequence, and let us refer to a member
o of the corresponding sequence ai,...,q; as being first kind, second kind, or
exceptional short if a; has that property.
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As in the proof of Proposition 4.3, let ¥ be the subsystem of restricted roots
orthogonal to ay,...,ar. We saw in that proof that the simple restricted roots
needed for the expansion of any member of ¥, are in Xj. For each k, the restriction
to a; of the real root ay, lies in Xj_1 but not in . Thus X;_; contains at least
one more simple restricted root than X does. Since the total number of simple
restricted roots coincides with the total number of «;’s, it follows for each j with
1 < j < that there exists one and only one simple restricted root whose expansion
in terms of oy, ..., a; begins with a positive multiple of a;. Let us write ¢; for this
simple restricted root.

Let H, be the set of superorthogonal real roots defined in §5. Proposition 5.4
observes that each such root 3 is simple in A* (g, f)f). The main step in the proof
is to show that 3 is one of the roots «; and is of the second kind.

If B is in ‘H,, then (3 is simple. Consequently, as we observed before Lemma 4.1,
a theorem of Satake [Sa] shows that the restriction of 3 to aj, is a simple restricted
root. In the notation above, the restriction of 3 is therefore of the form €; for some
unique j. Arguing by contradiction, suppose that some member of H,, is not one of
ai,...,qp. Among all 8 in H,, we can then choose the one 3 = 3y whose associated
¢; has j as small as possible so that €; # «;. Let ¢ be this smallest value of j. Fix
an element w of R, having the reflection sg, as one of its commuting factors.

We expand this real root 3y in terms of aq, ..., q; and form the irreducible root
subsystem to which Gy belongs. We saw that we may disregard split G>. Applying
Proposition 3.2, we obtain a list of possibilities for the expansion of (3y. Since [y
begins with a positive multiple of «;, is not «; itself, and is real, the only possibilities
are (3.1) through (3.4). The coefficients of any of ., a5, and oy that appear have
to be < 0 since fy is simple. An expansion (3.3) cannot occur since the condition
lo;| < Jeve] in (3.3) is incompatible with the fact that the fundamental sequence is
good. Thus the only possibilities are (3.1), (3.2), and (3.4).

If By is of the form (3.4), we can write By = %ai — %oz,« with 7 < r and with
|Bo] < |ar| = |ay|. We have sg,(o;) = a,, and (4.2) gives v3,Ya; = Va,- The
definition of ¢ makes o(7g,) = —1, and thus exactly one of o(7,,) or o(7a,.) is +1.
Since the element w of R, is a product of reflections in members of H,, we can
write w = sg,58, - - - 83,, With B1,..., Bm in ‘H, and with no repeated factors in the
expansion. The associated simple €;’s for §; with [ > 1 have j > i or else 3; is
some aj, with k£ < 4, and each such 3, is strongly orthogonal to 3y. Since each 3;
with j > 1 is orthogonal to 3y and does not contain «; in its expansion, no §; for
j > 1 contains «,. in its expansion either. So we have w(o;) = sg,, - - 83,88, () =
sg,, -+ g, () = o and similarly w(a,) = a;. If 0(7,,) = +1, then the equalities

0(Ya,.) = —1 and w(e;) = «, show that w does not preserve the set of positive
restricted roots 7 for which m(n) = 1 and o(v,) = +1; if 0(ya,) = +1, then the
equalities o(7Vq,) = —1 and w(«a,) = «; similarly show that w does not preserve the

set of positive restricted roots n for which m(n) =1 and o(7,) = +1. We have seen
that one of these alternatives must hold, and thus (3.4) leads to a contradiction.
So [ is of the form (3.1) or (3.2). In particular, |Gy| = |a].

In the remark with Proposition 4.3, we observed that 2p,, is a multiple of «;.
Let us digress to compute the parity of this multiple. We have to take into account
oy itself and all the forms of roots indicated by (3.1) through (3.6). From § as in
(3.1), we get a contribution from each of the eight combinations of signs, and the
sum is 4ay;. Similarly, when all signs are taken into account, we get 2a; from (3.2)
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and 2q; from (3.3), and we get 2q; from (3.6) if £w are both used. Thus 2p,, is
the sum of an odd multiple of a; and whatever contribution we get from (3.4) and
(3.5). If (3.5) makes any contribution, then we have seen in the proof of Proposition
4.3 that the corresponding irreducible component of ¥ is of type (BC),, and that
component contributes nothing to the group R, according to Table 5.1. Thus if
(3.5) makes any contribution to 2p,,, then Gy could not have been in H,, and we
would not have been considering index .

Continuing our digression, let us see that (3.4) cannot make any contribution to
2pq, under the assumption that Gy is in H,. Suppose on the contrary that there
exists a real root of the form 3 = %ai — %aT with |8] < || = |a|. The restrictions
to ay of 8 and o; are nonorthogonal nonproportional restricted roots, and they are
in the same irreducible component of ¥ as the restriction of Gy. This component
must therefore be of one of the types (BC),, Fy, C,, or B,. We can rule out
(BC),, and Fy since Table 5.1 shows that such a component contributes nothing
to R, and leads to the conclusion that (y is not in H,. Since «; and [y are long,
nonorthogonal, and nonproportional, we can rule out C,,. Thus the component of
Bo, a;, and § in 3 may be assumed to be of type B,,. If o(yg) = —1, then the same
argument that rules out Gy of the form (3.4) rules out the existence of 5 now. Thus
o(y3) = +1. Since 3 is short, it is conjugate via reflections in long simple restricted
roots to plus or minus a short simple root. Taking (4.3) into account, we see that
73 equals 7. for the unique short simple restricted root €, and ¢ has m(e) = 1.
But then +1 = o(vg) = 0(y:) = —1 by definition of ¢, and we have arrived at a
contradiction. Thus we may assume that no root of the form (3.4) occurs for our
index ¢ if By is as in (3.1) or (3.2) and [y belongs to H,.

The upshot of our digression is that we may assume that

(—1)Hpasaid/lail® — _q,

Therefore Proposition 4.3 shows that

(6.4) o (Ya,) = 1.

Moreover, we already saw that Sy has to be of the form (3.1) or (3.2).

Suppose that 3y is of the form (3.1), namely Gy = %ozi - %ar - %as - %at. Put
By = sa; + 2o + 1o, + oy From B = —s4,(80) and (4.3), we obtain
(6.5) o(v8y) = 0 (Ya:i)o (V30)-

Because o(vs,) = —1, (6.4) and (6.5) allow us to conclude that o(vg;) = +1. Since
s8,(By) = oy and since all roots other than [y that contribute to the element w
of R, either begin their expansions after «; or else are of the form o with k < ¢,
we obtain w(8)) = a;. This equality gives a contradiction because, by (6.4), it
exhibits w as not preserving the set of positive restricted roots ¢ with m(e) = 1
and o(vy:) = +1. Thus Gy cannot be of the form (3.1).

Suppose that By is of the form (3.2), namely 8y = s — 3, — 2o, with |G| =
‘ai‘ = |a7"| > ‘as" Put 56 = %ai + %ar + %ay From ﬂé) = _Sai(/BO)7 (43)7 and
(6.4), we obtain

a(vg;) = 0(Ya:)o (v8,) = (=1)(=1) = +1.
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From sg,(06)) = oy, we deduce w(3)) = «;, and we again obtain a contradiction.
Consequently [y cannot be of the form (3.2), and all possibilities for Gy are ruled
out. We conclude that every member of H, is of the form «; for some j.

Now let a; be a member of H,. We know that o is simple for A* (g, bf). Let
us see that it is of the second kind, i.e., that it is isolated in the system of roots
orthogonal to oy, ..., a;_1. This condition means that o; is the only positive root
for At (g, f)(g) whose expansion in terms of o, . . ., oy and ib;J begins with a positive
multiple of a;. If 3 is a positive root whose expansion begins with %aj, then the
same thing is true of —s,;(3), and a; = B+ (—sq,()) gives the contradiction that
a; is not simple for AT (g% p5). If 3 is a positive root whose expansion begins
with «;, then 8 = a; + £, where £ is a root orthogonal to «;. If £ is negative,
then a; = 0 + (—¢&) exhibits «; as not simple, contradiction. If £ is positive, then
—Sa,(B) is positive and s,,(§) = &, so that a; = —s,,(8) + € exhibits «; as not
simple, contradiction. Consequently «; is of the second kind.

Let p be the number of roots in H,. Because of the result of the previous
paragraph, Lemma 6.1 allows us to adjust the fundamental sequence aq,...,q
further so that the p roots a; with a; € H, are the last p members of the sequence.
Lemma 6.1 says also that the positive system AT (g®, f)g) is unchanged.

Let us restate our construction in a way that takes into account all the different
ways we were led to AT (g, f)(pc). Starting from the chamber C' in it, we formed a
fundamental sequence aj, ..., q; relative to AT (g®, t€). For c equal to the compo-
sition of all the cg,, we used c to pass from the data (g,0,t) to data (my,ay, by)
and to define a; = c(a;) as a member of A(g", hf). The sequence aq,...,q; en-
abled us to introduce a lexicographic ordering and define A% (g, hf). In terms of
this positive system we could define o. The group R, relative to this same posi-
tive system led us to H,, which consists of oy_p11,..., 0. From §5 we know that
all the totally degenerate limits of discrete series lie in the induced representation
from o and that the characters of the irreducible constituents of this induced rep-
resentation are realized with nondegenerate data as indg @MA(O,C’M,U\F(B),O),
where the Cayley transform dy = dq,_,., - --dq, leads from the data (my,ay,by)
to the data (m,a,b). Since cg, and d,,; can be arranged to be exact inverses of
one another, we can pass from the data (g,0,t) to the data (m,a,b) more directly
by the composition ¢y = ¢;—p---c1. The inverted generalized Schmid identities
are exactly that—the same identities read from right to left instead of left to right.
Consequently the generalized Schmid identities for the factors of ¢y show us how
to pass from our given totally degenerate character ©%(0,C) to a situation where
the character has been rewritten with nondegenerate data.

Now we can prove the conclusions of the theorem. What we have to do is identify
the correct chamber Cjy of ib in terms of the starting chamber C. Let us follow
what happens to the chamber through each use of some cz,. Say that the relevant
Cartan subalgebra is h; = b;@a; after using cq, - - €a,, 1 < j < I—p. The chamber
after using cg, is C**1, the unique Weyl chamber of iby containing Proj,, (C'). Thus
we have

C**1 2 Proj;, (O).

(6.6) (C°%1)°%2 2 Projy, (C°*1) 2 Projyy, (Proj;p, (C)) = Projy, (C).
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Iterating, we obtain

O = (- ((C™1)°%2) -+ )™ =2 2 Proj;, (C).
If H is in C, then

(6.7) Proj;,(H) = H — H

= lagl?
An imaginary positive root B of (m®, b®) extends uniquely to an imaginary positive
root of (g, t®) that is orthogonal to ay, ... ,0;—p. Then [ takes the same value on
H in C that it takes on the two sides of (6.7). On C, it is positive, and we conclude

from (6.6) that every such B is positive on a certain open subset of
Oar = (- (O )"

In particular, &;_p41,...,0; are positive on this open set. We saw in Theorem
5.5 that the chambers of ¢b are 27 in number and are distinguished by the signs
of &j_pt1,...,0; on them. The conclusion is that the desired chamber Cjs is the
unique one where oy_p11,...,q; are all positive, and the proof is complete.

7. PARTICULAR CASES

1) Groups of type A. The groups in question of type A are G = SU(n,n)
and G = SU(n + 1,n), and most of the development in §§4-6 of this paper is
unnecessary for these cases. For SU(n + 1,n), we see from Appendix C of [Kn3|
that M, is connected, and it follows that o is trivial; the unitary spherical principal
series is irreducible for any G, and thus the only totally degenerate limit of discrete
series representation is the spherical principal series representation with trivial A,
parameter. The case of SU(n,n) is only slightly more subtle. The group M, has
two components in this case. A good fundamental sequence is e; —es, e3—ey, ...,
and we can check directly that all the intermediate M groups are connected. If we
think of applying generalized Schmid identities in succession corresponding to the
Cayley transforms cg, we see that the question comes down to what happens at
the last step, specifically whether the applicable generalized Schmid identity is of
type (a) or type (b). This is the question whether the last s5 is in W(B*: M*)
or not. Direct computation shows that it is not, and the identity to use is of type
(a). Then we get reducibility into two pieces, and this reducibility is understood at
the last step. Thus we get nondegenerate data one step removed from the minimal
parabolic subalgebra.

2) Other classical groups. The full theory is needed in most of the other classical
cases, and the results are summarized in Table 7.1; the table also includes the
exceptional cases and refers to them by Cartan’s numbering, which is reproduced
in Appendix C of [Kn3|. Let us think in terms of starting from a compact Cartan
subalgebra and applying a succession of generalized Schmid identities. A curious
feature of the classical cases is that the stage at which we find nondegenerate data,
namely |H,| steps away from a minimal parabolic subalgebra, is always the first
stage at which m* becomes the sum of an abelian subalgebra and a direct sum of
copies of s[(2,R). As the table shows, this coincidence is no longer valid for the
exceptional groups, i.e., the entries in the last two columns of Table 7.1 are not
equal for the exceptional groups.
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Table 7.1. Comparison of |H,| with the number of roots &;
of the second kind in a standard good fundamental sequence

A g Real | Number ¢&; | Number &; | |H,|
Rank Of Of
First Kind | Second Kind
Aspq su(n,n) n n—1 1 1
Aap su(n+1,n) n n 0 0
B, s0(2n+1,2n) 2n n n n
Bop1 | 50(2n+2,2n+1) | 2n+ 1 n n+1 n+1
Cp sp(n,R) n n—1 1 1
Doy, s0(2n,2n) 2n n—1 n+1 n+1
Dopyn | s0(2n+2,2n) 2n n n n
Fg EII 4 3 1 0
D EV 7 3 4 3
Fx E VIII 8 4 4 0
Fy FI 4 2 2 0
Gy G P 1 1 0

The computations in the classical cases are straightforward, particularly in the
presence of Table 5.1. The case of C,, is a little special in that the good fundamen-
tal sequence has to be 2e,, 2¢,_1, ...,2e;. For the other classical cases, a good
fundamental sequence is obtained by using as many as possible of the roots e; —es,
es—ey, ...and following them with the corresponding ey +es, es+ey4, .... In the
case of Ba, 1, one adjoins es, 41 at the end.

3) Split E7. The only exceptional simple group under study for which the R
group of the special ¢ is nontrivial is split F7, and some comments are in order
about this case. A good fundamental sequence is constructed as follows. Fix C.
Number the C-simple roots in the Dynkin diagram as 3; with j as in (765i31). Put

&1 :577
Qo = a1 + 206 + 205 + 284 + B3 + B2,
aS :ﬂfﬁa

Qg = Qg+ B5 + 2084 + 205 + B2 + 201,

as =[5+ 204 + B3 + o,

ag = B,

ar = .
During the construction, the system orthogonal to ay is of type Dg, with simple
roots consisting of By, B2, B3, B4, O5, and as. The subsystem orthogonal to as is
of type D4 + Ay, with the simple roots of D, consisting of (s, B3, 84, 85 and with
A formed from as. The subsystem orthogonal to as = 83 has four isolated simple
roots, namely ay, a5, 02, and (5. These remarks explain the entries in the fourth
and fifth columns of Table 7.1 for E.

To trace what happens for E7 in Theorem 6.4, we remove the tildes from the roots

a@; and use the roots a; to impose a lexicographic ordering and obtain A™ (g%, b).
Examining the proof of Proposition 4.3, we can quickly write the expansions of the
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simple roots {; in this system in terms of the basis a,...,ag as
& =5(a1 — a2 —az — o),
& = 1(as — a3 — a5 — ag),
&3 = %(043 —ay — a5 —ay),
§4 = au,
&5 = as,
§6 = ap,
§&r = ar.

Computing the inner products (§;, ¢;), we can form a Dynkin diagram. Then we see

that the numbering of the simple roots as §; corresponds to j as in (625;41). Table

5.1 says that the roots in H, are the simple roots in the positions X in (XOX%OO).
These are the roots &5 = as, & = ag, and {7 = a7, and we have a confirmation of
the prediction from the proof of Theorem 6.4 that the members of H, all lie in the

sequence ag,...,ag and are of the second kind.
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